WO2021039112A1 - Submerged plasma generation device - Google Patents

Submerged plasma generation device Download PDF

Info

Publication number
WO2021039112A1
WO2021039112A1 PCT/JP2020/025987 JP2020025987W WO2021039112A1 WO 2021039112 A1 WO2021039112 A1 WO 2021039112A1 JP 2020025987 W JP2020025987 W JP 2020025987W WO 2021039112 A1 WO2021039112 A1 WO 2021039112A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma generator
counter electrode
generated
treated water
electrode
Prior art date
Application number
PCT/JP2020/025987
Other languages
French (fr)
Japanese (ja)
Inventor
哲 猪原
Original Assignee
国立大学法人佐賀大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人佐賀大学 filed Critical 国立大学法人佐賀大学
Priority to JP2021542588A priority Critical patent/JP7180927B2/en
Publication of WO2021039112A1 publication Critical patent/WO2021039112A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/247Generating plasma using discharges in liquid media
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/14Plasma, i.e. ionised gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields

Definitions

  • the present invention relates to a plasma generator that generates discharge plasma, and more particularly to a submerged plasma generator that generates discharge plasma in liquid.
  • Plasma sterilization which generates plasma to sterilize an object, has a wide range of applications, and its application fields are steadily expanding.
  • An example of such an application field is water purification treatment.
  • a plasma generator capable of decomposing organic substances and the like contained in treated water to be sterilized by plasma is expected.
  • a submerged plasma generator capable of plasma sterilization of treated water the treated water can be strongly sterilized by the sterilizing power of OH radicals generated by the high reactivity of plasma. It does not have the persistence of drugs. Therefore, if a submerged plasma generator can be applied to the water purification treatment, it is a non-toxic water purification treatment, and its realization is eagerly desired.
  • water purification treatment is performed by applying a high voltage between counter electrodes provided so as to face each other in the vicinity of the rear stage of cavitation that generates cavitation bubbles to generate discharge plasma.
  • the counter electrode is arranged along the inner surface of the water passage inside the cavitation generating portion so as to form a creepage discharge on the surface of the pipeline (Patent Document 1).
  • the conventional submerged plasma generator has a reactor having a high-voltage side electrode and a ground-side electrode forming a water passage, a nozzle, and a discharge portion, and a high-voltage power supply connected to the high-voltage side electrode and the ground-side electrode.
  • the water to be treated is fed at a constant pressure to generate minute cavitation bubbles, and discharge plasma is formed in this to decompose and synthesize the substances to be treated such as organic substances contained in the water to be treated.
  • the high-pressure side electrode and the ground side electrode are inserted in the rear stage of the reactor nozzle from opposite directions toward the center, and are installed in parallel at regular intervals, and the tip of each electrode is cross-sectionald in the pipeline.
  • Patent Document 2 There is known a structure in which the electrode is arranged so as to project to the center of the electrode.
  • Patent Documents 3 to 6 As a method of replacing the nozzle, a method of sending a gas to the vicinity of the electrode to generate bubbles is known (Patent Documents 3 to 6).
  • the conventional submerged plasma generator is provided in a flow path through which a liquid containing a gas flows, a pair of electrodes provided in the flow path that generate an electric discharge in the liquid, and a liquid between the pair of electrodes.
  • a turbulent flow generating portion that generates turbulent flow (Patent Document 7).
  • Patent Document a member for artificially generating a turbulent flow in the liquid is provided (Patent Document). 1 and 2), by sending a gas near the electrode to generate bubbles (Patent Documents 3 to 6), and by providing a member for artificially generating cavitation bubbles (Patent Document 7), it is in the liquid.
  • Patent Documents 3 to 6 a member for artificially generating cavitation bubbles
  • the conventional submerged plasma generator requires a separate member for forcibly generating turbulent flow and bubbles in the liquid, which increases the manufacturing cost and maintenance cost. ..
  • some conventional submerged plasma generators forcibly send gas into the liquid from the outside, but even in such a case, the bubbles dissolved in the liquid disappear from the liquid over time. It is extremely difficult to stably maintain a uniform and high-concentration plasma.
  • the present invention has been made to solve the above problems, can stably maintain a uniform and high-concentration plasma in a liquid, can be easily scaled up, and can be used for large-scale treated water.
  • a submerged plasma generator that is also applicable.
  • the submerged plasma generator according to the present invention is a submerged plasma generator that sterilizes the treated water by plasma generated by applying a voltage between electrodes arranged in the treated water, and is a water flow direction of the treated water. It is provided with counter electrodes that face each other in the same direction as the above and are arranged in parallel.
  • the submerged plasma generator according to the present invention is the submerged plasma generator that sterilizes the treated water by the plasma generated by applying a voltage between the electrodes arranged in the treated water. Since the counter electrode 1 is provided so as to face and parallel in the same direction as the water flow direction, the counter electrode exists as an obstacle to the water flow, so that the water flow collides with the surface of the counter electrode. Along with the generation of turbulent flow, bubbles with a fine bubble diameter (cavitation bubbles) are generated from the gas dissolved in the liquid, and the cavitation bubbles are generated at high density on the surface of the counter electrode. Therefore, the cavitation bubbles are used as a medium. A stable, uniform, high-density plasma discharge is generated in the liquid, and the high-density plasma discharge efficiently sterilizes the treated water without using a nozzle or forcibly introducing gas from the outside. It becomes possible to do.
  • the submerged plasma generator according to the present invention is provided with a tapered pipeline having a pipeline shape in which the inner diameter expands along the water flow direction of the treated water, if necessary, and the counter electrode is tapered. It is arranged at a position before the start of expansion of the inner diameter of the pipeline.
  • the cavitation bubbles are optimally quantitative. A situation that is likely to occur will be formed, and stable and uniform high-density plasma discharge will occur in the liquid using the optimally generated cavitation bubbles as a medium, and the high-density plasma discharge will make the treated water more efficient. It becomes possible to carry out sterilization treatment.
  • the counter electrodes are each coated with an insulator, and the opposite end faces are released from the insulator, if necessary.
  • the counter electrodes are each coated with an insulator, and the end faces facing each other are released from the insulator. Therefore, the cavitation bubbles generated in the vicinity of the counter electrodes include the counter electrodes. Therefore, a more stable and uniform high-density plasma discharge is generated, and the high-density plasma discharge makes it possible to efficiently sterilize the treated water.
  • the surface of the counter electrode released from the insulator is composed of a smooth surface, if necessary.
  • the surface of the counter electrode released from the insulator is composed of a smooth surface, there is no acute-angled protrusion (edge) on the surface of the counter electrode, and the sharp protrusion (edge) is formed. Destabilization of the discharge due to the discharge at the edge) can be suppressed, smooth discharge can be obtained, and electrolytic corrosion of the counter electrode can be prevented.
  • the distance between the counter electrodes is larger than the diameter of the bubbles generated in the counter electrode by the water flow of the treated water, if necessary.
  • the submerged plasma generator according to the present invention optimally generates plasma discharge because the distance between the counter electrodes is larger than the diameter of the bubbles generated in the counter electrode by the water flow of the treated water. A more stable and uniform high-density plasma discharge is generated, and the high-density plasma discharge makes it possible to efficiently sterilize the treated water.
  • the cross-sectional area of the portion where the counter electrode is arranged with respect to the water flow direction is 0 with respect to the cross-sectional area of the treated water channel with respect to the water flow direction.
  • the ratio is less than 0.4.
  • the block diagram of the submerged plasma generator which concerns on 1st Embodiment of this invention is shown.
  • An explanatory diagram of plasma generation of the submersible plasma generator according to the first embodiment of the present invention is shown.
  • An explanatory diagram of plasma generation of the submersible plasma generator according to the first embodiment of the present invention is shown.
  • the block diagram of the submerged plasma generator which concerns on 2nd Embodiment of this invention is shown.
  • An explanatory diagram of plasma generation of the submersible plasma generator according to the second embodiment of the present invention is shown.
  • a modified example of the electrode configuration of the submersible plasma generator according to the second embodiment of the present invention is shown.
  • the block diagram of the submerged plasma generator which concerns on 3rd Embodiment of this invention is shown.
  • the block diagram of the submerged plasma generator which concerns on 3rd Embodiment of this invention is shown.
  • An explanatory diagram of plasma generation of the submersible plasma generator according to the third embodiment of the present invention is shown.
  • a front view, a side view, and a bottom view for explaining an example of the electrode configuration of the submerged plasma generator according to the fourth embodiment of the present invention are shown.
  • An explanatory diagram illustrating an example of the electrode configuration of the submerged plasma generator according to the fourth embodiment of the present invention is shown.
  • the electrode configuration of the submersible plasma generator according to the fifth embodiment of the present invention is shown.
  • the (a) electrode configuration and (b) plasma generation photograph of the submerged plasma generator according to the embodiment of the present invention are shown.
  • a schematic diagram of the submerged plasma generator according to the embodiment of the present invention is shown.
  • the submerged plasma generator 10 uses plasma generated by applying a voltage between electrodes arranged in the treated water 100 to generate the treated water 100. It is a submerged plasma generator for sterilization, and includes a counter electrode 1 composed of an electrode 1a and an electrode 1b which are arranged in parallel in the same direction as the water flow direction A of the treated water 100.
  • the type and flow rate of the treated water 100 does not matter as long as it is an aqueous solution to be sterilized.
  • the submerged plasma generator according to the present embodiment can be used, for example, as a water purifier for home use, and can also be used for large-scale commercial sewage treatment. Applicable.
  • the electrodes 1a and 1b can each use ordinary electrode materials, and for example, stainless steel can be used to form a rod-shaped stainless steel rod (stainless steel rod).
  • cemented carbide such as tungsten (W) and copper tungsten (CuW) are also suitable, and by using such a material, it becomes possible to further suppress electrolytic corrosion.
  • the electrode size is not particularly limited. Various sizes can be applied depending on the application, and for example, a rod-shaped one having a diameter of about 1 mm can be used.
  • the counter electrode 1 is parallel to the treated water 100 in the same direction as the water flow direction A. That is, the counter electrode 1 has a configuration in which the electrodes 1a and 1b are opposed to each other and parallel to each other along the flow direction of the water flow direction A, that is, a configuration in which the electrodes 1a and 1b are laminated (electrodes 1a and 1b).
  • the stacking direction is the same as the water flow direction A). With such a configuration, the counter electrode 1 not only functions as an electrode, but also functions as an obstacle that collides with the water flow of the treated water 100.
  • the submerged plasma generator 10 can sterilize by circulating the treated water 100 by plasma discharge using the counter electrode 1.
  • an electrode fixing portion 11 for fixing the counter electrode 1 a reservoir 20 for storing the treated water 100, and a treated water 100 stored in the reservoir 20 are used as a submerged plasma generator. It is possible to include a water supply pump 30 that feeds into 10. With this configuration, it is possible to sterilize cyclically by plasma discharge using the counter electrode 1, and the sterilization efficiency can be further improved.
  • the submerged plasma generator 10 generates cavitation bubbles as follows.
  • the electrodes 1a and 1b collide with the treated water 100 flowing in the water flow direction A.
  • the largest pressure difference in the liquid is generated on the back side (region N) of the electrode 1a, which is the back side of the counter electrode 1 with respect to the water flow.
  • Cavitation bubbles 100a having a fine bubble diameter are generated from the gas dissolved in the gas.
  • the cavitation bubble 100a may include nanobubbles, micronanobubbles, and microbubbles as its bubble size.
  • the space between the counter electrodes 1 has a negative pressure in the treated water 100 as compared with the surroundings.
  • the cavitation bubble 100a travels along the side surface of the electrode 1a toward the counter electrode 1 (region M) (along the water flow direction A'in the direction opposite to the water flow direction A), and is vortexed (for example, Karman vortex). ) Is formed and attracted.
  • a high-density cavitation bubble 100a that covers a wide area between the counter electrode 1 (region M) and the entire back surface side (region N) of the electrode 1a is generated.
  • the cavitation bubbles 100a fill between the counter electrodes 1 (region M), high-density plasma discharge in the counter electrodes 1 is easily caused.
  • the distance between the counter electrodes 1 (region M) is increased by the water flow of the treated water 100. It is more preferable that the diameter of the bubbles is larger than the diameter of the bubbles generated in the above. In this case, a plurality of cavitation bubbles 100a are dynamically and continuously generated between the counter electrodes 1, and the plasma discharge is actively performed at a high density. Can continue to be generated.
  • the submerged plasma generator 10 generates plasma discharge as follows.
  • the electrodes 1a and 1b collide with the treated water 100 flowing in the water flow direction A, and as shown in FIG. 3B, turbulence is generated and the liquid is liquid.
  • Cavitation bubbles 100a having a fine bubble diameter are generated from the gas dissolved in the gas.
  • the cavitation bubble 100a may include nanobubbles, micronanobubbles, and microbubbles as the bubble size.
  • the cavitation bubbles 100a are generated at high density on the surfaces of the electrode 1a and the electrode 1b.
  • the cavitation bubbles 100a generated at this high density serve as a medium, and a uniform high-density plasma B is generated on the surfaces of the electrodes 1a and 1b.
  • a uniform high-density plasma B is generated on the surfaces of the electrodes 1a and 1b.
  • the plasma B further miniaturization of the bubble diameter of the cavitation bubble 100a also progresses at the same time.
  • the cavitation bubble 100a has a long residence time due to the low ascent rate in the liquid, the contact time and the contact volume with the treated water 100 are increased, and the treated water 100 is efficiently sterilized. Is possible.
