WO2021039187A1 - Transfer film, method for producing transfer film, method for producing laminate, laminate, touch panel sensor, and touch panel - Google Patents

Transfer film, method for producing transfer film, method for producing laminate, laminate, touch panel sensor, and touch panel Download PDF

Info

Publication number
WO2021039187A1
WO2021039187A1 PCT/JP2020/027887 JP2020027887W WO2021039187A1 WO 2021039187 A1 WO2021039187 A1 WO 2021039187A1 JP 2020027887 W JP2020027887 W JP 2020027887W WO 2021039187 A1 WO2021039187 A1 WO 2021039187A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
transfer film
photosensitive resin
resin layer
mass
Prior art date
Application number
PCT/JP2020/027887
Other languages
French (fr)
Japanese (ja)
Inventor
児玉 邦彦
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021542622A priority Critical patent/JPWO2021039187A1/ja
Publication of WO2021039187A1 publication Critical patent/WO2021039187A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • G03F7/032Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders
    • G03F7/033Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds with binders the binders being polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means

Definitions

  • the present invention relates to a transfer film, a method for manufacturing a transfer film, a method for manufacturing a laminate, a laminate, a touch panel sensor, and a touch panel.
  • Liquid crystal display elements or touch panels are used in large electronic devices such as personal computers and televisions, small electronic devices such as car navigation systems, mobile phones and electronic dictionaries, and display devices such as OA devices and FA devices. These liquid crystal display elements or touch panels have transparent electrodes. As a touch panel, various methods have already been put into practical use, and in recent years, the use of a capacitive touch panel has been advancing. Conventionally, as the transparent electrode, an electrode formed by using a material such as ITO (Indium Tin Oxide), indium oxide, and tin oxide is used, but as an alternative electrode, a conductive layer containing conductive fibers is used. It has been proposed to use a conductive pattern formed from a photosensitive conductive film having a texture in a photolithography step.
  • ITO Indium Tin Oxide
  • Patent Document 1 describes a photosensitive conductive film including a temporary support, a conductive layer provided on the temporary support and containing conductive fibers, and a photosensitive resin layer provided on the conductive layer. ing.
  • the present inventor examined the technique disclosed in Patent Document 1, and found that the transfer film described in Patent Document 1 is used when the unexposed portion of the photosensitive resin layer is developed with a developing solution to form a conductive pattern. It was found that there is room for improvement in developability.
  • the means for solving the above problems include the following aspects.
  • the binder polymer has a structural unit derived from (meth) acrylic acid and a structural unit derived from (meth) acrylic acid alkyl ester.
  • a method for producing a transfer film which comprises a laminating step.
  • the mass ratio of the content of the non-aromatic hydrocarbon solvent contained in the first liquid and the second liquid to the total amount of the solvent contained in the first liquid and the second liquid is 80% by mass or more [8]. ]
  • a method for producing a laminate having a substrate and a conductive pattern which is the transfer film according to any one of [1] to [7] or the production method according to any one of [8] to [15].
  • a method for producing a laminate which comprises a step of removing a part of the conductive layer of the transfer film together with an unexposed portion of the photosensitive resin layer to form a patterned conductive layer.
  • a laminate produced by the production method according to [16] which comprises a substrate and a patterned conductive layer containing silver nanowires.
  • a transfer film having better developability. Further, according to the present invention, it is possible to provide a method for manufacturing a transfer film, a method for manufacturing a laminate, a laminate, a touch panel sensor, and a touch panel.
  • (meth) acrylic acid is a concept including both acrylic acid and methacrylic acid
  • (meth) acrylate is a concept including both acrylate and methacrylate
  • ( "Meta) acryloyl group” is a concept that includes both acryloyl group and methacrylic acid group.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. means.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the present specification are TSKgel GMHxL, TSKgel G4000HxL, TSKgel G2000HxL and / or TSKgel Super HZM-N (all of which are manufactured by Toso Co., Ltd.).
  • the molecular weight of a compound having a molecular weight distribution is the weight average molecular weight (Mw).
  • the dispersity also referred to as polydispersity
  • Mw / Mn the weight average molecular weight of the weight average molecular weight (Mw) and the number average molecular weight (Mn).
  • the term "process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
  • the term "exposure” as used herein includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams.
  • the light used for exposure is generally the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet light (EUV (Extreme ultraviolet) light), and active light (active energy) such as X-rays. Line).
  • the "main chain” means the relatively longest binding chain in the polymer, and the "constituent unit" of the polymer constitutes the binding chain which is the main chain.
  • the ratio of the constituent units of the polymer is a molar ratio. Further, in the present specification, a combination of two or more preferred embodiments is a more preferred embodiment. Hereinafter, the present invention will be described.
  • the transfer film of the present invention has a temporary support, a conductive layer, and a photosensitive resin layer.
  • the conductive layer contains silver nanowires.
  • the photosensitive resin layer contains a binder polymer having a dispersity (Mw / Mn) of 3.5 or less, a polymerizable compound, and a polymerization initiator.
  • the present inventor exposes the photosensitive resin layer when the transfer film having the above structure transfers the conductive layer and the photosensitive resin layer to the substrate using the transfer film having the above structure. It has been found that the photosensitive resin layer is easily removed by the developing treatment after the process, and the development residue is less likely to remain, so that the photosensitive resin layer after transfer is excellent in developability. Although the details are not clear, this is developed by a component having a relatively high molecular weight and a component having a relatively low molecular weight contained in the photosensitive resin layer because the dispersibility (Mw / Mn) of the binder polymer is small.
  • the transfer film may have a layer other than the temporary support, the conductive layer and the photosensitive resin layer, or may be composed of only the temporary support, the conductive layer and the photosensitive resin layer.
  • layers other than the temporary support, the conductive layer and the photosensitive resin layer include a protective film, an adhesive layer, and a gas barrier layer.
  • FIG. 1 and 2 show a configuration example of the transfer film.
  • the transfer film of the present invention is not limited to those having the configurations shown in FIGS. 1 and 2.
  • FIG. 1 is a schematic view showing an example of the configuration of the transfer film.
  • the temporary support 1, the conductive layer 2, the photosensitive resin layer 3, and the protective film 4 are laminated in this order.
  • FIG. 2 is a schematic view showing another example of the configuration of the transfer film.
  • the temporary support 1, the photosensitive resin layer 3, the conductive layer 2, and the protective film 4 are laminated in this order.
  • Each layer of the transfer film will be described in detail below.
  • the transfer film of the present invention has a temporary support.
  • the temporary support include a glass substrate and a resin film, and a resin film is preferable, and a resin film having heat resistance and solvent resistance is more preferable.
  • a film having flexibility and not causing significant deformation, shrinkage or elongation under pressure, or under pressure and heating is preferable.
  • a resin film include polyethylene terephthalate (PET) film, polyethylene film, polypropylene film and polycarbonate film. Of these, a polyethylene terephthalate film is preferable from the viewpoint of transparency and heat resistance.
  • the surface of the above resin film may be mold-released so that it can be easily peeled off from the photosensitive layer later.
  • a layer having particles is present in order to impart handleability.
  • the thickness of the temporary support is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, still more preferably 15 ⁇ m or more, from the viewpoint of mechanical strength.
  • the thickness of the temporary support is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and 100 ⁇ m or less from the viewpoint of the resolution of the conductive pattern. More preferred. From the above points, the thickness of the temporary support is preferably 5 to 300 ⁇ m, more preferably 10 to 200 ⁇ m, and even more preferably 15 to 100 ⁇ m.
  • the thickness of each layer included in the transfer film is determined by observing a cross section including a direction perpendicular to the main surface of the layer using a scanning electron microscope (SEM) and based on the obtained observation image. It is a value obtained by measuring the thickness of 10 points or more and calculating the average value thereof.
  • SEM scanning electron microscope
  • the haze value of the temporary support is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, and more preferably 0.01, from the viewpoint of the exposure sensitivity of the photosensitive resin layer and the resolution of the conductive pattern. -2.0% is more preferable, and 0.01-1.5% is particularly preferable.
  • the haze value is determined by a method based on JIS K 7105 (optical property test method for plastics), for example, using a commercially available turbidity meter such as NDH-1001DP (manufactured by Nippon Denshoku Kogyo Co., Ltd., trade name). Can be measured.
  • the temporary support preferably has a light transmittance of 50% or more at the wavelength of the irradiating active light (more preferably 365 nm). It is more preferably% or more, and even more preferably 70% or more.
  • the transmittance of the layer included in the transfer film is the emission light emitted through the layer with respect to the intensity of the incident light when the light is incident in the direction perpendicular to the main surface of the layer (thickness direction). It is a ratio of intensity and is measured using MCPD Series manufactured by Otsuka Electronics Co., Ltd.
  • the film used as the temporary support has no deformation such as wrinkles or scratches.
  • the number of fine particles, foreign substances, and defects contained in the temporary support is small.
  • the number of the above fine particles and foreign matter and defect diameter 1 ⁇ m is more preferably preferably 50 pieces / 10 mm 2 or less, more preferably 10/10 mm 2 or less, three / 10 mm 2 or less ..
  • the transfer film of the present invention has a conductive layer containing silver nanowires as conductive fibers.
  • the structure of the conductive layer is not particularly limited as long as it can obtain conductivity in the plane direction, but it is preferable that the conductive fibers come into contact with each other to form a network structure.
  • the conductive layer may be arranged on the surface of the photosensitive resin layer facing the temporary support, or may be arranged on the surface of the photosensitive resin layer opposite to the surface facing the temporary support. Further, after the transfer film is produced, a part of the components contained in the photosensitive resin layer (for example, a binder polymer) may be infiltrated into the conductive layer.
  • the silver nanowires contained in the conductive layer are wire-like conductive substances composed of silver or an alloy composed of silver and a metal other than silver. Further, the silver nanowire may have a structure in which a wire-shaped core made of silver is coated with a metal other than silver.
  • the structure coated with a metal other than silver includes not only a structure in which the entire surface of the core silver nanowire is coated, but also a structure in which a part thereof is coated.
  • a metal nobler than silver is preferable, gold, platinum or palladium is more preferable, and gold is further preferable.
  • the shape of the silver nanowire is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a columnar shape, a rectangular parallelepiped shape, and a columnar shape having a polygonal cross section.
  • the fiber diameter of the silver nanowire is preferably 1 to 50 nm, more preferably 2 to 20 nm, and even more preferably 3 to 10 nm.
  • the fiber length of the silver nanowire is preferably 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m, and even more preferably 3 to 10 ⁇ m.
  • the fiber diameter and fiber length of the silver nanowires are determined by arbitrarily selecting 20 silver nanowires from an observation image including a plurality of silver nanowires obtained by using a scanning electron microscope (SEM). It is a value obtained by arithmetically averaging the lengths of the minor axis and the major axis of silver nanowires.
  • Examples of the method for producing silver nanowires include a method of reducing silver ions with a reducing agent such as NaBH 4 and a method of using a polyol method. Further, a method for producing silver nanowires is described in paragraphs 0019 to 0024 of JP2011-149902A, and the contents of this publication are incorporated in the present specification.
  • the conductive layer may contain conductive fibers other than silver nanowires.
  • conductive fibers other than silver nanowires include metals such as gold, silver, copper and platinum, metal fibers made of alloys of these metals, and carbon fibers such as carbon nanotubes.
  • the shape of the conductive fiber may be the same as the shape of the silver nanowire described above, including its preferred embodiment.
  • the conductive layer may contain an organic conductor as well as conductive fibers.
  • the organic conductor is not particularly limited, and examples thereof include organic conductors such as polymers of thiophene derivatives and aniline derivatives. More specifically, polyethylene dioxythiophene, polyhexylthiophene, and polyaniline can be mentioned.
  • the thickness of the conductive layer varies depending on the use of the conductive pattern produced by using the transfer film and the required conductivity, but is preferably 1 ⁇ m or less, more preferably 1 nm or more and 0.5 ⁇ m or less, and 5 nm or more. It is more preferably 1 ⁇ m or less.
  • the thickness of the conductive layer is 1 ⁇ m or less, the light transmittance in the wavelength range of 450 to 650 nm is high, the pattern forming property is also excellent, and it is particularly suitable for producing a transparent electrode.
  • the method for forming the conductive layer is not particularly limited as long as it is a method capable of forming a layer containing silver nanowires.
  • a method for forming the conductive layer for example, a conductive composition containing silver nanowires is prepared, the conductive composition is applied to the surface of a temporary support or a photosensitive resin layer, and then the conductive composition is applied. Examples thereof include a method of drying the film to form a conductive layer.
  • the content of silver nanowires in the conductive composition is not limited as long as the coating film of the conductive composition can be formed, but is preferably 0.01 to 20% by mass with respect to the total mass of the conductive composition. , 0.1 to 10% by mass is more preferable.
  • the conductive composition preferably contains a solvent.
  • the solvent include water and organic solvents.
  • the conductive composition preferably contains water as a solvent, and more preferably contains water and an organic solvent.
  • an alcohol solvent is preferable.
  • the alcohol-based solvent is not particularly limited, and for example, alcohol having 1 to 5 carbon atoms, ethylene glycol, polyethylene glycol, polyethylene glycol alkyl ether, glycerin, alcandiol propylene glycol having 3 to 6 carbon atoms, dipropylene glycol, 1 -Ethoxy-2-propanol, ethanolamine and diethanolamine can be mentioned.
  • the conductive composition may contain at least one selected from the group consisting of conductive fibers other than the silver nanowires described above, organic conductors, and dispersion stabilizers such as surfactants.
  • the content of water in the conductive composition is preferably 80% by mass or more, more preferably 90% by mass or more, based on the total mass of the conductive composition.
  • the upper limit is not particularly limited, but is preferably 99.99% by mass or less, more preferably 99.9% by mass or less, based on the total mass of the conductive composition.
  • the content of the organic solvent is preferably 0.01 to 20% by mass.
  • Examples of the coating method of the conductive composition include known methods such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, and a spray coating method. , Not limited to these.
  • the method for drying the coating film of the conductive composition is not particularly limited, and examples thereof include a method in which hot air having a temperature of 30 to 150 ° C. is applied to the coating film for 1 to 30 minutes using a hot air convection dryer. ..
  • the transfer film of the present invention has a photosensitive resin layer containing a binder polymer (hereinafter, also referred to as “specific polymer”) having a dispersity (Mw / Mn) of 3.5 or less, a polymerizable compound, and a polymerization initiator.
  • a binder polymer hereinafter, also referred to as “specific polymer” having a dispersity (Mw / Mn) of 3.5 or less
  • Mw / Mn dispersity
  • the photosensitive resin layer is preferably a negative photosensitive resin layer in which the solubility of the exposed portion in the developing solution is reduced by exposure and the non-exposed portion is removed by development.
  • the photosensitive resin layer is not limited to the negative photosensitive resin layer, and even if the photosensitive resin layer is a positive photosensitive resin layer in which the solubility of the exposed portion in the developing solution is improved by exposure and the exposed portion is removed by development. Good.
  • Specific polymers include, for example, (meth) acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin and (meth) acrylic acid.
  • a binder polymer such as an epoxy (meth) acrylate resin obtained and an acid-modified epoxy (meth) acrylate acrylate resin obtained by reacting an epoxy (meth) acrylate resin with an acid anhydride, and having a degree of dispersibility (Mw / Mn). ) Is 3.5 or less.
  • a (meth) acrylic resin is preferable from the viewpoint of excellent alkali developability and film forming property.
  • a (meth) acrylic resin means a resin having a structural unit derived from a (meth) acrylic compound.
  • the content of the structural unit derived from the (meth) acrylic compound is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, based on all the structural units of the (meth) acrylic resin. ..
  • the (meth) acrylic resin may be composed of only a structural unit derived from the (meth) acrylic compound, or may have a structural unit derived from a polymerizable monomer other than the (meth) acrylic compound. .. That is, the upper limit of the content of the structural unit derived from the (meth) acrylic compound is 100% by mass or less with respect to the total mass of the (meth) acrylic resin.
  • Examples of the (meth) acrylic compound include (meth) acrylic acid, (meth) acrylic acid ester, (meth) acrylamide and (meth) acrylonitrile.
  • Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl ester, (meth) acrylic acid tetrahydrofurfuryl ester, (meth) acrylic acid dimethylaminoethyl ester, (meth) acrylic acid diethylaminoethyl ester, and (meth) acrylic acid ester.
  • Acrylic acid glycidyl ester (meth) acrylic acid benzyl ester, 2,2,2-trifluoroethyl (meth) acrylate, and 2,2,3,3-tetrafluoropropyl (meth) acrylate.
  • Meta) Acrylic acid alkyl esters are preferred.
  • (meth) acrylamide include acrylamide such as diacetone acrylamide.
  • As the (meth) acrylic compound forming the structural unit constituting the (meth) acrylic resin at least one selected from the group consisting of (meth) acrylic acid and (meth) acrylic acid alkyl ester is preferable.
  • Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, propyl (meth) acrylic acid, butyl (meth) acrylic acid, pentyl (meth) acrylic acid, and (meth).
  • (meth) acrylic acid ester a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 4 carbon atoms is preferable, and methyl (meth) acrylate or ethyl (meth) acrylate is more preferable.
  • the (meth) acrylic resin may have a structural unit other than the structural unit derived from the (meth) acrylic compound.
  • the polymerizable monomer forming the above-mentioned structural unit is not particularly limited as long as it is a compound other than the (meth) acrylic compound that is copolymerizable with the (meth) acrylic compound, and is, for example, styrene, vinyltoluene and ⁇ -methyl.
  • Styrene compounds which may have a substituent at the ⁇ -position such as styrene or an aromatic ring, vinyl alcohol esters such as acrylonitrile and vinyl-n-butyl ether, maleic acid, maleic acid anhydride, monomethyl maleate, monoethyl maleate and Examples thereof include maleic acid monoesters such as monoisopropyl maleate, fumaric acid, silicic acid, ⁇ -cyanosilicic acid, itaconic acid and crotonic acid. These polymerizable monomers may be used alone or in combination of two or more.
  • the (meth) acrylic resin preferably has a structural unit having an acid group from the viewpoint of improving the alkali developability.
  • the acid group include a carboxy group, a sulfo group, a phosphoric acid group and a phosphonic acid group.
  • the (meth) acrylic resin more preferably has a structural unit having a carboxyl group, and further preferably has a structural unit derived from the above-mentioned (meth) acrylic acid.
  • the content of the constituent unit having an acid group (preferably the constituent unit derived from (meth) acrylic acid) in the (meth) acrylic resin is excellent in developability with respect to the total mass of the (meth) acrylic resin. 10% by mass or more is preferable.
  • the upper limit is not particularly limited, but is preferably 50% by mass or less, more preferably 40% by mass or less, in terms of excellent alkali resistance.
  • the (meth) acrylic resin has a structural unit derived from the above-mentioned (meth) acrylic acid alkyl ester.
  • the content of the structural unit derived from the (meth) acrylic acid alkyl ester in the (meth) acrylic resin is preferably 50 to 90% by mass, more preferably 65 to 90% by mass, based on all the structural units of the (meth) acrylic resin. preferable.
  • the (meth) acrylic resin a resin having both a structural unit derived from (meth) acrylic acid and a structural unit derived from (meth) acrylic acid alkyl ester is preferable, and the structural unit derived from (meth) acrylic acid and the structural unit derived from (meth) acrylic acid are preferable.
  • a resin composed only of structural units derived from (meth) acrylic acid alkyl ester is more preferable.
  • an acrylic resin having a structural unit derived from methacrylic acid, a structural unit derived from methyl methacrylate, and a structural unit derived from ethyl acrylate is also preferable.
  • the (meth) acrylic resin may have at least one selected from the group consisting of a structural unit derived from methacrylic acid and a structural unit derived from methacrylic acid alkyl ester in that the protective film is excellent in peelability. It is preferable to have both a structural unit derived from methacrylic acid and a structural unit derived from an alkyl methacrylate ester.
  • the total content of the structural units derived from methacrylic acid and the structural units derived from methacrylic acid alkyl ester in the (meth) acrylic resin is superior to that of all the structural units of the (meth) acrylic resin in that the protective film is excellent in peelability. 40% by mass or more is preferable, and 60% by mass or more is more preferable.
  • the upper limit is not particularly limited and may be 100% by mass or less, and 80% by mass or less is preferable from the viewpoint of excellent developability of the photosensitive resin layer after transfer and laminating property of the photosensitive resin layer.
  • the (meth) acrylic resin preferably has an ester group at the end in that the photosensitive resin layer after transfer is excellent in developability.
  • the terminal portion of the (meth) acrylic resin is composed of a site derived from the polymerization initiator used in the synthesis.
  • a (meth) acrylic resin having an ester group at the terminal can be synthesized by using a polymerization initiator that generates a radical having an ester group.
  • the method for producing a specific polymer is not particularly limited as long as it is a method capable of producing a polymer having a dispersity (Mw / Mn) of 3.5 or less.
  • a specific polymer may be produced by a known method of radically polymerizing a polymerizable monomer in the presence of a polymerization initiator.
  • the polymerization method at this time include a bulk polymerization method, a suspension polymerization method, an emulsion polymerization method, and a solution polymerization method.
  • a method for producing a specific polymer by a solution polymerization method will be described in detail.
  • a method for producing a specific polymer by a solution polymerization method for example, (I) A method of adding a second liquid containing a polymerizable monomer, a polymerization initiator and a solvent to a first liquid containing a solvent under heating conditions over 0.5 to 20 hours. (Ii) Under heating conditions, the third liquid containing the polymerizable monomer and the fourth liquid containing the polymerization initiator and the solvent are separately added to the first liquid containing the solvent over 0.5 to 20 hours. Method and (Iii) Examples thereof include a method of adding a fourth liquid containing a polymerization initiator and a solvent to a third liquid containing a polymerizable monomer and a solvent under heating conditions over 0.5 to 20 hours.
  • each of the above methods (i) to (iii) even if the polymerization initiator is decomposed before the polymerization reaction is started, the polymerizable monomer and the radical derived from the polymerization initiator are combined. It is preferable in that the reaction can be suppressed, the amount of high-molecular-weight polymer produced can be reduced, and the degree of dispersion of the polymer can be reduced.
  • the time for adding each of the solutions in the above methods (i) to (iii) is not limited to the above addition time as long as the entire amount of each solution is not added at once and a part thereof is added little by little. ..
  • the second liquid contains a solvent, the reaction between the polymerizable monomer in the second liquid and the radicals derived from the polymerization initiator can be suppressed.
  • the polymerizable monomer and the polymerization initiator are separated, they are derived from the polymerizable monomer and the polymerization initiator until the polymerization by the above method is performed. Does not react with the radicals. Therefore, it is more preferable to produce the specific polymer by the above methods (ii) and (iii).
  • the polymerizable monomer used for solution polymerization is selected depending on the specific polymer to be produced.
  • the polymerizable monomer used for solution polymerization is the above-mentioned (meth) acrylic compound.
  • the amount of the polymerizable monomer used in the solution polymerization is not particularly limited, but 10 mass with respect to the total mass of the reaction system from the viewpoint of reducing the amount of the raw material used, improving the volume efficiency, and reducing the amount of the residual monomer. % Or more is preferable, 15% by mass or more is more preferable, and 20% by mass or more is further preferable.
  • the upper limit is not particularly limited, but is preferably 80% by mass or less, more preferably 60% by mass or less, based on the total mass of the reaction system.
  • the reaction system means all reaction solutions used in solution polymerization.
  • the reaction system is the total amount of the first liquid and the second liquid in the above method (i), and the total amount of the first liquid, the third liquid and the fourth liquid in the above method (ii).
  • the reaction system is the total amount of the third and fourth liquids.
  • the content of the polymerizable monomer in the second liquid of the above method (i) is not particularly limited, and is preferably 10 to 95% by mass, more preferably 20 to 80% by mass, based on the total mass of the second liquid. ..
  • the content of the polymerizable monomer in the third liquid of the above method (ii) is not particularly limited, and is preferably 30% by mass or more, more preferably 50% by mass or more, based on the total mass of the third liquid.
  • the upper limit is not particularly limited, and may be 100% by mass or less, preferably 95% by mass or less, and more preferably 90% by mass or less with respect to the total mass of the third liquid.
  • the content of the polymerizable monomer in the third liquid of the above method (iii) is not particularly limited, and is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, based on the total mass of the third liquid. ..
  • solvents can be used, for example, ether-based solvents, ester-based solvents, ketone-based solvents, amide-based solvents, sulfoxide-based solvents, alcohol-based solvents, hydrocarbon-based solvents, and mixtures thereof.
  • ether-based solvents for example, ether-based solvents, ester-based solvents, ketone-based solvents, amide-based solvents, sulfoxide-based solvents, alcohol-based solvents, hydrocarbon-based solvents, and mixtures thereof.
  • ether solvent and an ether solvent, an ester solvent or a ketone solvent is preferable from the viewpoint of solubility of the polymerizable monomer and the produced polymer.
  • ether solvent examples include chain ethers such as diethyl ether, ethylene glycol dimethyl ether, and propylene glycol monomethyl ether, and cyclic ethers such as tetrahydrofuran and dioxane.
  • ester solvent examples include glycol ether esters such as methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, and methoxyethyl acetate.
  • ketone solvent examples include acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
  • Examples of the amide solvent include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone, and N-ethylpyrrolidone.
  • Examples of the sulfoxide solvent include dimethyl sulfoxide.
  • Examples of the alcohol solvent include methanol, ethanol and propanol.
  • Examples of the hydrocarbon solvent include aromatic hydrocarbon solvents such as benzene, toluene and xylene, aliphatic hydrocarbon solvents such as hexane, and alicyclic hydrocarbon solvents such as cyclohexane.
  • the uniformity of the composition of the polymer to be produced, the solubility of the specific polymer in the photosensitive resin composition used for forming the photosensitive layer, and the ease of forming the photosensitive layer by coating the photosensitive resin composition (hereinafter, "coatability").
  • the content of the non-aromatic hydrocarbon solvent contained in the reaction solution is preferably 60% by mass or more, preferably 80% by mass, based on the total amount of the solvent contained in the reaction system of solution polymerization. The above is more preferable.
  • the upper limit is not particularly limited and may be 100% by mass or less. That is, all the solvents contained in the reaction system of solution polymerization may be non-aromatic hydrocarbon solvents.
  • the mass ratio of the content of the non-aromatic hydrocarbon solvent contained in the first liquid and the second liquid to the total amount of the solvent contained in the first liquid and the second liquid is 80% by mass or more. Is preferable.
  • the ratio is preferably 80% by mass or more.
  • the non-aromatic hydrocarbon solvent means a solvent having no aromatic ring in the molecule.
  • the boiling point of the solvent is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, still more preferably 120 ° C. or higher.
  • the viscosity of the solvent is not particularly limited, but the kinematic viscosity at 20 ° C. is preferably 1 mm 2 / sec or more, and more preferably 1.2 mm 2 / sec or more. These solvents can be used alone or in admixture of two or more.
  • the amount of the solvent used in the solution polymerization is not particularly limited, but is preferably 40 to 90% by mass, more preferably 50 to 80% by mass, based on the total mass of the reaction system. Further, the solvent may be the remainder of the polymerizable monomer and the polymerization initiator in the reaction system.
  • the content of the solvent contained in the second liquid is not particularly limited, and is preferably 5 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the second liquid. Further, the content of the solvent contained in the second liquid is more preferably 40% by mass or more with respect to the total mass of the second liquid in that the photosensitive resin layer after transfer is excellent in developability.
  • the content of the solvent contained in the first liquid ((content of the solvent contained in the first liquid) / (contained in the second liquid) with respect to the content of the solvent contained in the second liquid.
  • the mass ratio of (solvent content)) is preferably 1/9 to 9/1, more preferably 2/8 to 8/2, in that the polymer produced is excellent in molecular weight uniformity.
  • the content of the solvent contained in the first liquid ((the content of the solvent contained in the first liquid) is higher than the content of the solvent contained in the second liquid.
  • Amount) / (content of solvent contained in the second liquid)) is more preferably 6/4 or less, further preferably 5/5 or less, and particularly preferably 4/6 or less.
  • the content of the solvent contained in the third liquid may be 0% by mass, that is, the third liquid may not contain the solvent.
  • the content of the solvent contained in the third liquid is preferably 5 to 80% by mass, more preferably 10 to 50% by mass, based on the total mass of the third liquid.
  • the content of the solvent contained in the fourth liquid is preferably 40 to 99% by mass, more preferably 70 to 97% by mass, based on the total mass of the fourth liquid.
  • the content of the solvent contained in the first liquid ((content of the solvent contained in the first liquid)) with respect to the content (total amount) of the solvent contained in the third liquid and the fourth liquid. ) / (Contents of solvent contained in the 3rd and 4th liquids)) is preferably 1/9 to 9/1 in terms of excellent molecular weight uniformity of the produced polymer, 2/8. ⁇ 8/2 is more preferable.
  • the content of the solvent contained in the third liquid is preferably 40 to 90% by mass, more preferably 40 to 80% by mass, based on the total mass of the third liquid.
  • the content of the solvent contained in the fourth liquid is preferably 50 to 99% by mass, more preferably 60 to 97% by mass, based on the total mass of the fourth liquid.
  • the content of the solvent contained in the fourth liquid ((content of the solvent contained in the fourth liquid) / (in the third liquid) with respect to the content of the solvent contained in the third liquid.
  • the mass ratio of the contained solvent)) is preferably 95/5 to 50/50, more preferably 90/10 to 60/40, in that the polymer produced is excellent in molecular weight uniformity.
  • the polymerization initiator (radical polymerization initiator) used for solution polymerization is not particularly limited, and examples thereof include azo compounds, peroxide compounds, and redox compounds.
  • examples of the radical polymerization initiator include dimethyl 2,2'-azobisisobutyrate, azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), t-butylperoxypivalate, and di.
  • the amount of the polymerization initiator used in the solution polymerization is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably 0.5 to 6% by mass, based on the total mass of the polymerizable monomer.
  • the polymerization initiator can be used alone or in combination of two or more.
  • the temperature of the solution (reaction temperature) in the solution polymerization may be, for example, 30 to 150 ° C, preferably 50 to 120 ° C, and 55 to 110. °C is more preferable.
  • the solution polymerization time may be set depending on the type of the polymerizable monomer, the type of the polymerization initiator, and the reaction temperature, but is preferably 0.5 to 20 hours, more preferably 1 to 10 hours, and 1 to 8 hours. Is more preferable.
  • the solution polymerization time is the time for adding the second liquid in the case of the above method (i), and the time for adding the third liquid and the fourth liquid in the case of the above method (ii), respectively. In the case of the above method (iii), it is time to add the fourth solution. In the case of the above method (ii), the time for adding the third liquid and the fourth liquid may be the same or different.
  • the heating time may be set depending on the reaction temperature and the type of the polymerization initiator, but is preferably 1 to 10 hours, more preferably 2 to 8 o'clock.
  • the residual polymerizable monomer may be reduced by adding the polymerization initiator to the mixture again.
  • the polymer produced by solution polymerization may be recovered by precipitation or reprecipitation in contact with the poor solvent of the polymer. Further, a solution containing a polymer may be used for preparing a photosensitive resin composition without precipitation or reprecipitation.
  • the precipitation or reprecipitation solvent include an organic solvent, water, and a mixed solvent thereof.
  • the organic solvent include hydrocarbon solvents, halogenated hydrocarbon solvents, nitro compounds, nitrile solvents, ether solvents, ketone solvents, ester solvents, carbonate solvents, alcohol solvents, and carboxylic acid solvents. , And a mixed solution thereof.
  • the polymer precipitated by precipitation or reprecipitation is separated by filtration and recovered.
  • the filtration method include natural filtration, pressure filtration, vacuum filtration, centrifugal filtration and the like.
  • the acid value of the specific polymer is preferably 50 to 150 mgKOH / g from the viewpoint of developability.
  • the acid value of a particular polymer is measured as follows. First, 1 g of the polymer whose acid value should be measured is precisely weighed. 30 g of acetone is added to the polymer, and this is uniformly dissolved. Next, an appropriate amount of phenolphthalein, which is an indicator, is added to the above solution, and titration is performed using a 0.1 N KOH aqueous solution. The acid value is calculated by the following formula from the titration amount of the KOH aqueous solution.
  • Acid value 10 x Vf x 56.1 / (Wp x I)
  • Vf indicates the titer (mL) of the KOH aqueous solution
  • Wp indicates the measured mass (g) of the resin solution
  • I indicates the ratio of the non-volatile content (mass%) in the measured resin solution.
  • the dispersity (Mw / Mn) of the specific polymer is 3.5 or less.
  • the dispersity (Mw / Mn) of the specific polymer is preferably less than 2.5, more preferably less than 2.0, from the viewpoint of more excellent developability.
  • the lower limit is not particularly limited, but 1.5 or more is preferable, and more than 1.7 is more preferable, from the viewpoint of better laminating property.
  • the weight average molecular weight Mw of the specific polymer is preferably 5,000 to 300,000, more preferably 20,000 to 150,000, and 30,000 from the viewpoint of the balance between mechanical strength, developer resistance and developability. ⁇ 100,000 is more preferable.
  • the photosensitive resin layer may contain only one type of the above-mentioned resin as the specific polymer, or may contain two or more types of the above-mentioned resin.
  • the two or more kinds of resins that the photosensitive resin layer may contain include, for example, two or more kinds of resins having different structural units, two or more kinds of resins having different weight average molecular weights, and two kinds of resins having different dispersities.
  • the above resins can be mentioned.
  • the content of the specific polymer is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the photosensitive resin layer from the viewpoint of the strength of the cured film and the handleability in the transfer film. , 30-70% by mass is more preferable.
  • the photosensitive resin layer contains a polymerizable compound having a polymerizable group.
  • a photopolymerizable compound having an ethylenically unsaturated group (hereinafter, also referred to as “ethylenically unsaturated compound”) is preferable.
  • An ethylenically unsaturated compound is a compound having one or more ethylenically unsaturated groups in one molecule.
  • an acryloyl group or a methacryloyl group is preferable.
  • the photosensitive resin layer preferably contains a bifunctional or higher functional ethylenically unsaturated compound as an ethylenically unsaturated compound from the viewpoint of curability after curing, and may contain a trifunctional or higher functional ethylenically unsaturated compound. More preferred. From the viewpoint of achieving both curability and developability after curing, it is preferable to use an ethylenically unsaturated compound having trifunctional or higher and hexafunctional or lower in combination with the specific polymer.
  • a bifunctional or higher functional ethylenically unsaturated compound means a compound having two or more ethylenically unsaturated groups in one molecule, and a trifunctional or higher and hexafunctional or lower ethylenically unsaturated compound is defined as a compound.
  • Examples of the ethylenically unsaturated compound include a compound obtained by reacting a polyhydric alcohol with an ⁇ , ⁇ -unsaturated carboxylic acid, and a compound obtained by reacting a glycidyl group-containing compound with an ⁇ , ⁇ -unsaturated carboxylic acid.
  • Urethane monomers such as (meth) acrylate compounds with urethane bonds, ⁇ -chloro- ⁇ -hydroxypropyl- ⁇ '-(meth) acryloyloxyethyl-o-phthalate, ⁇ -hydroxyethyl- ⁇ '-(meth) acryloyl Examples thereof include phthalic acid compounds such as oxyethyl-o-phthalate and ⁇ -hydroxypropyl- ⁇ '-(meth) acryloyloxyethyl-o-phthalate, and (meth) acrylic acid alkyl esters. These are used alone or in combination of two or more.
  • Examples of the compound obtained by reacting a polyvalent alcohol with ⁇ , ⁇ -unsaturated carboxylic acid include 2,2-bis (4-((meth) acryloxypolyethoxy) phenyl) propane and 2,2-bis.
  • Bisphenol A-based (meth) acrylate compounds such as (4-((meth) acryloxypolypropoxy) phenyl) propane and 2,2-bis (4-((meth) acryloxypolyethoxypolypropoxy) phenyl) propane , Polyethylene glycol di (meth) acrylate having an ethylene oxide group number of 2 to 14, polypropylene glycol di (meth) acrylate having a propylene oxide group number of 2 to 14, and an ethylene oxide group number of 2 to 14.
  • a polymerizable compound having a trimethylolpropane structure is preferable, and trimethylolpropane tri (meth) acrylate or di (trimethylolpropane) tetraacrylate is more preferable.
  • the urethane monomer examples include a (meth) acrylic monomer having a hydroxyl group at the ⁇ -position and a diisocyanate compound such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • a diisocyanate compound such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • Tris [(meth) acryloxytetraethylene glycol isocyanate] hexamethylene isocyanurate, ethylene oxide-modified urethane di (meth) acrylate, and ethylene oxide and propylene oxide-modified urethane di (meth) acrylate examples include Tris [(meth) acryloxytetraethylene glycol is
  • Examples of the ethylene oxide-modified urethane di (meth) acrylate include "UA-11” (manufactured by Shin-Nakamura Chemical Industry Co., Ltd., trade name). Examples of ethylene oxide and propylene oxide-modified urethane di (meth) acrylate include “UA-13” (manufactured by Shin-Nakamura Chemical Industry Co., Ltd., trade name).
  • the photosensitive resin layer may contain only one type of polymerizable compound, or may contain two or more types.
  • the content of the polymerizable compound is preferably 30 to 80 parts by mass, more preferably 40 to 70 parts by mass, based on 100 parts by mass of the total amount of the specific polymer and the polymerizable compound. 30 parts by mass or more is preferable from the viewpoint of excellent photocurability and coatability on the formed conductive layer, and 80 parts by mass or less is preferable from the viewpoint of excellent storage stability when wound as a film.
  • the content of the polymerizable compound in the photosensitive resin layer is preferably 1 to 70% by mass, more preferably 10 to 60% by mass, still more preferably 20 to 50% by mass, based on the total mass of the photosensitive resin layer. ..
  • the weight average molecular weight (Mw) of the polymerizable compound is preferably 200 to 3,000, more preferably 250 to 2,600, further preferably 280 to 2,200, and particularly preferably 300 to 2,200.
  • the photosensitive resin layer contains a polymerization initiator.
  • the polymerization initiator is not particularly limited as long as it is a compound capable of polymerizing a polymerizable compound by irradiation with active light such as ultraviolet rays, visible light and X-rays to cure the photosensitive resin layer.
  • Examples of the polymerization initiator include a photoradical polymerization initiator and a photocationic polymerization initiator, and a photoradical polymerization initiator is preferable from the viewpoint of excellent photocurability.
  • Examples of the photoradical polymerization initiator include a photopolymerization initiator having an oxime ester structure (hereinafter, also referred to as “oxym ester compound”), a photopolymerization initiator having an ⁇ -aminoalkylphenone structure, and an ⁇ -hydroxyalkylphenone structure.
  • Examples thereof include a photopolymerization initiator having an acylphosphine oxide structure, a photopolymerization initiator having an acylphosphine oxide structure (hereinafter, also referred to as “acylphosphine oxide-based compound”), and a photopolymerization initiator having an N-phenylglycine structure.
  • More specific photoradical polymerization initiators include, for example, benzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone (Michlerketone), N, N'-tetraethyl-4,4'-diaminobenzophenone, and the like.
  • substituents of the two aryl groups in 2,4,5-triarylimidazole may be the same or different.
  • a thioxanthone-based compound and a tertiary amine compound may be combined, such as a combination of diethylthioxanthone and dimethylaminobenzoic acid.
  • the photoradical polymerization initiator for example, the polymerization initiator described in paragraphs 0031 to 0042 of JP2011-0957116 and paragraphs 0064 to 0081 of JP2015-014783 may be used.
  • an oxime ester compound or an acylphosphine oxide compound is preferable from the viewpoint of excellent transparency and pattern forming ability at 10 ⁇ m or less, and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) is preferable.
  • 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) is preferable.
  • -Butanone-1,1,2-octanedione-1- [4- (phenylthio) phenyl] -2- (O-benzoyloxime), or 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide preferable.
  • the photosensitive resin layer may contain only one type of polymerization initiator, or may contain two or more types of polymerization initiators.
  • the content of the polymerization initiator is not particularly limited, but is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and 1 to 10% by mass with respect to the total mass of the photosensitive resin layer. Is more preferable.
  • the content of the polymerization initiator is preferably 0.1 to 20 parts by mass, more preferably 1 to 15 parts by mass, and 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the specific polymer and the polymerizable compound. More preferred. From the viewpoint of excellent light sensitivity, 0.1 part by mass or more is preferable, and from the viewpoint of excellent photocurability inside the photosensitive resin layer, 20 parts by mass or less is preferable.
  • the photosensitive resin layer preferably contains a leveling agent from the viewpoint of improving the coatability of the photosensitive resin composition.
  • the leveling agent include various surfactants such as silicone-based surfactants, fluorine-based surfactants, nonionic surfactants, cationic surfactants, and anionic surfactants, and silicone-based surfactants. Activators are preferred.
  • the silicone-based surfactant include a linear polymer composed of a siloxane bond and a modified siloxane polymer having an organic group introduced into a side chain or a terminal.
  • leveling agent examples include DOWNSIL8032 ADDITIVE manufactured by Toray Dow Corning Co., Ltd., and X-22-4952, X-22-2472, X-22-6266, KF-351A, K354L manufactured by Shin-Etsu Chemical Co., Ltd. , KF-355A, KF-945, KF-640, KF-642, KF-643, X-22-6191, X-22-4515, and KF-6004. From the viewpoint of achieving both the coatability of the photosensitive resin composition and the developability of the photosensitive resin layer after transfer, it is preferable to use the specific polymer and the silicone-based surfactant in combination.
  • the photosensitive resin layer may contain various additives, if necessary.
  • Additives include plasticizers such as p-toluenesulfonamide, fillers, defoamers, flame retardants, stabilizers, adhesion imparting agents, peeling accelerators, antioxidants, fragrances, imaging agents, thermal cross-linking agents, etc. Can be mentioned.
  • the photosensitive additive can be contained alone or in combination of two or more.
  • the amount of these additives added is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of the specific polymer and the polymerizable compound.
  • the thickness of the photosensitive resin layer is not particularly limited, but the thickness after drying is preferably 1 to 200 ⁇ m, more preferably 2 to 15 ⁇ m, still more preferably 3 to 10 ⁇ m.
  • the thickness of the photosensitive resin layer is 1 ⁇ m or more, the layer formation tends to be facilitated by applying the photosensitive resin composition.
  • the thickness of the photosensitive resin layer is 200 ⁇ m or less, the light transmittance and the sensitivity are improved, and the photocurability of the photosensitive resin layer is more excellent, which is preferable.
  • the thickness of the photosensitive resin layer can be measured by using known means such as a micro gauge and a thickness gauge in addition to the scanning electron microscope.
  • the product of the thickness value ( ⁇ m) of the photosensitive resin layer and the specific polymer (Mw / Mn) contained in the photosensitive resin layer is determined. It is preferably less than 25.0, more preferably less than 22.0, even more preferably less than 17.0, and particularly preferably less than 16.5.
  • the lower limit is not particularly limited, but 4.0 or more is preferable, and 6.0 or more is more preferable.
  • the method for forming the photosensitive resin layer is not particularly limited as long as it is a method capable of forming a layer containing the above components.
  • a method for forming the photosensitive resin layer for example, a photosensitive resin composition containing a specific polymer, a polymerizable compound, a polymerization initiator and a solvent is prepared, and the photosensitive resin composition is formed on the surface of a temporary support or a conductive layer. Examples thereof include a method of forming a photosensitive resin layer by drying a coating film of the photosensitive resin composition after applying the material.
  • the photosensitive resin composition preferably contains a solvent in order to adjust the viscosity of the photosensitive resin composition and facilitate the formation of a coating film.
  • the solvent contained in the photosensitive resin composition is not particularly limited as long as it can dissolve or disperse a specific polymer, a polymerizable compound, a polymerization initiator and the above-mentioned additives optionally contained, and a known solvent is used. it can.
  • the content of the solvent contained in the photosensitive resin composition is preferably 30 to 95% by mass, preferably 50 to 90% by mass, based on the total mass of the photosensitive resin composition from the viewpoint of improving the developability of the photosensitive resin layer.
  • the mass% is more preferable, and 65 to 80% by mass is further preferable.
  • an organic solvent is preferable.
  • the organic solvent include methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl ether, and a mixed solvent thereof.
  • the content of the organic solvent in the photosensitive resin layer after drying is such that the diffusion of the organic solvent in a later step is prevented. It is preferably 2% by mass or less based on the total mass of the photosensitive resin layer.
  • Examples of the coating method of the photosensitive resin composition include known methods such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, and a spray coating method. However, it is not limited to these.
  • the method for drying the coating film of the photosensitive resin composition is not particularly limited, and examples thereof include a method in which hot air having a temperature of 70 to 150 ° C. is applied to the coating film for 5 to 30 minutes using a hot air convection dryer. Be done.
  • the minimum light transmittance is preferably 80% or more, and more preferably 85% or more.
  • the transfer film preferably has a protective film that is in contact with a surface that does not face the temporary support.
  • a resin film having heat resistance and solvent resistance can be used, and examples thereof include a polyethylene terephthalate film, a polypropylene film, and a polyolefin film such as a polyethylene film.
  • a resin film made of the same material as the above-mentioned support film may be used. Among them, a polyolefin film is preferable, a polypropylene film or a polyethylene film is more preferable, and a polyethylene film is further preferable.
  • the thickness of the protective film is preferably 1 to 100 ⁇ m, more preferably 5 to 50 ⁇ m, further preferably 5 to 40 ⁇ m, and particularly preferably 15 to 30 ⁇ m.
  • the thickness of the protective film is preferably 1 ⁇ m or more in terms of excellent mechanical strength, and preferably 100 ⁇ m or less in terms of relatively low cost.
  • the adhesive force between the protective film and the photosensitive resin layer is such that the protective film can be easily peeled off from the photosensitive resin layer, so that the adhesive force between the temporary support and the photosensitive layer (conductive layer and photosensitive resin layer) Is preferably smaller than.
  • the protective film preferably contains 5 fish eyes / m 2 or less having a diameter of 80 ⁇ m or more.
  • fisheye means that when a film is produced by heat-melting a material, kneading, extruding, biaxial stretching, casting method, etc., foreign substances, undissolved substances, oxidative deterioration substances, etc. of the material are contained in the film. It was taken in.
  • the transfer film may further have at least one layer selected from the group consisting of an adhesive layer and a gas barrier layer on the surface of the protective film.
  • the method for producing the transfer film of the present invention is not particularly limited, and can be produced, for example, by a method including a laminating step of forming the above-mentioned conductive layer and the above-mentioned photosensitive resin layer on the surface of the temporary support.
  • a method for producing a transfer film will be described with reference to FIGS. 1 and 2.
  • the transfer film having the temporary support 1, the conductive layer 2 and the photosensitive resin layer 3 in this order is, for example, after the conductive composition is applied to the surface of the temporary support 1.
  • the step of forming the conductive layer 2 by drying the coating film of the conductive composition, and after applying the photosensitive resin composition to the surface of the conductive layer 2, the coating film of the photosensitive resin composition is dried. It is produced by a method including the step of forming the photosensitive resin layer 3.
  • the transfer film 10 shown in FIG. 1 is manufactured by adhering a resin film to the surface of the photosensitive resin layer 3 of the laminate manufactured by the above manufacturing method to form the protective film 4.
  • the transfer film having the temporary support 1, the photosensitive resin layer 3 and the conductive layer 2 in this order has, for example, a photosensitive resin composition on the surface of the temporary support 1.
  • the step of drying the coating film of the photosensitive resin composition to form the photosensitive resin layer 3, and after applying the conductive composition to the surface of the conductive layer 2, the coating film of the conductive composition is applied. It is produced by a method including a step of forming a conductive layer 2 by drying.
  • the transfer film 20 shown in FIG. 2 is manufactured by laminating a resin film on the surface of the conductive layer 2 of the laminate manufactured by the above manufacturing method to form the protective film 4.
  • the order of the conductive layer and the photosensitive resin layer in the transfer film is not particularly limited, and the temporary support 1, the conductive layer 2 and the photosensitive resin layer 3 are provided in this order as in the transfer film 10 shown in FIG.
  • the temporary support 1, the photosensitive resin layer 3 and the conductive layer 2 may be provided in this order as in the transfer film 20 shown in FIG.
  • a transfer film having a temporary support, a conductive layer, and a photosensitive resin layer in this order is preferable.
  • the photosensitive resin layer is arranged closer to the substrate, so that the removal of the photosensitive resin layer by the development treatment reduces the development residue derived from the photosensitive resin layer and the conductive layer. Is. Further, since the photosensitive resin layer has higher flexibility than the conductive layer, bubbles or floating between the substrate and the photosensitive resin layer are suppressed during transfer.
  • the transfer film may be stored, for example, in the form of a flat plate as it is, or in the form of a roll wound by using a cylindrical core.
  • the transfer film When the transfer film is wound in a roll form, it is preferable to wind the transfer film so that the temporary support is on the outermost side. Further, when the transfer film does not have a protective film, the transfer film can be stored as it is in a flat plate form.
  • the winding core is not particularly limited as long as it is conventionally used.
  • the material constituting the winding core include plastics such as polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, and ABS resin (acrylonitrile-butadiene-styrene copolymer). It is preferable to install an end face separator on the end face of the transfer film wound in a roll shape from the viewpoint of end face protection, and more preferably to install a moisture-proof end face separator from the viewpoint of edge fusion resistance. Further, when packing the transfer film, it is preferable to wrap it in a black sheet having excellent moisture permeability.
  • the use of the transfer film described above is not particularly limited, but since the photosensitive resin layer after transfer is excellent in developability, a transfer film for a laminate having a conductive pattern obtained by patterning a conductive layer having silver nanowires. It is preferable to use it as a transfer film for a touch panel, and it is more preferable to use it as a transfer film for a touch panel.
  • the above-mentioned transfer film and the substrate are bonded to each other by bringing the substrate into contact with the surface opposite to the surface on which the temporary support of the transfer film is arranged (hereinafter, "transfer”).
  • a step of pattern-exposing the photosensitive resin layer of the transfer film hereinafter also referred to as “exposure step”
  • exposure step a step of pattern-exposing the photosensitive resin layer of the transfer film
  • development step a step of forming a patterned conductive layer (conductive pattern)
  • a laminate having a substrate, a cured film formed by curing a patterned photosensitive resin layer, and a patterned conductive layer is manufactured.
  • the substrate contained in the laminate is not particularly limited, and examples thereof include a glass substrate and a plastic substrate such as polycarbonate.
  • the thickness of the substrate can be appropriately selected according to the purpose of use.
  • the substrate may be in the form of a film.
  • the film-like substrate include a polyethylene terephthalate film, a polycarbonate film, and a cycloolefin polymer film.
  • the substrate preferably has a minimum light transmittance of 80% or more in the wavelength range of 450 to 650 nm. When the substrate satisfies such conditions, it becomes easy to increase the brightness of the display panel or the like.
  • FIG. 3 is a schematic view for explaining an example of a method for manufacturing a laminate using a transfer film.
  • the manufacturing method using the transfer film 10 shown in FIG. 1 is described, but the manufacturing method of the laminate is not limited to the method using the transfer film having the configuration shown in FIG.
  • the transfer step it is preferable to press the photosensitive resin layer side of the transfer film onto the substrate while heating the photosensitive resin layer and / or the substrate.
  • the heating temperature and crimping pressure at this time are not particularly limited, but the heating temperature is preferably 70 to 130 ° C., and the crimping pressure is preferably about 0.1 to 1.0 MPa (about 1 to 10 kgf / cm 2 ). Further, from the viewpoint of adhesion and followability, it is preferable to carry out under reduced pressure. Further, instead of the heat treatment of the photosensitive resin layer and / or the substrate in the transfer step, the substrate may be preheat-treated before the transfer step in order to further improve the adhesion.
  • the photosensitive resin layer 3 is pattern-exposed.
  • a part of the photosensitive resin layer 3 is exposed by irradiating the active light L in an image shape through a negative or positive mask pattern 5 called artwork.
  • the photosensitive resin layer 3 is cured to form a cured film 3a.
  • the photosensitive resin layer 3 is not cured in the region (unexposed portion) not irradiated with the active light L.
  • the light source of the active light in the exposure process examples include known light sources.
  • the light source is not particularly limited as long as it is a light source that effectively irradiates the photosensitive resin layer with light having a wavelength that can be exposed (for example, 365 nm or 405 nm), and is, for example, a carbon arc lamp, a mercury vapor arc lamp, or an ultrahigh pressure mercury lamp. , High pressure mercury lamp and xenon lamp.
  • an Ar ion laser or a semiconductor laser may be used, or a photographic flood bulb or a solar lamp may be used.
  • a method of irradiating the active light beam in an image shape without using the mask pattern 5 may be adopted by a direct drawing method using a laser exposure method or the like.
  • Exposure at the exposure step may vary depending on the composition of the device and the photosensitive resin layer to be used is preferably 5 ⁇ 1000mJ / cm 2, more preferably 10 ⁇ 700mJ / cm 2. From the viewpoint of excellent photocurability, 10 mJ / cm 2 or more is preferable, and from the viewpoint of resolution, 1000 mJ / cm 2 or less is preferable.
  • the exposure atmosphere in the exposure process is not particularly limited and can be performed in air, nitrogen or vacuum.
  • a peeling step of peeling the temporary support 1 from the laminated body 30 is performed after the exposure step and before the developing step.
  • the method of peeling is not particularly limited, and a known method can be appropriately adopted.
  • the peeling step is performed after the exposure step of pattern-exposing the photosensitive resin layer 3 via the temporary support 1, but the temporary support is provided from the laminate 30 before the exposure step.
  • a peeling step for peeling the body 1 may be performed.
  • a patterned conductive layer (conductive pattern 2a) is formed by removing a part of the conductive layer 2 together with the unexposed portion of the photosensitive resin layer 3. Specifically, the uncured portion (unexposed portion) of the photosensitive resin layer 3 was removed by bringing the developer into contact with the exposed surface of the laminated body 30 exposed by peeling the temporary support 1. At this time, not only the unexposed portion of the photosensitive resin 3 but also the region of the conductive layer 2 in contact with the unexposed portion is removed.
  • a conductive pattern 2a composed of a patterned conductive layer 2 is formed, and a laminate having a substrate 20, a conductive pattern 2a, and a cured film (cured resin pattern 3a) of the patterned photosensitive resin layer 3 is formed.
  • Manufacture body 30 is
  • Examples of the developing solution include an alkaline aqueous solution, an aqueous developing solution, and an organic solvent-based developing solution.
  • the developing process in the developing step is performed by a known method such as spraying, rocking immersion, brushing and scraping using these developers, for example.
  • an alkaline aqueous solution is preferable because it is safe, stable, and has good operability.
  • As the alkaline aqueous solution 0.1 to 5% by mass sodium carbonate aqueous solution, 0.1 to 5% by mass potassium carbonate aqueous solution, 0.1 to 5% by mass sodium hydroxide aqueous solution, or 0.1 to 5% by mass tetraborax.
  • An aqueous solution of sodium carbonate is preferable.
  • the pH of the alkaline aqueous solution used as the developing solution is preferably in the range of 9 to 11.
  • the temperature of the developing solution is adjusted according to the developability of the photosensitive resin layer.
  • the alkaline aqueous solution may contain a surfactant, a defoaming agent, a small amount of an organic solvent for accelerating development, and the like.
  • an aqueous developing solution composed of water or an alkaline aqueous solution and one or more kinds of organic solvents
  • the base contained in the alkaline aqueous solution in addition to the above-mentioned sodium carbonate, potassium carbonate, sodium hydroxide and sodium tetraborate, for example, borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, etc.
  • borax sodium metasilicate
  • tetramethylammonium hydroxide ethanolamine
  • examples thereof include ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3-propanediol, 1,3-diaminopropanol-2, and morpholin.
  • organic solvent examples include methyl ethyl ketone, acetone, ethyl acetate, alkoxy ethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether. Can be mentioned. These are used alone or in combination of two or more.
  • the content of the organic solvent in the aqueous developer is preferably 2 to 90% by mass with respect to the total mass of the aqueous developer.
  • the temperature of the aqueous developer is adjusted according to the developability of the photosensitive resin layer.
  • the pH of the aqueous developer is not particularly limited as long as the photosensitive resin layer can be developed, but 8 to 12 is more preferable, and 9 to 10 is further preferable.
  • the aqueous developer may contain a small amount of additives such as a surfactant and an antifoaming agent.
  • organic solvent-based developer examples include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, cyclohexanone, methyl isobutyl ketone, and ⁇ -butyrolactone.
  • the organic solvent-based developer preferably contains water in the range of 1 to 20% by mass in order to prevent ignition.
  • the above-mentioned developer may be used in combination of two or more, if necessary.
  • Examples of the development method include a dip method, a battle method, a spray method, brushing, and slapping. Of these, it is preferable to use the high pressure spray method from the viewpoint of improving the resolution.
  • the conductive pattern 2a is formed by heating at 60 to 250 ° C. or exposing with an exposure amount of 0.2 to 10 J / cm 2 as necessary after the developing step. It may be further cured.
  • the laminate having the conductive pattern obtained by the above manufacturing method can be applied to various uses.
  • Applications of the laminate having a conductive pattern include, for example, a touch panel (touch panel sensor), a semiconductor chip, various electric wiring boards, FPC (Flexible printed circuits), COF (Chip on Film), TAB (Tape Automated Bonding), an antenna, and the like. Examples thereof include a multilayer wiring board and a motherboard, which are preferably used for a touch panel sensor.
  • the conductive pattern of the laminated body functions as a detection electrode or a lead-out wiring in the touch panel sensor.
  • the touch panel is not particularly limited as long as it has the above-mentioned touch panel sensor.
  • the above-mentioned touch panel sensor is combined with various display devices (for example, a liquid crystal display device and an organic EL (electro-luminescence) display device).
  • display devices for example, a liquid crystal display device and an organic EL (electro-luminescence) display device.
  • Equipment is mentioned.
  • Examples of the detection method in the touch panel sensor and the touch panel include known methods such as a resistive film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, and an optical method. Of these, a capacitive touch panel sensor and a touch panel are preferable.
  • the touch panel type includes a so-called in-cell type (for example, those shown in FIGS. 5, 6, 7, and 8 of JP-A-2012-517501), a so-called on-cell type (for example, JP-A-2013-168125).
  • the ones shown in FIG. 19 and those shown in FIGS. 1 and 5 of JP2012-081020A OGS (One Glass Solution) type, and TOR (Touch-on-Lens) type (for example, JP-A-2012).
  • 2013-054727 described in FIG. 2
  • various out-cell types so-called GG, G1 / G2, GFF, GF2, GF1, G1F, etc.
  • other configurations for example, Japanese Patent Application Laid-Open No.
  • the touch panel includes those described in paragraph 0229 of JP2017-120345A.
  • the touch panel manufacturing method is not particularly limited, and a known touch panel manufacturing method may be referred to except that the touch panel sensor having the above-mentioned laminated body is used.
  • Table 1 shows the composition of the monomer mixed solution containing the polymerizable monomer used for the synthesis of the polymer.
  • the polymerizable monomers used in each monomer mixture are as follows. ⁇ Methacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) ⁇ Methyl methacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) ⁇ Ethyl acrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • V-60 Azobisisobutyronitrile
  • V-601 Dimethyl 2,2'-azobis (2-methylpropionate) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
  • the polymer synthesized in this example was measured by gel permeation chromatography (GPC) under the following conditions, converted using polystyrene as a standard substance, and had a weight average molecular weight Mw and a degree of dispersion (Mw / Mn). The value of was calculated.
  • the weight average molecular weight Mw of the synthesized polymer A1 was 65,000, and the dispersity (Mw / Mn) was 3.5.
  • the third liquid and the fourth liquid did not come into contact with each other until they were added to the first liquid.
  • the mixture was kept at a temperature of 80 ° C. for another 6 hours under stirring to synthesize polymer A4, and a composition containing polymer A4 was obtained.
  • the weight average molecular weight Mw of the synthesized polymer A4 was 65,000, and the dispersity (Mw / Mn) was 2.4.
  • Polymer A7 was synthesized according to the method described in Synthesis Example 4 to obtain a composition containing polymer A7.
  • the composition containing the obtained polymer A7 was added to a mixture of methanol and water (methanol: water mixture ratio of 70:30 by volume).
  • the precipitate was collected by filtration to obtain polymer A10.
  • the weight average molecular weight Mw of the obtained polymer A10 was 69,000, and the dispersity (Mw / Mn) was 1.7.
  • Example 1 [Preparation of silver nanowire dispersion] 500 mL of ethylene glycol was placed in a three-necked flask having a capacity of 2000 mL. Ethylene glycol was heated to 160 ° C. in an oil bath under a nitrogen atmosphere while stirring with a magnetic stirrer. Then, a solution in which 22 mg of PtCl was dissolved in 50 mL of ethylene glycol was added dropwise to the ethylene glycol in the three-necked flask.
  • reaction solution was left to stand until the temperature of the reaction solution became 30 ° C. or lower, and then the reaction solution was diluted 10-fold with acetone.
  • the diluent was centrifuged at 2000 rpm for 20 minutes with a centrifuge, and the supernatant was decanted.
  • Acetone was added to the obtained precipitate, and the mixture was stirred and then centrifuged under the same conditions as described above to decant the supernatant. Then, it was centrifuged twice using distilled water under the same conditions as above to obtain a silver nanowire-containing liquid.
  • the fiber diameter (diameter) was about 5 nm, and the fiber length was about 5 ⁇ m.
  • the silver nanowires and pentaethylene glycol monododecyl ether obtained above are added to pure water so that their contents are 0.2% by mass and 0.1% by mass, respectively, to obtain a silver nanowire dispersion. Prepared.
  • a photosensitive resin composition was prepared by mixing an amount of methyl ethyl ketone having a content of 28% by mass.
  • a 16 ⁇ m-thick PET film (manufactured by Toyobo Co., Ltd., trade name “A-1517”) was prepared as a temporary support.
  • the silver nanowire dispersion obtained above was uniformly applied to the surface of the temporary support so that the coating amount was 25 g / m 2, and the obtained coating film was coated with hot air at 100 ° C. using a hot air convection dryer. Was dried for 10 minutes.
  • a conductive layer containing silver nanowires as conductive fibers was formed on the surface of the temporary support.
  • the film thickness of the conductive layer after drying was 0.01 ⁇ m.
  • the solution of the photosensitive resin composition obtained above was stirred and then uniformly applied to the surface of the formed conductive layer.
  • the obtained coating film was dried with hot air at 100 ° C. using a hot air convection dryer for 10 minutes to form a photosensitive resin layer.
  • the film thickness of the formed photosensitive resin layer after drying was 7.0 ⁇ m.
  • a polyethylene film manufactured by Tamapoli Co., Ltd., trade name "NF-13" was attached to the surface of the formed photosensitive resin layer to form a protective film, and the transfer film of Example 1-1 was prepared.
  • Examples 1-2 to 1-17 according to the above method, except that polymers A2 to A10, B1 to B7, X1 and Y1 were used in place of the polymer A1 in the above method for preparing the photosensitive resin composition. And the transfer films of Comparative Examples 1-1 to 1-2 were prepared, respectively.
  • a laminate is produced by laminating the transfer film of Example 1-1 from which the protective film has been peeled off and a transparent film substrate (cycloolefin polymer film, thickness: 38 ⁇ m, refractive index: 1.53) (transfer step). did.
  • the above transfer step uses a vacuum laminator manufactured by MCK Co., Ltd. under the conditions of substrate temperature: 40 ° C., rubber roller temperature: 100 ° C., linear pressure: 3 N / cm, and transfer speed: 2 m / min. went. Further, in the above transfer step, the surface of the photosensitive resin layer exposed by peeling the protective film from the transfer film is brought into contact with the surface of the transparent film substrate.
  • a transparent electrode pattern film was produced according to the following procedure.
  • An exposure mask having a mask pattern (a quartz exposure mask having a transparent electrode forming pattern) and a temporary support, which will be described later, are brought into close contact with each other, and then a proximity type exposure machine having an ultra-high pressure mercury lamp (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.).
  • the photosensitive resin layer was pattern-exposed via an exposure mask and a temporary support using an exposure main wavelength: 365 nm (i-line) (exposure step).
  • the exposure amount was 100 mJ / cm 2 .
  • the temporary support was peeled from the laminated body (peeling step).
  • peeling step a 1% by mass aqueous solution of sodium carbonate having a liquid temperature of 32 ° C. was used as a developing solution for 60 seconds of development treatment (development step).
  • development step a 1% by mass aqueous solution of sodium carbonate having a liquid temperature of 32 ° C. was used as a developing solution for 60 seconds of development treatment (development step).
  • development treatment the unexposed photosensitive resin layer and the conductive layer laminated on the unexposed photosensitive resin layer were removed from the laminate.
  • the residue of the photosensitive resin layer is removed from the surface of the transparent film substrate by injecting ultrapure water from the ultrapure water cleaning nozzle onto the surface of the laminate on which the photosensitive resin layer and the conductive layer are formed. Removed.
  • a transparent electrode pattern film (laminated body having a conductive pattern) of 1-1 was obtained.
  • the transparent electrode pattern film having the patterned silver nanowire layer is a so-called circuit board.
  • Example 1-2 according to the above method, except that the transfer films of Examples 1-2 to 1-17 and Comparative Examples 1-1 to 1-2 were used instead of the transfer film of Example 1-1.
  • the transparent electrode pattern films of 1-17 and Comparative Examples 1-1 to 1-2 were prepared, respectively.
  • a transparent electrode pattern film for evaluation of developability was produced according to the above method for producing a transparent electrode pattern film, except that an exposure mask having the mask patterns shown in the following patterns 1 to 3 was used.
  • -Pattern 1 Line-and-space pattern with line width 50 ⁇ m and space width 50 ⁇ m
  • -Pattern 2 Line-and-space pattern with line width 75 ⁇ m and space width 25
  • ⁇ m-Pattern 3 Line-and-space pattern with line width 90 ⁇ m and space width 10 ⁇ m
  • the development residue in the space portion (unexposed portion) of the photosensitive resin layer is observed using an optical microscope and a scanning electron microscope (SEM). did. From the observation results, the developability of each transfer film was evaluated based on the following criteria. A: Development residue was not observed at the bottom of the space of the photosensitive resin layer B: Development residue was slightly observed at the bottom of the space of the photosensitive resin layer C: Development residue was not observed at the bottom of the space of the photosensitive resin layer Observed at the bottom of the part D: Development residue remained in the space part of the photosensitive resin layer, and the unexposed part of the photosensitive resin layer could not be removed until the transparent film substrate was exposed. The developability of each transparent electrode pattern film. The evaluation results of are shown in Table 3.
  • the laminate for evaluating the laminateability of Example 1-1 was prepared using the transfer film of Example 1-1.
  • the laminate for evaluation of laminateability of Example 1-1 has a PET substrate with a copper layer, a photosensitive resin layer, and a conductive layer.
  • Example 1 was carried out according to the above method. Laminates for evaluation of laminateability of -2-1-17 and Comparative Examples 1-1 to 1-2 were prepared, respectively.
  • a cycloolefin polymer film (thickness: 38 ⁇ m, refractive index: 1.53) having a copper electrode as a take-out wiring on the surface is used, and the surface of the photosensitive resin layer is used in the transfer process.
  • a transparent electrode pattern film was produced according to the method for producing a transparent electrode pattern film, except that the film was brought into contact with the surface of the cycloolefin polymer film on the side where the copper electrode was formed.
  • a capacitance type touch panel sensor was produced according to the method described in Japanese Patent No. 6173831. When we confirmed the operation of the manufactured touch panel sensors, they all operated normally.
  • Example 2 In the method for preparing the photosensitive resin composition of Example 1, the photosensitive resin composition was prepared by using an amount of methyl ethyl ketone having a solid content of 17% by mass, but the process was carried out according to the method described in Example 1. Transfer films of Examples 2-1 to 2-17 and Comparative Examples 2-1 to 2-2 were prepared. The film thickness of the photosensitive resin layer of each of the obtained transfer films after drying was 5.0 ⁇ m.
  • Example 3 The photosensitive resin composition of Example 3 was prepared according to the method for preparing the photosensitive resin composition of Example 1, except that the polymer A7 was used instead of the polymer A1.
  • a 16 ⁇ m-thick PET film (manufactured by Toyobo Co., Ltd., trade name “A-1517”) was prepared as a temporary support.
  • the solution of the photosensitive resin composition obtained above was stirred and then uniformly applied to the surface of the temporary support.
  • the obtained coating film was dried with hot air at 100 ° C. using a hot air convection dryer for 10 minutes to form a photosensitive resin layer.
  • the film thickness of the formed photosensitive resin layer after drying was 7.0 ⁇ m.
  • the silver nanowire dispersion liquid obtained above was uniformly applied to the surface of the formed photosensitive resin layer so that the coating amount was 25 g / m 2, and the obtained coating film was dried by hot air convection. It was dried for 10 minutes by hot air at 100 ° C. by a machine. As a result, a conductive layer containing silver nanowires as conductive fibers was formed on the surface of the photosensitive resin layer. The film thickness of the conductive layer after drying was 0.01 ⁇ m.
  • a polyethylene film manufactured by Tamapoli Co., Ltd., trade name "NF-13" was attached to the surface of the formed conductive layer to form a protective film, and a transfer film of Example 3-1 was prepared.
  • the transparent electrode pattern film of Example 3-1 was prepared according to the method described in Example 1, and the developability of the obtained transparent electrode pattern film was evaluated. Further, using the obtained transfer film, a laminate for evaluating the laminate property of Example 3-1 was prepared according to the method described in Example 1, and the laminate property of the obtained laminate was evaluated. Table 5 shows the evaluation results of the developability of the transparent electrode pattern film of Example 3-1 and the evaluation results of the laminate for evaluating the laminateability of Example 3-1.
  • the transfer film of the present invention is excellent in the developability of the photosensitive resin layer after transfer.
  • the dispersity (Mw / Mn) of the specific polymer is more preferably less than 2.5 from the viewpoint of being more excellent in the developability of the photosensitive resin layer after transfer (comparison between Examples 1-2 and 1-3, Comparison between Example 1-12 and Example 1-13, Comparison between Example 2-2 and Example 2-3, Comparison between Example 2-12 and Example 2-13), less than 2.0 Was further preferred (comparison between Example 1-6 and Example 1-7, comparison between Example 1-16 and Example 1-17). Further, it was confirmed that the dispersity (Mw / Mn) of the specific polymer was more preferably more than 1.7 from the viewpoint of more excellent laminating property of the photosensitive resin layer (Examples 2-7 and 2-7). Comparison with 10).
  • Parameter A (product of the thickness value ( ⁇ m) of the photosensitive resin layer and (Mw / Mn) of the specific polymer contained in the photosensitive resin layer) from the viewpoint of being more excellent in the developability of the photosensitive resin layer after transfer) Is more preferably less than 22.0 (comparison between Example 1-1 and Example 1-2, comparison between Example 1-11 and Example 1-12), further less than 17.0.
  • Preferably (comparison between Example 1-2 and Example 1-3, comparison between Example 1-12 and Example 1-13, comparison between Example 2-1 and Example 2-2, Example 2 -11 and Example 2-12), less than 16.5 is particularly preferred (Comparison of Examples 1-3 and 1-4 with Example 1-5, Examples 1-13 and 1-14 Comparison with Example 1-15) was confirmed.
  • the total of the structural units derived from methacrylic acid and the structural units derived from methacrylic acid in the (meth) acrylic resin because the developability of the photosensitive resin layer after transfer and the laminateability of the photosensitive resin layer are more excellent. It was confirmed that the content is preferably 80% by mass or less based on all the constituent units of the (meth) acrylic resin (comparison between Examples 1-6 and 1-9, Examples 2-6 and Implementation). Comparison with Example 2-9).
  • the (meth) acrylic resin preferably has an ester group at the terminal from the viewpoint of being more excellent in the developability of the photosensitive resin layer after transfer (Examples 1-6 and 1-7). Comparison, comparison between Example 1-16 and Example 1-17).
  • the content of the solvent contained in the second liquid is preferably 40% by mass or more with respect to the total mass of the second liquid from the viewpoint of being more excellent in the developability of the photosensitive resin layer after transfer (Example). Comparison between 1-3 and Example 1-8). Further, from the viewpoint that the developability of the photosensitive resin layer after transfer is more excellent, the content of the solvent contained in the first liquid ((of the solvent contained in the first liquid) is higher than the content of the solvent contained in the second liquid. It was confirmed that the content) / (content of the solvent contained in the second liquid)) was preferably 4/6 or less (comparison between Examples 1-3 and Examples 1-8).
  • the transfer film preferably has a temporary support, a conductive layer, and a photosensitive resin layer in this order from the viewpoint of being more excellent in the developability of the photosensitive resin layer after transfer (Examples 1-7 and 2). Comparison of -7 with Example 3-1).
  • Temporary support Conductive layer 2a Conductive pattern 3 Photosensitive resin layer 3a Cured resin pattern 4 Protective film 5 Mask pattern 10 Transfer film 20 Substrate 30 Laminated body L Active light beam

