WO2021039190A1 - 情報処理装置、その制御方法及びプログラム - Google Patents
情報処理装置、その制御方法及びプログラム Download PDFInfo
- Publication number
- WO2021039190A1 WO2021039190A1 PCT/JP2020/027925 JP2020027925W WO2021039190A1 WO 2021039190 A1 WO2021039190 A1 WO 2021039190A1 JP 2020027925 W JP2020027925 W JP 2020027925W WO 2021039190 A1 WO2021039190 A1 WO 2021039190A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sensor
- moving body
- autonomous
- autonomous mobile
- mobile body
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 85
- 238000000034 method Methods 0.000 title claims description 35
- 238000001514 detection method Methods 0.000 claims abstract description 104
- 230000033001 locomotion Effects 0.000 claims description 238
- 230000008859 change Effects 0.000 claims description 28
- 230000007246 mechanism Effects 0.000 claims description 14
- 230000001133 acceleration Effects 0.000 claims description 9
- 238000004891 communication Methods 0.000 abstract description 69
- 230000009471 action Effects 0.000 description 84
- 238000010586 diagram Methods 0.000 description 39
- 230000000694 effects Effects 0.000 description 34
- 230000006870 function Effects 0.000 description 27
- 239000000758 substrate Substances 0.000 description 21
- 210000001508 eye Anatomy 0.000 description 19
- 230000005484 gravity Effects 0.000 description 14
- 230000002265 prevention Effects 0.000 description 12
- 230000010391 action planning Effects 0.000 description 11
- 230000009183 running Effects 0.000 description 11
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 230000009916 joint effect Effects 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 6
- 238000013507 mapping Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000029058 respiratory gaseous exchange Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 5
- 230000008451 emotion Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000013461 design Methods 0.000 description 4
- 210000003128 head Anatomy 0.000 description 4
- 230000001976 improved effect Effects 0.000 description 4
- 238000009434 installation Methods 0.000 description 4
- 230000009191 jumping Effects 0.000 description 4
- 230000004807 localization Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000001953 sensory effect Effects 0.000 description 4
- 206010044565 Tremor Diseases 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000008921 facial expression Effects 0.000 description 3
- 238000007562 laser obscuration time method Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000035807 sensation Effects 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 206010011469 Crying Diseases 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 210000005252 bulbus oculi Anatomy 0.000 description 2
- 235000021438 curry Nutrition 0.000 description 2
- 230000004424 eye movement Effects 0.000 description 2
- 230000009187 flying Effects 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 230000009182 swimming Effects 0.000 description 2
- 230000009184 walking Effects 0.000 description 2
- 101150012579 ADSL gene Proteins 0.000 description 1
- 102100020775 Adenylosuccinate lyase Human genes 0.000 description 1
- 108700040193 Adenylosuccinate lyases Proteins 0.000 description 1
- 206010004716 Binge eating Diseases 0.000 description 1
- 208000032841 Bulimia Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020710 Hyperphagia Diseases 0.000 description 1
- 241001469893 Oxyzygonectes dovii Species 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 208000014679 binge eating disease Diseases 0.000 description 1
- 230000004397 blinking Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 230000008909 emotion recognition Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000000887 face Anatomy 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 235000020830 overeating Nutrition 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0257—Control of position or course in two dimensions specially adapted to land vehicles using a radar
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4155—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by programme execution, i.e. part programme or machine function execution, e.g. selection of a programme
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/0005—Manipulators having means for high-level communication with users, e.g. speech generator, face recognition means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/0005—Manipulators having means for high-level communication with users, e.g. speech generator, face recognition means
- B25J11/001—Manipulators having means for high-level communication with users, e.g. speech generator, face recognition means with emotions simulating means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/007—Manipulators mounted on wheels or on carriages mounted on wheels
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0891—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/36—Nc in input of data, input key till input tape
- G05B2219/36412—Fine, autonomous movement of end effector by using camera
Definitions
- This disclosure relates to an information processing device, its control method, and a program.
- Patent Document 1 discloses a technique of calculating an expected value of the user's attention to output information and controlling information output based on the expected value.
- the information processing apparatus includes a first sensor that detects an object existing in a first direction with respect to an autonomous moving body, and the first sensor. Is obtained by a second sensor that detects an object existing in the first direction with respect to the autonomous moving body, a detection result acquired by the first sensor, and the second sensor by different methods. It is provided with an operation control unit that controls the operation of the autonomous moving body based on the detected detection result.
- the agent device can present various information in response to an inquiry from a user, for example.
- the above information presentation includes, for example, presentation of recommendation information, schedule, news, etc. to the user.
- the agent device executes the above operation in response to an instruction command input by the user.
- Examples of the above-mentioned instruction command include voice keyword input, button press for function execution, and the like. Therefore, the information presentation by the agent device as described above is a passive operation, and it cannot be said that it activates communication with the user.
- agent devices perform continuous dialogue with the user by using voice or the like, but in many cases, they only repeatedly execute passive actions in response to the user's instruction command. It is hard to say that true communication is realized.
- one of the features of the autonomous mobile body 10 according to the present embodiment is that it actively executes various actions (hereinafter, also referred to as incentive actions) that induce communication with the user.
- the autonomous mobile body according to the present embodiment can actively present information to the user based on environmental recognition. Further, for example, the autonomous mobile body 10 actively executes various incentive actions that encourage a predetermined action of the user. In this respect, the autonomous mobile body according to the present embodiment is clearly different from the device that passively operates based on an instruction command.
- the incentive action by the autonomous moving body according to the present embodiment is active and positive interference with the physical space.
- the autonomous mobile body according to the present embodiment can move in a physical space and perform various physical actions on a user, a living thing, an article, or the like.
- the user can comprehensively recognize the movement of the autonomous mobile body through visual, auditory, and tactile senses, and simply interacts with the user using voice. It is possible to realize advanced communication compared to the case of performing.
- the autonomous mobile body 10 according to the present embodiment can be various devices that perform autonomous operations based on environmental recognition.
- the autonomous mobile body 10 according to the present embodiment is an oblong agent-type robot device that autonomously travels by wheels will be described as an example.
- the autonomous mobile body 10 according to the present embodiment realizes various communications including information presentation by performing autonomous operations according to, for example, the user, the surroundings, and its own situation.
- the autonomous mobile body 10 according to the present embodiment may be a small robot having a size and weight that can be easily lifted by a user with one hand.
- FIG. 1 is a front view and a rear view of the autonomous mobile body 10 according to the present embodiment.
- FIG. 2 is a perspective view of the autonomous mobile body 10 according to the present embodiment.
- FIG. 3 is a side view of the autonomous mobile body 10 according to the present embodiment.
- 4 and 5 are a top view and a bottom view of the autonomous mobile body 10 according to the present embodiment, respectively.
- the autonomous mobile body 10 includes two eye portions 510 corresponding to the right eye and the left eye on the upper part of the main body.
- the eye portion 510 is realized by, for example, an LED or the like, and can express a line of sight, blinking, or the like.
- the eye portion 510 is not limited to the above example, and may be realized by, for example, two single or independent OLEDs (Organic Light Emitting Diode).
- the autonomous mobile body 10 includes one or a plurality of cameras 515 above the eye portion 510.
- the camera 515 has a function of capturing an image of the user and the surrounding environment.
- the autonomous mobile body 10 may realize SLAM (Simultaneous Localization and Mapping) based on the image captured by the camera 515.
- SLAM Simultaneous Localization and Mapping
- the eye portion 510 and the camera 515 according to the present embodiment are arranged on the substrate 505 arranged inside the exterior surface.
- the exterior surface of the autonomous moving body 10 is basically formed by using an opaque material, but the portion corresponding to the substrate 505 on which the eye portion 510 and the camera 515 are arranged is transparent.
- a head cover 550 using a translucent material is provided.
- the autonomous mobile body 10 is provided with a ToF (Time of Flight) sensor 520 at the lower part of the front surface.
- the ToF sensor 520 has a function of detecting a distance from an object existing in front of the sensor. According to the ToF sensor 520, distances to various objects can be detected with high accuracy, and by detecting a step or the like, it is possible to prevent a fall or a fall.
- the autonomous mobile body 10 may be provided with a connection terminal 555 of an external device and a power switch 560 on the back surface.
- the autonomous mobile body 10 can connect to an external device via the connection terminal 555 and perform information communication.
- the autonomous mobile body 10 according to the present embodiment is provided with two wheels 570 on the bottom surface.
- the wheels 570 according to this embodiment are driven by different motors 565.
- the autonomous mobile body 10 can realize moving operations such as forward movement, backward movement, turning, and rotation.
- the wheel 570 according to the present embodiment may be provided so as to be able to be stored inside the main body and protrude to the outside. In that case, the autonomous mobile body 10 can perform a jumping motion by, for example, vigorously projecting the two wheels 570 to the outside.
- FIG. 5 shows a state in which the wheels 570 are stored inside the main body.
- FIG. 6 is a schematic view for explaining the internal structure of the autonomous mobile body 10 according to the present embodiment.
- the autonomous mobile body 10 includes an inertial sensor 525 and a communication device 530 arranged on an electronic substrate.
- the inertial sensor 525 detects the acceleration and the angular velocity of the autonomous moving body 10.
- the communication device 530 is configured to realize wireless communication with the outside, and includes, for example, a Bluetooth (registered trademark) and a Wi-Fi (registered trademark) antenna.
- the autonomous mobile body 10 is provided with a speaker 535 inside the side surface of the main body, for example.
- the autonomous mobile body 10 can output various sound information including voice by the speaker 535.
- the autonomous mobile body 10 includes a plurality of microphones 540 inside the upper part of the main body.
- the microphone 540 collects user utterances and ambient sounds. Further, by providing the autonomous mobile body 10 with a plurality of microphones 540, it is possible to collect sounds generated in the surroundings with high sensitivity and to realize localization of a sound source.
- the autonomous mobile body 10 includes a plurality of motors 565.
- the autonomous moving body 10 includes, for example, two motors 565 for driving the substrate on which the eye portion 510 and the camera 515 are arranged in the vertical and horizontal directions, and two motors 565 for driving the left and right wheels 570. And one motor 565 for realizing the forward leaning posture of the autonomous moving body 10 may be provided.
- the autonomous mobile body 10 according to the present embodiment can express a rich operation by the plurality of motors 565.
- FIG. 7 is a diagram showing the configuration of the substrate 505 according to the present embodiment.
- FIG. 8 is a cross-sectional view of the substrate 505 according to the present embodiment.
- the substrate 505 according to this embodiment is connected to two motors 565.
- the two motors 565 can drive the substrate 505 on which the eye portion 510 and the camera 515 are arranged in the vertical and horizontal directions.
- the eye portion 510 of the autonomous moving body 10 can be flexibly moved in the vertical direction and the horizontal direction, and it is possible to express rich eye movements according to the situation and the movement.
- the eye portion 510 is composed of a central portion 512 corresponding to the iris and a peripheral portion 514 corresponding to the so-called white eye.
- the central portion 512 expresses an arbitrary color including blue, red, green, and the like, and the peripheral portion 514 expresses white.
- the autonomous mobile body 10 according to the present embodiment can express a natural eyeball facial expression closer to that of an actual living thing by separating the configuration of the eye portion 510 into two.
- FIGS. 9 and 10 are views showing the peripheral structure of the wheel 570 according to the present embodiment.
- the two wheels 570 according to the present embodiment are driven by independent motors 565, respectively. According to this configuration, in addition to simple forward and backward movements, it is possible to delicately express movement movements such as turning and rotation on the spot.
- the wheel 570 according to the present embodiment is provided so as to be able to be stored inside the main body and protrude to the outside. Further, by providing the damper 575 coaxially with the wheel 570 according to the present embodiment, it is possible to effectively reduce the transmission of impact and vibration to the axle and the main body.
- the wheel 570 according to the present embodiment may be provided with an auxiliary spring 580.
- the driving of the wheels according to the present embodiment requires the most torque among the driving parts of the autonomous moving body 10, but by providing the auxiliary spring 580, all the driving parts do not use different motors 565. It is possible to standardize the motor 565.
- FIG. 11 is a diagram for explaining forward leaning of the autonomous mobile body 10 according to the present embodiment.
- One of the features of the autonomous moving body 10 according to the present embodiment is that it performs moving motions such as back-and-forth motion, turning motion, and rotational motion while maintaining a forward leaning posture.
- FIG. 11 shows a side view of the autonomous moving body 10 during traveling.
- one of the features of the autonomous moving body 10 according to the present embodiment is that it tilts forward by an angle ⁇ in the vertical direction to perform a moving operation.
- the angle ⁇ can be, for example, 10 °.
- a heavy component hp is arranged in order to maintain balance in a forward leaning posture.
- the heavy component hp according to the present embodiment may be a heavier component than other components included in the autonomous mobile body 10, and may be, for example, a motor 565 or a battery. According to the above component arrangement, the attitude control is facilitated in a state where the balance is maintained even if the head is tilted forward, and the autonomous moving body 10 can be prevented from falling unintentionally and stable forward leaning can be realized. ..
- 13A and 13B are diagrams for explaining the effect of the forward tilting motion of the autonomous mobile body 10 according to the present embodiment.
- FIG. 13A shows an example of the rotational movement when the autonomous moving body does not take a forward leaning posture.
- the autonomous moving body 10 does not take a forward leaning posture and performs a moving motion such as rotation or back-and-forth movement while keeping the oblong ellipsoid upright, the oblong body does not feel directional. , It is difficult to wipe out the impression that the autonomous moving body is an artificial object.
- the autonomous mobile body 10 is characterized in that it performs a moving motion such as rotation while maintaining a forward leaning posture.
- the front upper part of the autonomous moving body 10 is pronounced of the head, and the rear lower part is pronounced of the waist, so that a simple oblong body is also oriented.
- the structure corresponding to the body part possessed by a human can be expressed by a relatively simple exterior, and the simple form can be anthropomorphized. Therefore, it is possible to give the user an impression as a living organism that goes beyond mere artificial objects.
- the forward tilting motion according to the present embodiment makes it possible to richly express the facial expression of a robot having a relatively simple exterior such as an ellipsoid, and is complicated like an actual creature. It can be said that it is a very effective means that can remind us of the movement.
- the configuration example of the autonomous mobile body 10 according to the first embodiment of the present disclosure has been described in detail above.
- the above configuration described with reference to FIGS. 1 to 13B is merely an example, and the configuration of the autonomous mobile body 10 according to the first embodiment of the present disclosure is not limited to such an example.
- the shape and internal structure of the autonomous mobile body 10 according to the present embodiment can be arbitrarily designed.
- the autonomous mobile body 10 according to the present embodiment can also be realized as, for example, a walking type, a flying type, a swimming type robot, or the like.
- FIG. 14 is a block diagram showing a configuration example of the information processing system according to the present embodiment.
- the information processing system according to the present embodiment includes an autonomous mobile body 10, an information processing server 20, and an operated device 30. Further, each configuration is connected via the network 40.
- the autonomous mobile body 10 is an information processing device that performs autonomous operation based on control by the information processing server 20.
- the autonomous mobile body 10 according to the present embodiment can be various robots such as a traveling type, a walking type, a flying type, and a swimming type.
- the information processing server 20 is an information processing device that controls the operation of the autonomous mobile body 10.
- the information processing server 20 according to the present embodiment has a function of causing the autonomous mobile body 10 to execute various incentive actions that induce communication with a user. It should be noted that one of the features of the above-mentioned incentive movement and communication is that the behavior of the autonomous mobile body 10 in the physical space is included.
- the operated device 30 according to the present embodiment is various devices operated by the information processing server 20 and the autonomous mobile body 10.
- the autonomous mobile body 10 according to the present embodiment can operate various operated devices 30 based on the control by the information processing server 20.
- the operated device 30 according to the present embodiment may be, for example, a home electric appliance such as a lighting device, a game device, or a television device.
- the network 40 has a function of connecting each configuration provided in the information processing system.
- the network 40 may include a public network such as the Internet, a telephone line network, a satellite communication network, various LANs (Local Area Network) including Ethernet (registered trademark), and a WAN (Wide Area Network). Further, the network 40 may include a dedicated network such as IP-VPN (Internet Protocol-Virtual Private Network). Further, the network 40 may include a wireless communication network such as Wi-Fi (registered trademark) and Bluetooth (registered trademark).
- the system configuration example according to the first embodiment of the present disclosure has been described above.
- the above configuration described with reference to FIG. 14 is merely an example, and the configuration of the information processing system according to the first embodiment of the present disclosure is not limited to such an example.
- the control function of the information processing server 20 may be implemented as a function of the autonomous mobile body 10.
- the system configuration according to the first embodiment of the present disclosure can be flexibly modified according to specifications and operations.
- FIG. 15 is a block diagram showing a functional configuration example of the autonomous mobile body 10 according to the present embodiment.
- the autonomous mobile body 10 according to the present embodiment includes a sensor unit 110, an input unit 120, a light source 130, a voice output unit 140, a drive unit 150, a control unit 160, and a communication unit 170.
- the sensor unit 110 has a function of collecting various sensor information related to the user and the surroundings.
- the sensor unit 110 according to the present embodiment includes, for example, the above-mentioned camera 515, ToF sensor 520, microphone 540, inertial sensor 525, and the like.
- the sensor unit 110 may include various sensors such as various optical sensors including a geomagnetic sensor, a touch sensor, an infrared sensor, etc., a temperature sensor, a humidity sensor, and the like.
- the input unit 120 has a function of detecting a physical input operation by the user.
- the input unit 120 according to the present embodiment includes, for example, a button such as a power switch 560.
- the light source 130 according to the present embodiment expresses the eye movement of the autonomous moving body 10.
- the light source 130 according to the present embodiment includes two eye portions 510.
- the voice output unit 140 has a function of outputting various sounds including voice.
- the audio output unit 140 according to the present embodiment includes a speaker 535, an amplifier, and the like.
- the drive unit 150 expresses the body movement of the autonomous mobile body 10.
- the drive unit 150 according to the present embodiment includes two wheels 570 and a plurality of motors 565.
- Control unit 160 The control unit 160 according to the present embodiment has a function of controlling each configuration included in the autonomous mobile body 10.
- the control unit 160 controls, for example, the start and stop of each configuration. Further, the control unit 160 inputs the control signal generated by the information processing server 20 to the light source 130, the voice output unit 140, and the drive unit 150. Further, the control unit 160 according to the present embodiment may have the same function as the operation control unit 230 of the information processing server 20 described later.
- the communication unit 170 performs information communication with the information processing server 20, the operated device 30, and other external devices.
- the communication unit 170 according to the present embodiment includes a connection terminal 555 and a communication device 530.
- the functional configuration example of the autonomous mobile body 10 according to the first embodiment of the present disclosure has been described above.
- the above configuration described with reference to FIG. 15 is merely an example, and the functional configuration of the autonomous mobile body 10 according to the first embodiment of the present disclosure is not limited to such an example.
- the autonomous mobile body 10 according to the present embodiment does not necessarily have all of the configurations shown in FIG.
- the functional configuration of the autonomous mobile body 10 according to the present embodiment can be flexibly deformed according to the shape of the autonomous mobile body 10 and the like.
- FIG. 16 is a block diagram showing a functional configuration example of the information processing server 20 according to the present embodiment.
- the information processing server 20 according to the present embodiment includes a recognition unit 210, an action planning unit 220, an operation control unit 230, and a communication unit 240.
- the recognition unit 210 has a function of performing various recognitions related to the user, the surrounding environment, and the state of the autonomous mobile body 10 based on the sensor information collected by the autonomous mobile body 10. As an example, the recognition unit 210 may perform user identification, facial expression and line-of-sight recognition, object recognition, color recognition, shape recognition, marker recognition, obstacle recognition, step recognition, brightness recognition, and the like.
- the recognition unit 210 performs emotion recognition, word understanding, sound source localization, etc. related to the user's voice.
- the recognition unit 210 can recognize the ambient temperature, the existence of the animal body, the posture of the autonomous moving body 10, and the like.
- the recognition unit 210 has a function of estimating and understanding the surrounding environment and the situation in which the autonomous mobile body 10 is placed based on the recognized information. At this time, the recognition unit 210 may comprehensively estimate the situation by using the environmental knowledge stored in advance.
- the action planning unit 220 has a function of planning the action to be performed by the autonomous mobile body 10 based on the situation and learning knowledge estimated by the recognition unit 210.
- the action planning unit 220 executes the action plan by using a machine learning algorithm such as deep learning.
- the motion control unit 230 controls the motion of the autonomous mobile body 10 based on the action plan by the action planning unit 220.
- the motion control unit 230 may, for example, move the autonomous moving body 10 having an oblong outer shape while maintaining the forward leaning posture.
- the above-mentioned moving motion includes a back-and-forth motion, a turning motion, a rotational motion, and the like.
- one of the features of the motion control unit 230 according to the present embodiment is that the autonomous mobile body 10 actively executes an incentive motion that induces communication between the user and the autonomous mobile body 10.
- the incentive motion and communication according to the present embodiment may include the physical behavior of the autonomous mobile body 10 in the physical space. The details of the incentive motion realized by the motion control unit 230 according to the present embodiment will be described later.
- the communication unit 240 performs information communication with the autonomous mobile body 10 and the operation target. For example, the communication unit 240 receives the sensor information from the autonomous mobile body 10 and transmits a control signal related to the operation to the autonomous mobile body 10.
- the functional configuration example of the information processing server 20 according to the first embodiment of the present disclosure has been described above.
- the above configuration described with reference to FIG. 16 is merely an example, and the functional configuration of the information processing server 20 according to the first embodiment of the present disclosure is not limited to such an example.
- various functions of the information processing server 20 may be distributed and realized by a plurality of devices.
- the function of the information processing server 20 may be realized as a function of the autonomous mobile body 10.
- the functional configuration of the information processing server 20 according to the present embodiment can be flexibly modified according to specifications and operations.
- the incentive motion of the autonomous mobile body 10 realized by the motion control unit 230 according to the present embodiment will be described with reference to specific examples.
- the autonomous mobile body 10 according to the present embodiment can actively execute various incentive movements based on the control by the movement control unit 230.
- the autonomous mobile body 10 according to the present embodiment can work on the user more impressively and activate communication by performing an incentive action accompanied by a physical behavior.
- the incentive action according to the present embodiment may be, for example, an action for causing the user to perform a predetermined action.
- 17 to 20 are diagrams showing an example of an incentive action for causing a user to perform a predetermined action.
- FIG. 17 shows an example in which the autonomous mobile body 10 performs an incentive action to encourage the user to wake up.
- the motion control unit 230 can cause the autonomous mobile body 10 to execute an incentive action for urging the user U1 to wake up, based on, for example, the daily wake-up habit of the user and the schedule of the day of the user.
- the motion control unit 230 outputs the voice utterance SO1 such as "Morning, get up!, The alarm sound, or the BGM to the autonomous mobile body 10.
- the incentive action according to the present embodiment includes an incentive for voice communication.
- the motion control unit 230 according to the present embodiment intentionally limits the number of voice words to be output to the autonomous mobile body 10 (in one word) or makes them in no particular order to express loveliness and hatefulness. You may.
- the fluency of the voice of the autonomous mobile body 10 may be improved with learning, or may be designed to speak fluently from the beginning. It may also be changed based on the user's settings.
- the motion control unit 230 executes an incentive action to escape from the user U1 on the autonomous mobile body 10 so as to hinder the stop motion. You may let me.
- the motion control unit 230 and the autonomous mobile body 10 according to the present embodiment there is a deeper depth accompanied by physical motion, unlike the case where the alarm sound is simply passively output at the set time. It is possible to realize continuous communication.
- FIG. 18 shows an example in which the autonomous mobile body 10 performs an incentive action for urging the user U1 to stop binge eating.
- the incentive action for causing the predetermined action may include an action for stopping the predetermined action.
- the motion control unit 230 outputs the voice utterance SO2 such as "overeating, gaining weight, and no use", and causes the autonomous mobile body 10 to perform an incentive action to run around on the table.
- a warning accompanied by a physical motion is compared with a case where a warning for a health state based on image recognition or the like is simply passively given by voice.
- a warning for a health state based on image recognition or the like is simply passively given by voice.
- FIG. 19 shows an example in which the autonomous mobile body 10 provides the user U1 with sale information and performs an incentive action to guide the user to the sale.
- the information processing server 20 can cause the autonomous mobile body 10 to present various information based on the store information and event information collected from the network, the user's preference, and the like. ..
- the motion control unit 230 outputs the voice utterance SO3 "sale, profit, let's go" to the autonomous mobile body 10, and outputs the sail information to the operated device 30 possessed by the user U1. Display it. At this time, the operation control unit 230 may directly control the sail information displayed on the operated device 30, or the control unit 160 of the autonomous mobile body 10 may execute the control via the communication unit 170.
- the motion control unit 230 outputs the voice utterance SO3 to the autonomous mobile body 10, and causes the autonomous mobile body 10 to execute an incentive operation including a jump.
- the autonomous moving body 10 according to the present embodiment can realize a jumping operation by vigorously projecting the wheels 570 to the outside.
- the recommendation information is recommended with physical motion as compared with the case where the recommendation information is simply provided by using voice or visual information. It can give a deeper impression to the user and enhance the effect of providing information.
- the motion control unit 230 may cause the autonomous mobile body 10 to output a voice utterance such as "take me, go with me".
- the autonomous mobile body 10 according to the present embodiment has a size and weight that can be easily lifted by a user with one hand, and can be formed in a size that can be stored in, for example, a PET bottle holder provided in a vehicle. Therefore, the user can easily take the autonomous mobile body 10 to the outside. Further, for example, while moving in a vehicle, the motion control unit 230 can improve the convenience of the user by causing the autonomous moving body 10 to perform navigation to the destination.
- FIG. 20 shows an example in which the autonomous mobile body 10 performs an incentive action for urging the user U1 to continue talking.
- the motion control unit 230 controls the drive unit 150 of the autonomous moving body 10 and repeats the forward tilting motion and the backward tilting motion to express a nod (aizuchi). Further, at this time, the motion control unit 230 appeals that the user U1 is listening to the utterance by outputting the voice utterance SO4 using the word included in the user utterance UO1 to the autonomous mobile body 10. You may.
- the information processing server 20 may cause the autonomous mobile body 10 to perform the above-mentioned incentive operation when it recognizes that the user U1 is depressed.
- the motion control unit 230 brings the autonomous mobile body 10 closer to the user U1 and outputs voice utterances such as "what happened?" Or "talk, listen” to the user. It can give U1 a chance to talk.
- the motion control unit 230 and the autonomous mobile body 10 it is possible to interact with the user as a more familiar and friendly conversation partner as compared with the case where the user simply responds to the utterance of the user. It is possible to realize deep and continuous communication.
- the incentive action according to the present embodiment may include an action for causing the user to perform a joint action with the autonomous mobile body 10.
- the above-mentioned joint action includes, for example, a game by a user and an autonomous mobile body 10. That is, the motion control unit 230 according to the present embodiment can cause the autonomous mobile body 10 to execute an incentive action that invites the user to the game.
- FIG. 21 to 24 are diagrams showing an example of an incentive action that induces a joint action between the user and the autonomous mobile body 10 according to the present embodiment.
- FIG. 21 shows an example of a case where the autonomous mobile body 10 plays an associative game with the user U2.
- the game targeted by the autonomous mobile body 10 for the incentive action may include a game using a language.
- a game using a language in addition to the associative game shown in FIG. 21, "Shiritori" in the Japanese-speaking area (corresponding to "Word Chain” in the English-speaking area) and the phrase indicated by the user's gesture are autonomously moved. Examples include word guessing games (Charades) that the body 10 answers.
- Charades word guessing games
- the motion control unit 230 may cause the autonomous mobile body 10 to explicitly invite the game using voice utterance, but suddenly the game is started unilaterally based on the user's utterance. Then, the user may be invited to participate in the game.
- the motion control unit 230 is an associative game using the "yellow" included in the utterance based on the user utterance UO2 that the user U2 utters "a yellow flower has bloomed”.
- the voice utterance SO5 related to the start of is output to the autonomous mobile body 10.
- FIG. 22 shows an example in which the autonomous mobile body 10 performs "Daruma-san fell” (corresponding to "Red light / Green Light” or “Statues”) with the user U2.
- the games targeted by the autonomous mobile body 10 for the incentive movement include the user and the game requiring the physical movement of the autonomous mobile body 10.
- the autonomous mobile body 10 can move forward and turn around by having two wheels 570, and plays a game such as "Daruma-san fell" with the user. Is possible.
- the recognition unit 210 of the information processing server 20 can recognize the user's turning action by detecting the user's face included in the image captured by the autonomous mobile body 10. Further, the recognition unit 210 may recognize the user's turning action from the user utterances UO3 and UO4 and the like.
- the action planning unit 220 plans an action to stop on the spot, an action to dare to fall forward, etc. based on the recognition of the turning action, and the action control unit 230 autonomously moves based on the plan.
- the drive unit 150 of 10 is controlled.
- the autonomous mobile body 10 according to the present embodiment can recover from the fallen state by itself by incorporating a pendulum or the like.
- the motion control unit 230 may induce the user to participate in the game by suddenly starting the game unilaterally, as in the case of the associative game.
- the information processing server 20 stops the operation of the autonomous moving body 10 when the user's line of sight is directed toward the autonomous moving body 10, and causes the user to approach the user when the user's line of sight is off. By repeating the control, it is possible to induce the user to the game.
- FIG. 23 shows an example in which the autonomous mobile body 10 performs "Kakurenbo" (corresponding to "Hide and seek") with the user U2.
- the motion control unit 230 outputs an eerie BGM to the autonomous mobile body 10 together with the voice utterance SO6 indicating that the user U2 is being searched for. According to such control, it is possible to effectively express the realism of the autonomous mobile body 10 gradually approaching the user U2 and realize deeper communication.
- the information processing server 20 causes the user U2 to the autonomous moving body 10 by, for example, performing a SLAM map generated in advance, sound information collected when the user U2 escapes, and sound source localization related to noise generated in the surroundings. It is possible to search for.
- FIG. 24 shows an example in which the autonomous mobile body 10 plays a computer game with the user U2.
- the game for which the autonomous mobile body 10 according to the present embodiment is the target of the incentive action may include a computer game.
- the motion control unit 230 may cause the autonomous mobile body 10 to execute an operation of arbitrarily activating the operated device 30 which is a game device. In this way, the motion control unit 230 can cause the autonomous mobile body 10 to perform an unintended or unintended motion of the user, that is, a mischievous motion.
- the above-mentioned mischief includes, for example, the operation of the operated device 30 as shown in the figure.
- the motion control unit 230 may cause the autonomous mobile body 10 to perform an action from the standpoint of the character in the game in which the user U2 is competing.
- the motion control unit 230 may cause the autonomous mobile body 10 to behave as if the autonomous mobile body 10 actually controls the movement of the character.
- the user U2 can strongly remind the user U2 of the feeling of competing with the autonomous mobile body 10 in a computer game, and can recognize the autonomous mobile body 10 as a more familiar existence than just a robot.
- the motion control unit 230 causes the autonomous mobile body 10 to perform an action (such as ramming, running around, or trembling) that interferes with the user U2.
- the voice utterance SO7 corresponding to the operation may be output. According to the above motion control, it is possible to realize closer communication with the user through the computer game.
- the motion control unit 230 causes the autonomous mobile body 10 to actively execute incentive actions related to various games so that the autonomous mobile body 10 and the user can interact with each other. It is possible to activate the communication.
- FIG. 25 is a diagram for explaining an incentive operation related to the presentation of the article position according to the present embodiment.
- FIG. 25 shows an example in which the autonomous mobile body 10 according to the present embodiment performs an incentive operation indicating the position of the smartphone that the user is looking for.
- the motion control unit 230 autonomously performs incentive actions such as lightly hitting the smartphone, performing back-and-forth movement around the smartphone, and jumping. You may let 10.
- the motion control unit 230 when it is estimated from the user utterance UO5 that the user is searching for a predetermined article, the motion control unit 230 according to the present embodiment causes the autonomous moving body 10 to perform an motion indicating the position of the article. Can be executed. At this time, the motion control unit 230 can effectively present information to the user by causing the autonomous mobile body 10 to perform an incentive motion near the place where the article is actually located.
- the recognition unit 210 may detect the position of the article based on the image information registered in advance, or may detect the position based on a tag attached to the article or the like.
- FIG. 26 is a diagram for explaining an incentive action for inducing the user to sleep according to the present embodiment.
- FIG. 26 shows an example in which the autonomous mobile body 10 reads aloud to put the user U2 to sleep.
- the autonomous mobile body 10 can read, for example, a story registered as data in advance and various stories acquired via communication.
- the motion control unit 230 normally sets a limit on the language (for example, the number of words and the vocabulary) used by the autonomous mobile body 10, the movement control unit 230 releases the limit when reading aloud. You can.
- the motion control unit 230 may cause the autonomous mobile body 10 to expressly reproduce the voice of the character in the story, or to output sound effects, BGM, and the like together. Further, the motion control unit 230 may cause the autonomous mobile body 10 to perform an motion according to a dialogue or a scene.
- the motion control unit 230 can control a plurality of autonomous mobile bodies 10 to read aloud and reproduce the story.
- the motion control unit 230 causes the two autonomous moving bodies 10a and 10b to play the two characters in the story, respectively.
- the motion control unit 230 may cause the autonomous mobile body 10 to perform control to turn off the operated device 30 which is a lighting device based on the start of sleep of the user.
- the information processing server 20 and the autonomous mobile body 10 according to the present embodiment can realize flexible operations according to changes in the situation relating to the user and the surrounding environment.
- the incentive action according to the present embodiment may be communication between the autonomous mobile body 10 and another device.
- 27 and 28 are diagrams for explaining communication between the autonomous mobile body 10 and other devices according to the present embodiment.
- FIG. 27 shows an example in which the autonomous mobile body 10 performs interpretation between the user and another device 50 which is a dog-shaped autonomous mobile body.
- the motion control unit 230 uses the voice utterance SO11 to present information related to the internal state of the other device 50 to the user.
- the other device 50 which is a dog-shaped autonomous mobile body, may be a device having no verbal communication means.
- the motion control unit 230 can show the user information regarding the internal state of the other device 50 via the autonomous mobile body 10. According to the above-mentioned function of the motion control unit 230 according to the present embodiment, it is possible to notify the user of various information related to another device 50 which does not have a direct communication means using a language to the user. In addition, it is possible to activate communication between the user and the autonomous mobile body 10 and the other device 50 through the notification.