  • By generating the high-density plasma discharge in this way it is possible to efficiently sterilize the treated water 100 without using a nozzle or forcibly introducing a gas from the outside.
  • the submerged plasma generator according to the present invention is a submerged plasma generator that sterilizes the treated water 100 by the plasma generated by applying a voltage between the electrodes arranged in the treated water 100. Since the counter electrode 1 is provided in parallel in the same direction as the water flow direction of the treated water, the counter electrode 1 exists as an obstacle to the water flow, so that the water flow is on the surface of the counter electrode 1. By colliding with the gas, turbulence is generated, and bubbles having a fine bubble diameter (cavitation bubbles 100a) are generated from the gas dissolved in the liquid, and the cavitation bubbles 100a are generated at high density on the surface of the counter electrode 1.
  • the submerged plasma generator 10 As shown in FIG. 4, the submerged plasma generator 10 according to the second embodiment of the present invention includes the counter electrode 1 as in the first embodiment of the present invention, and the counter electrode 1 is provided with the counter electrode 1. A plurality of them are arranged.
  • FIG. 4 shows, as an example, a configuration in which the pair of counter electrodes 1 are arranged to face each other.
  • the plurality of counter electrodes 1 are parallel to each other in the same direction as the water flow direction A of the treated water 100. With such a configuration, as described above, the counter electrode 1 not only functions as an electrode but also functions as an obstacle having a large collision area with respect to the water flow of the treated water 100.
  • the submerged plasma generator 10 is a device that circulates and sterilizes the treated water 100 by plasma discharge using the plurality of counter electrodes 1 as in the first embodiment of the present invention.
  • the electrode fixing portion 11, the reservoir 20, and the water supply pump 30 can be provided. With this configuration, it is possible to sterilize cyclically by plasma discharge using the counter electrode 1, and the sterilization efficiency can be further improved.
  • the submerged plasma generator 10 according to the embodiment of the present invention generates plasma discharge as follows.
  • FIG. 5 (a) two sets of counter electrodes 1 collide with the treated water 100 flowing in the water flow direction A, and as shown in FIG. 5 (b), turbulence is generated and at the same time, Cavitation bubbles 100a having a fine bubble diameter are generated from the gas dissolved in the liquid.
  • the cavitation bubbles 100a are generated at high density on the surfaces of the two sets of counter electrodes 1.
  • the cavitation bubbles 100a generated at this high density serve as a medium, and a uniform high-density plasma B is generated on the surfaces of the two sets of counter electrodes 1.
  • a uniform high-density plasma B is generated on the surfaces of the two sets of counter electrodes 1.
  • the submerged plasma generator according to the present invention is a submerged plasma generator that sterilizes the treated water 100 by the plasma generated by applying a voltage between the electrodes arranged in the treated water 100. Since the counter electrode 1 is provided in parallel in the same direction as the water flow direction of the treated water, the counter electrode 1 exists as an obstacle to the water flow, so that the water flow is on the surface of the counter electrode 1. By colliding with the gas, turbulence is generated, and bubbles having a fine bubble diameter (cavitation bubbles 100a) are generated from the gas dissolved in the liquid, and the cavitation bubbles 100a are generated at high density on the surface of the counter electrode 1.
  • the plurality of counter electrodes 1 are exemplified as two counter electrodes 1, but the present invention is not limited to this embodiment.
  • it can be composed of three counter electrodes 1.
  • the area of the counter electrode 1 per electrode is S'
  • the area ratio of the total area of the three counter electrodes 1 to the cross-sectional area S of the flow path tube is 3S'. Is 3S'/ S.
  • FIG. 6B it can also be composed of four counter electrodes 1.
  • the pipeline can be made square, and the four counter electrodes 1 can be easily installed.
  • FIG. 6D it can also be composed of eight counter electrodes 1.
  • the plurality of counter electrodes 1 can be easily configured with various variations, and the device can be easily designed according to the amount of plasma generated according to the application.
  • the diameter of the circular pipe is 7.6 mm (cross-sectional area 45 mm 2 with respect to the water flow direction), and the counter electrode is formed in the circular pipe.
  • the amount of air bubbles generated is visually observed by increasing or decreasing the number of arrangements of the facing electrodes 1 having a rectangular shape and a protruding shape in which 1 is 1.2 mm in length ⁇ 3 mm in width (3.6 mm in cross-sectional area with respect to the water flow direction 2) with respect to the water flow direction. confirmed.
  • the amount of bubbles generated is calculated as a relative amount with the reference value of 100 [%] as the amount of bubbles generated when the number of counter electrodes 1 is 1 (in the case of one set of counter electrodes 1), and the amount of bubbles generated is calculated as the relative amount.
  • the results obtained are shown in the table below, along with the corresponding plasma generation amounts ( ⁇ : high, ⁇ : low).
  • the number of arrangements of the counter electrodes 1 is 4 (as shown in FIG. 6E), as compared with the case where the number of arrangements of the counter electrodes 1 is larger than 5 (cross-sectional area 18 mm 2 with respect to the water flow direction). It was confirmed that the smaller the cross-sectional area with respect to the water flow direction is 14.4 mm 2 ), the more suitable bubble generation is due to the plasma generation in the liquid.
  • the ratio of the cross-sectional area of the counter electrode 1 to the flow path is calculated, as shown in the above table, when the number of counter electrodes 1 is 4 (in the case of 4 sets of counter electrodes 1). the cross-sectional area opposite electrode 1 relative to the water flow direction of the disposed portion (14.4 mm 2), the ratio of the cross-sectional area (45 mm 2) with respect to the water flow direction of the water channel of the treated water 100 is calculated as 0.32 It was. Further, as shown in the above table, when the number of the counter electrodes 1 is 5 (in the case of 5 sets of counter electrodes 1), the portion where the counter electrodes 1 are arranged is cut off with respect to the water flow direction. The area (18 mm 2 ) was calculated as a ratio of the treated water 100 to the cross-sectional area (45 mm 2) of the water channel with respect to the water flow direction as 0.4.
  • the ratio of the cross-sectional area occupied by the flow path of the counter electrode 1 is calculated by the n ⁇ m / ( ⁇ ⁇ M 2/4).
  • the increase / decrease in the amount of bubbles generated in the liquid can be easily and freely controlled according to the purpose such as the device size and the amount of sterilization, and the increase / decrease in the plasma generation amount can be easily and freely controlled. Become.
  • the submerged plasma generator 10 includes the counter electrode 1 as in the first embodiment of the present invention, and is further shown in FIG. 7.
  • a tapered pipeline 10b having a pipeline shape whose inner diameter expands along the water flow direction A of the treated water 100 is provided, and the counter electrode 1 is before the start of expansion of the inner diameter of the tapered pipeline 10b. It is arranged at the position of.
  • the tapered pipe line 10b is connected to a parallel pipe line 10a having a constant line diameter, and the line diameter has a shape that expands along the water flow direction A of the treated water 100.
  • a plastic pipe 300 connected from the electrode fixing portion 11 of the two sets of counter electrodes 1 and a tube joint 301 covering between the plastic pipe 300 and the electrode fixing portion 11
  • the high-voltage power supply 400 that supplies power to the other counter electrode 1, and the high-voltage power supply 400.
  • the configuration may include a high-voltage probe 401 connected to the high-voltage power supply 400 and a current probe 402 also connected to the high-voltage power supply 400.
  • the voltage v (t) and the current i (t) can be controlled over time by using the high-voltage probe 401 and the current probe 402.
  • the high-voltage power supply 200 and the high-voltage power supply 400 can use a high-voltage transformer (neon) capable of outputting 1 kV.
  • the submerged plasma generator 10 according to the embodiment of the present invention generates plasma discharge as follows.
  • FIG. 9 (a) two sets of counter electrodes 1 collide with the treated water 100 flowing in the water flow direction A, and as shown in FIG. 9 (b), turbulence is generated and at the same time, Cavitation bubbles 100a having a fine bubble diameter are generated from the gas dissolved in the liquid.
  • the cavitation bubbles 100a are generated at high density on the surfaces of the two sets of counter electrodes 1.
  • the cavitation bubbles 100a generated at this high density serve as a medium, and a uniform high-density plasma B is generated on the surface of the counter electrode 1.
  • a uniform high-density plasma B is generated on the surface of the counter electrode 1.
  • the cavitation bubble 100a is quantitatively contained. A situation is formed in which optimally generated cavitation bubbles 100a are used as a medium to generate stable and uniform high-density plasma discharge in the treated water 100.
  • the plasma discharge of the above makes it possible to efficiently sterilize the treated water 100.
  • the submerged plasma generator 10 according to the fourth embodiment of the present invention includes the counter electrode 1 as in the first embodiment of the present invention, and further, as shown in FIG. 10, the counter electrode 1
  • the counter electrode 1 is covered with the insulators 11a and 11b, respectively, and the opposite end faces 13a and 13b are released from the insulator, respectively. That is, the electrode materials 12a and 12b are entirely covered with the insulator up to the electrode tip of the counter electrode 1, and only the portions of the electrode tips of the counter electrode 1 facing each other are exposed from the insulator. is there.
  • the cavitation bubble 100a generated in the vicinity of the counter electrode 1 includes the counter electrode 1, and the narrow region formed from the opposite end faces 13a and 13b is formed.
  • Plasma B can be generated efficiently. In this way, a more stable and uniform high-density plasma discharge is generated, and the high-density plasma discharge makes it possible to efficiently sterilize the treated water 100.
  • the surface shapes of the electrode materials 12a and 12b on the opposing end faces 13a and 13b that are open from the insulator are not particularly limited, but are composed of smooth surfaces as shown in FIG. 11A. Is preferable, and a smooth spherical shape can be obtained, but the shape is not limited to the spherical shape as long as the shape is composed of a smooth surface.
  • This smooth surface can be formed by removing sharp protrusions (edges) by processing such as cutting the undulations of the open electrode materials 12a and 12b.
  • the surface of the counter electrode 1 released from the insulator is composed of a smooth surface, there is no acute-angled protrusion (edge) on the surface of the counter electrode 1, and the sharp protrusion It is possible to suppress the scattered and unstable discharge caused from the surface of the portion (edge), obtain a smooth discharge, and prevent electrolytic corrosion of the counter electrode.
  • the ratio r / (R + r) of the electrode materials 12a and 12b being released (exposed) from the insulator at the opposite end faces 13a and 13b, respectively, is determined.
  • the open electrode materials 12a and 12b are not particularly limited as long as they face each other in a dischargeable manner, but are preferably 1/5 to 4/5 (20% to 80%), and more preferably 1/3. It is ⁇ 3/4 (33% ⁇ 75%), and as shown in FIG. 11 (c), discharge is generated more efficiently between the electrode materials 12a and 12b opened at the opposite end faces 13a and 13b. Plasma B can be generated efficiently.
  • the submerged plasma generator 10 includes the counter electrode 1 as in the first embodiment of the present invention, and as shown in FIG. 12, further, the counter electrode 1
  • the interval L between them is larger than the diameter l of the bubbles generated in the counter electrode by the water flow in the water flow direction A of the treated water 100.
  • the distance L between the counter electrodes 1 is larger than the diameter l of the bubbles generated in the counter electrode 1 by the water flow of the treated water 100.
  • a situation is formed in which plasma discharge is likely to be optimally generated, a more stable and uniform high-density plasma discharge is generated, and the treated water 100 can be efficiently sterilized by this high-density plasma discharge. It will be possible.
  • the treated water 100 is flowed into the pipeline having the tapered conduit 10b by using two sets of counter electrodes 1 facing each other. A water flow that causes turbulence was generated, and a voltage was applied between these counter electrodes 1.
  • the counter electrode 1 is covered with insulators 11a and 11b, respectively, and the opposite end faces 13a and 13b are the insulators 11a, respectively, in the configuration of the fourth embodiment as shown in FIG. 13A. And the one released from 11b was used. Further, a plastic pipe 300 connected from the electrode fixing portion of the counter electrode 1 was arranged.
  • the distance between the end faces 13a and 13b was 0.9 mm.
  • the electrodes 1a and 1b are made of insulators 11a and 11b having a rod-shaped stainless steel rod (stainless steel rod) having a diameter of 0.8 mm as a core and a ceramic (ceramic tube) having a thickness of 0.4 mm around the core. Covered. A voltage of 1 kV was applied to the counter electrode using a high voltage transformer (neon) as a high voltage power source for plasma generation.
  • the counter electrode 1 was installed at a position before the start of expansion of the inner diameter of the parallel pipeline 10a, and the counter electrode was also installed on the tapered pipeline 10b side as a comparative example.
  • cavitation bubbles 100a shown in a cloudy region were generated in the treated water 100 due to the flow velocity that generated turbulence.
  • a liquid is generated by a sharp discharge between the electrodes of the counter electrode 1 arranged at the position before the start of expansion of the inner diameter of the parallel pipeline 10a. It was confirmed that plasma B was generated inside.
  • the counter electrode on the tapered pipeline 10b side as a comparative example does not generate plasma even under the same water flow conditions.
  • FIG. 14 shows a schematic diagram of a photograph of the experimental results shown in FIG. 13 (b).
  • the counter electrode 1 is installed at the position (Y side) of the inner diameter of the parallel pipe line 10a before the start of expansion, and as a comparative example, it is located on the tapered pipe line 10b side (X side). The counter electrode 1 is installed.
  • cavitation bubbles 100a indicated by cloudy regions were generated in the treated water 100 due to the flow velocity that generated turbulence.
  • FIG. 14 (b) between the electrodes of the counter electrodes 1 arranged at the position (Y side) before the start of expansion of the inner diameter of the parallel pipeline 10a, a sharp electric discharge causes a submergence in the liquid. It was confirmed that plasma B was generated in. On the other hand, it was also confirmed that plasma was not generated at the counter electrode on the tapered pipeline 10b side (X side) as a comparative example.
  • Opposing electrode 10 Submersible plasma generator 10a Parallel pipeline 10b Tapered pipeline 11 Electrode fixing part 1a Opposite electrode 11a Insulator 12a Electrode material 13a End face 1b Opposite electrode 11b Insulation 12b Electrode material 13b End face 20 Reservoir 30 Water supply pump 100 processing Water 100a Cavitation bubble 200 High pressure power supply 300 Plastic pipe 301 Tube joint 400 High pressure power supply 401 High pressure probe 402 Current probe

