WO2021039502A1 - Operation confirmation device for electrical vertical take-off/landing aircraft - Google Patents

Operation confirmation device for electrical vertical take-off/landing aircraft Download PDF

Info

Publication number
WO2021039502A1
WO2021039502A1 PCT/JP2020/031147 JP2020031147W WO2021039502A1 WO 2021039502 A1 WO2021039502 A1 WO 2021039502A1 JP 2020031147 W JP2020031147 W JP 2020031147W WO 2021039502 A1 WO2021039502 A1 WO 2021039502A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust
operation confirmation
unit
eds
confirmation device
Prior art date
Application number
PCT/JP2020/031147
Other languages
French (fr)
Japanese (ja)
Inventor
真梨子 橋本
輝 岩川
俊 杉田
優一 竹村
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021039502A1 publication Critical patent/WO2021039502A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • This disclosure relates to an operation confirmation device for an electric vertical takeoff and landing aircraft.
  • eVTOL electric vertical take-off and landing aircraft
  • the electric vertical take-off and landing aircraft is equipped with a plurality of electric drive systems (EDS: Electric Drive System) having motors, and a plurality of rotor blades are rotationally driven by a plurality of motors to obtain lift and thrust of the airframe.
  • EDS Electric Drive System
  • Patent Document 1 discloses a method for analyzing the function of a gas turbine engine. Similar to gas turbine engines, electric drive systems for electric vertical take-off and landing aircraft are also required to undergo functional tests at the time of replacement or periodic inspections.
  • the electric vertical takeoff and landing aircraft can take off and land even in a narrow space compared to fixed-wing aircraft equipped with a gas turbine engine, it is expected to be operated in various places.
  • the functional test of the electric drive system requires special equipment such as a jig for fixing the electric drive system to the ground when the rotor blades are rotationally driven, so that it is similar to an airplane having a gas turbine engine. , It is expected that it will be carried out at inspection sites equipped with dedicated equipment. From these facts, the inventors of the present application considered that it is inefficient to move the electric vertical take-off and landing aircraft from the operation site to the inspection site or the like in order to carry out the functional test. For this reason, a technology capable of performing a functional test of an electric drive system at an operating location of an electric vertical take-off and landing aircraft is desired.
  • an operation confirmation device is provided.
  • This operation confirmation device is an operation confirmation device of an electric drive system mounted on an electric vertical takeoff and landing aircraft, and the electric drive system includes a motor for driving a rotary blade of the electric vertical takeoff and landing aircraft.
  • the operation confirmation device includes a fixing portion with the ground and a connecting portion for directly connecting to the electric drive system or indirectly via the body of the electric vertical take-off and landing aircraft.
  • the operation confirmation device of this form of electric vertical take-off and landing aircraft a fixed portion with the ground and a connecting portion for directly or indirectly connecting with the electric drive system via the airframe of the electric vertical take-off and landing aircraft. Therefore, it is possible to prevent the place for carrying out the functional test from being limited to the inspection site or the like. Therefore, the functional test of the system under test can be performed at the operation site of the electric vertical take-off and landing aircraft.
  • This disclosure can also be realized in various forms.
  • it can be realized in the form of an electric vertical take-off and landing machine provided with an operation check device, an operation check method of the electric vertical take-off and landing machine, and the like.
  • FIG. 1 is a top view schematically showing the configuration of an electric vertical take-off and landing aircraft equipped with a control device.
  • FIG. 2 is a side view schematically showing the configuration of the electric vertical take-off and landing aircraft.
  • FIG. 3 is a block diagram showing the configuration of an electric vertical take-off and landing aircraft.
  • FIG. 4 is a perspective view schematically showing an operation confirmation device mounted on the system under test.
  • FIG. 5 is a flowchart showing the test processing procedure.
  • FIG. 6 is a graph showing an example of the test results.
  • FIG. 7 is a sequence diagram showing the communication procedure of the test.
  • eVTOL electric Vertical Take-Off and Landing aircraft
  • the eVTOL100 is configured as a manned aircraft that is electrically driven and can take off and land in the vertical direction.
  • the eVTOL 100 includes an airframe 20, a plurality of rotor blades 30, and a plurality of electric drive systems 10 (hereinafter, also referred to as "EDS (Electric Drive System) 10"), and a battery 40 shown in FIG. , The converter 42, the distributor 44, the airframe communication unit 64, and the notification unit 66.
  • the eVTOL 100 of the present embodiment has eight rotor blades 30 and eight EDS 10s, respectively. In FIG. 3, for convenience of illustration, two rotor blades 30 and EDS 10 among the eight rotor blades 30 and EDS 10 included in the eVTOL 100 are shown as representatives.
  • the airframe 20 corresponds to the portion of the eVTOL 100 excluding the eight rotors 30 and the EDS 10.
  • the airframe 20 includes an airframe main body 21, a strut 22, six first support 23, six second support 24, a main wing 25, and a tail 28.
  • the body portion 21 constitutes the body portion of the eVTOL 100.
  • the machine body 21 has a symmetrical structure with the body axis AX as the axis of symmetry.
  • the "airframe axis AX” means an axis that passes through the center of gravity CM of the airframe and is along the front-rear direction of the eVTOL 100.
  • the "machine weight center position CM” means the position of the center of gravity of the eVTOL 100 when the occupant is not on board and the weight is empty.
  • a passenger compartment (not shown) is formed inside the machine body 21.
  • an acceleration sensor 29 is mounted on the machine body 21.
  • the acceleration sensor 29 is composed of a three-axis sensor and measures the acceleration of the eVTOL 100. The measurement result by the acceleration sensor 29 is output to the control device 50.
  • the strut portion 22 has a substantially columnar appearance shape extending in the vertical direction, and is fixed to the upper part of the machine body portion 21.
  • the support column portion 22 is arranged at a position overlapping the machine weight center position CM of the eVTOL 100 when viewed in the vertical direction.
  • One end of each of the six first support parts 23 is fixed to the upper end of the support part 22.
  • Each of the six first support portions 23 has a substantially rod-like appearance shape, and is arranged radially at equal angular intervals so as to extend along a plane perpendicular to the vertical direction.
  • Rotors 30 and EDS 10 are arranged at the other end of each first support portion 23, that is, at an end portion located away from the strut portion 22.
  • Each of the six second support portions 24 has a substantially rod-like appearance shape, and connects the other ends (ends on the side not connected to the strut portion 22) of the first support portions 23 adjacent to each other. ing.
  • the main wing 25 is composed of a right wing 26 and a left wing 27.
  • the right wing 26 is formed so as to extend to the right from the main body portion 21 of the airframe.
  • the left wing 27 is formed so as to extend to the left from the main body portion 21 of the airframe.
  • a rotary wing 30 and an EDS 10 are arranged on the right wing 26 and the left wing 27, respectively.
  • the tail wing 28 is formed at the rear end of the main body 21 of the airframe.
  • Six of the eight rotors 30 are arranged at the ends of the second support portions 24, and are mainly configured as lift rotors 31 for obtaining lift of the airframe 20.
  • Two of the eight rotors 30 are arranged on the right wing 26 and the left wing 27, respectively, and are mainly configured as cruise rotors 32 for obtaining the thrust of the airframe 20.
  • Each rotor 30 is rotationally driven independently of each other around its own rotation axis.
  • Each rotor 30 has three blades 33 arranged at equal intervals with each other.
  • the blade angle of each rotor 30 is variably configured. Specifically, the blade angle is adjusted by an actuator (not shown) according to the instruction from the control device 50. As shown in FIG.
  • each rotor 30 is provided with a rotation speed sensor 34 and a torque sensor 35, respectively.
  • the rotation speed sensor 34 measures the rotation speed of the rotary blade 30.
  • the torque sensor 35 measures the rotational torque of the rotary blade 30. The measurement results by the sensors 34 and 35 are output to the control device 50.
  • the eight EDS 10s shown in FIG. 1 are configured as an electric drive system for rotationally driving each rotary blade 30. Six of the eight EDS 10s drive the lift rotor 31 to rotate. Two of the eight EDS 10s rotate the cruise rotor 32, respectively.
  • each EDS 10 includes a drive unit 11, a drive motor 12, a gearbox 13, a rotation speed sensor 14, a current sensor 15, a voltage sensor 16, a torque sensor 17, and an EDS side. It has a storage unit 18.
  • the drive unit 11 is configured as an electronic device including an inverter circuit (not shown) and a controller (not shown) that controls the inverter circuit.
  • the inverter circuit is composed of power elements such as IGBT (Insulated Gate Bipolar Transistor) and MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and is connected to the drive motor 12 according to the duty ratio according to the control signal supplied from the controller. Supply the drive voltage.
  • the controller is electrically connected to the control device 50 and supplies a control signal to the inverter circuit in response to a command from the control device 50.
  • the drive motor 12 is composed of a brushless motor in the present embodiment, and outputs rotational motion according to the voltage and current supplied from the inverter circuit of the drive unit 11.
  • the brushless motor instead of the brushless motor, it may be composed of an arbitrary motor such as an induction motor or a reluctance motor.
  • the gearbox 13 physically connects the drive motor 12 and the rotary blade 30.
  • the gearbox 13 has a plurality of gears (not shown), and decelerates the rotation of the drive motor 12 and transmits the rotation to the rotary blade 30.
  • the gearbox 13 may be omitted and the rotation shaft of the rotary blade 30 may be directly connected to the drive motor 12.
  • the rotation speed sensor 14 and the torque sensor 17 are provided in the drive motor 12, respectively, and measure the rotation speed and the rotation torque of the drive motor 12, respectively.
  • the current sensor 15 and the voltage sensor 16 are provided between the drive unit 11 and the drive motor 12, respectively, and measure the drive current and the drive voltage, respectively.
  • the measurement results of the sensors 14 to 17 are output to the control device 50 via the drive unit 11.
  • the test program is stored in advance in the EDS side storage unit 18.
  • Input information such as the test date and time, latitude and longitude, aircraft number, and air temperature and pressure input from the control device 50 is stored in the EDS side storage unit 18. Further, the EDS side storage unit 18 stores the measurement data from each sensor.
  • the battery 40 is composed of a lithium ion battery and functions as one of the power supply sources in the eVTOL 100.
  • the battery 40 mainly supplies electric power to the drive unit 11 of each EDS 10 to drive each drive motor 12.
  • the lithium ion battery instead of the lithium ion battery, it may be composed of an arbitrary secondary battery such as a nickel hydrogen battery, and instead of the battery 40 or in addition to the battery 40, any electric power such as a fuel cell or a generator may be used.
  • a source may be installed.
  • the converter 42 is connected to the battery 40, lowers the voltage of the battery 40, and supplies the voltage to the auxiliary equipment and the control device 50 of the eVTOL 100 (not shown).
  • the distributor 44 distributes the voltage of the battery 40 to the drive unit 11 included in each EDS 10.
  • the control device 50 is a microcomputer including a storage unit 51 and a CPU (Central Processing Unit), and is configured as an ECU (Electronic Control Unit).
  • the storage unit 51 has a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the CPU functions as a control unit 52 that controls the overall operation of the eVTOL 100 by executing a control program stored in advance in the storage unit 51.
  • the overall operation of the eVTOL 100 corresponds to, for example, a vertical takeoff and landing operation, a flight operation, an execution operation of a functional test of each EDS10, and the like.
  • the vertical takeoff and landing operation and the flight operation may be executed based on the set air route information, may be executed by the maneuvering of the occupant, and may be executed based on the command from the external control unit 510 included in the external device 500 described later. It may be executed.
  • the control unit 52 controls the rotation speed and rotation direction of the drive motor 12 of each EDS 10, the blade angle of each rotary blade 30, and the like.
  • each EDS10 is simple for the EDS10 that has been inspected and maintained after the EDS10 has been inspected, including periodic inspections and inspections when a problem occurs, and maintenance such as replacement of components of the EDS10 has been performed. It is executed to confirm the operation.
  • the EDS 10 that is the target of the functional test is referred to as a "test target system".
  • test target system operates normally and the rotary blade 30 (hereinafter, also referred to as “test target rotary blade”) that the test target system is rotationally driven rotates normally.
  • the airframe communication unit 64 has a function of performing wireless communication, transmits and receives information between the external communication unit 520 included in the external device 500 and the eVTOL 100, and is configured to be able to communicate with the control device 50.
  • wireless communication for example, wireless communication provided by a telecommunications carrier such as 4G (4th generation mobile communication system) or 5G (5th generation mobile communication system), or a wireless LAN according to the IEEE 802.11 standard. Communication etc. is applicable. Further, for example, USB (Universal Serial Bus) or wired communication according to the IEEE802.3 standard may be used.
  • the external device 500 corresponds to, for example, a computer for managing and controlling a server device or the like that controls a functional test and records test results.
  • the management / control computer may be, for example, a server device arranged in an air traffic control room, or a personal computer brought to the operation site of the eVTOL 100 by a maintenance worker who performs maintenance and inspection including a functional test. It may be.
  • the notification unit 66 notifies according to the instruction from the control device 50.
  • the notification unit 66 is composed of a display device mounted in the passenger room to display characters, images, etc., a speaker for outputting voice, warning sound, etc., and various types of notification units are provided to the passenger by visual information and auditory information. Notify information.