- FIG. 28 shows an example of communication between the plurality of autonomous mobile bodies 10a and 10b and another device 50 which is an agent device having a projection function.
- the motion control unit 230 controls the autonomous mobile bodies 10a and 10b and the other device 50 so that the robots communicate with each other, for example, the autonomous mobile bodies 10a and 10b and the other device 50. be able to.
- the motion control unit 230 projects the visual information VI1 on the other device 50 via the autonomous mobile body 10. Further, the motion control unit 230 causes the autonomous mobile body 10a to output a voice utterance 12, causes the autonomous mobile body 10 to output a laughing voice, and executes an operation of shaking the main body.
- the motion control unit 230 may execute communication between the devices using a pseudo language that the user cannot understand. According to such control, it is possible to strongly attract the user's interest by reminding the user of a situation in which a mysterious conversation is taking place between the devices. Further, according to the control, for example, even when the other device 50 is a display device having no agent function, the user is reminded of the feeling that the display device has a personality, and the display is performed. The effect of improving the user's attachment to the device is expected.
- the motion control unit 230 causes the autonomous mobile body 10 to perform the motion of swinging the main body
- the motion control unit 230 according to the present embodiment intentionally makes the attitude control unstable. By doing so, it is possible to vibrate the autonomous moving body 10. According to this control, it is possible to express emotions such as tremors, laughter, and fear without providing a separate piezoelectric element or the like.
- the autonomous mobile body 10 can hear the utterances of people including the user. Further, the autonomous mobile body 10 expresses emotions by onomatopoeia or the like without using words. The autonomous moving body 10 can detect a step and avoid falling, but it is easy to hit an object and fall easily. In addition, when the vehicle falls, the autonomous moving body 10 cannot return to the standing position by itself. The autonomous mobile body 10 continues to act until the battery runs out, and the emotion is unstable. The autonomous mobile body 10 often trembles and gets angry, blinks a lot, and changes its eye color frequently.
- the autonomous mobile body 10 will memorize and repeat the words of the user when the predetermined condition (for example, the number of detections) is satisfied while returning the heard user's words. Also, the autonomous mobile body 10 will be able to move without hitting an object, and will remember to ask for help if it falls. Further, the autonomous mobile body 10 expresses that it is hungry when the battery is low.
- the predetermined condition for example, the number of detections
- the autonomous mobile body 10 understands its own name by being repeatedly called by the user.
- the autonomous mobile body 10 recognizes a user's face and shape, and remembers the user's name when a predetermined condition (for example, the number of recognitions) is satisfied.
- the autonomous mobile body 10 ranks the reliability of recognized humans and objects. At this time, in addition to users, animals such as pets, toys, devices, etc. may be added to the higher ranks.
- the autonomous mobile body 10 finds the charging stand, it may remember to return to the charging stand and supply power.
- the autonomous mobile body 10 can combine known words with the memorized proper nouns and emit a short sentence (for example, "Kazuo, Genki"). Further, when the autonomous mobile body 10 recognizes a person, it tries to approach the person. Further, the autonomous mobile body 10 may be able to travel quickly.
- the autonomous mobile body 10 tries to imitate the movement of a person or an object (for example, dance). Further, the autonomous mobile body 10 tries to imitate the special sounds (siren, alarm, engine sound, etc.) heard. At this time, the autonomous mobile body 10 may reproduce similar sounds registered as data. In addition, the autonomous mobile body 10 can remember the time cycle of one day, grasp the schedule of the day, and notify the user (for example, "Kazuo, get up", "Kazuo, return", etc.).
- the autonomous mobile body 10 can control the operation (for example, ON / OFF) of the registered device. Further, the autonomous mobile body 10 can also perform the above control based on the request of the user. The autonomous mobile body 10 can output the registered music according to the situation. The autonomous mobile body 10 can memorize a time cycle of one week, grasp the schedule of the week, and notify the user (for example, "Kazuo, burning garbage, did you put it out?").
- the autonomous mobile body 10 remembers movements that express emotions.
- the above expressions include movements related to emotions, such as laughter and crying.
- the autonomous mobile body 10 can memorize a time cycle of one month, grasp the schedule of the month, and notify the user (for example, "Kazuo, today, payday!).
- Level 110-139 When the user is laughing, the autonomous mobile body 10 laughs together, and when the user is crying, he / she approaches the side and becomes concerned.
- the autonomous mobile body 10 acquires various conversation modes, such as memorizing an aizuchi and devoting itself to listening.
- the autonomous mobile body 10 can memorize a time cycle of one year, grasp the schedule of the year, and notify the user.
- the autonomous moving body 10 remembers the return from the fallen state by itself and the jump during running. In addition, the autonomous mobile body 10 can play with the user by "Daruma-san has fallen” or "Hide and seek”.
- the autonomous mobile body 10 will perform mischief by operating the registered device regardless of the user's intention. In addition, the autonomous mobile body 10 becomes scolded when scolded by the user (puberty). The autonomous mobile body 10 can grasp the position of the registered article and notify the user.
- the autonomous mobile body 10 will be able to read aloud the story. It also has a payment function for purchasing products via a network.
- the above is an example of the growth of the autonomous mobile body 10 according to the present embodiment.
- the above is just an example, and the operation of the autonomous mobile body 10 can be appropriately adjusted by setting by the user or the like.
- FIG. 29 is a flowchart showing a flow of control of the autonomous mobile body 10 by the information processing server 20 according to the present embodiment.
- the communication unit 240 receives the sensor information from the autonomous mobile body 10 (S1101).
- the recognition unit 210 executes various recognition processes based on the sensor information received in step S1101 (S1102), and estimates the situation (S1103).
- the action planning unit 220 performs an action plan based on the situation estimated in step S1103 (S1104).
- the motion control unit 230 controls the motion of the autonomous mobile body 10 based on the action plan determined in step S1104 (S1105).
- FIG. 30 is a flowchart showing an example of the flow from the recognition process to the operation control according to the present embodiment.
- the recognition unit 210 identifies the user based on an image captured by the autonomous mobile body 10 (S1201).
- the recognition unit 210 performs voice recognition and intention interpretation related to the user's utterance collected by the autonomous moving body 10 to understand the user's utterance intention (S1202).
- the action planning unit 220 plans to approach the user, and the motion control unit 230 controls the driving unit 150 of the autonomous moving body 10 based on the plan to bring the autonomous moving body 10 closer to the user (S1203). ..
- the motion control unit 230 requests based on the action plan determined by the action planning unit 220. (S1205).
- the response behavior includes, for example, presentation of a response to an inquiry from a user, control of the operated device 30, and the like.
- step S1202 when the user's utterance intention understood in step S1202 is not a request to the autonomous mobile body 10 (S1204: NO), the motion control unit 230 responds to the situation based on the action plan determined by the action planning unit 220.
- the autonomous mobile body 10 is made to perform various incentive actions (S1206).
- FIG. 31 is a block diagram showing a hardware configuration example of the information processing server 20 according to the first embodiment of the present disclosure.
- the information processing server 20 includes, for example, a processor 871, a ROM 872, a RAM 873, a host bus 874, a bridge 875, an external bus 876, an interface 877, an input device 878, and an output device 879. It has a storage 880, a drive 881, a connection port 882, and a communication device 883.
- the hardware configuration shown here is an example, and some of the components may be omitted. Further, components other than the components shown here may be further included.
- the processor 871 functions as, for example, an arithmetic processing unit or a control device, and controls all or a part of the operation of each component based on various programs recorded in the ROM 872, the RAM 873, the storage 880, or the removable recording medium 901. ..
- the ROM 872 is a means for storing a program read into the processor 871 and data used for calculation.
- a program read into the processor 871 and various parameters that change as appropriate when the program is executed are temporarily or permanently stored.
- the processors 871, ROM 872, and RAM 873 are connected to each other via, for example, a host bus 874 capable of high-speed data transmission.
- the host bus 874 is connected to the external bus 876, which has a relatively low data transmission speed, via, for example, the bridge 875.
- the external bus 876 is connected to various components via the interface 877.
- Input device 8708 For the input device 878, for example, a mouse, a keyboard, a touch panel, buttons, switches, levers, and the like are used. Further, as the input device 878, a remote controller (hereinafter, remote controller) capable of transmitting a control signal using infrared rays or other radio waves may be used. Further, the input device 878 includes a voice input device such as a microphone.
- the output device 879 provides the user with acquired information such as a display device such as a CRT (Cathode Ray Tube), an LCD, or an organic EL, an audio output device such as a speaker or headphones, a printer, a mobile phone, or a facsimile. It is a device that can notify visually or audibly. Further, the output device 879 according to the present disclosure includes various vibration devices capable of outputting a tactile stimulus.
- the storage 880 is a device for storing various types of data.
- a magnetic storage device such as a hard disk drive (HDD), a semiconductor storage device, an optical storage device, a magneto-optical storage device, or the like is used.
- the drive 881 is a device that reads information recorded on a removable recording medium 901 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory, or writes information to the removable recording medium 901.
- a removable recording medium 901 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory
- the removable recording medium 901 is, for example, a DVD media, a Blu-ray (registered trademark) media, an HD DVD media, various semiconductor storage media, and the like.
- the removable recording medium 901 may be, for example, an IC card equipped with a non-contact type IC chip, an electronic device, or the like.
- connection port 882 is a port for connecting an external connection device 902 such as a USB (Universal Serial Bus) port, an IEEE1394 port, a SCSI (Small Computer System Interface), an RS-232C port, or an optical audio terminal. is there.
- an external connection device 902 such as a USB (Universal Serial Bus) port, an IEEE1394 port, a SCSI (Small Computer System Interface), an RS-232C port, or an optical audio terminal. is there.
- the externally connected device 902 is, for example, a printer, a portable music player, a digital camera, a digital video camera, an IC recorder, or the like.
- the communication device 883 is a communication device for connecting to a network, and is, for example, a communication card for wired or wireless LAN, Wireless (registered trademark), or WUSB (Wireless USB), a router for optical communication, and ADSL (Asymmetric Digital). A router for Subscriber Line), a modem for various communications, and the like.
- the information processing server 20 includes an operation control unit 230 that controls the operation of the autonomous mobile body 10.
- the motion control unit 230 according to the first embodiment of the present disclosure is characterized in that the autonomous mobile body actively executes an incentive action that induces communication between the user and the autonomous mobile body 10.
- the above-mentioned incentive movement and communication include at least the behavior of the autonomous mobile body 10 in the physical space. According to such a configuration, communication with the user can be realized more naturally and effectively.
- each step related to the processing of the information processing server 20 in the present specification does not necessarily have to be processed in chronological order in the order described in the flowchart.
- each step related to the processing of the information processing server 20 may be processed in an order different from the order described in the flowchart, or may be processed in parallel.
- Attitude control of a robot device is important in order to realize an operation that autonomously executes various operations including movement according to the user, the surroundings, or one's own situation.
- the attitude control may include, for example, attitude control for controlling the balance of the autonomous moving body based on the angular velocity detected by the gyro sensor included in the autonomous moving body. According to such control, for example, it is possible to finely adjust the posture of the autonomous moving body so that an unintended fall does not occur.
- attitude control even when attitude control is performed, if the autonomous moving body does not move and stops on the spot, the device body is generally in an unstable state. In addition, the power cost tends to increase by continuously executing the attitude control so that the autonomous moving body does not fall even when stopped.
- the technical idea related to the present disclosure was conceived by paying attention to the above points, and when the autonomous moving body is stopped, the contact area with the installation surface is increased by putting the autonomous moving body in the sitting state, and the main body can be moved without attitude control.
- One of the features is that it stands still in a stable state. According to this feature, when movement is not required, it is possible to effectively reduce power consumption by firmly stopping the autonomous mobile body on the spot and not performing unnecessary attitude control. is there.
- the autonomous moving body is characterized in that it performs moving movements such as back-and-forth movement, turning movement, and rotational movement in a standing state while maintaining a forward leaning posture. According to this feature, even when the autonomous moving body has a relatively simple outer shape such as an oblong body, the impression that it is an artificial object is wiped out by clearly recalling the head and waist. , It is possible to give the user a citation closer to the actual life form.
- the configuration of the autonomous mobile body according to the present embodiment may be the same as the configuration described with reference to FIGS. 1 to 13B in the first embodiment described above, detailed description thereof will be omitted here.
- FIG. 32 is a block diagram showing a functional configuration example of the autonomous mobile body 10 according to the present embodiment.
- the control unit 160 has an operation control unit 160 in the same configuration as the autonomous mobile body 10 described with reference to FIG. 15 in the first embodiment. It has a configuration replaced by 260.
- the motion control unit 260 has a function of controlling each configuration included in the autonomous mobile body 10. For example, the motion control unit 260 performs an action plan based on the sensor information collected by the sensor unit 110, and controls the eyeball expression by the light source 130 and the voice output by the voice output unit 140. Further, the motion control unit 260 may control the motion of the drive unit 150 based on the above action plan.
- the functional configuration example of the autonomous mobile body 10 according to the second embodiment of the present disclosure has been described above.
- the above configuration described with reference to FIG. 32 is merely an example, and the functional configuration of the autonomous mobile body 10 according to the second embodiment of the present disclosure is not limited to such an example.
- the operation of the autonomous mobile body 10 according to the present embodiment may be controlled by the information processing server 20 that communicates with the autonomous mobile body 10 as in the autonomous mobile body 10 according to the first embodiment. That is, the information processing system including the autonomous mobile body 10 according to the second embodiment may have the same configuration as the information processing system described with reference to FIGS. 14 to 16 in the first embodiment.
- the autonomous mobile body 10 may include a communication unit 170, transmit sensor information to the information processing server 20 via the communication device 530 described above, and receive a control signal from the information processing server 20.
- the functional configuration of the autonomous mobile body 10 according to the present embodiment can be flexibly deformed according to the shape of the autonomous mobile body 10 and the like.
- the posture control of the autonomous moving body 10 by the motion control unit 260 according to the present embodiment will be described in detail.
- one of the features of the motion control unit 260 according to the present embodiment is that the autonomous moving body 10 controls to perform a moving motion while maintaining a forward leaning posture.
- the motion control unit 260 according to the present embodiment it is possible to realize a rich motion expression closer to a real life form by giving direction to the autonomous mobile body 10. ..
- FIG. 33 is a diagram for explaining posture control during a stationary state and a moving operation according to the present embodiment. On the left side of FIG. 33, a case where the autonomous moving body 10 does not move and stops at the spot is shown. At this time, the motion control unit 260 according to the present embodiment may store the wheels 570 inside the main body of the autonomous moving body 10 and allow the autonomous moving body 10 to stand still in a sitting position.
- the motion control unit 260 when the movement operation is not required, the wheel 570 is stored inside the main body and the bottom portion is brought into contact with the installation surface to bring the autonomous moving body 10 into contact with the installation surface. It is possible to make it stand still firmly and prevent wobbling when it is stopped like a general robot device. Further, according to such control, the autonomous mobile body 10 can be stabilized without attitude control, and the power consumption required for attitude control can be effectively reduced.
- the motion control unit 260 projects the wheels 570 to the outside of the main body of the autonomous moving body 10 to maintain the standing state, and also performs drive control and attitude control of the wheels 570.
- the motion control unit 260 controls the center of gravity CoG of the autonomous mobile body 10 so as to be located vertically above the wheels 570, thereby causing the autonomous mobile body 10 to maintain a forward leaning posture. At this time, the motion control unit 260 may adjust the position of the wheel 570 according to the position of the center of gravity CoG.
- the autonomous mobile body 10 can be made to perform the moving motion while maintaining the forward leaning posture, and the autonomous mobile body 10 has a relatively simple outer shape. Even if it has, it is possible to realize a rich motion expression that is closer to the actual life form.
- FIG. 34 shows an example in which the autonomous mobile body 10 according to the present embodiment takes an upright posture in a sitting position.
- the angle of the bottom surface portion is formed so as to be perpendicular to the body axis of the main body.
- the posture of the autonomous moving body 10 in the sitting position can be appropriately adjusted by changing the angle of the bottom surface portion.
- the center of gravity CoG of the autonomous moving body 10 deviates from the rotation axis of the wheel 570 in the sitting position.
- the main body of the autonomous moving body 10 will move backward due to the center of gravity CoG at the moment of transition to the standing state.
- the motion control unit 260 has the center of gravity CoG of the autonomous moving body 10 in the vertical direction and the rotation axis of the wheel 570 when transitioning from the sitting state to the standing state. Wheels 570 may be rotated based on the amount of deviation.
- FIG. 35 is a diagram for explaining wheel control at the time of transition to the standing state according to the present embodiment.
- FIG. 35 shows a situation in which the wheels 570 of the autonomous moving body 10 come into contact with the traveling surface due to protrusion.
- the motion control unit 260 may rotate the wheel 570 by the above-mentioned deviation amount + ⁇ , position the center of gravity CoG vertically on the rotation axis of the wheel 570, and then perform attitude control. ..
- the motion control unit 260 even if the center of gravity and the rotation axis of the wheel 570 are misaligned in the sitting position, the misalignment is offset and the vehicle is stably autonomous without moving backward. It is possible to make the moving body 10 transition to the standing state.
- the motion control unit 260 rotates the wheel 570 based on the amount of deviation between the center of gravity CoG and the rotation axis of the wheel 570 in the vertical direction. It is possible to stably transition the autonomous moving body 10 to the standing state without moving backward.
- the autonomous mobile body 10 according to the present embodiment may further include a flywheel 610.
- the motion control unit 260 according to the present embodiment can realize the attitude control of the autonomous moving body 10 with higher accuracy by utilizing the gyro effect generated by the rotation of the flywheel 610.
- FIG. 37 is a diagram for explaining the arrangement of the flywheel 610 according to the present embodiment.
- FIG. 37 shows the arrangement relationship between the flywheel and the substrate 505 according to the present embodiment from various angles.
- the flywheel 610 according to the present embodiment is arranged inside the substrate 505 on which the eye portion 510 and the camera 515 are arranged.
- the flywheel 610 according to the present embodiment may be arranged on a gimbal interlocking with the substrate 505 so as to have three rotation axes.
- the rotation shaft Rw shown on the left side of FIG. 37 is a shaft for rotating the flywheel 610 at high speed.
- the motion control unit 260 can rotate the flywheel 610 at high speed by driving the motor 565w, and can maintain the posture of the autonomous moving body 10 more stably by the generated gyro effect.
- the rotation axis Ra shown in the center of FIG. 37 is an axis for rotating the flywheel 610 in the tilt direction in conjunction with the substrate 505.
- the motion control unit 260 can tilt the substrate 505 and the flywheel that rotates at high speed in the tilt direction to generate a large rotational force due to the gyro effect.
- the rotation shaft Rb shown on the right side of FIG. 37 is a shaft for rotating the flywheel 610 in the pan direction in conjunction with the substrate 505.
- the motion control unit 260 can adjust the orientation of the substrate 505 and the flywheel 610 in the pan direction by driving the motor 565b. According to such control, it is possible to determine the direction in which the rotational force is generated by the gyro effect in any direction.
- the motion control unit 260 according to the present embodiment generates a large rotational force due to the gyro effect by rotating the flywheel 610 at high speed and tilting the flywheel 610 that rotates at high speed in the tilt direction. Can be done.
- FIG. 38 is a diagram for explaining the rotational force generated by the gyro effect of the flywheel 610 according to the present embodiment.
- the motion control unit 260 first rotates the flywheel 610 around the rotation axis Rw at high speed to maintain a large angular momentum.
- the motion control unit 260 tilts the flywheel 610 that rotates at high speed in the tilt direction about the rotation axis Ra to generate a large rotational force due to the gyro effect.
- the direction D of the rotational force generated by the gyro effect is perpendicular to the rotation axes Rw and Ra, as shown in FIG. 38.
- the motion control unit 260 according to the present embodiment can, for example, return the autonomous moving body 10 in the fallen state to the standing state.
- FIGS. 39 to 42 are diagrams for explaining the flow of return control from the fall state according to the present embodiment.
- FIG. 39 is a diagram showing an example of a case where the autonomous moving body 10 falls sideways.
- the motion control unit 260 detects the orientation of the autonomous moving body 10 in the fallen state based on the sensor information collected by the sensor unit 110.
- the motion control unit 260 drives the motor 565b so that the substrate 505 faces the rising direction as shown in FIG. 40, and drives the substrate 505 and the flywheel 610 to rotate the axis Rb. Rotate in the pan direction around. That is, the motion control unit 260 can adjust the direction in which the rotational force is generated by the gyro effect by tilting the flywheel 610 in the pan direction. According to such control, the autonomous moving body 10 can be returned to the standing state at a mechanically correct position regardless of the direction in which the autonomous moving body 10 falls.
- the operation control unit 260 drives the motor 565w to rotate the flywheel 610 at high speed.
- the motion control unit 260 drives the motor 565a to tilt the substrate 505 and the flywheel 610 at high speed in the tilt direction about the rotation axis Ra.
- the autonomous moving body 10 can return from the fallen state to the standing state as shown in FIG. 42 by the rotational force due to the gyro effect.
- the motion control unit 260 can perform various motion controls using the flywheel 610, not limited to the recovery from the fall state described above.
- the motion control unit 260 can use the gyro effect of the flywheel 610 to make the autonomous moving body 10 stand still in a state where the body axis is close to horizontal, or to return from the state to the standing state. is there.
- the motion control unit 260 can, for example, cause the autonomous moving body 10 to perform jumping, forward rotation, cartwheel, and the like. According to the flywheel 610 and the motion control unit 260 according to the present embodiment, it is possible to realize stable attitude control of the autonomous moving body 10 and to realize a richer motion table.
- the autonomous mobile body 10 includes wheels 570 capable of being stored inside the main body and protruding to the outside of the main body.
- the motion control unit 260 causes the wheels 570 to protrude to the outside of the main body to maintain the standing state when the autonomous moving body 10 moves, and also drives the wheels 570 and autonomously moves the wheels 570.
- the posture of the body 10 is controlled.
- the motion control unit 260 stores the wheels 570 inside the main body to make it stand still in a sitting position. According to this configuration, it is possible to realize a rich motion expression of the autonomous mobile body with easier attitude control.
- the configuration of the autonomous mobile body according to the present embodiment may be the same as the configuration described with reference to FIGS. 1 to 13B in the first embodiment described above, detailed description thereof will be omitted here.
- the functional configuration of the autonomous mobile body a case where the functional configuration example described with reference to FIG. 32 in the above-mentioned second embodiment is adopted is illustrated, but the present invention is not limited to this, and for example, the above-mentioned It is also possible to adopt the information processing system described with reference to FIGS. 14 to 16 in the first embodiment.
- FIGS. 43 and 44 are schematic views showing a configuration example of the sensor unit mounted on the autonomous mobile body according to the third embodiment of the present disclosure.
- FIG. 43 is a schematic diagram showing the sensor position when the autonomous mobile body 10 is viewed from the side
- FIG. 44 is a schematic diagram showing the sensor position when the autonomous mobile body 10 is viewed from above.
- the autonomous moving body 10 includes, for example, the first obstacle sensor 1101, the second obstacle sensors 1102 and 1103, and the first to fourth floor sensors 1111. -1114, a proximity sensor 1121, and a torque sensor 1122.
- the autonomous mobile body 10 also includes an inertial sensor 525 and a camera 515, as in the above-described embodiment.
- the first obstacle sensor 1101 is provided, for example, in front of the autonomous moving body 10 in a standing position, and detects an object such as an obstacle or a person existing in a relatively wide-angle range in front of the front of the autonomous moving body 10. To do.
- the first obstacle sensor 1101 may be, for example, a millimeter wave radar sensor.
- the present invention is not limited to this, for example, a three-dimensional ToF sensor that detects the distance to an object and its shape by using reflected light, a ToF sensor that uses an infrared light source or a near-infrared light source as a light source, and the like.
- the first obstacle sensor 1101 includes various sensors capable of detecting an object such as an obstacle or a person, such as an ultrasonic sensor that emits ultrasonic waves and detects the distance from the reflection to the object, and a camera that images the object. It is also possible to apply to.
- the second obstacle sensor 1102 is provided, for example, on the right side of the front of the autonomous moving body 10 in a standing position, and detects an object such as an obstacle or a person existing on the right front side of the autonomous moving body 10.
- the second obstacle sensor 1103 is provided, for example, on the left side of the front of the autonomous moving body 10 in a standing state, and detects an object such as an obstacle or a person existing on the left front of the autonomous moving body 10.
- the second obstacle sensors 1102 and 1103 may be, for example, one-dimensional ToF sensors that measure the distance to an object existing in one direction.
- the present invention is not limited to this, and various sensors capable of detecting objects such as obstacles and people, such as millimeter-wave radar sensors, three-dimensional ToF sensors, and ultrasonic sensors, are applied to the second obstacle sensors 1102 and 1103. Is also possible.
- the detection range of the first obstacle sensor 1101 and the detection range of the second obstacle sensor 1102 or 1103 overlap. That is, in the present embodiment, the object existing on the right front side of the autonomous moving body 10 is detected by the first obstacle sensor 1101 and the second obstacle sensor 1102, and the object existing on the left front side of the autonomous moving body 10 is detected. , The first obstacle sensor 1101 and the second obstacle sensor 1103 are configured to detect.
- the first to fourth floor surface sensors 1111 to 1114 are arranged so as to be arranged along the outer circumference of the autonomous moving body 10 in a standing state, and detect the shape of the floor surface around the autonomous moving body 10.
- the floor surface on which the autonomous moving body 10 is placed may be, for example, a floor surface such as flooring or folding, or an upper surface of a top plate such as a table or desk, and the shape thereof is the shape of the outer edge of the upper surface of the top plate. It may be the shape of a room or a corridor separated by a wall, a rail, or the like. In the following description, the outer edge of the upper surface of the top plate, the walls and rails that separate rooms and corridors, etc. are referred to as "boundaries".
- the first floor surface sensor 1111 is provided diagonally downward to the right of the front of the autonomous moving body 10 in a standing state, and detects the boundary on the right front of the autonomous moving body 10.
- the second floor sensor 1112 is provided diagonally downward to the left of the front of the autonomous moving body 10 in the standing state, detects the boundary of the left front of the autonomous moving body 10, and detects the boundary of the left front of the autonomous moving body 10.
- the 1113 is provided diagonally downward to the right of the rear surface of the autonomous moving body 10 in the standing state, detects the boundary on the right rear of the autonomous moving body 10, and the fourth floor sensor 1114 is in the standing state.
- the installation interval on the outer periphery of the autonomous moving body 10 of each of the first to fourth floor surface sensors 1111 to 1114 may be, for example, 90 °.
- the first to fourth floor surface sensors 1111 to 1114 may be, for example, one-dimensional ToF sensors.
- the present invention is not limited to this, and any sensor such as an ultrasonic sensor or a proximity sensor that can detect the distance to an object (floor surface, etc.) diagonally downward to which each sensor faces, or a sensor that can specify the shape of the boundary.
- various sensors can be applied to the first to fourth floor surface sensors 1111 to 1114.
- the proximity sensor 1121 is provided on the bottom of the autonomous moving body 10 in a standing or sitting state, for example, and detects whether or not an object such as a floor is close to the bottom of the autonomous moving body 10. That is, in the proximity sensor 1121, the autonomous moving body 10 is placed in a standing or sitting position with respect to the floor surface or the like, or is lifted by a user or the like, or is in a horizontal position with respect to the floor surface or the like. Detects whether it is placed in a state. Instead of the proximity sensor 1121, a sensor such as a ToF sensor that can determine whether or not an object such as a floor surface is close to the bottom of the autonomous moving body 10 may be used.
- a sensor such as a ToF sensor that can determine whether or not an object such as a floor surface is close to the bottom of the autonomous moving body 10 may be used.
- the torque sensor 1122 is provided on the axle of the wheel 570, for example, and detects the torque generated on the axle.
- various torque sensors such as a magnetostrictive type, a strain gauge type, a piezoelectric type, an optical type, a spring type, and a capacitance type may be adopted.
- the inertial sensor 525 may be a sensor capable of detecting at least one of acceleration, angle, angular velocity, angular acceleration, etc., such as an IMU (Inertial Measurement Unit). ..
- the camera 515 is an imaging device that captures images of the user and the surrounding environment.
- the image data acquired by the camera 515 may be provided to the user as a photograph, used for face recognition of the user, or the like.
- the sensor unit 110 includes various sensors such as a microphone for inputting a sound such as a voice emitted by a user and a GPS (Global Positioning System) for measuring the position of the autonomous moving body 10. It can be.
- a microphone for inputting a sound such as a voice emitted by a user
- a GPS Global Positioning System
- the collision prevention operation is an operation for the autonomous moving body 10 to avoid an obstacle existing in the traveling direction or the traveling route to prevent a collision.
- This collision prevention operation includes, for example, an obstacle detection operation and an obstacle avoidance operation.
- An obstacle is used by using the first obstacle sensor 1101 in the sensor unit 110 and the second obstacle sensors 1102 and 1103. Detection and avoidance are performed.
- the first obstacle sensor 1101 and the second obstacle sensors 1102 and 1103 are different types of sensors.
- a millimeter-wave radar sensor is used for the first obstacle sensor 1101
- a different type of sensor from the millimeter-wave radar sensor such as a one-dimensional ToF sensor is used for the second obstacle sensors 1102 and 1103. Is preferable.
- the motion control unit 260 advances the autonomous moving body 10 from the detection result obtained by the first obstacle sensor 1101 and the detection result obtained by the second obstacle sensor 1102 and / or 1103. Determine if there are obstacles in the direction or on the travel route.
- the motion control unit 260 sets the traveling direction or traveling route of the autonomous moving body 10. Determine that there is an obstacle above.
- the first obstacle sensor 1101 and the second obstacle sensors 1102 and 1103 it is possible to detect obstacles more reliably.
- the detection accuracy of millimeter-wave radar sensors, one-dimensional ToF sensors, ultrasonic sensors, etc. differs depending on the size, shape, material, color, etc. of the object, and the detection conditions such as scratches and dust adhesion.
- Robustness to change is also different.
- a millimeter-wave radar sensor has low detection accuracy for a transparent object
- a range-finding sensor such as a one-dimensional ToF sensor has a significantly reduced detection accuracy due to scratches or dust on the sensor window. Therefore, different types of sensors are used for the first obstacle sensor 1101 and the second obstacle sensors 1102 and 1103, and when an obstacle is detected by any of the sensors, it is determined that an obstacle exists. It is possible to improve the robustness to the type of the detection object and the detection conditions.
- the motion control unit 260 executes an operation for avoiding the obstacle (obstacle avoidance operation). Specifically, the motion control unit 260 determines whether to avoid the obstacle to the right side or the left side from the traveling direction and / or the traveling route of the autonomous moving body 10 and the position of the obstacle, and moves in the determined direction. Advance the autonomous mobile body 10.
- the motion control unit 260 executes an obstacle avoidance operation or executes an obstacle avoidance operation by updating the travel route so that the travel route to the destination includes a route for avoiding obstacles.
- the obstacle avoidance operation may be realized by various methods such as determining a new traveling route to the destination based on the current position of the autonomous moving body 10 after avoiding the obstacle. Further, the obstacle avoidance operation may include deceleration or stop of the autonomous moving body 10.
- the detection results obtained by the second obstacle sensors 1102 and 1103 may be used to determine whether to avoid the obstacle to the right side or the left side. For example, when an obstacle is detected by the second obstacle sensor 1102 arranged on the right front surface, the motion control unit 260 passes on the left side of the obstacle and the second obstacle sensor arranged on the left front surface. If an obstacle is detected in 1103, the autonomous moving body 10 may be controlled so as to pass on the right side of the obstacle.
- the fall collision prevention operation is an operation for preventing the autonomous moving body 10 from falling from a table or the like or colliding with a wall.
- This fall collision prevention operation includes, for example, a boundary detection operation and a boundary avoidance operation, and the boundary is detected and avoided by using a plurality of (four in this example) first to fourth floor sensors 1111 to 1114. Is executed.
- the first to fourth floor surface sensors 1111 to 1114 are arranged along the outer circumference of the autonomous moving body 10 in the standing position, for example. Therefore, by using the first to fourth floor surface sensors 1111 to 1114, it is possible to detect the shape of the boundary around the autonomous moving body 10. As a result, it is possible to prevent the autonomous moving body 10 from falling from a table or the like or colliding with a wall regardless of the direction in which the autonomous moving body 10 travels.
- the detection accuracy is greatly reduced due to scratches on the sensor window and adhesion of dust.
- the motion control unit 260 monitors the amount of change (differential value) of the value detected by each of the first to fourth floor surface sensors 1111 to 1114, and the first to fourth floor surface sensors 1111. From both the distance to the boundary obtained from the absolute value of the value detected in each of 1114 and the amount of change in the value detected in each of the first to fourth floor sensors 1111 to 1114, in each direction. Estimate or specify the position and distance of the boundary.
- the one-dimensional ToF sensors and the like used in the first to fourth floor surface sensors 1111 to 1114 have solid values, and the distance measurement accuracy thereof is generally different for each solid.
- the first to fourth floor sensors 1111 to 1114 are calibrated before the autonomous moving body 10 is shipped or when the autonomous moving body 10 is initially started. This makes it possible to improve the robustness of distance measurement and detection accuracy.
- the number of floor surface sensors 1111 to 1114 is not limited to four, and various changes are made. May be done. At that time, by determining the number of floor surface sensors in consideration of the expansion of the detection range of each floor surface sensor, it is possible to accurately detect the existence of a boundary around the autonomous moving body 10 and the distance to the boundary. It becomes.
- the motion control unit 260 executes an operation for avoiding the boundary (boundary avoidance operation). Specifically, the motion control unit 260 determines whether to change the traveling direction to the right side or the left side based on the traveling direction and / or the traveling route and the boundary position of the autonomous moving body 10, and determines the determined direction. The direction of travel of the autonomous mobile body 10 is corrected.
- the motion control unit 260 executes the boundary avoidance operation by updating the travel route so that the travel route to the destination includes the route avoiding the boundary, or executes the boundary avoidance operation to set the boundary.
- the boundary avoidance operation may be realized by various methods such as newly determining a traveling route to the destination based on the current position of the autonomous moving body 10 after avoiding. Further, the boundary avoidance operation may include deceleration or stop of the autonomous moving body 10.
- the anti-slip operation prevents the wheels 570 from slipping when the autonomous moving body 10 is lifted by a user or the like, falls from a table or the like, or rolls over. It is an operation to do.