Landscapes

  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Physical Water Treatments (AREA)

Abstract

Provided is a submerged plasma generation device which can stably maintain a uniform and high concentration of plasma in a liquid, is easily capable of scaling up, and is applicable even to large-scale treatment water. The submerged plasma generation device sterilizes the treatment water by means of the plasma generated by applying a voltage between electrodes disposed in the treatment water and is provided with counter electrodes arranged in parallel and opposite to the same direction as the water flow direction of the treatment water.

Description

液中プラズマ発生装置Submersible plasma generator
 本発明は、放電プラズマを発生させるプラズマ発生装置に関し、特に、液中において放電プラズマを発生させる液中プラズマ発生装置に関する。 The present invention relates to a plasma generator that generates discharge plasma, and more particularly to a submerged plasma generator that generates discharge plasma in liquid.
 プラズマを発生させて対象物の殺菌を行うプラズマ殺菌は、その用途が多岐にわたっており、その適用分野は拡大の一途を辿っている。このような適用分野として、浄水処理が挙げられる。特にプラズマによって、殺菌対象の処理水に含有される有機物等を分解できるプラズマ発生装置が期待されている。 Plasma sterilization, which generates plasma to sterilize an object, has a wide range of applications, and its application fields are steadily expanding. An example of such an application field is water purification treatment. In particular, a plasma generator capable of decomposing organic substances and the like contained in treated water to be sterilized by plasma is expected.
 従来の浄水処理では、次亜塩素酸などの薬剤処理が行われている。しかし、薬剤処理は、安価ではあるものの、浄水処理後の残留性の問題があり、人体の健康に与える影響が問題視されている。また、薬剤耐性菌・微生物の発生の可能性も示唆されており、その殺菌効果は永続的なものとは言い切れない。 In the conventional water purification treatment, chemical treatment such as hypochlorous acid is performed. However, although chemical treatment is inexpensive, there is a problem of persistence after water purification treatment, and the effect on human health is regarded as a problem. It has also been suggested that drug-resistant bacteria and microorganisms may develop, and its bactericidal effect cannot be said to be permanent.
 この点、処理水に対するプラズマ殺菌を可能とする液中プラズマ発生装置が実現されれば、プラズマの高い反応性により発生するOHラジカルによる殺菌力によって、処理水を強力に殺菌することができると共に、薬剤のような残留性は無い。そのため、浄水処理に液中プラズマ発生装置が適用できれば、無毒な浄水処理であることから、その実現が切望されている。 In this regard, if a submerged plasma generator capable of plasma sterilization of treated water is realized, the treated water can be strongly sterilized by the sterilizing power of OH radicals generated by the high reactivity of plasma. It does not have the persistence of drugs. Therefore, if a submerged plasma generator can be applied to the water purification treatment, it is a non-toxic water purification treatment, and its realization is eagerly desired.
 しかし、液中プラズマ発生装置の実現に向けては、本質的に技術的な課題がある。それは、液中でプラズマを発生させるのは、困難であるという点である。液中の電極に対して非常に高い電圧を印加するというのも現実的ではない。そのため、従来から、液中で簡易に効率よくプラズマを発生できる手法の開発が取り組まれている。 However, there are essentially technical issues toward the realization of a submerged plasma generator. That is, it is difficult to generate plasma in liquid. It is also impractical to apply a very high voltage to the electrodes in the liquid. Therefore, conventionally, development of a method capable of easily and efficiently generating plasma in a liquid has been undertaken.
 例えば、従来の液中プラズマ発生装置としては、キャビテーション気泡を発生させるキャビテーションの後段近傍に対向させて設けた対電極間に高電圧を印加して放電プラズマを発生させることにより、浄水処理を行うものであって、キャビテーション発生部内部の通水管路の内面に沿って、管路表面上に沿面放電を形成するように対電極を配置したものが知られている(特許文献1)。 For example, as a conventional submerged plasma generator, water purification treatment is performed by applying a high voltage between counter electrodes provided so as to face each other in the vicinity of the rear stage of cavitation that generates cavitation bubbles to generate discharge plasma. It is known that the counter electrode is arranged along the inner surface of the water passage inside the cavitation generating portion so as to form a creepage discharge on the surface of the pipeline (Patent Document 1).
 また、従来の液中プラズマ発生装置は、通水管路、ノズル、および放電部を形成する高圧側電極と接地側電極を備えるリアクターと、高圧側電極と接地側電極に接続した高電圧電源を有し、被処理水を一定の圧力で送給し微小キャビテーション気泡を発生させこれに放電プラズマを形成させて、被処理水中に含有する有機物等の被処理物質の分解や合成等の処理を行うもので、リアクターのノズルの後段に、高圧側電極と接地側電極をそれぞれ逆方向から中心部に向けて挿入し、一定間隔をおいて平行に設置するとともに、各々の電極の先端部を管路断面の中心部まで突出させて配置する構成にしたものが知られている(特許文献2)。 In addition, the conventional submerged plasma generator has a reactor having a high-voltage side electrode and a ground-side electrode forming a water passage, a nozzle, and a discharge portion, and a high-voltage power supply connected to the high-voltage side electrode and the ground-side electrode. Then, the water to be treated is fed at a constant pressure to generate minute cavitation bubbles, and discharge plasma is formed in this to decompose and synthesize the substances to be treated such as organic substances contained in the water to be treated. Then, the high-pressure side electrode and the ground side electrode are inserted in the rear stage of the reactor nozzle from opposite directions toward the center, and are installed in parallel at regular intervals, and the tip of each electrode is cross-sectionald in the pipeline. There is known a structure in which the electrode is arranged so as to project to the center of the electrode (Patent Document 2).
 また、従来の液中プラズマ発生装置は、上記ノズルに代替する方法として、電極近傍に気体を送り、気泡を発生させる方法が知られている(特許文献3~6)。 Further, in the conventional submerged plasma generator, as a method of replacing the nozzle, a method of sending a gas to the vicinity of the electrode to generate bubbles is known (Patent Documents 3 to 6).
 また、従来の液中プラズマ発生装置は、気体を含む液体が流れる流路と、その流路内に設けられ、液体中で放電を生じさせる一対の電極と、それら一対の電極の間の液体中に乱流を発生させる乱流発生部とを備えるものが知られている(特許文献7)。 Further, the conventional submerged plasma generator is provided in a flow path through which a liquid containing a gas flows, a pair of electrodes provided in the flow path that generate an electric discharge in the liquid, and a liquid between the pair of electrodes. There is known one provided with a turbulent flow generating portion that generates turbulent flow (Patent Document 7).
特開2009-119347号公報JP-A-2009-119347 特開2011-41914号公報Japanese Unexamined Patent Publication No. 2011-41914 特開2005-58887号公報Japanese Unexamined Patent Publication No. 2005-58887 特開2005-13858号公報Japanese Unexamined Patent Publication No. 2005-13858 特開2015-223528号公報Japanese Unexamined Patent Publication No. 2015-223528 特表平9-507428号公報Special Table 9-507428 Gazette 特開2014-79743号公報Japanese Unexamined Patent Publication No. 2014-77943
 従来の液中プラズマ発生装置は、液中に気体を形成させる目的で、例えば、上記の各特許文献に示されるように、液中に乱流を人工的に発生させる部材を設けること(特許文献1および2)や、電極近傍に気体を送り、気泡を発生させること(特許文献3~6)や、キャビテーション気泡を人工的に発生させる部材を設けること(特許文献7)によって、液中であってもプラズマが発生するように工夫されたものである。 In the conventional submerged plasma generator, for the purpose of forming a gas in the liquid, for example, as shown in each of the above patent documents, a member for artificially generating a turbulent flow in the liquid is provided (Patent Document). 1 and 2), by sending a gas near the electrode to generate bubbles (Patent Documents 3 to 6), and by providing a member for artificially generating cavitation bubbles (Patent Document 7), it is in the liquid. However, it was devised so that plasma would be generated.
 しかし、従来の液中プラズマ発生装置は、液中で乱流や気泡を強制的に発生させるための部材が別体で必要となることから、製造コストや維持管理コストが嵩むものとなっている。また、従来の液中プラズマ発生装置は、外部から液中に強制的に気体を送り込むものもあるが、そのような場合でも、液中に溶存する気泡は時間経過と共に液体から消失してしまうため、均一で高濃度のプラズマを安定的に維持させることは極めて困難である。 However, the conventional submerged plasma generator requires a separate member for forcibly generating turbulent flow and bubbles in the liquid, which increases the manufacturing cost and maintenance cost. .. In addition, some conventional submerged plasma generators forcibly send gas into the liquid from the outside, but even in such a case, the bubbles dissolved in the liquid disappear from the liquid over time. It is extremely difficult to stably maintain a uniform and high-concentration plasma.
 本発明は、前記課題を解消するためになされたものであり、液中で均一で高濃度のプラズマを安定的に維持させることができ、容易にスケールアップ可能であり、大規模の処理水に対しても適用可能な液中プラズマ発生装置を提供する。 The present invention has been made to solve the above problems, can stably maintain a uniform and high-concentration plasma in a liquid, can be easily scaled up, and can be used for large-scale treated water. Provided is a submerged plasma generator that is also applicable.
 本発明に係る液中プラズマ発生装置は、処理水中に配設された電極間で電圧印加により生成させるプラズマによって、当該処理水を殺菌する液中プラズマ発生装置であって、前記処理水の水流方向と同方向に対向して並列される対向電極を備えるものである。 The submerged plasma generator according to the present invention is a submerged plasma generator that sterilizes the treated water by plasma generated by applying a voltage between electrodes arranged in the treated water, and is a water flow direction of the treated water. It is provided with counter electrodes that face each other in the same direction as the above and are arranged in parallel.
 このように、本発明に係る液中プラズマ発生装置は、処理水中に配設された電極間で電圧印加により生成させるプラズマによって、当該処理水を殺菌する液中プラズマ発生装置であって、前記処理水の水流方向と同方向に対向して並列される対向電極1を備えることから、当該対向電極が、水流に対して障害物として存在することにより、水流が当該対向電極表面に衝突することによって、乱流が発生すると共に、液中に溶存する気体から気泡径が微細な気泡(キャビテーション気泡)が生じ、当該キャビテーション気泡が当該対向電極表面に高密度で生じることから、当該キャビテーション気泡を媒体として液中で安定で均一な高密度のプラズマ放電が生じることとなり、当該高密度のプラズマ放電によって、ノズルを用いることや外部から強制的に気体を導入することなく、処理水を効率的に殺菌処理することが可能となる。 As described above, the submerged plasma generator according to the present invention is the submerged plasma generator that sterilizes the treated water by the plasma generated by applying a voltage between the electrodes arranged in the treated water. Since the counter electrode 1 is provided so as to face and parallel in the same direction as the water flow direction, the counter electrode exists as an obstacle to the water flow, so that the water flow collides with the surface of the counter electrode. Along with the generation of turbulent flow, bubbles with a fine bubble diameter (cavitation bubbles) are generated from the gas dissolved in the liquid, and the cavitation bubbles are generated at high density on the surface of the counter electrode. Therefore, the cavitation bubbles are used as a medium. A stable, uniform, high-density plasma discharge is generated in the liquid, and the high-density plasma discharge efficiently sterilizes the treated water without using a nozzle or forcibly introducing gas from the outside. It becomes possible to do.
 また、本発明に係る液中プラズマ発生装置は、必要に応じて、前記処理水の水流方向に沿って内径が拡開する管路形状を有するテーパー管路を備え、前記対向電極が、前記テーパー管路の内径の拡開開始前の位置に配設されるものである。 Further, the submerged plasma generator according to the present invention is provided with a tapered pipeline having a pipeline shape in which the inner diameter expands along the water flow direction of the treated water, if necessary, and the counter electrode is tapered. It is arranged at a position before the start of expansion of the inner diameter of the pipeline.
 このように、本発明に係る液中プラズマ発生装置は、前記対向電極が、前記テーパー管路の内径の拡開開始前の位置に配設されることから、キャビテーション気泡が量的にも最適に発生しやすい状況が形成されることとなり、当該最適に発生したキャビテーション気泡を媒体として液中で安定で均一な高密度のプラズマ放電が生じることとなり、当該高密度のプラズマ放電によって、処理水を効率的に殺菌処理することが可能となる。 As described above, in the submerged plasma generator according to the present invention, since the counter electrode is arranged at the position before the start of expansion of the inner diameter of the tapered pipeline, the cavitation bubbles are optimally quantitative. A situation that is likely to occur will be formed, and stable and uniform high-density plasma discharge will occur in the liquid using the optimally generated cavitation bubbles as a medium, and the high-density plasma discharge will make the treated water more efficient. It becomes possible to carry out sterilization treatment.