Abstract

The present invention addresses the problem of providing a transfer film having improved developability. In addition, the present invention addresses the problem of providing a method for producing a transfer film, a method for producing a laminate, a laminate, a touch panel sensor, and a touch panel. This transfer film has a temporary support, a conductive layer, and a photosensitive resin layer, wherein the conductive layer includes a silver nanowire, the photosensitive resin layer includes a binder polymer, a polymerizable compound, and a polymerization initiator, and the dispersity of the binder polymer is 3.5 or less. This method for producing a transfer film includes a step for synthesizing a binder polymer, and a laminating step for forming a photosensitive resin layer.

Description

転写フィルム、転写フィルムの製造方法、積層体の製造方法、積層体、タッチパネルセンサー、タッチパネルTransfer film, transfer film manufacturing method, laminate manufacturing method, laminate, touch panel sensor, touch panel
 本発明は、転写フィルム、転写フィルムの製造方法、積層体の製造方法、積層体、タッチパネルセンサー、及び、タッチパネルに関する。 The present invention relates to a transfer film, a method for manufacturing a transfer film, a method for manufacturing a laminate, a laminate, a touch panel sensor, and a touch panel.
 パソコン及びテレビ等の大型電子機器、カーナビゲーション、携帯電話及び電子辞書等の小型電子機器、並びに、OA機器及びFA機器等の表示機器には、液晶表示素子又はタッチパネルが用いられている。これら液晶表示素子又はタッチパネルは透明電極を有する。
 タッチパネルとしては、すでに各種の方式が実用化されており、近年は静電容量方式のタッチパネルの利用が進んでいる。
 透明電極としては、従来、ITO(Indium Tin Oxide)、酸化インジウム及び酸化スズ等の材料を用いて形成された電極が用いられているが、これらに代わる電極として、導電性繊維を含有する導電層を有する感光性導電フィルムからフォトリソグラフィー工程で形成される導電パターンの利用が提案されている。
Liquid crystal display elements or touch panels are used in large electronic devices such as personal computers and televisions, small electronic devices such as car navigation systems, mobile phones and electronic dictionaries, and display devices such as OA devices and FA devices. These liquid crystal display elements or touch panels have transparent electrodes.
As a touch panel, various methods have already been put into practical use, and in recent years, the use of a capacitive touch panel has been advancing.
Conventionally, as the transparent electrode, an electrode formed by using a material such as ITO (Indium Tin Oxide), indium oxide, and tin oxide is used, but as an alternative electrode, a conductive layer containing conductive fibers is used. It has been proposed to use a conductive pattern formed from a photosensitive conductive film having a texture in a photolithography step.
 特許文献1には、仮支持体と、仮支持体上に設けられ導電性繊維を含有する導電層と、導電層上に設けられた感光性樹脂層と、を備える感光性導電フィルムが記載されている。 Patent Document 1 describes a photosensitive conductive film including a temporary support, a conductive layer provided on the temporary support and containing conductive fibers, and a photosensitive resin layer provided on the conductive layer. ing.
国際特許公開第2010/021224号International Patent Publication No. 2010/021224
 本発明者は、特許文献1に開示された技術について検討したところ、特許文献1に記載の転写フィルムは、感光性樹脂層の未露光部を現像液により現像して導電パターンを形成するときの現像性に改善の余地があることを知見した。 The present inventor examined the technique disclosed in Patent Document 1, and found that the transfer film described in Patent Document 1 is used when the unexposed portion of the photosensitive resin layer is developed with a developing solution to form a conductive pattern. It was found that there is room for improvement in developability.
 本発明は、現像性により優れる転写フィルムを提供することを課題とする。また、本発明は、転写フィルムの製造方法、積層体の製造方法、積層体、タッチパネルセンサー、及び、タッチパネルを提供することを課題とする。 An object of the present invention is to provide a transfer film having better developability. Another object of the present invention is to provide a transfer film manufacturing method, a laminated body manufacturing method, a laminated body, a touch panel sensor, and a touch panel.
 上記課題を解決するための手段には、以下の態様が含まれる。 The means for solving the above problems include the following aspects.
〔1〕 仮支持体、導電層及び感光性樹脂層を有する転写フィルムであって、導電層が、銀ナノワイヤーを含み、感光性樹脂層が、バインダーポリマー、重合性化合物、及び重合開始剤を含み、バインダーポリマーの分散度Mw/Mnが3.5以下である、転写フィルム。
〔2〕 仮支持体、導電層及び感光性樹脂層をこの順に有する、〔1〕に記載の転写フィルム。
〔3〕 バインダーポリマーが、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸アルキルエステルに由来する構成単位を有する、〔1〕又は〔2〕に記載の転写フィルム。
〔4〕 バインダーポリマーが、メタクリル酸に由来する構成単位、メタクリル酸メチルに由来する構成単位及びアクリル酸エチルに由来する構成単位を有する、〔1〕~〔3〕のいずれかに記載の転写フィルム。
〔5〕 バインダーポリマー中、メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の合計含有量が、バインダーポリマーの全構成単位に対して60~80質量%である、〔1〕~〔4〕のいずれかに記載の転写フィルム。
〔6〕 バインダーポリマーが、末端にエステル基を有する、〔1〕~〔5〕のいずれかに記載の転写フィルム。
〔7〕 下記条件1を満たす、〔1〕~〔6〕のいずれかに記載の転写フィルム。条件1:感光性樹脂層の厚さの値μmとバインダーポリマーの分散度との積が25未満である。
〔8〕 〔1〕~〔7〕のいずれかに記載の転写フィルムの製造方法であって、加熱条件下、溶剤を含む第1液中に、重合性単量体、重合開始剤及び溶剤を含む第2液を0.5~20時間かけて添加して、バインダーポリマーを合成する工程と、仮支持体の表面に、銀ナノワイヤーを含む導電層及びバインダーポリマーを含む感光性樹脂層を形成する積層工程と、を含む、転写フィルムの製造方法。
〔9〕 1~8時間かけて第1液中に第2液を添加する、〔8〕に記載の転写フィルムの製造方法。
〔10〕 第2液に含まれる溶剤の含有量に対する、第1液に含まれる溶剤の含有量の質量比が1/9~9/1である、〔8〕又は〔9〕に記載の転写フィルムの製造方法。
〔11〕 第1液及び第2液に含まれる溶剤の総量に対する、第1液及び第2液に含まれる非芳香族炭化水素溶剤の含有量の質量比が80質量%以上である、〔8〕~〔10〕のいずれかに記載の転写フィルムの製造方法。
〔12〕 〔1〕~〔7〕のいずれかに記載の転写フィルムの製造方法であって、加熱条件下、溶剤を含む第1液中に、重合性単量体を含む第3液と重合開始剤及び溶剤を含む第4液とを別々に、0.5~20時間かけて添加して、バインダーポリマーを合成する工程Mw/Mnと、仮支持体の表面に、銀ナノワイヤーを含む導電層及びバインダーポリマーを含む感光性樹脂層を形成する積層工程と、を含む、転写フィルムの製造方法。
〔13〕 1~8時間かけて第1液に第3液及び第4液のそれぞれを添加する、〔12〕に記載の転写フィルムの製造方法。
〔14〕 第3液及び第4液に含まれる溶剤の総量に対する、第1液に含まれる溶剤の含有量の質量比が1/9~9/1である、〔12〕又は〔13〕に記載の転写フィルムの製造方法。
〔15〕 第1液、第3液及び第4液に含まれる溶剤の総量に対する、第1液、第3液及び第4液に含まれる非芳香族炭化水素溶剤の含有量の質量比が80質量%以上である、〔12〕~〔14〕のいずれかに記載の転写フィルムの製造方法。
〔16〕 基板及び導電パターンを有する積層体の製造方法であって、〔1〕~〔7〕のいずれかに記載の転写フィルム又は〔8〕~〔15〕のいずれかに記載の製造方法で製造された転写フィルムと基板とを、転写フィルムの仮支持体が配置されている面とは反対側の面に基板を接触させて貼り合わせる工程と、転写フィルムが有する感光性樹脂層をパターン露光する工程と、転写フィルムが有する導電層の一部を、感光性樹脂層の未露光部とともに除去して、パターン化された導電層を形成する工程と、を含む、積層体の製造方法。
〔17〕 〔16〕に記載の製造方法で製造された、積層体であって、基板と、銀ナノワイヤーを含むパターン化された導電層と、を有する、積層体。
〔18〕 〔17〕に記載の積層体を有するタッチパネルセンサー。
〔19〕 〔18〕に記載のタッチパネルセンサーを有するタッチパネル。
[1] A transfer film having a temporary support, a conductive layer and a photosensitive resin layer, wherein the conductive layer contains silver nanowires and the photosensitive resin layer contains a binder polymer, a polymerizable compound, and a polymerization initiator. A transfer film containing a binder polymer having a dispersity Mw / Mn of 3.5 or less.
[2] The transfer film according to [1], which has a temporary support, a conductive layer, and a photosensitive resin layer in this order.
[3] The transfer film according to [1] or [2], wherein the binder polymer has a structural unit derived from (meth) acrylic acid and a structural unit derived from (meth) acrylic acid alkyl ester.
[4] The transfer film according to any one of [1] to [3], wherein the binder polymer has a structural unit derived from methacrylic acid, a structural unit derived from methyl methacrylate, and a structural unit derived from ethyl acrylate. ..
[5] The total content of the structural units derived from methacrylic acid and the structural units derived from methacrylic acid alkyl ester in the binder polymer is 60 to 80% by mass with respect to all the structural units of the binder polymer. [1] The transfer film according to any one of [4].
[6] The transfer film according to any one of [1] to [5], wherein the binder polymer has an ester group at the terminal.
[7] The transfer film according to any one of [1] to [6], which satisfies the following condition 1. Condition 1: The product of the thickness value μm of the photosensitive resin layer and the dispersity of the binder polymer is less than 25.
[8] The method for producing a transfer film according to any one of [1] to [7], wherein a polymerizable monomer, a polymerization initiator and a solvent are contained in a first liquid containing a solvent under heating conditions. The process of synthesizing the binder polymer by adding the second liquid containing the mixture over 0.5 to 20 hours, and forming a conductive layer containing silver nanowires and a photosensitive resin layer containing the binder polymer on the surface of the temporary support. A method for producing a transfer film, which comprises a laminating step.
[9] The method for producing a transfer film according to [8], wherein the second solution is added to the first solution over 1 to 8 hours.
[10] The transfer according to [8] or [9], wherein the mass ratio of the content of the solvent contained in the first liquid to the content of the solvent contained in the second liquid is 1/9 to 9/1. How to make a film.
[11] The mass ratio of the content of the non-aromatic hydrocarbon solvent contained in the first liquid and the second liquid to the total amount of the solvent contained in the first liquid and the second liquid is 80% by mass or more [8]. ] To [10]. The method for producing a transfer film according to any one of [10].
[12] The method for producing a transfer film according to any one of [1] to [7], wherein the transfer film is polymerized with a third liquid containing a polymerizable monomer in a first liquid containing a solvent under heating conditions. Step Mw / Mn for synthesizing a binder polymer by separately adding a fourth liquid containing an initiator and a solvent over 0.5 to 20 hours, and conductivity containing silver nanowires on the surface of the temporary support. A method for producing a transfer film, which comprises a laminating step of forming a photosensitive resin layer containing a layer and a binder polymer.
[13] The method for producing a transfer film according to [12], wherein each of the third and fourth liquids is added to the first liquid over 1 to 8 hours.
[14] In [12] or [13], the mass ratio of the content of the solvent contained in the first liquid to the total amount of the solvent contained in the third liquid and the fourth liquid is 1/9 to 9/1. The method for producing a transfer film according to the above.
[15] The mass ratio of the content of the non-aromatic hydrocarbon solvent contained in the first liquid, the third liquid and the fourth liquid to the total amount of the solvent contained in the first liquid, the third liquid and the fourth liquid is 80. The method for producing a transfer film according to any one of [12] to [14], which is in mass% or more.
[16] A method for producing a laminate having a substrate and a conductive pattern, which is the transfer film according to any one of [1] to [7] or the production method according to any one of [8] to [15]. The process of bringing the manufactured transfer film and the substrate into contact with the surface of the transfer film on the side opposite to the surface on which the temporary support is arranged, and the pattern exposure of the photosensitive resin layer of the transfer film. A method for producing a laminate, which comprises a step of removing a part of the conductive layer of the transfer film together with an unexposed portion of the photosensitive resin layer to form a patterned conductive layer.
[17] A laminate produced by the production method according to [16], which comprises a substrate and a patterned conductive layer containing silver nanowires.
[18] A touch panel sensor having the laminate according to [17].
[19] A touch panel having the touch panel sensor according to [18].
 本発明によれば、現像性により優れる転写フィルムを提供することができる。また、本発明によれば、転写フィルムの製造方法、積層体の製造方法、積層体、タッチパネルセンサー、及び、タッチパネルを提供することができる。 According to the present invention, it is possible to provide a transfer film having better developability. Further, according to the present invention, it is possible to provide a method for manufacturing a transfer film, a method for manufacturing a laminate, a laminate, a touch panel sensor, and a touch panel.
転写フィルムの構成の一例を示す概略図である。It is the schematic which shows an example of the structure of a transfer film. 転写フィルムの構成の他の例を示す概略図である。It is the schematic which shows the other example of the structure of a transfer film. 積層体の製造方法の一例を説明するための概略図である。It is the schematic for demonstrating an example of the manufacturing method of a laminated body.
 以下、本発明の内容について詳細に説明する。以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。なお、添付の図面を参照しながら説明するが、符号は省略する場合がある。 Hereinafter, the contents of the present invention will be described in detail. The description of the constituent elements described below may be based on typical embodiments of the present invention, but the present invention is not limited to such embodiments. Although the description will be given with reference to the attached drawings, the reference numerals may be omitted.
 本明細書において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含する。例えば「アルキル基」との表記は、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 本明細書において、「(メタ)アクリル酸」は、アクリル酸及びメタクリル酸の両方を包含する概念であり、「(メタ)アクリレート」は、アクリレート及びメタクリレートの両方を包含する概念であり、「(メタ)アクリロイル基」は、アクリロイル基及びメタクリロイル基の両方を包含する概念である。
In the present specification, "-" indicating a numerical range is used to mean that numerical values described before and after the numerical range are included as a lower limit value and an upper limit value.
In the notation of a group (atomic group) in the present specification, the notation that does not describe substitution and non-substitution includes those having no substituent as well as those having a substituent. For example, the notation "alkyl group" includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
In the present specification, "(meth) acrylic acid" is a concept including both acrylic acid and methacrylic acid, and "(meth) acrylate" is a concept including both acrylate and methacrylate, and "( "Meta) acryloyl group" is a concept that includes both acryloyl group and methacrylic acid group.
 本明細書において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する上記複数の物質の合計量を意味する。
 また、本明細書における重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL及び/又はTSKgel Super HZM-N(何れも東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC:Gel Permeation Chromatography)分析装置により、溶媒THF(テトラヒドロフラン)、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。
 本明細書において、特段の断りが無い限り、分子量分布が有る化合物の分子量は、重量平均分子量(Mw)である。
 また、本明細書において分散度(多分散度とも言う)は、重量平均分子量(Mw)と数平均分子量(Mn)の比Mw/Mnである。
In the present specification, "% by mass" and "% by weight" are synonymous, and "parts by mass" and "parts by weight" are synonymous.
In the present specification, the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. means.
Unless otherwise specified, the weight average molecular weight (Mw) and the number average molecular weight (Mn) in the present specification are TSKgel GMHxL, TSKgel G4000HxL, TSKgel G2000HxL and / or TSKgel Super HZM-N (all of which are manufactured by Toso Co., Ltd.). It is a molecular weight converted by using a gel permeation chromatography (GPC) analyzer using a column of (trade name) manufactured by M. ..
In the present specification, unless otherwise specified, the molecular weight of a compound having a molecular weight distribution is the weight average molecular weight (Mw).
Further, in the present specification, the dispersity (also referred to as polydispersity) is the ratio Mw / Mn of the weight average molecular weight (Mw) and the number average molecular weight (Mn).
 本明細書において、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本明細書において「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線及びイオンビーム等の粒子線を用いた描画も含む。また、露光に用いられる光としては、一般的に、水銀灯の輝線スペクトル、エキシマレーザに代表される遠紫外線、極紫外線(EUV(Extreme ultraviolet)光)、及び、X線等の活性光線(活性エネルギー線)が挙げられる。
 本明細書において、「主鎖」とは、ポリマー中で相対的に最も長い結合鎖を意味し、ポリマーの「構成単位」とは、主鎖である結合鎖を構成するする。
 本明細書において、特段の断りが無い限り、ポリマーの構成単位の比率はモル比である。
 更に、本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 以下、本発明について説明する。
In the present specification, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
Unless otherwise specified, the term "exposure" as used herein includes not only exposure using light but also drawing using particle beams such as electron beams and ion beams. The light used for exposure is generally the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet light (EUV (Extreme ultraviolet) light), and active light (active energy) such as X-rays. Line).
As used herein, the "main chain" means the relatively longest binding chain in the polymer, and the "constituent unit" of the polymer constitutes the binding chain which is the main chain.
In the present specification, unless otherwise specified, the ratio of the constituent units of the polymer is a molar ratio.
Further, in the present specification, a combination of two or more preferred embodiments is a more preferred embodiment.
Hereinafter, the present invention will be described.
[転写フィルム]
 本発明の転写フィルムは、仮支持体と、導電層と、感光性樹脂層とを有する。ここで、導電層は、銀ナノワイヤーを含む。また、感光性樹脂層は、分散度(Mw/Mn)が3.5以下であるバインダーポリマー、重合性化合物及び重合開始剤を含む。
[Transfer film]
The transfer film of the present invention has a temporary support, a conductive layer, and a photosensitive resin layer. Here, the conductive layer contains silver nanowires. Further, the photosensitive resin layer contains a binder polymer having a dispersity (Mw / Mn) of 3.5 or less, a polymerizable compound, and a polymerization initiator.
 本発明者は鋭意検討を重ねた結果、上記の構成を有する転写フィルムが、上記の構成を有する転写フィルムを用いて基板に導電層及び感光性樹脂層を転写した場合、感光性樹脂層を露光した後の現像処理により感光性樹脂層が除去され易く、現像残渣が残り難くなることで、転写後の感光性樹脂層の現像性に優れることを見出した。
 これは、詳細は明らかではないが、バインダーポリマーの分散度(Mw/Mn)が小さいことから、感光性樹脂層に含まれる分子量が相対的に高い成分と分子量が相対的に低い成分とで現像液に対する溶解度の差が少なく、現像処理の際、感光性樹脂層の未露光部等が一斉に除去され、結果として、感光性樹脂層の硬化部及び基板等に接して現像残渣として残る高分子量成分が低減されるためと考えられる。
As a result of diligent studies, the present inventor exposes the photosensitive resin layer when the transfer film having the above structure transfers the conductive layer and the photosensitive resin layer to the substrate using the transfer film having the above structure. It has been found that the photosensitive resin layer is easily removed by the developing treatment after the process, and the development residue is less likely to remain, so that the photosensitive resin layer after transfer is excellent in developability.
Although the details are not clear, this is developed by a component having a relatively high molecular weight and a component having a relatively low molecular weight contained in the photosensitive resin layer because the dispersibility (Mw / Mn) of the binder polymer is small. The difference in solubility in the liquid is small, and during the development process, the unexposed parts of the photosensitive resin layer are removed all at once, and as a result, the high molecular weight that remains as a development residue in contact with the cured part of the photosensitive resin layer and the substrate. This is thought to be because the components are reduced.
 転写フィルムは、仮支持体、導電層及び感光性樹脂層以外の他の層を有していてもよいし、仮支持体、導電層及び感光性樹脂層のみで構成されていてもよい。仮支持体、導電層及び感光性樹脂層以外の他の層としては、例えば、保護フィルム、接着層、及びガスバリア層が挙げられる。 The transfer film may have a layer other than the temporary support, the conductive layer and the photosensitive resin layer, or may be composed of only the temporary support, the conductive layer and the photosensitive resin layer. Examples of layers other than the temporary support, the conductive layer and the photosensitive resin layer include a protective film, an adhesive layer, and a gas barrier layer.
 図1及び図2に、転写フィルムの構成例を示す。但し、本発明の転写フィルムは、図1及び図2に示す構成を有するものに制限されない。
 図1は、転写フィルムの構成の一例を示す概略図である。図1に示す転写フィルム10では、仮支持体1と、導電層2と、感光性樹脂層3と、保護フィルム4とがこの順に積層されている。
 また、図2は、転写フィルムの構成の他の例を示す概略図である。図2に示す転写フィルム20では、仮支持体1と、感光性樹脂層3と、導電層2と、保護フィルム4とがこの順に積層されている。
 以下に、転写フィルムが有する各層について詳細に説明する。
1 and 2 show a configuration example of the transfer film. However, the transfer film of the present invention is not limited to those having the configurations shown in FIGS. 1 and 2.
FIG. 1 is a schematic view showing an example of the configuration of the transfer film. In the transfer film 10 shown in FIG. 1, the temporary support 1, the conductive layer 2, the photosensitive resin layer 3, and the protective film 4 are laminated in this order.
Further, FIG. 2 is a schematic view showing another example of the configuration of the transfer film. In the transfer film 20 shown in FIG. 2, the temporary support 1, the photosensitive resin layer 3, the conductive layer 2, and the protective film 4 are laminated in this order.
Each layer of the transfer film will be described in detail below.
〔仮支持体〕
 本発明の転写フィルムは、仮支持体を有する。
 仮支持体としては、ガラス基板及び樹脂フィルムが挙げられ、樹脂フィルムが好ましく、耐熱性及び耐溶剤性を有する樹脂フィルムがより好ましい。また、仮支持体としては、可撓性を有し、かつ、加圧下、又は、加圧及び加熱下において、著しい変形、収縮又は伸びを生じないフィルムが好ましい。
 そのような樹脂フィルムとして、例えば、ポリエチレンテレフタレート(PET:Polyethylene terephthalate)フィルム、ポリエチレンフィルム、ポリプロピレンフィルム及びポリカーボネートフィルムが挙げられる。中でも、透明性及び耐熱性の点から、ポリエチレンテレフタレートフィルムが好ましい。
[Temporary support]
The transfer film of the present invention has a temporary support.
Examples of the temporary support include a glass substrate and a resin film, and a resin film is preferable, and a resin film having heat resistance and solvent resistance is more preferable. Further, as the temporary support, a film having flexibility and not causing significant deformation, shrinkage or elongation under pressure, or under pressure and heating is preferable.
Examples of such a resin film include polyethylene terephthalate (PET) film, polyethylene film, polypropylene film and polycarbonate film. Of these, a polyethylene terephthalate film is preferable from the viewpoint of transparency and heat resistance.
 上記の樹脂フィルムは、後に感光層からの剥離が容易となるよう、表面が離型処理されたものであってもよい。
 上記の樹脂フィルムには、ハンドリング性を付与するために、粒子を有する層が存在することが好ましい。
The surface of the above resin film may be mold-released so that it can be easily peeled off from the photosensitive layer later.
In the above resin film, it is preferable that a layer having particles is present in order to impart handleability.
 仮支持体の厚さは、機械的強度の点から、5μm以上が好ましく、10μm以上がより好ましく、15μm以上が更に好ましい。厚さが上記数値以上である仮支持体を使用することによって、導電層を形成するために導電性組成物を塗工する工程、感光性樹脂層を形成するために感光性樹脂組成物を塗工する工程、露光工程、現像工程、及び、転写後の転写フィルムから仮支持体を剥離する工程における仮支持体の破れが抑制される。
 また、仮支持体を介して感光性樹脂層に活性光線を照射する場合に導電パターンの解像度の点から、仮支持体の厚さは、300μm以下が好ましく、200μm以下がより好ましく、100μm以下が更に好ましい。
 上記の点から、仮支持体の厚さは、5~300μmが好ましく、10~200μmがより好ましく、15~100μmが更に好ましい。
The thickness of the temporary support is preferably 5 μm or more, more preferably 10 μm or more, still more preferably 15 μm or more, from the viewpoint of mechanical strength. By using a temporary support having a thickness equal to or greater than the above value, a step of applying a conductive composition to form a conductive layer, and a step of applying a photosensitive resin composition to form a photosensitive resin layer. Tearing of the temporary support in the processing step, the exposure step, the developing step, and the step of peeling the temporary support from the transfer film after transfer is suppressed.
Further, when the photosensitive resin layer is irradiated with active rays via the temporary support, the thickness of the temporary support is preferably 300 μm or less, more preferably 200 μm or less, and 100 μm or less from the viewpoint of the resolution of the conductive pattern. More preferred.
From the above points, the thickness of the temporary support is preferably 5 to 300 μm, more preferably 10 to 200 μm, and even more preferably 15 to 100 μm.
 なお、転写フィルムが備える各層の厚さは、走査型電子顕微鏡(SEM:Scanning Electron Microscopy)を用いて層の主面に垂直な方向を含む断面を観察し、得られた観察画像に基づいて層の厚さを10点以上計測し、その平均値を算出することにより得られる値である。 The thickness of each layer included in the transfer film is determined by observing a cross section including a direction perpendicular to the main surface of the layer using a scanning electron microscope (SEM) and based on the obtained observation image. It is a value obtained by measuring the thickness of 10 points or more and calculating the average value thereof.
 仮支持体のヘイズ値は、感光性樹脂層の露光感度及び導電パターンの解像度の点から、0.01~5.0%が好ましく、0.01~3.0%がより好ましく、0.01~2.0%が更に好ましく、0.01~1.5%が特に好ましい。
 なお、ヘイズ値は、JIS K 7105(プラスチックの光学特性試験方法)に準拠した方法により、例えば、NDH-1001DP(日本電色工業株式会社製、商品名)等の市販の濁度計を用いて測定できる。
The haze value of the temporary support is preferably 0.01 to 5.0%, more preferably 0.01 to 3.0%, and more preferably 0.01, from the viewpoint of the exposure sensitivity of the photosensitive resin layer and the resolution of the conductive pattern. -2.0% is more preferable, and 0.01-1.5% is particularly preferable.
The haze value is determined by a method based on JIS K 7105 (optical property test method for plastics), for example, using a commercially available turbidity meter such as NDH-1001DP (manufactured by Nippon Denshoku Kogyo Co., Ltd., trade name). Can be measured.
 仮支持体は、感光性樹脂層の露光感度及び導電パターンの解像度の点から、照射する活性光線の波長(より好ましくは波長365nm)の光の透過率が50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。
 なお、転写フィルムが備える層の透過率とは、層の主面に垂直な方向(厚さ方向)に光を入射させたときの、入射光の強度に対する層を通過して出射した出射光の強度の比率であり、大塚電子(株)製MCPD Seriesを用いて測定される。
From the viewpoint of the exposure sensitivity of the photosensitive resin layer and the resolution of the conductive pattern, the temporary support preferably has a light transmittance of 50% or more at the wavelength of the irradiating active light (more preferably 365 nm). It is more preferably% or more, and even more preferably 70% or more.
The transmittance of the layer included in the transfer film is the emission light emitted through the layer with respect to the intensity of the incident light when the light is incident in the direction perpendicular to the main surface of the layer (thickness direction). It is a ratio of intensity and is measured using MCPD Series manufactured by Otsuka Electronics Co., Ltd.
 また、仮支持体として使用するフィルムには、シワ等の変形、傷等がないことが好ましい。
 仮支持体を介するパターン露光時のパターン形成性、及び、仮支持体の透明性の点から、仮支持体に含まれる微粒子や異物や欠陥の数は少ない方が好ましい。直径1μm以上の微粒子や異物や欠陥の数は、50個/10mm以下であることが好ましく、10個/10mm以下であることがより好ましく、3個/10mm以下であることが更に好ましい。
Further, it is preferable that the film used as the temporary support has no deformation such as wrinkles or scratches.
From the viewpoint of pattern formation during pattern exposure via the temporary support and transparency of the temporary support, it is preferable that the number of fine particles, foreign substances, and defects contained in the temporary support is small. The number of the above fine particles and foreign matter and defect diameter 1μm is more preferably preferably 50 pieces / 10 mm 2 or less, more preferably 10/10 mm 2 or less, three / 10 mm 2 or less ..
〔導電層〕
 本発明の転写フィルムは、導電性繊維として銀ナノワイヤーを含む導電層を有する。
[Conductive layer]
The transfer film of the present invention has a conductive layer containing silver nanowires as conductive fibers.
 導電層は、面方向に導電性が得られるものであれば、その構造は特に制限されないが、導電性繊維同士が接触して網目構造を形成することが好ましい。
 導電層は、感光性樹脂層の仮支持体に対向する表面に配置されていてもよく、感光性樹脂層の仮支持体に対向する面とは反対側の表面に配置されていてもよい。また、転写フィルムの作製後、導電層に感光性樹脂層に含まれる成分の一部(例えばバインダーポリマー)が浸入していてもよい。
The structure of the conductive layer is not particularly limited as long as it can obtain conductivity in the plane direction, but it is preferable that the conductive fibers come into contact with each other to form a network structure.
The conductive layer may be arranged on the surface of the photosensitive resin layer facing the temporary support, or may be arranged on the surface of the photosensitive resin layer opposite to the surface facing the temporary support. Further, after the transfer film is produced, a part of the components contained in the photosensitive resin layer (for example, a binder polymer) may be infiltrated into the conductive layer.
<銀ナノワイヤー>
 導電層に含まれる銀ナノワイヤーは、銀又は銀と銀以外の金属からなる合金で構成されるワイヤー状の導電性物質である。
 また、銀ナノワイヤーは、銀で構成されたワイヤー状のコアを、銀以外の金属で被覆した構造を有していてもよい。ここで、銀以外の金属で被覆した構造とは、コアとなる銀ナノワイヤーの表面の全部が被覆されている構造のみならず、その一部が被覆されている構造を含む。
 銀以外の金属としては、銀より貴な金属が好ましく、金、白金又はパラジウムがより好ましく、金が更に好ましい。
<Silver nanowires>
The silver nanowires contained in the conductive layer are wire-like conductive substances composed of silver or an alloy composed of silver and a metal other than silver.
Further, the silver nanowire may have a structure in which a wire-shaped core made of silver is coated with a metal other than silver. Here, the structure coated with a metal other than silver includes not only a structure in which the entire surface of the core silver nanowire is coated, but also a structure in which a part thereof is coated.
As the metal other than silver, a metal nobler than silver is preferable, gold, platinum or palladium is more preferable, and gold is further preferable.
 銀ナノワイヤーの形状としては、特に制限されず、目的に応じて適宜選択することができ、例えば、円柱状、直方体状、及び、断面が多角形となる柱状等の形状が挙げられる。
 銀ナノワイヤーの繊維径は、1~50nmが好ましく、2~20nmがより好ましく、3~10nmが更に好ましい。また、銀ナノワイヤーの繊維長は、1~100μmが好ましく、2~50μmがより好ましく、3~10μmが更に好ましい。
 銀ナノワイヤーの繊維径及び繊維長は、それぞれ、走査型電子顕微鏡(SEM)を用いて得られる複数の銀ナノワイヤーを含む観察画像から、20本の銀ナノワイヤーを任意に選択して、各銀ナノワイヤーの短軸及び長軸の長さを算術平均して得られる値である。
The shape of the silver nanowire is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a columnar shape, a rectangular parallelepiped shape, and a columnar shape having a polygonal cross section.
The fiber diameter of the silver nanowire is preferably 1 to 50 nm, more preferably 2 to 20 nm, and even more preferably 3 to 10 nm. The fiber length of the silver nanowire is preferably 1 to 100 μm, more preferably 2 to 50 μm, and even more preferably 3 to 10 μm.
The fiber diameter and fiber length of the silver nanowires are determined by arbitrarily selecting 20 silver nanowires from an observation image including a plurality of silver nanowires obtained by using a scanning electron microscope (SEM). It is a value obtained by arithmetically averaging the lengths of the minor axis and the major axis of silver nanowires.
 銀ナノワイヤーの製造方法としては、例えば、銀イオンをNaBH等の還元剤で還元する方法、及びポリオール法による方法等が挙げられる。また、銀ナノワイヤーの製造方法については、特開2011-149092号公報の段落0019~0024に記載されており、この公報の内容は本明細書に組み込まれる。 Examples of the method for producing silver nanowires include a method of reducing silver ions with a reducing agent such as NaBH 4 and a method of using a polyol method. Further, a method for producing silver nanowires is described in paragraphs 0019 to 0024 of JP2011-149902A, and the contents of this publication are incorporated in the present specification.
 導電層は、銀ナノワイヤー以外の導電性繊維を含んでもよい。銀ナノワイヤー以外の導電性繊維としては、例えば、金、銀、銅及び白金等の金属並びにこれらの金属の合金からなる金属繊維、並びに、カーボンナノチューブ等の炭素繊維が挙げられる。
 導電性繊維の形状は、その好適な態様も含めて、上述した銀ナノワイヤーの形状と同じであってよい。
The conductive layer may contain conductive fibers other than silver nanowires. Examples of conductive fibers other than silver nanowires include metals such as gold, silver, copper and platinum, metal fibers made of alloys of these metals, and carbon fibers such as carbon nanotubes.
The shape of the conductive fiber may be the same as the shape of the silver nanowire described above, including its preferred embodiment.
 導電層は、導電性繊維とともに有機導電体を含んでいてもよい。有機導電体としては、特に制限されず、例えば、チオフェン誘導体及びアニリン誘導体のポリマー等の有機導電体が挙げられる。より具体的には、ポリエチレンジオキシチオフェン、ポリヘキシルチオフェン、及びポリアニリンが挙げられる。 The conductive layer may contain an organic conductor as well as conductive fibers. The organic conductor is not particularly limited, and examples thereof include organic conductors such as polymers of thiophene derivatives and aniline derivatives. More specifically, polyethylene dioxythiophene, polyhexylthiophene, and polyaniline can be mentioned.
 導電層の厚さは、転写フィルムを用いて作製される導電パターンの用途、及び、求められる導電性によっても異なるが、1μm以下が好ましく、1nm以上0.5μm以下がより好ましく、5nm以上0.1μm以下が更に好ましい。導電層の厚さが1μm以下であると、450~650nmの波長域での光透過率が高く、パターン形成性にも優れ、特に透明電極の作製に好適なものとなる。 The thickness of the conductive layer varies depending on the use of the conductive pattern produced by using the transfer film and the required conductivity, but is preferably 1 μm or less, more preferably 1 nm or more and 0.5 μm or less, and 5 nm or more. It is more preferably 1 μm or less. When the thickness of the conductive layer is 1 μm or less, the light transmittance in the wavelength range of 450 to 650 nm is high, the pattern forming property is also excellent, and it is particularly suitable for producing a transparent electrode.