- This slip prevention operation includes, for example, a lifting or the like detection operation and a wheel stop operation, and the proximity sensor 1121, the torque sensor 1122, and the inertial sensor 525 are used to detect the lifting or the like of the autonomous moving body 10 and the wheels. 570 stops and are executed.
- the first to fourth floor surface sensors 1111 to 1114 may be further used for the lifting and the like detection operation.
- the motion control unit 260 further increases the wheel 570 when, for example, at least one of the following conditions (1) to (4) or a predetermined number or more of the following conditions (1) to (4) are satisfied while the autonomous moving body 10 is traveling. To prevent slipping, the rotation of the wheel 570 is stopped.
- (1) When the proximity sensor 1121 detects that the bottom of the autonomous moving body 10 is separated from the floor surface (2)
- the inertial sensor 525 detects an acceleration change in a predetermined direction (for example, the Z-axis direction)
- the values of all of the first to fourth floor sensors 1111 to 1114 change by a predetermined value or more (4)
- the torque detected by the torque sensor 1122 does not change for a certain period of time or more
- the wheel 570 by configuring the wheel 570 to detect the idling (or its possibility) using different types of sensors, it is possible to prevent the wheel 570 from idling more reliably. For example, if the proximity sensor 1121 is blocked by the user's hand or the like, or if the autonomous moving body 10 is slowly lifted and the inertial sensor 525 cannot detect a change in acceleration in the vertical direction (Z-axis direction), other factors may occur. Based on the detection result of the sensor, it is possible to detect the lifting, falling, falling, etc. of the autonomous moving body 10 and stop the rotation of the wheel 570.
- the axle of the wheel 570 periodically keeps the autonomous moving body 10 in the inverted state.
- the changing torque is given by the motor 565. Therefore, during this time, the torque sensor 1122 detects the torque that changes periodically.
- the torque applied to the axle by the motor 565 is controlled by, for example, feedback control based on the value detected by the inertial sensor 525. Therefore, for example, when the autonomous moving body 10 is lifted, dropped, or overturned and the acceleration detected by the inertial sensor 525 is not accompanied by a periodic change, the torque detected by the torque sensor 1122 is also periodic. It will not be accompanied by a change. Therefore, in the present embodiment, if the torque detected by the torque sensor 1122 does not change for a certain period of time or more, the motion control unit 260 may determine that the autonomous moving body 10 has been lifted, dropped, or has fallen.
- the conditions for determining that the autonomous moving body 10 has been lifted, dropped, or fallen are not limited to the above conditions.
- the motion control unit 260 may determine that the autonomous moving body 10 has been lifted, dropped, or has fallen regardless of other conditions.
- the condition (2) when the acceleration change in the Z-axis direction detected by the inertial sensor 525 exceeds a preset threshold value, the motion control unit 260 raises or drops the autonomous moving body 10. It may be determined that the user has fallen.
- the condition (3) when the amount of change of the value detected by each of the first to fourth floor surface sensors 1111 to 1114 is equal to or more than a predetermined value, the motion control unit 260 lifts the autonomous moving body 10. It may be determined that it has fallen or has fallen.
- the condition (4) when the torque detected by the torque sensor 1122 suddenly becomes lighter, the motion control unit 260 may determine that the autonomous moving body 10 has been lifted, dropped, or has fallen. Good.
- the motion control unit 260 determines whether or not the autonomous moving body 10 is in an upright state (also referred to as an inverted state) based on the detection results acquired by the first to fourth floor surface sensors. May be determined. Then, when the motion control unit 260 determines that the autonomous mobile body 10 is in the inverted state based on the detection result, the motor 565, which is a drive mechanism of the wheels 570, is set so that the autonomous mobile body 10 maintains the inverted state. You may control it.
- a human sensation operation for detecting whether or not a user or the like is nearby and a user's breathing are performed.
- the breathing detection operation for detecting the above, the gesture detection operation for detecting the gesture of the user or the like, and the like may be executed based on the detection result obtained by the sensor unit 110.
- the human sensation operation may be an operation of detecting whether or not there is a person or the like around the autonomous moving body 10 and switching between the normal mode and the standby mode based on the result.
- the respiration detection operation may be an operation of detecting the respiration of a person, a pet or the like, and identifying the health state, psychological state, etc. of the detection target based on the detection result.
- the gesture detection action may be an action of detecting a gesture action of a person or the like and executing a reaction or an action according to the detected gesture action.
- the first obstacle sensor 1101 may be used for these operations, or other sensors may be used.
- FIG. 45 is a flowchart showing an example of the main operation executed by the operation control unit according to the present embodiment.
- the operation control unit 260 first sets, for example, the destination of the autonomous mobile body 10 (step S2001).
- the motion control unit 260 identifies the position of the user's face based on the image data acquired by the camera 515, the position of the object detected by the first obstacle sensor 1101, and the like, and is near the specified face position. Set the position on the table as the destination.
- the motion control unit 260 determines the traveling route to the destination set in step S2001 (step S2002).
- a technique such as SLAM (including a simplified SLAM) may be used for setting a destination and determining a traveling route.
- the motion control unit 260 drives the motor 565 and the like to start traveling along the travel route of the autonomous mobile body 10 (step S2003).
- the motion control unit 260 monitors the detected values from the first obstacle sensor 1101, the second obstacle sensors 1102 and 1103, and the first to fourth floor surface sensors 1111 to 1114 at all times or at a predetermined cycle. By doing so, the detection of boundaries and obstacles is executed (step S2004). If no boundary or obstacle is detected (NO in step S2004), the motion control unit 260 proceeds to step S2007. On the other hand, when a boundary or an obstacle is detected (YES in step S2004), the motion control unit 260 executes the boundary avoidance operation or the obstacle avoidance operation (step S2005). Further, the motion control unit 260 updates the travel route to the destination by recalculating the travel route to the destination (step S2006), and proceeds to step S2007.
- step S2007 the motion control unit 260 determines whether or not the vehicle has arrived at the destination. If it has not arrived at the destination (NO in step S2007), the motion control unit 260 returns to step S2004 and repeats the subsequent operations until it arrives at the destination. On the other hand, when arriving at the destination (YES in step S2007), the operation control unit 260 determines whether or not to end this operation (step S2008), and when it ends (YES in step S2008), performs this operation. finish. On the other hand, if this operation is not completed (NO in step S2008), the operation control unit 260 returns to step S2001 and executes the subsequent operations.
- FIG. 46 is a flowchart showing an example of the slip prevention operation according to the present embodiment.
- the operation control unit 260 constantly or predetermined values detected from the proximity sensor 1121, the inertial sensor 525, the first to fourth floor sensors 1111 to 1114, and the torque sensor 1122. By monitoring in the cycle of (step S2101), the autonomous moving body 10 is detected for lifting, falling, or falling (step S2101).
- step S2101 When the lifting of the autonomous moving body 10 or the like is detected (YES in step S2101), the motion control unit 260 executes an action of stopping the rotation of the wheels 570 (step S2102). Even in this state, the motion control unit 260 monitors the detection values from the proximity sensor 1121, the inertial sensor 525, the first to fourth floor surface sensors 1111 to 1114, and the torque sensor 1122 at all times or at a predetermined cycle. ing.
- the motion control unit 260 places the autonomous moving body 10 on the floor based on the detection values acquired by the proximity sensor 1121, the inertial sensor 525, the first to fourth floor surface sensors 1111 to 1114, and / or the torque sensor 1122. It is detected that the device is placed on a surface or a table (step S2103).
- step S2103 When the placement of the autonomous moving body 10 on the floor surface or the like is detected (YES in step S2103), the motion control unit 260 releases the stop of the wheel 570 (step S2104). As a result, the autonomous moving body 10 returns to a state in which it can travel. Therefore, the motion control unit 260 determines a travel route to the destination by, for example, executing the operation described with reference to FIG. 45 from the beginning. The autonomous mobile body 10 is driven to the destination.
- the operation control unit 260 determines whether or not to end the main operation (step S2105), and if it ends (YES in step S2105), ends the main operation. On the other hand, if it does not end (NO in step S2105), the operation control unit 260 returns to step S2101 and executes the subsequent operations.
- the operation control unit 260 executes a mode switching operation for switching between the normal operation mode and the standby mode, in addition to the main operation described with reference to FIG. 45.
- the normal operation mode is a mode for executing an interactive operation with the user, mainly the main operation shown in FIG. 45
- the standby mode is a mode for stopping the operation of the autonomous mobile body 10 to save power. It may be a mode for attempting. Further, in the present description, for simplification, it is assumed that the normal operation mode is first executed after the activation of the autonomous mobile body 10.
- FIG. 47 is a flowchart showing an example of the mode switching operation according to the present embodiment.
- the operation control unit 260 sets, for example, the human detection rate of the human sensory operation using the first obstacle sensor 1101 to the first human detection rate (step). S2201), the human sensory operation is executed at the set first human detection rate (step S2202).
- the first person detection rate may be a rate necessary and sufficient for interactive communication with the user, for example, once every 0.1 seconds or once per second.
- the operation control unit 260 shifts the operation mode of the autonomous mobile body 10 to the standby mode (step S2203). Then, the motion control unit 260 sets the human detection rate of the human sensory motion using the first obstacle sensor 1101 to, for example, a second human detection rate lower than the first human detection rate (step S2204). , The human sensory operation is executed at the set second human detection rate (step S2205).
- the second person detection rate may be lower than the first person detection rate, for example, once every 10 seconds or once a minute.
- step S2205 when the motion control unit 260 detects a person (YES in step S2205), the motion control unit 260 returns the motion mode of the autonomous mobile body 10 to the normal mode (step S2206), and the human feeling using the first obstacle sensor 1101.
- the person detection rate for operation is set to the first person detection rate (step S2207).
- the operation control unit 260 determines whether or not to end the main operation (step S2208), and if it ends (YES in step S2208), ends the main operation. On the other hand, if it does not end (NO in step S2208), the operation control unit 260 returns to step S2202 and executes the subsequent operations.
- FIG. 48 is a flowchart showing an example of the person detection rate switching operation according to the present embodiment.
- the operation control unit 260 sets the person detection rate to the first person detection rate in the normal operation mode immediately after the activation of the autonomous mobile body 10 (step S2301).
- This step S2301 may be the same as step S2201 in FIG.
- the motion control unit 260 determines whether the autonomous moving body 10 is traveling or stationary based on the detection value from the torque sensor 1122, for example (step S2302). When the vehicle is stopped (NO in step S2302), the operation control unit 260 proceeds to step S2307.
- the motion control unit 260 sets a third person detection rate according to the traveling speed of the autonomous moving body 10 (step S2303).
- a third person detection rate may be set in advance for each stage. At that time, the higher the traveling speed, the higher the third person detection rate may be set.
- the motion control unit 260 detects the traveling speed of the autonomous moving body 10 based on, for example, the detection value from the torque sensor 1122, and monitors whether or not there is a change in the traveling speed (step S2304).
- the motion control unit 260 determines whether or not the autonomous moving body 10 has stopped (step S2305), and when it has not stopped (NO in step S2305). , Return to step S2303, and set a third person detection rate according to the running speed after the change.
- the motion control unit 260 sets the first person detection rate (step S2306) and proceeds to step S2307.
- step S2307 the operation control unit 260 determines whether or not to end the main operation, and if it ends (YES in step S2307), ends the main operation. On the other hand, if it does not end (NO in step S2307), the operation control unit 260 returns to step S2302 and executes the subsequent operations.
- the autonomous moving body 10 is derived from the first obstacle sensor 1101, the second obstacle sensors 1102 and 1103, the first to fourth floor surface sensors 1111 to 1114, and the like. Based on the detection result, an operation (mapping operation) of creating a map in which obstacles and boundaries existing around the self are mapped may be executed.
- FIG. 49 is a flowchart showing an example of the mapping operation according to the present embodiment.
- the operation control unit 260 first determines the position of the autonomous moving body 10 (hereinafter referred to as self-position) (step S2401).
- This self-position is, for example, a position on a two-dimensional map whose starting point (origin) is the position at the time of starting the autonomous moving body 10 or the position where the autonomous moving body 10 first stops after the starting, and the direction at that time is the X-axis direction. May be good.
- the coordinates (self-position) of the position of the autonomous moving body 10 with respect to the origin on the two-dimensional map are, for example, the moving distance of the autonomous moving body 10 detected by the encoder (or potentiometer) provided on the axle of the wheel 570.
- the motion control unit 260 monitors the detected values from the first obstacle sensor 1101, the second obstacle sensors 1102 and 1103, and the first to fourth floor surface sensors 1111 to 1114 at all times or at a predetermined cycle. By doing so, the detection of boundaries and obstacles is executed (step S2402). If no boundary or obstacle is detected (NO in step S2402), the motion control unit 260 proceeds to step S2407.
- step S2402 when a boundary or an obstacle is detected (YES in step S2402), the motion control unit 260 determines whether or not the detected boundary is a boundary (step S2403), and when the boundary is detected. (YES in step S2403), the position of the detected boundary is arranged on the two-dimensional map (step S2404), and the process proceeds to step S2407.
- step S2403 determines whether or not the detected object is an obstacle (step S2405), and the obstacle is detected. If (YES in step S2405), the position of the detected obstacle is placed on the two-dimensional map (step S2406), and the process proceeds to step S2407. If the detected object is neither a boundary nor an obstacle (NO in step S2405), the operation control unit 260 proceeds to step S2407 as it is.
- step S2407 the operation control unit 260 determines whether or not to end this operation, and if it ends (YES in step S2407), ends this operation. On the other hand, if it does not end (NO in step S2407), the operation control unit 260 returns to step S2401 and executes the subsequent operations.
- the two-dimensional map data may be stored in, for example, the RAM 873 or the storage 880 mounted on the autonomous mobile body 10, or may be stored in the removable recording medium 901 (see FIG. 31).
- obstacles are used by using a plurality of different types of sensors (first obstacle sensor 1101, second obstacle sensor 1102 and 1103). Since it is possible to detect an obstacle, it is possible to detect and avoid an obstacle more reliably.
- a plurality of sensors (first to fourth floor surface sensors 1111 to 1114) arranged along the outer circumference of the autonomous moving body 10 are used to determine the position of the boundary around the autonomous moving body 10. Since it is possible to detect it, it is possible to more reliably prevent the autonomous moving body 10 from falling or colliding. At that time, by detecting the position of the boundary using both the absolute value of the value acquired by the sensor and the amount of change, it is possible to improve the robustness to the distance measurement and the detection accuracy for the boundary.
- the autonomous moving body 10 can be lifted by using a plurality of different types of sensors (proximity sensor 1121, torque sensor 1122, inertial sensor 525, first to fourth floor surface sensors 1111 to 1114). Since it is possible to detect a fall or a fall, it is possible to more reliably prevent the wheel 570 from slipping.
- the autonomous mobile body 10 according to the present embodiment can operate smoothly according to the situation, so that more natural and effective communication with the user can be realized. Is possible.
- the wheel 570 is stored inside the main body of the autonomous moving body 10 when stopped, and the bottom of the main body is brought into contact with the floor surface to make the autonomous moving body 10 stand still in a sitting state. Illustrated.
- the autonomous moving body 10 is stopped in the sitting state without storing the wheels 570 inside the main body of the autonomous moving body 10 will be described with an example.
- the configuration of the autonomous mobile body according to the present embodiment may be the same as the configuration described with reference to FIGS. 1 to 13B in the first embodiment described above, detailed description thereof will be omitted here.
- the functional configuration of the autonomous mobile body a case where the functional configuration example described with reference to FIG. 32 in the above-mentioned second embodiment is adopted is illustrated, but the present invention is not limited to this, and for example, the above-mentioned It is also possible to adopt the information processing system described with reference to FIGS. 14 to 16 in the first embodiment.
- FIG. 50 is a diagram for explaining a schematic configuration example of the autonomous mobile body according to the present embodiment.
- the left figure in FIG. 50 is a side view showing the posture of the autonomous moving body 10 in the standing state (including when stopped and running), and the right figure shows the posture of the autonomous moving body 10 in the sitting state. It is a side view which shows.
- FIG. 51 is a bottom view of the autonomous mobile body according to the present embodiment.
- the autonomous moving body 10 when the autonomous moving body 10 is stationary in the sitting position, a part of the bottom portion is grounded on the floor surface. As a result, at least three points between the two wheels 570 and the bottom that is in contact with the floor contact the floor surface, and the autonomous moving body 10 is in an inverted state at three points. Therefore, the autonomous moving body 10 is stably seated. It becomes possible to make it stationary. Further, since the feedback control for stopping the autonomous moving body 10 in the inverted state becomes unnecessary, it is possible to reduce the power consumption of the autonomous moving body 10.
- the portion that comes into contact with the floor surface in the sitting position may be a portion on the bottom of the autonomous moving body 10 that is on the back side of the axle of the wheel 570.
- the ground contact portion may be provided with a convex portion 701.
- the shape of the convex portion 701 may be various shapes such as a dome shape and a cylindrical shape. Further, the height of the convex portion 701 may be such that, for example, when the autonomous moving body 10 is in the sitting position, the other bottom portion of the autonomous moving body 10 does not come into contact with the flat floor surface.
- the number of convex portions 701 is not limited to one, and may be two or more (three in FIG. 52) as shown in FIG. 52, for example.
- the material of the convex portion 701 various materials such as metal, plastic, and ceramics can be used in consideration of ease of processing, durability, and the like. At that time, it is preferable to select a material having a low coefficient of friction. By constructing the convex portion 701 from a material having a low coefficient of friction, the convex portion 701 may fall due to unintended contact during traveling, or the convex portion 701 may come into contact with the floor surface before the autonomous moving body 10 completely stops. As a result, it is possible to suppress the overturning of the autonomous moving body 10, scratches on the floor surface, generation of abnormal noise, and the like.
- the convex portion 701 is provided so as to close the screw hole 710 for fixing the member constituting the bottom portion of the autonomous moving body 10 to the frame or the like inside the body with the screw 711, for example. May be good. As a result, the screw hole 710 can be hidden by the convex portion 701, so that the deterioration of the design of the autonomous moving body 10 can be suppressed.
- a double-sided adhesive tape or an adhesive may be used for fixing the convex portion 701 to the bottom portion.
- the center of gravity CoG of the autonomous moving body 10 is located above the axle of the wheel 570 when the autonomous moving body 10 is in the forward leaning posture (standing position) (see the left figure of FIG. 50). ). As a result, the balance of the autonomous moving body 10 is maintained, and the inverted state is maintained.
- the center of gravity CoG of the autonomous moving body 10 is positioned between the perpendicular line V1 passing through the axle of the wheel 570 and the perpendicular line V2 passing through the contact portion between the bottom (convex portion 701) and the floor surface. It is possible to stably make the autonomous moving body 10 stationary.
- FIG. 54 is a flowchart showing an example of a posture control flow when switching between a stationary state and a moving operation according to the present embodiment.
- the operation control unit 260 determines whether or not to shift the autonomous moving body 10 to the standing position (step S3001). For example, the motion control unit 260 may determine that the autonomous moving body 10 shifts to the standing state when the mode shifts from the standby mode to the normal operation mode, the start of running occurs during the sitting state, or the like.
- step S3001 If it does not shift to the standing position (NO in step S3001), the operation control unit 260 proceeds to step S3007.
- the motion control unit 260 starts feedback control for maintaining the inverted state (standing state) of the autonomous moving body 10 (step S3002). Subsequently, the motion control unit 260 rotates the wheel 570 in the reverse direction in order to shift from the sitting state to the standing state (step S3003).
- the reverse rotation may be the rotation direction of the wheel 570 for advancing the autonomous moving body 10 backward.
- the motion control unit 260 determines whether or not to shift the autonomous moving body 10 to the sitting state (step S3004), and when shifting (step S3004). YES), the feedback control is stopped (step S3005). Then, in order to shift from the standing state to the sitting state, the motion control unit 260 rotates the wheels 570 forward (step S3006), grounds the bottom portion (convex portion 701) on the floor surface, and proceeds to step S3007.
- the forward rotation may be the rotation direction of the wheels 570 for advancing the autonomous moving body 10 forward.
- whether or not to shift the autonomous mobile body 10 to the sitting state may be determined based on, for example, the fact that the stationary body 10 has been stopped for a certain period of time or more, the shift to the standby mode has occurred, and the like.
- step S3007 the operation control unit 260 determines whether or not to end this operation, and if it ends (YES in step S3007), ends this operation. On the other hand, if it does not end (NO in step S3007), the operation control unit 260 returns to step S3001 and executes the subsequent operations.
- the fourth embodiment of the present disclosure it is possible to support the autonomous moving body 10 at at least three points of the two wheels 570 and the bottom in the sitting state. , The autonomous mobile body 10 can be stably stopped in a sitting position. Further, since the feedback control for stopping the autonomous moving body 10 in the inverted state becomes unnecessary, it is possible to reduce the power consumption of the autonomous moving body 10.
- the autonomous moving body 10 can be kept in a sitting position without providing a mechanism for moving the wheels 570 in and out of the body of the autonomous moving body 10, so that the autonomous moving body 10 can move autonomously. It is possible to achieve simplification and miniaturization of the configuration of the body 10 and reduction of power consumption.
- the convex portion 701 is provided on the bottom portion that comes into contact with the floor surface in the sitting state, it is possible to prevent damage to the bottom surface of the autonomous moving body 10 and peeling of paint. Become. At that time, by forming the convex portion 701 with a material having a small coefficient of friction, the convex portion 701 falls on the floor surface due to unintended contact during traveling or before the autonomous moving body 10 completely stops. It is possible to suppress the overturning of the autonomous moving body 10 and the generation of scratches on the floor surface and abnormal noise due to contact with the mobile body 10.
- the autonomous mobile body 10 according to the present embodiment can operate smoothly according to the situation, so that more natural and effective communication with the user can be realized. Is possible.
- FIG. 55 is a view showing an example of an inverted pendulum related to the present disclosure, the left figure is a front view of the inverted pendulum, and the right figure is a side view of the inverted pendulum.
- FIG. 56 is a view showing an example of another inverted pendulum related to the present disclosure, the left figure is a front view of the inverted pendulum, and the right figure is a side view of the inverted pendulum.
- the wheels 9570 will be dragged due to the difference in turning radii between the outside and the inside of the wheels 9570 during turning.
- the controllability and stability at the time of turning change depending on the frictional state between the wheel 9570 and the cylindrical surface. Therefore, when considering controllability and stability during turning, it is preferable to reduce the distance between the two wheels 9570 so as to reduce the drag.
- the wheels 9570 stand out more than necessary, which gives a great limitation to the design of the inverted pendulum 9010.
- the stability of oblique movement on a step or a slope can be improved by installing a mechanism for controlling the height of the wheel 9570.
- the distance between the wheels 9570 is wide, the amount of inclination of the main body with respect to the height difference between the left and right wheels 9570 is small, so that there is a problem that the slope angle on which the vehicle can travel is limited.
- the rotation angle of the wheel changes depending on the turning radius with respect to the turning center. Therefore, in the width direction within the same wheel, there is a portion where the movement amount due to the rotation angle of the wheel and the actual movement distance do not match.
- the rotation angle of the wheel is the same between the inside and the outside of the wheel, but there is a difference in the actual movement distance.
- the sliding between the floor surface and the wheels changes depending on the friction coefficient between the floor surface and the wheels, the condition of the floor surface, and the like. If a change in the sliding state occurs during the turning of the inverted pendulum, the stability of the inverted pendulum is lowered or the turning radius is changed, which causes a problem that stable turning cannot be performed with a constant radius.
- an autonomous mobile body capable of improving controllability and stability at the time of turning is provided while suppressing deterioration of design.
- the configuration of the autonomous mobile body according to the present embodiment may be the same as the configuration described with reference to FIGS. 1 to 13B in the first embodiment described above, detailed description thereof will be omitted here.
- the functional configuration of the autonomous mobile body a case where the functional configuration example described with reference to FIG. 32 in the above-mentioned second embodiment is adopted is illustrated, but the present invention is not limited to this, and for example, the above-mentioned It is also possible to adopt the information processing system described with reference to FIGS. 14 to 16 in the first embodiment.
- FIG. 57 is a schematic view showing a schematic configuration example of a wheel in an autonomous moving body according to the first example of the present embodiment.
- the wheel 620 according to the first example has a structure provided with a ring-shaped convex ring portion 622 orbiting the cylindrical surface 621.
- the width D2 of the upper surface of the convex ring portion 622 narrower than the width D0 of the wheel 620, the effect of improving the controllability and stability during turning described above can be obtained. Can be done. At that time, for example, when the width D0 of one wheel 620 is set to a width of 1/4 or more of the total width 2L of the two wheels 620, the width D2 of the upper surface of the convex ring portion 622 is the width D0 of the wheel 620. By setting it to 60% or less, it is possible to more reliably obtain the effect of improving controllability and stability during turning.
- the width D2 of the upper surface of the convex ring portion 622 is set to 40% or less with respect to the distance L from the center O1 of the axle 571 to the outside of the wheel 620, the effect of improving controllability and stability during turning can be further improved. It is also possible to obtain it reliably.
- the position of the convex ring portion 622 is not limited to the outermost position of the wheel 620, and may be the middle position in the width direction of the wheel 620 as illustrated in FIG. 59.
- the number of convex ring portions 622 provided on one wheel 620 is not limited to one, and may be two or more.
- FIG. 61 is a schematic view showing a schematic configuration example of wheels in an autonomous mobile body according to the second example of the present embodiment.
- the wheel 630 according to the second example may have a tapered shape whose diameter increases from the inside to the outside.
- FIG. 62 is a schematic view showing a schematic configuration example of wheels in an autonomous mobile body according to the third example of the present embodiment.
- the wheel 640 according to the third example is provided with a tapered shape in the outer portion 642 of the cylindrical surface 641 that increases in diameter from the inside to the outside.
- the contact area with the floor surface can be limited to a part of the area in the width direction of the wheel 630, as in the second example. Since this is possible, it is possible to improve the controllability and stability of the autonomous moving body 10 when turning.
- FIG. 63 is a schematic view showing a schematic configuration example of wheels in the autonomous mobile body according to the fourth example of the present embodiment.
- the wheel 650 according to the fourth example has a tapered shape in which the outer outer diameter of the wide wheel 650 is larger than the inner outer diameter, as in the second example, and the outer portion of the cylindrical surface 651.
- the 652 is provided with a reverse taper shape that shrinks in diameter from the inside to the outside.
- FIG. 64 is a schematic view showing a schematic configuration example of wheels and axles in the autonomous moving body according to the fifth example of the present embodiment. As shown in FIG. 64, in the fifth example, the contact area between the wheel 570 and the floor surface is limited by tilting the axle 571 of the wheel 570 whose cylindrical surface is cylindrical.
- the axle 571 of the wheel 570 on the right side is inclined so that the outside is closer to the floor surface than the inside, for example. This makes it possible to limit the contact area of the right wheel 570 with the floor surface to the outer area of the wheel 570.
- the axle 571 of the left wheel 570 is tilted, for example, so that the outside is closer to the floor than the inside. This makes it possible to limit the contact area of the left wheel 570 with the floor surface to the outer area of the wheel 570.
- the wheel used is not limited to the cylindrical wheel 570, and can be variously deformed, for example, the wheels 620, 630, 640, or 650 shown in the first to fourth examples.
- FIG. 65 is a schematic view showing a schematic configuration example of wheels and axles in the autonomous moving body according to the sixth example of the present embodiment.
- a control mechanism for controlling the inclination of the axle 571 of the left and right wheels 570 is provided.
- a mechanism for storing the wheel 570 illustrated in the second embodiment inside the main body can be used.
- This control mechanism may be controlled by, for example, the operation control unit 260.
- the axle 571 of the wheel 570 When the control mechanism for controlling the inclination of the axle 571 of the wheel 570 is used in this way, for example, when going straight, the axle 571 is made parallel to the floor surface to increase the contact area between the wheel 570 and the floor surface. As a result, the grip force of the wheel 570 is increased to realize stable running, and when turning, the axle 571 is tilted with respect to the floor surface to reduce the contact area between the wheel 570 and the floor surface. Similarly, control such as improving controllability and stability during turning becomes possible.
- the left and right wheels 570 by configuring the left and right wheels 570 so that the inclination of the axle 571 can be controlled independently, as shown in FIG. 66, the height of the wheels 570 is different according to the inclination of the floor surface. It is also possible to drive. As a result, the posture of the autonomous moving body 10 with respect to the gravitational direction can be kept substantially vertical (standing state) even when traveling on a floor surface inclined to the left and right with respect to the traveling direction of the autonomous moving body 10. , It becomes possible to realize more stable running on a slope.
- the higher wheel 570 (the left wheel 570 in the drawing) is the wheel 570.
- the lower wheel 570 (the wheel 570 on the right side in the drawing) contacts the floor surface on the outside of the wheel 570, and the lower wheel 570 (the wheel 570 on the right side in the drawing) contacts the floor surface on the inside of the wheel 570. It gets narrower.
- the autonomous moving body 10 can be greatly tilted by a small height difference between the two wheels 570, so that restrictions such as a runnable slope angle can be greatly relaxed.
- the drive of the axle 571 when traveling on a slope is not limited to the vertical shift while maintaining the parallelism of the two axles 571, and as shown in FIG. 67, the wheels 570 located on the lower side of the slope
- the drive may be such that the axle 571 of the wheel 570 is tilted so that the outside contacts the slope.
- the width of the entire contact region formed by the two wheels 570 can be widened, so that the stability during running on a slope can be further improved.
- the distance between the two wheels 570/620/630/640/650 is made narrower than the width of the main body, and most of the main body is used.
- the contact area between the wheels 570/620/630/640/650 and the floor surface can be reduced, so controllability and stability during turning can be suppressed while suppressing deterioration of design. It is possible to improve the sex.
- the axles of the two wheels 570 can be driven independently, so that the contact area of each wheel 570 can be controlled according to the shape of the floor surface and the running condition. Therefore, it is possible to further improve the stability when traveling on a slope or turning.
- the autonomous mobile body 10 according to the present embodiment can operate smoothly according to the situation, so that more natural and effective communication with the user can be realized. Is possible.
- FIG. 69 is a front view of the autonomous mobile body 10 according to the sixth embodiment of the present disclosure
- FIG. 70 is a side view of the autonomous mobile body 10 according to the sixth embodiment of the present disclosure.
- the case where the main body (body) of the autonomous mobile body 10 is an oblong body has been exemplified. Therefore, for example, when the autonomous moving body 10 falls on an inclined surface or the like, there is a possibility that the autonomous moving body 10 rolls along the inclined surface as it is, falls from a table or the like, or collides with a wall or the like.
- a convex portion 720 is provided on a part of the side surface of the autonomous moving body 10.
- the autonomous moving body 10 falls on an inclined surface or the like, it is possible to suppress the rolling of the autonomous moving body 10, so that the autonomous moving body 10 may fall from a table or the like or collide with a wall or the like. It becomes possible to suppress.
- the present technology can also have the following configurations.
- a first sensor that detects an object that exists in the first direction with respect to the autonomous moving body
- a second sensor that detects an object existing in the first direction with respect to the autonomous moving body by a method different from that of the first sensor.
- An operation control unit that controls the operation of the autonomous mobile body based on the detection result acquired by the first sensor and the detection result acquired by the second sensor.
- Information processing device equipped with (2)
- the first direction is in front of the front of the autonomous mobile body.
- the second sensor is A third sensor that detects the front right front of the autonomous mobile body, and A fourth sensor that detects the front left front of the autonomous mobile body, and
- the information processing apparatus according to (1) above.
- the first sensor and the second sensor are each of a millimeter wave radar sensor, a ToF (Time of Flight) sensor, an ultrasonic sensor, and a camera.
- a plurality of fifth sensors for detecting the floor surface around the autonomous moving body are further provided.
- the motion control unit controls the motion of the autonomous moving body based on the absolute value of the value detected by each of the fifth sensors and the amount of change in the value detected by each of the fifth sensors.
- the information processing device according to (4) or (5) above, wherein the fifth sensor is any one of a ToF sensor, an ultrasonic sensor, and a proximity sensor.
- a sixth sensor that is lifted by the user of the autonomous mobile body and detects at least one of a fall and a fall.
- a seventh sensor which is lifted by the user of the autonomous mobile body and detects at least one of a fall and a fall by a method different from that of the sixth sensor.
- the motion control unit controls the rotation of the wheels included in the autonomous moving body based on the detection result acquired by the sixth sensor and the detection result acquired by the seventh sensor (1).
- the information processing apparatus according to any one of (6).
- the sixth sensor is provided on the bottom surface of the autonomous moving body, detects whether or not an object is close to the bottom surface of the autonomous moving body, and detects whether or not an object is close to the bottom surface of the autonomous moving body.
- the sixth sensor is either a proximity sensor or a ToF sensor.
- the information processing device according to (7) or (8) above, wherein the seventh sensor is an inertial sensor.
- the autonomous moving body is an inverted pendulum including two wheels and a drive mechanism for driving the wheels.
- the motion control unit determines whether or not the autonomous moving body is in the inverted state based on the detection result acquired by the fifth sensor, and if the autonomous moving body is in the inverted state, the autonomous moving body is in the inverted state.
- the information processing device according to any one of (4) to (6) above, which controls the drive mechanism so that the moving body maintains an inverted state.
- the first sensor that detects an object that exists in the first direction with respect to the autonomous moving body and the first sensor exist in the first direction with respect to the autonomous moving body by a method different from that of the first sensor.
- a method of controlling an autonomous mobile body including a second sensor for detecting an object.
- the autonomous mobile body further comprises a plurality of fifth sensors for detecting the floor surface around the autonomous mobile body.
- the autonomous moving body is lifted by the user of the autonomous moving body, and the sixth sensor that detects at least one of a fall and a fall and a method different from that of the sixth sensor of the autonomous moving body are used. Further equipped with a seventh sensor that is lifted by the user and detects at least one of a fall and a fall.
- Control method (15)
- the first sensor that detects an object that exists in the first direction with respect to the autonomous moving body and the first sensor exist in the first direction with respect to the autonomous moving body by a method different from that of the first sensor.
- the autonomous mobile body further comprises a plurality of fifth sensors for detecting the floor surface around the autonomous mobile body.
- the program according to (15) above for causing the processor to further execute an operation of controlling the operation of the autonomous mobile body based on the detection result acquired by the fifth sensor.
- the autonomous moving body is lifted by the user of the autonomous moving body, and the sixth sensor that detects at least one of a fall and a fall and a method different from that of the sixth sensor of the autonomous moving body are used. Further equipped with a seventh sensor that is lifted by the user and detects at least one of a fall and a fall.