 また、本発明に係る液中プラズマ発生装置は、必要に応じて、前記対向電極が、各々絶縁体で被覆されると共に、各々対向する端面が当該絶縁体から開放されるものである。このように、前記対向電極が、各々絶縁体で被覆されると共に、各々対向する端面が当該絶縁体から開放されることから、当該対向電極近傍に発生したキャビテーション気泡が当該対向電極を包摂することとなり、さらに安定で均一な高密度のプラズマ放電が発生し、当該高密度のプラズマ放電によって、処理水を効率的に殺菌処理することが可能となる。 Further, in the submerged plasma generator according to the present invention, the counter electrodes are each coated with an insulator, and the opposite end faces are released from the insulator, if necessary. In this way, the counter electrodes are each coated with an insulator, and the end faces facing each other are released from the insulator. Therefore, the cavitation bubbles generated in the vicinity of the counter electrodes include the counter electrodes. Therefore, a more stable and uniform high-density plasma discharge is generated, and the high-density plasma discharge makes it possible to efficiently sterilize the treated water.
 また、本発明に係る液中プラズマ発生装置は、必要に応じて、前記絶縁体から開放された対向電極の表面が、平滑面から構成されるものである。このように、前記絶縁体から開放された対向電極の表面に、平滑面から構成されることから、前記対向電極の表面に鋭角な突起部分(エッジ)が存在しないこととなり、鋭角な突起部分(エッジ)での放電による放電の不安定化を抑止することができ、円滑な放電が得られると共に対向電極の電蝕を防止することができる。 Further, in the submerged plasma generator according to the present invention, the surface of the counter electrode released from the insulator is composed of a smooth surface, if necessary. As described above, since the surface of the counter electrode released from the insulator is composed of a smooth surface, there is no acute-angled protrusion (edge) on the surface of the counter electrode, and the sharp protrusion (edge) is formed. Destabilization of the discharge due to the discharge at the edge) can be suppressed, smooth discharge can be obtained, and electrolytic corrosion of the counter electrode can be prevented.
 また、本発明に係る液中プラズマ発生装置は、必要に応じて、前記対向電極間の間隔が、前記処理水の水流により前記対向電極に発生する気泡の直径よりも大きいものである。このように、本発明に係る液中プラズマ発生装置は、前記対向電極間の間隔が、前記処理水の水流により前記対向電極に発生する気泡の直径よりも大きいことから、プラズマ放電を最適に発生しやすい状況が形成されることとなり、より安定で均一な高密度のプラズマ放電が発生し、当該高密度のプラズマ放電によって、処理水を効率的に殺菌処理することが可能となる。 Further, in the submerged plasma generator according to the present invention, the distance between the counter electrodes is larger than the diameter of the bubbles generated in the counter electrode by the water flow of the treated water, if necessary. As described above, the submerged plasma generator according to the present invention optimally generates plasma discharge because the distance between the counter electrodes is larger than the diameter of the bubbles generated in the counter electrode by the water flow of the treated water. A more stable and uniform high-density plasma discharge is generated, and the high-density plasma discharge makes it possible to efficiently sterilize the treated water.
 また、本発明に係る液中プラズマ発生装置は、必要に応じて、前記対向電極が配設された部分の水流方向に対する断面積が、前記処理水の水路の水流方向に対する断面積に対し、0.4未満の比率であるものである。このように、前記対向電極が配設された部分の水流方向に対する断面積が、前記処理水の水路の水流方向に対する断面積に対し、0.4未満の比率であることから、前記処理水の水流が前記対向電極に衝突して生成される気泡が、液中プラズマ発生に最適なサイズ及び気泡量で生成されることとなり、液中で効率的にプラズマを生成することができる。 Further, in the submerged plasma generator according to the present invention, if necessary, the cross-sectional area of the portion where the counter electrode is arranged with respect to the water flow direction is 0 with respect to the cross-sectional area of the treated water channel with respect to the water flow direction. The ratio is less than 0.4. As described above, since the cross-sectional area of the portion where the counter electrode is arranged with respect to the water flow direction is less than 0.4 with respect to the cross-sectional area of the treated water channel with respect to the water flow direction, the treated water. The bubbles generated when the water stream collides with the counter electrode are generated in the optimum size and amount of bubbles for plasma generation in the liquid, and plasma can be efficiently generated in the liquid.
本発明の第1の実施形態に係る液中プラズマ発生装置の構成図を示す。The block diagram of the submerged plasma generator which concerns on 1st Embodiment of this invention is shown. 本発明の第1の実施形態に係る液中プラズマ発生装置のプラズマ生成の説明図を示す。An explanatory diagram of plasma generation of the submersible plasma generator according to the first embodiment of the present invention is shown. 本発明の第1の実施形態に係る液中プラズマ発生装置のプラズマ生成の説明図を示す。An explanatory diagram of plasma generation of the submersible plasma generator according to the first embodiment of the present invention is shown. 本発明の第2の実施形態に係る液中プラズマ発生装置の構成図を示す。The block diagram of the submerged plasma generator which concerns on 2nd Embodiment of this invention is shown. 本発明の第2の実施形態に係る液中プラズマ発生装置のプラズマ生成の説明図を示す。An explanatory diagram of plasma generation of the submersible plasma generator according to the second embodiment of the present invention is shown. 本発明の第2の実施形態に係る液中プラズマ発生装置の電極構成の変形例を示す。A modified example of the electrode configuration of the submersible plasma generator according to the second embodiment of the present invention is shown. 本発明の第3の実施形態に係る液中プラズマ発生装置の構成図を示す。The block diagram of the submerged plasma generator which concerns on 3rd Embodiment of this invention is shown. 本発明の第3の実施形態に係る液中プラズマ発生装置の構成図を示す。The block diagram of the submerged plasma generator which concerns on 3rd Embodiment of this invention is shown. 本発明の第3の実施形態に係る液中プラズマ発生装置のプラズマ生成の説明図を示す。An explanatory diagram of plasma generation of the submersible plasma generator according to the third embodiment of the present invention is shown. 本発明の第4の実施形態に係る液中プラズマ発生装置の電極構成の一例を説明する正面図、側面図、底面図を示す。A front view, a side view, and a bottom view for explaining an example of the electrode configuration of the submerged plasma generator according to the fourth embodiment of the present invention are shown. 本発明の第4の実施形態に係る液中プラズマ発生装置の電極構成の一例を説明する説明図を示す。An explanatory diagram illustrating an example of the electrode configuration of the submerged plasma generator according to the fourth embodiment of the present invention is shown. 本発明の第5の実施形態に係る液中プラズマ発生装置の電極構成を示す。The electrode configuration of the submersible plasma generator according to the fifth embodiment of the present invention is shown. 本発明の実施例に係る液中プラズマ発生装置の(a)電極構成および(b)プラズマ生成写真を示す。The (a) electrode configuration and (b) plasma generation photograph of the submerged plasma generator according to the embodiment of the present invention are shown. 本発明の実施例に係る液中プラズマ発生装置の模式図を示す。A schematic diagram of the submerged plasma generator according to the embodiment of the present invention is shown.
(第1の実施形態)
本発明の第1の実施形態に係る液中プラズマ発生装置10は、図1に示すように、処理水100中に配設された電極間で電圧印加により生成させるプラズマによって、この処理水100を殺菌する液中プラズマ発生装置であって、この処理水100の水流方向Aと同方向に対向して並列される電極1aおよび電極1bから構成される対向電極1を備えるものである。
(First Embodiment)
As shown in FIG. 1, the submerged plasma generator 10 according to the first embodiment of the present invention uses plasma generated by applying a voltage between electrodes arranged in the treated water 100 to generate the treated water 100. It is a submerged plasma generator for sterilization, and includes a counter electrode 1 composed of an electrode 1a and an electrode 1b which are arranged in parallel in the same direction as the water flow direction A of the treated water 100.
 この処理水100は、殺菌対象となる水溶液であればその種類や流量は問わない。この処理水100の種類や流量に応じて、本実施形態に係る液中プラズマ発生装置は、例えば、家庭用の浄水器として使用することもでき、また、業務用の大規模な下水処理にも適用可能である。 The type and flow rate of the treated water 100 does not matter as long as it is an aqueous solution to be sterilized. Depending on the type and flow rate of the treated water 100, the submerged plasma generator according to the present embodiment can be used, for example, as a water purifier for home use, and can also be used for large-scale commercial sewage treatment. Applicable.
 この電極1aおよび電極1bは、各々、通常の電極材料を用いることができ、例えば、ステンレスを用いて、棒状のステンレス鋼棒(stainless steel rod)として構成することができる。この他にも、タングステン(W)等の超硬金属や銅タングステン(CuW)等も好適であり、このような材質を用いることにより、より電蝕を抑制することが可能となる。電極サイズは、特に限定されない。用途に応じて様々なサイズを適用可能であり、例えば、約1mm程度の直径の棒状のものを用いることができる。 The electrodes 1a and 1b can each use ordinary electrode materials, and for example, stainless steel can be used to form a rod-shaped stainless steel rod (stainless steel rod). In addition, cemented carbide such as tungsten (W) and copper tungsten (CuW) are also suitable, and by using such a material, it becomes possible to further suppress electrolytic corrosion. The electrode size is not particularly limited. Various sizes can be applied depending on the application, and for example, a rod-shaped one having a diameter of about 1 mm can be used.
 この対向電極1は、この処理水100の水流方向Aと同方向に対向して並列される。すなわち、この対向電極1は、水流方向Aの流れ方向に沿って、電極1aおよび電極1bが対向して並列される構成、すなわち、電極1aおよび電極1bが積層される構成(電極1aおよび電極1bの積層方向が水流方向Aと同じ)である。このような構成によって、この対向電極1は、単に電極としての機能のみならず、この処理水100の水流に対して衝突する障害物としても機能することとなる。 The counter electrode 1 is parallel to the treated water 100 in the same direction as the water flow direction A. That is, the counter electrode 1 has a configuration in which the electrodes 1a and 1b are opposed to each other and parallel to each other along the flow direction of the water flow direction A, that is, a configuration in which the electrodes 1a and 1b are laminated ( electrodes 1a and 1b). The stacking direction is the same as the water flow direction A). With such a configuration, the counter electrode 1 not only functions as an electrode, but also functions as an obstacle that collides with the water flow of the treated water 100.
 本実施形態に係る液中プラズマ発生装置10は、この対向電極1を用いたプラズマ放電で処理水100を循環させて殺菌することができる。 The submerged plasma generator 10 according to the present embodiment can sterilize by circulating the treated water 100 by plasma discharge using the counter electrode 1.
 例えば、図1に示すように、この対向電極1を固定する電極固定部11と、この処理水100を貯留するリザーバー20と、このリザーバー20で貯留された処理水100をこの液中プラズマ発生装置10に送り込む送水ポンプ30と、を備えることが可能である。この構成により、この対向電極1を用いたプラズマ放電で循環的に殺菌できることとなり、より殺菌効率を高めることができる。 For example, as shown in FIG. 1, an electrode fixing portion 11 for fixing the counter electrode 1, a reservoir 20 for storing the treated water 100, and a treated water 100 stored in the reservoir 20 are used as a submerged plasma generator. It is possible to include a water supply pump 30 that feeds into 10. With this configuration, it is possible to sterilize cyclically by plasma discharge using the counter electrode 1, and the sterilization efficiency can be further improved.
 本実施形態に係る液中プラズマ発生装置10は、以下のようにキャビテーション気泡を発生させる。 The submerged plasma generator 10 according to the present embodiment generates cavitation bubbles as follows.
 先ず、図2(a)に示すように、電極1aおよび電極1bが水流方向Aで流れている処理水100と衝突する。その際、図2(b)に示すように、対向電極1のうち、水流に対して背面となる電極1aの背面側(領域N)において、液中で最も大きい圧力差が生じることとなり、液中に溶存する気体から、気泡径が微細なキャビテーション気泡100aが生じる。このキャビテーション気泡100aは、その気泡サイズとしてナノバブル、マイクロナノバブル、マイクロバブルを含み得るものである。 First, as shown in FIG. 2A, the electrodes 1a and 1b collide with the treated water 100 flowing in the water flow direction A. At that time, as shown in FIG. 2B, the largest pressure difference in the liquid is generated on the back side (region N) of the electrode 1a, which is the back side of the counter electrode 1 with respect to the water flow. Cavitation bubbles 100a having a fine bubble diameter are generated from the gas dissolved in the gas. The cavitation bubble 100a may include nanobubbles, micronanobubbles, and microbubbles as its bubble size.