<形成方法>
 導電層の形成方法は、銀ナノワイヤーを含む層を形成可能な方法であれば特に制限されない。
 導電層の形成方法としては、例えば、銀ナノワイヤーを含む導電性組成物を調製し、仮支持体又は感光性樹脂層等の表面に導電性組成物を塗布した後、導電性組成物の塗膜を乾燥して、導電層を形成する方法が挙げられる。
<Formation method>
The method for forming the conductive layer is not particularly limited as long as it is a method capable of forming a layer containing silver nanowires.
As a method for forming the conductive layer, for example, a conductive composition containing silver nanowires is prepared, the conductive composition is applied to the surface of a temporary support or a photosensitive resin layer, and then the conductive composition is applied. Examples thereof include a method of drying the film to form a conductive layer.
 導電性組成物における銀ナノワイヤーの含有量は、導電性組成物の塗膜を形成可能であれば制限されないが、導電性組成物の総質量に対して、0.01~20質量%が好ましく、0.1~10質量%がより好ましい。 The content of silver nanowires in the conductive composition is not limited as long as the coating film of the conductive composition can be formed, but is preferably 0.01 to 20% by mass with respect to the total mass of the conductive composition. , 0.1 to 10% by mass is more preferable.
 導電性組成物は、溶剤を含むことが好ましい。溶剤としては、水及び有機溶剤が挙げられる。導電性組成物は、溶剤として水を含むことが好ましく、水及び有機溶剤を含むことがより好ましい。
 有機溶剤としては、アルコール系溶剤が好ましい。アルコール系溶剤としては、特に制限されず、例えば、炭素数1~5のアルコール、エチレングリコール、ポリエチレングリコール、ポリエチレングリコールアルキルエーテル、グリセリン、炭素数3~6のアルカンジオールプロピレングリコール、ジプロピレングリコール、1-エトキシ-2-プロパノール、エタノールアミン及びジエタノールアミンが挙げられる。
 また、導電性組成物は、上述した銀ナノワイヤー以外の導電性繊維、有機導電体、及び、界面活性剤等の分散安定剤からなる群より選択される少なくとも1種を含んでいてもよい。
The conductive composition preferably contains a solvent. Examples of the solvent include water and organic solvents. The conductive composition preferably contains water as a solvent, and more preferably contains water and an organic solvent.
As the organic solvent, an alcohol solvent is preferable. The alcohol-based solvent is not particularly limited, and for example, alcohol having 1 to 5 carbon atoms, ethylene glycol, polyethylene glycol, polyethylene glycol alkyl ether, glycerin, alcandiol propylene glycol having 3 to 6 carbon atoms, dipropylene glycol, 1 -Ethoxy-2-propanol, ethanolamine and diethanolamine can be mentioned.
Further, the conductive composition may contain at least one selected from the group consisting of conductive fibers other than the silver nanowires described above, organic conductors, and dispersion stabilizers such as surfactants.
 導電性組成物における水の含有量は、導電性組成物の総質量に対して80質量%以上が好ましく、90質量%以上がより好ましい。上限は特に制限されないが、導電性組成物の総質量に対して、99.99質量%以下が好ましく、99.9質量%以下がより好ましい。
 導電性組成物が有機溶剤を含む場合、有機溶剤の含有量は、0.01~20質量%が好ましい。
The content of water in the conductive composition is preferably 80% by mass or more, more preferably 90% by mass or more, based on the total mass of the conductive composition. The upper limit is not particularly limited, but is preferably 99.99% by mass or less, more preferably 99.9% by mass or less, based on the total mass of the conductive composition.
When the conductive composition contains an organic solvent, the content of the organic solvent is preferably 0.01 to 20% by mass.
 導電性組成物の塗布方法としては、例えば、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、及び、スプレーコート法等の公知の方法が挙げられるが、これらに制限されない。
 また、導電性組成物の塗膜の乾燥方法は特に制限されず、例えば、熱風対流式乾燥機を用いて、温度が30~150℃の熱風を1~30分間塗膜に当てる方法が挙げられる。
Examples of the coating method of the conductive composition include known methods such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, and a spray coating method. , Not limited to these.
The method for drying the coating film of the conductive composition is not particularly limited, and examples thereof include a method in which hot air having a temperature of 30 to 150 ° C. is applied to the coating film for 1 to 30 minutes using a hot air convection dryer. ..
〔感光性樹脂層〕
 本発明の転写フィルムは、分散度(Mw/Mn)が3.5以下であるバインダーポリマー(以下「特定ポリマー」とも記載する)、重合性化合物及び重合開始剤を含む感光性樹脂層を有する。
[Photosensitive resin layer]
The transfer film of the present invention has a photosensitive resin layer containing a binder polymer (hereinafter, also referred to as “specific polymer”) having a dispersity (Mw / Mn) of 3.5 or less, a polymerizable compound, and a polymerization initiator.
 以下、感光性樹脂層が含有する各成分について説明する。
 なお、感光性樹脂層は、露光により露光部の現像液に対する溶解性が低下し、非露光部が現像により除去されるネガ型感光性樹脂層であることが好ましい。しかしながら、感光性樹脂層はネガ型感光性樹脂層に制限されず、露光により露光部の現像液に対する溶解性が向上し、露光部が現像により除去されるポジ型感光性樹脂層であってもよい。
Hereinafter, each component contained in the photosensitive resin layer will be described.
The photosensitive resin layer is preferably a negative photosensitive resin layer in which the solubility of the exposed portion in the developing solution is reduced by exposure and the non-exposed portion is removed by development. However, the photosensitive resin layer is not limited to the negative photosensitive resin layer, and even if the photosensitive resin layer is a positive photosensitive resin layer in which the solubility of the exposed portion in the developing solution is improved by exposure and the exposed portion is removed by development. Good.
<成分>
(特定ポリマー)
 特定ポリマーとしては、例えば、(メタ)アクリル樹脂、スチレン樹脂、エポキシ樹脂、アミド樹脂、アミドエポキシ樹脂、アルキド樹脂、フェノール樹脂、エステル樹脂、ウレタン樹脂、エポキシ樹脂と(メタ)アクリル酸との反応で得られるエポキシ(メタ)アクリレート樹脂、及び、エポキシ(メタ)アクリレート樹脂と酸無水物との反応で得られる酸変性エポキシ(メタ)アクリレートアクリレート樹脂等のバインダーポリマーであって、分散度(Mw/Mn)が3.5以下であるものが挙げられる。
<Ingredients>
(Specific polymer)
Specific polymers include, for example, (meth) acrylic resin, styrene resin, epoxy resin, amide resin, amide epoxy resin, alkyd resin, phenol resin, ester resin, urethane resin, epoxy resin and (meth) acrylic acid. A binder polymer such as an epoxy (meth) acrylate resin obtained and an acid-modified epoxy (meth) acrylate acrylate resin obtained by reacting an epoxy (meth) acrylate resin with an acid anhydride, and having a degree of dispersibility (Mw / Mn). ) Is 3.5 or less.
 特定ポリマーとしては、アルカリ現像性及びフィルム形成性に優れる点から、(メタ)アクリル樹脂が好ましい。
 なお、本明細書において、(メタ)アクリル樹脂とは、(メタ)アクリル化合物に由来する構成単位を有する樹脂を意味する。(メタ)アクリル化合物に由来する構成単位の含有量は、(メタ)アクリル樹脂の全構成単位に対して、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましい。
 (メタ)アクリル樹脂は、(メタ)アクリル化合物に由来する構成単位のみで構成されていてもよく、(メタ)アクリル化合物以外の重合性単量体に由来する構成単位を有していてもよい。即ち、(メタ)アクリル化合物に由来する構成単位の含有量の上限は、(メタ)アクリル樹脂の全質量に対して、100質量%以下である。
As the specific polymer, a (meth) acrylic resin is preferable from the viewpoint of excellent alkali developability and film forming property.
In addition, in this specification, a (meth) acrylic resin means a resin having a structural unit derived from a (meth) acrylic compound. The content of the structural unit derived from the (meth) acrylic compound is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, based on all the structural units of the (meth) acrylic resin. ..
The (meth) acrylic resin may be composed of only a structural unit derived from the (meth) acrylic compound, or may have a structural unit derived from a polymerizable monomer other than the (meth) acrylic compound. .. That is, the upper limit of the content of the structural unit derived from the (meth) acrylic compound is 100% by mass or less with respect to the total mass of the (meth) acrylic resin.
 (メタ)アクリル化合物としては、例えば、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミド及び(メタ)アクリロニトリルが挙げられる。
 (メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸アルキルエステル、(メタ)アクリル酸テトラヒドロフルフリルエステル、(メタ)アクリル酸ジメチルアミノエチルエステル、(メタ)アクリル酸ジエチルアミノエチルエステル、(メタ)アクリル酸グリシジルエステル、(メタ)アクリル酸ベンジルエステル、2,2,2-トリフルオロエチル(メタ)アクリレート、及び、2,2,3,3-テトラフルオロプロピル(メタ)アクリレートが挙げられ、(メタ)アクリル酸アルキルエステルが好ましい。
 (メタ)アクリルアミドとしては、例えば、ジアセトンアクリルアミド等のアクリルアミドが挙げられる。
 (メタ)アクリル樹脂を構成する構成単位を形成する(メタ)アクリル化合物としては、(メタ)アクリル酸及び(メタ)アクリル酸アルキルエステルからなる群より選ばれる少なくとも1種が好ましい。
Examples of the (meth) acrylic compound include (meth) acrylic acid, (meth) acrylic acid ester, (meth) acrylamide and (meth) acrylonitrile.
Examples of the (meth) acrylic acid ester include (meth) acrylic acid alkyl ester, (meth) acrylic acid tetrahydrofurfuryl ester, (meth) acrylic acid dimethylaminoethyl ester, (meth) acrylic acid diethylaminoethyl ester, and (meth) acrylic acid ester. ) Acrylic acid glycidyl ester, (meth) acrylic acid benzyl ester, 2,2,2-trifluoroethyl (meth) acrylate, and 2,2,3,3-tetrafluoropropyl (meth) acrylate. Meta) Acrylic acid alkyl esters are preferred.
Examples of (meth) acrylamide include acrylamide such as diacetone acrylamide.
As the (meth) acrylic compound forming the structural unit constituting the (meth) acrylic resin, at least one selected from the group consisting of (meth) acrylic acid and (meth) acrylic acid alkyl ester is preferable.
 (メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、及び、(メタ)アクリル酸ドデシル等の炭素数が1~12のアルキル基を有する(メタ)アクリル酸アルキルエステルが挙げられる。
 (メタ)アクリル酸エステルとしては、炭素数1~4のアルキル基を有する(メタ)アクリル酸アルキルエステルが好ましく、(メタ)アクリル酸メチル又は(メタ)アクリル酸エチルがより好ましい。
Examples of the (meth) acrylic acid alkyl ester include methyl (meth) acrylic acid, ethyl (meth) acrylic acid, propyl (meth) acrylic acid, butyl (meth) acrylic acid, pentyl (meth) acrylic acid, and (meth). Hexyl acrylate, heptyl (meth) acrylate, octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, and Examples thereof include (meth) acrylic acid alkyl esters having an alkyl group having 1 to 12 carbon atoms, such as dodecyl (meth) acrylic acid.
As the (meth) acrylic acid ester, a (meth) acrylic acid alkyl ester having an alkyl group having 1 to 4 carbon atoms is preferable, and methyl (meth) acrylate or ethyl (meth) acrylate is more preferable.
 (メタ)アクリル樹脂は、(メタ)アクリル化合物に由来する構成単位以外の構成単位を有していてもよい。
 上記構成単位を形成する重合性単量体としては、(メタ)アクリル化合物と共重合可能な(メタ)アクリル化合物以外の化合物であれば特に制限されず、例えば、スチレン、ビニルトルエン及びα-メチルスチレン等のα位又は芳香族環に置換基を有してもよいスチレン化合物、アクリロニトリル及びビニル-n-ブチルエーテル等のビニルアルコールエステル、マレイン酸、マレイン酸無水物、マレイン酸モノメチル、マレイン酸モノエチル及びマレイン酸モノイソプロピル等のマレイン酸モノエステル、フマール酸、ケイ皮酸、α-シアノケイ皮酸、イタコン酸並びにクロトン酸が挙げられる。
 これらの重合性単量体は、1種又は2種以上を組み合わせて用いてもよい。
The (meth) acrylic resin may have a structural unit other than the structural unit derived from the (meth) acrylic compound.
The polymerizable monomer forming the above-mentioned structural unit is not particularly limited as long as it is a compound other than the (meth) acrylic compound that is copolymerizable with the (meth) acrylic compound, and is, for example, styrene, vinyltoluene and α-methyl. Styrene compounds which may have a substituent at the α-position such as styrene or an aromatic ring, vinyl alcohol esters such as acrylonitrile and vinyl-n-butyl ether, maleic acid, maleic acid anhydride, monomethyl maleate, monoethyl maleate and Examples thereof include maleic acid monoesters such as monoisopropyl maleate, fumaric acid, silicic acid, α-cyanosilicic acid, itaconic acid and crotonic acid.
These polymerizable monomers may be used alone or in combination of two or more.
 また、(メタ)アクリル樹脂は、アルカリ現像性をより良好にする点から、酸基を有する構成単位を有することが好ましい。酸基としては、例えば、カルボキシ基、スルホ基、リン酸基及びホスホン酸基が挙げられる。
 中でも、(メタ)アクリル樹脂は、カルボキシル基を有する構成単位を有することがより好ましく、上記の(メタ)アクリル酸に由来する構成単位を有することが更に好ましい。
Further, the (meth) acrylic resin preferably has a structural unit having an acid group from the viewpoint of improving the alkali developability. Examples of the acid group include a carboxy group, a sulfo group, a phosphoric acid group and a phosphonic acid group.
Among them, the (meth) acrylic resin more preferably has a structural unit having a carboxyl group, and further preferably has a structural unit derived from the above-mentioned (meth) acrylic acid.
 (メタ)アクリル樹脂における酸基を有する構成単位(好ましくは(メタ)アクリル酸に由来する構成単位)の含有量は、現像性に優れる点で、(メタ)アクリル樹脂の全質量に対して、10質量%以上が好ましい。また、上限値は特に制限されないが、アルカリ耐性に優れる点で、50質量%以下が好ましく、40質量%以下がより好ましい。 The content of the constituent unit having an acid group (preferably the constituent unit derived from (meth) acrylic acid) in the (meth) acrylic resin is excellent in developability with respect to the total mass of the (meth) acrylic resin. 10% by mass or more is preferable. The upper limit is not particularly limited, but is preferably 50% by mass or less, more preferably 40% by mass or less, in terms of excellent alkali resistance.
 また、(メタ)アクリル樹脂は、上述した(メタ)アクリル酸アルキルエステルに由来する構成単位を有することがより好ましい。
 (メタ)アクリル樹脂における(メタ)アクリル酸アルキルエステルに由来する構成単位の含有量は、(メタ)アクリル樹脂の全構成単位に対して50~90質量%が好ましく、65~90質量%がより好ましい。
Further, it is more preferable that the (meth) acrylic resin has a structural unit derived from the above-mentioned (meth) acrylic acid alkyl ester.
The content of the structural unit derived from the (meth) acrylic acid alkyl ester in the (meth) acrylic resin is preferably 50 to 90% by mass, more preferably 65 to 90% by mass, based on all the structural units of the (meth) acrylic resin. preferable.
 (メタ)アクリル樹脂としては、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸アルキルエステルに由来する構成単位の両者を有する樹脂が好ましく、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸アルキルエステルに由来する構成単位のみで構成されている樹脂がより好ましい。
 また、(メタ)アクリル樹脂としては、メタクリル酸に由来する構成単位、メタクリル酸メチルに由来する構成単位及びアクリル酸エチルに由来する構成単位を有するアクリル樹脂も好ましい。
As the (meth) acrylic resin, a resin having both a structural unit derived from (meth) acrylic acid and a structural unit derived from (meth) acrylic acid alkyl ester is preferable, and the structural unit derived from (meth) acrylic acid and the structural unit derived from (meth) acrylic acid are preferable. A resin composed only of structural units derived from (meth) acrylic acid alkyl ester is more preferable.
Further, as the (meth) acrylic resin, an acrylic resin having a structural unit derived from methacrylic acid, a structural unit derived from methyl methacrylate, and a structural unit derived from ethyl acrylate is also preferable.
 また、(メタ)アクリル樹脂は、保護フィルムの剥離性に優れる点で、メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位からなる群より選択される少なくとも1種を有することが好ましく、メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の両者を有することが好ましい。
 (メタ)アクリル樹脂におけるメタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の合計含有量は、保護フィルムの剥離性に優れる点で、(メタ)アクリル樹脂の全構成単位に対して40質量%以上が好ましく、60質量%以上がより好ましい。上限は特に制限されず、100質量%以下であってもよく、転写後の感光性樹脂層の現像性、及び感光性樹脂層のラミネート性が優れる点から、80質量%以下が好ましい。
Further, the (meth) acrylic resin may have at least one selected from the group consisting of a structural unit derived from methacrylic acid and a structural unit derived from methacrylic acid alkyl ester in that the protective film is excellent in peelability. It is preferable to have both a structural unit derived from methacrylic acid and a structural unit derived from an alkyl methacrylate ester.
The total content of the structural units derived from methacrylic acid and the structural units derived from methacrylic acid alkyl ester in the (meth) acrylic resin is superior to that of all the structural units of the (meth) acrylic resin in that the protective film is excellent in peelability. 40% by mass or more is preferable, and 60% by mass or more is more preferable. The upper limit is not particularly limited and may be 100% by mass or less, and 80% by mass or less is preferable from the viewpoint of excellent developability of the photosensitive resin layer after transfer and laminating property of the photosensitive resin layer.
 (メタ)アクリル樹脂は、転写後の感光性樹脂層の現像性に優れる点で、末端にエステル基を有することが好ましい。
 なお、(メタ)アクリル樹脂の末端部は、合成に用いた重合開始剤に由来する部位により構成される。末端にエステル基を有する(メタ)アクリル樹脂は、エステル基を有するラジカルを発生する重合開始剤を用いることにより合成できる。
The (meth) acrylic resin preferably has an ester group at the end in that the photosensitive resin layer after transfer is excellent in developability.
The terminal portion of the (meth) acrylic resin is composed of a site derived from the polymerization initiator used in the synthesis. A (meth) acrylic resin having an ester group at the terminal can be synthesized by using a polymerization initiator that generates a radical having an ester group.
-製造方法-
 特定ポリマーの製造方法は、分散度(Mw/Mn)は、3.5以下であるポリマーを製造可能な方法であれば特に制限されない。例えば、重合開始剤の存在下、重合性単量体をラジカル重合させる公知の方法により、特定ポリマーを製造すればよい。
 このときの重合方法として、例えば、バルク重合法、懸濁重合法、乳化重合法、及び溶液重合法が挙げられる。
 以下、溶液重合法により特定ポリマーを製造する方法の一例について、詳しく説明する。
-Production method-
The method for producing a specific polymer is not particularly limited as long as it is a method capable of producing a polymer having a dispersity (Mw / Mn) of 3.5 or less. For example, a specific polymer may be produced by a known method of radically polymerizing a polymerizable monomer in the presence of a polymerization initiator.
Examples of the polymerization method at this time include a bulk polymerization method, a suspension polymerization method, an emulsion polymerization method, and a solution polymerization method.
Hereinafter, an example of a method for producing a specific polymer by a solution polymerization method will be described in detail.
 溶液重合法により特定ポリマーを製造する方法としては、例えば、
(i)加熱条件下、溶剤を含む第1液中に、重合性単量体、重合開始剤及び溶剤を含む第2液を0.5~20時間かけて添加する方法、
(ii)加熱条件下、溶剤を含む第1液中に、重合性単量体を含む第3液と重合開始剤及び溶剤を含む第4液とを別々に0.5~20時間かけて添加方法、及び、
(iii)加熱条件下、重合性単量体及び溶剤を含む第3液中に、重合開始剤及び溶剤を含む第4液を0.5~20時間かけて添加する方法、が挙げられる。
As a method for producing a specific polymer by a solution polymerization method, for example,
(I) A method of adding a second liquid containing a polymerizable monomer, a polymerization initiator and a solvent to a first liquid containing a solvent under heating conditions over 0.5 to 20 hours.
(Ii) Under heating conditions, the third liquid containing the polymerizable monomer and the fourth liquid containing the polymerization initiator and the solvent are separately added to the first liquid containing the solvent over 0.5 to 20 hours. Method and
(Iii) Examples thereof include a method of adding a fourth liquid containing a polymerization initiator and a solvent to a third liquid containing a polymerizable monomer and a solvent under heating conditions over 0.5 to 20 hours.
 上記の方法(i)~(iii)はいずれも、重合反応を開始する前に重合開始剤の分解が生じた場合であっても、重合性単量体と重合開始剤に由来するラジカルとの反応を抑制し、高分子量ポリマーの生成量を低減し、ポリマーの分散度を小さくできる点で、好ましい。
 なお、上記の方法(i)~(iii)における各液を添加する時間は、各液の全量が一度に添加されず、その一部が少量ずつ添加される限り、上記の添加時間に制限されない。
 上記の方法(i)では、第2液が溶剤を含むことにより、第2液中での重合性単量体と重合開始剤に由来するラジカルとの反応を抑制できる。また、上記の方法(ii)及び(iii)では、重合性単量体と重合開始剤とが分けられているため、上記方法による重合を行うまで、重合性単量体と重合開始剤に由来するラジカルとの反応が生じない。よって、上記の方法(ii)及び(iii)により特定ポリマーを製造することは、より好ましい。反応中の重合性単量体の濃度の均一性の観点からは、上記の方法(i)及び(ii)により特定ポリマーを製造することがより好ましい。重合性単量体と重合開始剤とが分けられる観点、及び反応中の重合性単量体の濃度の均一性の観点から、上記の方法(ii)により特定ポリマーを製造することが更に好ましい。
In each of the above methods (i) to (iii), even if the polymerization initiator is decomposed before the polymerization reaction is started, the polymerizable monomer and the radical derived from the polymerization initiator are combined. It is preferable in that the reaction can be suppressed, the amount of high-molecular-weight polymer produced can be reduced, and the degree of dispersion of the polymer can be reduced.
The time for adding each of the solutions in the above methods (i) to (iii) is not limited to the above addition time as long as the entire amount of each solution is not added at once and a part thereof is added little by little. ..
In the above method (i), since the second liquid contains a solvent, the reaction between the polymerizable monomer in the second liquid and the radicals derived from the polymerization initiator can be suppressed. Further, in the above methods (ii) and (iii), since the polymerizable monomer and the polymerization initiator are separated, they are derived from the polymerizable monomer and the polymerization initiator until the polymerization by the above method is performed. Does not react with the radicals. Therefore, it is more preferable to produce the specific polymer by the above methods (ii) and (iii). From the viewpoint of the uniformity of the concentration of the polymerizable monomer during the reaction, it is more preferable to produce the specific polymer by the above methods (i) and (ii). From the viewpoint of separating the polymerizable monomer and the polymerization initiator and the uniformity of the concentration of the polymerizable monomer during the reaction, it is more preferable to produce the specific polymer by the above method (ii).
 なお、上記の方法(ii)において、「第3液と第4液とを別々に添加する」とは、第3液及び第4液を同時に添加し、且つ、第3液及び第4液が第1液中に添加されるまで互いに接触しないことを意味する。 In the above method (ii), "adding the third liquid and the fourth liquid separately" means that the third liquid and the fourth liquid are added at the same time, and the third liquid and the fourth liquid are added. It means that they do not come into contact with each other until they are added to the first liquid.
 溶液重合に用いる重合性単量体は、製造する特定ポリマーによって選択される。溶液重合により(メタ)アクリル樹脂を製造する場合、溶液重合に用いる重合性単量体は上述した(メタ)アクリル化合物である。
 溶液重合における重合性単量体の使用量は特に制限されないが、原料の使用量の低減、容積効率の向上、及び、残留モノマー量の低減の点から、反応系の全質量に対して10質量%以上が好ましく、15質量%以上がより好ましく、20質量%以上が更に好ましい。
上限は特に制限されないが、反応系の全質量に対して、80質量%以下が好ましく、60質量%以下がより好ましい。
 なお、各成分の使用量又は含有量に関して、反応系とは、溶液重合において使用する全ての反応液を意味する。例えば、反応系とは、上記の方法(i)では、第1液及び第2液の総量であり、上記の方法(ii)では、第1液、第3液及び第4液の総量であり、上記の方法(iii)では、反応系とは第3液及び第4液の総量である。
The polymerizable monomer used for solution polymerization is selected depending on the specific polymer to be produced. When a (meth) acrylic resin is produced by solution polymerization, the polymerizable monomer used for solution polymerization is the above-mentioned (meth) acrylic compound.
The amount of the polymerizable monomer used in the solution polymerization is not particularly limited, but 10 mass with respect to the total mass of the reaction system from the viewpoint of reducing the amount of the raw material used, improving the volume efficiency, and reducing the amount of the residual monomer. % Or more is preferable, 15% by mass or more is more preferable, and 20% by mass or more is further preferable.
The upper limit is not particularly limited, but is preferably 80% by mass or less, more preferably 60% by mass or less, based on the total mass of the reaction system.
Regarding the amount or content of each component used, the reaction system means all reaction solutions used in solution polymerization. For example, the reaction system is the total amount of the first liquid and the second liquid in the above method (i), and the total amount of the first liquid, the third liquid and the fourth liquid in the above method (ii). In the above method (iii), the reaction system is the total amount of the third and fourth liquids.
 上記方法(i)の第2液における重合性単量体の含有量は、特に制限されず、第2液の全質量に対して10~95質量%が好ましく、20~80質量%がより好ましい。
 上記方法(ii)の第3液における重合性単量体の含有量は、特に制限されず、第3液の全質量に対して30質量%以上が好ましく、50質量%以上がより好ましい。上限は特に制限されず、第3液の全質量に対して100質量%以下であってよく、95質量%以下が好ましく、90質量%以下がより好ましい。
 上記方法(iii)の第3液における重合性単量体の含有量は、特に制限されず、第3液の全質量に対して10~50質量%が好ましく、15~40質量%がより好ましい。
The content of the polymerizable monomer in the second liquid of the above method (i) is not particularly limited, and is preferably 10 to 95% by mass, more preferably 20 to 80% by mass, based on the total mass of the second liquid. ..
The content of the polymerizable monomer in the third liquid of the above method (ii) is not particularly limited, and is preferably 30% by mass or more, more preferably 50% by mass or more, based on the total mass of the third liquid. The upper limit is not particularly limited, and may be 100% by mass or less, preferably 95% by mass or less, and more preferably 90% by mass or less with respect to the total mass of the third liquid.
The content of the polymerizable monomer in the third liquid of the above method (iii) is not particularly limited, and is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, based on the total mass of the third liquid. ..
 溶液重合に使用する溶剤としては、公知の溶剤が使用でき、例えば、エーテル系溶剤、エステル系溶剤、ケトン系溶剤、アミド系溶剤、スルホキシド系溶剤、アルコール系溶剤、炭化水素系溶剤及びこれらの混合溶剤が挙げられ、重合性単量体及び生成するポリマーの溶解性の点から、エーテル系溶剤、エステル系溶剤又はケトン系溶剤が好ましい。 As the solvent used for solution polymerization, known solvents can be used, for example, ether-based solvents, ester-based solvents, ketone-based solvents, amide-based solvents, sulfoxide-based solvents, alcohol-based solvents, hydrocarbon-based solvents, and mixtures thereof. Examples thereof include an ether solvent, and an ether solvent, an ester solvent or a ketone solvent is preferable from the viewpoint of solubility of the polymerizable monomer and the produced polymer.
 エーテル系溶剤としては、ジエチルエーテル、エチレングリコールジメチルエーテル、及びプロピレングリコールモノメチルエーテル等の鎖状エーテル、並びに、テトラヒドロフラン及びジオキサン等の環状エーテルが挙げられる。
 エステル系溶剤としては、酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、プロピレングリコールモノメチルエーテルアセテート、及び、酢酸メトキシエチル等のグリコールエーテルエステルが挙げられる。
 ケトン系溶剤としては、アセトン、メチルエチルケトン、メチルイソブチルケトン及びシクロヘキサノンが挙げられる。
 アミド系溶剤としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチピロリドン、及びN-エチルピロリドンが挙げられる。
 スルホキシド系溶剤としては、ジメチルスルホキシドが挙げられる。
 アルコール系溶剤としては、メタノール、エタノール及びプロパノールが挙げられる。
 炭化水素系溶剤としては、ベンゼン、トルエン及びキシレン等の芳香族炭化水素溶剤、ヘキサン等の脂肪族炭化水素溶剤、並びに、シクロヘキサン等の脂環式炭化水素溶剤が挙げられる。
Examples of the ether solvent include chain ethers such as diethyl ether, ethylene glycol dimethyl ether, and propylene glycol monomethyl ether, and cyclic ethers such as tetrahydrofuran and dioxane.
Examples of the ester solvent include glycol ether esters such as methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, propylene glycol monomethyl ether acetate, and methoxyethyl acetate.
Examples of the ketone solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone.
Examples of the amide solvent include N, N-dimethylacetamide, N, N-dimethylformamide, N-methylpyrrolidone, and N-ethylpyrrolidone.
Examples of the sulfoxide solvent include dimethyl sulfoxide.
Examples of the alcohol solvent include methanol, ethanol and propanol.
Examples of the hydrocarbon solvent include aromatic hydrocarbon solvents such as benzene, toluene and xylene, aliphatic hydrocarbon solvents such as hexane, and alicyclic hydrocarbon solvents such as cyclohexane.
 生成するポリマーの組成の均一性、感光層の形成に用いる感光性樹脂組成物への特定ポリマーの溶解性、及び感光性樹脂組成物の塗布による感光層の形成のし易さ(以下「塗布性」とも記載する。)に優れる点で、溶液重合の反応系に含まれる溶剤の総量に対する、反応液に含まれる非芳香族炭化水素溶剤の含有量は、60質量%以上が好ましく、80質量%以上がより好ましい。上限は特に制限されず、100質量%以下であってよい。即ち、溶液重合の反応系に含まれる溶剤が全て非芳香族炭化水素溶剤であってよい。したがって、方法(i)では、第1液及び第2液に含まれる溶剤の総量に対する、第1液及び第2液に含まれる非芳香族炭化水素溶剤の含有量の質量比が80質量%以上であることが好ましい。方法(ii)では、第1液、第3液及び第4液に含まれる溶剤の総量に対する、第1液、第3液及び第4液に含まれる非芳香族炭化水素溶剤の含有量の質量比が80質量%以上であることが好ましい。
 なお、非芳香族炭化水素溶剤とは、分子中に芳香環を有さない溶剤を意味する。
The uniformity of the composition of the polymer to be produced, the solubility of the specific polymer in the photosensitive resin composition used for forming the photosensitive layer, and the ease of forming the photosensitive layer by coating the photosensitive resin composition (hereinafter, "coatability"). The content of the non-aromatic hydrocarbon solvent contained in the reaction solution is preferably 60% by mass or more, preferably 80% by mass, based on the total amount of the solvent contained in the reaction system of solution polymerization. The above is more preferable. The upper limit is not particularly limited and may be 100% by mass or less. That is, all the solvents contained in the reaction system of solution polymerization may be non-aromatic hydrocarbon solvents. Therefore, in the method (i), the mass ratio of the content of the non-aromatic hydrocarbon solvent contained in the first liquid and the second liquid to the total amount of the solvent contained in the first liquid and the second liquid is 80% by mass or more. Is preferable. In the method (ii), the mass of the content of the non-aromatic hydrocarbon solvent contained in the first liquid, the third liquid and the fourth liquid with respect to the total amount of the solvents contained in the first liquid, the third liquid and the fourth liquid. The ratio is preferably 80% by mass or more.
The non-aromatic hydrocarbon solvent means a solvent having no aromatic ring in the molecule.
 また、重合反応における安全性の確保の点から、溶剤の沸点は80℃以上が好ましく、100℃以上がより好ましく、120℃以上が更に好ましい。
 溶剤の粘度は特に制限されないが、20℃における動粘度が、1mm/秒以上が好ましく、1.2mm/秒以上がより好ましい。
 これらの溶剤は単独で又は2種以上を混合して使用できる。
 溶液重合における溶剤の使用量は特に制限されないが、反応系の全質量に対して40~90質量%が好ましく、50~80質量%がより好ましい。また、溶剤は、反応系中、重合性単量体及び重合開始剤の残部であってもよい。
Further, from the viewpoint of ensuring safety in the polymerization reaction, the boiling point of the solvent is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, still more preferably 120 ° C. or higher.
The viscosity of the solvent is not particularly limited, but the kinematic viscosity at 20 ° C. is preferably 1 mm 2 / sec or more, and more preferably 1.2 mm 2 / sec or more.
These solvents can be used alone or in admixture of two or more.
The amount of the solvent used in the solution polymerization is not particularly limited, but is preferably 40 to 90% by mass, more preferably 50 to 80% by mass, based on the total mass of the reaction system. Further, the solvent may be the remainder of the polymerizable monomer and the polymerization initiator in the reaction system.
 上記方法(i)において、第2液に含まれる溶剤の含有量は特に制限されず、第2液の全質量に対して5~90質量%が好ましく、20~80質量%がより好ましい。また、転写後の感光性樹脂層の現像性に優れる点で、第2液に含まれる溶剤の含有量は、第2液の全質量に対して、40質量%以上が更に好ましい。 In the above method (i), the content of the solvent contained in the second liquid is not particularly limited, and is preferably 5 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the second liquid. Further, the content of the solvent contained in the second liquid is more preferably 40% by mass or more with respect to the total mass of the second liquid in that the photosensitive resin layer after transfer is excellent in developability.
 上記方法(i)において、第2液に含まれる溶剤の含有量に対する、第1液に含まれる溶剤の含有量((第1液に含まれる溶剤の含有量)/(第2液に含まれる溶剤の含有量))の質量比は、生成するポリマーの分子量の均一性に優れる点で、1/9~9/1が好ましく、2/8~8/2がより好ましい。
 また、転写後の感光性樹脂層の現像性に優れる点で、第2液に含まれる溶剤の含有量に対する、第1液に含まれる溶剤の含有量((第1液に含まれる溶剤の含有量)/(第2液に含まれる溶剤の含有量))は、6/4以下がより好ましく、5/5以下が更に好ましく、4/6以下が特に好ましい。
In the above method (i), the content of the solvent contained in the first liquid ((content of the solvent contained in the first liquid) / (contained in the second liquid) with respect to the content of the solvent contained in the second liquid. The mass ratio of (solvent content)) is preferably 1/9 to 9/1, more preferably 2/8 to 8/2, in that the polymer produced is excellent in molecular weight uniformity.
Further, in that the photosensitive resin layer after transfer is excellent in developability, the content of the solvent contained in the first liquid ((the content of the solvent contained in the first liquid) is higher than the content of the solvent contained in the second liquid. Amount) / (content of solvent contained in the second liquid)) is more preferably 6/4 or less, further preferably 5/5 or less, and particularly preferably 4/6 or less.
 上記方法(ii)において、第3液に含まれる溶剤の含有量は0質量%であってもよく、即ち、第3液は溶剤を含まなくてもよい。第3液に含まれる溶剤の含有量は、第3液の全質量に対して5~80質量%が好ましく、10~50質量%がより好ましい。
 上記方法(ii)において、第4液に含まれる溶剤の含有量は、第4液の全質量に対して40~99質量%が好ましく、70~97質量%がより好ましい。
 また、上記方法(ii)において、第3液及び第4液に含まれる溶剤の含有量(総量)に対する、第1液に含まれる溶剤の含有量((第1液に含まれる溶剤の含有量)/(第3液及び第4液に含まれる溶剤の含有量))の質量比は、生成するポリマーの分子量の均一性に優れる点で、1/9~9/1が好ましく、2/8~8/2がより好ましい。
In the above method (ii), the content of the solvent contained in the third liquid may be 0% by mass, that is, the third liquid may not contain the solvent. The content of the solvent contained in the third liquid is preferably 5 to 80% by mass, more preferably 10 to 50% by mass, based on the total mass of the third liquid.
In the above method (ii), the content of the solvent contained in the fourth liquid is preferably 40 to 99% by mass, more preferably 70 to 97% by mass, based on the total mass of the fourth liquid.