  • the operation confirmation device 70 shown in FIG. 4 is attached to the system under test when the functional test is executed.
  • the operation confirmation device 70 is fixed to the ground at an arbitrary place.
  • the operation confirmation device 70 measures and stores the thrust of the system under test in the functional test, and further determines the pass / fail of the functional test.
  • the operation confirmation device 70 includes a fixing unit 71, a connecting unit 72, a thrust-related value sensor unit 73, a main body unit 74, and a position adjusting unit 78.
  • the fixing portion 71 plays a role of fixing the entire operation checking device 70 to the ground via the position adjusting portion 78 described later.
  • the fixed portion 71 includes a rail-shaped rectangular plate extending in a direction parallel to the first support portion 23 and a rail-shaped rectangular plate extending in a direction perpendicular to the first support portion 23, and is formed in a grid pattern.
  • the fixing portion 71 is provided with four rail-shaped rectangular plates, any number of rectangular plates may be provided. Further, the fixing portion may be an arbitrary shape plate instead of the rail-shaped rectangular plate.
  • the connecting portion 72 is located at the upper end of the operation confirmation device 70, and plays a role of indirectly connecting to the EDS 10 via the body 20 of the eVTOL 100. Specifically, the connecting portion 72 is connected to the EDS 10 via the first supporting portion 23. The lower end side of the connecting portion 72 is connected to the thrust-related value sensor portion 73, which will be described later. The connecting portion 72 and the EDS 10 may be directly connected to each other.
  • the thrust-related value sensor unit 73 is arranged from the lower end of the connecting portion 72 to the upper end of the main body portion 74.
  • the thrust-related value sensor unit 73 has a columnar appearance shape.
  • the thrust-related value sensor unit 73 connects the connecting unit 72 and the main body 74, and incorporates a thrust sensor that measures the thrust of the EDS 10 of the system under test.
  • the thrust sensor has, for example, a spring and a strain gauge that detects a strain that is the elongation of the spring, and measures the thrust using the detected strain.
  • the main body 74 includes an interface 75, a pass / fail arithmetic unit 76, and a display 77.
  • the interface unit 75 outputs at least one of the output value of the EDS 10 acquired by the acquisition unit 76c described later and the execution result of the determination by the determination unit 76a described later to the outside.
  • the pass / fail determination arithmetic unit 76 includes a determination unit 76a, an arithmetic unit side storage unit 76b, and an acquisition unit 76c. In the present embodiment, the determination unit 76a determines whether or not the difference between the command value and the assumed output acquired by the interface unit 75 and the output value of the EDS 10 is within a predetermined range.
  • the arithmetic unit side storage unit 76b contains a command value acquired by the interface unit 75 and an assumed output (the theory of change patterns such as rotation speed, torque, motor temperature, thrust, and vibration when the drive motor 12 is test-driven. Value or estimated value) and the output value of EDS10 are stored.
  • the acquisition unit 76c acquires the command value and the assumed output for the EDS 10 and the output value of the EDS 10. In this embodiment, the acquisition unit 76c can directly acquire the thrust from the thrust-related value sensor unit 73.
  • the display unit 77 is a display for displaying the measurement result and the pass / fail judgment result.
  • the position adjusting unit 78 is arranged between the fixed portion 71 and the ground, and adjusts the fixed position with the ground.
  • the fixed position of the position adjusting portion 78 is adjusted by, for example, a caster with wheels mounted on the ground side of the fixing portion 71.
  • the position is adjusted by a universal vehicle whose traveling direction turns or a fixed vehicle whose traveling direction is fixed, and the rotation is stopped by a stopper (not shown) to fix the operation confirmation device 70 to the ground.
  • "fixed to the ground” means operation confirmation to the extent that the EDS 10 does not shift beyond a predetermined range even when stress is applied to the machine body 20 due to the execution of the functional test. It means that the device 70 is fixed to the ground.
  • Test processing procedure The test process shown in FIG. 5 means a process for exchanging the EDS 10 and performing a functional test of the EDS 10 after the exchange. Therefore, for example, it is executed when a part of the component parts of the EDS 10 breaks down, or when the periodic replacement time of the parts has come.
  • the operation confirmation device 70 is attached to the EDS 10 via the first support portion 23 (step S10). At this time, the EDS 10 is attached so that the vertical central axis of the EDS 10 and the vertical central axis of the operation confirmation device 70 coincide with each other.
  • the operation confirmation device 70 is fixed to the ground by the position adjusting unit 78 (step S11).
  • the above-mentioned steps S10 and S11 may be performed at the same time, or step S11 may be executed first and step S10 may be executed later.
  • the control unit 52 of the control device 50 outputs a rotation speed command to the drive unit 11 of the EDS 10 which is the test target system (step S12).
  • the system under test drives the rotor 30 to generate thrust (lift).
  • the operation confirmation device 70 is connected to the EDS 10 and fixed to the ground. Therefore, even if a thrust is generated by the execution of step S12, the operation confirmation device 70 generates a reaction force having the same magnitude as the thrust, so that the vertical displacement of the system under test is suppressed.
  • the thrust-related value sensor unit 73 measures the thrust of the test target system
  • the interface unit 75 is the thrust-related value sensor.
  • the measured value obtained by the unit 73 is stored in the arithmetic unit side storage unit 76b (step S13).
  • the determination unit 76a compares the thrust measured by the operation confirmation device 70 with the estimated thrust value to make a pass / fail determination (step S14). Specifically, as shown in FIG. 6, the determination unit 76a obtains the absolute value of the difference between the thrust measurement value and the thrust estimation value at predetermined time intervals. Then, if the absolute value of the difference obtained over the entire test period is smaller than a predetermined threshold value, it is determined to pass, and if it is equal to or more than the threshold value, it is determined to be rejected.
  • the test is determined to be unsuccessful.
  • the determination unit 76a outputs the measurement result and the pass / fail determination result to the control device 50 via the interface unit 75 (step S15). After the completion of step S15, the test process ends.
  • the fixing portion 71 to the ground is directly connected to the electric drive system 10 or indirectly via the body of the electric vertical take-off and landing aircraft. Since the connecting portion 72 is provided, it is possible to prevent the place for executing the functional test from being limited to the inspection site or the like. Therefore, the functional test of the system under test can be performed at the operation site of the electric vertical take-off and landing aircraft.
  • Second embodiment Since the configuration of the operation confirmation device 70 and the eVTOL 100 of the second embodiment is the same as the configuration of the operation confirmation device 70 and the eVTOL 100 of the first embodiment, the same components are designated by the same reference numerals. A detailed description will be omitted.
  • the pass / fail of the functional test is determined by using only the thrust, but in the second embodiment, the pass / fail of the functional test is determined by using parameters other than the thrust.
  • the sequence of test processing shown in FIG. 7 is started by a worker inputting an instruction to carry out a functional test from a user interface (not shown) connected to the control device 50.
  • the control unit 52 transmits a test start signal to the EDS 10 of the test target system (step S20). With such a signal as an opportunity, the EDS 10 confirms whether or not the rotary blade 30, the operation confirmation device 70, and the battery 40 are in a state in which the test can be started (Ready) (step S21). For example, if the rotor blade 30 is used, power is temporarily supplied to check whether or not the rotor blade 30 can rotate.
  • the operation confirmation device 70 If the operation confirmation device 70 is used, a predetermined operation confirmation signal is transmitted to the operation confirmation device 70, and it is confirmed whether or not the response signal is received. If it is the battery 40, the remaining capacity (SOC: StateOfCharge) of the battery 40 is confirmed. When the rotary blade 30, the operation confirmation device 70, and the battery 40 are Ready, the EDS 10 notifies the control device 50 to that effect (step S22).
  • the control device 50 that has received the Ready transmits input information such as the test date and time, latitude and longitude, the aircraft number, and temperature and pressure to the EDS 10 (step S23), and the EDS 10 transmits the received input information to the EDS side storage unit 18. Save to (step S24).
  • the EDS 10 transmits a test drive synchronization signal to the operation confirmation device 70, and the operation confirmation device 70 transmits a notification to the EDS 10 that the synchronization signal has been received (step S25). By transmitting and receiving such a synchronization signal, the test drive of the rotary blade 30 and the measurement of the thrust in the operation confirmation device 70 can be synchronized.
  • the operation confirmation device 70 that has received the synchronization signal records the rotation speed command value from the control device 50, the thrust measurement value acquired from the thrust related value sensor unit 73, and the data measured by the rotation speed sensor 34 and the torque sensor 35.
  • the EDS 10 transmits an output command request to the control device 50 (step S26).
  • the control device 50 transmits a command of the assumed output and the rotation speed to the EDS 10 (step S27).
  • the EDS 10 test-drives the drive motor 12 according to a test program stored in advance in the EDS-side storage unit 18 (step S28).
  • the drive unit 11 is controlled so as to supply the current value and the voltage value of a predetermined test pattern to the drive motor 12, and the electric power is supplied from the battery 40.
  • Thrust-related value The thrust measurement value acquired from the sensor unit 73, the assumed output from the EDS 10, and the rotation speed command are sequentially received and stored in the arithmetic unit side storage unit 76b (step S29).
  • the rotation speed sensor 34 and the torque sensor 35 transmit the measured data to the EDS 10 (step S30).
  • the EDS 10 sequentially transmits the measurement data measured by each sensor to the operation confirmation device 70 and the control device 50 (step S31).
  • the control device 50 and the operation confirmation device 70 sequentially store the measurement data from each sensor in the storage unit 51 and the arithmetic unit side storage unit 76b (step S32). Steps S27 to S32 are repeated by changing the frequency at which the drive voltage or the like is changed.
  • the control device 50 sends a signal for the end of the functional test to the EDS 10, and the EDS 10 that has received the signal for the end of the functional test sends a signal for the end of the functional test to the device 70 requiring operation confirmation (step S33).
  • a pass / fail determination is performed in the determination unit 76a of the operation confirmation device 70 (step S34), the pass / fail determination result is transmitted to the EDS 10 and transmitted from the EDS 10 to the control device 50 (step S35).
  • the pass / fail of the functional test is determined by using parameters other than the thrust. Therefore, a detailed functional test can be performed on the EDS 10 which is the test target system.
  • the thrust-related value sensor unit 73 has a built-in thrust sensor for measuring the thrust of the EDS 10 of the test target system, and the main body 74 includes the interface unit 75 and the determination unit 76a. , The arithmetic unit side storage unit 76b, the acquisition unit 76c, and the display unit 77 are provided, but the present embodiment is not limited to this.
  • the operation confirmation device 70 of the present embodiment includes a thrust sensor that measures the thrust of the EDS 10 of the system under test, an interface unit 75, a determination unit 76a, an arithmetic unit side storage unit 76b, an acquisition unit 76c, and a display unit. Of 77, some may be omitted.
  • the thrust-related value sensor unit 73 may be simply for connection. According to such a configuration, the configuration of the operation confirmation device 70 can be simplified.
  • Embodiment 2 The operation confirmation device 70 of each of the above embodiments includes a position adjusting unit 78 for adjusting a fixed position with the ground, but the operation confirmation device 70 of the present embodiment does not include the position adjustment unit 78. You may.
  • the thrust-related value sensor unit 73 in the operation confirmation device 70 of each of the above embodiments has a built-in thrust sensor for measuring the thrust of the EDS 10 of the test target system, but the present embodiment is not limited to this.
  • the output value of the EDS 10 includes a thrust-related value related to the thrust of the motor, and a thrust-related value sensor for measuring the thrust-related value may be further provided.
  • the acquisition unit 76c may acquire the thrust-related value from the thrust-related value sensor.
  • the thrust-related value is, for example, the vibration of the motor, which is measured by a vibration sensor which is a thrust-related value sensor. According to such a configuration, even in a configuration in which the EDS 10 does not have a vibration sensor, it is possible to determine the pass / fail of the functional test regarding the vibration of the motor.
  • Embodiment 4 In the operation confirmation device 70 of each of the above embodiments, the thrust-related values related to the thrust of the drive motor 12 have been acquired from the thrust-related value sensor unit 73 or the EDS 10, but this embodiment is limited to this. Absent. In the present embodiment, the thrust-related values related to the thrust of the drive motor 12 may be acquired from the control device 50.
  • Embodiment 5 In the operation confirmation device 70 of each of the above embodiments, the position of the operation confirmation device 70 with respect to the ground is adjusted by the position adjusting unit 78, but the operation confirmation device of the present embodiment is not limited to this.
  • the height of the operation confirmation device may be variable. For example, the length of the thrust-related value sensor unit 73 in the height direction may be changed.
  • the thrust-related value sensor unit 73 has a columnar appearance shape, but the thrust-related value sensor unit 73 in the present embodiment may have an arbitrary shape. Good. For example, it may have a rectangular parallelepiped appearance shape.
  • the present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the purpose.
  • the technical features in each embodiment corresponding to the technical features in the embodiments described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