 次に、図2(c)に示すように、対向電極1間(領域M)は、処理水100の液中で周囲に比べて負圧となっている。このキャビテーション気泡100aは、この対向電極1間(領域M)に向かって、電極1aの側面を伝って(上記水流方向Aと逆方向の水流方向A’に沿って)、渦流(例えばカルマン渦様)を形成しながら誘引される。 Next, as shown in FIG. 2C, the space between the counter electrodes 1 (region M) has a negative pressure in the treated water 100 as compared with the surroundings. The cavitation bubble 100a travels along the side surface of the electrode 1a toward the counter electrode 1 (region M) (along the water flow direction A'in the direction opposite to the water flow direction A), and is vortexed (for example, Karman vortex). ) Is formed and attracted.
 この誘引によって、図2(d)に示すように、対向電極1間(領域M)と電極1aの背面側(領域N)全体を広範囲に覆う高密度なキャビテーション気泡100aが生成する。特に、対向電極1間(領域M)においてキャビテーション気泡100aが充満することから、対向電極1での高密度なプラズマ放電が容易に引き起こされる。 By this attraction, as shown in FIG. 2D, a high-density cavitation bubble 100a that covers a wide area between the counter electrode 1 (region M) and the entire back surface side (region N) of the electrode 1a is generated. In particular, since the cavitation bubbles 100a fill between the counter electrodes 1 (region M), high-density plasma discharge in the counter electrodes 1 is easily caused.
 このように対向電極1間(領域M)において発生するキャビテーション気泡100aが、多数充満することがより好ましいことから、対向電極1間(領域M)の間隔が、処理水100の水流により対向電極1に発生する気泡の直径よりも大きいことがより好ましく、この場合には、対向電極1間に複数個のキャビテーション気泡100aが動的に連続して発生し続けることとなり、活発に高密度のプラズマ放電を発生させ続けることができる。 Since it is more preferable that a large number of cavitation bubbles 100a generated between the counter electrodes 1 (region M) are filled in this way, the distance between the counter electrodes 1 (region M) is increased by the water flow of the treated water 100. It is more preferable that the diameter of the bubbles is larger than the diameter of the bubbles generated in the above. In this case, a plurality of cavitation bubbles 100a are dynamically and continuously generated between the counter electrodes 1, and the plasma discharge is actively performed at a high density. Can continue to be generated.
 この処理水100の流速と、この処理水100の水流方向Aに衝突する対向電極1の面積とを最適に制御することによって、このようなキャビテーション気泡100aを効率的に生成することが可能となる。すなわち、この処理水100の流速が穏やかな層流のように遅すぎるとキャビテーション気泡100a自体が発生し難いものとなる。また、強い乱流のように流速が早すぎたりするとキャビテーション気泡100aが微細な気泡径としては発生し難いものとなる。また、水流方向Aに衝突する対向電極1の面積が小さ過ぎると、気泡を発生する電極への衝突割合が小さくなって気泡自体が発生し難いものとなる。また、当該面積が大き過ぎると、気泡の粒径が大きくなる傾向となる。 By optimally controlling the flow velocity of the treated water 100 and the area of the counter electrode 1 that collides with the water flow direction A of the treated water 100, it is possible to efficiently generate such a cavitation bubble 100a. .. That is, if the flow velocity of the treated water 100 is too slow as in a gentle laminar flow, the cavitation bubble 100a itself is unlikely to be generated. Further, if the flow velocity is too fast as in a strong turbulent flow, the cavitation bubble 100a is unlikely to be generated as a fine bubble diameter. Further, if the area of the counter electrode 1 that collides with the water flow direction A is too small, the collision ratio with the electrode that generates bubbles becomes small, and the bubbles themselves are unlikely to be generated. Further, if the area is too large, the particle size of the bubbles tends to be large.
 本実施形態に係る液中プラズマ発生装置10は、以下のようにプラズマ放電を発生させる。 The submerged plasma generator 10 according to the present embodiment generates plasma discharge as follows.
 先ず、図3(a)に示すように、電極1aおよび電極1bが水流方向Aで流れている処理水100と衝突し、図3(b)に示すように、乱流が発生すると共に、液中に溶存する気体から気泡径が微細なキャビテーション気泡100aが生じる。このキャビテーション気泡100aは、気泡サイズとしてナノバブル、マイクロナノバブル、マイクロバブルを含み得るものである。特に、図3(c)に示すように、このキャビテーション気泡100aが電極1aおよび電極1bの表面に高密度で生じることとなる。 First, as shown in FIG. 3A, the electrodes 1a and 1b collide with the treated water 100 flowing in the water flow direction A, and as shown in FIG. 3B, turbulence is generated and the liquid is liquid. Cavitation bubbles 100a having a fine bubble diameter are generated from the gas dissolved in the gas. The cavitation bubble 100a may include nanobubbles, micronanobubbles, and microbubbles as the bubble size. In particular, as shown in FIG. 3C, the cavitation bubbles 100a are generated at high density on the surfaces of the electrode 1a and the electrode 1b.
 図3(d)に示すように、この高密度で生じたキャビテーション気泡100aが媒体となって、電極1aおよび電極1bの表面に均一な高密度のプラズマBが生じる。このプラズマBの発生に伴って、キャビテーション気泡100aの気泡径のさらなる微細化も同時に進行する。また、キャビテーション気泡100aは液中での低い浮上速度により滞留時間が長期化することから、処理水100との接触時間および接触体積が増大することとなり、処理水100を効率的に殺菌処理することが可能となる。このように、高密度のプラズマ放電が生成されることによって、ノズルを用いることや外部から強制的に気体を導入することなく、処理水100を効率的に殺菌処理することが可能となる。 As shown in FIG. 3D, the cavitation bubbles 100a generated at this high density serve as a medium, and a uniform high-density plasma B is generated on the surfaces of the electrodes 1a and 1b. With the generation of the plasma B, further miniaturization of the bubble diameter of the cavitation bubble 100a also progresses at the same time. Further, since the cavitation bubble 100a has a long residence time due to the low ascent rate in the liquid, the contact time and the contact volume with the treated water 100 are increased, and the treated water 100 is efficiently sterilized. Is possible. By generating the high-density plasma discharge in this way, it is possible to efficiently sterilize the treated water 100 without using a nozzle or forcibly introducing a gas from the outside.
 このように、本発明に係る液中プラズマ発生装置は、処理水100中に配設された電極間で電圧印加により生成させるプラズマによって、この処理水100を殺菌する液中プラズマ発生装置であって、前記処理水の水流方向と同方向に対向して並列される対向電極1を備えることから、この対向電極1が、水流に対して障害物として存在することにより、水流がこの対向電極1表面に衝突することで、乱流が発生すると共に、液中に溶存する気体から気泡径が微細な気泡(キャビテーション気泡100a)が生じ、このキャビテーション気泡100aがこの対向電極1表面に高密度で生じることから、このキャビテーション気泡100aを媒体として液中で安定で均一な高密度のプラズマ放電が生じることとなり、この高密度のプラズマ放電によって、ノズルを用いることや外部から強制的に気体を導入することなく、処理水100を効率的に殺菌処理することが可能となる。 As described above, the submerged plasma generator according to the present invention is a submerged plasma generator that sterilizes the treated water 100 by the plasma generated by applying a voltage between the electrodes arranged in the treated water 100. Since the counter electrode 1 is provided in parallel in the same direction as the water flow direction of the treated water, the counter electrode 1 exists as an obstacle to the water flow, so that the water flow is on the surface of the counter electrode 1. By colliding with the gas, turbulence is generated, and bubbles having a fine bubble diameter (cavitation bubbles 100a) are generated from the gas dissolved in the liquid, and the cavitation bubbles 100a are generated at high density on the surface of the counter electrode 1. Therefore, a stable and uniform high-density plasma discharge is generated in the liquid using the cavitation bubble 100a as a medium, and this high-density plasma discharge does not require the use of a nozzle or forcibly introducing a gas from the outside. , The treated water 100 can be efficiently sterilized.
(第2の実施形態)
本発明の第2の実施形態に係る液中プラズマ発生装置10は、図4に示すように、本発明の第1の実施形態と同様に、前記対向電極1を備え、この対向電極1が、複数配設されるものである。図4では、その一例として、この1組の対向電極1同士が、対向して配設される構成を示す。
(Second Embodiment)
As shown in FIG. 4, the submerged plasma generator 10 according to the second embodiment of the present invention includes the counter electrode 1 as in the first embodiment of the present invention, and the counter electrode 1 is provided with the counter electrode 1. A plurality of them are arranged. FIG. 4 shows, as an example, a configuration in which the pair of counter electrodes 1 are arranged to face each other.
 この複数の対向電極1は、各々、この処理水100の水流方向Aと同方向に対向して並列される。このような構成によって、この対向電極1は、上述したように、単に電極としての機能のみならず、この処理水100の水流に対して衝突面積の大きい障害物としても機能することとなる。 The plurality of counter electrodes 1 are parallel to each other in the same direction as the water flow direction A of the treated water 100. With such a configuration, as described above, the counter electrode 1 not only functions as an electrode but also functions as an obstacle having a large collision area with respect to the water flow of the treated water 100.
 本発明の実施形態に係る液中プラズマ発生装置10は、本発明の第1の実施形態と同様に、この複数の対向電極1を用いたプラズマ放電で処理水100を循環させて殺菌する装置として、例えば、図4に示すように、前記電極固定部11と、前記リザーバー20と、前記送水ポンプ30と、を備えることが可能である。この構成により、この対向電極1を用いたプラズマ放電で循環的に殺菌できることとなり、より殺菌効率を高めることができる。 The submerged plasma generator 10 according to the embodiment of the present invention is a device that circulates and sterilizes the treated water 100 by plasma discharge using the plurality of counter electrodes 1 as in the first embodiment of the present invention. For example, as shown in FIG. 4, the electrode fixing portion 11, the reservoir 20, and the water supply pump 30 can be provided. With this configuration, it is possible to sterilize cyclically by plasma discharge using the counter electrode 1, and the sterilization efficiency can be further improved.
 本発明の実施形態に係る液中プラズマ発生装置10は、以下のようにプラズマ放電を発生させる。 The submerged plasma generator 10 according to the embodiment of the present invention generates plasma discharge as follows.
 先ず、図5(a)に示すように、2組の対向電極1が水流方向Aで流れている処理水100と衝突し、図5(b)に示すように、乱流が発生すると共に、液中に溶存する気体から気泡径が微細なキャビテーション気泡100aが生じる。特に、図5(c)に示すように、このキャビテーション気泡100aが2組の対向電極1の表面に高密度で生じることとなる。 First, as shown in FIG. 5 (a), two sets of counter electrodes 1 collide with the treated water 100 flowing in the water flow direction A, and as shown in FIG. 5 (b), turbulence is generated and at the same time, Cavitation bubbles 100a having a fine bubble diameter are generated from the gas dissolved in the liquid. In particular, as shown in FIG. 5C, the cavitation bubbles 100a are generated at high density on the surfaces of the two sets of counter electrodes 1.
 図5(d)に示すように、この高密度で生じたキャビテーション気泡100aが媒体となって、2組の対向電極1の表面に均一な高密度のプラズマBが生じる。このように、高密度のプラズマ放電が生成されることによって、ノズルを用いることや外部から強制的に気体を導入することなく、処理水100を効率的に殺菌処理することが可能となる。 As shown in FIG. 5D, the cavitation bubbles 100a generated at this high density serve as a medium, and a uniform high-density plasma B is generated on the surfaces of the two sets of counter electrodes 1. By generating the high-density plasma discharge in this way, it is possible to efficiently sterilize the treated water 100 without using a nozzle or forcibly introducing a gas from the outside.
 このように、本発明に係る液中プラズマ発生装置は、処理水100中に配設された電極間で電圧印加により生成させるプラズマによって、この処理水100を殺菌する液中プラズマ発生装置であって、前記処理水の水流方向と同方向に対向して並列される対向電極1を備えることから、この対向電極1が、水流に対して障害物として存在することにより、水流がこの対向電極1表面に衝突することで、乱流が発生すると共に、液中に溶存する気体から気泡径が微細な気泡(キャビテーション気泡100a)が生じ、このキャビテーション気泡100aがこの対向電極1表面に高密度で生じることから、このキャビテーション気泡100aを媒体として液中で安定で均一な高密度のプラズマ放電が生じることとなり、この高密度のプラズマ放電によって、ノズルを用いることや外部から強制的に気体を導入することなく、処理水100を効率的に殺菌処理することが可能となる。 As described above, the submerged plasma generator according to the present invention is a submerged plasma generator that sterilizes the treated water 100 by the plasma generated by applying a voltage between the electrodes arranged in the treated water 100. Since the counter electrode 1 is provided in parallel in the same direction as the water flow direction of the treated water, the counter electrode 1 exists as an obstacle to the water flow, so that the water flow is on the surface of the counter electrode 1. By colliding with the gas, turbulence is generated, and bubbles having a fine bubble diameter (cavitation bubbles 100a) are generated from the gas dissolved in the liquid, and the cavitation bubbles 100a are generated at high density on the surface of the counter electrode 1. Therefore, a stable and uniform high-density plasma discharge is generated in the liquid using the cavitation bubble 100a as a medium, and this high-density plasma discharge does not require the use of a nozzle or forcibly introducing a gas from the outside. , The treated water 100 can be efficiently sterilized.