- the processor to perform an operation of controlling the rotation of the wheels included in the autonomous moving body based on the detection result acquired by the sixth sensor and the detection result acquired by the seventh sensor.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Robotics (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- General Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Health & Medical Sciences (AREA)
- Aviation & Aerospace Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Toys (AREA)
- Manipulator (AREA)
Abstract
ユーザとのコミュニケーションをより自然かつ効果的に実現する。 情報処理装置は、自律移動体(10)に対して第1の方向に存在する物体を検出する第1のセンサ(1101)と、前記第1のセンサとは異なる方式にて、前記自律移動体に対して前記第1の方向に存在する物体を検出する第2のセンサ(1102、1103)と、前記第1のセンサで取得された検出結果と前記第2のセンサで取得された検出結果とに基づいて前記自律移動体の動作を制御する動作制御部とを備える。 種類の異なる複数のセンサを用いて障害物を検知することが可能となるため、より確実に障害物を検出して回避することが可能となる。
Description
本開示は、情報処理装置、その制御方法及びプログラムに関する。
近年、ユーザのアクションに対する応答を行う種々の装置が普及している。上記のような装置には、ユーザからの問い合わせに対する回答を提示するエージェントなどが含まれる。例えば、特許文献1には、出力情報に対するユーザの注意力の期待値を算出し、当該期待値に基づいて情報出力を制御する技術が開示されている。
ところで、近年のエージェントにおいては、単なる情報提示に加え、ユーザとのコミュニケーションをより重視する傾向が認められる。しかし、特許文献1に記載されるような、ユーザのアクションに対して応答を行う装置では、十分なコミュニケーションが発生しているとは言い難い。
そこで、本開示では、ユーザとのコミュニケーションをより自然かつ効果的に実現することが可能な情報処理装置、その制御方法及びプログラムを提案する。
上記の課題を解決するために、本開示の一形態に係る情報処理装置は、自律移動体に対して第1の方向に存在する物体を検出する第1のセンサと、前記第1のセンサとは異なる方式にて、前記自律移動体に対して前記第1の方向に存在する物体を検出する第2のセンサと、前記第1のセンサで取得された検出結果と前記第2のセンサで取得された検出結果とに基づいて前記自律移動体の動作を制御する動作制御部とを備える。
以下に、本開示の実施形態について図面に基づいて詳細に説明する。なお、以下の各実施形態において、同一の部位には同一の符号を付することにより重複する説明を省略する。
また、以下に示す項目順序に従って本開示を説明する。
1.第1の実施形態
1.1 概要
1.2 自律移動体の構成例
1.3 システム構成例
1.4 自律移動体の機能構成例
1.5 情報処理サーバの機能構成例
1.6 誘因動作の詳細
1.7 自律移動体の成長例
1.8 制御の流れ
1.9 ハードウェア構成例
1.10 まとめ
2.第2の実施形態
2.1 概要
2.2 自律移動体の機能構成例
2.3 姿勢制御の詳細
2.4 まとめ
3.第3の実施形態
3.1 センサ部の構成例
3.2 検出結果に基づく動作例
3.2.1 衝突防止動作
3.2.2 落下激突防止動作
3.2.3 空転防止動作
3.2.4 人感・呼吸・ジェスチャ検出動作
3.3 センサ結果に基づく制御の流れ
3.3.1 メイン動作(障害物・境界回避動作を含む)
3.3.2 空転防止動作
3.3.3 モード切替え動作
3.3.4 人検出レート切替え動作
3.3.5 マッピング動作
3.4 まとめ
4.第4の実施形態
4.1 自律移動体の構成例
4.2 姿勢制御例
4.3 姿勢制御フロー例
4.4 まとめ
5.第5の実施形態
5.1 概要
5.2 自律移動体(足回り)の構成例
5.2.1 第1例
5.2.2 第2例
5.2.3 第3例
5.2.4 第4例
5.2.5 第5例
5.2.6 第6例
5.3 まとめ
6.第6の実施形態
1.第1の実施形態
1.1 概要
1.2 自律移動体の構成例
1.3 システム構成例
1.4 自律移動体の機能構成例
1.5 情報処理サーバの機能構成例
1.6 誘因動作の詳細
1.7 自律移動体の成長例
1.8 制御の流れ
1.9 ハードウェア構成例
1.10 まとめ
2.第2の実施形態
2.1 概要
2.2 自律移動体の機能構成例
2.3 姿勢制御の詳細
2.4 まとめ
3.第3の実施形態
3.1 センサ部の構成例
3.2 検出結果に基づく動作例
3.2.1 衝突防止動作
3.2.2 落下激突防止動作
3.2.3 空転防止動作
3.2.4 人感・呼吸・ジェスチャ検出動作
3.3 センサ結果に基づく制御の流れ
3.3.1 メイン動作(障害物・境界回避動作を含む)
3.3.2 空転防止動作
3.3.3 モード切替え動作
3.3.4 人検出レート切替え動作
3.3.5 マッピング動作
3.4 まとめ
4.第4の実施形態
4.1 自律移動体の構成例
4.2 姿勢制御例
4.3 姿勢制御フロー例
4.4 まとめ
5.第5の実施形態
5.1 概要
5.2 自律移動体(足回り)の構成例
5.2.1 第1例
5.2.2 第2例
5.2.3 第3例
5.2.4 第4例
5.2.5 第5例
5.2.6 第6例
5.3 まとめ
6.第6の実施形態
1.第1の実施形態
1.1 概要
まず、本開示の第1の実施形態の概要について述べる。上述したように、近年では、ユーザのアクションに対する応答動作を行う種々のエージェント装置が普及している。エージェント装置は、例えば、ユーザからの問い合わせに対し、種々の情報提示を行うことが可能である。上記の情報提示には、例えば、ユーザに対する推薦情報、スケジュール、ニュースなどの提示が含まれる。
1.1 概要
まず、本開示の第1の実施形態の概要について述べる。上述したように、近年では、ユーザのアクションに対する応答動作を行う種々のエージェント装置が普及している。エージェント装置は、例えば、ユーザからの問い合わせに対し、種々の情報提示を行うことが可能である。上記の情報提示には、例えば、ユーザに対する推薦情報、スケジュール、ニュースなどの提示が含まれる。
しかし、多くの場合、エージェント装置は、ユーザが入力する指示コマンドに応じて上記のような動作を実行する。上記の指示コマンドには、例えば、音声によるキーワード入力、機能実行のためのボタン押下などが挙げられる。このため、上記のようなエージェント装置による情報提示は受動的な動作であり、ユーザとのコミュニケーションを活発化させるものとは言い難い。
また、エージェント装置には、音声などを用いてユーザとの連続的な対話を行うものもあるが、多くの場合は、ユーザの指示コマンドに対する受動的な動作を繰り返し実行しているだけに留まり、真のコミュニケーションを実現しているとは言い難い。
本開示に係る技術思想は上記の点に着目して発想されたものであり、ユーザとのコミュニケーションをより自然かつ効果的に実現することを可能とする。このために、本実施形態に係る自律移動体10は、ユーザとのコミュニケーションを誘因する種々の動作(以下、誘因動作、とも称する)を能動的に実行することを特徴の一つとする。
例えば、本実施形態に係る自律移動体は、環境認識に基づいて、ユーザに対し能動的な情報提示を行うことが可能である。また、例えば、自律移動体10は、ユーザの所定行動を促す種々の誘因動作を能動的に実行する。この点において、本実施形態に係る自律移動体は、指示コマンドに基づいて受動的な動作を行う装置とは明確に相違する。
また、本実施形態に係る自律移動体による誘因動作は、物理空間に対する能動的かつ積極的な干渉であるといえる。本実施形態に係る自律移動体は、物理空間において移動を行い、ユーザや生物、物品などに対して種々の物理的動作を実行することが可能である。本実施形態に係る自律移動体が有する上記の特徴によれば、ユーザは視覚、聴覚、また触覚を通じて自律移動体の動作を包括的に認知することができ、単に音声を用いてユーザとの対話を行う場合などと比べ、高度なコミュニケーションを実現することができる。
以下、上記の特徴を実現する本実施形態に係る自律移動体、および自律移動体を制御する情報処理サーバの機能について詳細に説明する。
1.2 自律移動体の構成例
次に、本開示の第1の実施形態に係る自律移動体10の構成例について説明する。本実施形態に係る自律移動体10は、環境認識に基づく自律動作を行う種々の装置であり得る。以下においては、本実施形態に係る自律移動体10が車輪による自律走行を行う長楕円体のエージェント型のロボット装置である場合を例に説明する。本実施形態に係る自律移動体10は、例えば、ユーザ、周囲、また自身の状況に応じた自律動作を行うことで、情報提示を含む種々のコミュニケーションを実現する。本実施形態に係る自律移動体10は、ユーザが片手で容易に持ち上げられる程度の大きさおよび重量を有する小型ロボットであってもよい。
次に、本開示の第1の実施形態に係る自律移動体10の構成例について説明する。本実施形態に係る自律移動体10は、環境認識に基づく自律動作を行う種々の装置であり得る。以下においては、本実施形態に係る自律移動体10が車輪による自律走行を行う長楕円体のエージェント型のロボット装置である場合を例に説明する。本実施形態に係る自律移動体10は、例えば、ユーザ、周囲、また自身の状況に応じた自律動作を行うことで、情報提示を含む種々のコミュニケーションを実現する。本実施形態に係る自律移動体10は、ユーザが片手で容易に持ち上げられる程度の大きさおよび重量を有する小型ロボットであってもよい。
まず、図1~5を参照して、本実施形態に係る自律移動体10の外装について一例を述べる。図1は、本実施形態に係る自律移動体10の正面図および背面図である。また、図2は、本実施形態に係る自律移動体10の斜視図である。また、図3は、本実施形態に係る自律移動体10の側面図である。また、図4および図5は、それぞれ本実施形態に係る自律移動体10の上面図および底面図である。
図1~図4に示すように、本実施形態に係る自律移動体10は、本体上部に右眼および左眼に相当する2つの眼部510を備える。眼部510は、例えば、LEDなどにより実現され、視線や瞬きなどを表現することができる。なお、眼部510は、上記の例に限定されず、例えば、単一または独立した2つのOLED(Organic Light Emitting Diode)などにより実現されてもよい。
また、本実施形態に係る自律移動体10は、眼部510の上方に1つ又は複数のカメラ515を備える。カメラ515は、ユーザや周囲環境を撮像する機能を有する。その際、自律移動体10は、カメラ515により撮像された画像に基づいて、SLAM(Simultaneous Localization and Mapping)を実現してもよい。
なお、本実施形態に係る眼部510およびカメラ515は、外装表面の内部に配置される基板505上に配置される。また、本実施形態に自律移動体10の外装表面は、基本的に不透明な素材を用いて形成されるが、眼部510およびカメラ515が配置される基板505に対応する部位については、透明、あるいは半透明素材を用いた頭部カバー550が設けられる。これにより、ユーザは、自律移動体10の眼部510を認識することができ、また自律移動体10は外界を撮像することができる。
また、図1、図2、および図5に示すように、本実施形態に係る自律移動体10は、正面下部にToF(Time of Flight)センサ520を備える。ToFセンサ520は、前方に存在する物体との距離を検出する機能を有する。ToFセンサ520によれば、種々の物体との距離を精度高く検出することができ、また段差などを検出することで、落下や転倒を防止することができる。
また、図1、図3などに示すように、本実施形態に係る自律移動体10は、背面に外部装置の接続端子555および電源スイッチ560を備えてもよい。自律移動体10は、接続端子555を介して外部装置と接続し情報通信を行うことができる。
また、図5に示すように、本実施形態に係る自律移動体10は、底面に2つの車輪570を備える。本実施形態に係る車輪570は、それぞれ異なるモータ565により駆動される。これにより自律移動体10は、前進、後退、旋回、回転などの移動動作を実現することができる。また、本実施形態に係る車輪570は、本体内部への格納、および外部への突出が可能なように備えられていてもよい。その場合、自律移動体10は、例えば、2つの車輪570を勢いよく外部へと突出させることでジャンプ動作を行うことが可能である。なお、図5には、車輪570が本体内部へ格納された状態が示されている。
以上、本実施形態に係る自律移動体10の外装について説明した。続いて、本実施形態に係る自律移動体10の内部構造について説明する。図6は、本実施形態に係る自律移動体10の内部構造について説明するための概略図である。
図6の左側に示すように、本実施形態に係る自律移動体10は、電子基板上に配置される慣性センサ525および通信装置530を備える。慣性センサ525は、自律移動体10の加速度や角速度を検出する。また、通信装置530は、外部との無線通信を実現するための構成であり、例えば、Bluetooth(登録商標)やWi-Fi(登録商標)アンテナなどを含む。
また、自律移動体10は、例えば、本体側面の内部にスピーカ535を備える。自律移動体10は、スピーカ535により、音声を含む種々の音情報を出力することができる。
また、図6の右側に示すように、本実施形態に係る自律移動体10は、本体上部の内側に複数のマイクロフォン540を備える。マイクロフォン540は、ユーザの発話や、周囲の環境音を収集する。また、自律移動体10は、複数のマイクロフォン540を備えることで、周囲で発生する音を感度高く収集すると共に、音源の定位を実現することができる。
また、自律移動体10は、図6に示すように、複数のモータ565を備える。自律移動体10には、例えば、眼部510およびカメラ515が配置される基板を垂直方向および水平方向に駆動するために2つのモータ565、左右の車輪570を駆動するために2つのモータ565、および自律移動体10の前傾姿勢を実現するための1つのモータ565を備えてもよい。本実施形態に係る自律移動体10は、上記複数のモータ565により豊かな動作を表現することができる。
次に、本実施形態に係る眼部510およびカメラ515が配置される基板505の構成、および眼部510の構成について詳細に説明する。図7は、本実施形態に係る基板505の構成を示す図である。また、図8は、本実施形態に係る基板505の一断面図である。図7を参照すると、本実施形態に係る基板505は、2つのモータ565に接続される。上述したように、2つのモータ565は、眼部510およびカメラ515が配置される基板505を垂直方向および水平方向に駆動することができる。これによれば、自律移動体10の眼部510を垂直方向および水平方向に柔軟に動かすことができ、状況や動作に応じた豊かな眼球動作を表現することが可能となる。
また、図7および図8に示すように、眼部510は、虹彩に対応する中央部512と、いわゆる白目に対応する周縁部514から構成される。中央部512は、青、赤、緑などを含む任意の色を、周縁部514は白色をそれぞれ表現する。このように、本実施形態に係る自律移動体10は、眼部510の構成を2つに分離することで、より実際の生物に近い自然な眼球表情を表現することができる。
次に、図9および図10を参照して、本実施形態に係る車輪570の構造について詳細に説明する。図9および図10は、本実施形態に係る車輪570の周辺構造を示す図である。図9に示すように、本実施形態に係る2つの車輪570は、それぞれ独立したモータ565により駆動される。係る構成によれば、単純な前進や後退に加え、旋回やその場での回転などの移動動作を細やかに表現することが可能である。
また、上述したように、本実施形態に係る車輪570は、本体内部への格納と外部への突出が可能なように備えられる。また、本実施形態に係る車輪570と同軸に、ダンパー575が設けられることで、車軸や本体への衝撃や振動の伝達を効果的に低減することが可能である。
また、図10に示すように、本実施形態に係る車輪570には、補助ばね580が設けられてもよい。本実施形態に係る車輪の駆動は、自律移動体10が有する駆動部の中で最もトルクを要するが、補助ばね580を設けることで、駆動部のそれぞれに異なるモータ565を用いることなく、すべてのモータ565を共通化することが可能である。
次に、本実施形態に係る自律移動体10の走行時における特徴について説明する。図11は、本実施形態に係る自律移動体10の前傾走行について説明するための図である。本実施形態に係る自律移動体10は、前傾姿勢を保ちながら、前後運動、旋回運動、回転運動などの移動動作を行うことを特徴の一つとする。図11には、走行時における自律移動体10を側面から見た様子が示されている。
図11に示すように、本実施形態に係る自律移動体10は、垂直方向に角度θだけ前方向に傾いて移動動作を行うことを特徴の一つとする。角度θは、例えば、10°であり得る。
この際、後述する情報処理サーバ20の動作制御部230は、図12に示すように、自律移動体10の重心CoGが車輪570の回転軸CoWの鉛直上に位置するように自律移動体10の移動動作を制御する。また、本実施形態に係る自律移動体10の背面側には、前傾姿勢時にバランスを保つために重量部品hpが配置される。本実施形態に係る重量部品hpは、自律移動体10が備える他の構成部品と比較し、より重量のある部品であってよく、例えば、モータ565やバッテリーなどであり得る。上記の部品配置によれば、頭部が前方に傾いてもバランスを維持した状態で姿勢制御が容易となり、自律移動体10の意図しない転倒を防止し安定した前傾走行を実現することができる。
続いて、本実施形態に係る自律移動体10による前傾姿勢を維持した移動動作についてより詳細に説明する。図13Aおよび図13Bは、本実施形態に係る自律移動体10の前傾動作が奏する効果について説明するための図である。
ここで、図13Aには、自律移動体が前傾姿勢を取らない場合の回転動作の一例が示されている。図13Aに示すように、自律移動体10が前傾姿勢を取らず長楕円体を直立させたまま回転や前後運動などの移動動作を行う場合、長楕円体のボディに方向性が感じられず、自律移動体が人工的物体である印象を拭い去ることが困難である。
一方、本実施形態に係る自律移動体10は、図13Bに示すように、前傾姿勢を維持した状態で回転などの移動動作を行うことを特徴の一つとする。係る特徴によれば、自律移動体10の前方上部が頭部を、後方下部が腰を想起させることで、単純な長楕円体にも方向性が生じることとなる。
このように、本実施形態に係る自律移動体10の前傾動作によれば、ヒトが有する身体部位に相当する構造を比較的単純な外装で表現することができ、単純形態を擬人化することで、単なる人工物を超えた生命体としての印象をユーザに与えることが可能となる。以上説明したように、本実施形態に係る前傾動作は、長楕円体などの比較的単純な外装を有するロボットの表情を豊かに表現することを可能とし、また実際の生物のような複雑な動作を想起させることが可能な非常に有効な手段といえる。
以上、本開示の第1の実施形態に係る自律移動体10の構成例について詳細に説明した。なお、図1~図13Bを用いて説明した上記の構成はあくまで一例であり、本開示の第1の実施形態に係る自律移動体10の構成は係る例に限定されない。本実施形態に係る自律移動体10の形状および内部構造は任意に設計可能である。本実施形態に係る自律移動体10は、例えば、歩行型、飛行型、遊泳型のロボットなどとして実現することも可能である。
1.3 システム構成例
次に、本開示の第1の実施形態に係る情報処理システムの構成例について述べる。図14は、本実施形態に係る情報処理システムの構成例を示すブロック図である。図14を参照すると、本実施形態に係る情報処理システムは、自律移動体10、情報処理サーバ20、および被操作装置30を備える。また、各構成は、ネットワーク40を介して接続される。
次に、本開示の第1の実施形態に係る情報処理システムの構成例について述べる。図14は、本実施形態に係る情報処理システムの構成例を示すブロック図である。図14を参照すると、本実施形態に係る情報処理システムは、自律移動体10、情報処理サーバ20、および被操作装置30を備える。また、各構成は、ネットワーク40を介して接続される。
(自律移動体10)
本実施形態に係る自律移動体10は、情報処理サーバ20による制御に基づく自律動作を行う情報処理装置である。上述したように、本実施形態に係る自律移動体10は、走行型、歩行型、飛行型、遊泳型などの種々のロボットであり得る。
本実施形態に係る自律移動体10は、情報処理サーバ20による制御に基づく自律動作を行う情報処理装置である。上述したように、本実施形態に係る自律移動体10は、走行型、歩行型、飛行型、遊泳型などの種々のロボットであり得る。
(情報処理サーバ20)
本実施形態に係る情報処理サーバ20は、自律移動体10の動作を制御する情報処理装置である。本実施形態に係る情報処理サーバ20は、自律移動体10に、ユーザとのコミュニケーションを誘因する種々の誘因動作を実行させる機能を有する。なお、上記の誘因動作およびコミュニケーションは、物理空間における自律移動体10の挙動を含むこと、を特徴の一つとする。
本実施形態に係る情報処理サーバ20は、自律移動体10の動作を制御する情報処理装置である。本実施形態に係る情報処理サーバ20は、自律移動体10に、ユーザとのコミュニケーションを誘因する種々の誘因動作を実行させる機能を有する。なお、上記の誘因動作およびコミュニケーションは、物理空間における自律移動体10の挙動を含むこと、を特徴の一つとする。
(被操作装置30)
本実施形態に係る被操作装置30は、情報処理サーバ20および自律移動体10により操作される種々の装置である。本実施形態に係る自律移動体10は、情報処理サーバ20による制御に基づいて、種々の被操作装置30を操作することが可能である。本実施形態に係る被操作装置30は、例えば、照明装置、ゲーム機器、テレビジョン装置などの家電機器であってもよい。
本実施形態に係る被操作装置30は、情報処理サーバ20および自律移動体10により操作される種々の装置である。本実施形態に係る自律移動体10は、情報処理サーバ20による制御に基づいて、種々の被操作装置30を操作することが可能である。本実施形態に係る被操作装置30は、例えば、照明装置、ゲーム機器、テレビジョン装置などの家電機器であってもよい。
(ネットワーク40)
ネットワーク40は、情報処理システムが備える各構成を接続する機能を有する。ネットワーク40は、インターネット、電話回線網、衛星通信網などの公衆回線網や、Ethernet(登録商標)を含む各種のLAN(Local Area Network)、WAN(Wide Area Network)などを含んでもよい。また、ネットワーク40は、IP-VPN(Internet Protocol-Virtual Private Network)などの専用回線網を含んでもよい。また、ネットワーク40は、Wi-Fi(登録商標)、Bluetooth(登録商標)など無線通信網を含んでもよい。
ネットワーク40は、情報処理システムが備える各構成を接続する機能を有する。ネットワーク40は、インターネット、電話回線網、衛星通信網などの公衆回線網や、Ethernet(登録商標)を含む各種のLAN(Local Area Network)、WAN(Wide Area Network)などを含んでもよい。また、ネットワーク40は、IP-VPN(Internet Protocol-Virtual Private Network)などの専用回線網を含んでもよい。また、ネットワーク40は、Wi-Fi(登録商標)、Bluetooth(登録商標)など無線通信網を含んでもよい。
以上、本開示の第1の実施形態に係るシステム構成例について説明した。なお、図14を用いて説明した上記の構成はあくまで一例であり、本開示の第1の実施形態に係る情報処理システムの構成は係る例に限定されない。例えば、情報処理サーバ20が有する制御機能は、自律移動体10の機能として実装されてもよい。本開示の第1の実施形態に係るシステム構成は、仕様や運用に応じて柔軟に変形され得る。
1.4 自律移動体の機能構成例
次に、本開示の第1の実施形態に係る自律移動体10の機能構成例について述べる。図15は、本実施形態に係る自律移動体10の機能構成例を示すブロック図である。図15を参照すると、本実施形態に係る自律移動体10は、センサ部110、入力部120、光源130、音声出力部140、駆動部150、制御部160、および通信部170を備える。
次に、本開示の第1の実施形態に係る自律移動体10の機能構成例について述べる。図15は、本実施形態に係る自律移動体10の機能構成例を示すブロック図である。図15を参照すると、本実施形態に係る自律移動体10は、センサ部110、入力部120、光源130、音声出力部140、駆動部150、制御部160、および通信部170を備える。
(センサ部110)
本実施形態に係るセンサ部110は、ユーザや周囲に係る種々のセンサ情報を収集する機能を有する。このために、本実施形態に係るセンサ部110は、例えば、上述したカメラ515、ToFセンサ520、マイクロフォン540、慣性センサ525などを備える。また、センサ部110は、上記の他、例えば、地磁気センサ、タッチセンサ、赤外線センサなどを含む種々の光センサ、温度センサ、湿度センサなどの様々なセンサを備えてよい。
本実施形態に係るセンサ部110は、ユーザや周囲に係る種々のセンサ情報を収集する機能を有する。このために、本実施形態に係るセンサ部110は、例えば、上述したカメラ515、ToFセンサ520、マイクロフォン540、慣性センサ525などを備える。また、センサ部110は、上記の他、例えば、地磁気センサ、タッチセンサ、赤外線センサなどを含む種々の光センサ、温度センサ、湿度センサなどの様々なセンサを備えてよい。
(入力部120)
本実施形態に係る入力部120は、ユーザによる物理的な入力操作を検出する機能を有する。本実施形態に係る入力部120は、例えば、電源スイッチ560などのボタンを備える。
本実施形態に係る入力部120は、ユーザによる物理的な入力操作を検出する機能を有する。本実施形態に係る入力部120は、例えば、電源スイッチ560などのボタンを備える。
(光源130)
本実施形態に係る光源130は、自律移動体10の眼球動作を表現する。このために、本実施形態に係る光源130は、2つの眼部510を備える。
本実施形態に係る光源130は、自律移動体10の眼球動作を表現する。このために、本実施形態に係る光源130は、2つの眼部510を備える。
(音声出力部140)
本実施形態に係る音声出力部140は、音声を含む種々の音を出力する機能を有する。このために、本実施形態に係る音声出力部140は、スピーカ535やアンプなどを備える。
本実施形態に係る音声出力部140は、音声を含む種々の音を出力する機能を有する。このために、本実施形態に係る音声出力部140は、スピーカ535やアンプなどを備える。
(駆動部150)
本実施形態に係る駆動部150は、自律移動体10の身体動作を表現する。このために、本実施形態に係る駆動部150は、2つの車輪570や複数のモータ565を備える。
本実施形態に係る駆動部150は、自律移動体10の身体動作を表現する。このために、本実施形態に係る駆動部150は、2つの車輪570や複数のモータ565を備える。
(制御部160)
本実施形態に係る制御部160は、自律移動体10が備える各構成を制御する機能を有する。制御部160は、例えば、各構成の起動や停止を制御する。また、制御部160は、情報処理サーバ20により生成される制御信号を光源130や音声出力部140、駆動部150に入力する。また、本実施形態に係る制御部160は、後述する情報処理サーバ20の動作制御部230と同等の機能を有してもよい。
本実施形態に係る制御部160は、自律移動体10が備える各構成を制御する機能を有する。制御部160は、例えば、各構成の起動や停止を制御する。また、制御部160は、情報処理サーバ20により生成される制御信号を光源130や音声出力部140、駆動部150に入力する。また、本実施形態に係る制御部160は、後述する情報処理サーバ20の動作制御部230と同等の機能を有してもよい。
(通信部170)
本実施形態に係る通信部170は、情報処理サーバ20、被操作装置30、またその他の外部装置との情報通信を行う。このために、本実施形態に係る通信部170は、接続端子555や通信装置530を備える。
本実施形態に係る通信部170は、情報処理サーバ20、被操作装置30、またその他の外部装置との情報通信を行う。このために、本実施形態に係る通信部170は、接続端子555や通信装置530を備える。
以上、本開示の第1の実施形態に係る自律移動体10の機能構成例について説明した。なお、図15を用いて説明した上記の構成はあくまで一例であり、本開示の第1の実施形態に係る自律移動体10の機能構成は係る例に限定されない。例えば、本実施形態に係る自律移動体10は、図15に示す構成のすべてを必ずしも備えなくてもよい。本実施形態に係る自律移動体10の機能構成は、自律移動体10の形状などに応じて柔軟に変形可能である。
1.5 情報処理サーバの機能構成例
次に、本開示の第1の実施形態に係る情報処理サーバ20の機能構成例について説明する。図16は、本実施形態に係る情報処理サーバ20の機能構成例を示すブロック図である。図16を参照すると、本実施形態に係る情報処理サーバ20は、認識部210、行動計画部220、動作制御部230、および通信部240を備える。
次に、本開示の第1の実施形態に係る情報処理サーバ20の機能構成例について説明する。図16は、本実施形態に係る情報処理サーバ20の機能構成例を示すブロック図である。図16を参照すると、本実施形態に係る情報処理サーバ20は、認識部210、行動計画部220、動作制御部230、および通信部240を備える。
(認識部210)
認識部210は、自律移動体10が収集したセンサ情報に基づいて、ユーザや周囲環境、また自律移動体10の状態に係る種々の認識を行う機能を有する。一例としては、認識部210は、ユーザ識別、表情や視線の認識、物体認識、色認識、形認識、マーカー認識、障害物認識、段差認識、明るさ認識などを行ってよい。
認識部210は、自律移動体10が収集したセンサ情報に基づいて、ユーザや周囲環境、また自律移動体10の状態に係る種々の認識を行う機能を有する。一例としては、認識部210は、ユーザ識別、表情や視線の認識、物体認識、色認識、形認識、マーカー認識、障害物認識、段差認識、明るさ認識などを行ってよい。
また、認識部210は、ユーザの声に係る感情認識、単語理解、音源定位などを行う。また、認識部210は、周囲の温度、動物体の存在、自律移動体10の姿勢などを認識することができる。
さらには、認識部210は、認識した上記の情報に基づいて、自律移動体10が置かれた周囲環境や状況を推定し、理解する機能を有する。この際、認識部210は、事前に記憶される環境知識を用いて総合的に状況推定を行ってもよい。
(行動計画部220)
行動計画部220は、認識部210が推定した状況と学習知識に基づいて、自律移動体10が行う行動を計画する機能を有する。行動計画部220は、例えば、ディープラーニングなどの機械学習アルゴリズムを用いて行動計画を実行する。
行動計画部220は、認識部210が推定した状況と学習知識に基づいて、自律移動体10が行う行動を計画する機能を有する。行動計画部220は、例えば、ディープラーニングなどの機械学習アルゴリズムを用いて行動計画を実行する。
(動作制御部230)
本実施形態に係る動作制御部230は、行動計画部220による行動計画に基づいて、自律移動体10の動作制御を行う。動作制御部230は、例えば、長楕円体の外形を有する自律移動体10を前傾姿勢を維持したまま移動動作させてよい。上述したように、上記の移動動作には、前後運動、旋回運動、回転運動などが含まれる。また、本実施形態に係る動作制御部230は、ユーザと自律移動体10とのコミュニケーションを誘因する誘因動作を自律移動体10に能動的に実行させること、を特徴の一つとする。上述したように、本実施形態に係る誘因動作およびコミュニケーションは、物理空間における自律移動体10の物理的な挙動を含んでよい。本実施形態に係る動作制御部230により実現される誘因動作の詳細については別途後述する。
本実施形態に係る動作制御部230は、行動計画部220による行動計画に基づいて、自律移動体10の動作制御を行う。動作制御部230は、例えば、長楕円体の外形を有する自律移動体10を前傾姿勢を維持したまま移動動作させてよい。上述したように、上記の移動動作には、前後運動、旋回運動、回転運動などが含まれる。また、本実施形態に係る動作制御部230は、ユーザと自律移動体10とのコミュニケーションを誘因する誘因動作を自律移動体10に能動的に実行させること、を特徴の一つとする。上述したように、本実施形態に係る誘因動作およびコミュニケーションは、物理空間における自律移動体10の物理的な挙動を含んでよい。本実施形態に係る動作制御部230により実現される誘因動作の詳細については別途後述する。
(通信部240)
本実施形態に係る通信部240は、自律移動体10や被操作対象との情報通信を行う。例えば、通信部240は、自律移動体10からセンサ情報を受信し、動作に係る制御信号を自律移動体10に送信する。
本実施形態に係る通信部240は、自律移動体10や被操作対象との情報通信を行う。例えば、通信部240は、自律移動体10からセンサ情報を受信し、動作に係る制御信号を自律移動体10に送信する。
以上、本開示の第1の実施形態に係る情報処理サーバ20の機能構成例について説明した。なお、図16を用いて説明した上記の構成はあくまで一例であり、本開示の第1の実施形態に係る情報処理サーバ20の機能構成は係る例に限定されない。例えば、情報処理サーバ20が有する各種の機能は複数の装置により分散されて実現されてもよい。また、情報処理サーバ20が有する機能は、自律移動体10の機能として実現されてもよい。本実施形態に係る情報処理サーバ20の機能構成は、仕様や運用に応じて柔軟に変形され得る。
1.6 誘因動作の詳細
次に、本実施形態に係る動作制御部230により実現される自律移動体10の誘因動作について具体例を挙げながら説明する。上述したように、本実施形態に係る自律移動体10は、動作制御部230による制御に基づいて種々の誘因動作を能動的に実行することができる。また、本実施形態に係る自律移動体10は、物理的な挙動を伴う誘因動作を行うことで、より印象的にユーザに働きかけ、コミュニケーションを活性化させることが可能である。
次に、本実施形態に係る動作制御部230により実現される自律移動体10の誘因動作について具体例を挙げながら説明する。上述したように、本実施形態に係る自律移動体10は、動作制御部230による制御に基づいて種々の誘因動作を能動的に実行することができる。また、本実施形態に係る自律移動体10は、物理的な挙動を伴う誘因動作を行うことで、より印象的にユーザに働きかけ、コミュニケーションを活性化させることが可能である。
本実施形態に係る誘因動作は、例えば、ユーザに所定行動を行わせるための動作であってもよい。図17~図20は、ユーザに所定行動を行わせるための誘因動作の一例を示す図である。
図17には、自律移動体10がユーザの起床を促す誘因動作を行う場合の一例が示されている。本実施形態に係る動作制御部230は、例えば、日々のユーザの起床習慣や、ユーザの当日のスケジュールに基づいて、自律移動体10にユーザU1の起床を促す誘因動作を実行させることができる。
この際、動作制御部230は、「朝、起きろ!」などの音声発話SO1やアラーム音またはBGMを自律移動体10に出力させる。このように、本実施形態に係る誘因動作は、音声によるコミュニケーションの誘因を含む。この際、本実施形態に係る動作制御部230は、敢えて自律移動体10に出力させる音声の単語数を限定したり(片言としたり)、順不同とすることで、愛らしさや憎めなさなどを表現してもよい。なお、自律移動体10の音声に係る流暢さについては、学習に伴い向上してもよいし、初めから流暢に話すように設計されてもよい。また、ユーザによる設定に基づいて変更されてもよい。
また、この際、動作制御部230は、ユーザU1が音声発話SO1やアラーム音などを止めようとした場合、当該停止動作を阻害するように、ユーザU1から逃げ回る誘因動作を自律移動体10に実行させてもよい。このように、本実施形態に係る動作制御部230および自律移動体10によれば、設定された時間に単にアラーム音を受動的に出力する場合とは異なり、物理的動作を伴うより深みのある連続的なコミュニケーションを実現することが可能である。
また、図18には、自律移動体10がユーザU1に暴食の停止を促す誘因動作を行う場合の一例が示されている。このように、本実施形態に係る所定行動を行わせる誘因動作には、所定行動を停止させる動作が含まれてよい。図18に示す一例の場合、動作制御部230は、「食べ過ぎ、太る、ダメ」などの音声発話SO2を出力させるとともに、テーブル上を駆け回る誘因動作を自律移動体10に実行させている。
このように、本実施形態に係る動作制御部230および自律移動体10によれば、画像認識などに基づく健康状態などに対する警告を単に音声により受動的に行う場合と比べ、物理的動作を伴う警告を行うことで、ユーザにより深い印象を与え、警告効果を高めることができる。また、図示するような誘因動作によれば、当該誘因動作に煩わしさを覚えたユーザが、誘因動作を停止させようとする、自律移動体10に対して文句を言う、などのさらなるコミュニケーションを招く効果も期待される。