Further, in the above method (ii), the content of the solvent contained in the first liquid ((content of the solvent contained in the first liquid)) with respect to the content (total amount) of the solvent contained in the third liquid and the fourth liquid. ) / (Contents of solvent contained in the 3rd and 4th liquids)) is preferably 1/9 to 9/1 in terms of excellent molecular weight uniformity of the produced polymer, 2/8. ~ 8/2 is more preferable.
 上記方法(iii)において、第3液に含まれる溶剤の含有量は、第3液の全質量に対して40~90質量%が好ましく、40~80質量%がより好ましい。
 上記方法(iii)において、第4液に含まれる溶剤の含有量は、第4液の全質量に対して50~99質量%が好ましく、60~97質量%がより好ましい。
 また、上記方法(iii)において、第3液に含まれる溶剤の含有量に対する、第4液に含まれる溶剤の含有量((第4液に含まれる溶剤の含有量)/(第3液に含まれる溶剤の含有量))の質量比は、生成するポリマーの分子量の均一性に優れる点で、95/5~50/50が好ましく、90/10~60/40がより好ましい。
In the above method (iii), the content of the solvent contained in the third liquid is preferably 40 to 90% by mass, more preferably 40 to 80% by mass, based on the total mass of the third liquid.
In the above method (iii), the content of the solvent contained in the fourth liquid is preferably 50 to 99% by mass, more preferably 60 to 97% by mass, based on the total mass of the fourth liquid.
Further, in the above method (iii), the content of the solvent contained in the fourth liquid ((content of the solvent contained in the fourth liquid) / (in the third liquid) with respect to the content of the solvent contained in the third liquid. The mass ratio of the contained solvent)) is preferably 95/5 to 50/50, more preferably 90/10 to 60/40, in that the polymer produced is excellent in molecular weight uniformity.
 溶液重合に使用する重合開始剤(ラジカル重合開始剤)としては特に制限されず、例えば、アゾ系化合物、過酸化物系化合物及びレドックス系化合物が挙げられる。
 ラジカル重合開始剤としては、ジメチル2,2’-アゾビスイソブチレート、アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、t-ブチルパーオキシピバレート、ジ-t-ブチルパーオキシド、イソ-ブチリルパーオキシド、ラウロイルパーオキサイド、スクシン酸パーオキシド、ジシンナミルパーオキシド、ジ-n-プロピルパーオキシジカーボネート、t-ブチルパーオキシアリルモノカーボネート、過酸化ベンゾイル、過酸化水素、及び、過硫酸アンモニウムが好ましい。
The polymerization initiator (radical polymerization initiator) used for solution polymerization is not particularly limited, and examples thereof include azo compounds, peroxide compounds, and redox compounds.
Examples of the radical polymerization initiator include dimethyl 2,2'-azobisisobutyrate, azobisisobutyronitrile, 2,2'-azobis (2-methylbutyronitrile), t-butylperoxypivalate, and di. -T-Butyl peroxide, Iso-butyryl peroxide, Lauroyl peroxide, Succinic acid peroxide, Dicinnamyl peroxide, Di-n-propyl peroxy dicarbonate, t-Butyl peroxyallyl monocarbonate, Benzoyl peroxide, Hyper Hydrogen oxide and ammonium persulfate are preferred.
 溶液重合に用いる重合開始剤の使用量は特に制限されないが、重合性単量体の全質量に対して0.1~10質量%が好ましく、0.5~6質量%がより好ましい。
 重合開始剤は、単独で又は2種以上を混合して使用できる。
The amount of the polymerization initiator used in the solution polymerization is not particularly limited, but is preferably 0.1 to 10% by mass, more preferably 0.5 to 6% by mass, based on the total mass of the polymerizable monomer.
The polymerization initiator can be used alone or in combination of two or more.
 溶液重合における溶液の温度(反応温度)、即ち、上記(i)~(iii)の方法における加熱条件としては、例えば、30~150℃であればよく、50~120℃が好ましく、55~110℃がより好ましい。 The temperature of the solution (reaction temperature) in the solution polymerization, that is, the heating conditions in the above methods (i) to (iii) may be, for example, 30 to 150 ° C, preferably 50 to 120 ° C, and 55 to 110. ℃ is more preferable.
 溶液重合の時間は、重合性単量体の種類、重合開始剤の種類及び反応温度によって設定すればよいが、0.5~20時間が好ましく、1~10時間がより好ましく、1~8時間が更に好ましい。
 ここで、溶液重合の時間とは、上記(i)の方法の場合、第2液を添加する時間であり、上記(ii)の方法の場合、第3液及び第4液をそれぞれ添加する時間であり、上記(iii)の方法の場合、第4液を添加する時間である。
 上記(ii)の方法の場合、第3液及び第4液をそれぞれ添加する時間は同一でも異なっていてもよい。
The solution polymerization time may be set depending on the type of the polymerizable monomer, the type of the polymerization initiator, and the reaction temperature, but is preferably 0.5 to 20 hours, more preferably 1 to 10 hours, and 1 to 8 hours. Is more preferable.
Here, the solution polymerization time is the time for adding the second liquid in the case of the above method (i), and the time for adding the third liquid and the fourth liquid in the case of the above method (ii), respectively. In the case of the above method (iii), it is time to add the fourth solution.
In the case of the above method (ii), the time for adding the third liquid and the fourth liquid may be the same or different.
 添加終了後、窒素雰囲気下、混合液を一定時間加熱撹拌することが好ましい。
 加熱時間は、反応温度及び重合開始剤の種類によって設定すればよいが、1~10時間が好ましく、2~8時聞がより好ましい。
 加熱撹拌の終了後、混合液に重合開始剤を再度添加することにより、残存する重合性単量体を低減してもよい。
After completion of the addition, it is preferable to heat and stir the mixed solution for a certain period of time in a nitrogen atmosphere.
The heating time may be set depending on the reaction temperature and the type of the polymerization initiator, but is preferably 1 to 10 hours, more preferably 2 to 8 o'clock.
After the completion of heating and stirring, the residual polymerizable monomer may be reduced by adding the polymerization initiator to the mixture again.
 溶液重合により製造されたポリマーを、ポリマーの貧溶媒と接触させる沈殿又は再沈殿によって回収してもよい。また、沈殿又は再沈殿を行わずに、ポリマーを含む溶液を感光性樹脂組成物の調製に使用してもよい。
 沈殿又は再沈殿溶剤(貧溶媒)としては、有機溶剤、水、及び、これらの混合溶剤が挙げられる。有機溶剤としては、例えば、炭化水素系溶剤、ハロゲン化炭化水素系溶剤、ニトロ化合物、ニトリル系溶剤、エーテル系溶剤、ケトン系溶剤、エステル系溶剤、カーボネート系溶剤、アルコール系溶剤、カルボン酸系溶剤、及び、これらの混合液が挙げられる。
The polymer produced by solution polymerization may be recovered by precipitation or reprecipitation in contact with the poor solvent of the polymer. Further, a solution containing a polymer may be used for preparing a photosensitive resin composition without precipitation or reprecipitation.
Examples of the precipitation or reprecipitation solvent (poor solvent) include an organic solvent, water, and a mixed solvent thereof. Examples of the organic solvent include hydrocarbon solvents, halogenated hydrocarbon solvents, nitro compounds, nitrile solvents, ether solvents, ketone solvents, ester solvents, carbonate solvents, alcohol solvents, and carboxylic acid solvents. , And a mixed solution thereof.
 沈殿あるいは再沈殿により析出したポリマーは、濾過により分別され、回収される。濾過の方法としては、自然濾過、加圧濾過、減圧濾過、遠心濾過等が挙げられる。 The polymer precipitated by precipitation or reprecipitation is separated by filtration and recovered. Examples of the filtration method include natural filtration, pressure filtration, vacuum filtration, centrifugal filtration and the like.
-物性等-
 特定ポリマーの酸価は、現像性の点から、50~150mgKOH/gが好ましい。
-Physical characteristics, etc.-
The acid value of the specific polymer is preferably 50 to 150 mgKOH / g from the viewpoint of developability.
 特定ポリマーの酸価は、次のようにして測定される。
 まず、酸価を測定すべきポリマー1gを精秤する。上記ポリマーにアセトン30gを加え、これを均一に溶解する。次いで、指示薬であるフェノールフタレインを上記溶液に適量添加して、0.1NのKOH水溶液を用いて滴定を行う。KOH水溶液の滴定量から、次式により酸価を算出する。
 酸価(mgKOH/g)=10×Vf×56.1/(Wp×I)
 式中、VfはKOH水溶液の滴定量(mL)を示し、Wpは測定した樹脂溶液の質量(g)を示し、Iは測定した樹脂溶液中の不揮発分の割合(質量%)を示す。
The acid value of a particular polymer is measured as follows.
First, 1 g of the polymer whose acid value should be measured is precisely weighed. 30 g of acetone is added to the polymer, and this is uniformly dissolved. Next, an appropriate amount of phenolphthalein, which is an indicator, is added to the above solution, and titration is performed using a 0.1 N KOH aqueous solution. The acid value is calculated by the following formula from the titration amount of the KOH aqueous solution.
Acid value (mgKOH / g) = 10 x Vf x 56.1 / (Wp x I)
In the formula, Vf indicates the titer (mL) of the KOH aqueous solution, Wp indicates the measured mass (g) of the resin solution, and I indicates the ratio of the non-volatile content (mass%) in the measured resin solution.
 特定ポリマーの分散度(Mw/Mn)は、3.5以下である。現像性がより優れる点から、特定ポリマーの分散度(Mw/Mn)は、2.5未満が好ましく、2.0未満がより好ましい。下限は特に制限されないが、ラミネート性がより優れる点から、1.5以上が好ましく、1.7超がより好ましい。 The dispersity (Mw / Mn) of the specific polymer is 3.5 or less. The dispersity (Mw / Mn) of the specific polymer is preferably less than 2.5, more preferably less than 2.0, from the viewpoint of more excellent developability. The lower limit is not particularly limited, but 1.5 or more is preferable, and more than 1.7 is more preferable, from the viewpoint of better laminating property.
 特定ポリマーの重量平均分子量Mwは、機械強度及び耐現像液性と現像性とのバランスの点から、5,000~300,000が好ましく、20,000~150,000がより好ましく、30,000~100,000が更に好ましい。 The weight average molecular weight Mw of the specific polymer is preferably 5,000 to 300,000, more preferably 20,000 to 150,000, and 30,000 from the viewpoint of the balance between mechanical strength, developer resistance and developability. ~ 100,000 is more preferable.
 感光性樹脂層は、特定ポリマーとして、上述した樹脂を1種のみ含んでいてもよく、2種以上含んでいてもよい。
 感光性樹脂層が含んでいてもよい2種以上の樹脂とは、例えば、異なる構成単位を有する2種以上の樹脂、重量平均分子量が異なる2種以上の樹脂、及び、分散度が異なる2種以上の樹脂が挙げられる。
 特定ポリマーの含有量は、硬化膜の強度、及び、転写フィルムにおけるハンドリング性の点から、感光性樹脂層の総質量に対して、10~90質量%が好ましく、20~80質量%がより好ましく、30~70質量%が更に好ましい。
The photosensitive resin layer may contain only one type of the above-mentioned resin as the specific polymer, or may contain two or more types of the above-mentioned resin.
The two or more kinds of resins that the photosensitive resin layer may contain include, for example, two or more kinds of resins having different structural units, two or more kinds of resins having different weight average molecular weights, and two kinds of resins having different dispersities. The above resins can be mentioned.
The content of the specific polymer is preferably 10 to 90% by mass, more preferably 20 to 80% by mass, based on the total mass of the photosensitive resin layer from the viewpoint of the strength of the cured film and the handleability in the transfer film. , 30-70% by mass is more preferable.
(重合性化合物)
 感光性樹脂層は、重合性基を有する重合性化合物を含む。
 重合性化合物としては、エチレン性不飽和基を有する光重合性化合物(以下「エチレン性不飽和化合物」とも記載する)が好ましい。
 エチレン性不飽和化合物は、一分子中に1つ以上のエチレン性不飽和基を有する化合物である。エチレン性不飽和基としては、アクリロイル基又はメタクリロイル基が好ましい。
(Polymerizable compound)
The photosensitive resin layer contains a polymerizable compound having a polymerizable group.
As the polymerizable compound, a photopolymerizable compound having an ethylenically unsaturated group (hereinafter, also referred to as “ethylenically unsaturated compound”) is preferable.
An ethylenically unsaturated compound is a compound having one or more ethylenically unsaturated groups in one molecule. As the ethylenically unsaturated group, an acryloyl group or a methacryloyl group is preferable.
 感光性樹脂層は、硬化後の硬化性の点から、エチレン性不飽和化合物として、2官能以上のエチレン性不飽和化合物を含むことが好ましく、3官能以上のエチレン性不飽和化合物を含むことがより好ましい。硬化後の硬化性と現像性の両立の点から、3官能以上6官能以下のエチレン性不飽和化合物を特定ポリマーと併用することが好ましい。
 ここで、例えば2官能以上のエチレン性不飽和化合物とは、一分子中に2つ以上のエチレン性不飽和基を有する化合物を意味し、3官能以上6官能以下のエチレン性不飽和化合物とは、一分子中に3つ以上6つ以下のエチレン性不飽和基を有する化合物を意味する。
The photosensitive resin layer preferably contains a bifunctional or higher functional ethylenically unsaturated compound as an ethylenically unsaturated compound from the viewpoint of curability after curing, and may contain a trifunctional or higher functional ethylenically unsaturated compound. More preferred. From the viewpoint of achieving both curability and developability after curing, it is preferable to use an ethylenically unsaturated compound having trifunctional or higher and hexafunctional or lower in combination with the specific polymer.
Here, for example, a bifunctional or higher functional ethylenically unsaturated compound means a compound having two or more ethylenically unsaturated groups in one molecule, and a trifunctional or higher and hexafunctional or lower ethylenically unsaturated compound is defined as a compound. , Means a compound having 3 or more and 6 or less ethylenically unsaturated groups in one molecule.
 エチレン性不飽和化合物としては、例えば、多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物、グリシジル基含有化合物にα,β-不飽和カルボン酸を反応させて得られる化合物、ウレタン結合を有する(メタ)アクリレート化合物等のウレタンモノマー、γ-クロロ-β-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート、β-ヒドロキシエチル-β’-(メタ)アクリロイルオキシエチル-o-フタレート及びβ-ヒドロキシプロピル-β’-(メタ)アクリロイルオキシエチル-o-フタレート等のフタル酸系化合物、並びに、(メタ)アクリル酸アルキルエステルが挙げられる。
 これらは単独で又は2種類以上を組み合わせて使用される。
Examples of the ethylenically unsaturated compound include a compound obtained by reacting a polyhydric alcohol with an α, β-unsaturated carboxylic acid, and a compound obtained by reacting a glycidyl group-containing compound with an α, β-unsaturated carboxylic acid. , Urethane monomers such as (meth) acrylate compounds with urethane bonds, γ-chloro-β-hydroxypropyl-β'-(meth) acryloyloxyethyl-o-phthalate, β-hydroxyethyl-β'-(meth) acryloyl Examples thereof include phthalic acid compounds such as oxyethyl-o-phthalate and β-hydroxypropyl-β'-(meth) acryloyloxyethyl-o-phthalate, and (meth) acrylic acid alkyl esters.
These are used alone or in combination of two or more.
 多価アルコールにα,β-不飽和カルボン酸を反応させて得られる化合物としては、例えば、2,2-ビス(4-((メタ)アクリロキシポリエトキシ)フェニル)プロパン、2,2-ビス(4-((メタ)アクリロキシポリプロポキシ)フェニル)プロパン、及び、2,2-ビス(4-((メタ)アクリロキシポリエトキシポリプロポキシ)フェニル)プロパン等のビスフェノールA系(メタ)アクリレート化合物、エチレンオキサイド基の数が2~14であるポリエチレングリコールジ(メタ)アクリレート、プロピレンオキサイド基の数が2~14であるポリプロピレングリコールジ(メタ)アクリレート、エチレンオキサイド基の数が2~14であり、かつ、プロピレンオキサイド基の数が2~14であるポリエチレンポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパンエトキシトリ(メタ)アクリレート、トリメチロールプロパンジエトキシトリ(メタ)アクリレート、トリメチロールプロパントリエトキシトリ(メタ)アクリレート、トリメチロールプロパンテトラエトキシトリ(メタ)アクリレート、トリメチロールプロパンペンタエトキシトリ(メタ)アクリレート、ジ(トリメチロールプロパン)テトラアクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、並びに、ジペンタエリスリトールヘキサ(メタ)アクリレートが挙げられる。
 中でも、トリメチロールプロパン構造を有する重合性化合物が好ましく、トリメチロールプロパントリ(メタ)アクリレート又はジ(トリメチロールプロパン)テトラアクリレートがより好ましい。
Examples of the compound obtained by reacting a polyvalent alcohol with α, β-unsaturated carboxylic acid include 2,2-bis (4-((meth) acryloxypolyethoxy) phenyl) propane and 2,2-bis. Bisphenol A-based (meth) acrylate compounds such as (4-((meth) acryloxypolypropoxy) phenyl) propane and 2,2-bis (4-((meth) acryloxypolyethoxypolypropoxy) phenyl) propane , Polyethylene glycol di (meth) acrylate having an ethylene oxide group number of 2 to 14, polypropylene glycol di (meth) acrylate having a propylene oxide group number of 2 to 14, and an ethylene oxide group number of 2 to 14. , Polyethylenepolypropylene glycol di (meth) acrylate, trimethylolpropane di (meth) acrylate, trimethylolpropane tri (meth) acrylate, trimethylolpropane ethoxytri (meth) acrylate having 2 to 14 propylene oxide groups. , Trimethylolpropane diethoxytri (meth) acrylate, trimethylolpropane triethoxytri (meth) acrylate, trimethylolpropane tetraethoxytri (meth) acrylate, trimethylolpropane pentaethoxytri (meth) acrylate, trimethylolpropane ) Tetraacrylate, tetramethylolmethanetri (meth) acrylate, tetramethylolmethanetetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate. Can be mentioned.
Of these, a polymerizable compound having a trimethylolpropane structure is preferable, and trimethylolpropane tri (meth) acrylate or di (trimethylolpropane) tetraacrylate is more preferable.
 ウレタンモノマーとしては、例えば、β位にヒドロキシル基を有する(メタ)アクリルモノマーとイソホロンジイソシアネート、2,6-トルエンジイソシアネート、2,4-トルエンジイソシアネート、及び1,6-ヘキサメチレンジイソシアネート等のジイソシアネート化合物との付加反応物、トリス[(メタ)アクリロキシテトラエチレングリコールイソシアネート]ヘキサメチレンイソシアヌレート、エチレンオキサイド変性ウレタンジ(メタ)アクリレート、並びに、エチレンオキサイド及びプロピレンオキサイド変性ウレタンジ(メタ)アクリレートが挙げられる。 Examples of the urethane monomer include a (meth) acrylic monomer having a hydroxyl group at the β-position and a diisocyanate compound such as isophorone diisocyanate, 2,6-toluene diisocyanate, 2,4-toluene diisocyanate, and 1,6-hexamethylene diisocyanate. Examples of the addition reaction product of Tris [(meth) acryloxytetraethylene glycol isocyanate] hexamethylene isocyanurate, ethylene oxide-modified urethane di (meth) acrylate, and ethylene oxide and propylene oxide-modified urethane di (meth) acrylate.
 エチレンオキサイド変性ウレタンジ(メタ)アクリレートとしては、例えば、「UA-11」(新中村化学工業株式会社製、商品名)が挙げられる。また、エチレンオキサイド及びプロピレンオキサイド変性ウレタンジ(メタ)アクリレートとしては、例えば、「UA-13」(新中村化学工業株式会社製、商品名)が挙げられる。 Examples of the ethylene oxide-modified urethane di (meth) acrylate include "UA-11" (manufactured by Shin-Nakamura Chemical Industry Co., Ltd., trade name). Examples of ethylene oxide and propylene oxide-modified urethane di (meth) acrylate include "UA-13" (manufactured by Shin-Nakamura Chemical Industry Co., Ltd., trade name).
 感光性樹脂層は、重合性化合物を1種のみ含んでいてもよく、2種以上を含んでいてもよい。
 重合性化合物の含有量は、特定ポリマー及び重合性化合物の総量100質量部に対して、30~80質量部が好ましく、40~70質量部がより好ましい。光硬化性及び形成された導電層上への塗工性に優れる点では、30質量部以上が好ましく、フィルムとして巻き取った場合の保管安定性に優れる点では、80質量部以下が好ましい。
 また、感光性樹脂層における重合性化合物の含有量は、感光性樹脂層の全質量に対し、1~70質量%が好ましく、10~60質量%がより好ましく、20~50質量%が更に好ましい。
The photosensitive resin layer may contain only one type of polymerizable compound, or may contain two or more types.
The content of the polymerizable compound is preferably 30 to 80 parts by mass, more preferably 40 to 70 parts by mass, based on 100 parts by mass of the total amount of the specific polymer and the polymerizable compound. 30 parts by mass or more is preferable from the viewpoint of excellent photocurability and coatability on the formed conductive layer, and 80 parts by mass or less is preferable from the viewpoint of excellent storage stability when wound as a film.
The content of the polymerizable compound in the photosensitive resin layer is preferably 1 to 70% by mass, more preferably 10 to 60% by mass, still more preferably 20 to 50% by mass, based on the total mass of the photosensitive resin layer. ..
 重合性化合物の重量平均分子量(Mw)としては、200~3,000が好ましく、250~2,600がより好ましく、280~2,200が更に好ましく、300~2,200が特に好ましい。 The weight average molecular weight (Mw) of the polymerizable compound is preferably 200 to 3,000, more preferably 250 to 2,600, further preferably 280 to 2,200, and particularly preferably 300 to 2,200.
(重合開始剤)
 感光性樹脂層は、重合開始剤を含む。
 重合開始剤としては、紫外線、可視光線及びX線等の活性光線の照射によって重合性化合物を重合させ、感光性樹脂層を硬化させることができる化合物であれば、特に制限されない。
 重合開始剤としては、例えば、光ラジカル重合開始剤及び光カチオン重合開始剤が挙げられ、光硬化性に優れる点からは、光ラジカル重合開始剤が好ましい。
(Polymerization initiator)
The photosensitive resin layer contains a polymerization initiator.
The polymerization initiator is not particularly limited as long as it is a compound capable of polymerizing a polymerizable compound by irradiation with active light such as ultraviolet rays, visible light and X-rays to cure the photosensitive resin layer.
Examples of the polymerization initiator include a photoradical polymerization initiator and a photocationic polymerization initiator, and a photoradical polymerization initiator is preferable from the viewpoint of excellent photocurability.
 光ラジカル重合開始剤としては、例えば、オキシムエステル構造を有する光重合開始剤(以下「オキシムエステル化合物」とも記載する)、α-アミノアルキルフェノン構造を有する光重合開始剤、α-ヒドロキシアルキルフェノン構造を有する光重合開始剤、アシルフォスフィンオキサイド構造を有する光重合開始剤(以下「アシルフォスフィンオキサイド系化合物」とも記載する)、及び、N-フェニルグリシン構造を有する光重合開始剤が挙げられる。 Examples of the photoradical polymerization initiator include a photopolymerization initiator having an oxime ester structure (hereinafter, also referred to as “oxym ester compound”), a photopolymerization initiator having an α-aminoalkylphenone structure, and an α-hydroxyalkylphenone structure. Examples thereof include a photopolymerization initiator having an acylphosphine oxide structure, a photopolymerization initiator having an acylphosphine oxide structure (hereinafter, also referred to as “acylphosphine oxide-based compound”), and a photopolymerization initiator having an N-phenylglycine structure.
 より具体的な光ラジカル重合開始剤としては、例えば、ベンゾフェノン、N,N’-テトラメチル-4,4’-ジアミノベンゾフェノン(ミヒラーケトン)、N,N’-テトラエチル-4,4’-ジアミノベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、及び、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパノン-1等の芳香族ケトン;ベンゾインメチルエーテル、ベンゾインエチルエーテル、及び、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンゾイン、メチルベンゾイン、及び、エチルベンゾイン等のベンゾイン化合物;1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、及び、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エタノン1-(O-アセチルオキシム)等のオキシムエステル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、及び、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、及び、1,7-ビス(9、9’-アクリジニル)ヘプタン等のアクリジン誘導体;N-フェニルグリシン、N-フェニルグリシン誘導体、クマリン系化合物、オキサゾール系化合物;2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、及び、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド系化合物が挙げられる。
 また、2,4,5-トリアリールイミダゾールにおける2つのアリール基の置換基は、同一であってもよいし、異なっていてもよい。また、ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン系化合物と3級アミン化合物とを組み合わせてもよい。
More specific photoradical polymerization initiators include, for example, benzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone (Michlerketone), N, N'-tetraethyl-4,4'-diaminobenzophenone, and the like. 4-methoxy-4'-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, and 2-methyl-1- [4- (methylthio) phenyl]- Aromatic ketones such as 2-morpholino-propanone-1; benzoin ether compounds such as benzoin methyl ether, benzoin ethyl ether, and benzoin phenyl ether; benzoin compounds such as benzoin, methylbenzoin, and ethyl benzoin; 1,2- Octandion-1- [4- (Phenylthio) phenyl] -2- (O-benzoyloxime) and 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl] etanone Oxyme ester compounds such as 1- (O-acetyloxime); benzyl derivatives such as benzyldimethylketal; 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4, 5-Di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, And 2,4,5-triarylimidazole dimer such as 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer; 9-phenylaclydin and 1,7-bis (9, Acrydin derivatives such as 9'-acrydinyl) heptane; N-phenylglycine, N-phenylglycine derivatives, coumarin compounds, oxazole compounds; 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and bis (2) , 4,6-trimethylbenzoyl) -phenylphosphine oxide and other acylphosphine oxide compounds can be mentioned.
Further, the substituents of the two aryl groups in 2,4,5-triarylimidazole may be the same or different. Further, a thioxanthone-based compound and a tertiary amine compound may be combined, such as a combination of diethylthioxanthone and dimethylaminobenzoic acid.
 光ラジカル重合開始剤としては、例えば、特開2011-095716号公報の段落0031~0042、特開2015-014783号公報の段落0064~0081に記載された重合開始剤を用いてもよい。 As the photoradical polymerization initiator, for example, the polymerization initiator described in paragraphs 0031 to 0042 of JP2011-0957116 and paragraphs 0064 to 0081 of JP2015-014783 may be used.
 中でも、透明性、及び10μm以下でのパターン形成能に優れる点から、オキシムエステル化合物、又は、アシルフォスフィンオキサイド系化合物が好ましく、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、1,2-オクタンジオン-1-[4-(フェニルチオ)フェニル]-2-(O-ベンゾイルオキシム)、又は、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイドがより好ましい。 Of these, an oxime ester compound or an acylphosphine oxide compound is preferable from the viewpoint of excellent transparency and pattern forming ability at 10 μm or less, and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) is preferable. -Butanone-1,1,2-octanedione-1- [4- (phenylthio) phenyl] -2- (O-benzoyloxime), or 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide preferable.
 感光性樹脂層は、重合開始剤を1種のみ含んでいてもよく、2種以上を含んでいてもよい。
 重合開始剤の含有量は、特に制限されないが、感光性樹脂層の総質量に対して、0.1~20質量%が好ましく、0.5~15質量%がより好ましく、1~10質量%が更に好ましい。
 また、重合開始剤の含有量は、特定ポリマー及び重合性化合物の総量100質量部に対して、0.1~20質量部が好ましく、1~15質量部がより好ましく、1~10質量部が更に好ましい。光感度に優れる点では、0.1質量部以上が好ましく、感光性樹脂層の内部の光硬化性に優れる点では、20質量部以下が好ましい。
The photosensitive resin layer may contain only one type of polymerization initiator, or may contain two or more types of polymerization initiators.
The content of the polymerization initiator is not particularly limited, but is preferably 0.1 to 20% by mass, more preferably 0.5 to 15% by mass, and 1 to 10% by mass with respect to the total mass of the photosensitive resin layer. Is more preferable.
The content of the polymerization initiator is preferably 0.1 to 20 parts by mass, more preferably 1 to 15 parts by mass, and 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of the specific polymer and the polymerizable compound. More preferred. From the viewpoint of excellent light sensitivity, 0.1 part by mass or more is preferable, and from the viewpoint of excellent photocurability inside the photosensitive resin layer, 20 parts by mass or less is preferable.
(レベリング剤)
 感光性樹脂層は、感光性樹脂組成物の塗布性向上の観点から、レべリング剤を含むことが好ましい。レべリング剤としては、シリコーン系界面活性剤、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、及びアニオン系界面活性剤等の各種界面活性剤が挙げられ、シリコーン系界面活性剤が好ましい。
 シリコーン系界面活性剤としては、シロキサン結合からなる直鎖状ポリマー、及び、側鎖や末端に有機基を導入した変性シロキサンポリマーが挙げられる。
 レベリング剤の具体例としては、東レ・ダウコーニング株式会社製、DOWSIL8032 ADDITIVE、並びに、信越化学工業株式会社製X-22-4952、X-22-4272、X-22-6266、KF-351A、K354L、KF-355A、KF-945、KF-640、KF-642、KF-643、X-22-6191、X-22-4515、及びKF-6004が挙げられる。
 感光性樹脂組成物の塗布性と、転写後の感光性樹脂層の現像性との両立の点から、特定ポリマーとシリコーン系界面活性剤を併用することが好ましい。
(Leveling agent)
The photosensitive resin layer preferably contains a leveling agent from the viewpoint of improving the coatability of the photosensitive resin composition. Examples of the leveling agent include various surfactants such as silicone-based surfactants, fluorine-based surfactants, nonionic surfactants, cationic surfactants, and anionic surfactants, and silicone-based surfactants. Activators are preferred.
Examples of the silicone-based surfactant include a linear polymer composed of a siloxane bond and a modified siloxane polymer having an organic group introduced into a side chain or a terminal.
Specific examples of the leveling agent include DOWNSIL8032 ADDITIVE manufactured by Toray Dow Corning Co., Ltd., and X-22-4952, X-22-2472, X-22-6266, KF-351A, K354L manufactured by Shin-Etsu Chemical Co., Ltd. , KF-355A, KF-945, KF-640, KF-642, KF-643, X-22-6191, X-22-4515, and KF-6004.
From the viewpoint of achieving both the coatability of the photosensitive resin composition and the developability of the photosensitive resin layer after transfer, it is preferable to use the specific polymer and the silicone-based surfactant in combination.
(添加剤)
 感光性樹脂層は、必要に応じて、各種添加剤を含んでいてもよい。
 添加剤としては、p-トルエンスルホンアミド等の可塑剤、充填剤、消泡剤、難燃剤、安定剤、密着性付与剤、剥離促進剤、酸化防止剤、香料、イメージング剤、熱架橋剤等が挙げられる。
(Additive)
The photosensitive resin layer may contain various additives, if necessary.
Additives include plasticizers such as p-toluenesulfonamide, fillers, defoamers, flame retardants, stabilizers, adhesion imparting agents, peeling accelerators, antioxidants, fragrances, imaging agents, thermal cross-linking agents, etc. Can be mentioned.
 感光性の添加剤を、単独で又は2種類以上を組み合わせて含有させることができる。これらの添加剤の添加量は、特定ポリマー及び重合性化合物の総量100質量部に対して各々0.01~20質量部が好ましい。 The photosensitive additive can be contained alone or in combination of two or more. The amount of these additives added is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of the total amount of the specific polymer and the polymerizable compound.
<物性等>
 感光性樹脂層の厚さは、特に制限されないが、乾燥後の厚さで1~200μmが好ましく、2~15μmがより好ましく、3~10μmが更に好ましい。
 感光性樹脂層の厚さが1μm以上であると、感光性樹脂組成物の塗布による層形成が容易になる傾向にある。また、感光性樹脂層の厚さが、200μm以下であると、光透過性及び感度が向上し、感光性樹脂層の光硬化性により優れる点から好ましい。
 感光性樹脂層の厚さは、走査型電子顕微鏡以外に、マイクロゲージ及びシックネスゲージ等の公知の手段を用いて測定できる。
<Physical characteristics, etc.>
The thickness of the photosensitive resin layer is not particularly limited, but the thickness after drying is preferably 1 to 200 μm, more preferably 2 to 15 μm, still more preferably 3 to 10 μm.
When the thickness of the photosensitive resin layer is 1 μm or more, the layer formation tends to be facilitated by applying the photosensitive resin composition. Further, when the thickness of the photosensitive resin layer is 200 μm or less, the light transmittance and the sensitivity are improved, and the photocurability of the photosensitive resin layer is more excellent, which is preferable.
The thickness of the photosensitive resin layer can be measured by using known means such as a micro gauge and a thickness gauge in addition to the scanning electron microscope.
 また、転写後の感光性樹脂層の現像性に優れる点から、感光性樹脂層の厚さの値(μm)と感光性樹脂層に含まれる特定ポリマーの(Mw/Mn)との積が、25.0未満であることが好ましく、22.0未満であることがより好ましく、17.0未満であることが更に好ましく、16.5未満であることが特に好ましい。下限は特に制限されないが、4.0以上が好ましく、6.0以上がより好ましい。 Further, from the viewpoint of excellent developability of the photosensitive resin layer after transfer, the product of the thickness value (μm) of the photosensitive resin layer and the specific polymer (Mw / Mn) contained in the photosensitive resin layer is determined. It is preferably less than 25.0, more preferably less than 22.0, even more preferably less than 17.0, and particularly preferably less than 16.5. The lower limit is not particularly limited, but 4.0 or more is preferable, and 6.0 or more is more preferable.
<形成方法>
 感光性樹脂層の形成方法は、上記の成分を含有する層を形成可能な方法であれば特に制限されない。
 感光性樹脂層の形成方法としては、例えば、特定ポリマー、重合性化合物、重合開始剤及び溶剤を含有する感光性樹脂組成物を調製し、仮支持体又は導電層等の表面に感光性樹脂組成物を塗布した後、感光性樹脂組成物の塗膜を乾燥して、感光性樹脂層を形成する方法が挙げられる。
<Formation method>
The method for forming the photosensitive resin layer is not particularly limited as long as it is a method capable of forming a layer containing the above components.
As a method for forming the photosensitive resin layer, for example, a photosensitive resin composition containing a specific polymer, a polymerizable compound, a polymerization initiator and a solvent is prepared, and the photosensitive resin composition is formed on the surface of a temporary support or a conductive layer. Examples thereof include a method of forming a photosensitive resin layer by drying a coating film of the photosensitive resin composition after applying the material.
 感光性樹脂組成物は、感光性樹脂組成物の粘度を調節し、塗膜の形成を容易にするため、溶剤を含有することが好ましい。
 感光性樹脂組成物に含有される溶剤としては、特定ポリマー、重合性化合物、重合開始剤及び任意に含まれる上記の添加剤を溶解又は分散可能であれば特に制限されず、公知の溶剤を使用できる。
 感光性樹脂組成物に含まれる溶剤の含有量は、感光性樹脂層の現像性を向上させる観点から、感光性樹脂組成物の全質量に対して、30~95質量%が好ましく、50~90質量%がより好ましく、65~80質量%が更に好ましい。
The photosensitive resin composition preferably contains a solvent in order to adjust the viscosity of the photosensitive resin composition and facilitate the formation of a coating film.
The solvent contained in the photosensitive resin composition is not particularly limited as long as it can dissolve or disperse a specific polymer, a polymerizable compound, a polymerization initiator and the above-mentioned additives optionally contained, and a known solvent is used. it can.
The content of the solvent contained in the photosensitive resin composition is preferably 30 to 95% by mass, preferably 50 to 90% by mass, based on the total mass of the photosensitive resin composition from the viewpoint of improving the developability of the photosensitive resin layer. The mass% is more preferable, and 65 to 80% by mass is further preferable.
 溶剤としては、有機溶剤が好ましい。有機溶剤としては、例えば、メタノール、エタノール、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N-ジメチルホルムアミド、プロピレングリコールモノメチルエーテル、及び、これらの混合溶剤が挙げられる。
 有機溶剤を含む感光性樹脂組成物を用いて感光性樹脂層を形成する場合、乾燥後の感光性樹脂層における有機溶剤の含有量は、後の工程での有機溶剤の拡散を防止するため、感光性樹脂層の総質量に対して2質量%以下が好ましい。
As the solvent, an organic solvent is preferable. Examples of the organic solvent include methanol, ethanol, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, propylene glycol monomethyl ether, and a mixed solvent thereof.
When the photosensitive resin layer is formed by using the photosensitive resin composition containing an organic solvent, the content of the organic solvent in the photosensitive resin layer after drying is such that the diffusion of the organic solvent in a later step is prevented. It is preferably 2% by mass or less based on the total mass of the photosensitive resin layer.
 感光性樹脂組成物の塗布方法としては、例えば、ロールコート法、コンマコート法、グラビアコート法、エアーナイフコート法、ダイコート法、バーコート法、及び、スプレーコート法等の公知の方法が挙げられるが、これらに制限されない。
 また、感光性樹脂組成物の塗膜の乾燥方法は特に制限されず、例えば、熱風対流式乾燥機を用いて、温度が70~150℃の熱風を5~30分間塗膜に当てる方法が挙げられる。
Examples of the coating method of the photosensitive resin composition include known methods such as a roll coating method, a comma coating method, a gravure coating method, an air knife coating method, a die coating method, a bar coating method, and a spray coating method. However, it is not limited to these.