Provided is an operation confirmation device (70) for an electrical driving system (10) that is mounted on an electrical vertical take-off and landing aircraft (100). The electrical driving system includes a motor for driving a rotor of the electrical vertical take-off and landing aircraft. The operation confirmation device comprises: a securing part (71) for securing to the ground; and a coupling part (72) for coupling with the electrical driving system directly, or indirectly via a fuselage (20) of the electrical vertical take-off and landing aircraft.

Description

電動垂直離着陸機の動作確認用装置Equipment for checking the operation of electric vertical take-off and landing aircraft 関連出願の相互参照Cross-reference of related applications
 本出願は、2019年8月29日に出願された日本出願番号2019-156471号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2019-156471 filed on August 29, 2019, and the contents of the description are incorporated herein by reference.
 本開示は、電動垂直離着陸機の動作確認用装置に関する。 This disclosure relates to an operation confirmation device for an electric vertical takeoff and landing aircraft.
 近年、ガスタービンエンジンを有する飛行機とは異なる種類の航空機として、電動垂直離着陸機(eVTOL:electric Vertical Take-Off and Landing aircraft)と呼ばれる有人または無人の航空機の開発が活発化している。電動垂直離着陸機は、モータを有する電駆動システム(EDS:Electric Drive System)を複数備え、複数のモータによって複数の回転翼が回転駆動されることで、機体の揚力や推力を得ている。それぞれの電駆動システムの交換後や点検後には、かかる電駆動システムが正常に動作して回転翼が回転することを確認するための機能試験が実行されることが望ましい。特許文献1には、ガスタービンエンジンの機能を解析するための方法が開示されている。ガスタービンエンジンと同様に、電動垂直離着陸機の電駆動システムも、交換時や定期点検等において機能試験が行われることが求められる。 In recent years, the development of manned or unmanned aircraft called electric vertical take-off and landing aircraft (eVTOL) has become active as a type of aircraft different from airplanes equipped with gas turbine engines. The electric vertical take-off and landing aircraft is equipped with a plurality of electric drive systems (EDS: Electric Drive System) having motors, and a plurality of rotor blades are rotationally driven by a plurality of motors to obtain lift and thrust of the airframe. After replacement or inspection of each electric drive system, it is desirable to carry out a functional test to confirm that the electric drive system operates normally and the rotor blades rotate. Patent Document 1 discloses a method for analyzing the function of a gas turbine engine. Similar to gas turbine engines, electric drive systems for electric vertical take-off and landing aircraft are also required to undergo functional tests at the time of replacement or periodic inspections.
特開2017-146299号公報JP-A-2017-146299
 電動垂直離着陸機は、ガスタービンエンジンを備える固定翼機等と比較して狭い場所でも離着陸することができるため、様々な場所で運用されることが想定される。他方、電駆動システムの機能試験は、回転翼を回転駆動させる際に電駆動システムを地面等に固定するための治具等の専用設備が必要であるため、ガスタービンエンジンを有する飛行機と同様に、専用設備を備える検査場等において実行されることが想定される。これらのことから、本願発明者らは、機能試験を実行するために電動垂直離着陸機を運用場所から検査場等へと移動させることが非効率的であると考えた。このため、電動垂直離着陸機の運用場所において電駆動システムの機能試験を実行可能な技術が望まれる。 Since the electric vertical takeoff and landing aircraft can take off and land even in a narrow space compared to fixed-wing aircraft equipped with a gas turbine engine, it is expected to be operated in various places. On the other hand, the functional test of the electric drive system requires special equipment such as a jig for fixing the electric drive system to the ground when the rotor blades are rotationally driven, so that it is similar to an airplane having a gas turbine engine. , It is expected that it will be carried out at inspection sites equipped with dedicated equipment. From these facts, the inventors of the present application considered that it is inefficient to move the electric vertical take-off and landing aircraft from the operation site to the inspection site or the like in order to carry out the functional test. For this reason, a technology capable of performing a functional test of an electric drive system at an operating location of an electric vertical take-off and landing aircraft is desired.
 本開示は、以下の形態として実現することが可能である。 This disclosure can be realized in the following forms.
 本開示の一形態によれば、動作確認用装置が提供される。この動作確認用装置は、電動垂直離着陸機に搭載されている電駆動システムの動作確認用装置であって、前記電駆動システムは、前記電動垂直離着陸機が有する回転翼を駆動させるモータを含み、前記動作確認用装置は、地面との固定部と、前記電駆動システムと直接的に又は前記電動垂直離着陸機の機体を介して間接的に連結するための連結部と、を備える。 According to one form of the present disclosure, an operation confirmation device is provided. This operation confirmation device is an operation confirmation device of an electric drive system mounted on an electric vertical takeoff and landing aircraft, and the electric drive system includes a motor for driving a rotary blade of the electric vertical takeoff and landing aircraft. The operation confirmation device includes a fixing portion with the ground and a connecting portion for directly connecting to the electric drive system or indirectly via the body of the electric vertical take-off and landing aircraft.
 この形態の電動垂直離着陸機の動作確認用装置によれば、地面との固定部と、電駆動システムと直接的に又は電動垂直離着陸機の機体を介して間接的に連結するための連結部とを備えるので、機能試験を実行するための場所が検査場等に限定されることを抑制できる。このため、試験対象システムの機能試験を電動垂直離着陸機の運用場所において実行できる。 According to the operation confirmation device of this form of electric vertical take-off and landing aircraft, a fixed portion with the ground and a connecting portion for directly or indirectly connecting with the electric drive system via the airframe of the electric vertical take-off and landing aircraft. Therefore, it is possible to prevent the place for carrying out the functional test from being limited to the inspection site or the like. Therefore, the functional test of the system under test can be performed at the operation site of the electric vertical take-off and landing aircraft.
 本開示は、種々の形態で実現することも可能である。例えば、動作確認用装置を備える電動垂直離着陸機、電動垂直離着陸機の動作確認方法等の形態で実現することができる。 This disclosure can also be realized in various forms. For example, it can be realized in the form of an electric vertical take-off and landing machine provided with an operation check device, an operation check method of the electric vertical take-off and landing machine, and the like.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、制御装置を搭載した電動垂直離着陸機の構成を模式的に示す上面図であり、 図2は、電動垂直離着陸機の構成を模式的に示す側面図であり、 図3は、電動垂直離着陸機の構成を示すブロック図であり、 図4は、試験対象システムに装着された動作確認用装置を模式的に示す斜視図であり、 図5は、試験処理手順を示すフローチャートであり、 図6は、試験結果の例を示すグラフであり、 図7は、試験の通信手順を示すシーケンス図である。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a top view schematically showing the configuration of an electric vertical take-off and landing aircraft equipped with a control device. FIG. 2 is a side view schematically showing the configuration of the electric vertical take-off and landing aircraft. FIG. 3 is a block diagram showing the configuration of an electric vertical take-off and landing aircraft. FIG. 4 is a perspective view schematically showing an operation confirmation device mounted on the system under test. FIG. 5 is a flowchart showing the test processing procedure. FIG. 6 is a graph showing an example of the test results. FIG. 7 is a sequence diagram showing the communication procedure of the test.
A.第1実施形態:
A-1.装置構成:
 図1および図2に示すように、本開示の一実施形態としての制御装置50は、電動垂直離着陸機100(以下、「eVTOL(electric Vertical Take-Off and Landing aircraft)100」とも呼ぶ)に搭載されて、eVTOL100の動作を制御する。
A. First Embodiment:
A-1. Device configuration:
As shown in FIGS. 1 and 2, the control device 50 as an embodiment of the present disclosure is mounted on an electric vertical take-off and landing aircraft 100 (hereinafter, also referred to as “eVTOL (electric Vertical Take-Off and Landing aircraft) 100”). The operation of the eVTOL 100 is controlled.
 eVTOL100は、電気により駆動され、鉛直方向に離着陸可能な有人航空機として構成されている。eVTOL100は、制御装置50に加えて、機体20と、複数の回転翼30と、複数の電駆動システム10(以下、「EDS(Electric Drive System)10とも呼ぶ」と、図3に示すバッテリ40と、コンバータ42と、分配器44と、機体通信部64と、報知部66とを備えている。図1に示すように、本実施形態のeVTOL100は、回転翼30とEDS10とをそれぞれ8つずつ備えている。なお、図3では、図示の便宜上、eVTOL100が備える8つの回転翼30およびEDS10のうち、2つの回転翼30およびEDS10を代表して示している。 The eVTOL100 is configured as a manned aircraft that is electrically driven and can take off and land in the vertical direction. In addition to the control device 50, the eVTOL 100 includes an airframe 20, a plurality of rotor blades 30, and a plurality of electric drive systems 10 (hereinafter, also referred to as "EDS (Electric Drive System) 10"), and a battery 40 shown in FIG. , The converter 42, the distributor 44, the airframe communication unit 64, and the notification unit 66. As shown in FIG. 1, the eVTOL 100 of the present embodiment has eight rotor blades 30 and eight EDS 10s, respectively. In FIG. 3, for convenience of illustration, two rotor blades 30 and EDS 10 among the eight rotor blades 30 and EDS 10 included in the eVTOL 100 are shown as representatives.
 図1および図2に示すように、機体20は、eVTOL100において8つの回転翼30およびEDS10を除いた部分に相当する。機体20は、機体本体部21と、支柱部22と、6つの第1支持部23と、6つの第2支持部24と、主翼25と、尾翼28とを備える。 As shown in FIGS. 1 and 2, the airframe 20 corresponds to the portion of the eVTOL 100 excluding the eight rotors 30 and the EDS 10. The airframe 20 includes an airframe main body 21, a strut 22, six first support 23, six second support 24, a main wing 25, and a tail 28.
 機体本体部21は、eVTOL100の胴体部分を構成する。機体本体部21は、機体軸AXを対称軸として左右対称の構成を有する。本実施形態において、「機体軸AX」とは、機体重心位置CMを通り、eVTOL100の前後方向に沿った軸を意味している。また、「機体重心位置CM」とは、乗員が搭乗していない空虚重量時におけるeVTOL100の重心位置を意味している。機体本体部21の内部には、図示しない乗員室が形成されている。また、機体本体部21には、加速度センサ29が搭載されている。加速度センサ29は、三軸センサにより構成され、eVTOL100の加速度を測定する。加速度センサ29による測定結果は、制御装置50へと出力される。 The body portion 21 constitutes the body portion of the eVTOL 100. The machine body 21 has a symmetrical structure with the body axis AX as the axis of symmetry. In the present embodiment, the "airframe axis AX" means an axis that passes through the center of gravity CM of the airframe and is along the front-rear direction of the eVTOL 100. Further, the "machine weight center position CM" means the position of the center of gravity of the eVTOL 100 when the occupant is not on board and the weight is empty. A passenger compartment (not shown) is formed inside the machine body 21. Further, an acceleration sensor 29 is mounted on the machine body 21. The acceleration sensor 29 is composed of a three-axis sensor and measures the acceleration of the eVTOL 100. The measurement result by the acceleration sensor 29 is output to the control device 50.
 支柱部22は、鉛直方向に延びる略柱状の外観形状を有し、機体本体部21の上部に固定されている。本実施形態において、支柱部22は、鉛直方向に見てeVTOL100の機体重心位置CMと重なる位置に配置されている。支柱部22の上端部には、6つの第1支持部23の一方の端部がそれぞれ固定されている。6つの第1支持部23は、それぞれ略棒状の外観形状を有し、鉛直方向に垂直な面に沿って延びるように、互いに等角度間隔で放射状に配置されている。各第1支持部23の他方の端部、すなわち支柱部22から遠ざかる位置にある端部には、それぞれ回転翼30とEDS10とが配置されている。6つの第2支持部24は、それぞれ略棒状の外観形状を有し、互いに隣り合う第1支持部23の他方の端部(支柱部22と接続されていない側の端部)同士を接続している。 The strut portion 22 has a substantially columnar appearance shape extending in the vertical direction, and is fixed to the upper part of the machine body portion 21. In the present embodiment, the support column portion 22 is arranged at a position overlapping the machine weight center position CM of the eVTOL 100 when viewed in the vertical direction. One end of each of the six first support parts 23 is fixed to the upper end of the support part 22. Each of the six first support portions 23 has a substantially rod-like appearance shape, and is arranged radially at equal angular intervals so as to extend along a plane perpendicular to the vertical direction. Rotors 30 and EDS 10 are arranged at the other end of each first support portion 23, that is, at an end portion located away from the strut portion 22. Each of the six second support portions 24 has a substantially rod-like appearance shape, and connects the other ends (ends on the side not connected to the strut portion 22) of the first support portions 23 adjacent to each other. ing.
 主翼25は、右翼26と左翼27とにより構成されている。右翼26は、機体本体部21から右方向に延びて形成されている。左翼27は、機体本体部21から左方向に延びて形成されている。右翼26と左翼27とには、それぞれ回転翼30とEDS10とが1つずつ配置されている。尾翼28は、機体本体部21の後端部に形成されている。 The main wing 25 is composed of a right wing 26 and a left wing 27. The right wing 26 is formed so as to extend to the right from the main body portion 21 of the airframe. The left wing 27 is formed so as to extend to the left from the main body portion 21 of the airframe. A rotary wing 30 and an EDS 10 are arranged on the right wing 26 and the left wing 27, respectively. The tail wing 28 is formed at the rear end of the main body 21 of the airframe.