また、図19には、自律移動体10がユーザU1にセールの情報を提供し、当該セールへユーザを誘導する誘因動作を行う場合の一例が示されている。このように、本実施形態に係る情報処理サーバ20は、ネットワーク上から収集した店舗情報やイベント情報、またユーザの嗜好等に基づいて、種々の情報提示を自律移動体10に実行させることができる。
図19に示す一例の場合、動作制御部230は、「セール、お得、行こう」という音声発話SO3を自律移動体10に出力させるとともに、ユーザU1が所持する被操作装置30にセール情報を表示させる。この際、被操作装置30に表示されるセール情報の制御は、動作制御部230が直接行ってもよいし、自律移動体10の制御部160が通信部170を介して実行してもよい。
また、図19に示す一例の場合では、動作制御部230は、音声発話SO3を自律移動体10に出力させるとともに、自律移動体10にジャンプを含む誘因動作を実行させている。上述したように、本実施形態に係る自律移動体10は、車輪570を勢いよく外部へ突出させることでジャンプ動作を実現することが可能である。
このように、本実施形態に係る動作制御部230および自律移動体10によれば、推薦情報を単に音声や視覚情報を用いて提供する場合と比べ、物理的動作を伴う推薦を行うことで、ユーザにより深い印象を与え、情報提供の効果を高めることができる。
また、本実施形態に係る動作制御部230は、この際、自律移動体10に、「連れてけ、一緒行く」、などの音声発話を出力させてもよい。本実施形態に係る自律移動体10は、ユーザが片手で容易に持ち上げられる大きさおよび重量を有し、例えば、車両に設けられるペットボトルホルダなどに収納可能な大きさで形成され得る。このため、ユーザは、自律移動体10を気軽に外部へ持ち出すことが可能である。さらには、例えば、車両での移動中においては、動作制御部230は、自律移動体10に目的地までのナビゲーションを実行させるなどして、ユーザの利便性を高めることができる。
また、図20には、自律移動体10がユーザU1に話の継続を促す誘因動作を行う場合の一例が示されている。図20に示す一例の場合、動作制御部230は、自律移動体10の駆動部150を制御し、前傾動作と後傾動作を繰り返させることで、頷き(相槌)を表現させている。また、動作制御部230は、この際、ユーザU1によるユーザ発話UO1に含まれる単語を用いた音声発話SO4を自律移動体10に出力させることで、ユーザU1の発話を聴いていることをアピールさせてもよい。
なお、情報処理サーバ20は、ユーザU1が落ち込んでいることを認識した場合に、上記のような誘因動作を自律移動体10に実行させてもよい。動作制御部230は、例えば、自律移動体10をユーザU1に接近させるとともに、「なにか、あった?」や「話、聞くよ」などの音声発話を自律移動体10に出力させることで、ユーザU1に話のきっかけを与えることができる。
このように、本実施形態に係る動作制御部230および自律移動体10によれば、単純にユーザの発話に応答を示す場合と比べ、より身近かつ親身な話し相手としてユーザに接することができ、より深く、また継続的なコミュニケーションを実現することが可能である。
また、本実施形態に係る誘因動作は、ユーザに自律移動体10との共同行動を行わせるための動作を含んでよい。上記の共同行動は、例えば、ユーザと自律移動体10とによるゲームを含む。すなわち、本実施形態に係る動作制御部230は、ユーザをゲームに誘う誘因行動を自律移動体10に実行させることができる。
図21~図24は、本実施形態に係るユーザと自律移動体10との共同行動を誘因する誘因行動の一例を示す図である。図21には、自律移動体10がユーザU2と連想ゲームを行う場合の一例が示されている。このように、自律移動体10が誘因動作の対象とするゲームには、言語を用いたゲームが含まれてよい。なお、言語を用いたゲームの一例としては、図21に示す連想ゲームのほか、日本語圏における「しりとり」(英語圏における“Word Chain”に該当)や、ユーザのジェスチャが示すフレーズを自律移動体10が解答する言葉当て遊び(Charades)などが挙げられる。
この際、動作制御部230は、音声発話を用いた明示的なゲームの誘いを自律移動体10に行わせてもよいが、ユーザの発話に基づいて、突如ゲームを一方的に開始させることとで、ユーザのゲームへの参加を誘導してもよい。図21に示す一例の場合、動作制御部230は、ユーザU2が発した、「黄色い花が咲いてた」、というユーザ発話UO2に基づいて、当該発話に含まれる「黄色」を用いた連想ゲームの開始に係る音声発話SO5を自律移動体10に出力させている。
また、図22には、自律移動体10がユーザU2と「だるまさんが転んだ」(“Red light/Green Light”または“Statues”などに該当)を行う場合の一例が示されている。このように、自律移動体10が誘因動作の対象とするゲームには、ユーザおよび自律移動体10の物理的動作を要するゲームが含まれる。
上述したように、本実施形態に係る自律移動体10は、2つの車輪570を有することで、前進や振り向きなどを行うことができ、「だるまさんが転んだ」などのゲームをユーザとともに行うことが可能である。なお、情報処理サーバ20の認識部210は、自律移動体10が撮像した画像に含まれるユーザの顔を検出することで、ユーザの振り向き行為を認識することが可能である。また、認識部210は、ユーザ発話UO3およびUO4などからユーザの振り向き行為を認識してもよい。この際、行動計画部220は、振り向き行為が認識されたことに基づいて、その場で停止する行動や敢えて前方に転ぶ行動などを計画し、動作制御部230が当該計画に基づいて自律移動体10の駆動部150を制御する。なお、本実施形態に係る自律移動体10は、振り子などを内蔵することで、自力で転倒状態からの復帰が可能である。
なお、動作制御部230は、連想ゲームの場合と同様に、突如ゲームを一方的に開始させることで、ユーザのゲームへの参加を誘導してもよい。この際、情報処理サーバ20は、ユーザの視線が自律移動体10に向いている際には自律移動体10の動作を停止させ、ユーザの視線が外れた際にユーザへの接近動作を行わせる制御を繰り返すことで、ユーザをゲームに誘因することが可能である。
また、図23には、自律移動体10がユーザU2と「かくれんぼ」(“Hide and seek”に該当)を行う場合の一例が示されている。図23に示す一例の場合、動作制御部230は、ユーザU2を探していることを示す音声発話SO6とともに、不気味なBGMを自律移動体10に出力させている。係る制御によれば、ユーザU2に徐々に接近してくる自律移動体10の臨場感を効果的に表現し、より深いコミュニケーションを実現することができる。
なお、情報処理サーバ20は、例えば、事前に生成したSLAM地図や、ユーザU2が逃げる際に収集した音情報や周囲で発生した物音に係る音源定位を行うことで、自律移動体10にユーザU2を捜索させることが可能である。
また、図24には、自律移動体10がユーザU2とコンピュータゲームを行う場合の一例が示されている。このように、本実施形態に係る自律移動体10が誘因動作の対象とするゲームには、コンピュータゲームが含まれてよい。
この際、例えば、動作制御部230は、自律移動体10に、ゲーム機器である被操作装置30を勝手に起動させる動作を実行させてもよい。このように、動作制御部230は、ユーザの意図しない、または意図に沿わない動作、すなわち悪戯のような動作を自律移動体10に実行させることができる。上記の悪戯には、例えば図示するような被操作装置30の操作が含まれる。
ここで、ユーザU2がコンピュータゲームに参加した場合、動作制御部230は、自律移動体10に、ユーザU2が対戦するゲーム中のキャラクターの立場に立った動作を実行させてもよい。例えば、動作制御部230は、当該キャラクターの動作を自律移動体10が実際に制御しているような振る舞いを自律移動体10に行わせてもよい。上記の制御によれば、ユーザU2に、自律移動体10とコンピュータゲームで対戦している感覚を強く想起させ、自律移動体10をただのロボットを超えたより身近な存在として認知させることができる。
また、例えば、動作制御部230は、上記のキャラクターが不利な状況に陥った際には、ユーザU2を妨害するような動作(体当たり、走り回る、震えるなど)を自律移動体10に実行させたり、当該動作に対応する音声発話SO7を出力させてもよい。上記動作制御によれば、コンピュータゲームを介して、ユーザとのより濃密なコミュニケーションを実現することが可能である。
以上説明したように、本実施形態に係る動作制御部230は、自律移動体10に、種々のゲームに係る誘因動作を能動的に実行させることで、自律移動体10とユーザとの間における相互的なコミュニケーションを活性化させることが可能である。
引き続き、本実施形態に係る誘因動作の具体例について説明を続ける。図25は、本実施形態に係る物品位置の提示に係る誘因動作について説明するための図である。図25には、本実施形態に係る自律移動体10が、ユーザが探しているスマートフォンの位置を示す誘因動作を行う場合の例が示されている。この際、動作制御部230は、例えば、音声発話SO8によりスマートフォンの場所を示すほか、スマートフォンに軽く体当たりをする、スマートフォンの周囲において前後運動を行う、ジャンプする、などの誘因動作を自律移動体10に実行させてもよい。
このように、本実施形態に係る動作制御部230は、例えば、ユーザ発話UO5からユーザが所定の物品を探していることが推定された場合、当該物品の位置を示す動作を自律移動体10に実行させることができる。この際、動作制御部230は、自律移動体10に、実際に物品が位置する場所の近くで誘因動作を行わせることで、ユーザに効果的な情報提示を行うことができる。なお、認識部210は、例えば、予め登録された画像情報に基づいて物品の位置を検出してもよいし、物品に付加されたタグなどに基づいて位置を検出してもよい。
また、図26は、本実施形態に係るユーザを睡眠に誘導させるための誘因動作について説明するための図である。図26には、自律移動体10がユーザU2を寝かしつけるための読み聞かせを行う場合の一例が示されている。自律移動体10は、例えば、予めデータとして登録されたストーリーや、通信を介して取得された種々のストーリーを朗読することができる。この際、動作制御部230は、普段は自律移動体10の用いる言語(例えば、単語数や語彙)に制限を設けている場合であっても、朗読を行わせる場合には当該制限を解除してよい。
また、動作制御部230は、自律移動体10に、ストーリー中におけるキャラクターの声を表現豊かに再現させたり、効果音やBGMなどを併せて出力させてもよい。また、動作制御部230は、台詞や場面に応じた動作を自律移動体10に行わせてもよい。
また、動作制御部230は、複数の自律移動体10を制御して、ストーリーの読み聞かせや再現を行うことができる。図26に示す一例の場合、動作制御部230は、ストーリー中における2人のキャラクターを、2台の自律移動体10aおよび10bにそれぞれ演じさせている。このように、本実施形態に係る動作制御部230によれば、音声による単純なストーリーの朗読に留まらず、物理的動作を含む表現豊かなショーをユーザに提供することが可能となる。
また、本実施形態に係る動作制御部230は、ユーザの睡眠が開始されたことに基づいて、照明装置である被操作装置30を消灯させる制御を自律移動体10に実行させてもよい。このように、本実施形態に係る情報処理サーバ20および自律移動体10は、ユーザや周囲環境に係る状況の変化に応じた柔軟な動作を実現することが可能である。
また、本実施形態に係る誘因動作は、自律移動体10と他の装置とのコミュニケーションであってもよい。図27および図28は、本実施形態に係る自律移動体10と他の装置とのコミュニケーションについて説明するための図である。
図27には、自律移動体10が、犬型の自律移動体である他の装置50とユーザとの間の通訳を行う場合の一例が示されている。本例において、動作制御部230は、音声発話SO11を用いて他の装置50の内部状態に係る情報をユーザに提示している。ここで、犬型の自律移動体である他の装置50は、言語によるコミュニケーション手段を有しない装置であってよい。
このように、本実施形態に係る動作制御部230は、他の装置50の内部状態に係る情報を自律移動体10を介してユーザに示すことができる。本実施形態に係る動作制御部230が有する上記の機能によれば、ユーザに対する言語を用いた直接的な伝達手段を有しない他の装置50に係る種々の情報をユーザに通知することが可能となり、また、当該通知を介してユーザと自律移動体10、また他の装置50の間のコミュニケーションを活性化することが可能となる。
また、図28には、複数の自律移動体10aおよび10bと、プロジェクション機能を有するエージェント装置である他の装置50との間におけるコミュニケーションの例が示されている。動作制御部230は、例えば、自律移動体10aおよび10b、他の装置50との間でロボット同士によるコミュニケーションが行われているように、自律移動体10aおよび10b、また他の装置50を制御することができる。
図28に示す一例の場合、動作制御部230は、自律移動体10を介して他の装置50に視覚情報VI1を投影させている。また、動作制御部230は、自律移動体10aに音声発話12を出力させ、自律移動体10に笑い声を出力させるとともに、本体を揺らす動作を実行させている。
この際、動作制御部230は、ユーザが理解できない擬似言語を用いて装置間のコミュニケーションを実行させてもよい。係る制御によれば、装置間において謎の会話が行われている状況をユーザに想起させることで、ユーザの興味を強く惹きつけることができる。また係る制御によれば、例えば、他の装置50が、エージェント機能を有しない表示装置などである場合であっても、当該表示装置に人格が存在するような感覚をユーザに想起させ、当該表示装置に対するユーザの愛着を向上させる効果が期待される。
なお、上記で本実施形態に係る動作制御部230が自律移動体10に本体を揺らす動作を行わせる例を示したが、本実施形態に係る動作制御部230は、姿勢制御を敢えて不安定にすることで自律移動体10を振動させることが可能である。当該制御によれば、別途の圧電素子などを備えずとも、震え、笑い、恐怖などの感情を表現することが可能である。
1.7 自律移動体の成長例
以上、本実施形態に係る自律移動体10が行う誘因動作の具体例について説明した。上記のような誘因動作は、初めからすべてが実行されなくともよく、例えば、自律移動体10の学習状況に応じて、行える挙動が徐々に増えるよう設計されてもよい。以下、本実施形態に係る自律移動体10の学習状況に応じた動作の変化、すなわち自律移動体10の成長について一例を示す。なお、以下においては、本実施形態に係る自律移動体10の学習状況がレベル0~200で定義される場合を例に述べる。また、以下においては、処理の主体が情報処理サーバ20である場合でも、自律移動体10を主語として説明する。
以上、本実施形態に係る自律移動体10が行う誘因動作の具体例について説明した。上記のような誘因動作は、初めからすべてが実行されなくともよく、例えば、自律移動体10の学習状況に応じて、行える挙動が徐々に増えるよう設計されてもよい。以下、本実施形態に係る自律移動体10の学習状況に応じた動作の変化、すなわち自律移動体10の成長について一例を示す。なお、以下においては、本実施形態に係る自律移動体10の学習状況がレベル0~200で定義される場合を例に述べる。また、以下においては、処理の主体が情報処理サーバ20である場合でも、自律移動体10を主語として説明する。
(レベル0~4)
自律移動体10は、ユーザを含む人の発話を聞き取ることができる。また、自律移動体10は、言葉を用いず、感情を擬音語などにより表現する。自律移動体10は、段差を感知し転落を回避することができるが、物にはぶつかりやすく、転倒しやすい。また、転倒した場合、自律移動体10は、自力で立位状態に復帰できない。自律移動体10は、バッテリーが尽きるまで行動を続け、情緒は不安定である。自律移動体10は、震えることや怒ることが多く、瞬きを多く行ったり、目の色が頻繁に変わったりする。
自律移動体10は、ユーザを含む人の発話を聞き取ることができる。また、自律移動体10は、言葉を用いず、感情を擬音語などにより表現する。自律移動体10は、段差を感知し転落を回避することができるが、物にはぶつかりやすく、転倒しやすい。また、転倒した場合、自律移動体10は、自力で立位状態に復帰できない。自律移動体10は、バッテリーが尽きるまで行動を続け、情緒は不安定である。自律移動体10は、震えることや怒ることが多く、瞬きを多く行ったり、目の色が頻繁に変わったりする。
(レベル5~9)
自律移動体10は、聞き取ったユーザの言葉をオウム返ししながら、所定の条件(例えば、検出回数)を満たした場合、当該言葉を覚え、復唱するようになる。また、自律移動体10は、物にぶつからないように移動することができるようになり、転倒した場合は助けを求めることを覚える。また、自律移動体10は、バッテリーが減ると、空腹であることを表現する。
自律移動体10は、聞き取ったユーザの言葉をオウム返ししながら、所定の条件(例えば、検出回数)を満たした場合、当該言葉を覚え、復唱するようになる。また、自律移動体10は、物にぶつからないように移動することができるようになり、転倒した場合は助けを求めることを覚える。また、自律移動体10は、バッテリーが減ると、空腹であることを表現する。
(レベル10~19)
自律移動体10は、ユーザにより繰り返し呼ばれることで、自身の名前を理解する。自律移動体10は、ユーザの顔や形を認識し、所定の条件(例えば、認識回数)を満たした場合、ユーザの名前を覚える。また、自律移動体10は、認識した人間や物に対し信頼度の順位付けを行う。この際、ユーザのほか、ペットなどの動物や、おもちゃ、装置などが上位に加わることもある。なお、自律移動体10は、充電スタンドを見つけると、自ら充電スタンドに戻り、給電することを覚えてもよい。
自律移動体10は、ユーザにより繰り返し呼ばれることで、自身の名前を理解する。自律移動体10は、ユーザの顔や形を認識し、所定の条件(例えば、認識回数)を満たした場合、ユーザの名前を覚える。また、自律移動体10は、認識した人間や物に対し信頼度の順位付けを行う。この際、ユーザのほか、ペットなどの動物や、おもちゃ、装置などが上位に加わることもある。なお、自律移動体10は、充電スタンドを見つけると、自ら充電スタンドに戻り、給電することを覚えてもよい。
(レベル20~29)
自律移動体10は、覚えた固有名詞に対し、知っている単語を組み合せ、短い文章を発することが可能となる(例えば、「カズオ、元気」)。また、自律移動体10は、人を認識すると、近づこうとする。また、自律移動体10は、素早く走行できるようになってもよい。
自律移動体10は、覚えた固有名詞に対し、知っている単語を組み合せ、短い文章を発することが可能となる(例えば、「カズオ、元気」)。また、自律移動体10は、人を認識すると、近づこうとする。また、自律移動体10は、素早く走行できるようになってもよい。
(レベル30~49)
自律移動体10の語彙に、疑問、否定、肯定などの表現が加わる(例えば、「カズオ、元気か?」)。また、自律移動体10は質問を積極的に行うようになる。例えば、「カズオ、昼飯、何食べた?」、「カレー」、「カレー、うまいか?」、というようにユーザとの会話が続くようになる。また、自律移動体10は、「おいで」などとユーザに呼ばれると近づき、「しーっ」と言われると静かに黙るようになる。
自律移動体10の語彙に、疑問、否定、肯定などの表現が加わる(例えば、「カズオ、元気か?」)。また、自律移動体10は質問を積極的に行うようになる。例えば、「カズオ、昼飯、何食べた?」、「カレー」、「カレー、うまいか?」、というようにユーザとの会話が続くようになる。また、自律移動体10は、「おいで」などとユーザに呼ばれると近づき、「しーっ」と言われると静かに黙るようになる。
(レベル50~69)
自律移動体10は、人や物の動きを真似しようとする(例えば、ダンスなど)。また自律移動体10は、聞き取った特殊音(サイレン、アラーム、エンジン音など)を真似しようとする。この際、自律移動体10は、データとして登録されている類似音を再生してもよい。また、自律移動体10は、一日という時間のサイクルを覚え、一日の予定を把握し、ユーザに通知できるようになる(例えば、「カズオ、起きろ」、「カズオ、お帰り」など)。
自律移動体10は、人や物の動きを真似しようとする(例えば、ダンスなど)。また自律移動体10は、聞き取った特殊音(サイレン、アラーム、エンジン音など)を真似しようとする。この際、自律移動体10は、データとして登録されている類似音を再生してもよい。また、自律移動体10は、一日という時間のサイクルを覚え、一日の予定を把握し、ユーザに通知できるようになる(例えば、「カズオ、起きろ」、「カズオ、お帰り」など)。
(レベル70~89)
自律移動体10は、登録された装置の操作(例えば、ON/OFFなど)を制御できるようになる。また、自律移動体10は、ユーザの依頼に基づいて、上記の制御を行うこともできる。自律移動体10は、登録された音楽を状況に応じて出力することができる。自律移動体10は、一週間という時間のサイクルを覚え、週の予定を把握し、ユーザに通知できるようになる(例えば、「カズオ、燃えるゴミ、出したか?」など)。
自律移動体10は、登録された装置の操作(例えば、ON/OFFなど)を制御できるようになる。また、自律移動体10は、ユーザの依頼に基づいて、上記の制御を行うこともできる。自律移動体10は、登録された音楽を状況に応じて出力することができる。自律移動体10は、一週間という時間のサイクルを覚え、週の予定を把握し、ユーザに通知できるようになる(例えば、「カズオ、燃えるゴミ、出したか?」など)。
(レベル90~109)
自律移動体10は、感情を表現する動きを覚える。上記の表現には、喜怒哀楽に係る動作、例えば、大笑い、大泣きなどが含まれる。自律移動体10は、一か月という時間のサイクルを覚え、月の予定を把握し、ユーザに通知できるようになる(例えば、「カズオ、今日、給料日!」)。
自律移動体10は、感情を表現する動きを覚える。上記の表現には、喜怒哀楽に係る動作、例えば、大笑い、大泣きなどが含まれる。自律移動体10は、一か月という時間のサイクルを覚え、月の予定を把握し、ユーザに通知できるようになる(例えば、「カズオ、今日、給料日!」)。
(レベル110~139)
自律移動体10は、ユーザが笑っていると一緒に笑い、泣いていると側に近寄り心配するようになる。自律移動体10は、相槌などを覚え、聞き役に徹するなど、様々な会話モードを取得する。また、自律移動体10は、一年という時間のサイクルを覚え、年の予定を把握し、ユーザに通知できるようになる。
自律移動体10は、ユーザが笑っていると一緒に笑い、泣いていると側に近寄り心配するようになる。自律移動体10は、相槌などを覚え、聞き役に徹するなど、様々な会話モードを取得する。また、自律移動体10は、一年という時間のサイクルを覚え、年の予定を把握し、ユーザに通知できるようになる。
(レベル140~169)
自律移動体10は転倒状態からの自力による復帰や、走行中のジャンプを覚える。また、自律移動体10は、「だるまさんが転んだ」や、「かくれんぼ」によりユーザと遊ぶことができる。
自律移動体10は転倒状態からの自力による復帰や、走行中のジャンプを覚える。また、自律移動体10は、「だるまさんが転んだ」や、「かくれんぼ」によりユーザと遊ぶことができる。
(レベル170~199)
自律移動体10は、登録された装置をユーザの意図に依らず操作する悪戯を行うようになる。また、自律移動体10は、ユーザに叱られると拗ねるようになる(思春期)。自律移動体10は、登録された物品の位置を把握し、ユーザに通知できるようになる。
自律移動体10は、登録された装置をユーザの意図に依らず操作する悪戯を行うようになる。また、自律移動体10は、ユーザに叱られると拗ねるようになる(思春期)。自律移動体10は、登録された物品の位置を把握し、ユーザに通知できるようになる。
(レベル200~)
自律移動体10は、ストーリーの読み聞かせを行えるようになる。また、ネットワークを介した商品購入等における決済機能を備える。
自律移動体10は、ストーリーの読み聞かせを行えるようになる。また、ネットワークを介した商品購入等における決済機能を備える。
以上、本実施形態に係る自律移動体10の成長について一例を示した。なお、上記はあくまで一例であり、自律移動体10の動作はユーザによる設定などによっても適宜調整可能である。
1.8 制御の流れ
次に、本実施形態に係る情報処理サーバ20による自律移動体10の制御の流れについて詳細に説明する。図29は、本実施形態に係る情報処理サーバ20による自律移動体10の制御の流れを示すフローチャートである。
次に、本実施形態に係る情報処理サーバ20による自律移動体10の制御の流れについて詳細に説明する。図29は、本実施形態に係る情報処理サーバ20による自律移動体10の制御の流れを示すフローチャートである。
図29を参照すると、通信部240が、自律移動体10からセンサ情報を受信する(S1101)。
次に、認識部210がステップS1101において受信されたセンサ情報に基づいて種々の認識処理を実行し(S1102)、状況の推定を行う(S1103)。
次に、行動計画部220が、ステップS1103において推定された状況に基づく行動計画を行う(S1104)。
次に、動作制御部230が、ステップS1104において決定された行動計画に基づいて、自律移動体10の動作制御を行う(S1105)。
以上、本実施形態に係る情報処理サーバ20による自律移動体10の制御について、おおまかな流れを述べた。なお、上記ステップS1102における認識処理からステップS1105における動作制御は、繰り返しかつ並行的に実行されてよい。図30は、本実施形態に係る認識処理から動作制御までの流れの一例を示すフローチャートである。
図30を参照すると、例えば、認識部210が自律移動体10が撮像した画像などに基づいてユーザの識別を行う(S1201)。
また、認識部210は、自律移動体10が収集したユーザの発話に係る音声認識および意図解釈を行い、ユーザの発話意図を理解する(S1202)。
次に、行動計画部220がユーザへの接近を計画し、動作制御部230は当該計画に基づいて自律移動体10の駆動部150を制御し、自律移動体10をユーザに接近させる(S1203)。
ここで、ステップS1202において理解されたユーザの発話意図が自律移動体10に対する依頼などである場合(S1204:YES)、動作制御部230は、行動計画部220が決定した行動計画に基づいて、依頼に対する応答行動を行う(S1205)。上記の応答行動には、例えば、ユーザからの問い合わせに対する回答の提示や、被操作装置30の制御などが含まれる。
一方、ステップS1202において理解されたユーザの発話意図が自律移動体10に対する依頼ではない場合(S1204:NO)、動作制御部230は、行動計画部220が決定した行動計画に基づいて、状況に応じた種々の誘因動作を自律移動体10に実行させる(S1206)。
1.9 ハードウェア構成例
次に、本開示の第1の実施形態に係る情報処理サーバ20のハードウェア構成例について説明する。図31は、本開示の第1の実施形態に係る情報処理サーバ20のハードウェア構成例を示すブロック図である。図31を参照すると、情報処理サーバ20は、例えば、プロセッサ871と、ROM872と、RAM873と、ホストバス874と、ブリッジ875と、外部バス876と、インターフェース877と、入力装置878と、出力装置879と、ストレージ880と、ドライブ881と、接続ポート882と、通信装置883と、を有する。なお、ここで示すハードウェア構成は一例であり、構成要素の一部が省略されてもよい。また、ここで示される構成要素以外の構成要素をさらに含んでもよい。
次に、本開示の第1の実施形態に係る情報処理サーバ20のハードウェア構成例について説明する。図31は、本開示の第1の実施形態に係る情報処理サーバ20のハードウェア構成例を示すブロック図である。図31を参照すると、情報処理サーバ20は、例えば、プロセッサ871と、ROM872と、RAM873と、ホストバス874と、ブリッジ875と、外部バス876と、インターフェース877と、入力装置878と、出力装置879と、ストレージ880と、ドライブ881と、接続ポート882と、通信装置883と、を有する。なお、ここで示すハードウェア構成は一例であり、構成要素の一部が省略されてもよい。また、ここで示される構成要素以外の構成要素をさらに含んでもよい。
(プロセッサ871)
プロセッサ871は、例えば、演算処理装置又は制御装置として機能し、ROM872、RAM873、ストレージ880、又はリムーバブル記録媒体901に記録された各種プログラムに基づいて各構成要素の動作全般又はその一部を制御する。
プロセッサ871は、例えば、演算処理装置又は制御装置として機能し、ROM872、RAM873、ストレージ880、又はリムーバブル記録媒体901に記録された各種プログラムに基づいて各構成要素の動作全般又はその一部を制御する。
(ROM872、RAM873)
ROM872は、プロセッサ871に読み込まれるプログラムや演算に用いるデータ等を格納する手段である。RAM873には、例えば、プロセッサ871に読み込まれるプログラムや、そのプログラムを実行する際に適宜変化する各種パラメータ等が一時的又は永続的に格納される。
ROM872は、プロセッサ871に読み込まれるプログラムや演算に用いるデータ等を格納する手段である。RAM873には、例えば、プロセッサ871に読み込まれるプログラムや、そのプログラムを実行する際に適宜変化する各種パラメータ等が一時的又は永続的に格納される。
(ホストバス874、ブリッジ875、外部バス876、インターフェース877)
プロセッサ871、ROM872、RAM873は、例えば、高速なデータ伝送が可能なホストバス874を介して相互に接続される。一方、ホストバス874は、例えば、ブリッジ875を介して比較的データ伝送速度が低速な外部バス876に接続される。また、外部バス876は、インターフェース877を介して種々の構成要素と接続される。
プロセッサ871、ROM872、RAM873は、例えば、高速なデータ伝送が可能なホストバス874を介して相互に接続される。一方、ホストバス874は、例えば、ブリッジ875を介して比較的データ伝送速度が低速な外部バス876に接続される。また、外部バス876は、インターフェース877を介して種々の構成要素と接続される。
(入力装置878)
入力装置878には、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ、及びレバー等が用いられる。さらに、入力装置878としては、赤外線やその他の電波を利用して制御信号を送信することが可能なリモートコントローラ(以下、リモコン)が用いられることもある。また、入力装置878には、マイクロフォンなどの音声入力装置が含まれる。
入力装置878には、例えば、マウス、キーボード、タッチパネル、ボタン、スイッチ、及びレバー等が用いられる。さらに、入力装置878としては、赤外線やその他の電波を利用して制御信号を送信することが可能なリモートコントローラ(以下、リモコン)が用いられることもある。また、入力装置878には、マイクロフォンなどの音声入力装置が含まれる。
(出力装置879)
出力装置879は、例えば、CRT(Cathode Ray Tube)、LCD、又は有機EL等のディスプレイ装置、スピーカ、ヘッドホン等のオーディオ出力装置、プリンタ、携帯電話、又はファクシミリ等、取得した情報を利用者に対して視覚的又は聴覚的に通知することが可能な装置である。また、本開示に係る出力装置879は、触覚刺激を出力することが可能な種々の振動デバイスを含む。
出力装置879は、例えば、CRT(Cathode Ray Tube)、LCD、又は有機EL等のディスプレイ装置、スピーカ、ヘッドホン等のオーディオ出力装置、プリンタ、携帯電話、又はファクシミリ等、取得した情報を利用者に対して視覚的又は聴覚的に通知することが可能な装置である。また、本開示に係る出力装置879は、触覚刺激を出力することが可能な種々の振動デバイスを含む。
(ストレージ880)
ストレージ880は、各種のデータを格納するための装置である。ストレージ880としては、例えば、ハードディスクドライブ(HDD)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、又は光磁気記憶デバイス等が用いられる。
ストレージ880は、各種のデータを格納するための装置である。ストレージ880としては、例えば、ハードディスクドライブ(HDD)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、又は光磁気記憶デバイス等が用いられる。
(ドライブ881)
ドライブ881は、例えば、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記録媒体901に記録された情報を読み出し、又はリムーバブル記録媒体901に情報を書き込む装置である。
ドライブ881は、例えば、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブル記録媒体901に記録された情報を読み出し、又はリムーバブル記録媒体901に情報を書き込む装置である。
(リムーバブル記録媒体901)
リムーバブル記録媒体901は、例えば、DVDメディア、Blu-ray(登録商標)メディア、HD DVDメディア、各種の半導体記憶メディア等である。もちろん、リムーバブル記録媒体901は、例えば、非接触型ICチップを搭載したICカード、又は電子機器等であってもよい。
リムーバブル記録媒体901は、例えば、DVDメディア、Blu-ray(登録商標)メディア、HD DVDメディア、各種の半導体記憶メディア等である。もちろん、リムーバブル記録媒体901は、例えば、非接触型ICチップを搭載したICカード、又は電子機器等であってもよい。
(接続ポート882)
接続ポート882は、例えば、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)、RS-232Cポート、又は光オーディオ端子等のような外部接続機器902を接続するためのポートである。
接続ポート882は、例えば、USB(Universal Serial Bus)ポート、IEEE1394ポート、SCSI(Small Computer System Interface)、RS-232Cポート、又は光オーディオ端子等のような外部接続機器902を接続するためのポートである。
(外部接続機器902)
外部接続機器902は、例えば、プリンタ、携帯音楽プレーヤ、デジタルカメラ、デジタルビデオカメラ、又はICレコーダ等である。
外部接続機器902は、例えば、プリンタ、携帯音楽プレーヤ、デジタルカメラ、デジタルビデオカメラ、又はICレコーダ等である。
(通信装置883)
通信装置883は、ネットワークに接続するための通信デバイスであり、例えば、有線又は無線LAN、Bluetooth(登録商標)、又はWUSB(Wireless USB)用の通信カード、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、又は各種通信用のモデム等である。
通信装置883は、ネットワークに接続するための通信デバイスであり、例えば、有線又は無線LAN、Bluetooth(登録商標)、又はWUSB(Wireless USB)用の通信カード、光通信用のルータ、ADSL(Asymmetric Digital Subscriber Line)用のルータ、又は各種通信用のモデム等である。
1.10 まとめ
以上説明したように、本開示の第1の実施形態に係る情報処理サーバ20は、自律移動体10の動作を制御する動作制御部230を備える。また、本開示の第1の実施形態に係る動作制御部230は、ユーザと自律移動体10とのコミュニケーションを誘引する誘因動作を自律移動体に能動的に実行させることを特徴の一つとする。また、上記の誘因動作およびコミュニケーションは、少なくとも物理空間における自律移動体10の挙動を含む。係る構成によれば、ユーザとのコミュニケーションをより自然かつ効果的に実現することが可能となる。
以上説明したように、本開示の第1の実施形態に係る情報処理サーバ20は、自律移動体10の動作を制御する動作制御部230を備える。また、本開示の第1の実施形態に係る動作制御部230は、ユーザと自律移動体10とのコミュニケーションを誘引する誘因動作を自律移動体に能動的に実行させることを特徴の一つとする。また、上記の誘因動作およびコミュニケーションは、少なくとも物理空間における自律移動体10の挙動を含む。係る構成によれば、ユーザとのコミュニケーションをより自然かつ効果的に実現することが可能となる。
なお、本明細書の情報処理サーバ20の処理に係る各ステップは、必ずしもフローチャートに記載された順序に沿って時系列に処理される必要はない。例えば、情報処理サーバ20の処理に係る各ステップは、フローチャートに記載された順序と異なる順序で処理されても、並列的に処理されてもよい。
2.第2の実施形態
次に、本開示の第2の実施形態において、以下に図面を参照して詳細に説明する。なお、以下の説明において、上述した実施形態と同様の構成及び動作は、それらを引用することで、その重複する説明を省略する。
次に、本開示の第2の実施形態において、以下に図面を参照して詳細に説明する。なお、以下の説明において、上述した実施形態と同様の構成及び動作は、それらを引用することで、その重複する説明を省略する。
2.1 概要
まず、本開示の第2の実施形態の概要について述べる。ユーザ、周囲また自身の状況に応じて、移動などを含む種々の動作を自律的に実行する動作を実現するためには、ロボット装置(自律移動体)の姿勢制御が重要となる。上記の姿勢制御には、例えば、自律移動体が備えるジャイロセンサが検出した角速度に基づいて、当該自律移動体のバランスを制御する姿勢制御が含まれ得る。係る制御によれば、例えば、意図しない転倒が発生しないよう自律移動体の姿勢を微細に調整することなどが可能となる。