The method for drying the coating film of the photosensitive resin composition is not particularly limited, and examples thereof include a method in which hot air having a temperature of 70 to 150 ° C. is applied to the coating film for 5 to 30 minutes using a hot air convection dryer. Be done.
 上記の導電層及び上記の感光性樹脂層からなる積層体(以下「感光層」とも記載する)における450~650nmの波長域における最小光透過率(特に感光層の膜厚を1~10μmとしたときの最小光透過率)は、80%以上が好ましく、85%以上がより好ましい。感光層がこのような条件を満たす場合、ディスプレイパネル等での高輝度化が容易となる。 The minimum light transmittance in the wavelength range of 450 to 650 nm (particularly, the thickness of the photosensitive layer is 1 to 10 μm) in the laminate composed of the conductive layer and the photosensitive resin layer (hereinafter, also referred to as “photosensitive layer”). The minimum light transmittance) is preferably 80% or more, and more preferably 85% or more. When the photosensitive layer satisfies such a condition, it becomes easy to increase the brightness in a display panel or the like.
〔保護フィルム〕
 転写フィルムは、仮支持体に対向していない面に接する保護フィルムを有することが好ましい。
 保護フィルムとしては、耐熱性及び耐溶剤性を有する樹脂フィルムを用いることができ、例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム、及び、ポリエチレンフィルム等のポリオレフィンフィルムが挙げられる。また、保護フィルムとして上述の支持体フィルムと同じ材料で構成された樹脂フィルムを用いてもよい。
 中でも、ポリオレフィンフィルムが好ましく、ポリプロピレンフィルム又はポリエチレンフィルムがより好ましく、ポリエチレンフィルムが更に好ましい。
〔Protective film〕
The transfer film preferably has a protective film that is in contact with a surface that does not face the temporary support.
As the protective film, a resin film having heat resistance and solvent resistance can be used, and examples thereof include a polyethylene terephthalate film, a polypropylene film, and a polyolefin film such as a polyethylene film. Further, as the protective film, a resin film made of the same material as the above-mentioned support film may be used.
Among them, a polyolefin film is preferable, a polypropylene film or a polyethylene film is more preferable, and a polyethylene film is further preferable.
 保護フィルムの厚さは、1~100μmが好ましく、5~50μmがより好ましく、5~40μmが更に好ましく、15~30μmが特に好ましい。保護フィルムの厚さは、機械的強度に優れる点で1μm以上が好ましく、比較的安価となる点で100μm以下が好ましい。 The thickness of the protective film is preferably 1 to 100 μm, more preferably 5 to 50 μm, further preferably 5 to 40 μm, and particularly preferably 15 to 30 μm. The thickness of the protective film is preferably 1 μm or more in terms of excellent mechanical strength, and preferably 100 μm or less in terms of relatively low cost.
 保護フィルムと感光性樹脂層との間の接着力は、保護フィルムを感光性樹脂層から剥離し易くするため、仮支持体と感光層(導電層及び感光性樹脂層)との間の接着力よりも小さいことが好ましい。 The adhesive force between the protective film and the photosensitive resin layer is such that the protective film can be easily peeled off from the photosensitive resin layer, so that the adhesive force between the temporary support and the photosensitive layer (conductive layer and photosensitive resin layer) Is preferably smaller than.
 また、保護フィルムは、保護フィルム中に含まれる直径80μm以上のフィッシュアイ数が5個/m以下であることが好ましい。なお、「フィッシュアイ」とは、材料を熱溶融し、混練、押し出し、2軸延伸及びキャスティング法等の方法によりフィルムを製造する際に、材料の異物、未溶解物、酸化劣化物等がフィルム中に取り込まれたものである。 Further, the protective film preferably contains 5 fish eyes / m 2 or less having a diameter of 80 μm or more. In addition, "fisheye" means that when a film is produced by heat-melting a material, kneading, extruding, biaxial stretching, casting method, etc., foreign substances, undissolved substances, oxidative deterioration substances, etc. of the material are contained in the film. It was taken in.
 転写フィルムは、保護フィルムの表面に、接着層及びガスバリア層からなる群より選択される少なくとも1種の層を更に有していてもよい。 The transfer film may further have at least one layer selected from the group consisting of an adhesive layer and a gas barrier layer on the surface of the protective film.
〔転写フィルムの製造方法〕
 本発明の転写フィルムの製造方法は特に制限されず、例えば、仮支持体の表面に、上記の導電層及び上記の感光性樹脂層を形成する積層工程を含む方法により、製造できる。
 以下、図1及び図2を参照しながら、転写フィルムの製造方法について説明する。
[Manufacturing method of transfer film]
The method for producing the transfer film of the present invention is not particularly limited, and can be produced, for example, by a method including a laminating step of forming the above-mentioned conductive layer and the above-mentioned photosensitive resin layer on the surface of the temporary support.
Hereinafter, a method for producing a transfer film will be described with reference to FIGS. 1 and 2.
 図1に示す転写フィルム10のように、仮支持体1、導電層2及び感光性樹脂層3をこの順に有する転写フィルムは、例えば、仮支持体1の表面に導電性組成物を塗布した後、導電性組成物の塗膜を乾燥させることにより、導電層2を形成する工程と、導電層2の表面に感光性樹脂組成物を塗布した後、感光性樹脂組成物の塗膜を乾燥させて感光性樹脂層3を形成する工程とを含む方法により、製造される。
 上記の製造方法により製造された積層体の感光性樹脂層3の表面に、樹脂フィルムを貼り合わせて保護フィルム4を形成することにより、図1に示す転写フィルム10が製造される。
Like the transfer film 10 shown in FIG. 1, the transfer film having the temporary support 1, the conductive layer 2 and the photosensitive resin layer 3 in this order is, for example, after the conductive composition is applied to the surface of the temporary support 1. , The step of forming the conductive layer 2 by drying the coating film of the conductive composition, and after applying the photosensitive resin composition to the surface of the conductive layer 2, the coating film of the photosensitive resin composition is dried. It is produced by a method including the step of forming the photosensitive resin layer 3.
The transfer film 10 shown in FIG. 1 is manufactured by adhering a resin film to the surface of the photosensitive resin layer 3 of the laminate manufactured by the above manufacturing method to form the protective film 4.
 一方、図2に示す転写フィルム20のように、仮支持体1、感光性樹脂層3及び導電層2をこの順に有する転写フィルムは、例えば、仮支持体1の表面に感光性樹脂組成物を塗布した後、感光性樹脂組成物の塗膜を乾燥させて感光性樹脂層3を形成する工程と、導電層2の表面に導電性組成物を塗布した後、導電性組成物の塗膜を乾燥させることにより、導電層2を形成する工程とを含む方法により、製造される。
 上記の製造方法により製造された積層体の導電層2の表面に、樹脂フィルムを貼り合わせて保護フィルム4を形成することにより、図2に示す転写フィルム20が製造される。
On the other hand, like the transfer film 20 shown in FIG. 2, the transfer film having the temporary support 1, the photosensitive resin layer 3 and the conductive layer 2 in this order has, for example, a photosensitive resin composition on the surface of the temporary support 1. After coating, the step of drying the coating film of the photosensitive resin composition to form the photosensitive resin layer 3, and after applying the conductive composition to the surface of the conductive layer 2, the coating film of the conductive composition is applied. It is produced by a method including a step of forming a conductive layer 2 by drying.
The transfer film 20 shown in FIG. 2 is manufactured by laminating a resin film on the surface of the conductive layer 2 of the laminate manufactured by the above manufacturing method to form the protective film 4.
 転写フィルムにおける導電層及び感光性樹脂層の順序は特に制限されず、図1に示す転写フィルム10のように仮支持体1、導電層2及び感光性樹脂層3をこの順で有していてもよいし、図2に示す転写フィルム20のように仮支持体1、感光性樹脂層3及び導電層2をこの順で有していてもよい。
 現像性及びラミネート性の点から、仮支持体、導電層及び感光性樹脂層をこの順で有する転写フィルムが好ましい。転写フィルムを基板に転写した後は感光性樹脂層が基板により近い側に配置されるため、現像処理による感光性樹脂層の除去により感光性樹脂層及び導電層由来の現像残渣が低減されるためである。また、感光性樹脂層は導電層に比較して柔軟性が高いため、転写時に基板と感光性樹脂層との間における気泡又は浮きが抑制されるためである。
The order of the conductive layer and the photosensitive resin layer in the transfer film is not particularly limited, and the temporary support 1, the conductive layer 2 and the photosensitive resin layer 3 are provided in this order as in the transfer film 10 shown in FIG. Alternatively, the temporary support 1, the photosensitive resin layer 3 and the conductive layer 2 may be provided in this order as in the transfer film 20 shown in FIG.
From the viewpoint of developability and laminateability, a transfer film having a temporary support, a conductive layer, and a photosensitive resin layer in this order is preferable. After the transfer film is transferred to the substrate, the photosensitive resin layer is arranged closer to the substrate, so that the removal of the photosensitive resin layer by the development treatment reduces the development residue derived from the photosensitive resin layer and the conductive layer. Is. Further, since the photosensitive resin layer has higher flexibility than the conductive layer, bubbles or floating between the substrate and the photosensitive resin layer are suppressed during transfer.
 転写フィルムは、例えば、そのままの平板状の形態で、又は、円筒状の巻芯を用いて巻き取ってロール状の形態で、貯蔵すればよい。転写フィルムをロール状の形態で巻き取る場合、仮支持体が最も外側になるように巻き取ることが好ましい。
 また、転写フィルムが保護フィルムを有してない場合、転写フィルムは、そのままの平板状の形態で貯蔵することができる。
The transfer film may be stored, for example, in the form of a flat plate as it is, or in the form of a roll wound by using a cylindrical core. When the transfer film is wound in a roll form, it is preferable to wind the transfer film so that the temporary support is on the outermost side.
Further, when the transfer film does not have a protective film, the transfer film can be stored as it is in a flat plate form.
 巻芯は、従来用いられているものであれば特に限定されない。巻芯を構成する材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、及び、ABS樹脂(アクリロニトリル-ブタジエン-スチレン共重合体)等のプラスチックが挙げられる。
 ロール状に巻き取られた転写フィルムの端面には、端面保護の点から端面セパレータを設置することが好ましく、耐エッジフュージョンの点から、防湿端面セパレータを設置することがより好ましい。また、転写フィルムを梱包する際には、透湿性が優れたブラックシートに包んで包装することが好ましい。
The winding core is not particularly limited as long as it is conventionally used. Examples of the material constituting the winding core include plastics such as polyethylene resin, polypropylene resin, polystyrene resin, polyvinyl chloride resin, and ABS resin (acrylonitrile-butadiene-styrene copolymer).
It is preferable to install an end face separator on the end face of the transfer film wound in a roll shape from the viewpoint of end face protection, and more preferably to install a moisture-proof end face separator from the viewpoint of edge fusion resistance. Further, when packing the transfer film, it is preferable to wrap it in a black sheet having excellent moisture permeability.
〔用途〕
 上述した転写フィルムの用途は、特に制限されないが、転写後の感光性樹脂層の現像性に優れるため、銀ナノワイヤーを有する導電層をパターン化して得られる導電パターンを有する積層体用の転写フィルムとして用いることが好ましく、タッチパネル用の転写フィルムとして用いることがより好ましい。
[Use]
The use of the transfer film described above is not particularly limited, but since the photosensitive resin layer after transfer is excellent in developability, a transfer film for a laminate having a conductive pattern obtained by patterning a conductive layer having silver nanowires. It is preferable to use it as a transfer film for a touch panel, and it is more preferable to use it as a transfer film for a touch panel.
[積層体の製造方法]
 以下、本発明の転写フィルムを用いて、基板及び導電パターンを有する積層体を製造する方法について、説明する。
[Manufacturing method of laminate]
Hereinafter, a method for producing a substrate and a laminate having a conductive pattern using the transfer film of the present invention will be described.
 積層体の製造方法としては、例えば、上述した転写フィルムと基板とを、転写フィルムの仮支持体が配置されている面とは反対側の面に基板を接触させて貼り合わせる工程(以下「転写工程」とも記載する)と、転写フィルムが有する感光性樹脂層をパターン露光する工程(以下「露光工程」とも記載する)と、導電層の一部を感光性樹脂層の未露光部とともに除去して、パターン化された導電層(導電パターン)を形成する工程(以下「現像工程」とも記載する)とを有する方法が挙げられる。
 上記の製造方法により、基板と、パターン化された感光性樹脂層を硬化してなる硬化膜と、パターン化された導電層とを有する積層体が製造される。
As a method for manufacturing the laminate, for example, the above-mentioned transfer film and the substrate are bonded to each other by bringing the substrate into contact with the surface opposite to the surface on which the temporary support of the transfer film is arranged (hereinafter, "transfer"). Also referred to as "step"), a step of pattern-exposing the photosensitive resin layer of the transfer film (hereinafter also referred to as "exposure step"), and removing a part of the conductive layer together with the unexposed portion of the photosensitive resin layer. A method having a step of forming a patterned conductive layer (conductive pattern) (hereinafter, also referred to as a “development step”) can be mentioned.
By the above manufacturing method, a laminate having a substrate, a cured film formed by curing a patterned photosensitive resin layer, and a patterned conductive layer is manufactured.
〔基板〕
 積層体が有する基板としては、特に制限されず、例えば、ガラス基板、及び、ポリカーボネート等のプラスチック製の基板が挙げられる。
 基板の厚さは、使用の目的に応じて適宜選択できる。また、基板はフィルム状であってもよい。フィルム状の基板としては、例えば、ポリエチレンテレフタレートフィルム、ポリカーボネートフィルム及びシクロオレフィンポリマーフィルムが挙げられる。
 基板は、450~650nmの波長域での最小光透過率が80%以上であるものが好ましい。基板が、このような条件を満たす場合、ディスプレイパネル等での高輝度化が容易となる。
〔substrate〕
The substrate contained in the laminate is not particularly limited, and examples thereof include a glass substrate and a plastic substrate such as polycarbonate.
The thickness of the substrate can be appropriately selected according to the purpose of use. Further, the substrate may be in the form of a film. Examples of the film-like substrate include a polyethylene terephthalate film, a polycarbonate film, and a cycloolefin polymer film.
The substrate preferably has a minimum light transmittance of 80% or more in the wavelength range of 450 to 650 nm. When the substrate satisfies such conditions, it becomes easy to increase the brightness of the display panel or the like.
 以下、図3を参照しながら、積層体の製造方法が有する各工程について説明する。
 図3は、転写フィルムを用いた積層体の製造方法の一例を説明するための概略図である。なお、以下の説明では、図1に示す転写フィルム10を用いる製造方法を記載しているが、積層体の製造方法は、図1に示す構成を有する転写フィルムを用いる方法に制限されない。
Hereinafter, each step of the method for manufacturing the laminate will be described with reference to FIG.
FIG. 3 is a schematic view for explaining an example of a method for manufacturing a laminate using a transfer film. In the following description, the manufacturing method using the transfer film 10 shown in FIG. 1 is described, but the manufacturing method of the laminate is not limited to the method using the transfer film having the configuration shown in FIG.
〔転写工程〕
 転写工程では、図3(a)に示すように、転写フィルム10と基板20とが貼り合わされ、積層体30が作製される。このとき、転写フィルム10の仮支持体1とは反対側の面(即ち、感光性樹脂層3の表面)と基板20とが接触する。
 なお、図1に示す転写フィルム10のように、保護フィルム4が設けられている場合は、保護フィルム4を除去した後、仮支持体1、導電層2及び感光性樹脂層3の3層を基板20に転写する。
[Transfer process]
In the transfer step, as shown in FIG. 3A, the transfer film 10 and the substrate 20 are bonded to each other to produce a laminated body 30. At this time, the surface of the transfer film 10 opposite to the temporary support 1 (that is, the surface of the photosensitive resin layer 3) comes into contact with the substrate 20.
When the protective film 4 is provided as in the transfer film 10 shown in FIG. 1, after removing the protective film 4, the temporary support 1, the conductive layer 2, and the photosensitive resin layer 3 are formed. Transfer to substrate 20.
 転写工程においては、感光性樹脂層及び/又は基板を加熱しながら転写フィルムの感光性樹脂層側を基板に圧着することが好ましい。このときの加熱温度及び圧着圧力はいずれも特に制限されないが、加熱温度は70~130℃が好ましく、圧着圧力は0.1~1.0MPa程度(1~10kgf/cm程度)が好ましい。また、密着性及び追従性の点から減圧下で行うことが好ましい。
 また、転写工程における感光性樹脂層及び/又は基板の加熱処理に代えて、密着性をより向上するために、転写工程の前に基板の予熱処理を行ってもよい。
In the transfer step, it is preferable to press the photosensitive resin layer side of the transfer film onto the substrate while heating the photosensitive resin layer and / or the substrate. The heating temperature and crimping pressure at this time are not particularly limited, but the heating temperature is preferably 70 to 130 ° C., and the crimping pressure is preferably about 0.1 to 1.0 MPa (about 1 to 10 kgf / cm 2 ). Further, from the viewpoint of adhesion and followability, it is preferable to carry out under reduced pressure.
Further, instead of the heat treatment of the photosensitive resin layer and / or the substrate in the transfer step, the substrate may be preheat-treated before the transfer step in order to further improve the adhesion.
〔露光工程〕
 露光工程では、上記の転写工程の後、感光性樹脂層3をパターン露光する。
 図3(b)に示す露光工程では、アートワークと呼ばれるネガ型又はポジ型のマスクパターン5を通して活性光線Lを画像状に照射することにより、感光性樹脂層3の一部が露光される。
 感光性樹脂層3のうち、活性光線Lで照射された領域(露光部)では、感光性樹脂層3が硬化して硬化膜3aが形成される。一方、活性光線Lで照射されなかった領域(未露光部)では、感光性樹脂層3が硬化しない。
[Exposure process]
In the exposure step, after the above transfer step, the photosensitive resin layer 3 is pattern-exposed.
In the exposure step shown in FIG. 3B, a part of the photosensitive resin layer 3 is exposed by irradiating the active light L in an image shape through a negative or positive mask pattern 5 called artwork.
In the region (exposed portion) of the photosensitive resin layer 3 irradiated with the active light L, the photosensitive resin layer 3 is cured to form a cured film 3a. On the other hand, the photosensitive resin layer 3 is not cured in the region (unexposed portion) not irradiated with the active light L.
 露光工程での活性光線の光源としては、公知の光源が挙げられる。
 光源としては、感光性樹脂層を露光可能な波長の光(例えば、365nm又は405nm)を有効に照射する光源であれば特に制限されず、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯及びキセノンランプが挙げられる。
 また、光源としては、Arイオンレーザ及び半導体レーザを使用してもよく、写真用フラッド電球及び太陽ランプを使用してもよい。
 更に、レーザ露光法等を用いた直接描画法により、マスクパターン5を使用せずに活性光線を画像状に照射する方法を採用してもよい。
Examples of the light source of the active light in the exposure process include known light sources.
The light source is not particularly limited as long as it is a light source that effectively irradiates the photosensitive resin layer with light having a wavelength that can be exposed (for example, 365 nm or 405 nm), and is, for example, a carbon arc lamp, a mercury vapor arc lamp, or an ultrahigh pressure mercury lamp. , High pressure mercury lamp and xenon lamp.
Further, as the light source, an Ar ion laser or a semiconductor laser may be used, or a photographic flood bulb or a solar lamp may be used.
Further, a method of irradiating the active light beam in an image shape without using the mask pattern 5 may be adopted by a direct drawing method using a laser exposure method or the like.
 露光工程での露光量は、使用する装置や感光性樹脂層の組成によって異なるが、5~1000mJ/cmが好ましく、10~700mJ/cmがより好ましい。光硬化性に優れる点では、10mJ/cm以上が好ましく、解像性の点では1000mJ/cm以下が好ましい。 Exposure at the exposure step may vary depending on the composition of the device and the photosensitive resin layer to be used is preferably 5 ~ 1000mJ / cm 2, more preferably 10 ~ 700mJ / cm 2. From the viewpoint of excellent photocurability, 10 mJ / cm 2 or more is preferable, and from the viewpoint of resolution, 1000 mJ / cm 2 or less is preferable.
 露光工程における露光の雰囲気は特に制限されず、空気中、窒素中又は真空中で行うことができる。 The exposure atmosphere in the exposure process is not particularly limited and can be performed in air, nitrogen or vacuum.
<剥離工程>
 本製造方法では、露光工程の後、現像工程の前に、積層体30から仮支持体1を剥離する剥離工程を行う。剥離する手法は特に限定されず、公知の方法を適宜採用することができる。
 なお、図3に示す態様では、仮支持体1を介して感光性樹脂層3をパターン露光する露光工程の後、剥離工程を行っているが、露光工程の前に、積層体30から仮支持体1を剥離する剥離工程を行ってもよい。
 導電層2とマスクパターン5との接触による汚染の防止、及び、マスクパターン5に付着した異物による露光への影響を避けるため、仮支持体1を介してパターン露光することが好ましい。言い換えれば、積層体の製造方法においては、露光工程の後、剥離工程を行うことが好ましい。
<Peeling process>
In this manufacturing method, a peeling step of peeling the temporary support 1 from the laminated body 30 is performed after the exposure step and before the developing step. The method of peeling is not particularly limited, and a known method can be appropriately adopted.
In the embodiment shown in FIG. 3, the peeling step is performed after the exposure step of pattern-exposing the photosensitive resin layer 3 via the temporary support 1, but the temporary support is provided from the laminate 30 before the exposure step. A peeling step for peeling the body 1 may be performed.
In order to prevent contamination due to contact between the conductive layer 2 and the mask pattern 5 and to avoid the influence of foreign matter adhering to the mask pattern 5 on the exposure, it is preferable to perform pattern exposure via the temporary support 1. In other words, in the method for producing a laminated body, it is preferable to perform a peeling step after the exposure step.
〔現像工程〕
 現像工程では、感光性樹脂層3の未露光部とともに導電層2の一部を除去することにより、パターン化された導電層(導電パターン2a)が形成される。
 具体的には、仮支持体1の剥離により露出した積層体30の露出面に現像液を接触させることにより、感光性樹脂層3の硬化していない部分(未露光部)を除去した。このとき、感光性樹脂3の未露光部とともに、未露光部に接する導電層2の領域も除去される。これにより、パターン化された導電層2からなる導電パターン2aを形成し、基板20と、導電パターン2aと、パターン化された感光性樹脂層3の硬化膜(硬化樹脂パターン3a)とを有する積層体30を製造する。
[Development process]
In the developing step, a patterned conductive layer (conductive pattern 2a) is formed by removing a part of the conductive layer 2 together with the unexposed portion of the photosensitive resin layer 3.
Specifically, the uncured portion (unexposed portion) of the photosensitive resin layer 3 was removed by bringing the developer into contact with the exposed surface of the laminated body 30 exposed by peeling the temporary support 1. At this time, not only the unexposed portion of the photosensitive resin 3 but also the region of the conductive layer 2 in contact with the unexposed portion is removed. As a result, a conductive pattern 2a composed of a patterned conductive layer 2 is formed, and a laminate having a substrate 20, a conductive pattern 2a, and a cured film (cured resin pattern 3a) of the patterned photosensitive resin layer 3 is formed. Manufacture body 30.
 現像液としては、例えば、アルカリ性水溶液、水系現像液及び有機溶剤系現像液が挙げられる。現像工程での現像処理は、例えば、これらの現像液を用いて、スプレー、揺動浸漬、ブラッシング及びスクラッピング等の公知の方法により行われる。 Examples of the developing solution include an alkaline aqueous solution, an aqueous developing solution, and an organic solvent-based developing solution. The developing process in the developing step is performed by a known method such as spraying, rocking immersion, brushing and scraping using these developers, for example.
 現像液としては、安全かつ安定であり、操作性が良好なため、アルカリ性水溶液が好ましい。アルカリ性水溶液としては、0.1~5質量%炭酸ナトリウム水溶液、0.1~5質量%炭酸カリウム水溶液、0.1~5質量%水酸化ナトリウム水溶液、又は、0.1~5質量%四ホウ酸ナトリウム水溶液が好ましい。
 現像液として用いるアルカリ性水溶液のpHは、9~11の範囲が好ましい。現像液の温度は、感光性樹脂層の現像性に合わせて調節される。また、アルカリ性水溶液は、界面活性剤、消泡剤、及び、現像を促進させるための少量の有機溶剤等を含んでいてもよい。
As the developing solution, an alkaline aqueous solution is preferable because it is safe, stable, and has good operability. As the alkaline aqueous solution, 0.1 to 5% by mass sodium carbonate aqueous solution, 0.1 to 5% by mass potassium carbonate aqueous solution, 0.1 to 5% by mass sodium hydroxide aqueous solution, or 0.1 to 5% by mass tetraborax. An aqueous solution of sodium carbonate is preferable.
The pH of the alkaline aqueous solution used as the developing solution is preferably in the range of 9 to 11. The temperature of the developing solution is adjusted according to the developability of the photosensitive resin layer. Further, the alkaline aqueous solution may contain a surfactant, a defoaming agent, a small amount of an organic solvent for accelerating development, and the like.
 また、現像液として、水又はアルカリ水溶液と1種以上の有機溶剤とからなる水系現像液を用いてもよい。ここで、アルカリ水溶液に含まれる塩基としては、上述した炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム及び四ホウ酸ナトリウムに加えて、例えば、ホウ砂、メタケイ酸ナトリウム、水酸化テトラメチルアンモニウム、エタノールアミン、エチレンジアミン、ジエチレントリアミン、2-アミノ-2-ヒドロキシメチル-1、3-プロパンジオール、1,3-ジアミノプロパノール-2、及び、モルホリンが挙げられる。 Further, as the developing solution, an aqueous developing solution composed of water or an alkaline aqueous solution and one or more kinds of organic solvents may be used. Here, as the base contained in the alkaline aqueous solution, in addition to the above-mentioned sodium carbonate, potassium carbonate, sodium hydroxide and sodium tetraborate, for example, borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, etc. Examples thereof include ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3-propanediol, 1,3-diaminopropanol-2, and morpholin.
 有機溶剤としては、例えば、メチルエチルケトン、アセトン、酢酸エチル、炭素数1~4のアルコキシ基を有するアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、及び、ジエチレングリコールモノブチルエーテルが挙げられる。これらは、単独で又は2種類以上を組み合わせて使用される。 Examples of the organic solvent include methyl ethyl ketone, acetone, ethyl acetate, alkoxy ethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol monobutyl ether. Can be mentioned. These are used alone or in combination of two or more.
 水系現像液における有機溶剤の含有量は、水系現像液の総質量に対して2~90質量%が好ましい。水系現像液の温度は、感光性樹脂層の現像性に合わせて調整される。水系現像液のpHは、感光性樹脂層の現像が可能であれば特に制限されないが、8~12がより好ましく、9~10が更に好ましい。
 また、水系現像液は、界面活性剤及び消泡剤等の添加剤を少量含有していてもよい。
The content of the organic solvent in the aqueous developer is preferably 2 to 90% by mass with respect to the total mass of the aqueous developer. The temperature of the aqueous developer is adjusted according to the developability of the photosensitive resin layer. The pH of the aqueous developer is not particularly limited as long as the photosensitive resin layer can be developed, but 8 to 12 is more preferable, and 9 to 10 is further preferable.
Further, the aqueous developer may contain a small amount of additives such as a surfactant and an antifoaming agent.
 有機溶剤系現像液としては、例えば、1,1,1-トリクロロエタン、N-メチルピロリドン、N,N-ジメチルホルムアミド、シクロヘキサノン、メチルイソブチルケトン、及びγ-ブチロラクトンが挙げられる。有機溶剤系現像液は、引火防止のため、1~20質量%の範囲で水を含有することが好ましい。 Examples of the organic solvent-based developer include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, cyclohexanone, methyl isobutyl ketone, and γ-butyrolactone. The organic solvent-based developer preferably contains water in the range of 1 to 20% by mass in order to prevent ignition.
 上述した現像液は、必要に応じて、2種以上を併用してもよい。 The above-mentioned developer may be used in combination of two or more, if necessary.
 現像の方式としては、例えば、ディップ方式、バトル方式、スプレー方式、ブラッシング、及び、スラッピングが挙げられる。これらのうち、高圧スプレー方式を用いることが、解像度向上の点から好ましい。 Examples of the development method include a dip method, a battle method, a spray method, brushing, and slapping. Of these, it is preferable to use the high pressure spray method from the viewpoint of improving the resolution.
 導電パターン2aを有する積層体30の製造方法において、現像工程後、必要に応じて、60~250℃の加熱又は露光量0.2~10J/cmの露光を行うことにより、導電パターン2aを更に硬化してもよい。 In the method for producing the laminate 30 having the conductive pattern 2a, the conductive pattern 2a is formed by heating at 60 to 250 ° C. or exposing with an exposure amount of 0.2 to 10 J / cm 2 as necessary after the developing step. It may be further cured.
〔用途〕
 上記の製造方法により得られた導電パターンを有する積層体は、種々の用途に適用できる。導電パターンを有する積層体の用途としては、例えば、タッチパネル(タッチパネルセンサー)、半導体チップ、各種電気配線板、FPC(Flexible printed circuits)、COF(Chip on Film)、TAB(Tape Automated Bonding)、アンテナ、多層配線基板、及びマザーボードが挙げられ、タッチパネルセンサーに用いることが好ましい。
 上記の積層体をタッチパネルセンサーに適用する場合、積層体が有する導電パターンが、タッチパネルセンサー中の検出電極又は引き出し配線として機能する。
[Use]
The laminate having the conductive pattern obtained by the above manufacturing method can be applied to various uses. Applications of the laminate having a conductive pattern include, for example, a touch panel (touch panel sensor), a semiconductor chip, various electric wiring boards, FPC (Flexible printed circuits), COF (Chip on Film), TAB (Tape Automated Bonding), an antenna, and the like. Examples thereof include a multilayer wiring board and a motherboard, which are preferably used for a touch panel sensor.
When the above laminated body is applied to the touch panel sensor, the conductive pattern of the laminated body functions as a detection electrode or a lead-out wiring in the touch panel sensor.
 タッチパネルは、上記のタッチパネルセンサーを有するものであれば特に制限されず、例えば、上記のタッチパネルセンサーと、各種表示装置(例えば、液晶表示装置、有機EL(electro-luminescence)表示装置)とを組み合わせた装置が挙げられる。 The touch panel is not particularly limited as long as it has the above-mentioned touch panel sensor. For example, the above-mentioned touch panel sensor is combined with various display devices (for example, a liquid crystal display device and an organic EL (electro-luminescence) display device). Equipment is mentioned.
 タッチパネルセンサー及びタッチパネルにおける検出方法としては、抵抗膜方式、静電容量方式、超音波方式、電磁誘導方式、及び、光学方式等の公知の方式が挙げられる。中でも、静電容量式のタッチパネルセンサー及びタッチパネルが好ましい。 Examples of the detection method in the touch panel sensor and the touch panel include known methods such as a resistive film method, a capacitance method, an ultrasonic method, an electromagnetic induction method, and an optical method. Of these, a capacitive touch panel sensor and a touch panel are preferable.
 タッチパネル型としては、いわゆるインセル型(例えば、特表2012-517051号公報の図5、図6、図7及び図8に記載のもの)、いわゆるオンセル型(例えば、特開2013-168125号公報の図19に記載のもの、並びに、特開2012-089102号公報の図1及び図5に記載のもの)、OGS(One Glass Solution)型、TOL(Touch-on-Lens)型(例えば、特開2013-054727号公報の図2に記載のもの)、各種アウトセル型(いわゆる、GG、G1・G2、GFF、GF2、GF1及びG1F等)並びにその他の構成(例えば、特開2013-164871号公報の図6に記載のもの)が挙げられる。
 タッチパネルとしては、例えば、特開2017-120345号公報の段落0229に記載のものが挙げられる。
 また、タッチパネルの製造方法は、特に制限されず、上記の積層体を有するタッチパネルセンサーを用いること以外は、公知のタッチパネルの製造方法を参照すればよい。
The touch panel type includes a so-called in-cell type (for example, those shown in FIGS. 5, 6, 7, and 8 of JP-A-2012-517501), a so-called on-cell type (for example, JP-A-2013-168125). The ones shown in FIG. 19 and those shown in FIGS. 1 and 5 of JP2012-081020A), OGS (One Glass Solution) type, and TOR (Touch-on-Lens) type (for example, JP-A-2012). 2013-054727 (described in FIG. 2), various out-cell types (so-called GG, G1 / G2, GFF, GF2, GF1, G1F, etc.) and other configurations (for example, Japanese Patent Application Laid-Open No. 2013-164871). The one shown in FIG. 6).
Examples of the touch panel include those described in paragraph 0229 of JP2017-120345A.
The touch panel manufacturing method is not particularly limited, and a known touch panel manufacturing method may be referred to except that the touch panel sensor having the above-mentioned laminated body is used.
 以下に、本発明を実施例に基づいて具体的に説明するが、以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本発明の範囲は以下に示す具体例に制限されない。なお、特に断りのない限り、「部」及び「%」は質量基準である。 Hereinafter, the present invention will be specifically described based on examples, but the materials, amounts used, proportions, treatment contents, and treatment procedures shown in the following examples are appropriate as long as they do not deviate from the gist of the present invention. , Can be changed. Therefore, the scope of the present invention is not limited to the specific examples shown below. Unless otherwise specified, "parts" and "%" are based on mass.
[ポリマーの合成]
〔原料〕
 以下の方法に従い、ポリマーを合成した。ポリマーの合成において、以下に示す化合物を使用した。
[Polymer synthesis]
〔material〕
The polymer was synthesized according to the following method. The following compounds were used in the synthesis of the polymer.
<溶剤>
・ PGMEA:プロピレングリコールモノメチルエーテルアセテート
・ トルエン
・ PGME:プロピレングリコールモノメチルエーテル
<Solvent>
・ PGMEA: Propylene glycol monomethyl ether acetate ・ Toluene ・ PGME: Propylene glycol monomethyl ether
<重合性単量体>
 ポリマーの合成に使用した、重合性単量体を含有するモノマー混合液の組成を表1に示す。各モノマー混合液に使用した重合性単量体は、以下のとおりである。
・ メタクリル酸(富士フイルム和光純薬(株)製)
・ メタクリル酸メチル(富士フイルム和光純薬(株)製)
・ アクリル酸エチル(富士フイルム和光純薬(株)製)
<Polymerizable monomer>
Table 1 shows the composition of the monomer mixed solution containing the polymerizable monomer used for the synthesis of the polymer. The polymerizable monomers used in each monomer mixture are as follows.
・ Methacrylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
・ Methyl methacrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
・ Ethyl acrylate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<重合開始剤>
・ AIBN:アゾビスイソブチロニトリル(富士フイルム和光純薬(株)製「V-60」)
・ V-601:ジメチル2,2’-アゾビス(2-メチルプロピオネート)(富士フイルム和光純薬(株)製)
<Polymerization initiator>
-AIBN: Azobisisobutyronitrile ("V-60" manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
・ V-601: Dimethyl 2,2'-azobis (2-methylpropionate) (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
〔測定〕
 本実施例において合成したポリマーについて、ゲル・パーミエーション・クロマトグラフィー(GPC)により下記の条件で測定し、標準物質としてポリスチレンを用いて換算して、重量平均分子量Mw及び分散度(Mw/Mn)の値を求めた。
[Measurement]
The polymer synthesized in this example was measured by gel permeation chromatography (GPC) under the following conditions, converted using polystyrene as a standard substance, and had a weight average molecular weight Mw and a degree of dispersion (Mw / Mn). The value of was calculated.
<GPC条件>
 装置:東ソー社製、東ソー高速GPC装置 HLC-8220GPC(商品名)、
 ガードカラム:東ソー社製、HZ-L
 分離カラム:東ソー社製、TSK gel Super HZM-N(商品名)を直列に3本連結したカラム
 測定温度:40℃
 溶離液:THF(テトラヒドロフラン)
 流量:サンプルポンプ0.35mL/分、リファレンスポンプ0.20mL/分
 注入量:10μL
 検出器:示差屈折計
<GPC conditions>
Equipment: Tosoh High Speed GPC Equipment HLC-8220GPC (trade name), manufactured by Tosoh Corporation