 なお、上記では、複数の対向電極1を、2つの対向電極1として例示したが、この態様に限定されない。例えば、図6(a)に示すように、3つの対向電極1から構成されることも可能である。例えば、図6(a)に示すように、対向電極1の1つの電極あたりの面積をS’とすると、流路管の断面積Sに対する3つの対向電極1の総面積3S’との面積比は3S’/Sとなる。この対向電極1の面積比(3S’/S)と、この処理水100の流速とを最適に制御することによって、キャビテーション気泡100aを効率的に(微細粒径かつ多数個)生成することが可能となり、高密度のプラズマ発生を安定的に引き起こすことが可能となる。 In the above, the plurality of counter electrodes 1 are exemplified as two counter electrodes 1, but the present invention is not limited to this embodiment. For example, as shown in FIG. 6A, it can be composed of three counter electrodes 1. For example, as shown in FIG. 6A, assuming that the area of the counter electrode 1 per electrode is S', the area ratio of the total area of the three counter electrodes 1 to the cross-sectional area S of the flow path tube is 3S'. Is 3S'/ S. By optimally controlling the area ratio (3S'/ S) of the counter electrode 1 and the flow velocity of the treated water 100, it is possible to efficiently generate cavitation bubbles 100a (fine particle size and many). Therefore, it is possible to stably cause high-density plasma generation.
 また、図6(b)に示すように、4つの対向電極1から構成されることも可能である。また、図6(c)に示すように、管路を正方形とすることも可能であり、4つの対向電極1が設置し易い形状とできる。また、図6(d)に示すように、8つの対向電極1から構成されることも可能である。このように、複数の対向電極1を、様々なバリエーションで容易に構成することができ、用途に応じたプラズマ発生量に合わせて簡易に装置設計することができる。 Further, as shown in FIG. 6B, it can also be composed of four counter electrodes 1. Further, as shown in FIG. 6C, the pipeline can be made square, and the four counter electrodes 1 can be easily installed. Further, as shown in FIG. 6D, it can also be composed of eight counter electrodes 1. As described above, the plurality of counter electrodes 1 can be easily configured with various variations, and the device can be easily designed according to the amount of plasma generated according to the application.
また、上記図6(a)及び(b)で示されたような円管を用いて、この円管の直径7.6mm(水流方向に対する断面積45mm)として、この円管内で、対向電極1が水流方向に対して縦1.2mm×横3mm(水流方向に対する断面積3.6mm)の長方形状で突出した形状の対向電極1の配設数を増減させて気泡発生量を目視で確認した。気泡発生量は、対向電極1の配設数が1の場合(1組の対向電極1の場合)の気泡発生量を基準値100[%]とした相対量として算出し、その気泡発生量に対応するプラズマ生成量(◎:多い、△:少ない)と共に、得られた結果を以下の表に示す。 Further, using a circular pipe as shown in FIGS. 6 (a) and 6 (b) above, the diameter of the circular pipe is 7.6 mm (cross-sectional area 45 mm 2 with respect to the water flow direction), and the counter electrode is formed in the circular pipe. The amount of air bubbles generated is visually observed by increasing or decreasing the number of arrangements of the facing electrodes 1 having a rectangular shape and a protruding shape in which 1 is 1.2 mm in length × 3 mm in width (3.6 mm in cross-sectional area with respect to the water flow direction 2) with respect to the water flow direction. confirmed. The amount of bubbles generated is calculated as a relative amount with the reference value of 100 [%] as the amount of bubbles generated when the number of counter electrodes 1 is 1 (in the case of one set of counter electrodes 1), and the amount of bubbles generated is calculated as the relative amount. The results obtained are shown in the table below, along with the corresponding plasma generation amounts (⊚: high, Δ: low).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
得られた結果から、対向電極1の配設数が5(水流方向に対する断面積18mm)より多い場合よりも、図6(e)で示すように、対向電極1の配設数が4(水流方向に対する断面積14.4mm)より少ないほうが、液中でのプラズマ生成により好適な気泡発生が確認された。 From the obtained results, as shown in FIG. 6E, the number of arrangements of the counter electrodes 1 is 4 (as shown in FIG. 6E), as compared with the case where the number of arrangements of the counter electrodes 1 is larger than 5 (cross-sectional area 18 mm 2 with respect to the water flow direction). It was confirmed that the smaller the cross-sectional area with respect to the water flow direction is 14.4 mm 2 ), the more suitable bubble generation is due to the plasma generation in the liquid.
ここで、対向電極1の流路に占める断面積の比率を算出すると、上記の表に示されたように、対向電極1の配設数が4の場合(4組の対向電極1の場合)には、対向電極1が配設された部分の水流方向に対する断面積(14.4mm)は、処理水100の水路の水流方向に対する断面積(45mm)に対する比率が0.32と算出された。また、上記の表に示されたように、対向電極1の配設数が5の場合(5組の対向電極1の場合)には、対向電極1が配設された部分の水流方向に対する断面積(18mm)は、処理水100の水路の水流方向に対する断面積(45mm)に対する比率が0.4と算出された。 Here, when the ratio of the cross-sectional area of the counter electrode 1 to the flow path is calculated, as shown in the above table, when the number of counter electrodes 1 is 4 (in the case of 4 sets of counter electrodes 1). the cross-sectional area opposite electrode 1 relative to the water flow direction of the disposed portion (14.4 mm 2), the ratio of the cross-sectional area (45 mm 2) with respect to the water flow direction of the water channel of the treated water 100 is calculated as 0.32 It was. Further, as shown in the above table, when the number of the counter electrodes 1 is 5 (in the case of 5 sets of counter electrodes 1), the portion where the counter electrodes 1 are arranged is cut off with respect to the water flow direction. The area (18 mm 2 ) was calculated as a ratio of the treated water 100 to the cross-sectional area (45 mm 2) of the water channel with respect to the water flow direction as 0.4.
このことから、対向電極1が配設された部分の水流方向に対する断面積が、処理水100の水路の水流方向に対する断面積に対し、0.4未満の比率である場合には、液中プラズマ発生に最適なサイズ及び気泡量で気泡が生成され、液中で効率的にプラズマを生成でき、より好適であることが確認された。また、この比率が0.4以上である場合には、液中で発生する気泡量は減少したことが確認された。 From this, when the cross-sectional area of the portion where the counter electrode 1 is arranged with respect to the water flow direction is less than 0.4 with respect to the cross-sectional area of the treated water 100 with respect to the water flow direction, the plasma in the liquid It was confirmed that bubbles were generated with the optimum size and amount of bubbles for generation, plasma could be efficiently generated in the liquid, and the plasma was more suitable. Further, it was confirmed that when this ratio was 0.4 or more, the amount of bubbles generated in the liquid was reduced.
また、図6(f)で示すように、対向電極1の流路に占める縦の長さn[mm]、横の長さm[mm]の場合、この流路の直径M[mm]に対して、この対向電極1の流路に占める断面積の比率は、n×m/(π×M/4)により算出される。対向電極1の縦の長さnを固定として、対向電極1の流路への突き出し長さを単に増減(横の長さmを増減)させることによって、この断面積の比率が好適には0.4未満の比率内として、装置サイズや殺菌量等の目的に応じて簡易且つ自在に液中で発生する気泡量の増減が制御可能となり、プラズマ生成量の増減が簡易且つ自在に制御可能となる。 Further, as shown in FIG. 6 (f), in the case of the vertical length n [mm] and the horizontal length m [mm] occupying the flow path of the counter electrode 1, the diameter of the flow path is M [mm]. in contrast, the ratio of the cross-sectional area occupied by the flow path of the counter electrode 1 is calculated by the n × m / (π × M 2/4). By fixing the vertical length n of the counter electrode 1 and simply increasing or decreasing the protruding length of the counter electrode 1 into the flow path (increasing or decreasing the horizontal length m), the ratio of this cross-sectional area is preferably 0. Within the ratio of less than 4., the increase / decrease in the amount of bubbles generated in the liquid can be easily and freely controlled according to the purpose such as the device size and the amount of sterilization, and the increase / decrease in the plasma generation amount can be easily and freely controlled. Become.
(第3の実施形態)
本発明の第3の実施形態に係る液中プラズマ発生装置10は、図7に示すように、本発明の第1の実施形態と同様に、前記対向電極1を備え、さらに、図7に示すように、この処理水100の水流方向Aに沿って、内径が拡開する管路形状を有するテーパー管路10bを備え、この対向電極1が、このテーパー管路10bの内径の拡開開始前の位置に配設されるものである。
(Third Embodiment)
As shown in FIG. 7, the submerged plasma generator 10 according to the third embodiment of the present invention includes the counter electrode 1 as in the first embodiment of the present invention, and is further shown in FIG. 7. As described above, a tapered pipeline 10b having a pipeline shape whose inner diameter expands along the water flow direction A of the treated water 100 is provided, and the counter electrode 1 is before the start of expansion of the inner diameter of the tapered pipeline 10b. It is arranged at the position of.
 このテーパー管路10bは、一定の管路径を有する平行管路10aに連接され、管路径が、この処理水100の水流方向Aに沿って、拡大する形状を有する。 The tapered pipe line 10b is connected to a parallel pipe line 10a having a constant line diameter, and the line diameter has a shape that expands along the water flow direction A of the treated water 100.
 より具体的な構成としては、図8に示すように、2組の対向電極1の電極固定部11から連接するプラスチックパイプ300と、このプラスチックパイプ300と電極固定部11間を被覆するチューブ継手301と、このプラスチックパイプ300に接続された一の対向電極1に電源を供給する高圧電源200と、他の対向電極1に電源を供給する高圧電源400と、この高圧電源400を制御するためにこの高圧電源400とに接続された高圧プローブ401と、同じくこの高圧電源400とに接続された電流プローブ402とを備える構成とすることができる。この高圧プローブ401および電流プローブ402を用いて電圧v(t)、電流i(t)を経時的に制御することができる。 As a more specific configuration, as shown in FIG. 8, a plastic pipe 300 connected from the electrode fixing portion 11 of the two sets of counter electrodes 1 and a tube joint 301 covering between the plastic pipe 300 and the electrode fixing portion 11 To control the high-voltage power supply 200 that supplies power to one counter electrode 1 connected to the plastic pipe 300, the high-voltage power supply 400 that supplies power to the other counter electrode 1, and the high-voltage power supply 400. The configuration may include a high-voltage probe 401 connected to the high-voltage power supply 400 and a current probe 402 also connected to the high-voltage power supply 400. The voltage v (t) and the current i (t) can be controlled over time by using the high-voltage probe 401 and the current probe 402.
 この高圧電源200および高圧電源400は、1kVの出力が可能な高電圧トランス(ネオン)を用いることができる。 The high-voltage power supply 200 and the high-voltage power supply 400 can use a high-voltage transformer (neon) capable of outputting 1 kV.
 本発明の実施形態に係る液中プラズマ発生装置10は、以下のようにプラズマ放電を発生させる。 The submerged plasma generator 10 according to the embodiment of the present invention generates plasma discharge as follows.
 先ず、図9(a)に示すように、2組の対向電極1が水流方向Aで流れている処理水100と衝突し、図9(b)に示すように、乱流が発生すると共に、液中に溶存する気体から気泡径が微細なキャビテーション気泡100aが生じる。特に、図9(c)に示すように、このキャビテーション気泡100aが2組の対向電極1の表面に高密度で生じることとなる。 First, as shown in FIG. 9 (a), two sets of counter electrodes 1 collide with the treated water 100 flowing in the water flow direction A, and as shown in FIG. 9 (b), turbulence is generated and at the same time, Cavitation bubbles 100a having a fine bubble diameter are generated from the gas dissolved in the liquid. In particular, as shown in FIG. 9C, the cavitation bubbles 100a are generated at high density on the surfaces of the two sets of counter electrodes 1.
 図9(d)に示すように、この高密度で生じたキャビテーション気泡100aが媒体となって、この対向電極1の表面に均一な高密度のプラズマBが生じる。このように、高密度のプラズマ放電が生成されることによって、ノズルを用いることや外部から強制的に気体を導入することなく、処理水100を効率的に殺菌処理することが可能となる。 As shown in FIG. 9D, the cavitation bubbles 100a generated at this high density serve as a medium, and a uniform high-density plasma B is generated on the surface of the counter electrode 1. By generating the high-density plasma discharge in this way, it is possible to efficiently sterilize the treated water 100 without using a nozzle or forcibly introducing a gas from the outside.
 事実、この対向電極1が、このテーパー管路10bの内径の拡開開始前の位置に配設されることによって、気泡発生効率が向上し、液中でプラズマ発生を容易に発生できることが確認されている(後述の実施例参照)。 In fact, it was confirmed that by disposing the counter electrode 1 at a position before the start of expansion of the inner diameter of the tapered pipeline 10b, the bubble generation efficiency is improved and plasma generation can be easily generated in the liquid. (See Examples below).
 このように、本実施形態に係る液中プラズマ発生装置は、この対向電極1が、このテーパー管路10bの内径の拡開開始前の位置に配設されることから、キャビテーション気泡100aが量的にも最適に発生しやすい状況が形成されることとなり、この最適に発生したキャビテーション気泡100aを媒体として処理水100の液中で安定で均一な高密度のプラズマ放電が生じることとなり、この高密度のプラズマ放電によって、処理水100を効率的に殺菌処理することが可能となる。 As described above, in the submerged plasma generator according to the present embodiment, since the counter electrode 1 is arranged at the position before the start of expansion of the inner diameter of the tapered conduit 10b, the cavitation bubble 100a is quantitatively contained. A situation is formed in which optimally generated cavitation bubbles 100a are used as a medium to generate stable and uniform high-density plasma discharge in the treated water 100. The plasma discharge of the above makes it possible to efficiently sterilize the treated water 100.
(第4の実施形態)
本発明の第4の実施形態に係る液中プラズマ発生装置10は、本発明の第1の実施形態と同様に、前記対向電極1を備え、さらに、図10に示すように、この対向電極1としての電極1aおよび1bを構成する電極材12aおよび12bが、各々絶縁体11aおよび11bで被覆されると共に、各々対向する端面13aおよび13bで、この電極材12aおよび12bが、この絶縁体11aおよび11bから開放されるものである。
(Fourth Embodiment)
The submerged plasma generator 10 according to the fourth embodiment of the present invention includes the counter electrode 1 as in the first embodiment of the present invention, and further, as shown in FIG. 10, the counter electrode 1 The electrode materials 12a and 12b constituting the electrodes 1a and 1b as It is released from 11b.
 このように、この対向電極1が、各々絶縁体11aおよび11bで被覆されると共に、各々対向する端面13aおよび13bがこの絶縁体から開放される。すなわち、電極材12aおよび12bは、この対向電極1の電極先端まで全体にわたってこの絶縁体で被覆されており、この対向電極1の電極先端の互いに対向する部分のみがこの絶縁体から露出した構成である。 In this way, the counter electrode 1 is covered with the insulators 11a and 11b, respectively, and the opposite end faces 13a and 13b are released from the insulator, respectively. That is, the electrode materials 12a and 12b are entirely covered with the insulator up to the electrode tip of the counter electrode 1, and only the portions of the electrode tips of the counter electrode 1 facing each other are exposed from the insulator. is there.
この構成から、図10(b)に示すように、この対向電極1近傍に発生したキャビテーション気泡100aがこの対向電極1を包摂することとなり、対向する端面13aおよび13bから形成される狭い領域に、効率よくプラズマBを生成することができる。このように、さらに安定で均一な高密度のプラズマ放電が発生し、この高密度のプラズマ放電によって、処理水100を効率的に殺菌処理することが可能となる。 From this configuration, as shown in FIG. 10B, the cavitation bubble 100a generated in the vicinity of the counter electrode 1 includes the counter electrode 1, and the narrow region formed from the opposite end faces 13a and 13b is formed. Plasma B can be generated efficiently. In this way, a more stable and uniform high-density plasma discharge is generated, and the high-density plasma discharge makes it possible to efficiently sterilize the treated water 100.
また、この電極材12aおよび12bは、絶縁体から開放されている対向する端面13aおよび13bにおける表面形状は、特に限定されないが、図11(a)に示すように、平滑面から構成されることが好適であり、平滑な球面形状とすることができるが、この他にも平滑面から構成される形状であれば球面形状に限定されない。この平滑面は、この開放された電極材12aおよび12bの起伏を切削する等の加工により鋭角な突起部分(エッジ)を除去して形成することが可能である。 The surface shapes of the electrode materials 12a and 12b on the opposing end faces 13a and 13b that are open from the insulator are not particularly limited, but are composed of smooth surfaces as shown in FIG. 11A. Is preferable, and a smooth spherical shape can be obtained, but the shape is not limited to the spherical shape as long as the shape is composed of a smooth surface. This smooth surface can be formed by removing sharp protrusions (edges) by processing such as cutting the undulations of the open electrode materials 12a and 12b.
このように、この絶縁体から開放された対向電極1の表面が平滑面から構成されることから、この対向電極1の表面上に鋭角な突起部分(エッジ)が存在しないこととなり、鋭角な突起部分(エッジ)の表面から引き起こされる散乱した不安定な放電を抑止することができ、円滑な放電が得られると共に対向電極の電蝕を防止することができる。 In this way, since the surface of the counter electrode 1 released from the insulator is composed of a smooth surface, there is no acute-angled protrusion (edge) on the surface of the counter electrode 1, and the sharp protrusion It is possible to suppress the scattered and unstable discharge caused from the surface of the portion (edge), obtain a smooth discharge, and prevent electrolytic corrosion of the counter electrode.
また、図11(a)及び(b)に示すように、この電極材12aおよび12bが、各々対向する端面13aおよび13bで絶縁体から開放(露出)されている割合r/(R+r)は、この開放された電極材12aおよび12bが放電可能に対向していれば特に限定されないが、好ましくは、1/5~4/5(20%~80%)であり、より好ましくは、1/3~3/4(33%~75%)であり、図11(c)に示すように、対向する端面13aおよび13bで開放された電極材12aおよび12b間でより効率的に放電を発生させて効率的にプラズマBを生成することができる。 Further, as shown in FIGS. 11A and 11B, the ratio r / (R + r) of the electrode materials 12a and 12b being released (exposed) from the insulator at the opposite end faces 13a and 13b, respectively, is determined. The open electrode materials 12a and 12b are not particularly limited as long as they face each other in a dischargeable manner, but are preferably 1/5 to 4/5 (20% to 80%), and more preferably 1/3. It is ~ 3/4 (33% ~ 75%), and as shown in FIG. 11 (c), discharge is generated more efficiently between the electrode materials 12a and 12b opened at the opposite end faces 13a and 13b. Plasma B can be generated efficiently.
(第5の実施形態)
本発明の第5の実施形態に係る液中プラズマ発生装置10は、本発明の第1の実施形態と同様に、前記対向電極1を備え、図12に示すように、さらに、この対向電極1間の間隔Lが、この処理水100の水流方向Aの水流によりこの対向電極に発生する気泡の直径lよりも大きいものである。
(Fifth Embodiment)
The submerged plasma generator 10 according to the fifth embodiment of the present invention includes the counter electrode 1 as in the first embodiment of the present invention, and as shown in FIG. 12, further, the counter electrode 1 The interval L between them is larger than the diameter l of the bubbles generated in the counter electrode by the water flow in the water flow direction A of the treated water 100.
 この対向電極1間の間隔Lが、気泡の直径lよりも大きいことにより、電極間のスペース内で各気泡の自由な発生、移動、および消滅が繰り返し生じることとなり、アーク放電の発生を抑制し、プラズマが効率的に発生しやすい状況が形成される。 Since the distance L between the counter electrodes 1 is larger than the diameter l of the bubbles, the free generation, movement, and disappearance of each bubble repeatedly occur in the space between the electrodes, and the generation of arc discharge is suppressed. , A situation is formed in which plasma is likely to be generated efficiently.
 このように、本発明に係る液中プラズマ発生装置10は、この対向電極1間の間隔Lが、この処理水100の水流によりこの対向電極1に発生する気泡の直径lよりも大きいことから、プラズマ放電を最適に発生しやすい状況が形成されることとなり、より安定で均一な高密度のプラズマ放電が発生し、この高密度のプラズマ放電によって、処理水100を効率的に殺菌処理することが可能となる。 As described above, in the submerged plasma generator 10 according to the present invention, the distance L between the counter electrodes 1 is larger than the diameter l of the bubbles generated in the counter electrode 1 by the water flow of the treated water 100. A situation is formed in which plasma discharge is likely to be optimally generated, a more stable and uniform high-density plasma discharge is generated, and the treated water 100 can be efficiently sterilized by this high-density plasma discharge. It will be possible.
 以下に、本発明の特徴をさらに具体的に示すために実施例を記すが、本発明は以下の実施例によって制限されるものではない。 Examples are described below in order to show the features of the present invention more concretely, but the present invention is not limited to the following examples.
(実施例)
 図8に示した上記実施形態3の装置構成の液中プラズマ発生装置にて、2組の対向電極1を対向させて用いて、テーパー管路10bを有する管路内に処理水100を流して乱流を生じる水流を発生させると共に、これらの対向電極1間に電圧を印加した。
(Example)
In the submerged plasma generator having the device configuration of the third embodiment shown in FIG. 8, the treated water 100 is flowed into the pipeline having the tapered conduit 10b by using two sets of counter electrodes 1 facing each other. A water flow that causes turbulence was generated, and a voltage was applied between these counter electrodes 1.
 この対向電極1については、図13(a)で示すような上記第4の実施形態の構成で、各々絶縁体11aおよび11bで被覆されると共に、各々対向する端面13aおよび13bがこの絶縁体11aおよび11bから開放されるものを使用した。また、この対向電極1の電極固定部から連接するプラスチックパイプ300を配設した。 The counter electrode 1 is covered with insulators 11a and 11b, respectively, and the opposite end faces 13a and 13b are the insulators 11a, respectively, in the configuration of the fourth embodiment as shown in FIG. 13A. And the one released from 11b was used. Further, a plastic pipe 300 connected from the electrode fixing portion of the counter electrode 1 was arranged.
 端面13aおよび13bの間隔は、0.9mmとした。この電極1aおよび電極1bは、直径0.8mmの棒状のステンレス鋼棒(stainless steel rod)を芯体として、その周囲を0.4mmの厚みのセラミック(ceramic tube)からなる絶縁体11aおよび11bで被覆した。この対向電極に対して、プラズマ発生用の高圧電源として、高電圧トランス(ネオン)を用いて1kVの電圧を印加した。 The distance between the end faces 13a and 13b was 0.9 mm. The electrodes 1a and 1b are made of insulators 11a and 11b having a rod-shaped stainless steel rod (stainless steel rod) having a diameter of 0.8 mm as a core and a ceramic (ceramic tube) having a thickness of 0.4 mm around the core. Covered. A voltage of 1 kV was applied to the counter electrode using a high voltage transformer (neon) as a high voltage power source for plasma generation.
 また、平行管路10aの内径の拡開開始前の位置に対向電極1を設置すると共に、比較例としてテーパー管路10b側にも対向電極を設置した。 Further, the counter electrode 1 was installed at a position before the start of expansion of the inner diameter of the parallel pipeline 10a, and the counter electrode was also installed on the tapered pipeline 10b side as a comparative example.
 図13(b)の左図の写真で示されるように、乱流を生じる流速によって処理水100中に白濁した領域で示されるキャビテーション気泡100aが発生した。さらに、図13(b)の右図の写真で示されるように、平行管路10aの内径の拡開開始前の位置に配設された対向電極1の電極間には、鋭い放電により、液中でプラズマBが発生しているのが確認された。これに対して、比較例としてのテーパー管路10b側の対向電極では、同じ水流条件においてもプラズマは発生しないことも確認された。 As shown in the photograph on the left of FIG. 13B, cavitation bubbles 100a shown in a cloudy region were generated in the treated water 100 due to the flow velocity that generated turbulence. Further, as shown in the photograph on the right of FIG. 13B, a liquid is generated by a sharp discharge between the electrodes of the counter electrode 1 arranged at the position before the start of expansion of the inner diameter of the parallel pipeline 10a. It was confirmed that plasma B was generated inside. On the other hand, it was also confirmed that the counter electrode on the tapered pipeline 10b side as a comparative example does not generate plasma even under the same water flow conditions.
 上記を模式的に説明するために、図13(b)で示された実験結果の写真を模式化した図を図14に示す。図14(a)に示されるように、平行管路10aの内径の拡開開始前の位置(Y側)に対向電極1を設置すると共に、比較例としてテーパー管路10b側(X側)に対向電極1が設置される構成である。 In order to schematically explain the above, FIG. 14 shows a schematic diagram of a photograph of the experimental results shown in FIG. 13 (b). As shown in FIG. 14A, the counter electrode 1 is installed at the position (Y side) of the inner diameter of the parallel pipe line 10a before the start of expansion, and as a comparative example, it is located on the tapered pipe line 10b side (X side). The counter electrode 1 is installed.
 この構成下で、乱流を生じる流速によって処理水100中に白濁した領域で示されるキャビテーション気泡100aが発生した。さらに、図14(b)で示されるように、平行管路10aの内径の拡開開始前の位置(Y側)に配設された対向電極1の電極間には、鋭い放電により、液中でプラズマBが発生しているのが確認された。これに対して、比較例としてのテーパー管路10b側(X側)の対向電極では、プラズマは発生しないことも確認された。このことから、この対向電極1が、このテーパー管路10bの内径の拡開開始前の位置(Y側)に配設されることにより、液中である処理水100中でも均一なプラズマを安定的かつ確実に発生することができることが確認された。 Under this configuration, cavitation bubbles 100a indicated by cloudy regions were generated in the treated water 100 due to the flow velocity that generated turbulence. Further, as shown in FIG. 14 (b), between the electrodes of the counter electrodes 1 arranged at the position (Y side) before the start of expansion of the inner diameter of the parallel pipeline 10a, a sharp electric discharge causes a submergence in the liquid. It was confirmed that plasma B was generated in. On the other hand, it was also confirmed that plasma was not generated at the counter electrode on the tapered pipeline 10b side (X side) as a comparative example. From this, by disposing the counter electrode 1 at the position (Y side) of the inner diameter of the tapered pipe line 10b before the start of expansion, uniform plasma can be stably generated even in the treated water 100 in the liquid. And it was confirmed that it can occur reliably.
1 対向電極
10 液中プラズマ発生装置
10a 平行管路
10b テーパー管路
11 電極固定部
1a 対向電極
11a 絶縁体
12a 電極材
13a 端面
1b 対向電極
11b 絶縁体
12b 電極材
13b 端面
20 リザーバー
30 送水ポンプ
100 処理水
100a キャビテーション気泡
200 高圧電源
300 プラスチックパイプ
301 チューブ継手
400 高圧電源
401 高圧プローブ
402 電流プローブ

 
1 Opposing electrode 10 Submersible plasma generator 10a Parallel pipeline 10b Tapered pipeline 11 Electrode fixing part 1a Opposite electrode 11a Insulator 12a Electrode material 13a End face 1b Opposite electrode 11b Insulation 12b Electrode material 13b End face 20 Reservoir 30 Water supply pump 100 processing Water 100a Cavitation bubble 200 High pressure power supply 300 Plastic pipe 301 Tube joint 400 High pressure power supply 401 High pressure probe 402 Current probe

Claims (6)

  1.  処理水中に配設された電極間で電圧印加により生成させるプラズマによって、当該処理水を殺菌する液中プラズマ発生装置であって、
     前記処理水の水流方向と同方向に対向して並列される対向電極を備えることを特徴とする
     液中プラズマ発生装置。
    A submerged plasma generator that sterilizes the treated water with plasma generated by applying a voltage between the electrodes arranged in the treated water.
    A submerged plasma generator comprising a counter electrode that is parallel to each other in the same direction as the water flow direction of the treated water.
  2.  請求項1に記載の液中プラズマ発生装置において、
     前記処理水の水流方向に沿って内径が拡開する管路形状を有するテーパー管路を備え、
     前記対向電極が、前記テーパー管路の内径の拡開開始前の位置に配設されることを特徴とする
     液中プラズマ発生装置。
    In the submerged plasma generator according to claim 1,
    A tapered pipeline having a pipeline shape in which the inner diameter expands along the flow direction of the treated water is provided.
    A submerged plasma generator characterized in that the counter electrode is arranged at a position before the start of expansion of the inner diameter of the tapered pipeline.
  3.  請求項1または2に記載の液中プラズマ発生装置において、
     前記対向電極が、各々絶縁体で被覆されると共に、各々対向する端面で当該絶縁体から開放されることを特徴とする
     液中プラズマ発生装置。
    In the submerged plasma generator according to claim 1 or 2.
    A submerged plasma generator characterized in that each of the counter electrodes is coated with an insulator and is released from the insulator at end faces facing each other.
  4.  請求項3に記載の液中プラズマ発生装置において、
     前記絶縁体から開放された対向電極の表面が、平滑面から構成されることを特徴とする
     液中プラズマ発生装置。
    In the submerged plasma generator according to claim 3,
    A submerged plasma generator characterized in that the surface of a counter electrode released from the insulator is composed of a smooth surface.
  5.  請求項1~4のいずれかに記載の液中プラズマ発生装置において、
     前記対向電極間の間隔が、前記処理水の水流により前記対向電極に発生する気泡の直径よりも大きいことを特徴とする
     液中プラズマ発生装置。
    In the submerged plasma generator according to any one of claims 1 to 4.
    A submerged plasma generator in which the distance between the counter electrodes is larger than the diameter of bubbles generated in the counter electrode by the water flow of the treated water.
  6.  請求項1~5のいずれかに記載の液中プラズマ発生装置において、
    前記対向電極が配設された部分の水流方向に対する断面積が、前記処理水の水路の水流方向に対する断面積に対し、0.4未満の比率であることを特徴とする
     液中プラズマ発生装置。
    In the submerged plasma generator according to any one of claims 1 to 5.
    A submerged plasma generator characterized in that the cross-sectional area of the portion where the counter electrode is arranged with respect to the water flow direction is less than 0.4 with respect to the cross-sectional area of the treated water channel with respect to the water flow direction.
PCT/JP2020/025987 2019-08-23 2020-07-02 Submerged plasma generation device WO2021039112A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542588A JP7180927B2 (en) 2019-08-23 2020-07-02 In-liquid plasma generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-153276 2019-08-23
JP2019153276 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021039112A1 true WO2021039112A1 (en) 2021-03-04

Family

ID=74685809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025987 WO2021039112A1 (en) 2019-08-23 2020-07-02 Submerged plasma generation device

Country Status (2)

Country Link
JP (1) JP7180927B2 (en)
WO (1) WO2021039112A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289898A (en) * 2006-04-27 2007-11-08 Bco:Kk Purification apparatus
JP2009119347A (en) * 2007-11-14 2009-06-04 Yaskawa Electric Corp Water treatment apparatus
JP2014113526A (en) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd Water treatment apparatus and water treatment method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6296480B2 (en) * 2012-09-26 2018-03-20 国立大学法人佐賀大学 Liquid processing apparatus and liquid processing method
JP2015223528A (en) 2014-05-26 2015-12-14 パナソニックIpマネジメント株式会社 Liquid treatment device and liquid treatment method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007289898A (en) * 2006-04-27 2007-11-08 Bco:Kk Purification apparatus
JP2009119347A (en) * 2007-11-14 2009-06-04 Yaskawa Electric Corp Water treatment apparatus
JP2014113526A (en) * 2012-12-07 2014-06-26 Samsung R&D Institute Japan Co Ltd Water treatment apparatus and water treatment method

Also Published As

Publication number Publication date
JP7180927B2 (en) 2022-11-30
JPWO2021039112A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US7704401B2 (en) Liquid treatment apparatus and liquid treatment method
US8137703B2 (en) Ozone water and production method therefor
US10941062B2 (en) Microbubble generator for enhanced plasma treatment of liquid
JP6678338B2 (en) Liquid treatment equipment
JP5099612B2 (en) Liquid processing equipment
Hong et al. Plasma formation using a capillary discharge in water and its application to the sterilization of E. coli
JP2009160494A (en) Apparatus and method for producing reduced water
JP5899455B2 (en) Liquid processing apparatus and liquid processing method
JP2020049486A (en) Reformer generator
JP2013119043A (en) Microbubble generating device and water treating apparatus using the same
JP6843894B2 (en) Submersible plasma device
JP2005058887A (en) Waste water treatment apparatus using high-voltage pulse
JP2009190003A (en) Water treatment apparatus
KR20100015746A (en) Equipment for the production of reduced water
JP3805350B2 (en) Water treatment method and water treatment apparatus
WO2014148397A1 (en) Device for generating nanobubbles by electric current supply
WO2021039112A1 (en) Submerged plasma generation device
JP5190834B2 (en) Bubble generation method
JP2007117853A (en) Fine bubble generator
JP6157764B1 (en) Water treatment apparatus and water treatment method
KR100199509B1 (en) Discharge cell and it use for bubble generator
JP2014210222A (en) Liquid treatment apparatus
WO2018021528A1 (en) Device for generating sterile water, method for sterilizing an object to be treated, and method for generating sterile water
Sato et al. Study on formation of plasma nanobubbles in water
JP2009119385A (en) Water treatment apparatus and water treatment method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542588

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855871

Country of ref document: EP

Kind code of ref document: A1