まず、本開示の第2の実施形態の概要について述べる。ユーザ、周囲また自身の状況に応じて、移動などを含む種々の動作を自律的に実行する動作を実現するためには、ロボット装置(自律移動体)の姿勢制御が重要となる。上記の姿勢制御には、例えば、自律移動体が備えるジャイロセンサが検出した角速度に基づいて、当該自律移動体のバランスを制御する姿勢制御が含まれ得る。係る制御によれば、例えば、意図しない転倒が発生しないよう自律移動体の姿勢を微細に調整することなどが可能となる。
一方、姿勢制御を行う場合であっても、自律移動体が移動を行わずその場で停留する場合では、装置本体がふらふらと安定しない状態となるのが一般的である。また、停留時にも自律移動体が転倒しないよう姿勢制御を継続して実行することで電力コストが増大する傾向がある。
本開示に係る技術思想は上記の点に着目して発想されたものであり、停留時には、自律移動体を座位状態とすることで設置面との接触面積を増加させ、姿勢制御なしでも本体を安定的な状態で静止させることを特徴の一つとする。係る特徴によれば、移動を必要としない場合には、自律移動体をその場でしっかりと静止させるとともに、不要な姿勢制御を行わないことで、電力消費を効果的に低減することが可能である。
また、本実施形態に係る自律移動体は、前傾姿勢を維持した立位状態で前後運動、旋回運動、回転運動などの移動動作を行うことを特徴の一つとする。係る特徴によれば、自律移動体が例えば長楕円体などの比較的単純な外形を有する場合であっても、頭部や腰部を明確に想起させることで、人工的物体である印象を拭い去り、より現実の生命体に近い引用をユーザに与えることが可能となる。
以下、本実施形態に係る自律移動体が有する特徴と、当該特徴が奏する効果について詳細に説明する。
なお、本実施形態に係る自律移動体の構成は、上述した第1の実施形態において図1~図13Bを用いて説明した構成と同様であってよいため、ここでは詳細な説明を省略する。
2.2 自律移動体の機能構成例
次に、本開示の第2の実施形態に係る自律移動体10の機能構成例について述べる。図32は、本実施形態に係る自律移動体10の機能構成例を示すブロック図である。図32に示すように、第2の実施形態に係る自律移動体10は、第1の実施形態において図15を用いて説明した自律移動体10と同様の構成において、制御部160が動作制御部260に置き換えられた構成を備える。
次に、本開示の第2の実施形態に係る自律移動体10の機能構成例について述べる。図32は、本実施形態に係る自律移動体10の機能構成例を示すブロック図である。図32に示すように、第2の実施形態に係る自律移動体10は、第1の実施形態において図15を用いて説明した自律移動体10と同様の構成において、制御部160が動作制御部260に置き換えられた構成を備える。
(動作制御部260)
本実施形態に係る動作制御部260は、自律移動体10が備える各構成を制御する機能を有する。動作制御部260は、例えば、センサ部110が収集したセンサ情報に基づいて行動計画を行い、光源130による眼球表現や、音声出力部140による音声出力を制御する。また、動作制御部260は、上記の行動計画に基づいて、駆動部150の動作を制御してよい。
本実施形態に係る動作制御部260は、自律移動体10が備える各構成を制御する機能を有する。動作制御部260は、例えば、センサ部110が収集したセンサ情報に基づいて行動計画を行い、光源130による眼球表現や、音声出力部140による音声出力を制御する。また、動作制御部260は、上記の行動計画に基づいて、駆動部150の動作を制御してよい。
以上、本開示の第2の実施形態に係る自律移動体10の機能構成例について説明した。なお、図32を用いて説明した上記の構成はあくまで一例であり、本開示の第2の実施形態に係る自律移動体10の機能構成は係る例に限定されない。例えば、本実施形態に係る自律移動体10の動作は、第1の実施形態に係る自律移動体10と同様に、自律移動体10と通信を行う情報処理サーバ20により制御されてもよい。すなわち、第2の実施形態に係る自律移動体10を含む情報処理システムは、第1の実施形態において図14~図16を用いて説明した情報処理システムと同様の構成であってもよい。この場合、自律移動体10は、通信部170を備え、上述した通信装置530を介して、情報処理サーバ20にセンサ情報を送信し、情報処理サーバ20から制御信号を受信してよい。本実施形態に係る自律移動体10の機能構成は、自律移動体10の形状などに応じて柔軟に変形可能である。
2.3 姿勢制御の詳細
次に、本実施形態に係る動作制御部260による自律移動体10の姿勢制御について詳細に説明する。上述したように、本実施形態に係る動作制御部260は、自律移動体10が前傾姿勢を維持した状態で移動動作を行うよう制御を行うことを特徴の一つとする。本実施形態に係る動作制御部260が有する上記の機能によれば、自律移動体10に方向性を生じさせることで、より現実の生命体に近い豊かな動作表現を実現することが可能となる。
次に、本実施形態に係る動作制御部260による自律移動体10の姿勢制御について詳細に説明する。上述したように、本実施形態に係る動作制御部260は、自律移動体10が前傾姿勢を維持した状態で移動動作を行うよう制御を行うことを特徴の一つとする。本実施形態に係る動作制御部260が有する上記の機能によれば、自律移動体10に方向性を生じさせることで、より現実の生命体に近い豊かな動作表現を実現することが可能となる。
また、本実施形態に係る動作制御部260は、停留時と移動動作時とで異なる姿勢制御を行ってよい。図33は、本実施形態に係る停留時および移動動作時における姿勢制御について説明するための図である。図33の左側には、自律移動体10が移動動作を行わずその場で停留する場合が示されている。この際、本実施形態に係る動作制御部260は、車輪570を自律移動体10の本体内部へと格納させ、自律移動体10を座位状態で静止させてよい。
本実施形態に係る動作制御部260による上記の制御によれば、移動動作が必要ない場合には、車輪570を本体内部へと格納し底部を設置面に接触させることで、自律移動体10をしっかりと静止させ、一般的なロボット装置のような停留時におけるふらつきを防止することが可能となる。また、係る制御によれば、姿勢制御なしでも自律移動体10を安定させることができ、姿勢制御に要する電力消費を効果的に低減することが可能となる。
一方、図33の右側には、自律移動体が移動動作を行う場合が示されている。この際、本実施形態に係る動作制御部260は、車輪570を自律移動体10の本体外部へ突出させ立位状態を維持するとともに、車輪570の駆動制御や姿勢制御を行う。
なお、動作制御部260は、上述したように、自律移動体10の重心CoGが車輪570の鉛直上に位置するように制御することで、自律移動体10に前傾姿勢を維持させる。なお、この際、動作制御部260は、車輪570の位置を重心CoGの位置に合わせて調整してもよい。
本実施形態に係る動作制御部260による上記の制御によれば、前傾姿勢を維持した状態で自律移動体10に移動動作を行わせることができ、自律移動体10が比較的単純な外形を有する場合であっても、現実の生命体により近い豊かな動作表現を実現することが可能となる。
なお、図33に示した一例では、自律移動体10が座位状態においても前傾姿勢を維持する場合を示したが、本実施形態に係る座位状態の姿勢は係る例に限定されない。図34は、本実施形態に係る自律移動体10が座位状態において直立姿勢を取る場合の一例が示されている。図34に示す一例の場合、底面部の角度が本体の体軸に対し垂直となるように形成されていることがわかる。このように、座位状態における自律移動体10の姿勢は、底面部の角度を変化させることで適宜調整可能である。
なお、図33に示すように、底面部の角度を、前方が開くように体軸に対し斜めとした場合、移動動作時に前方下部が走行面に接触する可能性をより低減することが可能である。一方、図34に示すように、底面部の角度を体軸に対し垂直に形成する場合、座位状態において自律移動体10をより安定的に静止させる効果が期待される。
しかし、この場合、図34の左側に示すように、座位状態においては、自律移動体10の重心CoGが、車輪570の回転軸からズレることとなる。ここで、何ら制御を行わない場合、立位状態へ遷移した瞬間に重心CoGにより自律移動体10の本体が後方へ動くこととなる。
上記のような事態を防止するため、本実施形態に係る動作制御部260は、座位状態から立位状態への遷移に際し、鉛直方向における自律移動体10の重心CoGと車輪570の回転軸とのズレ量に基づいて車輪570を回転させてよい。
図35は、本実施形態に係る立位状態への遷移時における車輪制御について説明するための図である。図35には、自律移動体10の車輪570が、突出に伴い走行面と接触する際の状況が示されている。この際、本実施形態に係る動作制御部260は、車輪570を、上記のズレ量+αだけ回転させ、重心CoGを車輪570の回転軸の鉛直上に位置させた後、姿勢制御を行ってよい。動作制御部260による上記の制御によれば、座位状態において重心と車輪570の回転軸とにズレが生じている場合であっても、当該ズレを相殺し、後方に動くことなく安定的に自律移動体10を立位状態に遷移させることが可能となる。
なお、上記では、底面部を体軸と垂直に形成することにより、重心と回転軸とにズレが生じる場合を例に述べたが、上記のようなズレは、図36に示すように、走行面が傾斜を有する場合にも生じ得る。図36に示す一例の場合、底面部の角度は図33に示した一例と同様であるが、走行面が傾いているために、座位状態における重心CoGが、車輪570の回転軸からズレてしまっている。
しかし、この場合であっても、図35を用いて説明したように、動作制御部260が、鉛直方向における重心CoGと車輪570の回転軸のズレ量に基づいて、車輪570を回転させることで、後方に動くことなく自律移動体10を安定的に立位状態へ遷移させることが可能である。
以上、本実施形態に係る座位状態および立位状態の姿勢制御について説明した。続いて、本実施形態に係るフライホイールを用いた姿勢制御について説明する。上述した構成に加え、本実施形態に係る自律移動体10は、フライホイール610をさらに備えてもよい。本実施形態に係る動作制御部260は、フライホイール610の回転により生じるジャイロ効果を利用して自律移動体10の姿勢制御をより精度高く実現することが可能である。
図37は、本実施形態に係るフライホイール610の配置について説明するための図である。図37には、本実施形態に係るフライホイールおよび基板505の配置関係が種々の角度から示されている。図37に示すように、本実施形態に係るフライホイール610は、眼部510およびカメラ515が配置される基板505の内側に配置される。この際、本実施形態に係るフライホイール610は、3つの回転軸を有するよう、基板505と連動するジンバル上に配置され得る。
図37の左側に示す回転軸Rwは、フライホイール610を高速回転させるための軸である。本実施形態に係る動作制御部260は、モータ565wを駆動することでフライホイール610を高速回転させ、発生したジャイロ効果により、自律移動体10の姿勢をより安定的に保つことができる。
また、図37の中央に示す回転軸Raは、基板505と連動してフライホイール610をチルト方向に回転させるための軸である。本実施形態に係る動作制御部260は、モータ565aを駆動することで、基板505、および高速回転するフライホイールをチルト方向に傾け、ジャイロ効果による大きな回転力を発生させることが可能である。
また、図37の右側に示す回転軸Rbは、基板505と連動してフライホイール610をパン方向に回転させるための軸である。本実施形態に係る動作制御部260は、モータ565bを駆動することで、基板505およびフライホイール610をパン方向における向きを調整することが可能である。係る制御によれば、ジャイロ効果による回転力の発生方向を任意の方向に定めることが可能となる。
以上、本実施形態に係るフライホイール610の配置について説明した。続いて、本実施形態に係るフライホイール610を利用した転倒状態からの復帰について説明する。上述したように、本実施形態に係る動作制御部260は、フライホイールの610を高速回転させ、また高速回転するフライホイール610をチルト方向に傾けることで、ジャイロ効果による大きな回転力を発生させることができる。
図38は、本実施形態に係るフライホイール610のジャイロ効果により発生する回転力について説明するための図である。当該回転力を利用した姿勢制御を行う場合、動作制御部260は、まず、回転軸Rwを中心にフライホイール610を高速回転させることで、大きな角運動量を保持させる。
次に、本実施形態に係る動作制御部260は、高速回転するフライホイール610を、回転軸Raを中心にチルト方向へ傾けることで、ジャイロ効果により大きな回転力を発生させる。この際、ジャイロ効果により発生する回転力の発生方向Dは、図38に示すように、回転軸RwおよびRaに対し垂直となる。本実施形態に係る動作制御部260は、上記のように発生する回転力を利用することで、例えば、転倒状態にある自律移動体10を立位状態に復帰させることが可能である。
図39~図42は、本実施形態に係る転倒状態からの復帰制御の流れを説明するための図である。図39には、自律移動体10が横向き転倒した場合の一例を示す図である。この場合、動作制御部260は、センサ部110が収集したセンサ情報に基づいて、転倒状態における自律移動体10の向きを検出する。
次に、動作制御部260は、上記で検出した向きに基づいて、図40に示すように、基板505が起き上がる方向を向くように、モータ565bを駆動し基板505およびフライホイール610を回転軸Rbを中心にパン方向に回転させる。すなわち、動作制御部260は、ジャイロ効果による回転力の発生方向を、フライホイール610をパン方向に傾けることで調整することができる。係る制御によれば、自律移動体10がどの方向に倒れた場合であっても、力学上において正しい位置において自律移動体10を立位状態に復帰させることができる。
次に、動作制御部260は、図41に示すように、モータ565wを駆動しフライホイール610を高速回転させる。ここで、フライホイール610の回転速度が閾値を超えた際、動作制御部260は、モータ565aを駆動し基板505およびフライホイール610を回転軸Raを中心にチルト方向に高速で傾ける。
以上説明した制御によれば、ジャイロ効果による回転力により自律移動体10が図42に示すように転倒状態から立位状態へと復帰することが可能である。
なお、本実施形態に係る動作制御部260は、上記で述べた転倒状態からの復帰に限らず、フライホイール610を利用した種々の動作制御を行うことが可能である。動作制御部260は、例えば、フライホイール610のジャイロ効果を利用して、自律移動体10の体軸が水平に近い状態で静止させたり、当該状態から立位状態へ復帰させることなども可能である。また、動作制御部260は、例えば、自律移動体10にジャンプ、前転、側転などを実行させることも可能である。本実施形態に係るフライホイール610および動作制御部260によれば、自律移動体10の安定した姿勢制御を実現するとともに、より豊かな動作表下を実現することが可能となる。
2.4 まとめ
以上説明したように、本開示の第2の実施形態に係る自律移動体10は、本体内部への格納、および本体外部への突出が可能な車輪570を備える。また、本開示の第2の実施形態に係る動作制御部260は、自律移動体10の移動に際し、車輪570を本体外部へ突出させ立位状態を維持するとともに、車輪570の駆動制御および自律移動体10の姿勢制御を行う。また、動作制御部260は、自律移動体10の停留時に、車輪570を本体内部へと格納することで座位状態で静止させる。係る構成によれば、自律移動体の豊かな動作表現をより容易な姿勢制御で実現することが可能となる。
以上説明したように、本開示の第2の実施形態に係る自律移動体10は、本体内部への格納、および本体外部への突出が可能な車輪570を備える。また、本開示の第2の実施形態に係る動作制御部260は、自律移動体10の移動に際し、車輪570を本体外部へ突出させ立位状態を維持するとともに、車輪570の駆動制御および自律移動体10の姿勢制御を行う。また、動作制御部260は、自律移動体10の停留時に、車輪570を本体内部へと格納することで座位状態で静止させる。係る構成によれば、自律移動体の豊かな動作表現をより容易な姿勢制御で実現することが可能となる。
その他の構成、動作及び効果は、上述した実施形態と同様であってよいため、ここでは詳細な説明を省略する。
3.第3の実施形態
次に、本開示の第3の実施形態において、以下に図面を参照して詳細に説明する。なお、以下の説明において、上述した実施形態と同様の構成及び動作は、それらを引用することで、その重複する説明を省略する。
次に、本開示の第3の実施形態において、以下に図面を参照して詳細に説明する。なお、以下の説明において、上述した実施形態と同様の構成及び動作は、それらを引用することで、その重複する説明を省略する。
本実施形態では、上述した実施形態に係る自律移動体10に搭載されるセンサ部110のより具体的な構成を、例を挙げて説明する。
なお、本実施形態に係る自律移動体の構成は、上述した第1の実施形態において図1~図13Bを用いて説明した構成と同様であってよいため、ここでは詳細な説明を省略する。また、本実施形態では、自律移動体の機能構成として、上述した第2の実施形態において図32を用いて説明した機能構成例を採用した場合を例示するが、これに限られず、例えば、上述した第1の実施形態において図14~図16を用いて説明した情報処理システムを採用することも可能である。
3.1 センサ部の構成例
図43及び図44は、本開示の第3の実施形態に係る自律移動体に搭載されるセンサ部の構成例を示す模式図である。図43は、自律移動体10を側方から見た際のセンサ位置を示す模式図であり、図44は、自律移動体10を上方から見た際のセンサ位置を示す模式図である。
図43及び図44は、本開示の第3の実施形態に係る自律移動体に搭載されるセンサ部の構成例を示す模式図である。図43は、自律移動体10を側方から見た際のセンサ位置を示す模式図であり、図44は、自律移動体10を上方から見た際のセンサ位置を示す模式図である。
図43及び図44に示すように、本実施形態に係る自律移動体10は、例えば、第1障害物センサ1101と、第2障害物センサ1102及び1103と、第1~第4床面センサ1111~1114と、近接センサ1121と、トルクセンサ1122とを備える。また、自律移動体10は、その他にも、上述した実施形態と同様に、慣性センサ525と、カメラ515とを備える。
(第1障害物センサ1101)
第1障害物センサ1101は、例えば、立位状態にある自律移動体10の正面に設けられ、自律移動体10の正面前方の比較的広角な範囲に存在する障害物や人等の物体を検出する。この第1障害物センサ1101は、例えば、ミリ波レーダセンサであってよい。ただし、これに限定されず、例えば、反射光を利用して物体までの距離やその形状等を検出する3次元ToFセンサや、光源に赤外光源又は近赤外光源を利用するToFセンサや、超音波を出射してその反射から物体までの距離等を検出する超音波センサや、物体を撮像するカメラ等、障害物や人等の物体を検出可能な種々のセンサを第1障害物センサ1101に適用することも可能である。
第1障害物センサ1101は、例えば、立位状態にある自律移動体10の正面に設けられ、自律移動体10の正面前方の比較的広角な範囲に存在する障害物や人等の物体を検出する。この第1障害物センサ1101は、例えば、ミリ波レーダセンサであってよい。ただし、これに限定されず、例えば、反射光を利用して物体までの距離やその形状等を検出する3次元ToFセンサや、光源に赤外光源又は近赤外光源を利用するToFセンサや、超音波を出射してその反射から物体までの距離等を検出する超音波センサや、物体を撮像するカメラ等、障害物や人等の物体を検出可能な種々のセンサを第1障害物センサ1101に適用することも可能である。
(第2障害物センサ1102,1103)
第2障害物センサ1102は、例えば、立位状態にある自律移動体10の正面右寄りに設けられ、自律移動体10の右前方に存在する障害物や人等の物体を検出する。一方、第2障害物センサ1103は、例えば、立位状態にある自律移動体10の正面左寄りに設けられ、自律移動体10の左前方に存在する障害物や人等の物体を検出する。これら第2障害物センサ1102及び1103は、例えば、一方向に存在する物体までの距離を測定する1次元ToFセンサであってよい。ただし、これに限定されず、ミリ波レーダセンサ、3次元ToFセンサ、超音波センサ等、障害物や人等の物体を検出可能な種々のセンサを第2障害物センサ1102及び1103に適用することも可能である。
第2障害物センサ1102は、例えば、立位状態にある自律移動体10の正面右寄りに設けられ、自律移動体10の右前方に存在する障害物や人等の物体を検出する。一方、第2障害物センサ1103は、例えば、立位状態にある自律移動体10の正面左寄りに設けられ、自律移動体10の左前方に存在する障害物や人等の物体を検出する。これら第2障害物センサ1102及び1103は、例えば、一方向に存在する物体までの距離を測定する1次元ToFセンサであってよい。ただし、これに限定されず、ミリ波レーダセンサ、3次元ToFセンサ、超音波センサ等、障害物や人等の物体を検出可能な種々のセンサを第2障害物センサ1102及び1103に適用することも可能である。
なお、図44に示すように、第1障害物センサ1101の検出範囲と、第2障害物センサ1102又は1103の検出範囲とは、重複している。すなわち、本実施形態は、自律移動体10の右前方に存在する物体を、第1障害物センサ1101と第2障害物センサ1102とで検出し、自律移動体10の左前方に存在する物体を、第1障害物センサ1101と第2障害物センサ1103とで検出するように構成されている。
(第1~第4床面センサ1111~1114)
第1~第4床面センサ1111~1114は、例えば、立位状態にある自律移動体10の外周に沿って配列するように配置され、自律移動体10周辺の床面の形状を検出する。自律移動体10が載置される床面とは、例えば、フローリングや畳み等の床面やテーブルやデスク等の天板上面等であってよく、その形状とは、天板上面の外縁の形状や、壁やレール等で区切られた部屋や廊下などの形状などであってよい。なお、以下の説明において、天板上面の外縁や、部屋や廊下等を区切る壁やレール等を、「境界」と称する。
第1~第4床面センサ1111~1114は、例えば、立位状態にある自律移動体10の外周に沿って配列するように配置され、自律移動体10周辺の床面の形状を検出する。自律移動体10が載置される床面とは、例えば、フローリングや畳み等の床面やテーブルやデスク等の天板上面等であってよく、その形状とは、天板上面の外縁の形状や、壁やレール等で区切られた部屋や廊下などの形状などであってよい。なお、以下の説明において、天板上面の外縁や、部屋や廊下等を区切る壁やレール等を、「境界」と称する。
例えば、第1床面センサ1111は、立位状態にある自律移動体10の正面右寄りに斜め下方に向けて設けられ、自律移動体10の右前方の境界を検出する。同様に、第2床面センサ1112は、立位状態にある自律移動体10の正面左寄りに斜め下方に向けて設けられ、自律移動体10の左前方の境界を検出し、第3床面センサ1113は、立位状態にある自律移動体10の後面右寄りに斜め下方に向けて設けられ、自律移動体10の右後方の境界を検出し、第4床面センサ1114は、立位状態にある自律移動体10の後面左寄りに斜め下方に向けて設けられ、自律移動体10の左後方の境界を検出する。なお、第1~第4床面センサ1111~1114それぞれの自律移動体10外周における設置間隔は、例えば90°間隔であってもよい。
これら第1~第4床面センサ1111~1114は、例えば、1次元ToFセンサであってよい。ただし、これに限定されず、超音波センサや近接センサ等、各センサが向く斜め下方における物体(床面等)までの距離を検出可能なセンサや、境界の形状を特定可能なセンサ等であれば、種々のセンサを第1~第4床面センサ1111~1114に適用することが可能である。
(近接センサ1121)
近接センサ1121は、例えば、立位状態又は座位状態にある自律移動体10の底部に設けられ、自律移動体10の底部に床などの物体が近接しているか否かを検出する。すなわち、近接センサ1121は、自律移動体10が床面等に対して立位又は座位の状態で載置されているか、又は、ユーザ等により持ち上げられていたり、床面等に対して水平位の状態で載置されているか等を検出する。なお、近接センサ1121の代わりに、ToFセンサなど、自律移動体10の底部に床面等の物体が近接しているか否かを判定可能なセンサが用いられてもよい。
近接センサ1121は、例えば、立位状態又は座位状態にある自律移動体10の底部に設けられ、自律移動体10の底部に床などの物体が近接しているか否かを検出する。すなわち、近接センサ1121は、自律移動体10が床面等に対して立位又は座位の状態で載置されているか、又は、ユーザ等により持ち上げられていたり、床面等に対して水平位の状態で載置されているか等を検出する。なお、近接センサ1121の代わりに、ToFセンサなど、自律移動体10の底部に床面等の物体が近接しているか否かを判定可能なセンサが用いられてもよい。
(トルクセンサ1122)
トルクセンサ1122は、例えば、車輪570の車軸に設けられ、車軸に発生したトルクを検出する。このトルクセンサ1122には、例えば、磁歪式、ひずみゲージ式、圧電式、光学式、ばね式、静電容量式など、種々のトルクセンサが採用されてよい。
トルクセンサ1122は、例えば、車輪570の車軸に設けられ、車軸に発生したトルクを検出する。このトルクセンサ1122には、例えば、磁歪式、ひずみゲージ式、圧電式、光学式、ばね式、静電容量式など、種々のトルクセンサが採用されてよい。
(慣性センサ525)
慣性センサ525は、第1の実施形態において説明したように、例えば、IMU(Inertial Measurement Unit)などの加速度や角度や角速度や角加速度等のうちの少なくとも1つを検出可能なセンサであってよい。
慣性センサ525は、第1の実施形態において説明したように、例えば、IMU(Inertial Measurement Unit)などの加速度や角度や角速度や角加速度等のうちの少なくとも1つを検出可能なセンサであってよい。
(カメラ515)
カメラ515は、ユーザや周囲環境を撮像する撮像装置である。カメラ515で取得された画像データは、例えば、写真としてユーザに提供されたり、ユーザの顔認識等に使用されたりしてよい。
カメラ515は、ユーザや周囲環境を撮像する撮像装置である。カメラ515で取得された画像データは、例えば、写真としてユーザに提供されたり、ユーザの顔認識等に使用されたりしてよい。
なお、センサ部110には、その他にも、ユーザが発した声などの音を入力するマイクロフォンや、自律移動体10の位置を測定するためのGPS(Global Positioning System)など、種々のセンサが含まれ得る。
3.2 検出結果に基づく動作例
続いて、上記のように構成されたセンサ部110で得られた検出結果に基づく制御動作について、幾つか例を挙げて説明する。
続いて、上記のように構成されたセンサ部110で得られた検出結果に基づく制御動作について、幾つか例を挙げて説明する。
3.2.1 衝突防止動作
衝突防止動作は、自律移動体10が進行方向又は走行ルート上に存在する障害物を回避して衝突を防止するための動作である。この衝突防止動作には、例えば、障害物検出動作と障害物回避動作とが含まれ、センサ部110における第1障害物センサ1101と、第2障害物センサ1102及び1103とを用いて障害物の検出及び回避が実行される。
衝突防止動作は、自律移動体10が進行方向又は走行ルート上に存在する障害物を回避して衝突を防止するための動作である。この衝突防止動作には、例えば、障害物検出動作と障害物回避動作とが含まれ、センサ部110における第1障害物センサ1101と、第2障害物センサ1102及び1103とを用いて障害物の検出及び回避が実行される。
ここで、第1障害物センサ1101と第2障害物センサ1102及び1103とは、異なる種類のセンサであることが好適である。例えば、第1障害物センサ1101にミリ波レーダセンサを用いた場合には、第2障害物センサ1102及び1103には、1次元ToFセンサなどのミリ波レーダセンサとは異なる種類のセンサを用いることが好ましい。
具体的には、動作制御部260は、第1障害物センサ1101で得られた検出結果と、第2障害物センサ1102及び/又は1103で得られた検出結果とから、自律移動体10の進行方向又は走行ルート上に障害物が存在するか否かを判定する。第1障害物センサ1101と第2障害物センサ1102及び/又は1103とのうちの少なくとも一方で障害物が検出された場合には、動作制御部260は、自律移動体10の進行方向又は走行ルート上に障害物が存在すると判定する。
このように、第1障害物センサ1101と第2障害物センサ1102及び1103とに異なる種類のセンサを用いることで、より確実に障害物を検出することが可能となる。
すなわち、ミリ波レーダセンサや1次元ToFセンサや超音波センサなどは、対象物の大きさや形状や材質や色等に応じてその検出精度が異なり、また、キズやホコリの付着等の検出条件の変化に対するロバスト性も異なる。例えば、ミリ波レーダセンサは透明な物体に対する検出精度が低く、また、1次元ToFセンサなどの測距センサはセンサ窓のキズやホコリの付着によって検出精度が大きく低下する。そこで、第1障害物センサ1101と第2障害物センサ1102及び1103とに異なる種類のセンサを用い、何れかのセンサで障害物が検出された場合には障害物が存在すると判定することで、検出対象物の種類等や検出条件等に対するロバスト性を向上することが可能となる。
そして、進行方向又は走行ルート上に回避すべき障害物が存在すると判定した場合、動作制御部260は、障害物を回避するための動作(障害物回避動作)を実行する。具体的には、動作制御部260は、自律移動体10の進行方向及び/又は走行ルートと障害物の位置とから、障害物を右側へ避けるか左側へ避けるかを決定し、決定した方向へ自律移動体10を進行させる。
その際、動作制御部260は、目的地までの走行ルートに障害物を回避するルートが含まれるように走行ルートに更新することで障害物回避動作を実行したり、障害物回避動作を実行して障害物を回避した後の自律移動体10の現在位置に基づいて新たに目的地までの走行ルートを決定したりなど、種々の方法で障害物回避動作を実現してよい。また、障害物回避動作には、自律移動体10の減速や停止等が含まれてもよい。
なお、障害物を右側へ避けるか左側へ避けるかの判断には、第2障害物センサ1102及び1103で得られた検出結果が用いられてもよい。例えば、動作制御部260は、右前面に配置された第2障害物センサ1102で障害物が検出されていた場合には障害物の左側を通行し、左前面に配置された第2障害物センサ1103で障害物が検出されていた場合には障害物の右側を通行するように、自律移動体10を制御してもよい。
3.2.2 落下激突防止動作
落下激突防止動作は、自律移動体10がテーブル等から落下したり、壁に激突したりすることを防止するための動作である。この落下激突防止動作には、例えば、境界検出動作と境界回避動作とが含まれ、複数(本例では4つ)の第1~第4床面センサ1111~1114を用いて境界の検出及び回避が実行される。
落下激突防止動作は、自律移動体10がテーブル等から落下したり、壁に激突したりすることを防止するための動作である。この落下激突防止動作には、例えば、境界検出動作と境界回避動作とが含まれ、複数(本例では4つ)の第1~第4床面センサ1111~1114を用いて境界の検出及び回避が実行される。
上述したように、第1~第4床面センサ1111~1114は、例えば、立位状態にある自律移動体10の外周に沿って配列している。したがって、第1~第4床面センサ1111~1114を使用することで、自律移動体10周囲の境界の形状を検出することが可能である。それにより、自律移動体10が何れの方向へ向けて走行した場合でも、テーブル等から落下したり壁に激突したりすることを防止することが可能となる。
ただし、例えば、第1~第4床面センサ1111~1114に1次元ToFセンサ等の測距センサを用いた場合、センサ窓のキズやホコリの付着によって検出精度が大きく低下してしまう。
そこで本実施形態では、第1~第4床面センサ1111~1114それぞれで検出された値の絶対値に加え、第1~第4床面センサ1111~1114それぞれで検出された値の変化量に基づいて、それぞれの方向における境界の位置や距離等を検出する。具体的には、例えば、動作制御部260は、第1~第4床面センサ1111~1114それぞれで検出された値の変化量(微分値)を監視し、第1~第4床面センサ1111~1114それぞれで検出された値の絶対値から求まる境界までの距離と、第1~第4床面センサ1111~1114それぞれで検出された値の変化量との両方の値から、それぞれの方向における境界の位置や距離等を推定又は特定する。
ここで、第1~第4床面センサ1111~1114に使用される1次元ToFセンサ等には固体値が存在し、その測距精度が固体ごとに異なることが一般的である。そのような場合には、自律移動体10の出荷前や自律移動体10を初期起動した際に、第1~第4床面センサ1111~1114それぞれに対してキャリブレーションを実行するように構成することで、測距や検出精度に対するロバスト性を高めることが可能である。
なお、本実施形態では、自律移動体10の外周に沿って4つの床面センサ1111~1114を配置した場合を例示したが、配置する床面センサの数は4つに限定されず、種々変更されてよい。その際、各床面センサの検出範囲の広がりを考慮して床面センサの数を決定することで、自律移動体10周囲における境界の存在や境界までの距離等を的確に検出することが可能となる。
そして、進行方向又は走行ルート上に境界が存在すると判定した場合、動作制御部260は、境界を回避するための動作(境界回避動作)を実行する。具体的には、動作制御部260は、自律移動体10の進行方向及び/又は走行ルートと境界の位置とから、進行方向を右側へ変更するか左側へ変更するかを決定し、決定した方向へ自律移動体10の進行方向を修正する。
その際、動作制御部260は、目的地までの走行ルートに境界を回避するルートが含まれるように走行ルートに更新することで境界回避動作を実行したり、境界回避動作を実行して境界を回避した後の自律移動体10の現在位置に基づいて新たに目的地までの走行ルートを決定したりなど、種々の方法で境界回避動作を実現してよい。また、境界回避動作には、自律移動体10の減速や停止等が含まれてもよい。
3.2.3 空転防止動作
空転防止動作は、自律移動体10がユーザ等により持ち上げられた際や、テーブル等から落下した際や、横転等をした際に、車輪570が空転することを防止するための動作である。この空転防止動作には、例えば、持ち上げ等検出動作と車輪停止動作とが含まれ、近接センサ1121と、トルクセンサ1122と、慣性センサ525とを用いて自律移動体10の持ち上げ等の検出と車輪570の停止とが実行される。なお、持ち上げ等検出動作には、第1~第4床面センサ1111~1114がさらに用いられてもよい。
空転防止動作は、自律移動体10がユーザ等により持ち上げられた際や、テーブル等から落下した際や、横転等をした際に、車輪570が空転することを防止するための動作である。この空転防止動作には、例えば、持ち上げ等検出動作と車輪停止動作とが含まれ、近接センサ1121と、トルクセンサ1122と、慣性センサ525とを用いて自律移動体10の持ち上げ等の検出と車輪570の停止とが実行される。なお、持ち上げ等検出動作には、第1~第4床面センサ1111~1114がさらに用いられてもよい。
動作制御部260は、例えば、自律移動体10の走行中に、以下の条件(1)~(4)のうちの少なくとも1つ又は所定数以上の条件が満たされた場合、車輪570の更なる空転を防止するために、車輪570の回転を停止させる。
(1)近接センサ1121で自律移動体10の底部が床面から離れたことを検出した場合
(2)慣性センサ525で所定方向(例えばZ軸方向)の加速度変化が検出された場合
(3)第1~第4床面センサ1111~1114の全てで値が所定値以上変化した場合
(4)トルクセンサ1122で検出されたトルクが一定時間以上変化しない場合
(1)近接センサ1121で自律移動体10の底部が床面から離れたことを検出した場合
(2)慣性センサ525で所定方向(例えばZ軸方向)の加速度変化が検出された場合
(3)第1~第4床面センサ1111~1114の全てで値が所定値以上変化した場合
(4)トルクセンサ1122で検出されたトルクが一定時間以上変化しない場合
このように、異なる種類のセンサを用いて車輪570の空転(又はその可能性)を検出するように構成することで、より確実に車輪570の空転を防止することが可能となる。例えば、近接センサ1121がユーザの手等で塞がれている場合や、自律移動体10がゆっくり持ち上げられて慣性センサ525で鉛直方向(Z軸方向)の加速度変化が検出できないなどでも、他のセンサでの検出結果に基づいて自律移動体10の持ち上げや落下や転倒等を検出して、車輪570の回転を停止させることが可能となる。
なお、条件(4)について補足すると、例えば、自律移動体10が倒立状態で静止又は走行している間、車輪570の車軸には、自律移動体10の倒立状態を保つために、周期的に変化するトルクがモータ565によって与えられる。したがって、この間、トルクセンサ1122は、周期的に変化するトルクを検出する。モータ565が車軸に与えるトルクは、例えば、慣性センサ525で検出された値に基づくフィードバック制御により制御される。そのため、例えば、自律移動体10が持ち上げられたり落下したり転倒したりすることで慣性センサ525によって検出される加速度が周期的な変化を伴わないものとなると、トルクセンサ1122が検出するトルクも周期的な変化を伴わないものとなる。そこで本実施形態では、動作制御部260は、トルクセンサ1122で検出されたトルクが一定時間以上変化しない場合には、自律移動体10が持ち上げられたか落下したか転倒したと判定してもよい。