Guard column: Tosoh, HZ-L
Separation column: A column in which three TSK gel Super HZM-N (trade name) manufactured by Tosoh Corporation are connected in series. Measurement temperature: 40 ° C.
Eluent: THF (tetrahydrofuran)
Flow rate: Sample pump 0.35 mL / min, Reference pump 0.20 mL / min Injection volume: 10 μL
Detector: Differential refractometer
〔合成例1〕
 PGMEA(55.8部)及びトルエン(55.8部)を混合し、第1液を調製した。また、混合液1(100.0部)、AIBN(1.0部)、PGMEA(6.2部)及びトルエン(6.2部)を混合し、室温にて1時間撹拌して固体であるAIBNを溶解させ、第2液を調製した。
 フラスコに第1液を入れ、窒素雰囲気下において80℃に昇温した。攪拌下、液温を維持しながら、滴下ポンプを用いて、第2液をフラスコ内の第1液に4時間かけて添加した。添加終了後、攪拌下、混合液の液温を80℃に維持して更に6時間反応させ、ポリマーA1を合成し、ポリマーA1を含有する組成物を得た。
 合成されたポリマーA1の重量平均分子量Mwは65,000であり、分散度(Mw/Mn)は3.5であった。
[Synthesis Example 1]
PGMEA (55.8 parts) and toluene (55.8 parts) were mixed to prepare a first solution. Further, the mixed solution 1 (100.0 parts), AIBN (1.0 parts), PGMEA (6.2 parts) and toluene (6.2 parts) are mixed and stirred at room temperature for 1 hour to form a solid. AIBN was dissolved to prepare a second solution.
The first liquid was placed in a flask and the temperature was raised to 80 ° C. in a nitrogen atmosphere. The second liquid was added to the first liquid in the flask over 4 hours using a dropping pump while maintaining the liquid temperature under stirring. After completion of the addition, the mixture temperature was maintained at 80 ° C. for another 6 hours under stirring to synthesize polymer A1 to obtain a composition containing polymer A1.
The weight average molecular weight Mw of the synthesized polymer A1 was 65,000, and the dispersity (Mw / Mn) was 3.5.
〔合成例2〕
 第1液及び第2液として、表2に記載の組成を有する混合液を使用したこと以外は、合成例1に記載の方法に従い、ポリマーA2、A3、A8、X1、B1~B3及びY1を合成し、これらのポリマーを含有する組成物を得た。
 合成されたこれらのポリマーの重量平均分子量Mw及び分散度(Mw/Mn)を表2に示す。
[Synthesis Example 2]
Polymers A2, A3, A8, X1, B1 to B3 and Y1 were used as the first and second liquids according to the method described in Synthesis Example 1, except that the mixed liquids having the compositions shown in Table 2 were used. Synthesis was performed to obtain a composition containing these polymers.
Table 2 shows the weight average molecular weight Mw and the dispersity (Mw / Mn) of these synthesized polymers.
〔合成例3〕
 PGMEA(31.0部)及びトルエン(31.0部)を混合し、第1液を調製した。AIBN(1.0部)、PGMEA(31.0部)及びトルエン(31.0部)を混合し、室温にて1時間撹拌して固体であるAIBNを溶解させ、第4液を調製した。また、混合液1(100.0部)を第3液とした。
 フラスコに第1液を入れ、窒素雰囲気下において80℃に昇温した。攪拌下、液温を維持しながら、第3液及び第4液のそれぞれを、異なる滴下ポンプを用いて、フラスコ内の第1液に4時間かけて同時に添加した。このとき、第3液及び第4液は、第1液中に添加されるまで、互いに接触しなかった。添加終了後、攪拌下、混合液の液温を80℃に維持して更に6時間反応させ、ポリマーA4を合成し、ポリマーA4を含有する組成物を得た。
 合成されたポリマーA4の重量平均分子量Mwは65,000であり、分散度(Mw/Mn)は2.4であった。
[Synthesis Example 3]
PGMEA (31.0 parts) and toluene (31.0 parts) were mixed to prepare a first solution. AIBN (1.0 part), PGMEA (31.0 part) and toluene (31.0 part) were mixed and stirred at room temperature for 1 hour to dissolve AIBN which is a solid, and a fourth solution was prepared. Further, the mixed solution 1 (100.0 parts) was used as the third solution.
The first liquid was placed in a flask and the temperature was raised to 80 ° C. in a nitrogen atmosphere. While maintaining the liquid temperature under stirring, each of the third liquid and the fourth liquid was simultaneously added to the first liquid in the flask over 4 hours using different dropping pumps. At this time, the third liquid and the fourth liquid did not come into contact with each other until they were added to the first liquid. After completion of the addition, the mixture was kept at a temperature of 80 ° C. for another 6 hours under stirring to synthesize polymer A4, and a composition containing polymer A4 was obtained.
The weight average molecular weight Mw of the synthesized polymer A4 was 65,000, and the dispersity (Mw / Mn) was 2.4.
〔合成例4〕
 第1液、第3液及び第4液として、表2に記載の組成を有する混合液を使用したこと以外は、合成例3に記載の方法に従い、ポリマーA5~A7、A9及びB4~B7を合成し、これらのポリマーを含有する組成物を得た。
 合成されたこれらのポリマーの重量平均分子量Mw及び分散度(Mw/Mn)を表2に示す。
[Synthesis Example 4]
Polymers A5 to A7, A9 and B4 to B7 were prepared according to the method described in Synthesis Example 3, except that the mixed liquids having the compositions shown in Table 2 were used as the first liquid, the third liquid and the fourth liquid. Synthesis was performed to obtain a composition containing these polymers.
Table 2 shows the weight average molecular weight Mw and the dispersity (Mw / Mn) of these synthesized polymers.
〔合成例5〕
 合成例4に記載の方法に従ってポリマーA7を合成し、ポリマーA7を含有する組成物を得た。得られたポリマーA7を含有する組成物を、メタノール及び水の混合液(メタノール:水の混合比が体積比で70:30)に添加した。析出物を濾過により採取して、ポリマーA10を得た。
 得られたポリマーA10の重量平均分子量Mwは69,000であり、分散度(Mw/Mn)は1.7であった。
[Synthesis Example 5]
Polymer A7 was synthesized according to the method described in Synthesis Example 4 to obtain a composition containing polymer A7. The composition containing the obtained polymer A7 was added to a mixture of methanol and water (methanol: water mixture ratio of 70:30 by volume). The precipitate was collected by filtration to obtain polymer A10.
The weight average molecular weight Mw of the obtained polymer A10 was 69,000, and the dispersity (Mw / Mn) was 1.7.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
[実施例1]
〔銀ナノワイヤー分散液の調製〕
 容量2000mLの3口フラスコに、エチレングリコール500mLを入れた。エチレングリコールを、窒素雰囲気下、マグネチックスターラーで攪拌しながらオイルバスにより160℃まで加熱した。次いで、PtCl22mgを50mLのエチレングリコールに溶解した溶液を、3口フラスコ内のエチレングリコールに滴下した。滴下終了から4~5分経過した後、AgNO35gをエチレングリコール300mLに溶解した溶液と、重量平均分子量Mwが4万のポリビニルピロリドン(和光純薬工業株式会社製)5gをエチレングリコール150mLに溶解した溶液とを、それぞれの滴下漏斗から1分間かけて滴下した。その後、得られた反応溶液を160℃で60分間攪拌した。
[Example 1]
[Preparation of silver nanowire dispersion]
500 mL of ethylene glycol was placed in a three-necked flask having a capacity of 2000 mL. Ethylene glycol was heated to 160 ° C. in an oil bath under a nitrogen atmosphere while stirring with a magnetic stirrer. Then, a solution in which 22 mg of PtCl was dissolved in 50 mL of ethylene glycol was added dropwise to the ethylene glycol in the three-necked flask. After 4 to 5 minutes have passed from the completion of the dropping, a solution in which 35 g of AgNO was dissolved in 300 mL of ethylene glycol and a solution in which 5 g of polyvinylpyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) having a weight average molecular weight of 40,000 was dissolved in 150 mL of ethylene glycol. Was dropped from each dropping funnel over 1 minute. Then, the obtained reaction solution was stirred at 160 ° C. for 60 minutes.
 攪拌終了後、反応溶液の液温が30℃以下になるまで放置してから、反応溶液をアセトンで10倍に希釈した。希釈液を遠心分離機により2000回転/分で20分間遠心分離し、上澄み液をデカンテーションした。得られた沈殿物にアセトンを加え攪拌してから、上記と同様の条件で遠心分離し、上澄み液をデカンテーションした。その後、蒸留水を用いて上記と同様の条件で2回遠心分離を行い、銀ナノワイヤー含有液を得た。
 得られた銀ナノワイヤーを走査型電子顕微鏡を用いて観察したところ、繊維径(直径)は約5nmであり、繊維長は約5μmであった。
 上記で得られた銀ナノワイヤー及びペンタエチレングリコールモノドデシルエーテルを、それぞれの含有量が0.2質量%及び0.1質量%になるように純水に添加して、銀ナノワイヤー分散液を調製した。
After the stirring was completed, the reaction solution was left to stand until the temperature of the reaction solution became 30 ° C. or lower, and then the reaction solution was diluted 10-fold with acetone. The diluent was centrifuged at 2000 rpm for 20 minutes with a centrifuge, and the supernatant was decanted. Acetone was added to the obtained precipitate, and the mixture was stirred and then centrifuged under the same conditions as described above to decant the supernatant. Then, it was centrifuged twice using distilled water under the same conditions as above to obtain a silver nanowire-containing liquid.
When the obtained silver nanowires were observed using a scanning electron microscope, the fiber diameter (diameter) was about 5 nm, and the fiber length was about 5 μm.
The silver nanowires and pentaethylene glycol monododecyl ether obtained above are added to pure water so that their contents are 0.2% by mass and 0.1% by mass, respectively, to obtain a silver nanowire dispersion. Prepared.
〔感光性樹脂組成物の調製〕
 ポリマーA1を固形分換算で63質量部、重合性化合物としてKAYARAD T-1420(ジトリメチロールプロパンテトラアクリレート、日本化薬株式会社製)を37質量部、重合開始剤としてLucirin TPO(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、BASFジャパン株式会社製)を10質量部、レベリング剤としてDOWSIL8032 ADDITIVE(ポリエーテル変性シリコーン、東レ・ダウコーニング株式会社製)を0.07質量部、並びに、固形分が28質量%となる量のメチルエチルケトンを混合し、感光性樹脂組成物を調製した。
[Preparation of photosensitive resin composition]
63 parts by mass of polymer A1 in terms of solid content, 37 parts by mass of KAYARAD T-1420 (ditrimethylolpropane tetraacrylate, manufactured by Nippon Kayaku Co., Ltd.) as a polymerizable compound, and Lucirin TPO (2,4,6) as a polymerization initiator. -Trimethylbenzoyl-diphenyl-phosphine oxide, manufactured by BASF Japan Co., Ltd., 10 parts by mass, DOWNSIL8032 ADDITIVE (polyether-modified silicone, manufactured by Toray Dowcorning Co., Ltd.) as a leveling agent, 0.07 parts by mass, and solid A photosensitive resin composition was prepared by mixing an amount of methyl ethyl ketone having a content of 28% by mass.
〔転写フィルムの作製〕
 仮支持体として厚さ16μmのPETフィルム(東洋紡株式会社製、商品名「A-1517」)を用意した。仮支持体の表面に、上記で得られた銀ナノワイヤー分散液を塗布量が25g/mとなるように均一に塗布し、得られた塗膜を熱風対流式乾燥機による100℃の熱風により10分間乾燥した。これにより、導電性繊維として銀ナノワイヤーを含有する導電層を仮支持体の表面に形成した。導電層の乾燥後の膜厚は0.01μmであった。
[Preparation of transfer film]
A 16 μm-thick PET film (manufactured by Toyobo Co., Ltd., trade name “A-1517”) was prepared as a temporary support. The silver nanowire dispersion obtained above was uniformly applied to the surface of the temporary support so that the coating amount was 25 g / m 2, and the obtained coating film was coated with hot air at 100 ° C. using a hot air convection dryer. Was dried for 10 minutes. As a result, a conductive layer containing silver nanowires as conductive fibers was formed on the surface of the temporary support. The film thickness of the conductive layer after drying was 0.01 μm.
 次に、上記で得られた感光性樹脂組成物の溶液を、撹拌後、形成された導電層の表面に均一に塗布した。得られた塗膜を熱風対流式乾燥機による100℃の熱風により10分間乾燥して、感光性樹脂層を形成した。形成された感光性樹脂層の乾燥後の膜厚は7.0μmであった。
 形成された感光性樹脂層の表面に、ポリエチレン製フィルム(タマポリ株式会社製、商品名「NF-13」)を貼り合わせて保護フィルムを形成し、実施例1-1の転写フィルムを作製した。
Next, the solution of the photosensitive resin composition obtained above was stirred and then uniformly applied to the surface of the formed conductive layer. The obtained coating film was dried with hot air at 100 ° C. using a hot air convection dryer for 10 minutes to form a photosensitive resin layer. The film thickness of the formed photosensitive resin layer after drying was 7.0 μm.
A polyethylene film (manufactured by Tamapoli Co., Ltd., trade name "NF-13") was attached to the surface of the formed photosensitive resin layer to form a protective film, and the transfer film of Example 1-1 was prepared.
 上記の感光性樹脂組成物の調製方法において、ポリマーA1に代えてポリマーA2~A10、B1~B7、X1及びY1を使用したこと以外は、上記の方法に従って、実施例1-2~1-17及び比較例1-1~1-2の転写フィルムをそれぞれ作製した。 Examples 1-2 to 1-17 according to the above method, except that polymers A2 to A10, B1 to B7, X1 and Y1 were used in place of the polymer A1 in the above method for preparing the photosensitive resin composition. And the transfer films of Comparative Examples 1-1 to 1-2 were prepared, respectively.
〔導電パターンを有する積層体の作製〕
 保護フィルムを剥離した実施例1-1の転写フィルムと透明フィルム基板(シクロオレフィンポリマーフィルム、厚さ:38μm、屈折率:1.53)とを貼り合わせること(転写工程)により、積層体を作製した。
 上記の転写工程は、(株)MCK製の真空ラミネーターを用いて、基板の温度:40℃、ゴムローラーの温度:100℃、線圧:3N/cm、及び搬送速度:2m/分の条件で行った。また、上記の転写工程では、転写フィルムから保護フィルムを剥離することによって露出した感光性樹脂層の表面を、透明フィルム基板の表面に接触させた。
[Preparation of laminate with conductive pattern]
A laminate is produced by laminating the transfer film of Example 1-1 from which the protective film has been peeled off and a transparent film substrate (cycloolefin polymer film, thickness: 38 μm, refractive index: 1.53) (transfer step). did.
The above transfer step uses a vacuum laminator manufactured by MCK Co., Ltd. under the conditions of substrate temperature: 40 ° C., rubber roller temperature: 100 ° C., linear pressure: 3 N / cm, and transfer speed: 2 m / min. went. Further, in the above transfer step, the surface of the photosensitive resin layer exposed by peeling the protective film from the transfer film is brought into contact with the surface of the transparent film substrate.
 得られた積層体を用いて、以下の手順に従って、透明電極パターンフィルムを作製した。
 後述するマスクパターンを有する露光マスク(透明電極形成用パターンを有する石英露光マスク)と仮支持体とを密着させた後、超高圧水銀灯を有するプロキシミティー型露光機(日立ハイテク電子エンジニアリング(株)製、露光主波長:365nm(i線))を用いて、露光マスク及び仮支持体を介して感光性樹脂層をパターン露光した(露光工程)。露光量は100mJ/cmであった。
Using the obtained laminate, a transparent electrode pattern film was produced according to the following procedure.
An exposure mask having a mask pattern (a quartz exposure mask having a transparent electrode forming pattern) and a temporary support, which will be described later, are brought into close contact with each other, and then a proximity type exposure machine having an ultra-high pressure mercury lamp (manufactured by Hitachi High-Tech Electronics Engineering Co., Ltd.). The photosensitive resin layer was pattern-exposed via an exposure mask and a temporary support using an exposure main wavelength: 365 nm (i-line) (exposure step). The exposure amount was 100 mJ / cm 2 .
 露光工程後、積層体から仮支持体を剥離した(剥離工程)。
 剥離工程後、液温が32℃の炭酸ナトリウム1質量%水溶液を現像液として用いて60秒間の現像処理を行った(現像工程)。この現像処理により、未露光の感光性樹脂層及び未露光の感光性樹脂層に積層した導電層を積層体から除去した。
 現像処理後、積層体の感光性樹脂層及び導電層が形成された側の面に、超高圧洗浄ノズルから超純水を噴射することで、透明フィルム基板の表面から感光性樹脂層の残渣を除去した。残渣を除去した積層体に、エアを吹きかけて水分を除去した後、乾燥させ、基材、銀ナノワイヤーを含有する透明電極パターン及び感光性樹脂組成物を硬化してなる硬化膜を有する実施例1-1の透明電極パターンフィルム(導電パターンを有する積層体)を得た。このパターン化された銀ナノワイヤー層を有する透明電極パターンフィルムは、いわゆる回路基板である。
After the exposure step, the temporary support was peeled from the laminated body (peeling step).
After the peeling step, a 1% by mass aqueous solution of sodium carbonate having a liquid temperature of 32 ° C. was used as a developing solution for 60 seconds of development treatment (development step). By this development treatment, the unexposed photosensitive resin layer and the conductive layer laminated on the unexposed photosensitive resin layer were removed from the laminate.
After the development treatment, the residue of the photosensitive resin layer is removed from the surface of the transparent film substrate by injecting ultrapure water from the ultrapure water cleaning nozzle onto the surface of the laminate on which the photosensitive resin layer and the conductive layer are formed. Removed. An Example having a cured film formed by blowing air on a laminate from which a residue has been removed to remove water, drying the laminate, and curing a substrate, a transparent electrode pattern containing silver nanowires, and a photosensitive resin composition. A transparent electrode pattern film (laminated body having a conductive pattern) of 1-1 was obtained. The transparent electrode pattern film having the patterned silver nanowire layer is a so-called circuit board.
 実施例1-1の転写フィルムに代えて実施例1-2~1-17及び比較例1-1~1-2の転写フィルムを使用したこと以外は、上記の方法に従って、実施例1-2~1-17及び比較例1-1~1-2の透明電極パターンフィルムをそれぞれ作製した。 Example 1-2 according to the above method, except that the transfer films of Examples 1-2 to 1-17 and Comparative Examples 1-1 to 1-2 were used instead of the transfer film of Example 1-1. The transparent electrode pattern films of 1-17 and Comparative Examples 1-1 to 1-2 were prepared, respectively.
〔評価〕
<現像性>
 下記パターン1~3に示すマスクパターンを有する露光マスクを用いること以外は、上記の透明電極パターンフィルムの作製方法に従って、現像性評価用の透明電極パターンフィルムを作製した。
・ パターン1:ライン幅50μm、スペース幅50μmのラインアンドスペースパターン
・ パターン2:ライン幅75μm、スペース幅25μmのラインアンドスペースパターン
・ パターン3:ライン幅90μm、スペース幅10μmのラインアンドスペースパターン
[Evaluation]
<Developability>
A transparent electrode pattern film for evaluation of developability was produced according to the above method for producing a transparent electrode pattern film, except that an exposure mask having the mask patterns shown in the following patterns 1 to 3 was used.
-Pattern 1: Line-and-space pattern with line width 50 μm and space width 50 μm-Pattern 2: Line-and-space pattern with line width 75 μm and space width 25 μm-Pattern 3: Line-and-space pattern with line width 90 μm and space width 10 μm
 パターン1~3のマスクパターンを用いて作製された透明電極パターンフィルムについて、感光性樹脂層のスペース部(未露光部)における現像残渣を、光学顕微鏡及び走査型電子顕微鏡(SEM)を用いて観測した。観察結果から、各転写フィルムの現像性を以下の基準に基づいて評価した。
 A: 現像残渣が感光性樹脂層のスペース部の底部に観測されなかった
 B: 現像残渣が感光性樹脂層のスペース部の底部にわずかに観測された
 C: 現像残渣が感光性樹脂層のスペース部の底部に観察された
 D: 現像残渣が感光性樹脂層のスペース部に残り、透明フィルム基板が露出するまで感光性樹脂層の未露光部を除去できなかった
 各透明電極パターンフィルムの現像性の評価結果を、表3に示す。
For the transparent electrode pattern film produced by using the mask patterns of patterns 1 to 3, the development residue in the space portion (unexposed portion) of the photosensitive resin layer is observed using an optical microscope and a scanning electron microscope (SEM). did. From the observation results, the developability of each transfer film was evaluated based on the following criteria.
A: Development residue was not observed at the bottom of the space of the photosensitive resin layer B: Development residue was slightly observed at the bottom of the space of the photosensitive resin layer C: Development residue was not observed at the bottom of the space of the photosensitive resin layer Observed at the bottom of the part D: Development residue remained in the space part of the photosensitive resin layer, and the unexposed part of the photosensitive resin layer could not be removed until the transparent film substrate was exposed. The developability of each transparent electrode pattern film. The evaluation results of are shown in Table 3.
<ラミネート性>
 透明フィルム基板に代えて銅層付きPET基板を使用したこと、及び、転写工程において感光性樹脂層の表面を銅層付きPET基板の銅層の表面に接触させたこと以外は、上記の透明電極パターンフィルムの作製方法における転写工程に従って、実施例1-1の転写フィルムを用いて、実施例1-1のラミネート性評価用積層体を作製した。実施例1-1のラミネート性評価用積層体は、銅層付きPET基板、感光性樹脂層及び導電層を有する。
 また、実施例1-1の転写フィルムに代えて実施例1-2~1-17及び比較例1-1~1-2の転写フィルムを使用したこと以外は、上記の方法に従って、実施例1-2~1-17及び比較例1-1~1-2のラミネート性評価用積層体をそれぞれ作製した。
<Lamination>
The above transparent electrodes except that a PET substrate with a copper layer was used instead of the transparent film substrate and that the surface of the photosensitive resin layer was brought into contact with the surface of the copper layer of the PET substrate with a copper layer in the transfer process. According to the transfer step in the method for producing a pattern film, the laminate for evaluating the laminateability of Example 1-1 was prepared using the transfer film of Example 1-1. The laminate for evaluation of laminateability of Example 1-1 has a PET substrate with a copper layer, a photosensitive resin layer, and a conductive layer.
Further, except that the transfer films of Examples 1-2 to 1-17 and Comparative Examples 1-1 to 1-2 were used instead of the transfer films of Example 1-1, Example 1 was carried out according to the above method. Laminates for evaluation of laminateability of -2-1-17 and Comparative Examples 1-1 to 1-2 were prepared, respectively.
 作製された各積層体を50cm角にカットし、感光性樹脂層が銅層に密着した面積を目視評価した。ここで「感光性樹脂層が銅層に密着した面積」とは、感光性樹脂層と銅層との間に気泡又は浮きが観察されないことを意図する。次いで、観察結果に基づいて、カットされた積層体の面積に対する感光性樹脂層が銅層に密着した面積の割合(感光性樹脂層が密着した面積/カットされた積層体の面積)(%)を求め、以下の基準に基づいて各転写フィルムのラミネート性を評価した。
 A:密着した面積が95%以上
 B:密着した面積が80%以上95%未満
 C:密着した面積が80%未満
 各ラミネート性評価用積層体の評価結果を、表3に示す。
Each of the produced laminates was cut into 50 cm squares, and the area where the photosensitive resin layer was in close contact with the copper layer was visually evaluated. Here, the "area in which the photosensitive resin layer is in close contact with the copper layer" means that no bubbles or floats are observed between the photosensitive resin layer and the copper layer. Then, based on the observation result, the ratio of the area where the photosensitive resin layer adheres to the copper layer to the area of the cut laminate (area where the photosensitive resin layer adheres / area of the cut laminate) (%). Was determined, and the laminateability of each transfer film was evaluated based on the following criteria.
A: Adhesion area is 95% or more B: Adhesion area is 80% or more and less than 95% C: Adhesion area is less than 80% The evaluation results of each laminate for evaluation of laminateability are shown in Table 3.
 なお、表3~5の「パラメータA」欄には、感光性樹脂層の厚さの値(μm)と感光性樹脂層に含まれる特定ポリマーの(Mw/Mn)との積を示す。 In the "Parameter A" column of Tables 3 to 5, the product of the thickness value (μm) of the photosensitive resin layer and the specific polymer (Mw / Mn) contained in the photosensitive resin layer is shown.
<タッチパネル動作確認>
 透明フィルム基板に代えて、取り出し配線としての銅電極を表面に有するシクロオレフィンポリマーフィルム(厚さ:38μm、屈折率:1.53)を使用すること、及び、転写工程において感光性樹脂層の表面を上記シクロオレフィンポリマーフィルムの上記銅電極が形成された側の表面に接触させたこと以外は、上記の透明電極パターンフィルムの作製方法に従って、透明電極パターンフィルムを作製した。
 得られた透明電極パターンフィルムを使用して、特許第6173831号公報に記載の方法に準じて、静電容量式タッチパネルセンサーを作製した。作製したタッチパネルセンサーについて動作を確認したところ、いずれも正常に動作した。
<Touch panel operation check>
Instead of the transparent film substrate, a cycloolefin polymer film (thickness: 38 μm, refractive index: 1.53) having a copper electrode as a take-out wiring on the surface is used, and the surface of the photosensitive resin layer is used in the transfer process. A transparent electrode pattern film was produced according to the method for producing a transparent electrode pattern film, except that the film was brought into contact with the surface of the cycloolefin polymer film on the side where the copper electrode was formed.
Using the obtained transparent electrode pattern film, a capacitance type touch panel sensor was produced according to the method described in Japanese Patent No. 6173831. When we confirmed the operation of the manufactured touch panel sensors, they all operated normally.
[実施例2]
 実施例1の感光性樹脂組成物の調製方法において固形分が17質量%となる量のメチルエチルケトンを使用して感光性樹脂組成物を調製したこと以外は、実施例1に記載の方法に従って、実施例2-1~2-17及び比較例2-1~2-2の転写フィルムを作製した。得られた各転写フィルムが有する感光性樹脂層の乾燥後の膜厚は5.0μmであった。
[Example 2]
In the method for preparing the photosensitive resin composition of Example 1, the photosensitive resin composition was prepared by using an amount of methyl ethyl ketone having a solid content of 17% by mass, but the process was carried out according to the method described in Example 1. Transfer films of Examples 2-1 to 2-17 and Comparative Examples 2-1 to 2-2 were prepared. The film thickness of the photosensitive resin layer of each of the obtained transfer films after drying was 5.0 μm.
 得られた各転写フィルムを用いて、実施例1に記載の方法に従って、実施例2-1~2-17及び比較例2-1~2-2の透明電極パターンフィルムを作製し、得られた各透明電極パターンフィルムの現像性を評価した。
 また、得られた各転写フィルムを用いて、実施例1に記載の方法に従って、実施例2-1~2-17及び比較例2-1~2-2のラミネート性評価用積層体を作製し、得られた各積層体のラミネート性を評価した。
 各透明電極パターンフィルムの現像性の評価結果及び各ラミネート性評価用積層体の評価結果を、表4に示す。
Using each of the obtained transfer films, transparent electrode pattern films of Examples 2-1 to 2-17 and Comparative Examples 2-1 to 2-2 were prepared according to the method described in Example 1 and obtained. The developability of each transparent electrode pattern film was evaluated.
Further, using each of the obtained transfer films, laminates for evaluation of laminateability of Examples 2-1 to 2-17 and Comparative Examples 2-1 to 2-2 were prepared according to the method described in Example 1. , The laminateability of each of the obtained laminates was evaluated.
Table 4 shows the evaluation results of the developability of each transparent electrode pattern film and the evaluation results of each laminate for evaluation of laminateability.
[実施例3]
 ポリマーA1に代えてポリマーA7を使用したこと以外は、実施例1の感光性樹脂組成物の調製方法に従って、実施例3の感光性樹脂組成物を調製した。
 仮支持体として厚さ16μmのPETフィルム(東洋紡株式会社製、商品名「A-1517」)を用意した。
 上記で得られた感光性樹脂組成物の溶液を、撹拌後、仮支持体の表面に均一に塗布した。得られた塗膜を熱風対流式乾燥機による100℃の熱風により10分間乾燥して、感光性樹脂層を形成した。形成された感光性樹脂層の乾燥後の膜厚は7.0μmであった。
[Example 3]
The photosensitive resin composition of Example 3 was prepared according to the method for preparing the photosensitive resin composition of Example 1, except that the polymer A7 was used instead of the polymer A1.
A 16 μm-thick PET film (manufactured by Toyobo Co., Ltd., trade name “A-1517”) was prepared as a temporary support.
The solution of the photosensitive resin composition obtained above was stirred and then uniformly applied to the surface of the temporary support. The obtained coating film was dried with hot air at 100 ° C. using a hot air convection dryer for 10 minutes to form a photosensitive resin layer. The film thickness of the formed photosensitive resin layer after drying was 7.0 μm.
 次いで、形成された感光性樹脂層の表面に、上記で得られた銀ナノワイヤー分散液を塗布量が25g/mとなるように均一に塗布し、得られた塗膜を熱風対流式乾燥機による100℃の熱風により10分間乾燥した。これにより、導電性繊維として銀ナノワイヤーを含有する導電層を感光性樹脂層の表面に形成した。導電層の乾燥後の膜厚は0.01μmであった。
 形成された導電層の表面に、ポリエチレン製フィルム(タマポリ株式会社製、商品名「NF-13」)を貼り合わせて保護フィルムを形成し、実施例3-1の転写フィルムを作製した。
Next, the silver nanowire dispersion liquid obtained above was uniformly applied to the surface of the formed photosensitive resin layer so that the coating amount was 25 g / m 2, and the obtained coating film was dried by hot air convection. It was dried for 10 minutes by hot air at 100 ° C. by a machine. As a result, a conductive layer containing silver nanowires as conductive fibers was formed on the surface of the photosensitive resin layer. The film thickness of the conductive layer after drying was 0.01 μm.
A polyethylene film (manufactured by Tamapoli Co., Ltd., trade name "NF-13") was attached to the surface of the formed conductive layer to form a protective film, and a transfer film of Example 3-1 was prepared.
 得られた転写フィルムを用いて、実施例1に記載の方法に従って、実施例3-1の透明電極パターンフィルムを作製し、得られた透明電極パターンフィルムの現像性を評価した。
 また、得られた転写フィルムを用いて、実施例1に記載の方法に従って、実施例3-1のラミネート性評価用積層体を作製し、得られた積層体のラミネート性を評価した。
 実施例3-1の透明電極パターンフィルムの現像性の評価結果及び実施例3-1のラミネート性評価用積層体の評価結果を、表5に示す。
Using the obtained transfer film, the transparent electrode pattern film of Example 3-1 was prepared according to the method described in Example 1, and the developability of the obtained transparent electrode pattern film was evaluated.
Further, using the obtained transfer film, a laminate for evaluating the laminate property of Example 3-1 was prepared according to the method described in Example 1, and the laminate property of the obtained laminate was evaluated.
Table 5 shows the evaluation results of the developability of the transparent electrode pattern film of Example 3-1 and the evaluation results of the laminate for evaluating the laminateability of Example 3-1.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 上記表3~5に示すように、本発明の転写フィルムは、転写後の感光性樹脂層の現像性に優れることが確認された。 As shown in Tables 3 to 5 above, it was confirmed that the transfer film of the present invention is excellent in the developability of the photosensitive resin layer after transfer.
 転写後の感光性樹脂層の現像性により優れる点から、特定ポリマーの分散度(Mw/Mn)は、2.5未満がより好ましく(実施例1-2と実施例1-3との比較、実施例1-12と実施例1-13との比較、実施例2-2と実施例2-3との比較、実施例2-12と実施例2-13との比較)、2.0未満が更に好ましい(実施例1-6と実施例1-7との比較、実施例1-16と実施例1-17との比較)ことが確認された。
 また、感光性樹脂層のラミネート性がより優れる点から、特定ポリマーの分散度(Mw/Mn)は、1.7超がより好ましいことが確認された(実施例2-7と実施例2-10との比較)。
The dispersity (Mw / Mn) of the specific polymer is more preferably less than 2.5 from the viewpoint of being more excellent in the developability of the photosensitive resin layer after transfer (comparison between Examples 1-2 and 1-3, Comparison between Example 1-12 and Example 1-13, Comparison between Example 2-2 and Example 2-3, Comparison between Example 2-12 and Example 2-13), less than 2.0 Was further preferred (comparison between Example 1-6 and Example 1-7, comparison between Example 1-16 and Example 1-17).
Further, it was confirmed that the dispersity (Mw / Mn) of the specific polymer was more preferably more than 1.7 from the viewpoint of more excellent laminating property of the photosensitive resin layer (Examples 2-7 and 2-7). Comparison with 10).
 転写後の感光性樹脂層の現像性により優れる点から、パラメータA(感光性樹脂層の厚さの値(μm)と感光性樹脂層に含まれる特定ポリマーの(Mw/Mn)との積)は、22.0未満であることがより好ましく(実施例1-1と実施例1-2との比較、実施例1-11と実施例1-12との比較)、17.0未満が更に好ましく(実施例1-2と実施例1-3との比較、実施例1-12と実施例1-13との比較、実施例2-1と実施例2-2との比較、実施例2-11と実施例2-12との比較)、16.5未満が特に好ましい(実施例1-3及び1-4と実施例1-5との比較、実施例1-13及び1-14と実施例1-15との比較)ことが確認された。 Parameter A (product of the thickness value (μm) of the photosensitive resin layer and (Mw / Mn) of the specific polymer contained in the photosensitive resin layer) from the viewpoint of being more excellent in the developability of the photosensitive resin layer after transfer) Is more preferably less than 22.0 (comparison between Example 1-1 and Example 1-2, comparison between Example 1-11 and Example 1-12), further less than 17.0. Preferably (comparison between Example 1-2 and Example 1-3, comparison between Example 1-12 and Example 1-13, comparison between Example 2-1 and Example 2-2, Example 2 -11 and Example 2-12), less than 16.5 is particularly preferred (Comparison of Examples 1-3 and 1-4 with Example 1-5, Examples 1-13 and 1-14 Comparison with Example 1-15) was confirmed.
 転写後の感光性樹脂層の現像性、及び感光性樹脂層のラミネート性がより優れる点から、(メタ)アクリル樹脂におけるメタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の合計含有量は、(メタ)アクリル樹脂の全構成単位に対して80質量%以下が好ましいことが確認された(実施例1-6と実施例1-9との比較、実施例2-6と実施例2-9との比較)。 The total of the structural units derived from methacrylic acid and the structural units derived from methacrylic acid in the (meth) acrylic resin because the developability of the photosensitive resin layer after transfer and the laminateability of the photosensitive resin layer are more excellent. It was confirmed that the content is preferably 80% by mass or less based on all the constituent units of the (meth) acrylic resin (comparison between Examples 1-6 and 1-9, Examples 2-6 and Implementation). Comparison with Example 2-9).
 転写後の感光性樹脂層の現像性により優れる点から、(メタ)アクリル樹脂は、末端にエステル基を有することが好ましいことが確認された(実施例1-6と実施例1-7との比較、実施例1-16と実施例1-17との比較)。 It was confirmed that the (meth) acrylic resin preferably has an ester group at the terminal from the viewpoint of being more excellent in the developability of the photosensitive resin layer after transfer (Examples 1-6 and 1-7). Comparison, comparison between Example 1-16 and Example 1-17).
 転写後の感光性樹脂層の現像性により優れる点から、第2液に含まれる溶剤の含有量は、第2液の全質量に対して40質量%以上が好ましいことが確認された(実施例1-3と実施例1-8との比較)。
 また、転写後の感光性樹脂層の現像性がより優れる点から、第2液に含まれる溶剤の含有量に対する、第1液に含まれる溶剤の含有量((第1液に含まれる溶剤の含有量)/(第2液に含まれる溶剤の含有量))は、4/6以下が好ましいことが確認された(実施例1-3と実施例1-8との比較)。
It was confirmed that the content of the solvent contained in the second liquid is preferably 40% by mass or more with respect to the total mass of the second liquid from the viewpoint of being more excellent in the developability of the photosensitive resin layer after transfer (Example). Comparison between 1-3 and Example 1-8).
Further, from the viewpoint that the developability of the photosensitive resin layer after transfer is more excellent, the content of the solvent contained in the first liquid ((of the solvent contained in the first liquid) is higher than the content of the solvent contained in the second liquid. It was confirmed that the content) / (content of the solvent contained in the second liquid)) was preferably 4/6 or less (comparison between Examples 1-3 and Examples 1-8).
 転写後の感光性樹脂層の現像性により優れる点から、転写フィルムは仮支持体、導電層及び感光性樹脂層をこの順で有することが好ましいことが確認された(実施例1-7及び2-7と実施例3-1との比較)。 It was confirmed that the transfer film preferably has a temporary support, a conductive layer, and a photosensitive resin layer in this order from the viewpoint of being more excellent in the developability of the photosensitive resin layer after transfer (Examples 1-7 and 2). Comparison of -7 with Example 3-1).
 1  仮支持体
 2  導電層
 2a 導電パターン
 3  感光性樹脂層
 3a 硬化樹脂パターン
 4  保護フィルム
 5  マスクパターン
 10 転写フィルム
 20 基板
 30 積層体
 L  活性光線
1 Temporary support 2 Conductive layer 2a Conductive pattern 3 Photosensitive resin layer 3a Cured resin pattern 4 Protective film 5 Mask pattern 10 Transfer film 20 Substrate 30 Laminated body L Active light beam

Claims (19)

  1.  仮支持体、導電層及び感光性樹脂層を有する転写フィルムであって、
     前記導電層が、銀ナノワイヤーを含み、
     前記感光性樹脂層が、バインダーポリマー、重合性化合物、及び重合開始剤を含み、
     前記バインダーポリマーの分散度Mw/Mnが3.5以下である、転写フィルム。
    A transfer film having a temporary support, a conductive layer, and a photosensitive resin layer.
    The conductive layer contains silver nanowires and contains
    The photosensitive resin layer contains a binder polymer, a polymerizable compound, and a polymerization initiator.
    A transfer film having a dispersity Mw / Mn of the binder polymer of 3.5 or less.
  2.  前記仮支持体、前記導電層及び前記感光性樹脂層をこの順に有する、請求項1に記載の転写フィルム。 The transfer film according to claim 1, further comprising the temporary support, the conductive layer, and the photosensitive resin layer in this order.
  3.  前記バインダーポリマーが、(メタ)アクリル酸に由来する構成単位及び(メタ)アクリル酸アルキルエステルに由来する構成単位を有する、請求項1又は2に記載の転写フィルム。 The transfer film according to claim 1 or 2, wherein the binder polymer has a structural unit derived from (meth) acrylic acid and a structural unit derived from (meth) acrylic acid alkyl ester.
  4.  前記バインダーポリマーが、メタクリル酸に由来する構成単位、メタクリル酸メチルに由来する構成単位及びアクリル酸エチルに由来する構成単位を有する、請求項1~3のいずれか1項に記載の転写フィルム。 The transfer film according to any one of claims 1 to 3, wherein the binder polymer has a structural unit derived from methacrylic acid, a structural unit derived from methyl methacrylate, and a structural unit derived from ethyl acrylate.
  5.  前記バインダーポリマー中、メタクリル酸に由来する構成単位及びメタクリル酸アルキルエステルに由来する構成単位の合計含有量が、前記バインダーポリマーの全構成単位に対して60~80質量%である、請求項1~4のいずれか1項に記載の転写フィルム。 Claims 1 to 1, wherein the total content of the structural unit derived from methacrylic acid and the structural unit derived from methacrylic acid alkyl ester in the binder polymer is 60 to 80% by mass with respect to all the structural units of the binder polymer. The transfer film according to any one of 4.
  6.  前記バインダーポリマーが、末端にエステル基を有する、請求項1~5のいずれか1項に記載の転写フィルム。 The transfer film according to any one of claims 1 to 5, wherein the binder polymer has an ester group at the terminal.
  7.  下記条件1を満たす、請求項1~6のいずれか1項に記載の転写フィルム。
     条件1:前記感光性樹脂層の厚さの値μmと前記バインダーポリマーの分散度Mw/Mnとの積が25.0未満である。
    The transfer film according to any one of claims 1 to 6, which satisfies the following condition 1.
    Condition 1: The product of the thickness value μm of the photosensitive resin layer and the dispersity Mw / Mn of the binder polymer is less than 25.0.
  8.  請求項1~7のいずれか1項に記載の転写フィルムの製造方法であって、
     加熱条件下、溶剤を含む第1液中に、重合性単量体、重合開始剤及び溶剤を含む第2液を0.5~20時間かけて添加して、前記バインダーポリマーを合成する工程と、
     仮支持体の表面に、銀ナノワイヤーを含む導電層及び前記バインダーポリマーを含む感光性樹脂層を形成する積層工程と、を含む、
     転写フィルムの製造方法。
    The method for producing a transfer film according to any one of claims 1 to 7.
    A step of synthesizing the binder polymer by adding a second liquid containing a polymerizable monomer, a polymerization initiator and a solvent to the first liquid containing a solvent under heating conditions over 0.5 to 20 hours. ,
    A laminating step of forming a conductive layer containing silver nanowires and a photosensitive resin layer containing the binder polymer on the surface of the temporary support is included.
    Method for manufacturing transfer film.
  9.  1~8時間かけて前記第1液中に前記第2液を添加する、請求項8に記載の転写フィルムの製造方法。 The method for producing a transfer film according to claim 8, wherein the second liquid is added to the first liquid over 1 to 8 hours.
  10.  前記第2液に含まれる溶剤の含有量に対する、前記第1液に含まれる溶剤の含有量の質量比が1/9~9/1である、請求項8又は9に記載の転写フィルムの製造方法。 The production of the transfer film according to claim 8 or 9, wherein the mass ratio of the content of the solvent contained in the first liquid to the content of the solvent contained in the second liquid is 1/9 to 9/1. Method.
  11.  前記第1液及び前記第2液に含まれる溶剤の総量に対する、前記第1液及び前記第2液に含まれる非芳香族炭化水素溶剤の含有量の質量比が80質量%以上である、請求項8~10のいずれか1項に記載の転写フィルムの製造方法。 Claimed that the mass ratio of the content of the non-aromatic hydrocarbon solvent contained in the first liquid and the second liquid to the total amount of the solvent contained in the first liquid and the second liquid is 80% by mass or more. Item 8. The method for producing a transfer film according to any one of Items 8 to 10.
  12.  請求項1~7のいずれか1項に記載の転写フィルムの製造方法であって、
     加熱条件下、溶剤を含む第1液中に、重合性単量体を含む第3液と重合開始剤及び溶剤を含む第4液とを別々に、0.5~20時間かけて添加して、前記バインダーポリマーを合成する工程と、
     仮支持体の表面に、銀ナノワイヤーを含む導電層及び前記バインダーポリマーを含む感光性樹脂層を形成する積層工程と、を含む、
     転写フィルムの製造方法。
    The method for producing a transfer film according to any one of claims 1 to 7.
    Under heating conditions, the third liquid containing the polymerizable monomer and the fourth liquid containing the polymerization initiator and the solvent are separately added to the first liquid containing the solvent over 0.5 to 20 hours. , The step of synthesizing the binder polymer and
    A laminating step of forming a conductive layer containing silver nanowires and a photosensitive resin layer containing the binder polymer on the surface of the temporary support is included.
    Method for manufacturing transfer film.
  13.  1~8時間かけて前記第1液に前記第3液及び前記第4液のそれぞれを添加する、請求項12に記載の転写フィルムの製造方法。 The method for producing a transfer film according to claim 12, wherein each of the third liquid and the fourth liquid is added to the first liquid over 1 to 8 hours.
  14.  前記第3液及び前記第4液に含まれる溶剤の総量に対する、前記第1液に含まれる溶剤の含有量の質量比が1/9~9/1である、請求項12又は13に記載の転写フィルムの製造方法。 The 12th or 13th claim, wherein the mass ratio of the content of the solvent contained in the first liquid to the total amount of the solvent contained in the third liquid and the fourth liquid is 1/9 to 9/1. A method for producing a transfer film.
  15.  前記第1液、前記第3液及び前記第4液に含まれる溶剤の総量に対する、前記第1液、前記第3液及び前記第4液に含まれる非芳香族炭化水素溶剤の含有量の質量比が80質量%以上である、請求項12~14のいずれか1項に記載の転写フィルムの製造方法。 Mass of the content of the non-aromatic hydrocarbon solvent contained in the first liquid, the third liquid and the fourth liquid with respect to the total amount of the solvent contained in the first liquid, the third liquid and the fourth liquid. The method for producing a transfer film according to any one of claims 12 to 14, wherein the ratio is 80% by mass or more.
  16.  基板及び導電パターンを有する積層体の製造方法であって、
     請求項1~7のいずれか1項に記載の転写フィルム又は請求項8~15のいずれか1項に記載の製造方法で製造された転写フィルムと前記基板とを、前記転写フィルムの仮支持体が配置されている面とは反対側の面に前記基板を接触させて貼り合わせる工程と、
     前記転写フィルムが有する感光性樹脂層をパターン露光する工程と、
     前記転写フィルムが有する導電層の一部を、前記感光性樹脂層の未露光部とともに除去して、パターン化された導電層を形成する工程と、を含む、
     積層体の製造方法。
    A method for manufacturing a laminate having a substrate and a conductive pattern.
    A temporary support for the transfer film according to any one of claims 1 to 7 or the transfer film manufactured by the production method according to any one of claims 8 to 15 and the substrate. The process of bringing the substrate into contact with the surface opposite to the surface on which the
    A step of pattern-exposing the photosensitive resin layer of the transfer film and
    A step of removing a part of the conductive layer of the transfer film together with the unexposed portion of the photosensitive resin layer to form a patterned conductive layer.
    Method for manufacturing a laminate.
  17.  請求項16に記載の製造方法で製造された、積層体であって、
     基板と、銀ナノワイヤーを含むパターン化された導電層と、を有する、積層体。
    A laminate produced by the production method according to claim 16.
    A laminate having a substrate and a patterned conductive layer containing silver nanowires.
  18.  請求項17に記載の積層体を有するタッチパネルセンサー。 A touch panel sensor having the laminate according to claim 17.
  19.  請求項18に記載のタッチパネルセンサーを有するタッチパネル。 A touch panel having the touch panel sensor according to claim 18.
PCT/JP2020/027887 2019-08-27 2020-07-17 Transfer film, method for producing transfer film, method for producing laminate, laminate, touch panel sensor, and touch panel WO2021039187A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542622A JPWO2021039187A1 (en) 2019-08-27 2020-07-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019154446 2019-08-27
JP2019-154446 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021039187A1 true WO2021039187A1 (en) 2021-03-04

Family

ID=74684486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027887 WO2021039187A1 (en) 2019-08-27 2020-07-17 Transfer film, method for producing transfer film, method for producing laminate, laminate, touch panel sensor, and touch panel

Country Status (2)

Country Link
JP (1) JPWO2021039187A1 (en)
WO (1) WO2021039187A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085643A (en) * 2012-10-26 2014-05-12 Fujifilm Corp Photosensitive transfer material, pattern formation method, and etching method
WO2017130427A1 (en) * 2016-01-28 2017-08-03 日立化成株式会社 Photosensitive resin composition, photosensitive element, method for forming resist pattern, and method for manufacturing touch panel
JP2018169543A (en) * 2017-03-30 2018-11-01 富士フイルム株式会社 Photosensitive transfer material and method of manufacturing circuit wiring
JP2018183878A (en) * 2015-09-24 2018-11-22 日立化成株式会社 Laminate, production method therefor, film set, and photosensitive conductive film
JP2019067818A (en) * 2017-09-28 2019-04-25 日立化成株式会社 Transfer type conductive film and laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014085643A (en) * 2012-10-26 2014-05-12 Fujifilm Corp Photosensitive transfer material, pattern formation method, and etching method
JP2018183878A (en) * 2015-09-24 2018-11-22 日立化成株式会社 Laminate, production method therefor, film set, and photosensitive conductive film
WO2017130427A1 (en) * 2016-01-28 2017-08-03 日立化成株式会社 Photosensitive resin composition, photosensitive element, method for forming resist pattern, and method for manufacturing touch panel
JP2018169543A (en) * 2017-03-30 2018-11-01 富士フイルム株式会社 Photosensitive transfer material and method of manufacturing circuit wiring
JP2019067818A (en) * 2017-09-28 2019-04-25 日立化成株式会社 Transfer type conductive film and laminate

Also Published As

Publication number Publication date
JPWO2021039187A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
KR101932778B1 (en) Method for forming conductive pattern, conductive pattern substrate, and touch panel sensor
KR101774885B1 (en) Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern, and conductive film substrate
WO2013151052A1 (en) Method for forming electroconductive pattern, and electroconductive pattern substrate
WO2021065317A1 (en) Transfer film, method for producing laminate, laminate, touch panel sensor, and touch panel
JPWO2016167228A1 (en) Photosensitive conductive film, method for forming conductive pattern, substrate with conductive pattern, and touch panel sensor
JP6205925B2 (en) Photosensitive conductive film, conductive pattern forming method using the same, and conductive pattern substrate
JP5569144B2 (en) Photosensitive conductive film, method for forming conductive film, and method for forming conductive pattern
WO2021039187A1 (en) Transfer film, method for producing transfer film, method for producing laminate, laminate, touch panel sensor, and touch panel
JP2017198878A (en) Photosensitive conductive film and conductive pattern comprising the same, conductive pattern substrate, and method for producing touch panel sensor
WO2021065288A1 (en) Transfer film, method for producing laminate, laminate, touch panel sensor, touch panel
WO2021065322A1 (en) Transfer film, method for producing multilayer body, multilayer body, touch panel sensor, and touch panel
WO2021065331A1 (en) Transfer film, laminate production method, laminate, touch panel sensor, and touch panel
JP2012162601A (en) Photocurable resin composition for overcoat, photocurable element for overcoat, method for producing conductive film substrate, and conductive film substrate
JP2017156510A (en) Photosensitive conductive film, method for forming conductive pattern, conductive pattern substrate, and touch panel
JP2018040934A (en) Photosensitive conductive film, conductive pattern substrate and method for manufacturing the same using the photosensitive conductive film, and touch panel sensor
JP2018116841A (en) Conductive layer with base material, method for producing the same, and sensor
JP2012014860A (en) Photocurable resin composition for overcoat, and photocurable element for overcoat, method for forming conductive pattern and conductive film substrate using the composition
JP2017201349A (en) Photosensitive conductive film, method for forming conductive pattern, and method for producing conductive pattern substrate
JP2018022030A (en) Photosensitive conducive film, and method for forming conductive pattern using the same, conductive pattern substrate and touch panel sensor
JP2018049054A (en) Photosensitive conductive film, method for forming conductive film, method for forming conductive pattern and method for forming conductive film substrate
JP2017228312A (en) Photosensitive conductive film, and method of forming conductive pattern using the same, and conductive pattern substrate including the same
JP2018049055A (en) Photosensitive conductive film, method for forming conductive pattern and method for forming conductive pattern substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856105

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542622

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856105

Country of ref document: EP

Kind code of ref document: A1