 8つの回転翼30のうちの6つは、各第2支持部24の端部に配置され、主に機体20の揚力を得るためのリフト用回転翼31として構成されている。8つの回転翼30のうちの2つは、右翼26と左翼27とにそれぞれ配置され、主に機体20の推力を得るためのクルーズ用回転翼32として構成されている。各回転翼30は、それぞれの回転軸を中心として、互いに独立して回転駆動される。各回転翼30は、互いに等角度間隔で配置された3つのブレード33をそれぞれ有する。本実施形態において、各回転翼30のブレード角は、それぞれ可変に構成されている。具体的には、制御装置50からの指示に従い図示しないアクチュエータによってブレード角が調整される。図3に示すように、各回転翼30には、回転数センサ34と、トルクセンサ35とがそれぞれ設けられている。回転数センサ34は、回転翼30の回転数を測定する。トルクセンサ35は、回転翼30の回転トルクを測定する。各センサ34、35による測定結果は、制御装置50へと出力される。 Six of the eight rotors 30 are arranged at the ends of the second support portions 24, and are mainly configured as lift rotors 31 for obtaining lift of the airframe 20. Two of the eight rotors 30 are arranged on the right wing 26 and the left wing 27, respectively, and are mainly configured as cruise rotors 32 for obtaining the thrust of the airframe 20. Each rotor 30 is rotationally driven independently of each other around its own rotation axis. Each rotor 30 has three blades 33 arranged at equal intervals with each other. In the present embodiment, the blade angle of each rotor 30 is variably configured. Specifically, the blade angle is adjusted by an actuator (not shown) according to the instruction from the control device 50. As shown in FIG. 3, each rotor 30 is provided with a rotation speed sensor 34 and a torque sensor 35, respectively. The rotation speed sensor 34 measures the rotation speed of the rotary blade 30. The torque sensor 35 measures the rotational torque of the rotary blade 30. The measurement results by the sensors 34 and 35 are output to the control device 50.
 図1に示す8つのEDS10は、各回転翼30をそれぞれ回転駆動させるための電駆動システムとして構成されている。8つのEDS10のうちの6つは、それぞれリフト用回転翼31を回転駆動させる。8つのEDS10のうちの2つは、それぞれクルーズ用回転翼32を回転駆動させる。 The eight EDS 10s shown in FIG. 1 are configured as an electric drive system for rotationally driving each rotary blade 30. Six of the eight EDS 10s drive the lift rotor 31 to rotate. Two of the eight EDS 10s rotate the cruise rotor 32, respectively.
 図3に示すように、各EDS10は、駆動部11と、駆動用モータ12と、ギアボックス13と、回転数センサ14と、電流センサ15と、電圧センサ16と、トルクセンサ17と、EDS側記憶部18とを有する。 As shown in FIG. 3, each EDS 10 includes a drive unit 11, a drive motor 12, a gearbox 13, a rotation speed sensor 14, a current sensor 15, a voltage sensor 16, a torque sensor 17, and an EDS side. It has a storage unit 18.
 駆動部11は、図示しないインバータ回路と、かかるインバータ回路を制御する図示しないコントローラとを含む電子機器として構成されている。インバータ回路は、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等のパワー素子により構成され、コントローラから供給される制御信号に応じたデューティ比により駆動用モータ12に駆動電圧を供給する。コントローラは、制御装置50と電気的に接続されており、制御装置50からの指令に応じてインバータ回路に制御信号を供給する。 The drive unit 11 is configured as an electronic device including an inverter circuit (not shown) and a controller (not shown) that controls the inverter circuit. The inverter circuit is composed of power elements such as IGBT (Insulated Gate Bipolar Transistor) and MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and is connected to the drive motor 12 according to the duty ratio according to the control signal supplied from the controller. Supply the drive voltage. The controller is electrically connected to the control device 50 and supplies a control signal to the inverter circuit in response to a command from the control device 50.
 駆動用モータ12は、本実施形態ではブラシレスモータにより構成され、駆動部11のインバータ回路から供給される電圧および電流に応じた回転運動を出力する。なお、ブラシレスモータに代えて、誘導モータやリラクタンスモータ等の任意のモータにより構成されていてもよい。 The drive motor 12 is composed of a brushless motor in the present embodiment, and outputs rotational motion according to the voltage and current supplied from the inverter circuit of the drive unit 11. In addition, instead of the brushless motor, it may be composed of an arbitrary motor such as an induction motor or a reluctance motor.
 ギアボックス13は、駆動用モータ12と回転翼30とを物理的に接続している。ギアボックス13は、図示しない複数のギアを有し、駆動用モータ12の回転を減速して回転翼30へと伝達する。なお、ギアボックス13が省略されて駆動用モータ12に回転翼30の回転軸が直接的に接続されていてもよい。 The gearbox 13 physically connects the drive motor 12 and the rotary blade 30. The gearbox 13 has a plurality of gears (not shown), and decelerates the rotation of the drive motor 12 and transmits the rotation to the rotary blade 30. The gearbox 13 may be omitted and the rotation shaft of the rotary blade 30 may be directly connected to the drive motor 12.
 回転数センサ14とトルクセンサ17とは、それぞれ駆動用モータ12に設けられており、駆動用モータ12の回転数と回転トルクとをそれぞれ測定する。電流センサ15と電圧センサ16とは、それぞれ駆動部11と駆動用モータ12との間に設けられており、駆動電流と駆動電圧とをそれぞれ測定する。各センサ14~17による測定結果は、駆動部11を介して制御装置50へと出力される。 The rotation speed sensor 14 and the torque sensor 17 are provided in the drive motor 12, respectively, and measure the rotation speed and the rotation torque of the drive motor 12, respectively. The current sensor 15 and the voltage sensor 16 are provided between the drive unit 11 and the drive motor 12, respectively, and measure the drive current and the drive voltage, respectively. The measurement results of the sensors 14 to 17 are output to the control device 50 via the drive unit 11.
 EDS側記憶部18には、予め試験用プログラムが記憶されている。制御装置50から入力される試験日時と、緯度経度と、機体番号と、気温圧力といった入力情報が、EDS側記憶部18に保存される。また、EDS側記憶部18には、各センサからの計測データが記憶される。 The test program is stored in advance in the EDS side storage unit 18. Input information such as the test date and time, latitude and longitude, aircraft number, and air temperature and pressure input from the control device 50 is stored in the EDS side storage unit 18. Further, the EDS side storage unit 18 stores the measurement data from each sensor.
 バッテリ40は、リチウムイオン電池により構成され、eVTOL100における電力供給源の1つとして機能する。バッテリ40は、主に、各EDS10がそれぞれ有する駆動部11へと電力を供給して各駆動用モータ12を駆動させる。なお、リチウムイオン電池に代えて、ニッケル水素電池等の任意の二次電池により構成されていてもよく、バッテリ40に代えて、またはバッテリ40に加えて、燃料電池や発電機等の任意の電力供給源が搭載されていてもよい。 The battery 40 is composed of a lithium ion battery and functions as one of the power supply sources in the eVTOL 100. The battery 40 mainly supplies electric power to the drive unit 11 of each EDS 10 to drive each drive motor 12. In addition, instead of the lithium ion battery, it may be composed of an arbitrary secondary battery such as a nickel hydrogen battery, and instead of the battery 40 or in addition to the battery 40, any electric power such as a fuel cell or a generator may be used. A source may be installed.
 コンバータ42は、バッテリ40と接続されており、バッテリ40の電圧を降圧してeVTOL100が備える図示しない補機類や制御装置50へと供給する。分配器44は、バッテリ40の電圧を各EDS10が備える駆動部11へと分配する。 The converter 42 is connected to the battery 40, lowers the voltage of the battery 40, and supplies the voltage to the auxiliary equipment and the control device 50 of the eVTOL 100 (not shown). The distributor 44 distributes the voltage of the battery 40 to the drive unit 11 included in each EDS 10.
 制御装置50は、記憶部51とCPU(Central Processing Unit)とを備えるマイクロコンピュータであり、ECU(Electronic Control Unit)として構成されている。記憶部51は、ROM(Read Only Memory)とRAM(Random Access Memory)とを有する。CPUは、記憶部51に予め記憶されている制御プログラムを実行することにより、eVTOL100の全体動作を制御する制御部52として機能する。 The control device 50 is a microcomputer including a storage unit 51 and a CPU (Central Processing Unit), and is configured as an ECU (Electronic Control Unit). The storage unit 51 has a ROM (Read Only Memory) and a RAM (Random Access Memory). The CPU functions as a control unit 52 that controls the overall operation of the eVTOL 100 by executing a control program stored in advance in the storage unit 51.
 eVTOL100の全体動作としては、例えば、垂直離着陸動作、飛行動作や、各EDS10の機能試験の実行動作等が該当する。垂直離着陸動作および飛行動作は、設定された航空経路情報に基づいて実行されてもよく、乗員の操縦により実行されてもよく、後述する外部装置500が備える外部制御部510からの指令に基づいて実行されてもよい。制御部52は、eVTOL100の動作において、各EDS10が有する駆動用モータ12の回転数および回転方向や、各回転翼30のブレード角等を制御する。 The overall operation of the eVTOL 100 corresponds to, for example, a vertical takeoff and landing operation, a flight operation, an execution operation of a functional test of each EDS10, and the like. The vertical takeoff and landing operation and the flight operation may be executed based on the set air route information, may be executed by the maneuvering of the occupant, and may be executed based on the command from the external control unit 510 included in the external device 500 described later. It may be executed. In the operation of the eVTOL 100, the control unit 52 controls the rotation speed and rotation direction of the drive motor 12 of each EDS 10, the blade angle of each rotary blade 30, and the like.
 各EDS10の機能試験は、定期点検や不具合発生時の点検等を含むEDS10の点検や、EDS10の構成部品の交換等の保守が行なわれた後に、点検や保守対象となったEDS10を対象として簡易的な動作確認のために実行される。本実施形態では、機能試験の対象となるEDS10を、「試験対象システム」と呼ぶ。機能試験では、試験対象システムが正常に動作して、試験対象システムが回転駆動する回転翼30(以下、「試験対象回転翼」とも呼ぶ」が正常に回転することが確認される。具体的には、機能試験では、回転翼30に対して所定の試験パターンで電圧および電流を供給し、このときの電圧値、電流値、モータ回転数、回転翼回転数、温度等を測定し、目標値と実測値との差分に基づき、試験対象システムおよび試験対象回転翼の正常性が判断される。 The functional test of each EDS10 is simple for the EDS10 that has been inspected and maintained after the EDS10 has been inspected, including periodic inspections and inspections when a problem occurs, and maintenance such as replacement of components of the EDS10 has been performed. It is executed to confirm the operation. In the present embodiment, the EDS 10 that is the target of the functional test is referred to as a "test target system". In the functional test, it is confirmed that the test target system operates normally and the rotary blade 30 (hereinafter, also referred to as “test target rotary blade”) that the test target system is rotationally driven rotates normally. In the functional test, voltage and current are supplied to the rotor 30 in a predetermined test pattern, and the voltage value, current value, motor rotation speed, rotor rotation speed, temperature, etc. at this time are measured, and the target value is measured. Based on the difference between the measured value and the measured value, the normality of the test target system and the test target rotor blade is judged.
 機体通信部64は、無線通信を行なう機能を有し、外部装置500が備える外部通信部520とeVTOL100との間で情報の送受信を行なうとともに、制御装置50と通信可能に構成されている。無線通信としては、例えば、4G(第4世代移動体通信システム)や5G(第5世代移動体通信システム)等の電気通信事業者が提供する無線通信や、IEEE802.11規格に従った無線LAN通信等が該当する。また、例えば、USB(Universal Serial Bus)や、IEEE802.3規格に従った有線通信であってもよい。なお、外部装置500としては、例えば、機能試験の制御や試験結果の記録等を行うサーバ装置等の管理および制御用のコンピュータが該当する。かかる管理・制御用コンピュータは、例えば、航空管制室に配置されているサーバ装置であってもよく、また、機能試験を含む保守や点検を行う保守作業員がeVTOL100の運用場所に持ち込んだパーソナルコンピュータであってもよい。 The airframe communication unit 64 has a function of performing wireless communication, transmits and receives information between the external communication unit 520 included in the external device 500 and the eVTOL 100, and is configured to be able to communicate with the control device 50. As wireless communication, for example, wireless communication provided by a telecommunications carrier such as 4G (4th generation mobile communication system) or 5G (5th generation mobile communication system), or a wireless LAN according to the IEEE 802.11 standard. Communication etc. is applicable. Further, for example, USB (Universal Serial Bus) or wired communication according to the IEEE802.3 standard may be used. The external device 500 corresponds to, for example, a computer for managing and controlling a server device or the like that controls a functional test and records test results. The management / control computer may be, for example, a server device arranged in an air traffic control room, or a personal computer brought to the operation site of the eVTOL 100 by a maintenance worker who performs maintenance and inspection including a functional test. It may be.
 報知部66は、制御装置50からの指示に従って報知を行う。本実施形態において、報知部66は、乗員室に搭載されて文字や画像等を表示する表示装置や、音声や警告音等を出力するスピーカ等により構成され、視覚情報や聴覚情報によって乗員に各種情報を報知する。 The notification unit 66 notifies according to the instruction from the control device 50. In the present embodiment, the notification unit 66 is composed of a display device mounted in the passenger room to display characters, images, etc., a speaker for outputting voice, warning sound, etc., and various types of notification units are provided to the passenger by visual information and auditory information. Notify information.
A-2.動作確認用装置の構成:
 図4に示す動作確認用装置70は、機能試験を実行する際に試験対象システムに装着される。動作確認用装置70は、任意の場所において、地面に固定される。また、動作確認用装置70は、機能試験において、試験対象システムの推力を計測し、記憶し、さらに、機能試験の合否判定を行う。動作確認用装置70は、固定部71と、連結部72と、推力関連値センサ部73と、本体部74と、位置調整部78とを備える。固定部71は、後述する位置調整部78を介して動作確認用装置70全体を地面に固定する役割を担う。固定部71は、第1支持部23と平行な方向に延びるレール状の矩形板と、第1支持部23と垂直な方向に延びるレール状の矩形板を備え、格子状に形成されている。なお、固定部71は4本のレール状の矩形板を備えているが、任意の本数の矩形板を備えてもよい。また、固定部は、レール状の矩形板でなく任意の形状板であってもよい。
A-2. Configuration of operation check device:
The operation confirmation device 70 shown in FIG. 4 is attached to the system under test when the functional test is executed. The operation confirmation device 70 is fixed to the ground at an arbitrary place. In addition, the operation confirmation device 70 measures and stores the thrust of the system under test in the functional test, and further determines the pass / fail of the functional test. The operation confirmation device 70 includes a fixing unit 71, a connecting unit 72, a thrust-related value sensor unit 73, a main body unit 74, and a position adjusting unit 78. The fixing portion 71 plays a role of fixing the entire operation checking device 70 to the ground via the position adjusting portion 78 described later. The fixed portion 71 includes a rail-shaped rectangular plate extending in a direction parallel to the first support portion 23 and a rail-shaped rectangular plate extending in a direction perpendicular to the first support portion 23, and is formed in a grid pattern. Although the fixing portion 71 is provided with four rail-shaped rectangular plates, any number of rectangular plates may be provided. Further, the fixing portion may be an arbitrary shape plate instead of the rail-shaped rectangular plate.
 連結部72は動作確認用装置70の上端に位置し、eVTOL100の機体20を介して間接的にEDS10と連結する役割を担う。具体的には、連結部72は第1支持部23を介してEDS10と連結する。連結部72の下端側は後述する推力関連値センサ部73と連結している。なお、連結部72とEDS10とは、直接的に連結していてもよい。 The connecting portion 72 is located at the upper end of the operation confirmation device 70, and plays a role of indirectly connecting to the EDS 10 via the body 20 of the eVTOL 100. Specifically, the connecting portion 72 is connected to the EDS 10 via the first supporting portion 23. The lower end side of the connecting portion 72 is connected to the thrust-related value sensor portion 73, which will be described later. The connecting portion 72 and the EDS 10 may be directly connected to each other.
 推力関連値センサ部73は、図4に示されるように、連結部72の下端から本体部74の上端にかけて配置される。推力関連値センサ部73は、円柱状の外観形状を有する。本実施形態において、推力関連値センサ部73は、連結部72と本体部74とを連結すると共に、試験対象システムのEDS10の推力を計測する推力センサを内蔵している。推力センサは、例えば、バネと、バネの伸びであるひずみを検出するひずみゲージとを有し、検出されるひずみを利用して推力を計測する。動作確認用装置70に推力関連値センサ部73が配置されることにより、EDS10が推力センサを有しない構成においても、推力に関して機能試験の合否判断が可能となる。 As shown in FIG. 4, the thrust-related value sensor unit 73 is arranged from the lower end of the connecting portion 72 to the upper end of the main body portion 74. The thrust-related value sensor unit 73 has a columnar appearance shape. In the present embodiment, the thrust-related value sensor unit 73 connects the connecting unit 72 and the main body 74, and incorporates a thrust sensor that measures the thrust of the EDS 10 of the system under test. The thrust sensor has, for example, a spring and a strain gauge that detects a strain that is the elongation of the spring, and measures the thrust using the detected strain. By arranging the thrust-related value sensor unit 73 in the operation confirmation device 70, it is possible to determine the pass / fail of the functional test regarding the thrust even in the configuration where the EDS 10 does not have the thrust sensor.
 本体部74は、インターフェイス部75と、合否判定用演算装置76と、表示部77とを備える。インターフェイス部75は、後述する取得部76cにおいて取得されたEDS10の出力値と、後述する判定部76aにおける判定の実行結果とのうちの少なくとも一方を外部に出力する。合否判定用演算装置76は、判定部76aと、演算装置側記憶部76bと、取得部76cとを備える。本実施形態において、判定部76aは、インターフェイス部75で取得された指令値および想定出力とEDS10の出力値との差分が予め定められた範囲に収まっているか否かの判定を実行する。演算装置側記憶部76bには、インターフェイス部75で取得された指令値、想定出力(駆動用モータ12を試験駆動させた際の回転数、トルク、モータ温度、推力、振動等の変化パターンの理論値もしくは推定値)、及びEDS10の出力値が記憶される。取得部76cは、EDS10に対する指令値および想定出力と、EDS10の出力値とを取得する。なお、本実施形態において、取得部76cは、推力関連値センサ部73から直接推力を取得できる。表示部77は、計測結果や合否判定結果を表示するためのディスプレイである。 The main body 74 includes an interface 75, a pass / fail arithmetic unit 76, and a display 77. The interface unit 75 outputs at least one of the output value of the EDS 10 acquired by the acquisition unit 76c described later and the execution result of the determination by the determination unit 76a described later to the outside. The pass / fail determination arithmetic unit 76 includes a determination unit 76a, an arithmetic unit side storage unit 76b, and an acquisition unit 76c. In the present embodiment, the determination unit 76a determines whether or not the difference between the command value and the assumed output acquired by the interface unit 75 and the output value of the EDS 10 is within a predetermined range. The arithmetic unit side storage unit 76b contains a command value acquired by the interface unit 75 and an assumed output (the theory of change patterns such as rotation speed, torque, motor temperature, thrust, and vibration when the drive motor 12 is test-driven. Value or estimated value) and the output value of EDS10 are stored. The acquisition unit 76c acquires the command value and the assumed output for the EDS 10 and the output value of the EDS 10. In this embodiment, the acquisition unit 76c can directly acquire the thrust from the thrust-related value sensor unit 73. The display unit 77 is a display for displaying the measurement result and the pass / fail judgment result.
 位置調整部78は、固定部71と地面との間に配置され、地面との固定位置を調整する。位置調整部78は、例えば、固定部71の地面側に装着される車輪の付いたキャスターによって固定位置が調整される。走行方向が旋回する自在車、または、走行方向が固定している固定車によって位置が調整され、図示しないストッパーによって回転が止められて動作確認用装置70が地面に固定される。本実施形態において、「地面に固定される」とは、機能試験の実行に伴って機体20に応力が働いた場合でも、EDS10が所定の範囲を超えて位置ずれしないような程度に、動作確認用装置70が地面に固定されていることを意味する。 The position adjusting unit 78 is arranged between the fixed portion 71 and the ground, and adjusts the fixed position with the ground. The fixed position of the position adjusting portion 78 is adjusted by, for example, a caster with wheels mounted on the ground side of the fixing portion 71. The position is adjusted by a universal vehicle whose traveling direction turns or a fixed vehicle whose traveling direction is fixed, and the rotation is stopped by a stopper (not shown) to fix the operation confirmation device 70 to the ground. In the present embodiment, "fixed to the ground" means operation confirmation to the extent that the EDS 10 does not shift beyond a predetermined range even when stress is applied to the machine body 20 due to the execution of the functional test. It means that the device 70 is fixed to the ground.
 A-3.試験処理の手順:
 図5に示す試験処理は、EDS10の交換と、交換後のEDS10の機能試験を行うための処理を意味する。したがって、例えば、EDS10の構成部品の一部が故障した場合や、部品の定期交換時期が到来した場合などに実行される。動作確認用装置70が第1支持部23を介してEDS10に取り付けられる(ステップS10)。このとき、EDS10の鉛直方向の中心軸と動作確認用装置70の鉛直方向の中心軸とが一致するように、取り付けられる。動作確認用装置70が位置調整部78によって地面に固定される(ステップS11)。なお、上述のステップS10とステップS11とは、同時に行われてもよいし、ステップS11が先に実行されステップS10が後に実行されてもよい。
A-3. Test processing procedure:
The test process shown in FIG. 5 means a process for exchanging the EDS 10 and performing a functional test of the EDS 10 after the exchange. Therefore, for example, it is executed when a part of the component parts of the EDS 10 breaks down, or when the periodic replacement time of the parts has come. The operation confirmation device 70 is attached to the EDS 10 via the first support portion 23 (step S10). At this time, the EDS 10 is attached so that the vertical central axis of the EDS 10 and the vertical central axis of the operation confirmation device 70 coincide with each other. The operation confirmation device 70 is fixed to the ground by the position adjusting unit 78 (step S11). The above-mentioned steps S10 and S11 may be performed at the same time, or step S11 may be executed first and step S10 may be executed later.
 制御装置50の制御部52は、試験対象システムであるEDS10の駆動部11に回転数指令を出力する(ステップS12)。これにより、試験対象システムは回転翼30を駆動させ、推力(揚力)が生じることとなる。動作確認用装置70は、EDS10に接続され且つ地面に固定されている。このため、ステップS12の実行により推力が生じた場合であっても、動作確認用装置70は、かかる推力と同じ大きさの反力を生じさせるので、試験対象システムの鉛直方向の変位が抑制される。このようにして、試験対象システムの駆動用モータ12を鉛直方向の変位を抑制した状態において、推力関連値センサ部73は、試験対象システムの推力を計測し、インターフェイス部75は、推力関連値センサ部73により得られる計測値を演算装置側記憶部76bに記憶させる(ステップS13)。判定部76aは、動作確認用装置70において計測された推力と、推力想定値とを比較して合否判定をする(ステップS14)。具体的には、図6に示すように、判定部76aは、推力計測値と推力想定値との差分の絶対値を所定の時間間隔で求めていく。そして、試験期間全体に亘って得られた差分の絶対値が予め定められた閾値より小さければ合格と判定し、閾値以上であれば不合格と判定する。試験期間全体のいずれかの時点において差分の絶対値が閾値以上である場合には、想定される推力とは大きく外れた推力が得られており、試験対象システムやeVTOL100自体に何らかの問題があると推定される。そこで、本実施形態では、この場合、試験を不合格と判定するようにしている。判定部76aは、計測結果と合否判定結果を、インターフェイス部75を介して制御装置50に出力する(ステップS15)。ステップS15の完了後、試験処理は終了する。 The control unit 52 of the control device 50 outputs a rotation speed command to the drive unit 11 of the EDS 10 which is the test target system (step S12). As a result, the system under test drives the rotor 30 to generate thrust (lift). The operation confirmation device 70 is connected to the EDS 10 and fixed to the ground. Therefore, even if a thrust is generated by the execution of step S12, the operation confirmation device 70 generates a reaction force having the same magnitude as the thrust, so that the vertical displacement of the system under test is suppressed. To. In this way, in a state where the drive motor 12 of the test target system is suppressed from being displaced in the vertical direction, the thrust-related value sensor unit 73 measures the thrust of the test target system, and the interface unit 75 is the thrust-related value sensor. The measured value obtained by the unit 73 is stored in the arithmetic unit side storage unit 76b (step S13). The determination unit 76a compares the thrust measured by the operation confirmation device 70 with the estimated thrust value to make a pass / fail determination (step S14). Specifically, as shown in FIG. 6, the determination unit 76a obtains the absolute value of the difference between the thrust measurement value and the thrust estimation value at predetermined time intervals. Then, if the absolute value of the difference obtained over the entire test period is smaller than a predetermined threshold value, it is determined to pass, and if it is equal to or more than the threshold value, it is determined to be rejected. If the absolute value of the difference is greater than or equal to the threshold value at any point during the entire test period, a thrust that is significantly different from the expected thrust is obtained, and there is some problem with the test target system or the eVTOL 100 itself. Presumed. Therefore, in this embodiment, in this case, the test is determined to be unsuccessful. The determination unit 76a outputs the measurement result and the pass / fail determination result to the control device 50 via the interface unit 75 (step S15). After the completion of step S15, the test process ends.
 以上説明した第1実施形態の動作確認用装置70によれば、地面との固定部71と、電駆動システム10と直接的に又は電動垂直離着陸機の機体を介して間接的に連結するための連結部72とを備えるので、機能試験を実行するための場所が検査場等に限定されることを抑制できる。このため、試験対象システムの機能試験を電動垂直離着陸機の運用場所において実行できる。 According to the operation confirmation device 70 of the first embodiment described above, the fixing portion 71 to the ground is directly connected to the electric drive system 10 or indirectly via the body of the electric vertical take-off and landing aircraft. Since the connecting portion 72 is provided, it is possible to prevent the place for executing the functional test from being limited to the inspection site or the like. Therefore, the functional test of the system under test can be performed at the operation site of the electric vertical take-off and landing aircraft.
B.第2実施形態:
 第2実施形態の動作確認用装置70およびeVTOL100の構成は、第1実施形態の動作確認用装置70およびeVTOL100の構成と同じであるので、同一の構成要素には同一の符号を付し、その詳細な説明を省略する。第1実施形態では、推力のみを用いて機能試験の合否を判定していたが、第2実施形態では、推力以外の他のパラメータも用いて機能試験の合否を判定する。
B. Second embodiment:
Since the configuration of the operation confirmation device 70 and the eVTOL 100 of the second embodiment is the same as the configuration of the operation confirmation device 70 and the eVTOL 100 of the first embodiment, the same components are designated by the same reference numerals. A detailed description will be omitted. In the first embodiment, the pass / fail of the functional test is determined by using only the thrust, but in the second embodiment, the pass / fail of the functional test is determined by using parameters other than the thrust.
 図7に示す試験処理のシーケンスは、制御装置50に接続されている図示しないユーザインターフェイスから、作業員が機能試験実施の指示を入力することにより開始される。制御装置50において制御部52は、試験開始の合図を試験対象システムのEDS10に送信する(ステップS20)。EDS10は、かかる合図を契機として、回転翼30、動作確認用装置70、およびバッテリ40が、試験開始可能な状態(Ready)であるか否かを確認する(ステップS21)。例えば、回転翼30であれば一時的に給電して回転可能であるか否かを確認する。動作確認用装置70であれば、所定の動作確認用信号を動作確認用装置70に送信し、その応答信号を受信するか否かを確認する。バッテリ40であれば、バッテリ40の残容量(SOC:State Of Charge)を確認する。EDS10は、回転翼30、動作確認用装置70、およびバッテリ40がReadyである場合には、その旨を制御装置50に通知する(ステップS22)。 The sequence of test processing shown in FIG. 7 is started by a worker inputting an instruction to carry out a functional test from a user interface (not shown) connected to the control device 50. In the control device 50, the control unit 52 transmits a test start signal to the EDS 10 of the test target system (step S20). With such a signal as an opportunity, the EDS 10 confirms whether or not the rotary blade 30, the operation confirmation device 70, and the battery 40 are in a state in which the test can be started (Ready) (step S21). For example, if the rotor blade 30 is used, power is temporarily supplied to check whether or not the rotor blade 30 can rotate. If the operation confirmation device 70 is used, a predetermined operation confirmation signal is transmitted to the operation confirmation device 70, and it is confirmed whether or not the response signal is received. If it is the battery 40, the remaining capacity (SOC: StateOfCharge) of the battery 40 is confirmed. When the rotary blade 30, the operation confirmation device 70, and the battery 40 are Ready, the EDS 10 notifies the control device 50 to that effect (step S22).
 Readyを受信した制御装置50は、試験日時と、緯度経度と、機体番号と、気温圧力等の入力情報をEDS10へ送信し(ステップS23)、EDS10は、受信した入力情報をEDS側記憶部18に保存する(ステップS24)。EDS10は、動作確認用装置70に対して試験駆動の同期信号を送信し、動作確認用装置70は、EDS10に対して同期信号を受信した旨を通知する送信を行う(ステップS25)。かかる同期信号の送受信により、回転翼30の試験駆動と動作確認用装置70における推力の測定とが同期できる。同期信号を受信した動作確認用装置70は、制御装置50からの回転数指令値、推力関連値センサ部73から取得した推力計測値および回転数センサ34およびトルクセンサ35で計測されたデータの記録を開始する。EDS10は、制御装置50に出力指令要求を送信する(ステップS26)。制御装置50は、EDS10へ想定出力および回転数の指令を送信する(ステップS27)。かかる指令を受信したEDS10は、EDS側記憶部18に予め記憶されている試験用プログラムに従って駆動用モータ12を試験駆動させる(ステップS28)。このとき、EDS10では、駆動用モータ12に対して所定の試験パターンの電流値および電圧値を供給するように駆動部11が制御され、また、バッテリ40から電力が供給される。 The control device 50 that has received the Ready transmits input information such as the test date and time, latitude and longitude, the aircraft number, and temperature and pressure to the EDS 10 (step S23), and the EDS 10 transmits the received input information to the EDS side storage unit 18. Save to (step S24). The EDS 10 transmits a test drive synchronization signal to the operation confirmation device 70, and the operation confirmation device 70 transmits a notification to the EDS 10 that the synchronization signal has been received (step S25). By transmitting and receiving such a synchronization signal, the test drive of the rotary blade 30 and the measurement of the thrust in the operation confirmation device 70 can be synchronized. The operation confirmation device 70 that has received the synchronization signal records the rotation speed command value from the control device 50, the thrust measurement value acquired from the thrust related value sensor unit 73, and the data measured by the rotation speed sensor 34 and the torque sensor 35. To start. The EDS 10 transmits an output command request to the control device 50 (step S26). The control device 50 transmits a command of the assumed output and the rotation speed to the EDS 10 (step S27). Upon receiving such a command, the EDS 10 test-drives the drive motor 12 according to a test program stored in advance in the EDS-side storage unit 18 (step S28). At this time, in the EDS 10, the drive unit 11 is controlled so as to supply the current value and the voltage value of a predetermined test pattern to the drive motor 12, and the electric power is supplied from the battery 40.
 推力関連値センサ部73から取得した推力計測値、EDS10から想定出力、回転数指令を順次、受信し演算装置側記憶部76bに記憶する(ステップS29)。回転数センサ34やトルクセンサ35は、計測したデータをEDS10に送信する(ステップS30)。EDS10は、各センサで計測された計測データを順次、動作確認用装置70および制御装置50へと送信する(ステップS31)。制御装置50と動作確認用装置70は、各センサからの計測データを順次、記憶部51と演算装置側記憶部76bに、各々記憶する(ステップS32)。駆動電圧等を変化させる周波数を変えて、ステップS27からステップS32までが繰り返される。 Thrust-related value The thrust measurement value acquired from the sensor unit 73, the assumed output from the EDS 10, and the rotation speed command are sequentially received and stored in the arithmetic unit side storage unit 76b (step S29). The rotation speed sensor 34 and the torque sensor 35 transmit the measured data to the EDS 10 (step S30). The EDS 10 sequentially transmits the measurement data measured by each sensor to the operation confirmation device 70 and the control device 50 (step S31). The control device 50 and the operation confirmation device 70 sequentially store the measurement data from each sensor in the storage unit 51 and the arithmetic unit side storage unit 76b (step S32). Steps S27 to S32 are repeated by changing the frequency at which the drive voltage or the like is changed.
 制御装置50がEDS10へ機能試験終了の合図を送信し、機能試験終了の合図を受信したEDS10は動作確認要装置70へ機能試験終了の合図を送信する(ステップS33)。動作確認用装置70の判定部76aにおいて、合否判定が行われ(ステップS34)、合否判定結果がEDS10へと送信され、EDS10から制御装置50へと送信される(ステップS35)。 The control device 50 sends a signal for the end of the functional test to the EDS 10, and the EDS 10 that has received the signal for the end of the functional test sends a signal for the end of the functional test to the device 70 requiring operation confirmation (step S33). A pass / fail determination is performed in the determination unit 76a of the operation confirmation device 70 (step S34), the pass / fail determination result is transmitted to the EDS 10 and transmitted from the EDS 10 to the control device 50 (step S35).
 以上説明した第2実施形態の動作確認用装置によれば、推力に加えて、推力以外の他のパラメータも用いて機能試験の合否を判定する。このため、試験対象システムであるEDS10に対して詳しい機能試験を行うことができる。 According to the operation confirmation device of the second embodiment described above, in addition to the thrust, the pass / fail of the functional test is determined by using parameters other than the thrust. Therefore, a detailed functional test can be performed on the EDS 10 which is the test target system.
C.他の実施形態:
C-1.他の実施形態1:
 上記各実施形態の動作確認用装置70において、推力関連値センサ部73は、試験対象システムのEDS10の推力を計測する推力センサを内蔵し、本体部74は、インターフェイス部75と、判定部76aと、演算装置側記憶部76bと、取得部76cと、表示部77とを備えていたが、本実施形態はこれに限られない。本実施形態の動作確認用装置70は、試験対象システムのEDS10の推力を計測する推力センサと、インターフェイス部75と、判定部76aと、演算装置側記憶部76bと、取得部76cと、表示部77のうち、一部は省略されてもよい。推力関連値センサ部73は、単なる接続用であってもよい。かかる構成によれば、動作確認用装置70の構成を簡易にできる。
C. Other embodiments:
C-1. Other Embodiment 1:
In the operation confirmation device 70 of each of the above embodiments, the thrust-related value sensor unit 73 has a built-in thrust sensor for measuring the thrust of the EDS 10 of the test target system, and the main body 74 includes the interface unit 75 and the determination unit 76a. , The arithmetic unit side storage unit 76b, the acquisition unit 76c, and the display unit 77 are provided, but the present embodiment is not limited to this. The operation confirmation device 70 of the present embodiment includes a thrust sensor that measures the thrust of the EDS 10 of the system under test, an interface unit 75, a determination unit 76a, an arithmetic unit side storage unit 76b, an acquisition unit 76c, and a display unit. Of 77, some may be omitted. The thrust-related value sensor unit 73 may be simply for connection. According to such a configuration, the configuration of the operation confirmation device 70 can be simplified.
 C-2.他の実施形態2:
 上記各実施形態の動作確認用装置70において、地面との固定位置を調整するための位置調整部78を備えていたが、本実施形態における動作確認用装置は、位置調整部78を備えていなくてもよい。
C-2. Other Embodiment 2:
The operation confirmation device 70 of each of the above embodiments includes a position adjusting unit 78 for adjusting a fixed position with the ground, but the operation confirmation device 70 of the present embodiment does not include the position adjustment unit 78. You may.
C-3.他の実施形態3:
 上記各実施形態の動作確認用装置70における推力関連値センサ部73は、試験対象システムのEDS10の推力を計測する推力センサを内蔵していたが、本実施形態においてはこれに限られない。本実施形態の動作確認用装置70において、EDS10の出力値には、モータの推力に関連する推力関連値が含まれ、推力関連値を測定する推力関連値センサをさらに備えてもよい。取得部76cは推力関連値センサから推力関連値を取得してもよい。推力関連値としては、例えば、モータの振動であり、推力関連値センサである振動センサによって計測される。かかる構成によれば、EDS10が振動センサを有しない構成においても、モータの振動に関して機能試験の合否判定が可能となる。
C-3. Other Embodiment 3:
The thrust-related value sensor unit 73 in the operation confirmation device 70 of each of the above embodiments has a built-in thrust sensor for measuring the thrust of the EDS 10 of the test target system, but the present embodiment is not limited to this. In the operation confirmation device 70 of the present embodiment, the output value of the EDS 10 includes a thrust-related value related to the thrust of the motor, and a thrust-related value sensor for measuring the thrust-related value may be further provided. The acquisition unit 76c may acquire the thrust-related value from the thrust-related value sensor. The thrust-related value is, for example, the vibration of the motor, which is measured by a vibration sensor which is a thrust-related value sensor. According to such a configuration, even in a configuration in which the EDS 10 does not have a vibration sensor, it is possible to determine the pass / fail of the functional test regarding the vibration of the motor.
C-4.他の実施形態4:
 上記各実施形態の動作確認用装置70においては、駆動用モータ12の推力に関連する推力関連値を、推力関連値センサ部73またはEDS10から取得していたが、本実施形態はこれに限られない。本実施形態においては、駆動用モータ12の推力に関連する推力関連値を、制御装置50から取得してもよい。
C-4. Other Embodiment 4:
In the operation confirmation device 70 of each of the above embodiments, the thrust-related values related to the thrust of the drive motor 12 have been acquired from the thrust-related value sensor unit 73 or the EDS 10, but this embodiment is limited to this. Absent. In the present embodiment, the thrust-related values related to the thrust of the drive motor 12 may be acquired from the control device 50.
C-5.他の実施形態5:
 上記各実施形態の動作確認用装置70においては、位置調整部78によって動作確認用装置70の地面に対する位置が調整されていたが、本実施形態の動作確認用装置はこれに限られない。本実施形態においては、動作確認用装置の高さを可変としてもよい。例えば、推力関連値センサ部73の高さ方向の長さを変えられる構成であってもよい。
C-5. Other Embodiment 5:
In the operation confirmation device 70 of each of the above embodiments, the position of the operation confirmation device 70 with respect to the ground is adjusted by the position adjusting unit 78, but the operation confirmation device of the present embodiment is not limited to this. In the present embodiment, the height of the operation confirmation device may be variable. For example, the length of the thrust-related value sensor unit 73 in the height direction may be changed.
C-6.他の実施形態6:
 上記各実施形態の動作確認用装置70においては、推力関連値センサ部73は円柱状の外観形状を有していたが、本実施形態における推力関連値センサ部73は任意の形状であってもよい。例えば、直方体状の外観形状を有していてもよい。
C-6. Other Embodiment 6:
In the operation confirmation device 70 of each of the above embodiments, the thrust-related value sensor unit 73 has a columnar appearance shape, but the thrust-related value sensor unit 73 in the present embodiment may have an arbitrary shape. Good. For example, it may have a rectangular parallelepiped appearance shape.
 本開示は、上述の実施形態に限られるものではなく、その趣旨を逸脱しない範囲において種々の構成で実現することができる。例えば、発明の概要の欄に記載した形態中の技術的特徴に対応する各実施形態中の技術的特徴は、上述の課題の一部又は全部を解決するために、あるいは、上述の効果の一部又は全部を達成するために、適宜、差し替えや、組み合わせを行うことが可能である。また、その技術的特徴が本明細書中に必須なものとして説明されていなければ、適宜、削除することが可能である。 The present disclosure is not limited to the above-described embodiment, and can be realized by various configurations within a range not deviating from the purpose. For example, the technical features in each embodiment corresponding to the technical features in the embodiments described in the column of the outline of the invention may be used to solve some or all of the above-mentioned problems, or one of the above-mentioned effects. It is possible to replace or combine as appropriate to achieve a part or all. Further, if the technical feature is not described as essential in the present specification, it can be appropriately deleted.

Claims (5)

  1.  電動垂直離着陸機(100)に搭載されている電駆動システム(10)の動作確認用装置(70)であって、
     前記電駆動システムは、前記電動垂直離着陸機が有する回転翼を駆動させるモータを含み、
     前記動作確認用装置は、
     地面との固定部(71)と、
     前記電駆動システムと直接的に又は前記電動垂直離着陸機の機体(20)を介して間接的に連結するための連結部(72)と、
     を備える、動作確認用装置。
    It is an operation check device (70) of the electric drive system (10) mounted on the electric vertical take-off and landing aircraft (100).
    The electric drive system includes a motor for driving a rotary blade of the electric vertical takeoff and landing aircraft.
    The operation check device is
    Fixed part (71) to the ground and
    With a connecting portion (72) for directly connecting to the electric drive system or indirectly via the airframe (20) of the electric vertical take-off and landing aircraft.
    A device for checking operation.
  2.  請求項1に記載の動作確認用装置において、
     地面との固定位置を調整するための位置調整部(78)をさらに備える、動作確認用装置。
    In the operation check device according to claim 1,
    An operation confirmation device further provided with a position adjusting unit (78) for adjusting a fixed position with the ground.
  3.  請求項1または請求項2に記載の動作確認用装置において、
     前記電駆動システムに対する指令値と、前記電駆動システムの出力値と、を取得する取得部(76c)と、
     取得された前記指令値と前記出力値との差分が予め定められた範囲に収まっているか否かの判定を実行する判定部(76a)と、
     をさらに備える、動作確認用装置。
    In the operation confirmation device according to claim 1 or 2.
    An acquisition unit (76c) for acquiring a command value for the electric drive system and an output value of the electric drive system, and
    A determination unit (76a) that executes a determination as to whether or not the difference between the acquired command value and the output value is within a predetermined range.
    A device for checking the operation.
  4.  請求項3に記載の動作確認用装置において、
     取得された前記電駆動システムの前記出力値と、前記判定の実行結果と、のうちの少なくとも一方を、外部に出力するためのインターフェイス部(75)を、さらに備える、動作確認用装置。
    In the operation check device according to claim 3,
    An operation confirmation device further comprising an interface unit (75) for outputting at least one of the acquired output value of the electric drive system and the execution result of the determination to the outside.
  5.  請求項3または請求項4に記載の動作確認用装置において、
     前記出力値には、前記モータの推力に関連する推力関連値が含まれ、
     前記推力関連値を測定する推力関連値センサを、さらに備え、
     前記取得部は、前記推力関連値センサから前記推力関連値を取得する、動作確認用装置。
    In the operation confirmation device according to claim 3 or 4.
    The output value includes a thrust-related value related to the thrust of the motor.
    A thrust-related value sensor for measuring the thrust-related value is further provided.
    The acquisition unit is an operation confirmation device that acquires the thrust-related value from the thrust-related value sensor.
PCT/JP2020/031147 2019-08-29 2020-08-18 Operation confirmation device for electrical vertical take-off/landing aircraft WO2021039502A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019156471A JP7234865B2 (en) 2019-08-29 2019-08-29 Equipment for checking the operation of electric vertical take-off and landing aircraft
JP2019-156471 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021039502A1 true WO2021039502A1 (en) 2021-03-04

Family

ID=74675078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031147 WO2021039502A1 (en) 2019-08-29 2020-08-18 Operation confirmation device for electrical vertical take-off/landing aircraft

Country Status (2)

Country Link
JP (1) JP7234865B2 (en)
WO (1) WO2021039502A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113682492A (en) * 2021-07-05 2021-11-23 中国人民解放军总参谋部第六十研究所 Helicopter undercarriage rigidity and damping test tool and test method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180270A (en) * 2011-03-10 2011-09-14 北京航空航天大学 Microminiature rotorcraft experiment platform and application thereof
CN105083588A (en) * 2015-08-17 2015-11-25 华南农业大学 Performance test platform and method for multi-rotor unmanned aerial vehicle
US20160246304A1 (en) * 2015-02-24 2016-08-25 Qualcomm Incorporated Near-flight Testing Maneuvers for Autonomous Aircraft
JP2016188770A (en) * 2015-03-30 2016-11-04 大分県 Propeller characteristics measuring apparatus
JP2017132461A (en) * 2016-01-25 2017-08-03 大分県 Unmanned flying body characteristic measurement device and unmanned flying body evaluation system using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102180270A (en) * 2011-03-10 2011-09-14 北京航空航天大学 Microminiature rotorcraft experiment platform and application thereof
US20160246304A1 (en) * 2015-02-24 2016-08-25 Qualcomm Incorporated Near-flight Testing Maneuvers for Autonomous Aircraft
JP2016188770A (en) * 2015-03-30 2016-11-04 大分県 Propeller characteristics measuring apparatus
CN105083588A (en) * 2015-08-17 2015-11-25 华南农业大学 Performance test platform and method for multi-rotor unmanned aerial vehicle
JP2017132461A (en) * 2016-01-25 2017-08-03 大分県 Unmanned flying body characteristic measurement device and unmanned flying body evaluation system using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113682492A (en) * 2021-07-05 2021-11-23 中国人民解放军总参谋部第六十研究所 Helicopter undercarriage rigidity and damping test tool and test method

Also Published As

Publication number Publication date
JP7234865B2 (en) 2023-03-08
JP2021031008A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP7024950B2 (en) Clean fueled electric multirotor aircraft for personal air transport and manned or unmanned operation
WO2016067489A1 (en) Helicopter
US9242728B2 (en) All-electric multirotor full-scale aircraft for commuting, personal transportation, and security/surveillance
US9932118B2 (en) Vertical take-off and landing aircraft using hybrid electric propulsion system
AU2017302225B2 (en) Vertical take-off and landing aircraft
CN106143892B (en) Activate the method and aircraft of the motor in the hybrid control device of multiple-motor aircraft
JP2017514755A5 (en)
US10393216B2 (en) Redundant active vibration and noise control systems and methods
US20180170532A1 (en) Systems and methods for structural health monitoring and protection
US20220177123A1 (en) Control device for electric vertical takeoff and landing aircraft
US11939075B2 (en) Systems and methods for power distribution in a drone aircraft
WO2021039502A1 (en) Operation confirmation device for electrical vertical take-off/landing aircraft
WO2024099122A1 (en) Composite propeller blade tiltrotor powertrain test device and test method
JP7342523B2 (en) Control equipment for electric vertical take-off and landing aircraft and electric vertical take-off and landing aircraft
KR101664237B1 (en) Helicopter hub mounted vibration control and circular force generation systems for canceling vibrations
WO2021166839A1 (en) Abnormality diagnosis system and abnormality diagnosis method
JP2021031007A (en) Control device of electric vertical take-off and landing aircraft
WO2021039653A1 (en) Electric vertical take-off and landing aircraft
US20210380267A1 (en) Method for Controlling a Multirotor Aircraft for the Vertical Take-Off and Landing as well as Multirotor Aircraft
CN111994301A (en) Helicopter transmission system test device and system
JP7452026B2 (en) motor control system
JP2021030967A (en) Electric vertical takeoff and landing aircraft and control device for electric vertical takeoff and landing aircraft
CN213414261U (en) Lithium battery hybrid power test system experimental research system
WO2021039381A1 (en) Electric vertical takeoff and landing aircraft and control device for electric vertical takeoff and landing aircraft
CN216035105U (en) Many rotor unmanned aerial vehicle horn device with target detection function

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859238

Country of ref document: EP

Kind code of ref document: A1