また、自律移動体10が持ち上げられたか落下したか転倒したと判定する際の条件は、上記条件に限定されるものではない。例えば、条件(1)を満たす場合には、動作制御部260が、他の条件に関係なく、自律移動体10が持ち上げられたか落下したか転倒したと判定してもよい。さらに、条件(2)については、慣性センサ525で検出されたZ軸方向の加速度変化が予め設定しておいた閾値を超えた場合、動作制御部260が、自律移動体10が持ち上げられたか落下したか転倒したと判定してもよい。さらに、条件(3)については、第1~第4床面センサ1111~1114それぞれで検出された値の変化量が所定値以上である場合、動作制御部260が、自律移動体10が持ち上げられたか落下したか転倒したと判定してもよい。さらにまた、条件(4)については、トルクセンサ1122で検出されたトルクが急激に軽くなった場合、動作制御部260が、自律移動体10が持ち上げられたか落下したか転倒したと判定してもよい。
なお、本実施形態に係る動作制御部260は、第1~第4床面センサで取得された検出結果に基づいて、自律移動体10が立位状態(倒立状態ともいう)にあるか否かを判定してもよい。そして動作制御部260は、当該検出結果に基づいて自律移動体10が倒立状態にあると判定した場合、自律移動体10が倒立状態を維持するように、車輪570の駆動機構であるモータ565を制御してもよい。
3.2.4 人感・呼吸・ジェスチャ検出動作
また、本実施形態では、上記した動作例の他に、ユーザ等が近くに存在するか否かを検出する人感動作や、ユーザ等の呼吸を検出する呼吸検出動作や、ユーザ等のジェスチャを検出するジェスチャ検出動作等が、センサ部110で得られた検出結果に基づいて実行されてもよい。
また、本実施形態では、上記した動作例の他に、ユーザ等が近くに存在するか否かを検出する人感動作や、ユーザ等の呼吸を検出する呼吸検出動作や、ユーザ等のジェスチャを検出するジェスチャ検出動作等が、センサ部110で得られた検出結果に基づいて実行されてもよい。
例えば、人感動作は、自律移動体10の周囲に人等が存在するか否かを検出し、その結果に基づいて通常モードとスタンバイモードとを切り替える動作であってよい。また、呼吸検出動作は、人やペット等の呼吸を検出し、その検出結果に基づいて検出対象の健康状態や心理状態等を特定する動作であってよい。さらに、ジェスチャ検出動作は、人等のジェスチャ動作を検出し、検出されたジェスチャ動作に応じたリアクションや行動を実行する動作であってよい。なお、これらの動作には、第1障害物センサ1101が使用されてもよいし、その他のセンサが使用されてもよい。
3.3 センサ結果に基づく制御の流れ
次に、本実施形態に係るセンサ部110で検出された結果に基づく自律移動体10の制御の流れについて詳細に説明する。なお、以下の説明では、簡略化のため、自律移動体10がテーブル上に載置されている場合を例示する。
次に、本実施形態に係るセンサ部110で検出された結果に基づく自律移動体10の制御の流れについて詳細に説明する。なお、以下の説明では、簡略化のため、自律移動体10がテーブル上に載置されている場合を例示する。
3.3.1 メイン動作(障害物・境界回避動作を含む)
図45は、本実施形態に係る動作制御部が実行するメイン動作の一例を示すフローチャートである。図45に示すように、メイン動作では、まず、動作制御部260は、例えば、自律移動体10の目的地を設定する(ステップS2001)。例えば、動作制御部260は、カメラ515で取得された画像データや第1障害物センサ1101で検出された物体の位置等に基づき、ユーザの顔の位置を特定し、特定された顔の位置付近のテーブル上の位置を目的地に設定する。そして、目的地を設定すると、動作制御部260は、ステップS2001で設定した目的地までの走行ルートを決定する(ステップS2002)。なお、目的地の設定及び走行ルートの決定には、例えば、SLAM(簡易化されたSLAMを含む)などの技術が利用されてもよい。
図45は、本実施形態に係る動作制御部が実行するメイン動作の一例を示すフローチャートである。図45に示すように、メイン動作では、まず、動作制御部260は、例えば、自律移動体10の目的地を設定する(ステップS2001)。例えば、動作制御部260は、カメラ515で取得された画像データや第1障害物センサ1101で検出された物体の位置等に基づき、ユーザの顔の位置を特定し、特定された顔の位置付近のテーブル上の位置を目的地に設定する。そして、目的地を設定すると、動作制御部260は、ステップS2001で設定した目的地までの走行ルートを決定する(ステップS2002)。なお、目的地の設定及び走行ルートの決定には、例えば、SLAM(簡易化されたSLAMを含む)などの技術が利用されてもよい。
このように目的地までの走行ルートを決定すると、動作制御部260は、モータ565等を駆動して、自律移動体10の走行ルートに沿った走行を開始する(ステップS2003)。
走行中、動作制御部260は、第1障害物センサ1101、第2障害物センサ1102及び1103、及び、第1~第4床面センサ1111~1114からの検出値を常時又は所定の周期で監視することで、境界や障害物の検出を実行する(ステップS2004)。境界や障害物が検出されていない場合(ステップS2004のNO)、動作制御部260は、ステップS2007へ進む。一方、境界や障害物が検出された場合(ステップS2004のYES)、動作制御部260は、境界回避動作や障害物回避動作を実行する(ステップS2005)。また、動作制御部260は、目的地までの走行ルートを再計算することで、目的地までの走行ルートを更新し(ステップS2006)、ステップS2007へ進む。
ステップS2007では、動作制御部260は、目的地に到着したか否かを判定する。目的地に到着していない場合(ステップS2007のNO)、動作制御部260は、ステップS2004へリターンし、目的地に到着するまで以降の動作を繰り返す。一方、目的地に到着した場合(ステップS2007のYES)、動作制御部260は、本動作を終了するか否かを判定し(ステップS2008)、終了する場合(ステップS2008のYES)、本動作を終了する。一方、本動作を終了しない場合(ステップS2008のNO)、動作制御部260は、ステップS2001へリターンし、以降の動作を実行する。
3.3.2 空転防止動作
また、動作制御部260は、図45を用いて説明したメイン動作とは別に、空転防止動作を実行する。図46は、本実施形態に係る空転防止動作の一例を示すフローチャートである。
また、動作制御部260は、図45を用いて説明したメイン動作とは別に、空転防止動作を実行する。図46は、本実施形態に係る空転防止動作の一例を示すフローチャートである。
図46に示すように、本動作では、動作制御部260は、近接センサ1121、慣性センサ525、第1~第4床面センサ1111~1114、及び、トルクセンサ1122からの検出値を常時又は所定の周期で監視することで、自律移動体10の持ち上げや落下や転倒の検出を実行する(ステップS2101)。
自律移動体10の持ち上げ等が検出されると(ステップS2101のYES)、動作制御部260は、車輪570の回転を停止させる動作を実行する(ステップS2102)。なお、この状態でも、動作制御部260は、近接センサ1121、慣性センサ525、第1~第4床面センサ1111~1114、及び、トルクセンサ1122からの検出値を常時又は所定の周期で監視している。
その後、動作制御部260は、近接センサ1121、慣性センサ525、第1~第4床面センサ1111~1114、及び/又は、トルクセンサ1122で取得された検出値に基づき、自律移動体10が床面やテーブル上に載置されたことを検出する(ステップS2103)。
自律移動体10の床面等への載置が検出されると(ステップS2103のYES)、動作制御部260は、車輪570の停止を解除する(ステップS2104)。これにより、自律移動体10が走行可能な状態に復帰するため、動作制御部260は、例えば、図45を用いて説明した動作を最初から実行することで、目的地への走行ルートを決定して自律移動体10を目的地まで走行させる。
その後、動作制御部260は、本動作を終了するか否かを判定し(ステップS2105)、終了する場合(ステップS2105のYES)、本動作を終了する。一方、終了しない場合(ステップS2105のNO)、動作制御部260は、ステップS2101へリターンし、以降の動作を実行する。
3.3.3 モード切替え動作
また、動作制御部260は、図45を用いて説明したメイン動作とは別に、通常動作モードとスタンバイモードとを切り替えるモード切替え動作を実行する。なお、通常動作モードとは、図45に示すメイン動作を主とした、ユーザとのインタラクティブな動作を実行するモードであり、スタンバイモードとは、自律移動体10の動作を停止させて省電力化を図るモードであってよい。また、本説明では、簡略化のため、自律移動体10の起動後、まず、通常動作モードが実行されるものとする。
また、動作制御部260は、図45を用いて説明したメイン動作とは別に、通常動作モードとスタンバイモードとを切り替えるモード切替え動作を実行する。なお、通常動作モードとは、図45に示すメイン動作を主とした、ユーザとのインタラクティブな動作を実行するモードであり、スタンバイモードとは、自律移動体10の動作を停止させて省電力化を図るモードであってよい。また、本説明では、簡略化のため、自律移動体10の起動後、まず、通常動作モードが実行されるものとする。
図47は、本実施形態に係るモード切替え動作の一例を示すフローチャートである。図47に示すように、本動作では、まず、動作制御部260は、例えば、第1障害物センサ1101を用いた人感動作の人検出レートを、第1の人検出レートに設定し(ステップS2201)、この設定した第1の人検出レートで、人感動作を実行する(ステップS2202)。なお、第1の人検出レートは、例えば、0.1秒に1回や、1秒に1回など、ユーザとのインタラクティブなコミュニケーションに必要十分なレートであってよい。
そして、動作制御部260は、例えば、一定時間以上、人が検出されない状態が継続した場合(ステップS2202のNO)、自律移動体10の動作モードをスタンバイモードへ移行させる(ステップS2203)。そして、動作制御部260は、第1障害物センサ1101を用いた人感動作の人検出レートを、例えば、第1の人検出レートよりも低い第2の人検出レートに設定し(ステップS2204)、この設定した第2の人検出レートで、人感動作を実行する(ステップS2205)。なお、この第2の人検出レートは、例えば、10秒に1回や、1分に1回など、第1の人検出レートよりも低いレートであってよい。
次に、動作制御部260は、人を検出すると(ステップS2205のYES)、自律移動体10の動作モードを通常モードに復帰させる(ステップS2206)とともに、第1障害物センサ1101を用いた人感動作の人検出レートを、第1の人検出レートに設定する(ステップS2207)。
その後、動作制御部260は、本動作を終了するか否かを判定し(ステップS2208)、終了する場合(ステップS2208のYES)、本動作を終了する。一方、終了しない場合(ステップS2208のNO)、動作制御部260は、ステップS2202へリターンし、以降の動作を実行する。
3.3.4 人検出レート切替え動作
通常動作モード中の人検出レートは、例えば、自律移動体10の走行速度に応じて切り替えられてもよい。図48は、本実施形態に係る人検出レート切替え動作の一例を示すフローチャートである。
通常動作モード中の人検出レートは、例えば、自律移動体10の走行速度に応じて切り替えられてもよい。図48は、本実施形態に係る人検出レート切替え動作の一例を示すフローチャートである。
図48に示すように、本動作では、まず、動作制御部260は、自律移動体10の起動直後の通常動作モードにおいて、人検出レートを第1の人検出レートに設定する(ステップS2301)。このステップS2301は、図47のステップS2201と同じであってよい。
次に、動作制御部260は、例えば、トルクセンサ1122からの検出値に基づいて、自律移動体10が走行中であるか停留中であるかを判定する(ステップS2302)。停留中である場合(ステップS2302のNO)、動作制御部260は、ステップS2307へ進む。
一方、走行中である場合(ステップS2302のYES)、動作制御部260は、自律移動体10の走行速度に応じた第3の人検出レートを設定する(ステップS2303)。例えば、自律移動体10が走行速度を4段階に変化させる機能を備えている場合には、それぞれの段階に対して、異なる第3の人検出レートが予め設定されていてもよい。その際、走行速度が速いほど、高い第3の人検出レートが設定されてもよい。
続いて、動作制御部260は、例えば、トルクセンサ1122からの検出値等に基づいて自律移動体10の走行速度を検出し、走行速度に変化があるか否かを監視する(ステップS2304)。走行速度に変化があった場合(ステップS2304のYES)、動作制御部260は、自律移動体10が停止したか否かを判定し(ステップS2305)、停止していない場合(ステップS2305のNO)、ステップS2303へリターンして、変化後の走行速度に応じた第3の人検出レートを設定する。一方、自律移動体10が停止した場合(ステップS2305のYES)、動作制御部260は、第1の人検出レートに設定し(ステップS2306)、ステップS2307へ進む。
ステップS2307では、動作制御部260は、本動作を終了するか否かを判定し、終了する場合(ステップS2307のYES)、本動作を終了する。一方、終了しない場合(ステップS2307のNO)、動作制御部260は、ステップS2302へリターンし、以降の動作を実行する。
3.3.5 マッピング動作
また、本実施形態に係る自律移動体10は、第1障害物センサ1101、第2障害物センサ1102及び1103、第1~第4床面センサ1111~1114等からの検出結果に基づいて、自己の周囲に存在する障害物や境界等がマッピングされた地図を作製する動作(マッピング動作)を実行してもよい。
また、本実施形態に係る自律移動体10は、第1障害物センサ1101、第2障害物センサ1102及び1103、第1~第4床面センサ1111~1114等からの検出結果に基づいて、自己の周囲に存在する障害物や境界等がマッピングされた地図を作製する動作(マッピング動作)を実行してもよい。
図49は、本実施形態に係るマッピング動作の一例を示すフローチャートである。図49に示すように、本動作では、まず、動作制御部260は、自律移動体10の位置(以下、自己位置という)を決定する(ステップS2401)。この自己位置は、例えば、自律移動体10の起動時の位置や起動後に最初に停止した位置を始点(原点)とし、その際の向きをX軸方向とした2次元マップ上の位置であってもよい。
なお、原点に対する自律移動体10の位置の2次元マップ上の座標(自己位置)は、例えば、車輪570の車軸に設けられたエンコーダ(又はポテンショメータ)で検出された自律移動体10の移動距離及び方向から求まる座標や、慣性センサ525で検出された自律移動体10に生じた慣性から求まる座標や、カメラ515で取得された画像データにおける目印(特徴点)との相対位置から求まる座標や、第1障害物センサ1101並びに第2障害物センサ1102及び1103で検出された障害物との相対位置から求まる座標や、第1~第4床面センサ1111~1114で検出された境界との相対位置から求まる座標や、これらのうちの少なくとも1つに基づいて求まる座標など、種々の方法を用いて決定されてよい。
次に、動作制御部260は、第1障害物センサ1101、第2障害物センサ1102及び1103、及び、第1~第4床面センサ1111~1114からの検出値を常時又は所定の周期で監視することで、境界や障害物の検出を実行する(ステップS2402)。境界や障害物が検出されていない場合(ステップS2402のNO)、動作制御部260は、ステップS2407へ進む。
一方、境界や障害物が検出された場合(ステップS2402のYES)、動作制御部260は、検出されたものが境界であるか否かを判定し(ステップS2403)、境界が検出されていた場合(ステップS2403のYES)、検出された境界の位置を2次元マップ上に配置し(ステップS2404)、ステップS2407へ進む。
また、検出されたものが境界でない場合(ステップS2403のNO)、動作制御部260は、検出されたものが障害物であるか否かを判定し(ステップS2405)、障害物が検出されていた場合(ステップS2405のYES)、検出された障害物の位置を2次元マップ上に配置し(ステップS2406)、ステップS2407へ進む。なお、検出されたものが境界でも障害物でも無い場合(ステップS2405のNO)、動作制御部260は、そのままステップS2407へ進む。
ステップS2407では、動作制御部260は、本動作を終了するか否かを判定し、終了する場合(ステップS2407のYES)、本動作を終了する。一方、終了しない場合(ステップS2407のNO)、動作制御部260は、ステップS2401へリターンし、以降の動作を実行する。
以上のような動作を実行することで、境界や障害物が配置された2次元マップが作成される。なお、2次元マップのデータは、例えば、自律移動体10に搭載されたRAM873やストレージ880に保存されてもよいし、リムーバブル記録媒体901に保存されてもよい(図31参照)。
3.4 まとめ
以上説明したように、本開の第3の実施形態によれば、種類の異なる複数のセンサ(第1障害物センサ1101、第2障害物センサ1102及び1103)を用いて障害物を検知することが可能となるため、より確実に障害物を検出して回避することが可能となる。
以上説明したように、本開の第3の実施形態によれば、種類の異なる複数のセンサ(第1障害物センサ1101、第2障害物センサ1102及び1103)を用いて障害物を検知することが可能となるため、より確実に障害物を検出して回避することが可能となる。
また、本実施形態によれば、自律移動体10の外周に沿って配置された複数のセンサ(第1~第4床面センサ1111~1114)を用いて自律移動体10周辺の境界の位置を検出することが可能となるため、自律移動体10の落下や激突をより確実に防止することが可能となる。その際、センサで取得された値の絶対値と変化量との両方を用いて境界の位置を検出することで、境界に対する測距や検出精度に対するロバスト性を高めることが可能である。
さらに、本実施形態によれば、種類の異なる複数のセンサ(近接センサ1121、トルクセンサ1122、慣性センサ525、第1~第4床面センサ1111~1114)を用いて自律移動体10の持ち上げや落下や転倒を検知することが可能となるため、車輪570の空転をより確実に防止することが可能となる。
以上のような効果を奏することで、本実施形態に係る自律移動体10は、状況に応じてスムーズに動作することが可能となるため、ユーザとのより自然かつ効果的なコミュニケーションを実現することが可能となる。
その他の構成、動作及び効果は、上述した実施形態と同様であってよいため、ここでは詳細な説明を省略する。
4.第4の実施形態
次に、本開示の第4の実施形態において、以下に図面を参照して詳細に説明する。なお、以下の説明において、上述した実施形態と同様の構成及び動作は、それらを引用することで、その重複する説明を省略する。
次に、本開示の第4の実施形態において、以下に図面を参照して詳細に説明する。なお、以下の説明において、上述した実施形態と同様の構成及び動作は、それらを引用することで、その重複する説明を省略する。
上述した第2の実施形態では、停留時に車輪570を自律移動体10の本体内部へと格納させ、本体の底部を床面に接触させることで、自律移動体10を座位状態で静止させる場合を例示した。これに対し、本実施形態では、車輪570を自律移動体10の本体内部に格納させることなく、自律移動体10を座位状態で静止させる場合について、例を挙げて説明する。
なお、本実施形態に係る自律移動体の構成は、上述した第1の実施形態において図1~図13Bを用いて説明した構成と同様であってよいため、ここでは詳細な説明を省略する。また、本実施形態では、自律移動体の機能構成として、上述した第2の実施形態において図32を用いて説明した機能構成例を採用した場合を例示するが、これに限られず、例えば、上述した第1の実施形態において図14~図16を用いて説明した情報処理システムを採用することも可能である。
4.1 自律移動体の構成例
図50は、本実施形態に係る自律移動体の概略構成例を説明するための図である。図50における左図は、立位状態(停留時及び走行時を含む)にある自律移動体10の姿勢を示す側視図であり、右図は、座位状態にある自律移動体10の姿勢を示す側視図である。また、図51は、本実施形態に係る自律移動体の底面図である。
図50は、本実施形態に係る自律移動体の概略構成例を説明するための図である。図50における左図は、立位状態(停留時及び走行時を含む)にある自律移動体10の姿勢を示す側視図であり、右図は、座位状態にある自律移動体10の姿勢を示す側視図である。また、図51は、本実施形態に係る自律移動体の底面図である。
図50の右図に示すように、本実施形態では、自律移動体10は、座位状態で静止する際、底部の一部を床面に接地させる。これにより、2つの車輪570と接地している底部との少なくとも3点が床面に接触して自律移動体10が3点倒立の状態となるため、自律移動体10を安定的に座位状態で静止させることが可能になる。また、自律移動体10の倒立状態で静止させるためのフィードバック制御が不要となるため、自律移動体10の消費電力を低減することも可能となる。
座位状態の際に床面に接触させる部分は、自律移動体10の底部における車輪570の車軸よりも背面側の部分であってよい。この接地部分には、図50及び図51に示すように、凸部701が設けられていてもよい。接地部分に凸部701を設けることで、自律移動体10の底面の破損や塗装の剥がれなどを防止することが可能となる。
凸部701の形状は、例えば、ドーム形状や円筒形状など、種々の形状であってよい。また、凸部701の高さは、例えば、自律移動体10を座位状態とした際に、自律移動体10の他の底部が平坦な床面に接触しない程度以上の高さであればよい。
さらに、凸部701は、1つに限られず、例えば、図52に示すように、2つ以上(図52では3つ)であってもよい。
凸部701の材料には、例えば、金属やプラスチックやセラミックスなど、加工の容易性や耐久性等を考慮して種々の材料を使用することが可能である。その際、摩擦係数の低い材料が選択されることが好ましい。摩擦係数の低い材料で凸部701を構成することで、走行時の意図しない接触による自律移動体10の転倒や、自律移動体10が完全に停止する前に凸部701が床面に接触することによる自律移動体10の転倒や床面のキズや異音の発生等を抑制することが可能となる。
また、図53に示すように、凸部701は、例えば、自律移動体10の底部を構成する部材をボディ内部のフレーム等にネジ711で固定するためのネジ孔710を塞ぐように設けられてもよい。それにより、ネジ孔710を凸部701で隠すことが可能となるため、自律移動体10のデザイン性の低下を抑制することが可能となる。なお、凸部701の底部への固定には、例えば、両面粘着テープや接着剤等が使用されてもよい。
4.2 姿勢制御例
次に、本実施形態に係る自律移動体10の停留時および移動動作時における姿勢制御について説明する。
次に、本実施形態に係る自律移動体10の停留時および移動動作時における姿勢制御について説明する。
上述した実施形態と同様に、自律移動体10の重心CoGは、自律移動体10を前傾姿勢(立位状態)とした際に車輪570の車軸の上方に位置する(図50の左図参照)。これにより、自律移動体10のバランスが保たれ、倒立状態が維持される。
一方、座位状態では、図50の右図及び図51に示すように、自律移動体10を後方へ倒すことで、2つの車輪570と底部(凸部701)との少なくとも3点を床面に接触させる。その際、自律移動体10の重心CoGは、車輪570の車軸を通る垂線V1と、底部(凸部701)と床面との接触部分を通る垂線V2との間に位置する。
座位状態時に、自律移動体10の重心CoGを車輪570の車軸を通る垂線V1と底部(凸部701)と床面との接触部分を通る垂線V2との間に位置させることで、座位状態時の自律移動体10を安定して静止させることが可能となる。
4.3 姿勢制御フロー例
次に、本実施形態に係る自律移動体10の停留時と移動動作時とを切り替える際の姿勢制御について説明する。図54は、本実施形態に係る停留時と移動動作時とを切り替える際の姿勢制御フローの一例を示すフローチャートである。
次に、本実施形態に係る自律移動体10の停留時と移動動作時とを切り替える際の姿勢制御について説明する。図54は、本実施形態に係る停留時と移動動作時とを切り替える際の姿勢制御フローの一例を示すフローチャートである。
図54に示すように、本動作では、動作制御部260は、自律移動体10を立位状態へ移行するか否かを判断する(ステップS3001)。例えば、スタンバイモードから通常動作モードへの移行や、座位状態中に走行の開始等が発生した場合に、動作制御部260は、自律移動体10を立位状態へ移行すると判断してもよい。
立位状態へ移行しない場合(ステップS3001のNO)、動作制御部260は、ステップS3007へ進む。一方、立位状態へ移行する場合(ステップS3001のYES)、動作制御部260は、自律移動体10の倒立状態(立位状態)を維持するためのフィードバック制御を開始する(ステップS3002)。続いて、動作制御部260は、座位状態から立位状態へ移行するために、車輪570を逆回転させる(ステップS3003)。なお、逆回転とは、自律移動体10を後方へ進行させるための車輪570の回転方向であってよい。
このように自律移動体10を立位状態にすると、次に、動作制御部260は、自律移動体10を座位状態へ移行させるか否かを判定し(ステップS3004)、移行させる場合(ステップS3004のYES)、フィードバック制御を停止する(ステップS3005)。そして、動作制御部260は、立位状態から座位状態へ移行するために、車輪570を順回転させて(ステップS3006)、底部(凸部701)を床面に接地させ、ステップS3007へ進む。なお、順回転とは、自律移動体10を前方へ進行させるための車輪570の回転方向であってよい。また、自律移動体10を座位状態へ移行させるか否かは、例えば、一定時間以上停留が継続したことや、スタンバイモードへの移行が発生したことなどに基づいて判定されてもよい。
ステップS3007では、動作制御部260は、本動作を終了するか否かを判定し、終了する場合(ステップS3007のYES)、本動作を終了する。一方、終了しない場合(ステップS3007のNO)、動作制御部260は、ステップS3001へリターンし、以降の動作を実行する。
4.4 まとめ
以上説明したように、本開示の第4の実施形態によれば、座位状態時に自律移動体10を2つの車輪570と底部との少なくとも3点で支持することが可能となるため、自律移動体10を安定的に座位状態で静止させることが可能になる。また、自律移動体10の倒立状態で静止させるためのフィードバック制御が不要となるため、自律移動体10の消費電力を低減することも可能となる。
以上説明したように、本開示の第4の実施形態によれば、座位状態時に自律移動体10を2つの車輪570と底部との少なくとも3点で支持することが可能となるため、自律移動体10を安定的に座位状態で静止させることが可能になる。また、自律移動体10の倒立状態で静止させるためのフィードバック制御が不要となるため、自律移動体10の消費電力を低減することも可能となる。
さらに、本実施形態によれば、自律移動体10のボディ内部に対して車輪570を出し入れするための機構を備えることなく、自律移動体10を座位状態に保つことが可能となるため、自律移動体10の構成の簡略化や小型化や消費電力の削減等も達成することが可能となる。
さらにまた、本実施形態によれば、座位状態時に床面に接触する底部に凸部701が設けられているため、自律移動体10の底面の破損や塗装の剥がれなどを防止することが可能となる。その際、凸部701を摩擦係数の小さい材料で構成することで、走行時の意図しない接触による自律移動体10の転倒や、自律移動体10が完全に停止する前に凸部701が床面に接触することによる自律移動体10の転倒や床面のキズや異音の発生等を抑制することが可能となる。
以上のような効果を奏することで、本実施形態に係る自律移動体10は、状況に応じてスムーズに動作することが可能となるため、ユーザとのより自然かつ効果的なコミュニケーションを実現することが可能となる。
その他の構成、動作及び効果は、上述した実施形態と同様であってよいため、ここでは詳細な説明を省略する。
5.第5の実施形態
次に、本開示の第5の実施形態において、以下に図面を参照して詳細に説明する。なお、以下の説明において、上述した実施形態と同様の構成及び動作は、それらを引用することで、その重複する説明を省略する。
次に、本開示の第5の実施形態において、以下に図面を参照して詳細に説明する。なお、以下の説明において、上述した実施形態と同様の構成及び動作は、それらを引用することで、その重複する説明を省略する。
5.1 概要
図55は、本開示に関連する倒立振子の一例を示す図であり、左図は当該倒立振子の正面図であり、右図は当該倒立振子の側面図である。図56は、本開示に関連する他の倒立振子の一例を示す図であり、左図は当該倒立振子の正面図であり、右図は当該倒立振子の側面図である。
図55は、本開示に関連する倒立振子の一例を示す図であり、左図は当該倒立振子の正面図であり、右図は当該倒立振子の側面図である。図56は、本開示に関連する他の倒立振子の一例を示す図であり、左図は当該倒立振子の正面図であり、右図は当該倒立振子の側面図である。
通常、2輪の倒立振子においては、2つの車輪の間隔を大きくした方が、側面への転倒に対する耐性が高くなる。そのため、図55に示す倒立振子9010のように、2つの車輪9570を本体の外側に配置することが好ましい。
しかしながら、2つの車輪9570の間隔を大きくすると、旋回時の車輪9570の外側と内側の旋回半径の差に起因して、車輪9570の引き摺りが発生してしまう。このような車輪9570の引き摺りが発生すると、車輪9570と円柱面との摩擦状態により旋回時の制御性、安定性が変化する。そのため、旋回時の制御性や安定性を考慮した場合、その引き摺りが少なくなるように、2つの車輪9570の間隔を小さくした方が好ましい。
また、2つの車輪9570を本体の外側に配置した場合、車輪9570が必要以上に目立ってしまい、倒立振子9010の意匠に大きな制限を与えてしまう。
さらに、倒立振子9010を用いた移動ロボットなどの自律移動体では、車輪9570の高さを制御する機構を搭載することで、段差や斜面での斜行移動の安定性を向上させることができるが、車輪9570の間隔が広い場合、左右の車輪9570の高低差に対する本体の傾斜量が小さいため、走行可能な斜面角度などが制限されるという課題が存在する。
これらのような課題は、図56に示す倒立振子8010のように、2つの車輪8570の間隔を狭くし、この2つの車輪8570の大部分を本体内に収容する構成とすることで、抑制することが可能である。
一方で、倒立振子が旋回する場合、その旋回中心に対する旋回半径により、車輪の回転角度が変化する。そのため、同一の車輪内における幅方向では、車輪の回転角度による移動量と実際の移動距離とが一致しない部分が発生する。例えば、車輪の内側と外側とでは、車輪の回転角度は同じであるが、実際の移動距離には差分が発生する。
このような差分は、1つの車輪の幅が広いほど大きくなるが、通常では、旋回時に車輪の一部又は全部が床面に対して摺動することで吸収されると考えられる。
ただし、床面と車輪との摺動は、床面と車輪との間の摩擦係数や床面の状態等によって変化する。倒立振子の旋回中に摺動状態の変化が発生すると、倒立の安定性が低下したり旋回半径の変化が発生したりするため、一定の半径で安定した旋回ができなくなるという課題が発生する。
そこで本実施形態では、デザイン性の低下を抑制しつつ、旋回時の制御性や安定性を向上することが可能な自律移動体を提供する。
なお、本実施形態に係る自律移動体の構成は、上述した第1の実施形態において図1~図13Bを用いて説明した構成と同様であってよいため、ここでは詳細な説明を省略する。また、本実施形態では、自律移動体の機能構成として、上述した第2の実施形態において図32を用いて説明した機能構成例を採用した場合を例示するが、これに限られず、例えば、上述した第1の実施形態において図14~図16を用いて説明した情報処理システムを採用することも可能である。
5.2 自律移動体(足回り)の構成例
続いて、本実施形態に係る自律移動体10の車輪を含む足回りに着目した概略構成について、幾つか例を挙げて説明する。
続いて、本実施形態に係る自律移動体10の車輪を含む足回りに着目した概略構成について、幾つか例を挙げて説明する。
5.2.1 第1例
図57は、本実施形態の第1例に係る自律移動体における車輪の概略構成例を示す模式図である。図57に示すように、第1例に係る車輪620は、円柱面621を周回するリング状の凸状リング部622が設けられた構造を備える。
図57は、本実施形態の第1例に係る自律移動体における車輪の概略構成例を示す模式図である。図57に示すように、第1例に係る車輪620は、円柱面621を周回するリング状の凸状リング部622が設けられた構造を備える。
このように、円柱面621の一部に凸状リング部622を設けた構造とすることで、床面と車輪620との接触領域を凸状リング部622の上面部分に制限することが可能となるため、車輪620の幅方向における旋回時の移動距離の差分を低減して車輪620の摺動を減少させることが可能となる。それにより、床面の状態変化による旋回中の摺動負荷の変化を低減することが可能となるため、自律移動体10の旋回時の制御性や安定性を向上させることが可能となる。
なお、図58に示すように、凸状リング部622の上面の幅D2を車輪620の幅D0よりも狭くすることで、上述した旋回時の制御性や安定性を向上させるという効果を得ることができる。その際、例えば、1つの車輪620の幅D0を2つの車輪620の全幅2Lの1/4以上の幅とした場合には、凸状リング部622の上面の幅D2を車輪620の幅D0の60%以下とすることで、旋回時の制御性や安定性の向上の効果をより確実に得ることが可能となる。若しくは、車軸571の中心O1から車輪620の外側までの距離Lに対する凸状リング部622の上面の幅D2を40%以下とすることで、旋回時の制御性や安定性の向上の効果をより確実に得ることも可能となる。
また、図57に示すように、車輪620の幅方向における凸状リング部622の位置を車輪620の最外の位置とすることで、自律移動体10を支持する接触領域の全体の幅を広くすることが可能となるため、自律移動体10の左右方向の安定性を向上させることが可能である。ただし、凸状リング部622の位置は車輪620の最外の位置に限定されず、図59に例示するように、車輪620の幅方向における中腹の位置であってもよい。
さらに、図60に例示するように、1つの車輪620に設ける凸状リング部622の数は1つに限定されず、2つ以上であってもよい。
5.2.2 第2例
図61は、本実施形態の第2例に係る自律移動体における車輪の概略構成例を示す模式図である。図61に示すように、第2例に係る車輪630は、内側から外側へ行くにつれて拡径するテーパ形状を有してもよい。
図61は、本実施形態の第2例に係る自律移動体における車輪の概略構成例を示す模式図である。図61に示すように、第2例に係る車輪630は、内側から外側へ行くにつれて拡径するテーパ形状を有してもよい。
このように、幅の広い車輪630の外側外径を内側外径よりも大きくして車輪630の円柱面に傾きを設けることで、床面との接触領域を車輪630の幅方向における一部の領域に制限することが可能となるため、第1例と同様に、自律移動体10の旋回時の制御性や安定性を向上させることが可能となる。
5.2.3 第3例
図62は、本実施形態の第3例に係る自律移動体における車輪の概略構成例を示す模式図である。図62に示すように、第3例に係る車輪640は、円柱面641の外側部分642に、内側から外側へ行くにつれて拡径するテーパ形状が設けられている。
図62は、本実施形態の第3例に係る自律移動体における車輪の概略構成例を示す模式図である。図62に示すように、第3例に係る車輪640は、円柱面641の外側部分642に、内側から外側へ行くにつれて拡径するテーパ形状が設けられている。
このように、幅の広い車輪640の外側部分642をテーパ形状とすることで、第2例と同様に、床面との接触領域を車輪630の幅方向における一部の領域に制限することが可能となるため、自律移動体10の旋回時の制御性や安定性を向上させることが可能となる。
5.2.4 第4例
図63は、本実施形態の第4例に係る自律移動体における車輪の概略構成例を示す模式図である。図63に示すように、第4例に係る車輪650は、第2例と同様に、幅の広い車輪650の外側外径を内側外径よりも大きくしたテーパ形状において、円柱面651の外側部分652に、内側から外側へ行くにつれて縮径する逆テーパ形状が設けられている。
図63は、本実施形態の第4例に係る自律移動体における車輪の概略構成例を示す模式図である。図63に示すように、第4例に係る車輪650は、第2例と同様に、幅の広い車輪650の外側外径を内側外径よりも大きくしたテーパ形状において、円柱面651の外側部分652に、内側から外側へ行くにつれて縮径する逆テーパ形状が設けられている。
このように、テーパ形状の車輪650の外側部分652を逆テーパ形状とすることで、旋回時に大きな負荷がかかる外側の車輪650の接触面積を、当該車輪570の負荷による変形を利用して大きくすることが可能となるため、自律移動体10の旋回時の安定性をより向上させることが可能となる。
5.2.5 第5例
図64は、本実施形態の第5例に係る自律移動体における車輪及び車軸の概略構成例を示す模式図である。図64に示すように、第5例では、円柱面が円筒形の車輪570の車軸571を傾かせることで、車輪570と床面との接触面積が制限されている。
図64は、本実施形態の第5例に係る自律移動体における車輪及び車軸の概略構成例を示す模式図である。図64に示すように、第5例では、円柱面が円筒形の車輪570の車軸571を傾かせることで、車輪570と床面との接触面積が制限されている。
右側の車輪570の車軸571は、例えば、外側が内側よりも床面に近接するように傾斜されている。これにより、右側の車輪570における床面との接触領域を車輪570の外側の領域に制限することが可能となる。同様に、左側の車輪570の車軸571は、例えば、外側が内側よりも床面に近接するように傾斜されている。これにより、左側の車輪570における床面との接触領域を車輪570の外側の領域に制限することが可能となる。
このように、円筒状の車輪570の車軸571を傾斜させることで、第2例又は第3例と同様に、床面との接触領域を一部に制限することが可能となるため、自律移動体10の旋回時の制御性や安定性を向上させることが可能となる。
なお、使用する車輪は、円筒状の車輪570に限定されず、例えば、第1例から第4例で示した車輪620、630、640又は650など、種々変形することが可能である。
5.2.6 第6例
図65は、本実施形態の第6例に係る自律移動体における車輪及び車軸の概略構成例を示す模式図である。図65に示すように、第6例では、左右の車輪570の車軸571の傾きを制御する制御機構が設けられている。この制御機構には、例えば、第2の実施形態において例示した車輪570を本体内部へと格納させるための機構を利用することができる。なお、この制御機構は、例えば、動作制御部260によって制御されてよい。
図65は、本実施形態の第6例に係る自律移動体における車輪及び車軸の概略構成例を示す模式図である。図65に示すように、第6例では、左右の車輪570の車軸571の傾きを制御する制御機構が設けられている。この制御機構には、例えば、第2の実施形態において例示した車輪570を本体内部へと格納させるための機構を利用することができる。なお、この制御機構は、例えば、動作制御部260によって制御されてよい。
このように、車輪570の車軸571の傾斜を制御するための制御機構を用いた場合、例えば、直進時には車軸571を床面に対して平行にして車輪570と床面との接触面積を大きくすることで、車輪570のグリップ力を高くして安定した走行を実現し、旋回時には車軸571を床面に対して傾斜させて車輪570と床面との接触面積を小さくすることで、第5例と同様に、旋回時の制御性や安定性を向上させるなどの制御が可能となる。
また、左右の車輪570それぞれで車軸571の傾きを独立して制御できるように構成することで、図66に示すように、床面の傾斜に応じて車輪570の高さに差を設けるように駆動することも可能である。これにより、自律移動体10の進行方向に対して左右に傾斜した床面を走行する際にも自律移動体10の重力方向に対する姿勢を略垂直(立位状態)に保つことが可能となるため、より安定した斜面の走行を実現することが可能となる。
また、左右の車輪570それぞれで車軸571を独立して駆動できる構成を利用して2つの車輪570に高低差を付けた場合、高い方の車輪570(図面中、左側の車輪570)は車輪570の外側で床面と接触し、低い方の車輪570(図面中、右側の車輪570)は車輪570の内側で床面と接触するため、2つの車輪570が形成する接触領域の全体の幅が狭くなる。それにより、2つの車輪570の小さい高低差で自律移動体10を大きく傾かせることが可能となるため、走行可能な斜面角度等の制限を大幅に緩和することが可能となる。
なお、斜面走行時の車軸571の駆動は、2つの車軸571の平行を維持したままの上下方向へのシフトに限定されず、図67に示すように、斜面の下側に位置する車輪570の外側が斜面に接触するように、当該車輪570の車軸571を傾斜させる駆動であってもよい。これにより、2つの車輪570が形成する接触領域の全体の幅を広くすることが可能となるため、斜面走行時の安定性をより向上させることが可能となる。
また、このような構成を図63を用いて説明した第4例に適用することで、図68に例示するように、旋回時に外側の車輪650の接触面積を大きくすることが可能となるため、自律移動体10の旋回時の安定性をより向上させることが可能となる。
5.3 まとめ
以上説明したように、本開示の第5の実施形態によれば、2つの車輪570/620/630/640/650の間隔を本体の幅よりも狭くしてその大部分を本体内部に収容した構成において、車輪570/620/630/640/650と床面との接触面積を縮小することが可能となるため、デザイン性の低下を抑制しつつ、旋回時の制御性や安定性を向上することが可能となる。
以上説明したように、本開示の第5の実施形態によれば、2つの車輪570/620/630/640/650の間隔を本体の幅よりも狭くしてその大部分を本体内部に収容した構成において、車輪570/620/630/640/650と床面との接触面積を縮小することが可能となるため、デザイン性の低下を抑制しつつ、旋回時の制御性や安定性を向上することが可能となる。
また、本実施形態の第6例のように、2つの車輪570の車軸を独立して駆動可能な構成とすることで、各車輪570の接触領域を床面の形状や走行状況に応じて制御することが可能となるため、斜面走行時や旋回時の安定性をより向上させることが可能となる。
以上のような効果を奏することで、本実施形態に係る自律移動体10は、状況に応じてスムーズに動作することが可能となるため、ユーザとのより自然かつ効果的なコミュニケーションを実現することが可能となる。
その他の構成、動作及び効果については、上述した実施形態と同様であってよいため、ここでは詳細な説明を省略する。
6.第6の実施形態
次に、本開示の第6の実施形態において、以下に図面を参照して詳細に説明する。なお、以下の説明において、上述した実施形態と同様の構成及び動作は、それらを引用することで、その重複する説明を省略する。
次に、本開示の第6の実施形態において、以下に図面を参照して詳細に説明する。なお、以下の説明において、上述した実施形態と同様の構成及び動作は、それらを引用することで、その重複する説明を省略する。
図69は、本開示の第6の実施形態に係る自律移動体10の正面図であり、図70は、本開示の第6の実施形態に係る自律移動体10の側面図である。
上述した実施形態では、自律移動体10の本体(ボディ)が長楕円体である場合が例示されていた。そのため、例えば、自律移動体10が傾斜面等で転倒した場合、そのまま傾斜面に沿って転がり、テーブル等から落下したり、壁等に激突したりする可能性が存在する。
そこで本実施形態では、図69及び図70に示すように、自律移動体10の側面の一部に凸部720を設ける。これにより、自律移動体10が傾斜面等で転倒した場合でも、自律移動体10の転がりを抑制することが可能となるため、自律移動体10のテーブル等からの落下や壁等への激突を抑制することが可能となる。
その他の構成、動作及び効果は、上述した実施形態と同様であってよいため、ここでは詳細な説明を省略する。
以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の各実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。
また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。
なお、本技術は以下のような構成も取ることができる。
(1)
自律移動体に対して第1の方向に存在する物体を検出する第1のセンサと、
前記第1のセンサとは異なる方式にて、前記自律移動体に対して前記第1の方向に存在する物体を検出する第2のセンサと、
前記第1のセンサで取得された検出結果と前記第2のセンサで取得された検出結果とに基づいて前記自律移動体の動作を制御する動作制御部と、
を備える情報処理装置。
(2)
前記第1の方向は、前記自律移動体の正面前方であり、
前記第2のセンサは、
前記自律移動体の右正面前方を検出する第3のセンサと、
前記自律移動体の左正面前方を検出する第4のセンサと、
を含む前記(1)に記載の情報処理装置。
(3)
前記第1のセンサ及び前記第2のセンサそれぞれは、ミリ波レーダセンサ、ToF(Time of Flight)センサ、超音波センサ及びカメラのうちの何れかである
前記(1)又は(2)に記載の情報処理装置。
(4)
前記自律移動体の周囲の床面を検出する複数の第5のセンサをさらに備え、
前記動作制御部は、前記第5のセンサで取得された検出結果に基づいて前記自律移動体の動作を制御する
前記(1)~(3)の何れか1項に記載の情報処理装置。
(5)
前記動作制御部は、前記第5のセンサそれぞれで検出された値の絶対値と、前記第5センサそれぞれで検出された値の変化量とに基づいて、前記自律移動体の動作を制御する前記(4)に記載の情報処理装置。
(6)
前記第5のセンサは、ToFセンサ、超音波センサ及び近接センサのうちの何れかである前記(4)又は(5)に記載の情報処理装置。
(7)
前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第6のセンサと、
前記第6のセンサとは異なる方式にて、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第7のセンサと、
をさらに備え、
前記動作制御部は、前記第6のセンサで取得された検出結果と前記第7のセンサで取得された検出結果とに基づいて、前記自律移動体が備える車輪の回転を制御する
前記(1)~(6)の何れか1項に記載の情報処理装置。
(8)
前記第6のセンサは、前記自律移動体の底面に設けられ、前記自律移動体の前記底面に物体が近接しているか否かを検出し、
前記第7のセンサは、前記自律移動体の所定方向の加速度の変化を検出する
前記(7)に記載の情報処理装置。
(9)
前記第6のセンサは、近接センサ及びToFセンサのうちの何れかであり、
前記第7のセンサは、慣性センサである
前記(7)又は(8)に記載の情報処理装置。
(10)
前記自律移動体は、2つの車輪と、当該車輪を駆動するための駆動機構とを備える倒立振子である前記(1)~(9)の何れか1項に記載の情報処理装置。
(11)
前記自律移動体は、2つの車輪と、当該車輪を駆動するための駆動機構とを備える倒立振子であり、
前記動作制御部は、前記第5のセンサで取得された前記検出結果に基づいて前記自律移動体が倒立状態にあるか否かを判断し、前記自律移動体が倒立状態にある場合、前記自律移動体が倒立状態を維持するように前記駆動機構を制御する
前記(4)~(6)の何れか1項に記載の情報処理装置。
(12)
自律移動体に対して第1の方向に存在する物体を検出する第1のセンサと、前記第1のセンサとは異なる方式にて、前記自律移動体に対して前記第1の方向に存在する物体を検出する第2のセンサとを備える自律移動体の制御方法であって、
前記第1のセンサで取得された検出結果と前記第2のセンサで取得された検出結果とに基づいて前記自律移動体の動作を制御する制御方法。
(13)
前記自律移動体は、当該自律移動体の周囲の床面を検出する複数の第5のセンサをさらに備え、
前記第5のセンサで取得された検出結果に基づいて前記自律移動体の動作を制御する
前記(12)に記載の制御方法。
(14)
前記自律移動体は、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第6のセンサと、前記第6のセンサとは異なる方式にて、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第7のセンサとをさらに備え、
前記第6のセンサで取得された検出結果と前記第7のセンサで取得された検出結果とに基づいて、前記自律移動体が備える車輪の回転を制御する
前記(12)又は(13)に記載の制御方法。
(15)
自律移動体に対して第1の方向に存在する物体を検出する第1のセンサと、前記第1のセンサとは異なる方式にて、前記自律移動体に対して前記第1の方向に存在する物体を検出する第2のセンサとを備える自律移動体を制御するプロセッサを機能させるプログラムであって、
前記第1のセンサで取得された検出結果と前記第2のセンサで取得された検出結果とに基づいて前記自律移動体の動作を制御する動作を前記プロセッサに実行させるためのプログラム。
(16)
前記自律移動体は、当該自律移動体の周囲の床面を検出する複数の第5のセンサをさらに備え、
前記第5のセンサで取得された検出結果に基づいて前記自律移動体の動作を制御する動作を前記プロセッサにさらに実行させるための前記(15)に記載のプログラム。
(17)
前記自律移動体は、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第6のセンサと、前記第6のセンサとは異なる方式にて、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第7のセンサとをさらに備え、
前記第6のセンサで取得された検出結果と前記第7のセンサで取得された検出結果とに基づいて、前記自律移動体が備える車輪の回転を制御する動作を前記プロセッサにさらに実行させるための前記(15)又は(16)に記載のプログラム。
(1)
自律移動体に対して第1の方向に存在する物体を検出する第1のセンサと、
前記第1のセンサとは異なる方式にて、前記自律移動体に対して前記第1の方向に存在する物体を検出する第2のセンサと、
前記第1のセンサで取得された検出結果と前記第2のセンサで取得された検出結果とに基づいて前記自律移動体の動作を制御する動作制御部と、
を備える情報処理装置。
(2)
前記第1の方向は、前記自律移動体の正面前方であり、
前記第2のセンサは、
前記自律移動体の右正面前方を検出する第3のセンサと、
前記自律移動体の左正面前方を検出する第4のセンサと、
を含む前記(1)に記載の情報処理装置。
(3)
前記第1のセンサ及び前記第2のセンサそれぞれは、ミリ波レーダセンサ、ToF(Time of Flight)センサ、超音波センサ及びカメラのうちの何れかである
前記(1)又は(2)に記載の情報処理装置。
(4)
前記自律移動体の周囲の床面を検出する複数の第5のセンサをさらに備え、
前記動作制御部は、前記第5のセンサで取得された検出結果に基づいて前記自律移動体の動作を制御する
前記(1)~(3)の何れか1項に記載の情報処理装置。
(5)
前記動作制御部は、前記第5のセンサそれぞれで検出された値の絶対値と、前記第5センサそれぞれで検出された値の変化量とに基づいて、前記自律移動体の動作を制御する前記(4)に記載の情報処理装置。
(6)
前記第5のセンサは、ToFセンサ、超音波センサ及び近接センサのうちの何れかである前記(4)又は(5)に記載の情報処理装置。
(7)
前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第6のセンサと、
前記第6のセンサとは異なる方式にて、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第7のセンサと、
をさらに備え、
前記動作制御部は、前記第6のセンサで取得された検出結果と前記第7のセンサで取得された検出結果とに基づいて、前記自律移動体が備える車輪の回転を制御する
前記(1)~(6)の何れか1項に記載の情報処理装置。
(8)
前記第6のセンサは、前記自律移動体の底面に設けられ、前記自律移動体の前記底面に物体が近接しているか否かを検出し、
前記第7のセンサは、前記自律移動体の所定方向の加速度の変化を検出する
前記(7)に記載の情報処理装置。
(9)
前記第6のセンサは、近接センサ及びToFセンサのうちの何れかであり、
前記第7のセンサは、慣性センサである
前記(7)又は(8)に記載の情報処理装置。
(10)
前記自律移動体は、2つの車輪と、当該車輪を駆動するための駆動機構とを備える倒立振子である前記(1)~(9)の何れか1項に記載の情報処理装置。
(11)
前記自律移動体は、2つの車輪と、当該車輪を駆動するための駆動機構とを備える倒立振子であり、
前記動作制御部は、前記第5のセンサで取得された前記検出結果に基づいて前記自律移動体が倒立状態にあるか否かを判断し、前記自律移動体が倒立状態にある場合、前記自律移動体が倒立状態を維持するように前記駆動機構を制御する
前記(4)~(6)の何れか1項に記載の情報処理装置。
(12)
自律移動体に対して第1の方向に存在する物体を検出する第1のセンサと、前記第1のセンサとは異なる方式にて、前記自律移動体に対して前記第1の方向に存在する物体を検出する第2のセンサとを備える自律移動体の制御方法であって、
前記第1のセンサで取得された検出結果と前記第2のセンサで取得された検出結果とに基づいて前記自律移動体の動作を制御する制御方法。
(13)
前記自律移動体は、当該自律移動体の周囲の床面を検出する複数の第5のセンサをさらに備え、
前記第5のセンサで取得された検出結果に基づいて前記自律移動体の動作を制御する
前記(12)に記載の制御方法。
(14)
前記自律移動体は、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第6のセンサと、前記第6のセンサとは異なる方式にて、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第7のセンサとをさらに備え、
前記第6のセンサで取得された検出結果と前記第7のセンサで取得された検出結果とに基づいて、前記自律移動体が備える車輪の回転を制御する
前記(12)又は(13)に記載の制御方法。
(15)
自律移動体に対して第1の方向に存在する物体を検出する第1のセンサと、前記第1のセンサとは異なる方式にて、前記自律移動体に対して前記第1の方向に存在する物体を検出する第2のセンサとを備える自律移動体を制御するプロセッサを機能させるプログラムであって、
前記第1のセンサで取得された検出結果と前記第2のセンサで取得された検出結果とに基づいて前記自律移動体の動作を制御する動作を前記プロセッサに実行させるためのプログラム。
(16)
前記自律移動体は、当該自律移動体の周囲の床面を検出する複数の第5のセンサをさらに備え、
前記第5のセンサで取得された検出結果に基づいて前記自律移動体の動作を制御する動作を前記プロセッサにさらに実行させるための前記(15)に記載のプログラム。
(17)
前記自律移動体は、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第6のセンサと、前記第6のセンサとは異なる方式にて、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第7のセンサとをさらに備え、
前記第6のセンサで取得された検出結果と前記第7のセンサで取得された検出結果とに基づいて、前記自律移動体が備える車輪の回転を制御する動作を前記プロセッサにさらに実行させるための前記(15)又は(16)に記載のプログラム。
10 自律移動体
20 情報処理サーバ
30 被操作装置
110 センサ部
120 入力部
130 光源
140 音声出力部
150 駆動部
160 制御部
170 通信部
210 認識部
220 行動計画部
230、260 動作制御部
240 通信部
570、620、630、640、650 車輪
571 車軸
701、720 凸部
610 フライホイール
621、641、651 円柱面
622 凸状リング部
642、652 外側部分
1101 第1障害物センサ
1102、1103 第2障害物センサ
1111~1114 第1~第4床面センサ
1121 近接センサ
1122 トルクセンサ
20 情報処理サーバ
30 被操作装置
110 センサ部
120 入力部
130 光源
140 音声出力部
150 駆動部
160 制御部
170 通信部
210 認識部
220 行動計画部
230、260 動作制御部
240 通信部
570、620、630、640、650 車輪
571 車軸
701、720 凸部
610 フライホイール
621、641、651 円柱面
622 凸状リング部
642、652 外側部分
1101 第1障害物センサ
1102、1103 第2障害物センサ
1111~1114 第1~第4床面センサ
1121 近接センサ
1122 トルクセンサ
Claims (17)
- 自律移動体に対して第1の方向に存在する物体を検出する第1のセンサと、
前記第1のセンサとは異なる方式にて、前記自律移動体に対して前記第1の方向に存在する物体を検出する第2のセンサと、
前記第1のセンサで取得された検出結果と前記第2のセンサで取得された検出結果とに基づいて前記自律移動体の動作を制御する動作制御部と、
を備える情報処理装置。 - 前記第1の方向は、前記自律移動体の正面前方であり、
前記第2のセンサは、
前記自律移動体の右正面前方を検出する第3のセンサと、
前記自律移動体の左正面前方を検出する第4のセンサと、
を含む請求項1に記載の情報処理装置。 - 前記第1のセンサ及び前記第2のセンサそれぞれは、ミリ波レーダセンサ、ToF(Time of Flight)センサ及び超音波センサのうちの何れかである
請求項1に記載の情報処理装置。 - 前記自律移動体の周囲の床面を検出する複数の第5のセンサをさらに備え、
前記動作制御部は、前記第5のセンサで取得された検出結果に基づいて前記自律移動体の動作を制御する
請求項1に記載の情報処理装置。 - 前記動作制御部は、前記第5のセンサそれぞれで検出された値の絶対値と、前記第5センサそれぞれで検出された値の変化量とに基づいて、前記自律移動体の動作を制御する請求項4に記載の情報処理装置。
- 前記第5のセンサは、ToFセンサ、超音波センサ及び近接センサのうちの何れかである請求項4に記載の情報処理装置。
- 前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第6のセンサと、
前記第6のセンサとは異なる方式にて、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第7のセンサと、
をさらに備え、
前記動作制御部は、前記第6のセンサで取得された検出結果と前記第7のセンサで取得された検出結果とに基づいて、前記自律移動体が備える車輪の回転を制御する
請求項1に記載の情報処理装置。 - 前記第6のセンサは、前記自律移動体の底面に設けられ、前記自律移動体の前記底面に物体が近接しているか否かを検出し、
前記第7のセンサは、前記自律移動体の所定方向の加速度の変化を検出する
請求項7に記載の情報処理装置。 - 前記第6のセンサは、近接センサ及びToFセンサのうちの何れかであり、
前記第7のセンサは、慣性センサである
請求項7に記載の情報処理装置。 - 前記自律移動体は、2つの車輪と、当該車輪を駆動するための駆動機構とを備える倒立振子である請求項1に記載の情報処理装置。
- 前記自律移動体は、2つの車輪と、当該車輪を駆動するための駆動機構とを備える倒立振子であり、
前記動作制御部は、前記第5のセンサで取得された前記検出結果に基づいて前記自律移動体が倒立状態にあるか否かを判断し、前記自律移動体が倒立状態にある場合、前記自律移動体が倒立状態を維持するように前記駆動機構を制御する
請求項4に記載の情報処理装置。 - 自律移動体に対して第1の方向に存在する物体を検出する第1のセンサと、前記第1のセンサとは異なる方式にて、前記自律移動体に対して前記第1の方向に存在する物体を検出する第2のセンサとを備える自律移動体の制御方法であって、
前記第1のセンサで取得された検出結果と前記第2のセンサで取得された検出結果とに基づいて前記自律移動体の動作を制御する制御方法。 - 前記自律移動体は、当該自律移動体の周囲の床面を検出する複数の第5のセンサをさらに備え、
前記第5のセンサで取得された検出結果に基づいて前記自律移動体の動作を制御する
請求項12に記載の制御方法。 - 前記自律移動体は、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第6のセンサと、前記第6のセンサとは異なる方式にて、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第7のセンサとをさらに備え、
前記第6のセンサで取得された検出結果と前記第7のセンサで取得された検出結果とに基づいて、前記自律移動体が備える車輪の回転を制御する
請求項12に記載の制御方法。 - 自律移動体に対して第1の方向に存在する物体を検出する第1のセンサと、前記第1のセンサとは異なる方式にて、前記自律移動体に対して前記第1の方向に存在する物体を検出する第2のセンサとを備える自律移動体を制御するプロセッサを機能させるプログラムであって、
前記第1のセンサで取得された検出結果と前記第2のセンサで取得された検出結果とに基づいて前記自律移動体の動作を制御する動作を前記プロセッサに実行させるためのプログラム。 - 前記自律移動体は、当該自律移動体の周囲の床面を検出する複数の第5のセンサをさらに備え、
前記第5のセンサで取得された検出結果に基づいて前記自律移動体の動作を制御する動作を前記プロセッサにさらに実行させるための請求項15に記載のプログラム。 - 前記自律移動体は、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第6のセンサと、前記第6のセンサとは異なる方式にて、前記自律移動体のユーザにより持ち上げ、落下及び転倒のうちの少なくとも1つを検出する第7のセンサとをさらに備え、
前記第6のセンサで取得された検出結果と前記第7のセンサで取得された検出結果とに基づいて、前記自律移動体が備える車輪の回転を制御する動作を前記プロセッサにさらに実行させるための請求項15に記載のプログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20856645.5A EP4024154A4 (en) | 2019-08-27 | 2020-07-17 | INFORMATION PROCESSING DEVICE, CONTROL METHOD, AND PROGRAM |
US17/635,686 US20220291665A1 (en) | 2019-08-27 | 2020-07-17 | Information processing apparatus, control method, and program |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-155103 | 2019-08-27 | ||
JP2019155103 | 2019-08-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039190A1 true WO2021039190A1 (ja) | 2021-03-04 |
Family
ID=74684711
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/027925 WO2021039190A1 (ja) | 2019-08-27 | 2020-07-17 | 情報処理装置、その制御方法及びプログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220291665A1 (ja) |
EP (1) | EP4024154A4 (ja) |
WO (1) | WO2021039190A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024025244A1 (ko) * | 2022-07-27 | 2024-02-01 | 삼성전자주식회사 | 로봇 장치의 위치에 대응되는 모드로 동작하는 로봇 장치 및 그 제어 방법 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07160335A (ja) * | 1993-12-10 | 1995-06-23 | Mutoh Ind Ltd | 走行ロボットの前方障害物検出装置 |
JPH11202049A (ja) * | 1998-01-14 | 1999-07-30 | Honda Motor Co Ltd | 車両用物体検知装置 |
JP2006079157A (ja) * | 2004-09-07 | 2006-03-23 | Figla Co Ltd | 自走式作業ロボット |
JP2006293662A (ja) * | 2005-04-11 | 2006-10-26 | Figla Co Ltd | 作業ロボット |
JP2010026727A (ja) * | 2008-07-17 | 2010-02-04 | Panasonic Electric Works Co Ltd | 自律移動装置 |
WO2015053244A1 (ja) * | 2013-10-10 | 2015-04-16 | 株式会社村田製作所 | 手押し車 |
JP2015132878A (ja) | 2014-01-09 | 2015-07-23 | ソニー株式会社 | 情報処理装置、情報処理方法およびプログラム |
WO2018024897A1 (de) * | 2016-08-05 | 2018-02-08 | RobArt GmbH | Verfahren zur steuerung eines autonomen mobilen roboters |
WO2018112495A2 (de) * | 2016-12-22 | 2018-06-28 | RobArt GmbH | Autonomer mobiler roboter und verfahren zum steuern eines autonomen mobilen roboters |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007041295A2 (en) * | 2005-09-30 | 2007-04-12 | Irobot Corporation | Companion robot for personal interaction |
US9075416B2 (en) * | 2010-09-21 | 2015-07-07 | Toyota Jidosha Kabushiki Kaisha | Mobile body |
CN110476133B (zh) * | 2017-04-10 | 2022-06-07 | 三菱电机株式会社 | 地图管理装置和自主移动体控制装置 |
JP2018195301A (ja) * | 2017-05-15 | 2018-12-06 | キヤノン株式会社 | 制御装置及び制御方法 |
CN107030733B (zh) * | 2017-06-19 | 2023-08-04 | 合肥虹慧达科技有限公司 | 一种轮式机器人 |
US11709476B2 (en) * | 2017-10-30 | 2023-07-25 | Sony Corporation | Information processing apparatus, information processing method and program |
JP7353747B2 (ja) * | 2018-01-12 | 2023-10-02 | キヤノン株式会社 | 情報処理装置、システム、方法、およびプログラム |
JP7154823B2 (ja) * | 2018-05-28 | 2022-10-18 | キヤノン株式会社 | 情報処理装置、ロボット制御装置、情報処理方法及びプログラム |
US20220113732A1 (en) * | 2018-09-25 | 2022-04-14 | Chiba Institute Of Technology | Information processing device and mobile robot |
CN112493924B (zh) * | 2019-08-26 | 2023-03-10 | 苏州宝时得电动工具有限公司 | 清洁机器人及其控制方法 |
-
2020
- 2020-07-17 US US17/635,686 patent/US20220291665A1/en active Pending
- 2020-07-17 WO PCT/JP2020/027925 patent/WO2021039190A1/ja unknown
- 2020-07-17 EP EP20856645.5A patent/EP4024154A4/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07160335A (ja) * | 1993-12-10 | 1995-06-23 | Mutoh Ind Ltd | 走行ロボットの前方障害物検出装置 |
JPH11202049A (ja) * | 1998-01-14 | 1999-07-30 | Honda Motor Co Ltd | 車両用物体検知装置 |
JP2006079157A (ja) * | 2004-09-07 | 2006-03-23 | Figla Co Ltd | 自走式作業ロボット |
JP2006293662A (ja) * | 2005-04-11 | 2006-10-26 | Figla Co Ltd | 作業ロボット |
JP2010026727A (ja) * | 2008-07-17 | 2010-02-04 | Panasonic Electric Works Co Ltd | 自律移動装置 |
WO2015053244A1 (ja) * | 2013-10-10 | 2015-04-16 | 株式会社村田製作所 | 手押し車 |
JP2015132878A (ja) | 2014-01-09 | 2015-07-23 | ソニー株式会社 | 情報処理装置、情報処理方法およびプログラム |
WO2018024897A1 (de) * | 2016-08-05 | 2018-02-08 | RobArt GmbH | Verfahren zur steuerung eines autonomen mobilen roboters |
WO2018112495A2 (de) * | 2016-12-22 | 2018-06-28 | RobArt GmbH | Autonomer mobiler roboter und verfahren zum steuern eines autonomen mobilen roboters |
Non-Patent Citations (1)
Title |
---|
See also references of EP4024154A4 |
Also Published As
Publication number | Publication date |
---|---|
US20220291665A1 (en) | 2022-09-15 |
EP4024154A4 (en) | 2022-10-19 |
EP4024154A1 (en) | 2022-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7363764B2 (ja) | 情報処理装置、情報処理方法、およびプログラム | |
US10120386B2 (en) | Robotic creature and method of operation | |
WO2021117441A1 (ja) | 情報処理装置、その制御方法及びプログラム | |
EP3456487A2 (en) | Robot, method of controlling the same, and program | |
JP7502520B2 (ja) | ロボット、ロボットの制御方法及びプログラム | |
WO2021039190A1 (ja) | 情報処理装置、その制御方法及びプログラム | |
WO2021039194A1 (ja) | 情報処理装置、その制御方法及びプログラム | |
US20220288791A1 (en) | Information processing device, information processing method, and program | |
WO2021039191A1 (ja) | 情報処理装置、その制御方法及びプログラム | |
JP7327391B2 (ja) | 制御装置、制御方法及びプログラム | |
JP7559765B2 (ja) | 自律移動体、情報処理方法、プログラム、及び、情報処理装置 | |
JP7459791B2 (ja) | 情報処理装置、情報処理方法、およびプログラム | |
WO2021131959A1 (ja) | 情報処理装置、情報処理方法及び情報処理プログラム | |
WO2023037608A1 (ja) | 自律移動体、情報処理方法、及び、プログラム | |
WO2023037609A1 (ja) | 自律移動体、情報処理方法、及び、プログラム | |
US20220413795A1 (en) | Autonomous mobile body, information processing method, program, and information processing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20856645 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020856645 Country of ref document: EP Effective date: 20220328 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |