WO2021039101A1 - Ultrasonic endoscope system and operating method for ultrasonic endoscope system - Google Patents

Ultrasonic endoscope system and operating method for ultrasonic endoscope system Download PDF

Info

Publication number
WO2021039101A1
WO2021039101A1 PCT/JP2020/025725 JP2020025725W WO2021039101A1 WO 2021039101 A1 WO2021039101 A1 WO 2021039101A1 JP 2020025725 W JP2020025725 W JP 2020025725W WO 2021039101 A1 WO2021039101 A1 WO 2021039101A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasonic
label number
tip
endoscope
image
Prior art date
Application number
PCT/JP2020/025725
Other languages
French (fr)
Japanese (ja)
Inventor
匡信 内原
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021542583A priority Critical patent/JP7158596B2/en
Priority to CN202080060272.4A priority patent/CN114302679A/en
Publication of WO2021039101A1 publication Critical patent/WO2021039101A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/045Control thereof

Definitions

  • the present invention relates to an ultrasonic endoscopic system for observing the state of an observation target site in the body of a subject and a method for operating the ultrasonic endoscopic system using ultrasonic waves.
  • the ultrasonic endoscopy system mainly aims to observe the pancreas or gallbladder by the transgastrointestinal tract, and puts an endoscopic endoscope and an ultrasonic endoscope having an ultrasonic observation part at the tip into the digestive tract of the subject. It is inserted and an endoscopic image inside the gastrointestinal tract and an ultrasonic image of the part outside the gastrointestinal wall are taken.
  • the illumination unit at the tip of the ultrasonic endoscope irradiates the area adjacent to the observation target in the digestive tract with illumination light, and the reflected light is emitted by the imaging unit at the tip of the ultrasonic endoscope.
  • An endoscopic image is generated from the received signal of the reflected light.
  • multiple ultrasonic transducers at the tip of the ultrasonic endoscope transmit and receive ultrasonic waves to the observation target site such as an organ outside the gastrointestinal wall, and an ultrasonic image is generated from the received signal of the ultrasonic waves. Will be done.
  • Patent Documents 1 to 4 as prior art documents related to the present invention.
  • Patent Document 1 the target site in the image of the diagnostic site in the subject is roughly extracted, the global information for recognizing the target site is predicted using a neural network, and the global information is used to predict the target site. It is described that the contour is recognized and the recognition result is displayed together with the original image.
  • Patent Document 2 the position / orientation data of the tip of the ultrasonic endoscope is generated based on the electric signal from the coil, and the insertion shape of the ultrasonic endoscope is shown from the position / orientation data.
  • a guide image is generated by generating the insertion shape data of the above and combining it with the three-dimensional biological tissue model data of the tissue structure such as the organ group of the subject, and the video signal of the composite image obtained by synthesizing the ultrasonic image and the guide image. Is described to be generated and displayed on the monitor.
  • Patent Document 2 describes that the stereoscopic guide image and the cross-section guide image are arranged in the area on the left side of the screen, and the ultrasonic image is displayed while being arranged in the area on the right side of the screen.
  • Patent Document 2 describes a button for expanding or contracting the display range of the ultrasonic image.
  • Patent Document 3 describes that an ultrasonic tomographic image of a subject and an optical image thereof are displayed adjacent to each other on the screen of a display device so that both images can be observed at the same time.
  • Patent Document 4 the ultrasonic image and the schematic diagram are displayed on the same screen, and the schematic diagram is a schema diagram or an actual optical image of the human body.
  • the scanning surface of the ultrasonic endoscope It is described that the insertion shape is also displayed.
  • the region of the scanning position of the ultrasonic endoscope is detected from the signal of the position and direction of the ultrasonic endoscope detected by using the coil, and the ultrasonic scanning region data is output.
  • the part name data corresponding to the ultrasonic scanning area data is read out from the part name storage unit, and the part name is superimposed and displayed on the ultrasonic image.
  • Japanese Unexamined Patent Publication No. 06-233761 Japanese Unexamined Patent Publication No. 2010-609018 Japanese Unexamined Patent Publication No. 02-045045 Japanese Unexamined Patent Publication No. 2004-113629
  • the first object of the present invention is to solve the above-mentioned problems of the prior art and to surely grasp the position and direction of the tip portion of the ultrasonic endoscope even by an operator who is unfamiliar with ultrasonic images. It is an object of the present invention to provide an ultrasonic endoscopic system and a method of operating the ultrasonic endoscopic system.
  • the second object of the present invention is, in addition to the above-mentioned first object, even an operator who is unfamiliar with ultrasonic imaging, without hesitation in the body of the subject, from the current observation target site to the next observation target site. It is an object of the present invention to provide an ultrasonic endoscopic system and a method of operating an ultrasonic endoscopic system capable of correctly moving the tip of an ultrasonic endoscope.
  • the present invention includes an ultrasonic endoscope having an ultrasonic transducer at the tip and an ultrasonic endoscope.
  • An ultrasonic observation device that transmits and receives ultrasonic waves with an ultrasonic vibrator and generates an ultrasonic image for diagnosis from the received signal of the ultrasonic waves.
  • the relationship with the label number corresponding to the position of the tip of the endoscope is learned in advance for a plurality of learning ultrasonic images, and based on the learning results, from the diagnostic ultrasonic image to the diagnostic ultrasonic image.
  • An ultrasonic image recognition unit that recognizes the label number corresponding to the position of the tip of the ultrasonic endoscope during imaging, and an ultrasonic image recognition unit.
  • an ultrasonic endoscopic system including a display control unit for displaying the position of the tip of the ultrasonic endoscope corresponding to a label number recognized by the ultrasonic image recognition unit on a monitor.
  • the display control unit displays the name of the observation target part corresponding to the recognized label number on the monitor as character information.
  • the display control unit displays an anatomical schema diagram in which the position of the tip of the ultrasonic endoscope corresponding to the recognized label number is superimposed and displayed as image information on the monitor.
  • the ultrasonic image recognition unit associates the position and orientation of the tip of the ultrasonic endoscope with the label number, and the ultrasonic endoscope at the time of capturing the learning ultrasonic image and the learning ultrasonic image.
  • the relationship between the position and orientation of the tip of the ultrasonic image is learned in advance for a plurality of learning ultrasonic images, and based on the learning result, the diagnostic ultrasonic image is captured from the diagnostic ultrasonic image. Recognize the label number corresponding to the position and orientation of the tip of the ultrasonic endoscope at the time, It is preferable that the display control unit displays the position and orientation of the tip portion of the ultrasonic endoscope corresponding to the label number recognized by the ultrasonic image recognition unit on the monitor.
  • the display control unit displays the name of the observation target part corresponding to the recognized label number on the monitor as character information.
  • the display control unit displays an anatomical schema diagram in which the position and orientation of the tip of the ultrasonic endoscope corresponding to the recognized label number are superimposed as image information on the monitor.
  • the operation procedure for moving the tip of the ultrasonic endoscope from the observation target part corresponding to the label number 1 to the observation target part corresponding to the label number next to the label number 1 in the observation order is memorized. Equipped with an operation procedure storage unit
  • the display control unit is an operation for moving the tip of the ultrasonic endoscope from the observation target part corresponding to the current label number to the observation target part whose observation order corresponds to the label number next to the current label number. It is preferable to acquire the procedure from the operation procedure storage unit and display the acquired operation procedure on the monitor.
  • the display control unit further displays on the monitor the name of the observation target part corresponding to the label number next to the current label number in the observation order as character information.
  • the display control unit displays the operation procedure as character information on the monitor.
  • the operation procedure includes the names of one or more organs drawn when moving the tip of the ultrasonic endoscope.
  • the display control unit displays an anatomical schema diagram in which the operation procedure is superimposed as image information on the monitor.
  • the display control unit colors the area of one or more organs drawn when moving the tip of the ultrasonic endoscope on the anatomy schema diagram, and displays the anatomy schema diagram in which the area is colored. It is preferable to display it on a monitor.
  • the display control unit draws out when moving the region of the observation target site whose observation order corresponds to the label number next to the current label number and the tip portion of the ultrasonic endoscope on the anatomy schema diagram. It is preferable to color the regions of one or more organs to be different colors and display the anatomical schema diagram in which the regions are colored different colors on the monitor.
  • the tip of the ultrasonic endoscope was moved from the observation target part corresponding to the current label number to the observation target part other than the observation target part whose observation order corresponds to the label number next to the current label number.
  • the warning generating unit issues a warning as voice information, or simultaneously emits both text information and voice information as a warning.
  • the display control unit adds a check mark to the label number corresponding to the reached observation target part and checks each time the tip of the ultrasonic endoscope reaches the observation target part corresponding to each label number. It is preferable to display the label number with the mark on the monitor as character information.
  • the display control unit colors the area of the reached observation target part on the anatomical schema diagram each time the tip of the ultrasonic endoscope reaches the observation target part corresponding to each label number. It is preferable to display an anatomical schema diagram in which the area of the observed area reached is colored on the monitor.
  • the display control unit emphasizes the area of the observation target part whose observation order corresponds to the label number next to the current label number on the anatomy schema diagram, and the anatomy schema in which the area of the observation target part is emphasized. It is preferable to display the figure on the monitor.
  • the display control unit corresponds to the area of the observation target part where the observation order corresponds to the label number next to the current label number on the anatomical schema diagram, and the observation order corresponds to the label number next to the current label number. It is preferable to color the area of the observation target part other than the observation target part to be different from that of the observation target part, and to display the anatomical schema diagram in which the observation target part area is colored on the monitor.
  • the display control unit is based on the movement route when the tip of the ultrasonic endoscope is ideally moved based on the observation order of the observation target part, and the actual operation of the ultrasonic endoscope. It is preferable to arrange the movement route when the tip is actually moved on the anatomical schema diagram as image information and display it on the monitor.
  • a movement route registration unit for pre-registering a movement route when the tip of the ultrasonic endoscope is ideally moved based on the observation order of the observation target part.
  • the ultrasonic image recognition unit is built in the ultrasonic observation device.
  • the ultrasonic endoscope further has an illumination unit and an imaging unit at the tip, Further, it is provided with an endoscope processor that receives the reflected light of the illumination light emitted from the illumination unit by the imaging unit and generates a diagnostic endoscope image from the image pickup signal of the reflected light.
  • the ultrasonic image recognition unit is preferably built in the endoscope processor.
  • the ultrasonic endoscope further has an illumination unit and an imaging unit at the tip, Further, it is provided with an endoscope processor that receives the reflected light of the illumination light emitted from the illumination unit by the imaging unit and generates a diagnostic endoscope image from the image pickup signal of the reflected light.
  • the ultrasonic image recognition unit is preferably provided outside the ultrasonic observation device and the endoscope processor.
  • the ultrasonic image recognition unit associates the position of the tip of the ultrasonic endoscope in the body cavity of the subject with the label number based on the observation order of the observation target site, and the ultrasonic for learning.
  • a step of learning in advance the relationship between the image and the label number corresponding to the position of the tip of the ultrasonic endoscope at the time of capturing the ultrasonic image for learning for a plurality of ultrasonic images for learning.
  • a step in which an ultrasonic observation device transmits and receives ultrasonic waves by an ultrasonic vibrator at the tip of an ultrasonic endoscope and generates an ultrasonic image for diagnosis from the received signal of the ultrasonic waves.
  • the ultrasonic image recognition unit recognizes the label number corresponding to the position of the tip of the ultrasonic endoscope at the time of capturing the diagnostic ultrasonic image from the diagnostic ultrasonic image.
  • a method of operating the ultrasonic endoscopic system including a step in which the display control unit displays the position of the tip of the ultrasonic endoscope corresponding to the label number recognized by the ultrasonic image recognition unit on the monitor. provide.
  • the position and orientation of the tip of the ultrasonic endoscope by associating the position and orientation of the tip of the ultrasonic endoscope with the label number, the position and orientation of the tip of the ultrasonic endoscope at the time of capturing the learning ultrasonic image and the learning ultrasonic image.
  • the relationship with the label number corresponding to the orientation is learned in advance for a plurality of learning ultrasonic images, and then Based on the learning result, the label number corresponding to the position and orientation of the tip of the ultrasonic endoscope at the time of capturing the diagnostic ultrasonic image is recognized from the diagnostic ultrasonic image. It is preferable to display the position and orientation of the tip of the ultrasonic endoscope corresponding to the label number recognized by the ultrasonic image recognition unit on the monitor.
  • the operation procedure storage unit moves the tip of the ultrasonic endoscope from the observation target part corresponding to the label number 1 to the observation target part corresponding to the label number next to the label number 1 in the observation order. Includes steps to memorize operating procedures for Using the recognized label number as the current label number, from the observation target site corresponding to the current label number to the observation target site whose observation order corresponds to the label number next to the current label number, the tip of the ultrasonic endoscope. Obtain the operation procedure for moving the unit from the operation procedure storage unit, and It is preferable to display the acquired operating procedure on the monitor.
  • the ultrasonic image recognition unit, the display control unit, and the warning generation unit are preferably hardware or a processor that executes a program
  • the operation procedure storage unit and the movement route registration unit are hardware or memory. Is preferable.
  • the position and orientation of the tip of the ultrasonic endoscope are displayed on the monitor.
  • the tip of the ultrasonic endoscope is in which position, in which direction, and in which part. It is possible to surely grasp whether or not the patient is observing.
  • the operation procedure for moving the tip portion of the ultrasonic endoscope can be displayed on the monitor. As a result, according to the present invention, even an operator who is unfamiliar with ultrasonic images can move from the current observation target site to the next observation target site without hesitation in the body of the subject. The tip can be moved correctly.
  • FIG. 1 It is a figure which shows the schematic structure of the ultrasonic endoscopic system which concerns on one Embodiment of this invention. It is a top view which shows the tip part of the insertion part of an ultrasonic endoscope and the periphery thereof. It is a figure which shows the cross section when the tip part of the insertion part of the ultrasonic endoscope is cut by the II cross section shown in FIG. It is a block diagram of one Embodiment which shows the structure of the endoscope image recognition part. It is a block diagram which shows the structure of an ultrasonic observation apparatus. It is a block diagram of one Embodiment which shows the structure of the ultrasonic image recognition part. It is a figure which shows the flow of the diagnostic processing using an ultrasonic endoscopy system.
  • the ultrasonic endoscopic system according to an embodiment of the present invention (the present embodiment) will be described in detail below with reference to the preferred embodiments shown in the accompanying drawings.
  • the present embodiment is a typical embodiment of the present invention, it is merely an example and does not limit the present invention.
  • FIG. 1 is a diagram showing a schematic configuration of an ultrasonic endoscopy system 10.
  • the ultrasonic endoscopy system 10 is used for observing the state of an observation target site in the body of a patient who is a subject (hereinafter, also referred to as ultrasonic diagnosis) using ultrasonic waves.
  • the observation target site is a site that is difficult to inspect from the body surface side of the patient, such as the pancreas or the gallbladder.
  • the endoscopic ultrasonography system 10 the state of the observation target site and the presence or absence of abnormalities are ultrasonically diagnosed via the gastrointestinal tract such as the esophagus, stomach, duodenum, small intestine, and large intestine, which are the body cavities of the patient. It is possible.
  • the ultrasonic endoscope system 10 acquires an ultrasonic image and an endoscopic image, and as shown in FIG. 1, an ultrasonic endoscope 12, an ultrasonic observation device 14, and an endoscope processor. It has a light source device 18, a monitor 20, a water supply tank 21a, a suction pump 21b, and a console 100.
  • the ultrasonic endoscope 12 is attached to an insertion portion 22 inserted into the body cavity of a patient, an operation portion 24 operated by an operator (user) such as a doctor or a technician, and a tip portion 40 of the insertion portion 22.
  • the ultrasonic oscillator unit 46 (see FIGS. 2 and 3) is provided.
  • the ultrasonic endoscope 12 has a plurality of ultrasonic vibrators 48 included in the ultrasonic vibrator unit 46 at the tip as the ultrasonic observation unit 36 (see FIGS. 2 and 3).
  • the ultrasonic endoscope 12 has an illumination unit including an illumination window 88 and the like and an imaging unit including an observation window 82, an objective lens 84, a solid-state image sensor 86 and the like as the endoscope observation unit 38 at the tip thereof. Has (see FIGS. 2 and 3). The surgeon acquires an endoscopic image and an ultrasonic image by the function of the ultrasonic endoscope 12.
  • the "endoscopic image” is an image obtained by photographing the inner wall of the body cavity of the patient by an optical method.
  • the “ultrasonic image” is an image obtained by receiving an ultrasonic reflected wave (echo) transmitted from the inside of the patient's body cavity toward the observation target site and imaging the received signal.
  • the ultrasonic endoscope 12 will be described in detail in a later section.
  • the ultrasonic observation device 14 is connected to the ultrasonic endoscope 12 via the universal cord 26 and the ultrasonic connector 32a provided at the end thereof.
  • the ultrasonic observation device 14 controls the ultrasonic oscillator unit 46 of the ultrasonic endoscope 12 to transmit ultrasonic waves. Further, the ultrasonic observation device 14 generates an ultrasonic image by imaging the received signal when the ultrasonic vibrator unit 46 receives the reflected wave (echo) of the transmitted ultrasonic wave.
  • the ultrasonic observation device 14 transmits and receives ultrasonic waves by a plurality of ultrasonic transducers 48 included in the ultrasonic transducer unit 46, and a diagnostic ultrasonic image (hereinafter, simply an ultrasonic image) is transmitted from the received signal of the ultrasonic waves. Also called) is generated.
  • a diagnostic ultrasonic image hereinafter, simply an ultrasonic image
  • the ultrasonic observation device 14 will be described in detail in a later section.
  • the endoscope processor 16 is connected to the ultrasonic endoscope 12 via the universal cord 26 and the endoscope connector 32b provided at the end thereof.
  • the endoscope processor 16 acquires image data of an adjacent portion to be observed imaged by an ultrasonic endoscope 12 (specifically, a solid-state image sensor 86 described later), and performs predetermined image processing on the acquired image data.
  • an ultrasonic endoscope 12 specifically, a solid-state image sensor 86 described later
  • the endoscope processor 16 receives the reflected light of the illumination light emitted from the illumination unit at the tip of the ultrasonic endoscope 12 by the imaging unit also at the tip of the ultrasonic endoscope 12.
  • a diagnostic endoscopic image (hereinafter, also simply referred to as an endoscopic image) is generated from the imaged signal of the reflected light.
  • the "observation target adjacent site” is a portion of the inner wall of the patient's body cavity that is adjacent to the observation target site.
  • the ultrasonic observation device 14 and the endoscope processor 16 are composed of two devices (computers) separately provided.
  • the present invention is not limited to this, and both the ultrasonic observation device 14 and the endoscope processor 16 may be configured by one device.
  • the light source device 18 is connected to the ultrasonic endoscope 12 via the universal cord 26 and the light source connector 32c provided at the end thereof.
  • the light source device 18 uses the ultrasonic endoscope 12 to image an adjacent portion to be observed, it irradiates white light or light having a specific wavelength composed of three primary colors of red light, green light, and blue light.
  • the light emitted by the light source device 18 propagates in the ultrasonic endoscope 12 through a light guide (not shown) included in the universal cord 26, and propagates in the ultrasonic endoscope 12 (details, the illumination window 88 described later). Is emitted from.
  • the portion adjacent to the observation target is illuminated by the light from the light source device 18.
  • the monitor 20 is connected to the ultrasonic observation device 14 and the endoscope processor 16, and includes an ultrasonic image generated by the ultrasonic observation device 14, an endoscopic image generated by the endoscope processor 16, and the like. Display anatomical schema diagrams, etc.
  • the ultrasonic image and the endoscopic image one image may be switched to one of the other images and displayed on the monitor 20, or two or more images may be displayed side by side at the same time. ..
  • the ultrasonic image and the endoscopic image are displayed on one monitor 20, but the monitor for displaying the ultrasonic image, the monitor for displaying the endoscopic image, and the anatomical schema diagram are used. Monitor and may be provided separately.
  • the ultrasonic image and the endoscopic image may be displayed in a display form other than the monitor 20, for example, a form displayed on the display of a terminal carried by the operator.
  • the operation console 100 is an example of an instruction acquisition unit that acquires an instruction input from the operator (user), and the operator inputs information necessary for ultrasonic diagnosis or superimposes the ultrasonic observation device 14. It is a device provided for giving an instruction to start ultrasonic diagnosis.
  • the console 100 is composed of, for example, a keyboard, a mouse, a trackball, a touch pad, a touch panel, and the like.
  • the CPU (control circuit) 152 see FIG. 5
  • the ultrasonic observation device 14 controls each part of the device (for example, the receiving circuit 142 and the transmitting circuit 144 described later) according to the operation content. To do.
  • the surgeon performs the examination information (for example, the examination order information including the date and the order number, and the patient information including the patient ID and the patient name) before starting the ultrasonic diagnosis. ) Is input on the console 100. After the input of the examination information is completed, when the operator instructs the start of the ultrasonic diagnosis through the console 100, the CPU 152 of the ultrasonic observation device 14 superimposes the ultrasonic diagnosis based on the input examination information. Each part of the ultrasonic observation device 14 is controlled.
  • the examination information for example, the examination order information including the date and the order number, and the patient information including the patient ID and the patient name
  • the operator can set various control parameters on the console 100 when performing the ultrasonic diagnosis.
  • control parameters include the selection result of the live mode and the freeze mode, the set value of the display depth (depth), the selection result of the ultrasonic image generation mode, and the like.
  • the "live mode” is a mode in which ultrasonic images (moving images) obtained at a predetermined frame rate are sequentially displayed (real-time display).
  • the "freeze mode” is a mode in which a one-frame image (still image) of an ultrasonic image (moving image) generated in the past is read out from a cine memory 150 described later and displayed.
  • the B mode is a mode in which the amplitude of the ultrasonic echo is converted into brightness and a tomographic image is displayed.
  • the CF mode is a mode in which the average blood flow velocity, the flow fluctuation, the strength of the flow signal, the flow power, etc. are mapped to various colors and displayed on the B mode image.
  • the PW mode is a mode for displaying the velocity of the ultrasonic echo source (for example, the velocity of blood flow) detected based on the transmission / reception of a pulse wave.
  • the above-mentioned ultrasonic image generation mode is merely an example, and modes other than the above-mentioned three types of modes, for example, an A (Amplitude) mode, an M (Motion) mode, a contrast mode, and the like may be further included. ..
  • FIG. 2 is an enlarged plan view of the tip of the insertion portion 22 of the ultrasonic endoscope 12 and its periphery.
  • FIG. 3 is a cross-sectional view showing a cross section when the tip portion 40 of the insertion portion 22 of the ultrasonic endoscope 12 is cut along the I-I cross section shown in FIG.
  • FIG. 5 is a block diagram showing the configuration of the ultrasonic observation device 14.
  • the ultrasonic endoscope 12 has an insertion unit 22 and an operation unit 24 as described above.
  • the insertion portion 22 includes a tip portion 40, a curved portion 42, and a soft portion 43 in this order from the tip end side (free end side).
  • the tip portion 40 is provided with an ultrasonic observation unit 36 and an endoscopic observation unit 38.
  • an ultrasonic oscillator unit 46 including a plurality of ultrasonic oscillators 48 is arranged in the ultrasonic observation unit 36.
  • the tip portion 40 is provided with a treatment tool outlet 44.
  • the treatment tool outlet 44 serves as an outlet for a treatment tool (not shown) such as a forceps, a puncture needle, or a high-frequency scalpel.
  • the treatment tool outlet 44 also serves as a suction port for sucking suctioned substances such as blood and internal filth.
  • the curved portion 42 is a portion connected to the base end side (the side opposite to the side where the ultrasonic vibrator unit 46 is provided) with respect to the tip end portion 40, and is freely bendable.
  • the flexible portion 43 is a portion that connects the curved portion 42 and the operating portion 24, has flexibility, and is provided in an elongated state.
  • a plurality of pipelines for air supply and water supply and a plurality of pipelines for suction are formed inside each of the insertion unit 22 and the operation unit 24. Further, inside each of the insertion portion 22 and the operation portion 24, a treatment tool channel 45 having one end leading to the treatment tool outlet 44 is formed.
  • the ultrasonic observation unit 36 the ultrasonic observation unit 36, the endoscope observation unit 38, the water supply tank 21a and the suction pump 21b, and the operation unit 24 will be described in detail.
  • the ultrasonic observation unit 36 is a portion provided for acquiring an ultrasonic image, and is arranged on the tip side of the tip portion 40 of the insertion portion 22. As shown in FIG. 3, the ultrasonic observation unit 36 includes an ultrasonic oscillator unit 46, a plurality of coaxial cables 56, and an FPC (Flexible Printed Circuit) 60.
  • FPC Flexible Printed Circuit
  • the ultrasonic transducer unit 46 corresponds to an ultrasonic probe, and uses an ultrasonic transducer array 50 in which a plurality of ultrasonic transducers 48, which will be described later, are arranged in the body cavity of a patient. Is transmitted, and the reflected wave (echo) of the ultrasonic wave reflected at the observation target part is received and the received signal is output.
  • the ultrasonic oscillator unit 46 according to the present embodiment is a convex type and transmits ultrasonic waves in a radial shape (arc shape).
  • the type (model) of the ultrasonic oscillator unit 46 is not particularly limited to this, and other types may be used as long as they can transmit and receive ultrasonic waves, for example, a radial type, a linear type, and the like. You may.
  • the ultrasonic oscillator unit 46 is composed of a backing material layer 54, an ultrasonic oscillator array 50, an acoustic matching layer 74, and an acoustic lens 76.
  • the ultrasonic oscillator array 50 may be configured by arranging a plurality of ultrasonic oscillators 48 in a two-dimensional array.
  • Each of the N ultrasonic vibrators 48 is configured by arranging electrodes on both sides of the piezoelectric element (piezoelectric body).
  • the piezoelectric element barium titanate (BaTiO 3 ), lead zirconate titanate (PZT), potassium niobate (KNbO 3 ) and the like are used.
  • the electrodes include individual electrodes (not shown) individually provided for each of the plurality of ultrasonic transducers 48, and a transducer ground (not shown) common to the plurality of ultrasonic transducers 48. Further, the electrodes are electrically connected to the ultrasonic observation device 14 via the coaxial cable 56 and the FPC 60.
  • a pulsed drive voltage is supplied to each ultrasonic vibrator 48 as an input signal (transmission signal) from the ultrasonic observation device 14 through the coaxial cable 56.
  • this drive voltage is applied to the electrodes of the ultrasonic vibrator 48, the piezoelectric element expands and contracts to drive (vibrate) the ultrasonic vibrator 48.
  • pulsed ultrasonic waves are output from the ultrasonic vibrator 48.
  • the amplitude of the ultrasonic waves output from the ultrasonic vibrator 48 is large according to the intensity (output intensity) when the ultrasonic vibrator 48 outputs the ultrasonic waves.
  • the output intensity is defined as the magnitude of the sound pressure of the ultrasonic waves output from the ultrasonic vibrator 48.
  • each ultrasonic vibrator 48 receives a reflected wave (echo) of ultrasonic waves, it vibrates (drives) in accordance with the reflected wave (echo), and the piezoelectric element of each ultrasonic vibrator 48 generates an electric signal.
  • This electric signal is output from each ultrasonic oscillator 48 toward the ultrasonic observation device 14 as an ultrasonic reception signal.
  • the magnitude (voltage value) of the electric signal output from the ultrasonic vibrator 48 is a magnitude corresponding to the reception sensitivity when the ultrasonic vibrator 48 receives the ultrasonic wave.
  • the reception sensitivity is defined as the ratio of the amplitude of the electric signal received and output by the ultrasonic transducer 48 to the amplitude of the ultrasonic wave transmitted by the ultrasonic transducer 48.
  • a scanning range along a curved surface in which the ultrasonic oscillator array 50 is arranged for example, Ultrasonic waves are scanned within a range of several tens of mm from the center of curvature of the curved surface. More specifically, when a B-mode image (tomographic image) is acquired as an ultrasonic image, m of N ultrasonic oscillators 48 (for example, for example) are arranged in succession by selecting the aperture channel of the multiplexer 140.
  • a drive voltage is supplied to the ultrasonic oscillator 48 (hereinafter referred to as a drive target oscillator).
  • a drive target oscillator As a result, m drive target oscillators are driven, and ultrasonic waves are output from each drive target oscillator of the aperture channel.
  • the ultrasonic waves output from the m drive target oscillators are synthesized immediately afterwards, and the combined wave (ultrasonic beam) is transmitted toward the observation target site.
  • each of the m driven target oscillators receives the ultrasonic waves (echo) reflected at the observation target site, and outputs an electric signal (received signal) according to the reception sensitivity at that time.
  • the positions of the drive target oscillators in the N ultrasonic oscillators 48 are set one by one (one).
  • the ultrasonic oscillator 48) is shifted and repeated.
  • the series of steps is performed from m drive target oscillators on both sides of the N ultrasonic oscillators 48, centered on the ultrasonic oscillator 48 located at one end. It will be started.
  • the above series of steps are repeated every time the position of the driven target oscillator shifts due to the switching of the aperture channel by the multiplexer 140.
  • the series of steps up to the m driven target oscillators on both sides of the N ultrasonic oscillators 48 centered on the ultrasonic oscillator 48 located at the other end. It is repeated N times in total.
  • the backing material layer 54 supports each ultrasonic oscillator 48 of the ultrasonic oscillator array 50 from the back surface side. Further, the backing material layer 54 attenuates the ultrasonic waves emitted from the ultrasonic transducer 48 or the ultrasonic waves (echo) reflected at the observation target portion, which have propagated to the backing material layer 54 side. Has a function.
  • the backing material is made of a rigid material such as hard rubber, and an ultrasonic damping material (ferrite, ceramics, etc.) is added as needed.
  • the acoustic matching layer 74 is superposed on the ultrasonic vibrator array 50, and is provided to match the acoustic impedance between the human body of the patient and the ultrasonic vibrator 48. By providing the acoustic matching layer 74, it is possible to increase the transmittance of ultrasonic waves.
  • As the material of the acoustic matching layer 74 various organic materials whose acoustic impedance value is closer to that of the human body of the patient can be used as compared with the piezoelectric element of the ultrasonic vibrator 48.
  • Specific examples of the material of the acoustic matching layer 74 include epoxy resin, silicone rubber, polyimide, polyethylene and the like.
  • the acoustic lens 76 superposed on the acoustic matching layer 74 is for converging the ultrasonic waves emitted from the ultrasonic oscillator array 50 toward the observation target portion.
  • the acoustic lens 76 is made of, for example, a silicon-based resin (mirable type silicon rubber (HTV rubber), liquid silicon rubber (RTV rubber), etc.), a butadiene-based resin, a polyurethane-based resin, or the like, and titanium oxide is required. , Alumina, silica and other powders are mixed.
  • the FPC 60 is electrically connected to the electrodes included in each ultrasonic oscillator 48.
  • Each of the plurality of coaxial cables 56 is wired to the FPC 60 at one end thereof. Then, when the ultrasonic endoscope 12 is connected to the ultrasonic observation device 14 via the ultrasonic connector 32a, each of the plurality of coaxial cables 56 superimposes at the other end (the side opposite to the FPC60 side). It is electrically connected to the ultrasonic observation device 14.
  • the endoscopic observation unit 38 is a portion provided for acquiring an endoscopic image, and is arranged at the tip portion 40 of the insertion portion 22 on the proximal end side of the ultrasonic observation unit 36. As shown in FIGS. 2 and 3, the endoscope observation unit 38 includes an observation window 82, an objective lens 84, a solid-state image sensor 86, an illumination window 88, a cleaning nozzle 90, a wiring cable 92, and the like.
  • the observation window 82 is attached at the tip 40 of the insertion portion 22 in a state of being inclined obliquely with respect to the axial direction (longitudinal axial direction of the insertion portion 22).
  • the light reflected from the portion adjacent to the observation target and incident from the observation window 82 is imaged on the image pickup surface of the solid-state image sensor 86 by the objective lens 84.
  • the solid-state image sensor 86 transmits the observation window 82 and the objective lens 84, photoelectrically converts the reflected light of the portion adjacent to the observation target imaged on the image pickup surface, and outputs the image pickup signal.
  • CCD Charge Coupled Device: charge-coupled device
  • CMOS Complementary MetalOxide Semiconductor: complementary metal oxide semiconductor
  • the captured image signal output by the solid-state image sensor 86 is transmitted to the endoscope processor 16 by the universal cord 26 via the wiring cable 92 extending from the insertion unit 22 to the operation unit 24.
  • the illumination window 88 is provided at both side positions of the observation window 82.
  • An exit end of a light guide (not shown) is connected to the illumination window 88.
  • the light guide extends from the insertion unit 22 to the operation unit 24, and its incident end is connected to the light source device 18 connected via the universal cord 26.
  • the illumination light emitted by the light source device 18 is transmitted through the light guide and is emitted from the illumination window 88 toward the portion adjacent to the observation target.
  • the cleaning nozzle 90 is a ejection hole formed in the tip portion 40 of the insertion portion 22 for cleaning the surfaces of the observation window 82 and the illumination window 88, and air or a cleaning liquid is discharged from the cleaning nozzle 90 through the observation window 82. And is ejected toward the illumination window 88.
  • the cleaning liquid ejected from the cleaning nozzle 90 is water, particularly degassed water.
  • the cleaning liquid is not particularly limited, and other liquids, for example, ordinary water (water that has not been degassed) may be used.
  • the water supply tank 21a is a tank for storing degassed water, and is connected to the light source connector 32c by the air supply water supply tube 34a.
  • the degassed water is used as a cleaning liquid ejected from the cleaning nozzle 90.
  • the suction pump 21b sucks the suction material (including the degassed water supplied for cleaning) in the body cavity through the treatment tool outlet 44.
  • the suction pump 21b is connected to the light source connector 32c by a suction tube 34b.
  • the ultrasonic endoscopy system 10 may be provided with an air supply pump or the like that supplies air to a predetermined air supply destination.
  • a treatment tool channel 45 and an air supply / water pipe (not shown) are provided in the insertion unit 22 and the operation unit 24.
  • the treatment tool channel 45 communicates between the treatment tool insertion port 30 provided in the operation unit 24 and the treatment tool outlet 44. Further, the treatment tool channel 45 is connected to a suction button 28b provided on the operation unit 24. The suction button 28b is connected to the suction pump 21b in addition to the treatment tool channel 45.
  • the air supply / water pipe is connected to the cleaning nozzle 90 on one end side thereof, and is connected to the air supply water supply button 28a provided on the operation unit 24 on the other end side.
  • the air supply / water supply button 28a is connected to the water supply tank 21a in addition to the air supply / water supply pipeline.
  • the operation unit 24 is a part operated by the operator at the start, during the diagnosis, at the end of the diagnosis, etc., and one end of the universal cord 26 is connected to one end thereof. Further, as shown in FIG. 1, the operation unit 24 has an air supply / water supply button 28a, a suction button 28b, a pair of angle knobs 29, and a treatment tool insertion port (forceps port) 30.
  • the treatment tool insertion port 30 is a hole formed for inserting a treatment tool (not shown) such as forceps, and is in contact with the treatment tool outlet 44 via the treatment tool channel 45.
  • the treatment tool inserted into the treatment tool insertion port 30 is introduced into the body cavity from the treatment tool outlet 44 after passing through the treatment tool channel 45.
  • the air supply / water supply button 28a and the suction button 28b are two-stage switching type push buttons, and are operated to switch the opening / closing of the pipelines provided inside each of the insertion unit 22 and the operation unit 24.
  • the endoscopic image recognition unit 170 has learned in advance the relationship between the learning endoscopic image and the lesion area displayed on the learning endoscopic image for the plurality of learning endoscopic images. Based on the learning result, the lesion region displayed on the diagnostic endoscopic image is recognized from the diagnostic endoscopic image generated by the endoscope processor 16.
  • the learning endoscopic image is an existing endoscopic image for the endoscopic image recognition unit 170 to learn the relationship between the endoscopic image and the lesion area displayed on the endoscopic image. Yes, for example, various endoscopic images taken in the past can be used.
  • the endoscopic image recognition unit 170 includes a lesion area detection unit 102, a position information acquisition unit 104, a selection unit 106, and a lesion area detection control unit 108.
  • the lesion area detection unit 102 detects the lesion area from the diagnostic endoscopic image based on the learning result.
  • the lesion area detection unit 102 includes a plurality of detection units corresponding to a plurality of positions in the body cavity.
  • the first to eleventh detection units 102A to 102K are provided.
  • the first detection unit 102A is in the rectum
  • the second detection unit 102B is in the sigmoid colon
  • the third detection unit 102C is in the descending colon
  • the fourth detection unit 102D is in the transverse colon
  • the fifth detection unit 102E is in the ascending colon.
  • the sixth detection unit 102F is in the cecum
  • the seventh detection unit 102G is in the ileum
  • the eighth detection unit 102H is in the jejunum
  • the ninth detection unit 102I is in the duodenum
  • the tenth detection unit 102J is in the stomach
  • the eleventh detection unit 102K Corresponds to the esophagus.
  • the first to eleventh detection units 102A to 102K are trained models, respectively.
  • the plurality of trained models are models trained using a dataset consisting of different learning endoscopic images. Specifically, the plurality of trained models are displayed on the learning endoscopic image and the learning endoscopic image using a data set consisting of learning endoscopic images taken at different positions in the body cavity. This is a model in which the relationship between the lesion area and the lesion area is learned in advance.
  • the first detection unit 102A is a data set consisting of learning endoscopic images of the rectum
  • the second detection unit 102B is a data set consisting of learning endoscopic images of the sigmoid colon
  • the third detection unit 102C is the descending colon.
  • the fourth detection unit 102D is a data set consisting of a learning endoscopic image of the transverse colon
  • the fifth detection unit 102E is a data set consisting of a learning endoscopic image of the ascending colon.
  • 6th detection unit 102F is a data set consisting of endoscopic images for learning of the cecum
  • 7th detection unit 102G is a data set consisting of endoscopic images for learning of the colon
  • 8th detection unit 102H is for learning of the air intestine.
  • Data set consisting of endoscopic images 9th detection unit 102I is a data set consisting of endoscopic images for learning of the duodenum
  • 10th detection unit 102J is a data set consisting of endoscopic images for learning of the stomach
  • 11th detection Part 102K is a model learned using a data set consisting of endoscopic images for learning the esophagus.
  • the learning method is not particularly limited as long as it can learn the relationship between the endoscopic image and the lesion region from a plurality of learning endoscopic images and generate a learned model.
  • a learning method for example, deep learning (deep learning) using a hierarchical neural network as an example of machine learning (machine learning), which is one of the technologies of artificial intelligence (AI), is used. be able to.
  • machine learning other than deep learning may be used, artificial intelligence technology other than machine learning may be used, or learning methods other than artificial intelligence technology may be used.
  • the trained model may be generated using only the training endoscopic image. In this case, the trained model is not updated and the same trained model can always be used.
  • the diagnostic endoscopic image may be used to generate a trained model. In this case, the learned model is updated as needed by learning the relationship between the diagnostic endoscopic image and the lesion area displayed on the diagnostic endoscopic image.
  • the position information acquisition unit 104 acquires information on the position in the body cavity of the endoscopic image.
  • an operator such as a doctor inputs position information using the console 100.
  • the position information acquisition unit 104 acquires the position information input from the operation console 100.
  • the selection unit 106 selects a detection unit corresponding to the position information acquired by the position information acquisition unit 104 from the lesion area detection unit 102. That is, the selection unit 106 uses the first detection unit 102A when the position information is the rectum, the second detection unit 102B when the position information is the sigmoid colon, the third detection unit 102C when the position information is the descending colon, and the transverse colon.
  • the 4th detection unit 102D in the case of the ascending colon, the 5th detection unit 102E, in the case of the rectum, the 6th detection unit 102F, in the case of the ileum, the 7th detection unit 102G, and in the case of the jejunum, the 8th detection unit.
  • the lesion area detection control unit 108 causes the lesion area to be detected from the endoscopic image by the detection unit selected by the selection unit 106.
  • the lesion area here is not limited to the one caused by the disease, and includes an area in a state different from the normal state in appearance.
  • the lesion area includes, for example, treatment scars such as polyps, cancer, colon diverticulum, inflammation, EMR (Endoscopic Mucosal Resection) scars or ESD (Endoscopic Submucosal Dissection) scars, clip sites, bleeding points, perforations, and vascular atypia. It can be exemplified.
  • the ultrasonic observation device 14 transmits and receives ultrasonic waves to the ultrasonic vibrator unit 46, and images the received signal output by the ultrasonic vibrator 48 (specifically, the element to be driven) at the time of ultrasonic reception to obtain an ultrasonic image. To generate. Further, in addition to the generated ultrasonic image, the ultrasonic observation device 14 displays the endoscopic image transferred from the endoscope processor 16 and the anatomical schema diagram on the monitor 20.
  • the ultrasonic observation device 14 includes a multiplexer 140, a reception circuit 142, a transmission circuit 144, an A / D converter 146, an ASIC (Application Specific Integrated Circuit) 148, a cine memory 150, and a CPU (Central Processing Unit) 152. , DSC (Digital Scan Controller) 154, ultrasonic image recognition unit 168, operation procedure storage unit 174, warning generation unit 176, movement route registration unit 178, and display control unit 172.
  • DSC Digital Scan Controller
  • the receiving circuit 142 and the transmitting circuit 144 are electrically connected to the ultrasonic oscillator array 50 of the ultrasonic endoscope 12.
  • the multiplexer 140 selects a maximum of m drive target oscillators from the N ultrasonic oscillators 48 and opens the channels thereof.
  • the transmission circuit 144 includes an FPGA (field programmable gate array), a pulsar (pulse generation circuit 158), a SW (switch), and the like, and is connected to a MUX (multiplexer 140).
  • An ASIC application specific integrated circuit may be used instead of the FPGA.
  • the transmission circuit 144 transmits ultrasonic waves to the drive target oscillator selected by the multiplexer 140 according to the control signal sent from the CPU 152 in order to transmit ultrasonic waves from the ultrasonic transducer unit 46.
  • the drive voltage is a pulsed voltage signal (transmission signal) and is applied to the electrodes of the drive target oscillator via the universal cord 26 and the coaxial cable 56.
  • the transmission circuit 144 has a pulse generation circuit 158 that generates a transmission signal based on the control signal, and under the control of the CPU 152, the pulse generation circuit 158 is used to drive a plurality of ultrasonic vibrators 48 to superimpose.
  • a transmission signal for generating a sound wave is generated and supplied to a plurality of ultrasonic vibrators 48. More specifically, the transmission circuit 144 uses the pulse generation circuit 158 to generate a transmission signal having a drive voltage for performing the ultrasonic diagnosis when the ultrasonic diagnosis is performed under the control of the CPU 152.
  • the receiving circuit 142 is a circuit that receives an electric signal output from a drive target oscillator that has received ultrasonic waves (echo), that is, a received signal. Further, the receiving circuit 142 amplifies the received signal received from the ultrasonic vibrator 48 according to the control signal sent from the CPU 152, and delivers the amplified signal to the A / D converter 146.
  • the A / D converter 146 is connected to the receiving circuit 142, converts the received signal received from the receiving circuit 142 from an analog signal to a digital signal, and outputs the converted digital signal to the ASIC 148.
  • the ASIC 148 is connected to the A / D converter 146, and as shown in FIG. 5, the phase matching unit 160, the B mode image generation unit 162, the PW mode image generation unit 164, the CF mode image generation unit 166, and the memory controller 151. Consists of. In this embodiment, the above-mentioned functions (specifically, the phase matching unit 160, the B mode image generation unit 162, the PW mode image generation unit 164, the CF mode image generation unit 166, and the above-mentioned functions by a hardware circuit such as ASIC148 are used.
  • the memory controller 151) has been realized, but the present invention is not limited to this. The above functions may be realized by linking a central processing unit (CPU) and software (computer program) for executing various data processes.
  • the phase matching unit 160 executes a process of giving a delay time to the received signal (received data) digitized by the A / D converter 146 and performing phase adjustment addition (adding after matching the phase of the received data). To do.
  • the phasing addition process generates a sound line signal in which the focus of the ultrasonic echo is narrowed down.
  • the B-mode image generation unit 162, the PW-mode image generation unit 164, and the CF-mode image generation unit 166 are driven by the ultrasonic transducer units 48 among the plurality of ultrasonic transducers 48 when the ultrasonic transducer unit 46 receives ultrasonic waves. Generates an ultrasonic image based on the electric signal output by (strictly speaking, the sound line signal generated by phasing and adding the received data).
  • the B-mode image generation unit 162 is an image generation unit that generates a B-mode image that is a tomographic image of the inside (inside the body cavity) of the patient.
  • the B-mode image generation unit 162 corrects the attenuation due to the propagation distance of the sequentially generated sound line signals by STC (Sensitivity Time gain Control) according to the depth of the reflection position of the ultrasonic waves. Further, the B-mode image generation unit 162 generates an B-mode image (image signal) by performing an envelope detection process and a Log (logarithmic) compression process on the corrected sound line signal.
  • the PW mode image generation unit 164 is an image generation unit that generates an image that displays the velocity of blood flow in a predetermined direction.
  • the PW mode image generation unit 164 extracts a frequency component by performing a high-speed Fourier transform on a plurality of sound line signals in the same direction among the sound line signals sequentially generated by the phase matching unit 160. After that, the PW mode image generation unit 164 calculates the blood flow velocity from the extracted frequency component, and generates a PW mode image (image signal) displaying the calculated blood flow velocity.
  • the CF mode image generation unit 166 is an image generation unit that generates an image that displays blood flow information in a predetermined direction.
  • the CF mode image generation unit 166 generates an image signal indicating information on blood flow by obtaining the autocorrelation of a plurality of sound line signals in the same direction among the sound line signals sequentially generated by the phase matching unit 160. .. After that, the CF mode image generation unit 166 superimposes information on blood flow on the B mode image signal generated by the B mode image generation unit 162 based on the above image signal, and the CF mode image (image signal) as a color image. ) Is generated.
  • the memory controller 151 stores the image signal generated by the B-mode image generation unit 162, the PW-mode image generation unit 164, or the CF-mode image generation unit 166 in the cine memory 150.
  • the DSC 154 is connected to the ASIC 148 and converts the image signal generated by the B mode image generation unit 162, the PW mode image generation unit 164, or the CF mode image generation unit 166 into an image signal according to a normal television signal scanning method. (Raster conversion) is performed, the image signal is subjected to various necessary image processing such as gradation processing, and then output to the ultrasonic image recognition unit 168.
  • the ultrasonic image recognition unit 168 associates the position and orientation of the tip of the ultrasonic endoscope 12 in the body cavity of the subject with a label number based on the observation order of the observation target part such as an organ, and super-learning.
  • the relationship between the ultrasonic image and the label number corresponding to the position and orientation of the tip 40 of the ultrasonic endoscope 12 at the time of capturing the ultrasonic image for learning is learned in advance for a plurality of ultrasonic images for learning and learned.
  • the ultrasonic endoscope 12 Based on the result, from the ultrasonic image raster-converted by DSC154, that is, the ultrasonic image for diagnosis generated by the ultrasonic observation device 14, the ultrasonic endoscope 12 at the time of capturing the ultrasonic image for diagnosis The label number corresponding to the position and orientation of the tip portion 40 is recognized.
  • the label number recognized by the ultrasonic image recognition unit 168 is output to the display control unit 172 and the warning generation unit 176 (see FIG. 5), which will be described later.
  • the observation order of the observation target sites is the order of the observation target sites in which ultrasonic images are imaged (observed) in the body cavity of the subject.
  • the observation order of the observation target sites will be described later with an example.
  • the label number is given based on the observation order of the observation target site. For example, assuming that the observation target site having the first observation order is the left lobe of the liver, the left lobe of the liver is given the first label number.
  • the label number does not have to be a "number" as long as the order is known, and may be any label.
  • the ultrasonic image recognition unit 168 has a relationship between the ultrasonic image and a label number corresponding to the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 at the time of capturing the ultrasonic image. It is an existing ultrasonic image for learning, for example, various ultrasonic images captured in the past can be used.
  • the ultrasonic image recognition unit 168 includes a label number detection unit 112, an organ name detection unit 120, and a position and orientation detection unit 122.
  • the label number detection unit 112 detects the label number corresponding to the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 at the time of capturing the diagnostic ultrasonic image from the diagnostic ultrasonic image. To do.
  • the label number detection unit 112 is a trained model.
  • This trained model uses a data set consisting of learning ultrasonic images that capture different positions of the subject's body to be observed, and uses an ultrasonic endoscope 12 at the time of capturing the learning ultrasonic image.
  • the position and orientation of the tip 40 of the ultrasonic endoscope 12 at the time of capturing the learning ultrasonic image and the learning ultrasonic image by assigning each label number corresponding to each position and orientation of the tip 40 of the above.
  • This is a model in which the relationship between the label number corresponding to the orientation and the relationship is learned in advance.
  • the learning method has been learned by learning the relationship between the ultrasonic image and the label number corresponding to the position and orientation of the tip 40 at the time of imaging of the ultrasonic endoscope 12 from a plurality of learning ultrasonic images.
  • the model is not particularly limited as long as it can generate a model.
  • a learning method for example, deep learning (deep learning) using a hierarchical neural network as an example of machine learning (machine learning), which is one of the technologies of artificial intelligence (AI), is used. be able to.
  • machine learning other than deep learning may be used, artificial intelligence technology other than machine learning may be used, or learning methods other than artificial intelligence technology may be used.
  • the trained model may be generated using only the ultrasonic image for training. In this case, the trained model is not updated and the same trained model can always be used.
  • the diagnostic ultrasound image may be used to generate the trained model. In this case, the trained model learns the relationship between the diagnostic ultrasonic image and the label number corresponding to the position and orientation of the tip 40 of the ultrasonic endoscope 12 at the time of capturing the diagnostic ultrasonic image. Is updated from time to time.
  • Typical observation points in the body include, for example, the following (1) to (12).
  • the gallbladder is a typical observation point from within the stomach, and (8) the portal vein, (9) the common
  • the observation order of the observation target sites is an example, and the observation order of the observation target sites may be slightly different depending on the operator. For this reason, a plurality of lists of observation orders of different observation target sites are prepared according to the operator, and for each list, a learning ultrasonic image and an ultrasonic endoscope at the time of capturing the learning ultrasonic image are prepared.
  • the relationship between the label numbers corresponding to the positions and orientations of the tips 40 of the twelve is learned for a plurality of learning ultrasonic images, and the list to be used, that is, the observation order of the observation target site is switched by the operator. You may do so. Alternatively, the surgeon may be able to register the desired list.
  • the number of observation target sites in the list may be larger than the observation order of the above observation target sites, or conversely may be smaller. That is, one or more other observation target parts may be added between the observation target part of 1 and the observation target part next to the observation target part having the observation order of 1, or conversely, the observation order is continuous. One or more observation target sites may be deleted from the plurality of observation target sites.
  • the organ name detection unit 120 detects the names of the organs corresponding to the label numbers (1) to (12) detected by the label number detection unit 112. Since the label number is associated with the observation order of the observation target site, the name of the observation target site (organ) corresponding to this label number can be obtained from the label number.
  • the position and orientation detection unit 122 sets the tip of the ultrasonic endoscope 12 at the time of capturing a diagnostic ultrasonic image based on the label numbers (1) to (12) detected by the label number detection unit 112.
  • the position and orientation of the unit 40 are detected. Since the label number is associated with the position and orientation of the tip 40 of the ultrasonic endoscope 12 at the time of capturing the ultrasonic image, the label number is used to indicate the ultrasonic endoscope 12 corresponding to this label number. The position and orientation of the tip 40 can be obtained.
  • the position and orientation of the tip 40 of the ultrasonic endoscope 12 are the observation points corresponding to the above label numbers (1) to (12), that is, (1) left lobe of the liver, (2). ) Confluence of aorta, peritoneal artery, and superior mesenteric artery, (3) pancreatic body, (4) tail of pancreas, (5) splenic vein, superior mesenteric vein, and confluence of portal vein, (6) ) Pancreatic head and (7) gallbladder (representative observation point from the stomach), (8) portal vein, (9) common bile duct and (10) gallbladder (representative observation point of duodenal bulb), (11) The position and orientation of the tip 40 of the ultrasonic endoscope 12 at the time of capturing an ultrasonic image at the pancreatic gall bladder and (12) the papilla (a typical observation point from the descending duodenum) are detected.
  • the ultrasonic vibrator unit 46 When the ultrasonic vibrator unit 46 is a convex type as in the present embodiment, the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 are made to correspond to the label number, and the position and orientation corresponding to the label number are detected. It is desirable to do. On the other hand, when the ultrasonic vibrator unit 46 is a radial type, it is not necessary to detect the direction of the tip 40 of the ultrasonic endoscope 12, so only the position of the tip 40 of the ultrasonic endoscope 12 is labeled. It is desirable to correspond to the number and detect only the position corresponding to the label number.
  • the operation procedure storage unit 174 moves the tip portion 40 of the ultrasonic endoscope 12 from the observation target portion corresponding to the label number 1 to the observation target portion corresponding to the label number next to the label number having the observation order of 1. Memorize the operation procedure for making it. The operation procedure is output to the display control unit 172.
  • the label number of 1 is a label number corresponding to any one observation target part among the observation target parts to be observed according to the observation order, and the label number next to the label number having the observation order of 1 is the arbitrary one. It is a label number corresponding to the next observation target part of the observation target part.
  • the first observation site corresponding to the first label number is the left lobe of the liver
  • the second observation site corresponding to the second label number is the confluence of the aorta, celiac artery, and superior mesenteric artery.
  • it is a department.
  • the operation procedure storage unit 174 is an endoscopic ultrasound endoscope from the left lobe of the liver corresponding to the first label number to the confluence of the aorta, the celiac artery, and the superior mesenteric artery corresponding to the second label number.
  • the operation procedure for moving the tip portion 40 of 12 is stored.
  • the operation procedure storage unit 174 similarly stores the operation procedure for the observation target parts corresponding to the second and subsequent label numbers.
  • the operation procedure for the observation target site whose observation order corresponds to the last label number is not stored.
  • the operating procedure includes various instructions for moving the tip 40 of the ultrasonic endoscope 12.
  • instructions such as moving the ultrasonic endoscope 12 forward, turning the ultrasonic endoscope 12 clockwise or counterclockwise, and bending the tip 40 of the ultrasonic endoscope 12 are included.
  • the warning generation unit 176 moves the tip of the ultrasonic endoscope 12 from the observation target part corresponding to the current label number to the observation target part other than the observation target part whose observation order corresponds to the label number next to the current label number. A warning is issued when the unit 40 is moved.
  • the current label number is the label number corresponding to the observation target part currently being observed among the observation target parts to be observed according to the observation order, in other words, the label number currently recognized by the ultrasonic image recognition unit 168. Is.
  • the label number next to the label number whose observation order is the current one is the label number corresponding to the observation target part to be observed next to the observation target part currently being observed.
  • the first observation site corresponding to the first label number is the left lobe of the liver
  • the second observation site corresponding to the second label number is the aorta, celiac artery, and superior mesenteric artery. It is assumed that it is a confluence.
  • the first label number corresponding to the left lobe of the liver is the current label number, which corresponds to the confluence of the aorta, celiac artery, and superior mesenteric artery.
  • the second label number is the label number next to the current label number in the observation order.
  • the tip 40 of the ultrasonic endoscope 12 moves from the observation target part corresponding to the current label number to the observation target part other than the observation target part whose observation order corresponds to the label number next to the current label number. If so, the warning generating unit 176 determines that the moving direction of the tip 40 of the ultrasonic endoscope 12 operated by the operator is incorrect, and issues a warning. When the warning generator 176 issues a warning, the operator can notice that the tip 40 of the ultrasonic endoscope 12 is being moved in the wrong direction, and the ultrasonic endoscope 12 can be moved in the correct direction. The tip 40 can be moved.
  • the warning issued by the warning generation unit 176 is output to the display control unit 172, and under the control of the display control unit 172, a warning such as "the moving direction is wrong! Is displayed as character information. It is displayed on the monitor 20.
  • the means for issuing the warning is not particularly limited, and for example, the warning may be issued from the speaker as voice information, or both text information and voice information may be issued at the same time as the warning.
  • the movement route registration unit 178 registers in advance a movement route when the tip 40 of the ultrasonic endoscope 12 is ideally moved based on the observation order of the observation target portion. This ideal movement route is output to the display control unit 172.
  • the ideal movement route is a movement route when the tip 40 of the ultrasonic endoscope 12 is correctly operated and moved according to the observation order of the observation target part.
  • the display control unit 172 causes the monitor 20 to display the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 corresponding to the label number recognized by the ultrasonic image recognition unit 168.
  • the display control unit 172 superimposes the lesion area on the endoscopic image, superimposes the name of the organ on the ultrasonic image, and displays the name of the organ on the anatomical schema according to the instruction from the operator.
  • the position and orientation of the tip 40 of the ultrasonic endoscope 12 may be superimposed and displayed.
  • the display control unit 172 displays an endoscopic image in which the lesion area is not displayed, an endoscopic image in which the lesion area is superimposed, and an organ name in response to an instruction from the operator.
  • the name of the organ is displayed in the vicinity of the organ, for example, on the organ by superimposing it on the ultrasonic image, and the position and orientation of the tip 40 of the ultrasonic endoscope 12 are, for example, in the anatomical schema diagram. It is displayed on top of it.
  • the lesion area is displayed, for example, overlaid on the endoscopic image and surrounded by a frame.
  • the cine memory 150 has a capacity for accumulating image signals for one frame or several frames.
  • the image signal generated by the ASIC 148 is output to the DSC 154, and is also stored in the cine memory 150 by the memory controller 151.
  • the memory controller 151 reads the image signal stored in the cine memory 150 and outputs it to the DSC 154.
  • the monitor 20 displays an ultrasonic image (still image) based on the image signal read from the cine memory 150.
  • the CPU 152 functions as a control unit that controls each part of the ultrasonic observation device 14, and is connected to a reception circuit 142, a transmission circuit 144, an A / D converter 146, an ASIC 148, and the like to control these devices. Specifically, the CPU 152 is connected to the console 100 and controls each part of the ultrasonic observation device 14 according to the inspection information, control parameters, and the like input by the console 100.
  • the CPU 152 automatically recognizes the ultrasonic endoscope 12 by a method such as PnP (Plug and Play). To do.
  • FIG. 7 is a diagram showing a flow of diagnostic processing using the ultrasonic endoscopy system 10.
  • FIG. 8 is a diagram showing the procedure of the diagnostic step during the diagnostic process.
  • the CPU 152 controls each part of the ultrasonic observation device 14 to perform the diagnosis step (S004).
  • the diagnostic step proceeds according to the flow shown in FIG. 8, and when the designated image generation mode is the B mode (Yes in S031), each part of the ultrasonic observation device 14 so as to generate the B mode image. Is controlled (S032). Further, when the designated image generation mode is not the B mode (No in S031) and the CF mode (Yes in S033), each part of the ultrasonic observation device 14 is controlled so as to generate a CF mode image (S034). ).
  • each part of the ultrasonic observation device 14 is controlled so as to generate a PW mode image (S036). ). If the designated image generation mode is not the PW mode (No in S035), the process proceeds to step S037.
  • the CPU 152 determines whether or not the ultrasonic diagnosis has been completed (S037).
  • the process returns to the diagnosis step S031, and the generation of the ultrasonic image by each image generation mode is repeatedly performed until the diagnosis end condition is satisfied.
  • the diagnosis end condition include, for example, an operator instructing the end of the diagnosis through the operation console 100.
  • the diagnosis step is completed. Then, returning to FIG. 7, when the power of each part of the ultrasonic endoscopic system 10 is turned off (Yes in S006), the diagnostic process is completed. On the other hand, when the power of each part of the ultrasonic endoscopic system 10 is maintained in the on state (No in S005), the process returns to the input step S001 and each step of the above-mentioned diagnostic process is repeated.
  • the surgeon can display at least one of the endoscopic image, the ultrasonic image, and the anatomical schema diagram on the screen of the monitor 20.
  • the display control unit 172 determines the endoscopic image (with / without display of the lesion area), the ultrasonic image (with / without the display of the organ name), and the anatomy according to the instruction from the operator.
  • One image or two or more images are displayed side by side on the screen of the monitor 20 from the anatomical schema diagram (with / without display of the position and orientation of the tip 40 of the ultrasonic endoscope 12).
  • the display control unit 172 can display one image as a attention image larger than the other images from the two or more images displayed on the monitor 20.
  • the ultrasonic image recognition unit 168 operates, and the endoscopic image is displayed on the screen of the monitor 20.
  • the endoscopic image recognition unit 170 operates.
  • an endoscopic image in which the lesion area is superimposed and displayed on the monitor 20 is displayed, or an ultrasonic image in which the name of the organ is superimposed on the monitor 20.
  • Can be displayed on the monitor 20, or an anatomical schema diagram in which the position and orientation of the tip 40 of the ultrasonic endoscope 12 are superimposed on the monitor 20 can be displayed on the monitor 20.
  • surgeon can display an endoscopic image, an ultrasonic image, and an anatomical schema diagram on the screen of the monitor 20 as shown in FIG.
  • An ultrasonic image is displayed from the left to the center of the screen of the monitor 20 shown in FIG. 9, and the names of the organs Panc, PD, SV, and SA are superimposed on the ultrasonic image.
  • Panc stands for pancreas
  • PD stands for pancreatic duct
  • SV stands for splenic vein
  • SA stands for splenic artery.
  • An anatomy schema diagram is displayed in the upper right portion of the screen of the monitor 20, and the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 are superimposed on the anatomy schema diagram.
  • An endoscopic image in which the lesion area is not displayed is displayed in the lower right portion of the screen of the monitor 20.
  • the ultrasound image is displayed as a noteworthy image larger than the anatomical schema and endoscopic images. Further, the operation procedure for moving the tip portion 40 of the ultrasonic endoscope 12 between the anatomical schema diagram at the right center portion in the screen of the monitor 20 and the endoscope image is described in "Next observation. Target site: 4th tail of pancreas Please turn clockwise along the SV. "is displayed as text information.
  • the operator can arbitrarily combine one image or two or more images and display them side by side on the screen of the monitor 20.
  • the surgeon can arbitrarily set the position where the endoscopic image, the ultrasonic image, the anatomical schema diagram, and the operation procedure are arranged.
  • the surgeon can switch and display the image of interest from the images displayed on the monitor 20.
  • Display control method by display control unit >> Next, various display control methods by the display control unit 172 will be described. First, a method of displaying the position and orientation of the tip 40 of the ultrasonic endoscope 12 will be described.
  • the display control unit 172 can display the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 corresponding to the label number recognized by the ultrasonic image recognition unit 168 on the monitor 20 as character information.
  • the display control unit 172 determines the tip of the ultrasonic endoscope 12 such as "Currently, the tip of the ultrasonic endoscope depicts the direction of the left lobe of the liver from the stomach." Character information explaining the position and orientation of the unit 40 is displayed on the monitor 20. Further, the display control unit 172 can display the name of the observation target portion corresponding to the label number recognized by the ultrasonic image recognition unit 168 on the monitor 20 as character information.
  • the display control unit 172 displays on the monitor 20 an anatomical schema diagram in which the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 recognized by the ultrasonic image recognition unit 168 are superimposed and displayed as image information. Can be made to.
  • the display control unit 172 displays an anatomical schema diagram on the monitor 20 as shown in the upper right part of FIG. 9, and the position and orientation of the tip 40 of the ultrasonic endoscope 12 are anatomical as image information. It is overlaid on the schema diagram.
  • the display control unit 172 may display the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 on the monitor 20 as character information and display it on the monitor 20 as image information. That is, both the character information and the image information may be displayed at the same time.
  • the display control unit 172 can display the operation procedure for moving the tip portion 40 of the ultrasonic endoscope 12 on the monitor 20.
  • the display control unit 172 moves the observation target portion corresponding to the current label number to the observation target portion whose observation order corresponds to the label number next to the current label number.
  • the tip portion 40 of the ultrasonic endoscope 12 The operation procedure for moving the label is acquired from the operation procedure storage unit 174, and the operation procedure acquired from the operation procedure storage unit 174 is displayed on the monitor 20.
  • the tip 40 of the ultrasonic endoscope 12 can be correctly moved from the current observation target site to the next observation target site without hesitation in the body of the subject. Can be moved.
  • the display control unit 172 can display the operation procedure on the monitor 20 as character information explaining the operation procedure.
  • the operating procedure may include the names of one or more organs that serve as landmarks for the operation, as shown in the center right of FIG.
  • "SV" in “Turn clockwise along the SV” is the name of the organ that serves as a mark of operation.
  • the organ that serves as a marker for operation is an organ that is a target when the tip 40 of the ultrasonic endoscope 12 is moved, and is drawn when the tip 40 of the ultrasonic endoscope 12 is moved.
  • Organs displayed in the current ultrasonic image organs displayed within a certain range from the position of the tip 40 of the ultrasonic endoscope 12 in the current ultrasonic image, and a plurality of defined organs. , One or more organs selected from the above can be exemplified.
  • the display control unit 172 can display the anatomical schema diagram in which the operation procedure is superimposed as image information representing the movement route of the tip portion 40 of the ultrasonic endoscope 12 on the monitor 20.
  • the display control unit 172 may color an area of one or more organs that serves as a mark of operation on the anatomy schema diagram, and display the colored anatomy schema diagram on the monitor 20. .. Further, on the anatomy schema diagram, the display control unit 172 includes a region of an observation target site whose observation order corresponds to the label number next to the current label number, and a region of one or more organs that serves as a mark for the above operation.
  • the anatomical schema diagram may be displayed on the monitor 20 in which the and is colored in different colors and these areas are colored in different colors.
  • the display control unit 172 may display both the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 and the operation procedure on the monitor 20 at the same time.
  • the display control unit 172 further causes the monitor 20 to display the name of the observation target portion whose observation order corresponds to the label number next to the current label number as character information. Good.
  • "next observation target site: fourth pancreatic tail” is the name of the observation target site corresponding to the next label number. Since the label number is associated with the observation order of the observation target part, the name of the observation target part whose observation order corresponds to the label number next to this label number can be obtained from the label number. As a result, the operator can easily grasp where the next observation target site is.
  • the display control unit 172 adds a check mark to the label number corresponding to the reached observation target part each time the tip 40 of the ultrasonic endoscope 12 reaches the observation target part corresponding to each label number. Then, as shown in FIG. 10, the label number to which the check mark is added may be displayed on the monitor 20 as character information. That is, a check mark is added to the label number corresponding to the observation target portion reached by the tip portion 40 of the ultrasonic endoscope 12. In the case of the example of FIG. 10, a check mark is attached to the label numbers (1) left lobe of the liver, (2) aorta, celiac artery, confluence of superior mesenteric artery, and (3) left side of pancreatic body.
  • the tip 40 of the ultrasonic endoscope 12 reaches the observation target site corresponding to the label number (3) pancreatic body. You can see that.
  • the display control unit 172 determines the area of the observation target portion reached on the anatomical schema diagram each time the tip portion 40 of the ultrasonic endoscope 12 reaches the observation target region corresponding to each label number.
  • the monitor 20 may display an anatomical schema diagram in which the area of the observation target site that has been colored and reached is colored. That is, the region of the observation target portion reached by the tip portion 40 of the ultrasonic endoscope 12 is colored.
  • the operator can easily grasp which label number the observation order currently reaches the observation target site, which is the tip 40 of the ultrasonic endoscope 12. That is, the surgeon confirms that the tip 40 of the ultrasonic endoscope 12 has reached the observation target site corresponding to the label number with the check mark, or the colored observation target site. can do.
  • the operator can easily grasp which observation target site is the observation target site whose observation order corresponds to the label number next to the current label number.
  • the display control unit 172 emphasizes the area of the observation target part whose observation order corresponds to the label number next to the current label number on the anatomy schema diagram, and the anatomy in which the area of the observation target part is emphasized.
  • the schema diagram may be displayed on the monitor 20.
  • the display control unit 172 sets the area of the observation target portion whose observation order corresponds to the label number next to the current label number on the anatomical schema diagram to the label number next to the current label number in the observation order. Colored in a color different from the area of the observation target part other than the corresponding observation target part, for example, the area of the observation target part whose observation order corresponds to the label number next to the current label number, and the observation order is the current label number.
  • the monitor 20 displays an anatomical schema diagram in which the areas of the observation target parts other than the observation target parts corresponding to the following label numbers are colored darker or lighter than those of the observation target parts. You may.
  • the region of the observation target portion whose observation order corresponds to the label number next to the current label number is displayed more emphasized than the region of the other observation target region. Therefore, the surgeon can easily move the tip 40 of the ultrasonic endoscope 12 from the observation target site corresponding to the current label number to the observation target site whose observation order corresponds to the label number next to the current label number. Can be moved to.
  • the method of emphasizing the area of the observation target part is not limited to the above. For example, the area of the observation target part to be emphasized is surrounded by a thick frame, only the area of the observation target part to be emphasized is colored, and an arrow indicating the observation target part to be emphasized is indicated. It is possible to exemplify attaching and the like.
  • the display control unit 172 acquires a movement route when the tip portion 40 of the ultrasonic endoscope 12 is ideally moved based on the observation order of the observation target part from the movement route registration unit 178, and observes the movement route.
  • the movement routes when the 40 is actually moved may be displayed on the monitor 20 side by side on the anatomical schema diagram as image information representing these routes.
  • the surgeon can move the tip 40 of the ultrasonic endoscope 12 while confirming the ideal movement route and the movement route by his / her own operation. Therefore, the surgeon can move the tip 40 of the ultrasonic endoscope 12 so that the actual route matches the ideal route, and as a result, the actual movement route is changed to the ideal movement route. Can be approached to.
  • the ultrasonic image recognition unit 168 is built in the ultrasonic observation device 14, but is not limited to this, and may be built in, for example, the endoscope processor 16 or an ultrasonic wave. It may be provided outside the observation device 14 and the endoscope processor 16.
  • the ultrasonic image recognition unit 168 When the ultrasonic image recognition unit 168 is built in the ultrasonic observation device 14 as in the present embodiment, as shown in FIG. 11, the endoscopic image is transmitted from the endoscope processor 16 to the ultrasonic observation device. Transferred to 14.
  • the ultrasonic image recognition unit 168 is built in the endoscope processor 16, the ultrasonic image is transferred from the ultrasonic observation device 14 to the endoscope processor 16 as shown in FIG.
  • the endoscopic image is transmitted from the endoscope processor 16 to the ultrasonic observation device. It is transferred to 14, and further, the endoscopic image and the ultrasonic image are transferred from the ultrasonic observation device 14 to the ultrasonic image recognition unit 168. In this case, the ultrasonic image is transferred from the ultrasonic observation device 14 to the endoscope processor 16, and the endoscope image and the ultrasonic image are further transferred from the endoscope processor 16 to the ultrasonic image recognition unit 168. You may.
  • the endoscopic image is not transferred from the endoscope processor 16 to the ultrasonic observation device 14, and further transferred from the ultrasonic observation device 14 to the ultrasonic image recognition unit 168, but from the endoscope processor 16. It may be transferred to the ultrasonic image recognition unit 168.
  • the display control unit 172 is arranged between the final image signal output to the monitor 20 and the monitor 20.
  • the display control unit 172 is, for example, built in the ultrasonic observation device 14, or between the ultrasonic observation device 14 and the monitor 20. Can be provided in. Further, when the ultrasonic image recognition unit 168 is built in the endoscope processor 16, the display control unit 172 is, for example, built in the endoscope processor 16, or the endoscope processor 16 and the monitor 20. Can be provided between. Further, when the ultrasonic image recognition unit 168 is provided outside the ultrasonic observation device 14 and the endoscope processor 16, the display control unit 172 is, for example, outside the ultrasonic observation device 14 and the endoscope processor 16. Can be provided.
  • the display control unit 172 responds to instructions from the operator, and displays an endoscopic image (with / without display of the lesion area), an ultrasonic image (with / without display of the name of the organ), and an anatomical schema diagram.
  • One image or two or more images are arranged side by side and displayed on the screen of the monitor 20 from (with / without display of the position and orientation of the tip portion 40 of the ultrasonic endoscope 12).
  • the location of the endoscopic image recognition unit 170 can be determined in the same manner as the location of the ultrasonic image recognition unit 168. That is, in the case of this embodiment, the endoscope image recognition unit 170 is built in the endoscope processor 16, but is not limited to this, and may be built in, for example, the ultrasonic observation device 14. , It may be provided outside the ultrasonic observation device 14 and the endoscope processor 16.
  • the positions of the ultrasonic image recognition unit 168 and the endoscopic image recognition unit 170 are not fixed, and the ultrasonic image recognition unit 168 and the endoscopic image recognition unit 170 are not fixed. Can be provided at any arrangement location.
  • an endoscopic image recognition unit 170 (lesion area detection unit 102, position information acquisition unit 104, selection unit 106, and lesion area detection control unit 108), ultrasonic image recognition unit 168 (label number).
  • the hardware configuration of the processing unit (Processing Unit) that executes various processes such as the acquisition unit) 100 may be dedicated hardware, or may be various processors or computers that execute programs. Good. Further, the hardware configuration of the operation procedure storage unit 174 and the movement route registration unit 178 may be dedicated hardware or a memory such as a semiconductor memory.
  • the circuit configuration can be changed after manufacturing the CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), etc., which are general-purpose processors that execute software (programs) and function as various processing units.
  • Programmable Logic Device (PLD) Programmable Logic Device (PLD), ASIC (Application Specific Integrated Circuit), and other dedicated electric circuits that are processors with a circuit configuration designed exclusively for performing specific processing are included. ..
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types, for example, a combination of a plurality of FPGAs, or a combination of an FPGA and a CPU. And so on. Further, a plurality of processing units may be configured by one of various processors, or two or more of the plurality of processing units may be collectively configured by using one processor.
  • SoC System on Chip
  • circuitry that combines circuit elements such as semiconductor elements.
  • the method of the present invention can be carried out, for example, by a program for causing a computer to execute each step. It is also possible to provide a computer-readable recording medium on which this program is recorded.
  • Ultrasonic endoscopic system 12
  • Ultrasonic endoscope 14
  • Ultrasonic observation device 16
  • Endoscopic processor 18
  • Light source device 20
  • Monitor 21a Water supply tank 21b
  • Suction pump 22
  • Insertion unit 24
  • Operation unit 26
  • Universal cord 28a
  • Air supply water supply button 28b
  • Angle knob 30
  • Treatment tool insertion port 32a
  • Ultrasonic connector 32b
  • Endoscopic connector 32c
  • Light source connector 34a Air supply and water supply tube 34b
  • Suction tube 36
  • Ultrasonic observation part 38
  • Tip part 42 Curved Part
  • Flexible part 44
  • Treatment tool outlet 45
  • Treatment tool channel 46
  • Ultrasonic transducer unit 48
  • Ultrasonic transducer array 54
  • Backing material layer 56
  • Coaxial cable 60
  • FPC 74
  • Acoustic matching layer 76
  • Acoustic lens 82
  • Observation window 84
  • Objective lens 86
  • Solid-state image sensor 88
  • Illumination window 90

Abstract

In this ultrasonic endoscope system and this operating method for an ultrasonic endoscope system, an ultrasonic image recognition unit learns in advance, for a plurality of learning ultrasonic images, the relationship between a learning ultrasonic image and a label number corresponding to the location of the distal end of an ultrasonic endoscope when the learning ultrasonic image was imaged, by associating the location of the distal end of the ultrasonic endoscope in a body cavity of a subject with the label number based on the observation order of the sites to be observed, and recognizes, from a diagnostic ultrasonic image, the label number corresponding to the location of the distal end of the ultrasonic endoscope when the diagnostic ultrasonic image was imaged, on the basis of the learning result, and a display control unit displays, on a monitor, the location of the distal end of the ultrasonic endoscope that corresponds to the label number recognized by the ultrasonic image recognition unit.

Description

超音波内視鏡システムおよび超音波内視鏡システムの作動方法How to operate the ultrasonic endoscopy system and the ultrasonic endoscopy system
 本発明は、超音波を用いて、被検体の体内の観察対象部位の状態を観察する超音波内視鏡システムおよび超音波内視鏡システムの作動方法に関する。 The present invention relates to an ultrasonic endoscopic system for observing the state of an observation target site in the body of a subject and a method for operating the ultrasonic endoscopic system using ultrasonic waves.
 超音波内視鏡システムは、経消化管による膵臓又は胆嚢等の観察を主な目的として、内視鏡観察部および超音波観察部を先端に有する超音波内視鏡を被検体の消化管内へ挿入し、消化管内の内視鏡画像、および消化管壁の外側にある部位の超音波画像を撮像する。 The ultrasonic endoscopy system mainly aims to observe the pancreas or gallbladder by the transgastrointestinal tract, and puts an endoscopic endoscope and an ultrasonic endoscope having an ultrasonic observation part at the tip into the digestive tract of the subject. It is inserted and an endoscopic image inside the gastrointestinal tract and an ultrasonic image of the part outside the gastrointestinal wall are taken.
 超音波内視鏡システムでは、超音波内視鏡の先端に有する照明部から消化管内の観察対象隣接部位に照明光を照射し、その反射光を超音波内視鏡の先端に有する撮像部によって受信し、反射光の撮像信号から内視鏡画像が生成される。また、超音波内視鏡の先端に有する複数の超音波振動子により、消化管壁の外側にある臓器等の観察対象部位に超音波を送受信し、超音波の受信信号から超音波画像が生成される。 In the ultrasonic endoscopy system, the illumination unit at the tip of the ultrasonic endoscope irradiates the area adjacent to the observation target in the digestive tract with illumination light, and the reflected light is emitted by the imaging unit at the tip of the ultrasonic endoscope. An endoscopic image is generated from the received signal of the reflected light. In addition, multiple ultrasonic transducers at the tip of the ultrasonic endoscope transmit and receive ultrasonic waves to the observation target site such as an organ outside the gastrointestinal wall, and an ultrasonic image is generated from the received signal of the ultrasonic waves. Will be done.
 内視鏡画像を観察する場合、超音波内視鏡を被検体の消化管内に挿入すると、例えば食道の内壁が見えてきて、さらに超音波内視鏡の先端部を押し進めると、胃の内壁が見えてくるというように、術者(超音波内視鏡システムのユーザ)は、今現在、超音波内視鏡の先端部が被検体の消化器内のどの位置にあって、どの方向を向いていて、どの部位を観察しているのかが比較的分かりやすい。 When observing endoscopic images, when an endoscopic ultrasound is inserted into the digestive tract of a subject, for example, the inner wall of the esophagus becomes visible, and when the tip of the endoscopic ultrasound is pushed further, the inner wall of the stomach is exposed. As you can see, the surgeon (user of the ultrasonic endoscopy system) is currently in which position and direction in the digestive organs of the subject the tip of the ultrasonic endoscope is. It is relatively easy to understand which part is being observed.
 これに対し、超音波画像に不慣れな術者は、超音波画像に何が表示されているのか、例えば膵臓なのか胆嚢なのか、あるいは血管なのか胆管なのか膵管なのか等が非常に分かりづらいという問題がある。また、超音波画像に不慣れな術者は、超音波画像の観察中に、今現在、超音波内視鏡の先端部がどの位置にあって、どの方向を向いていて、どの部位を観察しているのかが分からなくなり、被検体の体内において迷うという問題がある。 On the other hand, it is very difficult for an operator who is unfamiliar with ultrasound images to understand what is displayed on the ultrasound images, for example, whether it is the pancreas or gallbladder, or whether it is a blood vessel, bile duct, or pancreatic duct. There is a problem. In addition, an operator who is unfamiliar with ultrasonic images can observe which part the tip of the ultrasonic endoscope is in, in which direction, and which part is currently being observed while observing the ultrasonic image. There is a problem that it becomes difficult to know what is happening and the subject gets lost in the body.
 ここで、本発明に関連性のある先行技術文献として、特許文献1~4がある。 Here, there are Patent Documents 1 to 4 as prior art documents related to the present invention.
 特許文献1には、被検体内の診断部位の画像中の目的部位を大まかに抽出し、ニューラルネットワークを用いて目的部位を認識するための大局情報を予測し、大局情報を用いて目的部位の輪郭を認識し、原画像と共にその認識結果を表示することが記載されている。 In Patent Document 1, the target site in the image of the diagnostic site in the subject is roughly extracted, the global information for recognizing the target site is predicted using a neural network, and the global information is used to predict the target site. It is described that the contour is recognized and the recognition result is displayed together with the original image.
 特許文献2には、コイルからの電気信号に基づいて、超音波内視鏡の先端部の位置・配向データを生成し、この位置・配向データから、超音波内視鏡の挿入形状を示すための挿入形状データを生成し、被検者の臓器群等の組織構造の3次元生体組織モデルデータと組み合わせることによりガイド画像を生成し、超音波画像とガイド画像とを合成した合成画像の映像信号を生成してモニタに表示することが記載されている。
 また、特許文献2には、立体ガイド画像及び断面ガイド画像が画面の左側の領域に配置され、超音波画像が画面の右側の領域に配置されつつ表示されることが記載されている。
 さらに、特許文献2には、超音波画像の表示レンジを拡大または縮小するためのボタンが記載されている。
In Patent Document 2, the position / orientation data of the tip of the ultrasonic endoscope is generated based on the electric signal from the coil, and the insertion shape of the ultrasonic endoscope is shown from the position / orientation data. A guide image is generated by generating the insertion shape data of the above and combining it with the three-dimensional biological tissue model data of the tissue structure such as the organ group of the subject, and the video signal of the composite image obtained by synthesizing the ultrasonic image and the guide image. Is described to be generated and displayed on the monitor.
Further, Patent Document 2 describes that the stereoscopic guide image and the cross-section guide image are arranged in the area on the left side of the screen, and the ultrasonic image is displayed while being arranged in the area on the right side of the screen.
Further, Patent Document 2 describes a button for expanding or contracting the display range of the ultrasonic image.
 特許文献3には、表示装置の画面内に被検体の超音波断層像とその光学的画像とを一箇所に隣接表示し、両画像を同時に観察しうるようにすることが記載されている。 Patent Document 3 describes that an ultrasonic tomographic image of a subject and an optical image thereof are displayed adjacent to each other on the screen of a display device so that both images can be observed at the same time.
 特許文献4には、超音波画像と、模式図とが同一画面に表示され、模式図が、シェーマ図もしくは人体の実際の光学画像であり、模式図において、超音波内視鏡の走査面と挿入形状をあわせて表示することが記載されている。
 また、特許文献4には、コイルを用いて検出された超音波内視鏡の位置及び方向の信号から、超音波内視鏡の走査位置の領域を検出して超音波走査領域データを出力し、部位名記憶部から超音波走査領域データに対応した部位名データを読み出し、超音波画像上に部位名を重畳して表示することが記載されている。
In Patent Document 4, the ultrasonic image and the schematic diagram are displayed on the same screen, and the schematic diagram is a schema diagram or an actual optical image of the human body. In the schematic diagram, the scanning surface of the ultrasonic endoscope It is described that the insertion shape is also displayed.
Further, in Patent Document 4, the region of the scanning position of the ultrasonic endoscope is detected from the signal of the position and direction of the ultrasonic endoscope detected by using the coil, and the ultrasonic scanning region data is output. , It is described that the part name data corresponding to the ultrasonic scanning area data is read out from the part name storage unit, and the part name is superimposed and displayed on the ultrasonic image.
特開平06-233761号公報Japanese Unexamined Patent Publication No. 06-233761 特開2010-069018号公報Japanese Unexamined Patent Publication No. 2010-609018 特開平02-045045号公報Japanese Unexamined Patent Publication No. 02-045045 特開2004-113629号公報Japanese Unexamined Patent Publication No. 2004-113629
 本発明の第1の目的は、上記従来技術の問題を解消し、超音波画像に不慣れな術者であっても、超音波内視鏡の先端部の位置さらには方向を確実に把握することができる超音波内視鏡システムおよび超音波内視鏡システムの作動方法を提供することにある。
 本発明の第2の目的は、上記第1の目的に加え、超音波画像に不慣れな術者であっても、被検体の体内において迷うことなく、現在の観察対象部位から次の観察対象部位へ超音波内視鏡の先端部を正しく移動させることができる超音波内視鏡システムおよび超音波内視鏡システムの作動方法を提供することにある。
The first object of the present invention is to solve the above-mentioned problems of the prior art and to surely grasp the position and direction of the tip portion of the ultrasonic endoscope even by an operator who is unfamiliar with ultrasonic images. It is an object of the present invention to provide an ultrasonic endoscopic system and a method of operating the ultrasonic endoscopic system.
The second object of the present invention is, in addition to the above-mentioned first object, even an operator who is unfamiliar with ultrasonic imaging, without hesitation in the body of the subject, from the current observation target site to the next observation target site. It is an object of the present invention to provide an ultrasonic endoscopic system and a method of operating an ultrasonic endoscopic system capable of correctly moving the tip of an ultrasonic endoscope.
 上記目的を達成するために、本発明は、超音波振動子を先端に有する超音波内視鏡と、
 超音波振動子により超音波を送受信させ、超音波の受信信号から診断用超音波画像を生成する超音波観測装置と、
 被検体の体腔内における超音波内視鏡の先端部の位置と観察対象部位の観察順序に基づくラベル番号とを対応付けて、学習用超音波画像と学習用超音波画像の撮像時の超音波内視鏡の先端部の位置に対応するラベル番号との関係を複数の学習用超音波画像について予め学習しておき、学習結果に基づいて、診断用超音波画像から、診断用超音波画像の撮像時の超音波内視鏡の先端部の位置に対応するラベル番号を認識する超音波画像認識部と、
 超音波画像認識部によって認識されたラベル番号に対応する超音波内視鏡の先端部の位置をモニタに表示させる表示制御部と、を備える、超音波内視鏡システムを提供する。
In order to achieve the above object, the present invention includes an ultrasonic endoscope having an ultrasonic transducer at the tip and an ultrasonic endoscope.
An ultrasonic observation device that transmits and receives ultrasonic waves with an ultrasonic vibrator and generates an ultrasonic image for diagnosis from the received signal of the ultrasonic waves.
By associating the position of the tip of the ultrasonic endoscope in the body cavity of the subject with the label number based on the observation order of the observation target part, the ultrasonic image for learning and the ultrasonic wave at the time of capturing the ultrasonic image for learning are associated with each other. The relationship with the label number corresponding to the position of the tip of the endoscope is learned in advance for a plurality of learning ultrasonic images, and based on the learning results, from the diagnostic ultrasonic image to the diagnostic ultrasonic image. An ultrasonic image recognition unit that recognizes the label number corresponding to the position of the tip of the ultrasonic endoscope during imaging, and an ultrasonic image recognition unit.
Provided is an ultrasonic endoscopic system including a display control unit for displaying the position of the tip of the ultrasonic endoscope corresponding to a label number recognized by the ultrasonic image recognition unit on a monitor.
 ここで、表示制御部は、認識されたラベル番号に対応する観察対象部位の名称を文字情報としてモニタに表示させることが好ましい。 Here, it is preferable that the display control unit displays the name of the observation target part corresponding to the recognized label number on the monitor as character information.
 また、表示制御部は、認識されたラベル番号に対応する超音波内視鏡の先端部の位置が画像情報として重ねて表示された解剖学シェーマ図をモニタに表示させることが好ましい。 Further, it is preferable that the display control unit displays an anatomical schema diagram in which the position of the tip of the ultrasonic endoscope corresponding to the recognized label number is superimposed and displayed as image information on the monitor.
 また、超音波画像認識部は、超音波内視鏡の先端部の位置および向きとラベル番号とを対応付けて、学習用超音波画像と学習用超音波画像の撮像時の超音波内視鏡の先端部の位置および向きに対応するラベル番号との関係を複数の学習用超音波画像について予め学習しておき、学習結果に基づいて、診断用超音波画像から、診断用超音波画像の撮像時の超音波内視鏡の先端部の位置および向きに対応するラベル番号を認識し、
 表示制御部は、超音波画像認識部によって認識されたラベル番号に対応する超音波内視鏡の先端部の位置および向きをモニタに表示させることが好ましい。
In addition, the ultrasonic image recognition unit associates the position and orientation of the tip of the ultrasonic endoscope with the label number, and the ultrasonic endoscope at the time of capturing the learning ultrasonic image and the learning ultrasonic image. The relationship between the position and orientation of the tip of the ultrasonic image is learned in advance for a plurality of learning ultrasonic images, and based on the learning result, the diagnostic ultrasonic image is captured from the diagnostic ultrasonic image. Recognize the label number corresponding to the position and orientation of the tip of the ultrasonic endoscope at the time,
It is preferable that the display control unit displays the position and orientation of the tip portion of the ultrasonic endoscope corresponding to the label number recognized by the ultrasonic image recognition unit on the monitor.
 また、表示制御部は、認識されたラベル番号に対応する観察対象部位の名称を文字情報としてモニタに表示させることが好ましい。 Further, it is preferable that the display control unit displays the name of the observation target part corresponding to the recognized label number on the monitor as character information.
 また、表示制御部は、認識されたラベル番号に対応する超音波内視鏡の先端部の位置および向きが画像情報として重ねて表示された解剖学シェーマ図をモニタに表示させることが好ましい。 Further, it is preferable that the display control unit displays an anatomical schema diagram in which the position and orientation of the tip of the ultrasonic endoscope corresponding to the recognized label number are superimposed as image information on the monitor.
 さらに、1のラベル番号に対応する観察対象部位から、観察順序が1のラベル番号の次のラベル番号に対応する観察対象部位へ超音波内視鏡の先端部を移動させるための操作手順を記憶する操作手順記憶部を備え、
 表示制御部は、現在のラベル番号に対応する観察対象部位から、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位へ超音波内視鏡の先端部を移動させるための操作手順を操作手順記憶部から取得し、取得された操作手順をモニタに表示させることが好ましい。
Further, the operation procedure for moving the tip of the ultrasonic endoscope from the observation target part corresponding to the label number 1 to the observation target part corresponding to the label number next to the label number 1 in the observation order is memorized. Equipped with an operation procedure storage unit
The display control unit is an operation for moving the tip of the ultrasonic endoscope from the observation target part corresponding to the current label number to the observation target part whose observation order corresponds to the label number next to the current label number. It is preferable to acquire the procedure from the operation procedure storage unit and display the acquired operation procedure on the monitor.
 表示制御部は、さらに、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位の名称を文字情報としてモニタに表示させることが好ましい。 It is preferable that the display control unit further displays on the monitor the name of the observation target part corresponding to the label number next to the current label number in the observation order as character information.
 また、表示制御部は、操作手順を文字情報としてモニタに表示させることが好ましい。 Further, it is preferable that the display control unit displays the operation procedure as character information on the monitor.
 また、操作手順は、超音波内視鏡の先端部を移動させる際に描出される1以上の臓器の名称を含むことが好ましい。 Further, it is preferable that the operation procedure includes the names of one or more organs drawn when moving the tip of the ultrasonic endoscope.
 また、表示制御部は、操作手順が画像情報として重ねて表示された解剖学シェーマ図をモニタに表示させることが好ましい。 Further, it is preferable that the display control unit displays an anatomical schema diagram in which the operation procedure is superimposed as image information on the monitor.
 また、表示制御部は、解剖学シェーマ図上において、超音波内視鏡の先端部を移動させる際に描出される1以上の臓器の領域を着色し、領域が着色された解剖学シェーマ図をモニタに表示させることが好ましい。 In addition, the display control unit colors the area of one or more organs drawn when moving the tip of the ultrasonic endoscope on the anatomy schema diagram, and displays the anatomy schema diagram in which the area is colored. It is preferable to display it on a monitor.
 また、表示制御部は、解剖学シェーマ図上において、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位の領域と、超音波内視鏡の先端部を移動させる際に描出される1以上の臓器の領域とを異なる色に着色し、領域が異なる色に着色された解剖学シェーマ図をモニタに表示させることが好ましい。 In addition, the display control unit draws out when moving the region of the observation target site whose observation order corresponds to the label number next to the current label number and the tip portion of the ultrasonic endoscope on the anatomy schema diagram. It is preferable to color the regions of one or more organs to be different colors and display the anatomical schema diagram in which the regions are colored different colors on the monitor.
 さらに、現在のラベル番号に対応する観察対象部位から、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位以外の観察対象部位へ超音波内視鏡の先端部が移動された場合に、警告を発する警告発生部を備えることが好ましい。 Furthermore, the tip of the ultrasonic endoscope was moved from the observation target part corresponding to the current label number to the observation target part other than the observation target part whose observation order corresponds to the label number next to the current label number. In some cases, it is preferable to provide a warning generating unit that issues a warning.
 また、警告発生部は、警告を音声情報として発するか、もしくは、警告として、文字情報および音声情報の両方を同時に発するのが好ましい。 Further, it is preferable that the warning generating unit issues a warning as voice information, or simultaneously emits both text information and voice information as a warning.
 また、表示制御部は、超音波内視鏡の先端部が各々のラベル番号に対応する観察対象部位に到達する毎に、到達した観察対象部位に対応するラベル番号にチェックマークを付与し、チェックマークが付与されたラベル番号を文字情報としてモニタに表示させることが好ましい。 In addition, the display control unit adds a check mark to the label number corresponding to the reached observation target part and checks each time the tip of the ultrasonic endoscope reaches the observation target part corresponding to each label number. It is preferable to display the label number with the mark on the monitor as character information.
 また、表示制御部は、超音波内視鏡の先端部が各々のラベル番号に対応する観察対象部位に到達する毎に、解剖学シェーマ図上において、到達した観察対象部位の領域を着色し、到達した観察対象部位の領域が着色された解剖学シェーマ図をモニタに表示させることが好ましい。 In addition, the display control unit colors the area of the reached observation target part on the anatomical schema diagram each time the tip of the ultrasonic endoscope reaches the observation target part corresponding to each label number. It is preferable to display an anatomical schema diagram in which the area of the observed area reached is colored on the monitor.
 また、表示制御部は、解剖学シェーマ図上において、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位の領域を強調し、観察対象部位の領域が強調された解剖学シェーマ図をモニタに表示させることが好ましい。 In addition, the display control unit emphasizes the area of the observation target part whose observation order corresponds to the label number next to the current label number on the anatomy schema diagram, and the anatomy schema in which the area of the observation target part is emphasized. It is preferable to display the figure on the monitor.
 また、表示制御部は、解剖学シェーマ図上において、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位の領域を、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位以外の観察対象部位の領域とは異なる色に着色し、観察対象部位の領域が着色された解剖学シェーマ図をモニタに表示させることが好ましい。 In addition, the display control unit corresponds to the area of the observation target part where the observation order corresponds to the label number next to the current label number on the anatomical schema diagram, and the observation order corresponds to the label number next to the current label number. It is preferable to color the area of the observation target part other than the observation target part to be different from that of the observation target part, and to display the anatomical schema diagram in which the observation target part area is colored on the monitor.
 また、表示制御部は、観察対象部位の観察順序に基づいて超音波内視鏡の先端部が理想的に移動された場合の移動ルート、および、実際の操作に基づいて超音波内視鏡の先端部が実際に移動された場合の移動ルートを画像情報として解剖学シェーマ図上に並べてモニタに表示させることが好ましい。 In addition, the display control unit is based on the movement route when the tip of the ultrasonic endoscope is ideally moved based on the observation order of the observation target part, and the actual operation of the ultrasonic endoscope. It is preferable to arrange the movement route when the tip is actually moved on the anatomical schema diagram as image information and display it on the monitor.
 さらに、観察対象部位の観察順序に基づいて超音波内視鏡の先端部が理想的に移動された場合の移動ルートを予め登録する移動ルート登録部を備えることが好ましい。 Further, it is preferable to provide a movement route registration unit for pre-registering a movement route when the tip of the ultrasonic endoscope is ideally moved based on the observation order of the observation target part.
 また、超音波画像認識部は、超音波観測装置に内蔵されていることが好ましい。 Further, it is preferable that the ultrasonic image recognition unit is built in the ultrasonic observation device.
 超音波内視鏡が、さらに照明部および撮像部を先端に有し、
 さらに、照明部から照射される照明光の反射光を撮像部によって受信させ、反射光の撮像信号から診断用内視鏡画像を生成する内視鏡プロセッサを備え、
 超音波画像認識部は、内視鏡プロセッサに内蔵されていることが好ましい。
The ultrasonic endoscope further has an illumination unit and an imaging unit at the tip,
Further, it is provided with an endoscope processor that receives the reflected light of the illumination light emitted from the illumination unit by the imaging unit and generates a diagnostic endoscope image from the image pickup signal of the reflected light.
The ultrasonic image recognition unit is preferably built in the endoscope processor.
 超音波内視鏡が、さらに照明部および撮像部を先端に有し、
 さらに、照明部から照射される照明光の反射光を撮像部によって受信させ、反射光の撮像信号から診断用内視鏡画像を生成する内視鏡プロセッサを備え、
 超音波画像認識部は、超音波観測装置および内視鏡プロセッサの外部に設けられていることが好ましい。
The ultrasonic endoscope further has an illumination unit and an imaging unit at the tip,
Further, it is provided with an endoscope processor that receives the reflected light of the illumination light emitted from the illumination unit by the imaging unit and generates a diagnostic endoscope image from the image pickup signal of the reflected light.
The ultrasonic image recognition unit is preferably provided outside the ultrasonic observation device and the endoscope processor.
 また、本発明は、超音波画像認識部が、被検体の体腔内における超音波内視鏡の先端部の位置と観察対象部位の観察順序に基づくラベル番号とを対応付けて、学習用超音波画像と学習用超音波画像の撮像時の超音波内視鏡の先端部の位置に対応するラベル番号との関係を複数の学習用超音波画像について予め学習しておくステップと、
 超音波観測装置が、超音波内視鏡の先端に有する超音波振動子により超音波を送受信させ、超音波の受信信号から診断用超音波画像を生成するステップと、
 超音波画像認識部が、学習結果に基づいて、診断用超音波画像から、診断用超音波画像の撮像時の超音波内視鏡の先端部の位置に対応するラベル番号を認識するステップと、
 表示制御部が、超音波画像認識部によって認識されたラベル番号に対応する超音波内視鏡の先端部の位置をモニタに表示させるステップと、を含む、超音波内視鏡システムの作動方法を提供する。
Further, in the present invention, the ultrasonic image recognition unit associates the position of the tip of the ultrasonic endoscope in the body cavity of the subject with the label number based on the observation order of the observation target site, and the ultrasonic for learning. A step of learning in advance the relationship between the image and the label number corresponding to the position of the tip of the ultrasonic endoscope at the time of capturing the ultrasonic image for learning for a plurality of ultrasonic images for learning.
A step in which an ultrasonic observation device transmits and receives ultrasonic waves by an ultrasonic vibrator at the tip of an ultrasonic endoscope and generates an ultrasonic image for diagnosis from the received signal of the ultrasonic waves.
Based on the learning result, the ultrasonic image recognition unit recognizes the label number corresponding to the position of the tip of the ultrasonic endoscope at the time of capturing the diagnostic ultrasonic image from the diagnostic ultrasonic image.
A method of operating the ultrasonic endoscopic system, including a step in which the display control unit displays the position of the tip of the ultrasonic endoscope corresponding to the label number recognized by the ultrasonic image recognition unit on the monitor. provide.
 ここで、超音波内視鏡の先端部の位置および向きとラベル番号とを対応付けて、学習用超音波画像と学習用超音波画像の撮像時の超音波内視鏡の先端部の位置および向きに対応するラベル番号との関係を複数の学習用超音波画像について予め学習しておき、
 学習結果に基づいて、診断用超音波画像から、診断用超音波画像の撮像時の超音波内視鏡の先端部の位置および向きに対応するラベル番号を認識し、
 超音波画像認識部によって認識されたラベル番号に対応する超音波内視鏡の先端部の位置および向きをモニタに表示させることが好ましい。
Here, by associating the position and orientation of the tip of the ultrasonic endoscope with the label number, the position and orientation of the tip of the ultrasonic endoscope at the time of capturing the learning ultrasonic image and the learning ultrasonic image. The relationship with the label number corresponding to the orientation is learned in advance for a plurality of learning ultrasonic images, and then
Based on the learning result, the label number corresponding to the position and orientation of the tip of the ultrasonic endoscope at the time of capturing the diagnostic ultrasonic image is recognized from the diagnostic ultrasonic image.
It is preferable to display the position and orientation of the tip of the ultrasonic endoscope corresponding to the label number recognized by the ultrasonic image recognition unit on the monitor.
 さらに、操作手順記憶部が、1のラベル番号に対応する観察対象部位から、観察順序が1のラベル番号の次のラベル番号に対応する観察対象部位へ超音波内視鏡の先端部を移動させるための操作手順を記憶するステップを含み、
 認識されたラベル番号を現在のラベル番号として、現在のラベル番号に対応する観察対象部位から、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位へ超音波内視鏡の先端部を移動させるための操作手順を操作手順記憶部から取得し、
 取得された操作手順をモニタに表示させることが好ましい。
Further, the operation procedure storage unit moves the tip of the ultrasonic endoscope from the observation target part corresponding to the label number 1 to the observation target part corresponding to the label number next to the label number 1 in the observation order. Includes steps to memorize operating procedures for
Using the recognized label number as the current label number, from the observation target site corresponding to the current label number to the observation target site whose observation order corresponds to the label number next to the current label number, the tip of the ultrasonic endoscope. Obtain the operation procedure for moving the unit from the operation procedure storage unit, and
It is preferable to display the acquired operating procedure on the monitor.
 また、超音波画像認識部、表示制御部および警告発生部は、ハードウェア、または、プログラムを実行するプロセッサであることが好ましく、操作手順記憶部および移動ルート登録部は、ハードウェア、または、メモリであるのが好ましい。 Further, the ultrasonic image recognition unit, the display control unit, and the warning generation unit are preferably hardware or a processor that executes a program, and the operation procedure storage unit and the movement route registration unit are hardware or memory. Is preferable.
 本発明においては、超音波内視鏡の先端部の位置さらには向きがモニタに表示される。これにより、本発明によれば、たとえ超音波画像に不慣れな術者であっても、今現在、超音波内視鏡の先端部がどの位置にあって、どの方向を向いていて、どの部位を観察しているのかを確実に把握することができる。
 また、本発明においては、超音波内視鏡の先端部を移動させるための操作手順をモニタに表示させることができる。これにより、本発明によれば、たとえ超音波画像に不慣れな術者であっても、被検体の体内において迷うことなく、現在の観察対象部位から次の観察対象部位へ超音波内視鏡の先端部を正しく移動させることができる。
In the present invention, the position and orientation of the tip of the ultrasonic endoscope are displayed on the monitor. As a result, according to the present invention, even if the operator is unfamiliar with ultrasonic images, at present, the tip of the ultrasonic endoscope is in which position, in which direction, and in which part. It is possible to surely grasp whether or not the patient is observing.
Further, in the present invention, the operation procedure for moving the tip portion of the ultrasonic endoscope can be displayed on the monitor. As a result, according to the present invention, even an operator who is unfamiliar with ultrasonic images can move from the current observation target site to the next observation target site without hesitation in the body of the subject. The tip can be moved correctly.
本発明の一実施形態に係る超音波内視鏡システムの概略構成を示す図である。It is a figure which shows the schematic structure of the ultrasonic endoscopic system which concerns on one Embodiment of this invention. 超音波内視鏡の挿入部の先端部及びその周辺を示す平面図である。It is a top view which shows the tip part of the insertion part of an ultrasonic endoscope and the periphery thereof. 超音波内視鏡の挿入部の先端部を図2に図示のI-I断面にて切断したときの断面を示す図である。It is a figure which shows the cross section when the tip part of the insertion part of the ultrasonic endoscope is cut by the II cross section shown in FIG. 内視鏡画像認識部の構成を表す一実施形態のブロック図である。It is a block diagram of one Embodiment which shows the structure of the endoscope image recognition part. 超音波観測装置の構成を示すブロック図である。It is a block diagram which shows the structure of an ultrasonic observation apparatus. 超音波画像認識部の構成を表す一実施形態のブロック図である。It is a block diagram of one Embodiment which shows the structure of the ultrasonic image recognition part. 超音波内視鏡システムを用いた診断処理の流れを示す図である。It is a figure which shows the flow of the diagnostic processing using an ultrasonic endoscopy system. 診断処理中の診断ステップの手順を示す図である。It is a figure which shows the procedure of the diagnostic step during a diagnostic process. 内視鏡画像、超音波画像および解剖学シェーマ図を表す一実施形態の概念図である。It is a conceptual diagram of one embodiment which represents an endoscopic image, an ultrasonic image and an anatomical schema diagram. チェックマークが付与されたラベル番号を表す一実施形態の概念図である。It is a conceptual diagram of one Embodiment which shows the label number to which the check mark was given. 超音波画像認識部が超音波観測装置に内蔵されている場合の超音波内視鏡システムの構成を表す一実施形態のブロック図である。It is a block diagram of one Embodiment which shows the structure of the ultrasonic endoscopic system when the ultrasonic image recognition part is built in the ultrasonic observation apparatus. 超音波画像認識部が内視鏡プロセッサに内蔵されている場合の超音波内視鏡システムの構成を表す一実施形態のブロック図である。It is a block diagram of one Embodiment which shows the structure of the ultrasonic endoscopy system when the ultrasonic image recognition part is built in the endoscope processor. 超音波画像認識部が超音波観測装置および内視鏡プロセッサの外部に設けられている場合の超音波内視鏡システムの構成を表す一実施形態のブロック図である。It is a block diagram of one Embodiment which shows the structure of the ultrasonic endoscopic system in the case where the ultrasonic image recognition part is provided outside the ultrasonic observation apparatus and the endoscope processor.
 本発明の一実施形態(本実施形態)に係る超音波内視鏡システムについて、添付の図面に示す好適な実施形態を参照しながら、以下に詳細に説明する。
 なお、本実施形態は、本発明の代表的な実施態様であるが、あくまでも一例に過ぎず、本発明を限定するものではない。
The ultrasonic endoscopic system according to an embodiment of the present invention (the present embodiment) will be described in detail below with reference to the preferred embodiments shown in the accompanying drawings.
Although the present embodiment is a typical embodiment of the present invention, it is merely an example and does not limit the present invention.
 <<超音波内視鏡システムの概要>>
 本実施形態に係る超音波内視鏡システム10について、図1を参照しながら、その概要を説明する。図1は、超音波内視鏡システム10の概略構成を示す図である。
<< Overview of ultrasonic endoscopy system >>
The outline of the ultrasonic endoscope system 10 according to the present embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a schematic configuration of an ultrasonic endoscopy system 10.
 超音波内視鏡システム10は、超音波を用いて、被検体である患者の体内の観察対象部位の状態を観察(以下、超音波診断ともいう)するために用いられる。ここで、観察対象部位は、患者の体表側からは検査が困難な部位であり、例えば膵臓又は胆嚢等である。超音波内視鏡システム10を用いることにより、患者の体腔である食道、胃、十二指腸、小腸、及び大腸等の消化管を経由して、観察対象部位の状態及び異常の有無を超音波診断することが可能である。 The ultrasonic endoscopy system 10 is used for observing the state of an observation target site in the body of a patient who is a subject (hereinafter, also referred to as ultrasonic diagnosis) using ultrasonic waves. Here, the observation target site is a site that is difficult to inspect from the body surface side of the patient, such as the pancreas or the gallbladder. By using the endoscopic ultrasonography system 10, the state of the observation target site and the presence or absence of abnormalities are ultrasonically diagnosed via the gastrointestinal tract such as the esophagus, stomach, duodenum, small intestine, and large intestine, which are the body cavities of the patient. It is possible.
 超音波内視鏡システム10は、超音波画像および内視鏡画像を取得するものであり、図1に示すように、超音波内視鏡12と、超音波観測装置14と、内視鏡プロセッサ16と、光源装置18と、モニタ20と、送水タンク21aと、吸引ポンプ21bと、操作卓100と、を有する。 The ultrasonic endoscope system 10 acquires an ultrasonic image and an endoscopic image, and as shown in FIG. 1, an ultrasonic endoscope 12, an ultrasonic observation device 14, and an endoscope processor. It has a light source device 18, a monitor 20, a water supply tank 21a, a suction pump 21b, and a console 100.
 超音波内視鏡12は、患者の体腔内に挿入される挿入部22と、医師又は技師等の術者(ユーザ)によって操作される操作部24と、挿入部22の先端部40に取り付けられた超音波振動子ユニット46(図2および図3を参照)と、を備える。超音波内視鏡12は、超音波観察部36として、超音波振動子ユニット46が備える複数の超音波振動子48を先端に有する(図2および図3参照)。また、超音波内視鏡12は、内視鏡観察部38として、照明窓88等を含む照明部と、観察窓82、対物レンズ84および固体撮像素子86等を含む撮像部と、を先端に有する(図2および図3参照)。術者は、超音波内視鏡12の機能によって、内視鏡画像および超音波画像を取得する。 The ultrasonic endoscope 12 is attached to an insertion portion 22 inserted into the body cavity of a patient, an operation portion 24 operated by an operator (user) such as a doctor or a technician, and a tip portion 40 of the insertion portion 22. The ultrasonic oscillator unit 46 (see FIGS. 2 and 3) is provided. The ultrasonic endoscope 12 has a plurality of ultrasonic vibrators 48 included in the ultrasonic vibrator unit 46 at the tip as the ultrasonic observation unit 36 (see FIGS. 2 and 3). Further, the ultrasonic endoscope 12 has an illumination unit including an illumination window 88 and the like and an imaging unit including an observation window 82, an objective lens 84, a solid-state image sensor 86 and the like as the endoscope observation unit 38 at the tip thereof. Has (see FIGS. 2 and 3). The surgeon acquires an endoscopic image and an ultrasonic image by the function of the ultrasonic endoscope 12.
 ここで、「内視鏡画像」は、患者の体腔内壁を光学的手法によって撮影することで得られる画像である。また、「超音波画像」は、患者の体腔内から観察対象部位に向かって送信された超音波の反射波(エコー)を受信し、その受信信号を画像化することで得られる画像である。
 なお、超音波内視鏡12については、後の項で詳しく説明する。
Here, the "endoscopic image" is an image obtained by photographing the inner wall of the body cavity of the patient by an optical method. The "ultrasonic image" is an image obtained by receiving an ultrasonic reflected wave (echo) transmitted from the inside of the patient's body cavity toward the observation target site and imaging the received signal.
The ultrasonic endoscope 12 will be described in detail in a later section.
 超音波観測装置14は、ユニバーサルコード26及びその端部に設けられた超音波用コネクタ32aを介して超音波内視鏡12に接続される。超音波観測装置14は、超音波内視鏡12の超音波振動子ユニット46を制御して超音波を送信させる。また、超音波観測装置14は、送信された超音波の反射波(エコー)を超音波振動子ユニット46が受信したときの受信信号を画像化して超音波画像を生成する。言い換えると、超音波観測装置14は、超音波振動子ユニット46が備える複数の超音波振動子48により超音波を送受信させ、超音波の受信信号から診断用超音波画像(以下、単に超音波画像ともいう)を生成する。
 なお、超音波観測装置14については、後の項で詳しく説明する。
The ultrasonic observation device 14 is connected to the ultrasonic endoscope 12 via the universal cord 26 and the ultrasonic connector 32a provided at the end thereof. The ultrasonic observation device 14 controls the ultrasonic oscillator unit 46 of the ultrasonic endoscope 12 to transmit ultrasonic waves. Further, the ultrasonic observation device 14 generates an ultrasonic image by imaging the received signal when the ultrasonic vibrator unit 46 receives the reflected wave (echo) of the transmitted ultrasonic wave. In other words, the ultrasonic observation device 14 transmits and receives ultrasonic waves by a plurality of ultrasonic transducers 48 included in the ultrasonic transducer unit 46, and a diagnostic ultrasonic image (hereinafter, simply an ultrasonic image) is transmitted from the received signal of the ultrasonic waves. Also called) is generated.
The ultrasonic observation device 14 will be described in detail in a later section.
 内視鏡プロセッサ16は、ユニバーサルコード26及びその端部に設けられた内視鏡用コネクタ32bを介して超音波内視鏡12に接続される。内視鏡プロセッサ16は、超音波内視鏡12(詳しくは、後述する固体撮像素子86)によって撮像された観察対象隣接部位の画像データを取得し、取得した画像データに対して所定の画像処理を施して内視鏡画像を生成する。言い換えると、内視鏡プロセッサ16は、超音波内視鏡12の先端に有する照明部から照射される照明光の反射光を、同じく超音波内視鏡12の先端に有する撮像部によって受信させ、反射光の撮像信号から診断用内視鏡画像(以下、単に内視鏡画像ともいう)を生成する。
 ここで、「観察対象隣接部位」とは、患者の体腔内壁のうち、観察対象部位と隣り合う位置にある部分である。
The endoscope processor 16 is connected to the ultrasonic endoscope 12 via the universal cord 26 and the endoscope connector 32b provided at the end thereof. The endoscope processor 16 acquires image data of an adjacent portion to be observed imaged by an ultrasonic endoscope 12 (specifically, a solid-state image sensor 86 described later), and performs predetermined image processing on the acquired image data. To generate an endoscopic image. In other words, the endoscope processor 16 receives the reflected light of the illumination light emitted from the illumination unit at the tip of the ultrasonic endoscope 12 by the imaging unit also at the tip of the ultrasonic endoscope 12. A diagnostic endoscopic image (hereinafter, also simply referred to as an endoscopic image) is generated from the imaged signal of the reflected light.
Here, the "observation target adjacent site" is a portion of the inner wall of the patient's body cavity that is adjacent to the observation target site.
 なお、本実施形態では、超音波観測装置14及び内視鏡プロセッサ16が、別々に設けられた2台の装置(コンピュータ)によって構成されている。ただし、これに限定されるものではなく、1台の装置によって超音波観測装置14及び内視鏡プロセッサ16の双方が構成されてもよい。 In the present embodiment, the ultrasonic observation device 14 and the endoscope processor 16 are composed of two devices (computers) separately provided. However, the present invention is not limited to this, and both the ultrasonic observation device 14 and the endoscope processor 16 may be configured by one device.
 光源装置18は、ユニバーサルコード26及びその端部に設けられた光源用コネクタ32cを介して超音波内視鏡12に接続される。光源装置18は、超音波内視鏡12を用いて観察対象隣接部位を撮像する際に、赤光、緑光及び青光の3原色光からなる白色光又は特定波長光を照射する。光源装置18が照射した光は、ユニバーサルコード26に内包されたライトガイド(不図示)を通じて超音波内視鏡12内を伝搬し、超音波内視鏡12(詳しくは、後述する照明窓88)から出射される。これにより、観察対象隣接部位が光源装置18からの光によって照らされる。 The light source device 18 is connected to the ultrasonic endoscope 12 via the universal cord 26 and the light source connector 32c provided at the end thereof. When the light source device 18 uses the ultrasonic endoscope 12 to image an adjacent portion to be observed, it irradiates white light or light having a specific wavelength composed of three primary colors of red light, green light, and blue light. The light emitted by the light source device 18 propagates in the ultrasonic endoscope 12 through a light guide (not shown) included in the universal cord 26, and propagates in the ultrasonic endoscope 12 (details, the illumination window 88 described later). Is emitted from. As a result, the portion adjacent to the observation target is illuminated by the light from the light source device 18.
 モニタ20は、超音波観測装置14及び内視鏡プロセッサ16に接続されており、超音波観測装置14により生成された超音波画像、内視鏡プロセッサ16により生成された内視鏡画像の他、解剖学シェーマ図等を表示する。
 超音波画像及び内視鏡画像の表示方式としては、1の画像を他の画像のうちの1つに切り替えてモニタ20に表示する方式でもよく、2以上の画像を同時に並べて表示する方式でもよい。
 なお、本実施形態では、一台のモニタ20に超音波画像及び内視鏡画像を表示するが、超音波画像表示用のモニタと、内視鏡画像表示用のモニタと、解剖学シェーマ図用のモニタと、が別々に設けられてもよい。また、モニタ20以外の表示形態、例えば、術者が携帯する端末のディスプレイに表示する形態にて超音波画像及び内視鏡画像を表示してもよい。
The monitor 20 is connected to the ultrasonic observation device 14 and the endoscope processor 16, and includes an ultrasonic image generated by the ultrasonic observation device 14, an endoscopic image generated by the endoscope processor 16, and the like. Display anatomical schema diagrams, etc.
As the display method of the ultrasonic image and the endoscopic image, one image may be switched to one of the other images and displayed on the monitor 20, or two or more images may be displayed side by side at the same time. ..
In the present embodiment, the ultrasonic image and the endoscopic image are displayed on one monitor 20, but the monitor for displaying the ultrasonic image, the monitor for displaying the endoscopic image, and the anatomical schema diagram are used. Monitor and may be provided separately. Further, the ultrasonic image and the endoscopic image may be displayed in a display form other than the monitor 20, for example, a form displayed on the display of a terminal carried by the operator.
 操作卓100は、術者(ユーザ)から入力される指示を取得する指示取得部の一例であり、超音波診断に際して術者が必要な情報を入力したり、超音波観測装置14に対して超音波診断の開始指示を行ったりするためなどに設けられた装置である。操作卓100は、例えば、キーボード、マウス、トラックボール、タッチパッド及びタッチパネル等によって構成されている。操作卓100が操作されると、その操作内容に応じて超音波観測装置14のCPU(制御回路)152(図5参照)が装置各部(例えば、後述の受信回路142及び送信回路144)を制御する。 The operation console 100 is an example of an instruction acquisition unit that acquires an instruction input from the operator (user), and the operator inputs information necessary for ultrasonic diagnosis or superimposes the ultrasonic observation device 14. It is a device provided for giving an instruction to start ultrasonic diagnosis. The console 100 is composed of, for example, a keyboard, a mouse, a trackball, a touch pad, a touch panel, and the like. When the console 100 is operated, the CPU (control circuit) 152 (see FIG. 5) of the ultrasonic observation device 14 controls each part of the device (for example, the receiving circuit 142 and the transmitting circuit 144 described later) according to the operation content. To do.
 具体的に説明すると、術者は、超音波診断を開始する前段階で、検査情報(例えば、年月日及びオーダ番号等を含む検査オーダ情報、及び、患者ID及び患者名等を含む患者情報)を操作卓100にて入力する。検査情報の入力完了後、術者が操作卓100を通じて超音波診断の開始を指示すると、超音波観測装置14のCPU152が、入力された検査情報に基づいて超音波診断が実施されるように超音波観測装置14各部を制御する。 Specifically, the surgeon performs the examination information (for example, the examination order information including the date and the order number, and the patient information including the patient ID and the patient name) before starting the ultrasonic diagnosis. ) Is input on the console 100. After the input of the examination information is completed, when the operator instructs the start of the ultrasonic diagnosis through the console 100, the CPU 152 of the ultrasonic observation device 14 superimposes the ultrasonic diagnosis based on the input examination information. Each part of the ultrasonic observation device 14 is controlled.
 また、術者は、超音波診断の実施に際して、各種の制御パラメータを操作卓100にて設定することが可能である。制御パラメータとしては、例えば、ライブモード及びフリーズモードの選択結果、表示深さ(深度)の設定値、及び、超音波画像生成モードの選択結果等が挙げられる。
 ここで、「ライブモード」は、所定のフレームレートにて得られる超音波画像(動画像)を逐次表示(リアルタイム表示)するモードである。「フリーズモード」は、過去に生成された超音波画像(動画像)の1フレームの画像(静止画像)を、後述のシネメモリ150から読み出して表示するモードである。
In addition, the operator can set various control parameters on the console 100 when performing the ultrasonic diagnosis. Examples of the control parameters include the selection result of the live mode and the freeze mode, the set value of the display depth (depth), the selection result of the ultrasonic image generation mode, and the like.
Here, the "live mode" is a mode in which ultrasonic images (moving images) obtained at a predetermined frame rate are sequentially displayed (real-time display). The "freeze mode" is a mode in which a one-frame image (still image) of an ultrasonic image (moving image) generated in the past is read out from a cine memory 150 described later and displayed.
 本実施形態において選択可能な超音波画像生成モードは、複数存在し、具体的には、B(Brightness)モード、CF(Color Flow)モード及びPW(Pulse Wave)モードである。Bモードは、超音波エコーの振幅を輝度に変換して断層画像を表示するモードである。CFモードは、平均血流速度、フロー変動、フロー信号の強さ又はフローパワー等を様々な色にマッピングしてBモード画像に重ねて表示するモードである。PWモードは、パルス波の送受信に基づいて検出される超音波エコー源の速度(例えば、血流の速度)を表示するモードである。
 なお、上述した超音波画像生成モードは、あくまでも一例であり、上述した3種類のモード以外のモード、例えば、A(Amplitude)モード、M(Motion)モード及び造影モード等が更に含まれてもよい。
There are a plurality of ultrasonic image generation modes that can be selected in the present embodiment, specifically, a B (Brightness) mode, a CF (Color Flow) mode, and a PW (Pulse Wave) mode. The B mode is a mode in which the amplitude of the ultrasonic echo is converted into brightness and a tomographic image is displayed. The CF mode is a mode in which the average blood flow velocity, the flow fluctuation, the strength of the flow signal, the flow power, etc. are mapped to various colors and displayed on the B mode image. The PW mode is a mode for displaying the velocity of the ultrasonic echo source (for example, the velocity of blood flow) detected based on the transmission / reception of a pulse wave.
The above-mentioned ultrasonic image generation mode is merely an example, and modes other than the above-mentioned three types of modes, for example, an A (Amplitude) mode, an M (Motion) mode, a contrast mode, and the like may be further included. ..
 <<超音波内視鏡12の構成>>
 次に、超音波内視鏡12の構成について、既出の図1、および図2、図3および図5を参照しながら説明する。図2は、超音波内視鏡12の挿入部22の先端部及びその周辺を拡大して示した平面図である。図3は、超音波内視鏡12の挿入部22の先端部40を図2に図示のI-I断面にて切断したときの断面を示す断面図である。図5は、超音波観測装置14の構成を示すブロック図である。
<< Configuration of ultrasonic endoscope 12 >>
Next, the configuration of the ultrasonic endoscope 12 will be described with reference to FIGS. 1, 2, 3, and 5 described above. FIG. 2 is an enlarged plan view of the tip of the insertion portion 22 of the ultrasonic endoscope 12 and its periphery. FIG. 3 is a cross-sectional view showing a cross section when the tip portion 40 of the insertion portion 22 of the ultrasonic endoscope 12 is cut along the I-I cross section shown in FIG. FIG. 5 is a block diagram showing the configuration of the ultrasonic observation device 14.
 超音波内視鏡12は、前述したように挿入部22及び操作部24を有する。挿入部22は、図1に示すように先端側(自由端側)から順に、先端部40、湾曲部42及び軟性部43を備える。先端部40には、図2に示すように超音波観察部36及び内視鏡観察部38が設けられている。超音波観察部36には、図3に示すように、複数の超音波振動子48を備える超音波振動子ユニット46が配置されている。 The ultrasonic endoscope 12 has an insertion unit 22 and an operation unit 24 as described above. As shown in FIG. 1, the insertion portion 22 includes a tip portion 40, a curved portion 42, and a soft portion 43 in this order from the tip end side (free end side). As shown in FIG. 2, the tip portion 40 is provided with an ultrasonic observation unit 36 and an endoscopic observation unit 38. As shown in FIG. 3, an ultrasonic oscillator unit 46 including a plurality of ultrasonic oscillators 48 is arranged in the ultrasonic observation unit 36.
 また、図2に示すように先端部40には処置具導出口44が設けられている。処置具導出口44は、鉗子、穿刺針、若しくは高周波メス等の処置具(不図示)の出口となる。また、処置具導出口44は、血液及び体内汚物等の吸引物を吸引する際の吸引口にもなる。 Further, as shown in FIG. 2, the tip portion 40 is provided with a treatment tool outlet 44. The treatment tool outlet 44 serves as an outlet for a treatment tool (not shown) such as a forceps, a puncture needle, or a high-frequency scalpel. In addition, the treatment tool outlet 44 also serves as a suction port for sucking suctioned substances such as blood and internal filth.
 湾曲部42は、先端部40よりも基端側(超音波振動子ユニット46が設けられている側とは反対側)に連設された部分であり、湾曲自在である。軟性部43は、湾曲部42と操作部24との間を連結している部分であり、可撓性を有し、細長く延びた状態で設けられている。 The curved portion 42 is a portion connected to the base end side (the side opposite to the side where the ultrasonic vibrator unit 46 is provided) with respect to the tip end portion 40, and is freely bendable. The flexible portion 43 is a portion that connects the curved portion 42 and the operating portion 24, has flexibility, and is provided in an elongated state.
 挿入部22及び操作部24の各々の内部には、送気送水用の管路及び吸引用の管路が、それぞれ複数形成されている。さらに、挿入部22及び操作部24の各々の内部には、一端が処置具導出口44に通じる処置具チャンネル45が形成されている。 A plurality of pipelines for air supply and water supply and a plurality of pipelines for suction are formed inside each of the insertion unit 22 and the operation unit 24. Further, inside each of the insertion portion 22 and the operation portion 24, a treatment tool channel 45 having one end leading to the treatment tool outlet 44 is formed.
 次に、超音波内視鏡12の構成要素のうち、超音波観察部36、内視鏡観察部38、送水タンク21a及び吸引ポンプ21b、並びに操作部24に関して詳しく説明する。 Next, among the components of the ultrasonic endoscope 12, the ultrasonic observation unit 36, the endoscope observation unit 38, the water supply tank 21a and the suction pump 21b, and the operation unit 24 will be described in detail.
 (超音波観察部36)
 超音波観察部36は、超音波画像を取得するために設けられた部分であり、挿入部22の先端部40において先端側に配置されている。超音波観察部36は、図3に示すように超音波振動子ユニット46と、複数の同軸ケーブル56と、FPC(Flexible Printed Circuit)60とを備える。
(Ultrasonic observation unit 36)
The ultrasonic observation unit 36 is a portion provided for acquiring an ultrasonic image, and is arranged on the tip side of the tip portion 40 of the insertion portion 22. As shown in FIG. 3, the ultrasonic observation unit 36 includes an ultrasonic oscillator unit 46, a plurality of coaxial cables 56, and an FPC (Flexible Printed Circuit) 60.
 超音波振動子ユニット46は、超音波探触子(プローブ)に相当し、患者の体腔内において、後述する複数の超音波振動子48が配列された超音波振動子アレイ50を用いて超音波を送信し、且つ、観察対象部位にて反射した超音波の反射波(エコー)を受信して受信信号を出力する。本実施形態に係る超音波振動子ユニット46は、コンベックス型であり、放射状(円弧状)に超音波を送信する。ただし、超音波振動子ユニット46の種類(型式)については特にこれに限定されるものではなく、超音波を送受信できるものであれば他の種類でもよく、例えば、ラジアル型、リニア型等であってもよい。 The ultrasonic transducer unit 46 corresponds to an ultrasonic probe, and uses an ultrasonic transducer array 50 in which a plurality of ultrasonic transducers 48, which will be described later, are arranged in the body cavity of a patient. Is transmitted, and the reflected wave (echo) of the ultrasonic wave reflected at the observation target part is received and the received signal is output. The ultrasonic oscillator unit 46 according to the present embodiment is a convex type and transmits ultrasonic waves in a radial shape (arc shape). However, the type (model) of the ultrasonic oscillator unit 46 is not particularly limited to this, and other types may be used as long as they can transmit and receive ultrasonic waves, for example, a radial type, a linear type, and the like. You may.
 超音波振動子ユニット46は、図3に示すようにバッキング材層54と、超音波振動子アレイ50と、音響整合層74と、音響レンズ76とを積層させることで構成されている。 As shown in FIG. 3, the ultrasonic oscillator unit 46 is composed of a backing material layer 54, an ultrasonic oscillator array 50, an acoustic matching layer 74, and an acoustic lens 76.
 超音波振動子アレイ50は、一次元アレイ状に配列された複数の超音波振動子48(超音波トランスデューサ)からなる。より詳しく説明すると、超音波振動子アレイ50は、N個(例えばN=128)の超音波振動子48が先端部40の軸線方向(挿入部22の長手軸方向)に沿って凸湾曲状に等間隔で配列されることで構成されている。なお、超音波振動子アレイ50は、複数の超音波振動子48を二次元アレイ状に配置して構成されたものであってもよい。 The ultrasonic transducer array 50 is composed of a plurality of ultrasonic transducers 48 (ultrasonic transducers) arranged in a one-dimensional array. More specifically, in the ultrasonic vibrator array 50, N (for example, N = 128) ultrasonic vibrators 48 are convexly curved along the axial direction of the tip portion 40 (longitudinal axial direction of the insertion portion 22). It is composed of being arranged at equal intervals. The ultrasonic oscillator array 50 may be configured by arranging a plurality of ultrasonic oscillators 48 in a two-dimensional array.
 N個の超音波振動子48の各々は、圧電素子(圧電体)の両面に電極を配置することで構成されている。圧電素子としては、チタン酸バリウム(BaTiO3)、チタン酸ジルコン酸鉛(PZT)、ニオブ酸カリウム(KNbO3)等が用いられる。
 電極は、複数の超音波振動子48の各々に対して個別に設けられた個別電極(不図示)と、複数の超音波振動子48に共通の振動子グランド(不図示)とからなる。また、電極は、同軸ケーブル56及びFPC60を介して超音波観測装置14と電気的に接続される。
Each of the N ultrasonic vibrators 48 is configured by arranging electrodes on both sides of the piezoelectric element (piezoelectric body). As the piezoelectric element, barium titanate (BaTiO 3 ), lead zirconate titanate (PZT), potassium niobate (KNbO 3 ) and the like are used.
The electrodes include individual electrodes (not shown) individually provided for each of the plurality of ultrasonic transducers 48, and a transducer ground (not shown) common to the plurality of ultrasonic transducers 48. Further, the electrodes are electrically connected to the ultrasonic observation device 14 via the coaxial cable 56 and the FPC 60.
 各超音波振動子48には、パルス状の駆動電圧が、入力信号(送信信号)として超音波観測装置14から同軸ケーブル56を通じて供給される。この駆動電圧が超音波振動子48の電極に印加されると、圧電素子が伸縮して超音波振動子48が駆動(振動)する。この結果、超音波振動子48からパルス状の超音波が出力される。このとき、超音波振動子48から出力される超音波の振幅は、その超音波振動子48が超音波を出力した際の強度(出力強度)に応じた大きさとなっている。ここで、出力強度は、超音波振動子48から出力された超音波の音圧の大きさとして定義される。 A pulsed drive voltage is supplied to each ultrasonic vibrator 48 as an input signal (transmission signal) from the ultrasonic observation device 14 through the coaxial cable 56. When this drive voltage is applied to the electrodes of the ultrasonic vibrator 48, the piezoelectric element expands and contracts to drive (vibrate) the ultrasonic vibrator 48. As a result, pulsed ultrasonic waves are output from the ultrasonic vibrator 48. At this time, the amplitude of the ultrasonic waves output from the ultrasonic vibrator 48 is large according to the intensity (output intensity) when the ultrasonic vibrator 48 outputs the ultrasonic waves. Here, the output intensity is defined as the magnitude of the sound pressure of the ultrasonic waves output from the ultrasonic vibrator 48.
 また、各超音波振動子48は、超音波の反射波(エコー)を受信すると、これに伴って振動(駆動)し、各超音波振動子48の圧電素子が電気信号を発生する。この電気信号は、超音波の受信信号として各超音波振動子48から超音波観測装置14に向けて出力される。このとき、超音波振動子48から出力される電気信号の大きさ(電圧値)は、その超音波振動子48が超音波を受信した際の受信感度に応じた大きさとなっている。ここで、受信感度は、超音波振動子48が送信する超音波の振幅に対する、その超音波振動子48が超音波を受信して出力した電気信号の振幅の比として定義される。 Further, when each ultrasonic vibrator 48 receives a reflected wave (echo) of ultrasonic waves, it vibrates (drives) in accordance with the reflected wave (echo), and the piezoelectric element of each ultrasonic vibrator 48 generates an electric signal. This electric signal is output from each ultrasonic oscillator 48 toward the ultrasonic observation device 14 as an ultrasonic reception signal. At this time, the magnitude (voltage value) of the electric signal output from the ultrasonic vibrator 48 is a magnitude corresponding to the reception sensitivity when the ultrasonic vibrator 48 receives the ultrasonic wave. Here, the reception sensitivity is defined as the ratio of the amplitude of the electric signal received and output by the ultrasonic transducer 48 to the amplitude of the ultrasonic wave transmitted by the ultrasonic transducer 48.
 本実施形態では、N個の超音波振動子48をマルチプレクサ140(図5参照)などの電子スイッチで順次駆動させることで、超音波振動子アレイ50が配された曲面に沿った走査範囲、例えば曲面の曲率中心から数十mm程度の範囲で超音波が走査される。より詳しく説明すると、超音波画像としてBモード画像(断層画像)を取得する場合には、マルチプレクサ140の開口チャンネル選択により、N個の超音波振動子48のうち、連続して並ぶm個(例えば、m=N/2)の超音波振動子48(以下では、駆動対象振動子と言う)に駆動電圧が供給される。これにより、m個の駆動対象振動子が駆動され、開口チャンネルの各駆動対象振動子から超音波が出力される。m個の駆動対象振動子から出力された超音波は、直後に合成され、その合成波(超音波ビーム)が観察対象部位に向けて送信される。その後、m個の駆動対象振動子の各々は、観察対象部位にて反射された超音波(エコー)を受信し、その時点での受信感度に応じた電気信号(受信信号)を出力する。 In the present embodiment, by sequentially driving the N ultrasonic oscillators 48 with an electronic switch such as a multiplexer 140 (see FIG. 5), a scanning range along a curved surface in which the ultrasonic oscillator array 50 is arranged, for example, Ultrasonic waves are scanned within a range of several tens of mm from the center of curvature of the curved surface. More specifically, when a B-mode image (tomographic image) is acquired as an ultrasonic image, m of N ultrasonic oscillators 48 (for example, for example) are arranged in succession by selecting the aperture channel of the multiplexer 140. , M = N / 2), a drive voltage is supplied to the ultrasonic oscillator 48 (hereinafter referred to as a drive target oscillator). As a result, m drive target oscillators are driven, and ultrasonic waves are output from each drive target oscillator of the aperture channel. The ultrasonic waves output from the m drive target oscillators are synthesized immediately afterwards, and the combined wave (ultrasonic beam) is transmitted toward the observation target site. After that, each of the m driven target oscillators receives the ultrasonic waves (echo) reflected at the observation target site, and outputs an electric signal (received signal) according to the reception sensitivity at that time.
 そして、上記一連の工程(すなわち、駆動電圧の供給、超音波の送受信、及び電気信号の出力)は、N個の超音波振動子48における駆動対象振動子の位置を1つずつ(1個の超音波振動子48ずつ)ずらして繰り返し行われる。具体的に説明すると、上記一連の工程は、N個の超音波振動子48のうち、一方の端に位置する超音波振動子48を中心とする、その両側のm個の駆動対象振動子から開始される。そして、上記一連の工程は、マルチプレクサ140による開口チャンネルの切り替えによって駆動対象振動子の位置がずれる度に繰り返される。最終的に、上記一連の工程は、N個の超音波振動子48のうち、他端に位置する超音波振動子48を中心とする、その両側のm個の駆動対象振動子に至るまで、計N回繰り返して実施される。 Then, in the above series of steps (that is, supply of drive voltage, transmission / reception of ultrasonic waves, and output of electric signals), the positions of the drive target oscillators in the N ultrasonic oscillators 48 are set one by one (one). The ultrasonic oscillator 48) is shifted and repeated. Specifically, the series of steps is performed from m drive target oscillators on both sides of the N ultrasonic oscillators 48, centered on the ultrasonic oscillator 48 located at one end. It will be started. Then, the above series of steps are repeated every time the position of the driven target oscillator shifts due to the switching of the aperture channel by the multiplexer 140. Finally, the series of steps up to the m driven target oscillators on both sides of the N ultrasonic oscillators 48 centered on the ultrasonic oscillator 48 located at the other end. It is repeated N times in total.
 バッキング材層54は、超音波振動子アレイ50の各超音波振動子48を裏面側から支持する。また、バッキング材層54は、超音波振動子48から発せられた超音波、若しくは観察対象部位にて反射された超音波(エコー)のうち、バッキング材層54側に伝播した超音波を減衰させる機能を有する。なお、バッキング材は、硬質ゴム等の剛性を有する材料からなり、超音波減衰材(フェライト及びセラミックス等)が必要に応じて添加されている。 The backing material layer 54 supports each ultrasonic oscillator 48 of the ultrasonic oscillator array 50 from the back surface side. Further, the backing material layer 54 attenuates the ultrasonic waves emitted from the ultrasonic transducer 48 or the ultrasonic waves (echo) reflected at the observation target portion, which have propagated to the backing material layer 54 side. Has a function. The backing material is made of a rigid material such as hard rubber, and an ultrasonic damping material (ferrite, ceramics, etc.) is added as needed.
 音響整合層74は、超音波振動子アレイ50の上に重ねられており、患者の人体と超音波振動子48との間の音響インピーダンス整合をとるために設けられている。音響整合層74が設けられていることにより、超音波の透過率を高めることが可能となる。音響整合層74の材料としては、音響インピーダンスの値が超音波振動子48の圧電素子に比して、より患者の人体のものの値に近い様々な有機材料を用いることができる。音響整合層74の材料としては、具体的にはエポキシ系樹脂、シリコンゴム、ポリイミド及びポリエチレン等が挙げられる。 The acoustic matching layer 74 is superposed on the ultrasonic vibrator array 50, and is provided to match the acoustic impedance between the human body of the patient and the ultrasonic vibrator 48. By providing the acoustic matching layer 74, it is possible to increase the transmittance of ultrasonic waves. As the material of the acoustic matching layer 74, various organic materials whose acoustic impedance value is closer to that of the human body of the patient can be used as compared with the piezoelectric element of the ultrasonic vibrator 48. Specific examples of the material of the acoustic matching layer 74 include epoxy resin, silicone rubber, polyimide, polyethylene and the like.
 音響整合層74上に重ねられた音響レンズ76は、超音波振動子アレイ50から発せられる超音波を観察対象部位に向けて収束させるためのものである。なお、音響レンズ76は、例えば、シリコン系樹脂(ミラブル型シリコンゴム(HTVゴム)、液状シリコンゴム(RTVゴム)等)、ブタジエン系樹脂、及びポリウレタン系樹脂等からなり、必要に応じて酸化チタン、アルミナ若しくはシリカ等の粉末が混合される。 The acoustic lens 76 superposed on the acoustic matching layer 74 is for converging the ultrasonic waves emitted from the ultrasonic oscillator array 50 toward the observation target portion. The acoustic lens 76 is made of, for example, a silicon-based resin (mirable type silicon rubber (HTV rubber), liquid silicon rubber (RTV rubber), etc.), a butadiene-based resin, a polyurethane-based resin, or the like, and titanium oxide is required. , Alumina, silica and other powders are mixed.
 FPC60は、各超音波振動子48が備える電極と電気的に接続される。複数の同軸ケーブル56の各々は、その一端にてFPC60に配線されている。そして、超音波内視鏡12が超音波用コネクタ32aを介して超音波観測装置14に接続されると、複数の同軸ケーブル56の各々は、その他端(FPC60側とは反対側)にて超音波観測装置14と電気的に接続される。 The FPC 60 is electrically connected to the electrodes included in each ultrasonic oscillator 48. Each of the plurality of coaxial cables 56 is wired to the FPC 60 at one end thereof. Then, when the ultrasonic endoscope 12 is connected to the ultrasonic observation device 14 via the ultrasonic connector 32a, each of the plurality of coaxial cables 56 superimposes at the other end (the side opposite to the FPC60 side). It is electrically connected to the ultrasonic observation device 14.
 (内視鏡観察部38)
 内視鏡観察部38は、内視鏡画像を取得するために設けられた部分であり、挿入部22の先端部40において超音波観察部36よりも基端側に配置されている。内視鏡観察部38は、図2および図3に示すように観察窓82、対物レンズ84、固体撮像素子86、照明窓88、洗浄ノズル90及び配線ケーブル92等によって構成されている。
(Endoscopic observation unit 38)
The endoscopic observation unit 38 is a portion provided for acquiring an endoscopic image, and is arranged at the tip portion 40 of the insertion portion 22 on the proximal end side of the ultrasonic observation unit 36. As shown in FIGS. 2 and 3, the endoscope observation unit 38 includes an observation window 82, an objective lens 84, a solid-state image sensor 86, an illumination window 88, a cleaning nozzle 90, a wiring cable 92, and the like.
 観察窓82は、挿入部22の先端部40において軸線方向(挿入部22の長手軸方向)に対して斜めに傾けられた状態で取り付けられている。観察対象隣接部位にて反射されて観察窓82から入射された光は、対物レンズ84で固体撮像素子86の撮像面に結像される。 The observation window 82 is attached at the tip 40 of the insertion portion 22 in a state of being inclined obliquely with respect to the axial direction (longitudinal axial direction of the insertion portion 22). The light reflected from the portion adjacent to the observation target and incident from the observation window 82 is imaged on the image pickup surface of the solid-state image sensor 86 by the objective lens 84.
 固体撮像素子86は、観察窓82及び対物レンズ84を透過して撮像面に結像された観察対象隣接部位の反射光を光電変換して、撮像信号を出力する。固体撮像素子86としては、CCD(Charge Coupled Device:電荷結合素子)、及びCMOS(Complementary MetalOxide Semiconductor:相補形金属酸化膜半導体)等が利用可能である。固体撮像素子86で出力された撮像画像信号は、挿入部22から操作部24まで延設された配線ケーブル92を経由して、ユニバーサルコード26により内視鏡プロセッサ16に伝送される。 The solid-state image sensor 86 transmits the observation window 82 and the objective lens 84, photoelectrically converts the reflected light of the portion adjacent to the observation target imaged on the image pickup surface, and outputs the image pickup signal. As the solid-state image sensor 86, CCD (Charge Coupled Device: charge-coupled device), CMOS (Complementary MetalOxide Semiconductor: complementary metal oxide semiconductor) and the like can be used. The captured image signal output by the solid-state image sensor 86 is transmitted to the endoscope processor 16 by the universal cord 26 via the wiring cable 92 extending from the insertion unit 22 to the operation unit 24.
 照明窓88は、観察窓82の両脇位置に設けられている。照明窓88には、ライトガイド(不図示)の出射端が接続されている。ライトガイドは、挿入部22から操作部24まで延設され、その入射端は、ユニバーサルコード26を介して接続された光源装置18に接続されている。光源装置18で発せられた照明光は、ライトガイドを伝わり、照明窓88から観察対象隣接部位に向けて照射される。 The illumination window 88 is provided at both side positions of the observation window 82. An exit end of a light guide (not shown) is connected to the illumination window 88. The light guide extends from the insertion unit 22 to the operation unit 24, and its incident end is connected to the light source device 18 connected via the universal cord 26. The illumination light emitted by the light source device 18 is transmitted through the light guide and is emitted from the illumination window 88 toward the portion adjacent to the observation target.
 洗浄ノズル90は、観察窓82及び照明窓88の表面を洗浄するために挿入部22の先端部40に形成された噴出孔であり、洗浄ノズル90からは、空気又は洗浄用液体が観察窓82及び照明窓88に向けて噴出される。なお、本実施形態において、洗浄ノズル90から噴出される洗浄用液体は、水、特に脱気水である。ただし、洗浄用液体については、特に限定されるものではなく、他の液体、例えば、通常の水(脱気されていない水)であってもよい。 The cleaning nozzle 90 is a ejection hole formed in the tip portion 40 of the insertion portion 22 for cleaning the surfaces of the observation window 82 and the illumination window 88, and air or a cleaning liquid is discharged from the cleaning nozzle 90 through the observation window 82. And is ejected toward the illumination window 88. In the present embodiment, the cleaning liquid ejected from the cleaning nozzle 90 is water, particularly degassed water. However, the cleaning liquid is not particularly limited, and other liquids, for example, ordinary water (water that has not been degassed) may be used.
 (送水タンク21a及び吸引ポンプ21b)
 送水タンク21aは、脱気水を貯留するタンクであり、送気送水用チューブ34aにより光源用コネクタ32cに接続されている。なお、脱気水は、洗浄ノズル90から噴出される洗浄用液体として用いられる。
(Water supply tank 21a and suction pump 21b)
The water supply tank 21a is a tank for storing degassed water, and is connected to the light source connector 32c by the air supply water supply tube 34a. The degassed water is used as a cleaning liquid ejected from the cleaning nozzle 90.
 吸引ポンプ21bは、処置具導出口44を通じて体腔内の吸引物(洗浄用に供給された脱気水を含む)を吸引する。吸引ポンプ21bは、吸引用チューブ34bにより光源用コネクタ32cに接続されている。なお、超音波内視鏡システム10は、所定の送気先に空気を送気する送気ポンプなどを備えていてもよい。 The suction pump 21b sucks the suction material (including the degassed water supplied for cleaning) in the body cavity through the treatment tool outlet 44. The suction pump 21b is connected to the light source connector 32c by a suction tube 34b. The ultrasonic endoscopy system 10 may be provided with an air supply pump or the like that supplies air to a predetermined air supply destination.
 挿入部22及び操作部24内には、処置具チャンネル45と送気送水管路(不図示)が設けられている。 A treatment tool channel 45 and an air supply / water pipe (not shown) are provided in the insertion unit 22 and the operation unit 24.
 処置具チャンネル45は、操作部24に設けられた処置具挿入口30と処置具導出口44との間を連絡している。また、処置具チャンネル45は、操作部24に設けられた吸引ボタン28bに接続している。吸引ボタン28bは、処置具チャンネル45のほかに、吸引ポンプ21bに接続されている。
 送気送水管路は、その一端側で洗浄ノズル90に通じており、他端側では、操作部24に設けられた送気送水ボタン28aに接続している。送気送水ボタン28aは、送気送水管路のほかに、送水タンク21aに接続されている。
The treatment tool channel 45 communicates between the treatment tool insertion port 30 provided in the operation unit 24 and the treatment tool outlet 44. Further, the treatment tool channel 45 is connected to a suction button 28b provided on the operation unit 24. The suction button 28b is connected to the suction pump 21b in addition to the treatment tool channel 45.
The air supply / water pipe is connected to the cleaning nozzle 90 on one end side thereof, and is connected to the air supply water supply button 28a provided on the operation unit 24 on the other end side. The air supply / water supply button 28a is connected to the water supply tank 21a in addition to the air supply / water supply pipeline.
 (操作部24)
 操作部24は、超音波診断の開始時、診断中及び診断終了時等において術者によって操作される部分であり、その一端にはユニバーサルコード26の一端が接続されている。また、操作部24は、図1に示すように、送気送水ボタン28a、吸引ボタン28b、一対のアングルノブ29、並びに処置具挿入口(鉗子口)30を有する。
(Operation unit 24)
The operation unit 24 is a part operated by the operator at the start, during the diagnosis, at the end of the diagnosis, etc., and one end of the universal cord 26 is connected to one end thereof. Further, as shown in FIG. 1, the operation unit 24 has an air supply / water supply button 28a, a suction button 28b, a pair of angle knobs 29, and a treatment tool insertion port (forceps port) 30.
 一対のアングルノブ29の各々を回動すると、湾曲部42が遠隔的に操作されて湾曲変形する。この変形操作により、超音波観察部36及び内視鏡観察部38が設けられた挿入部22の先端部40を所望の方向に向けることが可能となる。
 処置具挿入口30は、鉗子等の処置具(不図示)を挿通するために形成された孔であり、処置具チャンネル45を介して処置具導出口44と連絡している。処置具挿入口30に挿入された処置具は、処置具チャンネル45を通過した後に処置具導出口44から体腔内に導入される。
When each of the pair of angle knobs 29 is rotated, the curved portion 42 is remotely controlled to be curved and deformed. By this deformation operation, the tip portion 40 of the insertion portion 22 provided with the ultrasonic observation unit 36 and the endoscopic observation unit 38 can be directed in a desired direction.
The treatment tool insertion port 30 is a hole formed for inserting a treatment tool (not shown) such as forceps, and is in contact with the treatment tool outlet 44 via the treatment tool channel 45. The treatment tool inserted into the treatment tool insertion port 30 is introduced into the body cavity from the treatment tool outlet 44 after passing through the treatment tool channel 45.
 送気送水ボタン28a及び吸引ボタン28bは、2段切り替え式の押しボタンであり、挿入部22及び操作部24の各々の内部に設けられた管路の開閉を切り替えるために操作される。 The air supply / water supply button 28a and the suction button 28b are two-stage switching type push buttons, and are operated to switch the opening / closing of the pipelines provided inside each of the insertion unit 22 and the operation unit 24.
 <<内視鏡プロセッサ16の概略構成>>
 ここでは、内視鏡プロセッサ16の詳細構成の説明は省略するが、内視鏡プロセッサ16は、内視鏡画像を撮像する従来公知の一般的な構成要素に加えて、内視鏡画像認識部170を備えている。
<< Schematic configuration of endoscope processor 16 >>
Although the detailed configuration of the endoscope processor 16 is omitted here, the endoscope processor 16 has an endoscope image recognition unit in addition to the conventionally known general components for capturing an endoscope image. It is equipped with 170.
 内視鏡画像認識部170は、学習用内視鏡画像と、学習用内視鏡画像に表示されている病変領域と、の関係を複数の学習用内視鏡画像について予め学習しておき、学習結果に基づいて、内視鏡プロセッサ16によって生成された診断用内視鏡画像から、この診断用内視鏡画像に表示されている病変領域を認識する。
 学習用内視鏡画像は、内視鏡画像認識部170が、内視鏡画像と、内視鏡画像に表示されている病変領域と、の関係を学習するための既存の内視鏡画像であり、例えば過去に撮影された各種の内視鏡画像を利用することができる。
The endoscopic image recognition unit 170 has learned in advance the relationship between the learning endoscopic image and the lesion area displayed on the learning endoscopic image for the plurality of learning endoscopic images. Based on the learning result, the lesion region displayed on the diagnostic endoscopic image is recognized from the diagnostic endoscopic image generated by the endoscope processor 16.
The learning endoscopic image is an existing endoscopic image for the endoscopic image recognition unit 170 to learn the relationship between the endoscopic image and the lesion area displayed on the endoscopic image. Yes, for example, various endoscopic images taken in the past can be used.
 内視鏡画像認識部170は、図4に示すように、病変領域検出部102と、位置情報取得部104と、選択部106と、病変領域検出制御部108と、を備えている。 As shown in FIG. 4, the endoscopic image recognition unit 170 includes a lesion area detection unit 102, a position information acquisition unit 104, a selection unit 106, and a lesion area detection control unit 108.
 病変領域検出部102は、学習結果に基づいて、診断用内視鏡画像から病変領域を検出する。病変領域検出部102は、体腔内の複数の位置にそれぞれ対応した複数の検出部を備えている。ここでは、一例として、図4に示すように、第1~第11検出部102A~102Kを備えている。第1検出部102Aは直腸に、第2検出部102BはS字結腸に、第3検出部102Cは下行結腸に、第4検出部102Dは横行結腸に、第5検出部102Eは上行結腸に、第6検出部102Fは盲腸に、第7検出部102Gは回腸に、第8検出部102Hは空腸に、第9検出部102Iは十二指腸に、第10検出部102Jは胃に、第11検出部102Kは食道に、それぞれ対応している。 The lesion area detection unit 102 detects the lesion area from the diagnostic endoscopic image based on the learning result. The lesion area detection unit 102 includes a plurality of detection units corresponding to a plurality of positions in the body cavity. Here, as an example, as shown in FIG. 4, the first to eleventh detection units 102A to 102K are provided. The first detection unit 102A is in the rectum, the second detection unit 102B is in the sigmoid colon, the third detection unit 102C is in the descending colon, the fourth detection unit 102D is in the transverse colon, and the fifth detection unit 102E is in the ascending colon. The sixth detection unit 102F is in the cecum, the seventh detection unit 102G is in the ileum, the eighth detection unit 102H is in the jejunum, the ninth detection unit 102I is in the duodenum, the tenth detection unit 102J is in the stomach, and the eleventh detection unit 102K. Corresponds to the esophagus.
 第1~第11検出部102A~102Kは、それぞれ学習済みモデルである。この複数の学習済みモデルは、それぞれ異なる学習用内視鏡画像からなるデータセットを用いて学習したモデルである。詳しくは、複数の学習済みモデルは、それぞれ体腔内の異なる位置を撮影した学習用内視鏡画像からなるデータセットを用いて、学習用内視鏡画像と、学習用内視鏡画像に表示されている病変領域と、の関係を予め学習したモデルである。 The first to eleventh detection units 102A to 102K are trained models, respectively. The plurality of trained models are models trained using a dataset consisting of different learning endoscopic images. Specifically, the plurality of trained models are displayed on the learning endoscopic image and the learning endoscopic image using a data set consisting of learning endoscopic images taken at different positions in the body cavity. This is a model in which the relationship between the lesion area and the lesion area is learned in advance.
 すなわち、第1検出部102Aは直腸の学習用内視鏡画像からなるデータセット、第2検出部102BはS字結腸の学習用内視鏡画像からなるデータセット、第3検出部102Cは下行結腸の学習用内視鏡画像からなるデータセット、第4検出部102Dは横行結腸の学習用内視鏡画像からなるデータセット、第5検出部102Eは上行結腸の学習用内視鏡画像からなるデータセット、第6検出部102Fは盲腸の学習用内視鏡画像からなるデータセット、第7検出部102Gは回腸の学習用内視鏡画像からなるデータセット、第8検出部102Hは空腸の学習用内視鏡画像からなるデータセット、第9検出部102Iは十二指腸の学習用内視鏡画像からなるデータセット、第10検出部102Jは胃の学習用内視鏡画像からなるデータセット、第11検出部102Kは食道の学習用内視鏡画像からなるデータセットを用いて学習したモデルである。 That is, the first detection unit 102A is a data set consisting of learning endoscopic images of the rectum, the second detection unit 102B is a data set consisting of learning endoscopic images of the sigmoid colon, and the third detection unit 102C is the descending colon. The fourth detection unit 102D is a data set consisting of a learning endoscopic image of the transverse colon, and the fifth detection unit 102E is a data set consisting of a learning endoscopic image of the ascending colon. Set, 6th detection unit 102F is a data set consisting of endoscopic images for learning of the cecum, 7th detection unit 102G is a data set consisting of endoscopic images for learning of the colon, and 8th detection unit 102H is for learning of the air intestine. Data set consisting of endoscopic images, 9th detection unit 102I is a data set consisting of endoscopic images for learning of the duodenum, 10th detection unit 102J is a data set consisting of endoscopic images for learning of the stomach, 11th detection Part 102K is a model learned using a data set consisting of endoscopic images for learning the esophagus.
 学習方法は、複数の学習用内視鏡画像から、内視鏡画像と、病変領域と、の関係を学習し、学習済みモデルを生成することができるものであれば特に限定されない。
 学習方法としては、例えば人工知能(AI:Artificial Intelligence)の技術の1つである機械学習(マシンラーニング)の一例としての、階層構造型のニューラルネットワークを用いるディープラーニング(深層学習)等を利用することができる。
 なお、ディープラーニング以外の機械学習を利用してもよいし、機械学習以外の人工知能の技術を利用してもよいし、人工知能の技術以外の学習方法を利用してもよい。
The learning method is not particularly limited as long as it can learn the relationship between the endoscopic image and the lesion region from a plurality of learning endoscopic images and generate a learned model.
As a learning method, for example, deep learning (deep learning) using a hierarchical neural network as an example of machine learning (machine learning), which is one of the technologies of artificial intelligence (AI), is used. be able to.
In addition, machine learning other than deep learning may be used, artificial intelligence technology other than machine learning may be used, or learning methods other than artificial intelligence technology may be used.
 また、学習用内視鏡画像だけを使用して学習済みモデルを生成してもよい。この場合、学習済みモデルは更新されず、常に同じ学習済みモデルを使用することができる。
 あるいは、学習用内視鏡画像に加えて、診断用内視鏡画像を使用して学習済みモデルを生成するように構成してもよい。この場合、診断用内視鏡画像と、この診断用内視鏡画像に表示されている病変領域と、の関係を学習して学習済みモデルが随時更新される。
Further, the trained model may be generated using only the training endoscopic image. In this case, the trained model is not updated and the same trained model can always be used.
Alternatively, in addition to the learning endoscopic image, the diagnostic endoscopic image may be used to generate a trained model. In this case, the learned model is updated as needed by learning the relationship between the diagnostic endoscopic image and the lesion area displayed on the diagnostic endoscopic image.
 続いて、位置情報取得部104は、内視鏡画像の体腔内の位置の情報を取得する。ここでは、医師等の術者が操作卓100を用いて位置の情報を入力する。位置情報取得部104は、操作卓100から入力された位置の情報を取得する。 Subsequently, the position information acquisition unit 104 acquires information on the position in the body cavity of the endoscopic image. Here, an operator such as a doctor inputs position information using the console 100. The position information acquisition unit 104 acquires the position information input from the operation console 100.
 画像の体腔内の位置の情報として、直腸、S字結腸、下行結腸、横行結腸、上行結腸、盲腸、回腸、空腸、十二指腸、胃、及び食道等の情報が入力される。これらの位置候補を選択可能にモニタ20に表示し、医師等の術者が操作卓100を用いて選択するように構成してもよい。 Information on the rectum, sigmoid colon, descending colon, transverse colon, ascending colon, cecum, ileum, jejunum, duodenum, stomach, esophagus, etc. is input as the position information in the body cavity of the image. These position candidates may be selectively displayed on the monitor 20 and selected by an operator such as a doctor using the operation console 100.
 続いて、選択部106は、病変領域検出部102から、位置情報取得部104が取得した位置の情報に対応した検出部を選択する。即ち、選択部106は、位置の情報が直腸の場合は第1検出部102Aを、S字結腸の場合は第2検出部102Bを、下行結腸の場合は第3検出部102Cを、横行結腸の場合は第4検出部102Dを、上行結腸の場合は第5検出部102Eを、盲腸の場合は第6検出部102Fを、回腸の場合は第7検出部102Gを、空腸の場合は第8検出部102Hを、十二指腸の場合は第9検出部102Iを、胃の場合は第10検出部102Jを、食道の場合は第11検出部102Kを選択する。 Subsequently, the selection unit 106 selects a detection unit corresponding to the position information acquired by the position information acquisition unit 104 from the lesion area detection unit 102. That is, the selection unit 106 uses the first detection unit 102A when the position information is the rectum, the second detection unit 102B when the position information is the sigmoid colon, the third detection unit 102C when the position information is the descending colon, and the transverse colon. In this case, the 4th detection unit 102D, in the case of the ascending colon, the 5th detection unit 102E, in the case of the rectum, the 6th detection unit 102F, in the case of the ileum, the 7th detection unit 102G, and in the case of the jejunum, the 8th detection unit. Select the 9th detection unit 102I in the case of the duodenum, the 10th detection unit 102J in the case of the stomach, and the 11th detection unit 102K in the case of the esophagus.
 続いて、病変領域検出制御部108は、選択部106が選択した検出部によって、内視鏡画像から病変領域を検出させる。ここでの病変領域とは、病気が原因のものに限定されず、外観上正常な状態とは異なる状態の領域を含んでいる。病変領域としては、例えば、ポリープ、癌、大腸憩室、炎症、EMR(Endoscopic Mucosal Resection)瘢痕又はESD(Endoscopic Submucosal Dissection)瘢痕等の治療痕、クリップ箇所、出血点、穿孔、及び血管異型性等を例示することができる。 Subsequently, the lesion area detection control unit 108 causes the lesion area to be detected from the endoscopic image by the detection unit selected by the selection unit 106. The lesion area here is not limited to the one caused by the disease, and includes an area in a state different from the normal state in appearance. The lesion area includes, for example, treatment scars such as polyps, cancer, colon diverticulum, inflammation, EMR (Endoscopic Mucosal Resection) scars or ESD (Endoscopic Submucosal Dissection) scars, clip sites, bleeding points, perforations, and vascular atypia. It can be exemplified.
 <<超音波観測装置14の構成>>
 超音波観測装置14は、超音波振動子ユニット46に超音波を送受信させ、且つ、超音波受信時に超音波振動子48(詳しくは駆動対象素子)が出力した受信信号を画像化して超音波画像を生成する。また、超音波観測装置14は、生成した超音波画像に加え、内視鏡プロセッサ16から転送される内視鏡画像、および解剖学シェーマ図等をモニタ20に表示する。
<< Configuration of ultrasonic observation device 14 >>
The ultrasonic observation device 14 transmits and receives ultrasonic waves to the ultrasonic vibrator unit 46, and images the received signal output by the ultrasonic vibrator 48 (specifically, the element to be driven) at the time of ultrasonic reception to obtain an ultrasonic image. To generate. Further, in addition to the generated ultrasonic image, the ultrasonic observation device 14 displays the endoscopic image transferred from the endoscope processor 16 and the anatomical schema diagram on the monitor 20.
 超音波観測装置14は、図5に示すように、マルチプレクサ140、受信回路142、送信回路144、A/Dコンバータ146、ASIC(Application Specific Integrated Circuit)148、シネメモリ150、CPU(Central Processing Unit)152、DSC(Digital Scan Converter)154、超音波画像認識部168、操作手順記憶部174、警告発生部176、移動ルート登録部178、及び表示制御部172を有する。 As shown in FIG. 5, the ultrasonic observation device 14 includes a multiplexer 140, a reception circuit 142, a transmission circuit 144, an A / D converter 146, an ASIC (Application Specific Integrated Circuit) 148, a cine memory 150, and a CPU (Central Processing Unit) 152. , DSC (Digital Scan Controller) 154, ultrasonic image recognition unit 168, operation procedure storage unit 174, warning generation unit 176, movement route registration unit 178, and display control unit 172.
 受信回路142及び送信回路144は、超音波内視鏡12の超音波振動子アレイ50と電気的に接続する。マルチプレクサ140は、N個の超音波振動子48の中から最大m個の駆動対象振動子を選択し、そのチャンネルを開口させる。
 送信回路144は、FPGA(フィールドプログラマブルゲートアレイ)、パルサー(パルス発生回路158)、及びSW(スイッチ)等からなり、MUX(マルチプレクサ140)に接続される。なお、FPGAの代わりにASIC(特定用途向け集積回路)を用いても良い。
The receiving circuit 142 and the transmitting circuit 144 are electrically connected to the ultrasonic oscillator array 50 of the ultrasonic endoscope 12. The multiplexer 140 selects a maximum of m drive target oscillators from the N ultrasonic oscillators 48 and opens the channels thereof.
The transmission circuit 144 includes an FPGA (field programmable gate array), a pulsar (pulse generation circuit 158), a SW (switch), and the like, and is connected to a MUX (multiplexer 140). An ASIC (application specific integrated circuit) may be used instead of the FPGA.
 送信回路144は、超音波振動子ユニット46から超音波を送信するために、CPU152から送られてくる制御信号に従って、マルチプレクサ140により選択された駆動対象振動子に対して超音波送信用の駆動電圧を供給する回路である。駆動電圧は、パルス状の電圧信号(送信信号)であり、ユニバーサルコード26及び同軸ケーブル56を介して駆動対象振動子の電極に印加される。 The transmission circuit 144 transmits ultrasonic waves to the drive target oscillator selected by the multiplexer 140 according to the control signal sent from the CPU 152 in order to transmit ultrasonic waves from the ultrasonic transducer unit 46. Is a circuit that supplies. The drive voltage is a pulsed voltage signal (transmission signal) and is applied to the electrodes of the drive target oscillator via the universal cord 26 and the coaxial cable 56.
 送信回路144は、制御信号に基づいて送信信号を生成するパルス発生回路158を有しており、CPU152の制御により、パルス発生回路158を用いて、複数の超音波振動子48を駆動して超音波を発生させる送信信号を生成して複数の超音波振動子48に供給する。より詳しくは、送信回路144は、CPU152の制御により、超音波診断を行う場合に、パルス発生回路158を用いて、超音波診断を行うための駆動電圧を有する送信信号を生成する。 The transmission circuit 144 has a pulse generation circuit 158 that generates a transmission signal based on the control signal, and under the control of the CPU 152, the pulse generation circuit 158 is used to drive a plurality of ultrasonic vibrators 48 to superimpose. A transmission signal for generating a sound wave is generated and supplied to a plurality of ultrasonic vibrators 48. More specifically, the transmission circuit 144 uses the pulse generation circuit 158 to generate a transmission signal having a drive voltage for performing the ultrasonic diagnosis when the ultrasonic diagnosis is performed under the control of the CPU 152.
 受信回路142は、超音波(エコー)を受信した駆動対象振動子から出力される電気信号、すなわち受信信号を受信する回路である。また、受信回路142は、CPU152から送られてくる制御信号に従って、超音波振動子48から受信した受信信号を増幅し、増幅後の信号をA/Dコンバータ146に引き渡す。A/Dコンバータ146は、受信回路142と接続しており、受信回路142から受け取った受信信号をアナログ信号からデジタル信号に変換し、変換後のデジタル信号をASIC148に出力する。 The receiving circuit 142 is a circuit that receives an electric signal output from a drive target oscillator that has received ultrasonic waves (echo), that is, a received signal. Further, the receiving circuit 142 amplifies the received signal received from the ultrasonic vibrator 48 according to the control signal sent from the CPU 152, and delivers the amplified signal to the A / D converter 146. The A / D converter 146 is connected to the receiving circuit 142, converts the received signal received from the receiving circuit 142 from an analog signal to a digital signal, and outputs the converted digital signal to the ASIC 148.
 ASIC148は、A/Dコンバータ146と接続しており、図5に示すように、位相整合部160、Bモード画像生成部162、PWモード画像生成部164、CFモード画像生成部166及びメモリコントローラ151を構成している。
 なお、本実施形態では、ASIC148のようなハードウェア回路によって上述の機能(具体的には、位相整合部160、Bモード画像生成部162、PWモード画像生成部164、CFモード画像生成部166及びメモリコントローラ151)を実現しているが、これに限定されるものではない。中央演算装置(CPU)と各種データ処理を実行させるためのソフトウェア(コンピュータプログラム)とを協働させることで上記の機能を実現させてもよい。
The ASIC 148 is connected to the A / D converter 146, and as shown in FIG. 5, the phase matching unit 160, the B mode image generation unit 162, the PW mode image generation unit 164, the CF mode image generation unit 166, and the memory controller 151. Consists of.
In this embodiment, the above-mentioned functions (specifically, the phase matching unit 160, the B mode image generation unit 162, the PW mode image generation unit 164, the CF mode image generation unit 166, and the above-mentioned functions by a hardware circuit such as ASIC148 are used. The memory controller 151) has been realized, but the present invention is not limited to this. The above functions may be realized by linking a central processing unit (CPU) and software (computer program) for executing various data processes.
 位相整合部160は、A/Dコンバータ146によりデジタル信号化された受信信号(受信データ)に対して遅延時間を与えて整相加算する(受信データの位相を合わせてから加算する)処理を実行する。整相加算処理により、超音波エコーの焦点が絞り込まれた音線信号が生成される。 The phase matching unit 160 executes a process of giving a delay time to the received signal (received data) digitized by the A / D converter 146 and performing phase adjustment addition (adding after matching the phase of the received data). To do. The phasing addition process generates a sound line signal in which the focus of the ultrasonic echo is narrowed down.
 Bモード画像生成部162、PWモード画像生成部164及びCFモード画像生成部166は、超音波振動子ユニット46が超音波を受信した際に複数の超音波振動子48のうちの駆動対象振動子が出力する電気信号(厳密には、受信データを整相加算することで生成された音線信号)に基づいて、超音波画像を生成する。 The B-mode image generation unit 162, the PW-mode image generation unit 164, and the CF-mode image generation unit 166 are driven by the ultrasonic transducer units 48 among the plurality of ultrasonic transducers 48 when the ultrasonic transducer unit 46 receives ultrasonic waves. Generates an ultrasonic image based on the electric signal output by (strictly speaking, the sound line signal generated by phasing and adding the received data).
 Bモード画像生成部162は、患者の内部(体腔内)の断層画像であるBモード画像を生成する画像生成部である。Bモード画像生成部162は、順次生成される音線信号に対し、STC(Sensitivity Time gain Control)によって、超音波の反射位置の深度に応じて伝搬距離に起因する減衰の補正を施す。また、Bモード画像生成部162は、補正後の音線信号に対して包絡線検波処理及びLog(対数)圧縮処理を施して、Bモード画像(画像信号)を生成する。 The B-mode image generation unit 162 is an image generation unit that generates a B-mode image that is a tomographic image of the inside (inside the body cavity) of the patient. The B-mode image generation unit 162 corrects the attenuation due to the propagation distance of the sequentially generated sound line signals by STC (Sensitivity Time gain Control) according to the depth of the reflection position of the ultrasonic waves. Further, the B-mode image generation unit 162 generates an B-mode image (image signal) by performing an envelope detection process and a Log (logarithmic) compression process on the corrected sound line signal.
 PWモード画像生成部164は、所定方向における血流の速度を表示する画像を生成する画像生成部である。PWモード画像生成部164は、位相整合部160によって順次生成される音線信号のうち、同一方向における複数の音線信号に対して高速フーリエ変換を施すことで周波数成分を抽出する。その後、PWモード画像生成部164は、抽出した周波数成分から血流の速度を算出し、算出した血流の速度を表示するPWモード画像(画像信号)を生成する。 The PW mode image generation unit 164 is an image generation unit that generates an image that displays the velocity of blood flow in a predetermined direction. The PW mode image generation unit 164 extracts a frequency component by performing a high-speed Fourier transform on a plurality of sound line signals in the same direction among the sound line signals sequentially generated by the phase matching unit 160. After that, the PW mode image generation unit 164 calculates the blood flow velocity from the extracted frequency component, and generates a PW mode image (image signal) displaying the calculated blood flow velocity.
 CFモード画像生成部166は、所定方向における血流の情報を表示する画像を生成する画像生成部である。CFモード画像生成部166は、位相整合部160によって順次生成される音線信号のうち、同一方向における複数の音線信号の自己相関を求めることで、血流に関する情報を示す画像信号を生成する。その後、CFモード画像生成部166は、上記の画像信号に基づき、Bモード画像生成部162によって生成されるBモード画像信号に血流に関する情報を重畳させたカラー画像としてのCFモード画像(画像信号)を生成する。 The CF mode image generation unit 166 is an image generation unit that generates an image that displays blood flow information in a predetermined direction. The CF mode image generation unit 166 generates an image signal indicating information on blood flow by obtaining the autocorrelation of a plurality of sound line signals in the same direction among the sound line signals sequentially generated by the phase matching unit 160. .. After that, the CF mode image generation unit 166 superimposes information on blood flow on the B mode image signal generated by the B mode image generation unit 162 based on the above image signal, and the CF mode image (image signal) as a color image. ) Is generated.
 メモリコントローラ151は、Bモード画像生成部162、PWモード画像生成部164又はCFモード画像生成部166が生成した画像信号をシネメモリ150に格納する。 The memory controller 151 stores the image signal generated by the B-mode image generation unit 162, the PW-mode image generation unit 164, or the CF-mode image generation unit 166 in the cine memory 150.
 DSC154は、ASIC148に接続されており、Bモード画像生成部162、PWモード画像生成部164又はCFモード画像生成部166が生成した画像の信号を通常のテレビジョン信号の走査方式に従う画像信号に変換(ラスター変換)し、画像信号に階調処理等の各種の必要な画像処理を施した後に超音波画像認識部168に出力する。 The DSC 154 is connected to the ASIC 148 and converts the image signal generated by the B mode image generation unit 162, the PW mode image generation unit 164, or the CF mode image generation unit 166 into an image signal according to a normal television signal scanning method. (Raster conversion) is performed, the image signal is subjected to various necessary image processing such as gradation processing, and then output to the ultrasonic image recognition unit 168.
 超音波画像認識部168は、被検体の体腔内における超音波内視鏡12の先端部の位置および向きと臓器等の観察対象部位の観察順序に基づくラベル番号とを対応付けて、学習用超音波画像と学習用超音波画像の撮像時の超音波内視鏡12の先端部40の位置および向きに対応するラベル番号との関係を複数の学習用超音波画像について予め学習しておき、学習結果に基づいて、DSC154によってラスター変換された超音波画像、つまり、超音波観測装置14によって生成される診断用超音波画像から、この診断用超音波画像の撮像時の超音波内視鏡12の先端部40の位置および向きに対応するラベル番号を認識する。超音波画像認識部168によって認識されるラベル番号は、後述する表示制御部172および警告発生部176(図5参照)に出力される。 The ultrasonic image recognition unit 168 associates the position and orientation of the tip of the ultrasonic endoscope 12 in the body cavity of the subject with a label number based on the observation order of the observation target part such as an organ, and super-learning. The relationship between the ultrasonic image and the label number corresponding to the position and orientation of the tip 40 of the ultrasonic endoscope 12 at the time of capturing the ultrasonic image for learning is learned in advance for a plurality of ultrasonic images for learning and learned. Based on the result, from the ultrasonic image raster-converted by DSC154, that is, the ultrasonic image for diagnosis generated by the ultrasonic observation device 14, the ultrasonic endoscope 12 at the time of capturing the ultrasonic image for diagnosis The label number corresponding to the position and orientation of the tip portion 40 is recognized. The label number recognized by the ultrasonic image recognition unit 168 is output to the display control unit 172 and the warning generation unit 176 (see FIG. 5), which will be described later.
 観察対象部位の観察順序とは、被検体の体腔内において超音波画像を撮像(観察)する観察対象部位の順番である。観察対象部位の観察順序については、後に一例を挙げて説明する。
 ラベル番号は、観察対象部位の観察順序に基づいて付与される。例えば、観察順序が1番目の観察対象部位が肝左葉であるとすると、肝左葉には、1番目のラベル番号が付与される。ラベル番号は、順番さえわかれば「番号」でなくても、何らかのラベルでよい。
 学習用超音波画像は、超音波画像認識部168が、超音波画像と、超音波画像の撮像時の超音波内視鏡12の先端部40の位置および向きに対応するラベル番号と、の関係を学習するための既存の超音波画像であり、例えば過去に撮像された各種の超音波画像を利用することができる。
The observation order of the observation target sites is the order of the observation target sites in which ultrasonic images are imaged (observed) in the body cavity of the subject. The observation order of the observation target sites will be described later with an example.
The label number is given based on the observation order of the observation target site. For example, assuming that the observation target site having the first observation order is the left lobe of the liver, the left lobe of the liver is given the first label number. The label number does not have to be a "number" as long as the order is known, and may be any label.
In the learning ultrasonic image, the ultrasonic image recognition unit 168 has a relationship between the ultrasonic image and a label number corresponding to the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 at the time of capturing the ultrasonic image. It is an existing ultrasonic image for learning, for example, various ultrasonic images captured in the past can be used.
 超音波画像認識部168は、図6に示すように、ラベル番号検出部112と、臓器名称検出部120と、位置及び向き検出部122と、を備えている。 As shown in FIG. 6, the ultrasonic image recognition unit 168 includes a label number detection unit 112, an organ name detection unit 120, and a position and orientation detection unit 122.
 ラベル番号検出部112は、学習結果に基づいて、診断用超音波画像から、診断用超音波画像の撮像時の超音波内視鏡12の先端部40の位置および向きに対応するラベル番号を検出する。 Based on the learning result, the label number detection unit 112 detects the label number corresponding to the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 at the time of capturing the diagnostic ultrasonic image from the diagnostic ultrasonic image. To do.
 ラベル番号検出部112は、学習済みモデルである。この学習済みモデルは、それぞれ被検体の体内の観察対象部位となる異なる位置を撮像した学習用超音波画像からなるデータセットを用いて、学習用超音波画像の撮像時の超音波内視鏡12の先端部40の各々の位置および向きに対応する各々のラベル番号を付与し、学習用超音波画像と、学習用超音波画像の撮像時の超音波内視鏡12の先端部40の位置および向きに対応するラベル番号と、の関係を予め学習したモデルである。 The label number detection unit 112 is a trained model. This trained model uses a data set consisting of learning ultrasonic images that capture different positions of the subject's body to be observed, and uses an ultrasonic endoscope 12 at the time of capturing the learning ultrasonic image. The position and orientation of the tip 40 of the ultrasonic endoscope 12 at the time of capturing the learning ultrasonic image and the learning ultrasonic image by assigning each label number corresponding to each position and orientation of the tip 40 of the above. This is a model in which the relationship between the label number corresponding to the orientation and the relationship is learned in advance.
 学習方法は、複数の学習用超音波画像から、超音波画像と、超音波内視鏡12の撮像時の先端部40の位置および向きに対応するラベル番号と、の関係を学習し、学習済みモデルを生成することができるものであれば特に限定されない。
 学習方法としては、例えば人工知能(AI:Artificial Intelligence)の技術の1つである機械学習(マシンラーニング)の一例としての、階層構造型のニューラルネットワークを用いるディープラーニング(深層学習)等を利用することができる。
 なお、ディープラーニング以外の機械学習を利用してもよいし、機械学習以外の人工知能の技術を利用してもよいし、人工知能の技術以外の学習方法を利用してもよい。
The learning method has been learned by learning the relationship between the ultrasonic image and the label number corresponding to the position and orientation of the tip 40 at the time of imaging of the ultrasonic endoscope 12 from a plurality of learning ultrasonic images. The model is not particularly limited as long as it can generate a model.
As a learning method, for example, deep learning (deep learning) using a hierarchical neural network as an example of machine learning (machine learning), which is one of the technologies of artificial intelligence (AI), is used. be able to.
In addition, machine learning other than deep learning may be used, artificial intelligence technology other than machine learning may be used, or learning methods other than artificial intelligence technology may be used.
 また、学習用超音波画像だけを使用して学習済みモデルを生成してもよい。この場合、学習済みモデルは更新されず、常に同じ学習済みモデルを使用することができる。
 あるいは、学習用超音波画像に加えて、診断用超音波画像を使用して学習済みモデルを生成するように構成してもよい。この場合、診断用超音波画像と、この診断用超音波画像の撮像時の超音波内視鏡12の先端部40の位置および向きに対応するラベル番号と、の関係を学習して学習済みモデルが随時更新される。
Further, the trained model may be generated using only the ultrasonic image for training. In this case, the trained model is not updated and the same trained model can always be used.
Alternatively, in addition to the training ultrasound image, the diagnostic ultrasound image may be used to generate the trained model. In this case, the trained model learns the relationship between the diagnostic ultrasonic image and the label number corresponding to the position and orientation of the tip 40 of the ultrasonic endoscope 12 at the time of capturing the diagnostic ultrasonic image. Is updated from time to time.
 超音波画像を撮像する場合の体内の観察順序(超音波内視鏡12の先端部40の移動経路)、及び代表的な観察ポイント(超音波内視鏡12の先端部40の位置および向き)は大体決められている。そのため、代表的な観察ポイントにおける超音波画像と、その観察ポイントにおける超音波画像の撮像時の超音波内視鏡12の先端部40の位置および向きに対応するラベル番号と、を関連付けて学習することができる。 Observation order in the body (movement path of the tip 40 of the ultrasonic endoscope 12) and typical observation points (position and orientation of the tip 40 of the ultrasonic endoscope 12) when capturing an ultrasonic image. Is roughly decided. Therefore, the ultrasonic image at a typical observation point and the label number corresponding to the position and orientation of the tip 40 of the ultrasonic endoscope 12 at the time of capturing the ultrasonic image at the observation point are learned in association with each other. be able to.
 以下、観察順序に従って超音波画像を撮像する場合の体内の代表的な観察ポイント(超音波内視鏡12の先端部40の位置および向き)について説明する。 Hereinafter, typical observation points in the body (position and orientation of the tip 40 of the ultrasonic endoscope 12) when an ultrasonic image is taken according to the observation order will be described.
 体内の代表的な観察ポイントとしては、例えば以下の(1)~(12)などがある。
(1)肝左葉
(2)大動脈、腹腔動脈、上腸間膜動脈の合流部
(3)膵体部
(4)膵尾部
(5)脾静脈、上腸間膜静脈、及び門脈の合流部(コンフルエンス)
(6)膵頭部
(7)胆嚢
(8)門脈
(9)総胆管
(10)胆嚢
(11)膵鉤部
(12)乳頭
 ここで、(1)肝左葉、(2)大動脈、腹腔動脈、上腸間膜動脈の合流部、(3)膵体部、(4)膵尾部、(5)脾静脈、上腸間膜静脈、及び門脈の合流部、(6)膵頭部および(7)胆嚢は、胃内からの代表的な観察ポイントであり、(8)門脈、(9)総胆管および(10)胆嚢は、十二指腸球部からの代表的な観察ポイントであり、(11)膵鉤部および(12)乳頭は、十二指腸下行部からの代表的な観察ポイントである。
 (1)~(12)は、ラベル番号(観察対象部位の観察順序)に対応し、(1)~(12)の観察ポイントは、観察対象部位(臓器)に対応する。
Typical observation points in the body include, for example, the following (1) to (12).
(1) Left hepatic lobe (2) Confluence of aorta, celiac artery, superior mesenteric artery (3) Pancreatic body (4) Tail of pancreas (5) Confluence of splenic vein, superior mesenteric vein, and portal vein Department (confluence)
(6) Pancreatic head (7) Gallbladder (8) Portal vein (9) Common bile duct (10) Gallbladder (11) Pancreatic gall bladder (12) Papillary Here, (1) left lobe of the liver, (2) aorta, peritoneal artery , Confluence of superior mesenteric arteries, (3) body of pancreas, (4) tail of pancreas, (5) confluence of splenic vein, superior mesenteric vein, and portal vein, (6) head of pancreas and (7) The gallbladder is a typical observation point from within the stomach, and (8) the portal vein, (9) the common bile duct and (10) the gallbladder are typical observation points from the duodenal bulb, (11). The gallbladder and (12) papilla are typical observation points from the descending duodenum.
(1) to (12) correspond to the label number (observation order of the observation target part), and the observation points (1) to (12) correspond to the observation target part (organ).
 なお、上記の観察対象部位の観察順序は一例であり、術者によって、観察対象部位の観察順序は多少異なる場合もある。このため、術者に応じて、それぞれ異なる観察対象部位の観察順序のリストを複数用意し、各々のリストについて、学習用超音波画像と、学習用超音波画像の撮像時の超音波内視鏡12の先端部40の位置および向きに対応するラベル番号と、の関係を複数の学習用超音波画像について学習しておき、術者によって、使用するリスト、つまり、観察対象部位の観察順序を切り替えるようにしてもよい。あるいは、術者が、所望のリストを登録できるようにしてもよい。
 また、リストにおける観察対象部位の数は、上記の観察対象部位の観察順序よりも多くしてもよいし、逆に少なくしてもよい。つまり、1の観察対象部位と、観察順序が1の観察対象部位の次の観察対象部位との間に、1以上の他の観察対象部位を追加してもよいし、逆に観察順序が連続する複数の観察対象部位の中から1以上の観察対象部位を削除してもよい。
The observation order of the observation target sites is an example, and the observation order of the observation target sites may be slightly different depending on the operator. For this reason, a plurality of lists of observation orders of different observation target sites are prepared according to the operator, and for each list, a learning ultrasonic image and an ultrasonic endoscope at the time of capturing the learning ultrasonic image are prepared. The relationship between the label numbers corresponding to the positions and orientations of the tips 40 of the twelve is learned for a plurality of learning ultrasonic images, and the list to be used, that is, the observation order of the observation target site is switched by the operator. You may do so. Alternatively, the surgeon may be able to register the desired list.
Further, the number of observation target sites in the list may be larger than the observation order of the above observation target sites, or conversely may be smaller. That is, one or more other observation target parts may be added between the observation target part of 1 and the observation target part next to the observation target part having the observation order of 1, or conversely, the observation order is continuous. One or more observation target sites may be deleted from the plurality of observation target sites.
 続いて、臓器名称検出部120は、ラベル番号検出部112によって検出されたラベル番号(1)~(12)に対応する臓器の名称を検出する。ラベル番号は、観察対象部位の観察順序に対応付けられているため、ラベル番号から、このラベル番号に対応する観察対象部位(臓器)の名称を得ることができる。 Subsequently, the organ name detection unit 120 detects the names of the organs corresponding to the label numbers (1) to (12) detected by the label number detection unit 112. Since the label number is associated with the observation order of the observation target site, the name of the observation target site (organ) corresponding to this label number can be obtained from the label number.
 続いて、位置及び向き検出部122は、ラベル番号検出部112によって検出されたラベル番号(1)~(12)に基づいて、診断用超音波画像の撮像時の超音波内視鏡12の先端部40の位置および向きを検出する。ラベル番号は、超音波画像の撮像時の超音波内視鏡12の先端部40の位置および向きと対応付けられているため、ラベル番号から、このラベル番号に対応する超音波内視鏡12の先端部40の位置および向きを得ることができる。 Subsequently, the position and orientation detection unit 122 sets the tip of the ultrasonic endoscope 12 at the time of capturing a diagnostic ultrasonic image based on the label numbers (1) to (12) detected by the label number detection unit 112. The position and orientation of the unit 40 are detected. Since the label number is associated with the position and orientation of the tip 40 of the ultrasonic endoscope 12 at the time of capturing the ultrasonic image, the label number is used to indicate the ultrasonic endoscope 12 corresponding to this label number. The position and orientation of the tip 40 can be obtained.
 本実施形態の場合、超音波内視鏡12の先端部40の位置および向きとして、上記のラベル番号(1)~(12)に対応する観察ポイント、つまり、(1)肝左葉、(2)大動脈、腹腔動脈、及び上腸間膜動脈の合流部、(3)膵体部、(4)膵尾部、(5)脾静脈、上腸間膜静脈、及び門脈の合流部、(6)膵頭部および(7)胆嚢(胃内からの代表的な観察ポイント)、(8)門脈、(9)総胆管および(10)胆嚢(十二指腸球部の代表的な観察ポイント)、(11)膵鉤部および(12)乳頭(十二指腸下行部からの代表的な観察ポイント)における超音波画像の撮像時の超音波内視鏡12の先端部40の位置および向きが検出される。 In the case of the present embodiment, the position and orientation of the tip 40 of the ultrasonic endoscope 12 are the observation points corresponding to the above label numbers (1) to (12), that is, (1) left lobe of the liver, (2). ) Confluence of aorta, peritoneal artery, and superior mesenteric artery, (3) pancreatic body, (4) tail of pancreas, (5) splenic vein, superior mesenteric vein, and confluence of portal vein, (6) ) Pancreatic head and (7) gallbladder (representative observation point from the stomach), (8) portal vein, (9) common bile duct and (10) gallbladder (representative observation point of duodenal bulb), (11) The position and orientation of the tip 40 of the ultrasonic endoscope 12 at the time of capturing an ultrasonic image at the pancreatic gall bladder and (12) the papilla (a typical observation point from the descending duodenum) are detected.
 本実施形態のように、超音波振動子ユニット46がコンベックス型である場合、超音波内視鏡12の先端部40の位置および向きをラベル番号に対応させ、ラベル番号に対応する位置および向き検出するのが望ましい。
 一方、超音波振動子ユニット46がラジアル型である場合、超音波内視鏡12の先端部40の向きを検出する必要がないため、超音波内視鏡12の先端部40の位置のみをラベル番号に対応させ、ラベル番号に対応する位置のみを検出するのが望ましい。
When the ultrasonic vibrator unit 46 is a convex type as in the present embodiment, the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 are made to correspond to the label number, and the position and orientation corresponding to the label number are detected. It is desirable to do.
On the other hand, when the ultrasonic vibrator unit 46 is a radial type, it is not necessary to detect the direction of the tip 40 of the ultrasonic endoscope 12, so only the position of the tip 40 of the ultrasonic endoscope 12 is labeled. It is desirable to correspond to the number and detect only the position corresponding to the label number.
 操作手順記憶部174は、1のラベル番号に対応する観察対象部位から、観察順序が1のラベル番号の次のラベル番号に対応する観察対象部位へ超音波内視鏡12の先端部40を移動させるための操作手順を記憶する。操作手順は、表示制御部172へ出力される。 The operation procedure storage unit 174 moves the tip portion 40 of the ultrasonic endoscope 12 from the observation target portion corresponding to the label number 1 to the observation target portion corresponding to the label number next to the label number having the observation order of 1. Memorize the operation procedure for making it. The operation procedure is output to the display control unit 172.
 1のラベル番号は、観察順序に従って観察する観察対象部位のうち、任意の1の観察対象部位に対応するラベル番号であり、観察順序が1のラベル番号の次のラベル番号は、この任意の1の観察対象部位の次の観察対象部位に対応するラベル番号である。
 例えば、1番目のラベル番号に対応する1番目の観察対象部位が肝左葉であり、2番目のラベル番号に対応する2番目の観察対象部位が大動脈、腹腔動脈、上腸間膜動脈の合流部であるとする。この場合、操作手順記憶部174は、1番目のラベル番号に対応する肝左葉から、2番目のラベル番号に対応する大動脈、腹腔動脈、上腸間膜動脈の合流部へ超音波内視鏡12の先端部40を移動させるための操作手順を記憶する。操作手順記憶部174は、2番目以降の各々のラベル番号に対応する観察対象部位についても同様に操作手順を記憶する。なお、観察順序が最後のラベル番号に対応する観察対象部位についての操作手順は記憶されない。
The label number of 1 is a label number corresponding to any one observation target part among the observation target parts to be observed according to the observation order, and the label number next to the label number having the observation order of 1 is the arbitrary one. It is a label number corresponding to the next observation target part of the observation target part.
For example, the first observation site corresponding to the first label number is the left lobe of the liver, and the second observation site corresponding to the second label number is the confluence of the aorta, celiac artery, and superior mesenteric artery. Suppose it is a department. In this case, the operation procedure storage unit 174 is an endoscopic ultrasound endoscope from the left lobe of the liver corresponding to the first label number to the confluence of the aorta, the celiac artery, and the superior mesenteric artery corresponding to the second label number. The operation procedure for moving the tip portion 40 of 12 is stored. The operation procedure storage unit 174 similarly stores the operation procedure for the observation target parts corresponding to the second and subsequent label numbers. The operation procedure for the observation target site whose observation order corresponds to the last label number is not stored.
 操作手順には、超音波内視鏡12の先端部40を移動させるための各種の指示が含まれる。例えば、超音波内視鏡12を前進させる、超音波内視鏡12を時計回りまたは反時計回りに回す、超音波内視鏡12の先端部40を湾曲させる等の指示が含まれる。 The operating procedure includes various instructions for moving the tip 40 of the ultrasonic endoscope 12. For example, instructions such as moving the ultrasonic endoscope 12 forward, turning the ultrasonic endoscope 12 clockwise or counterclockwise, and bending the tip 40 of the ultrasonic endoscope 12 are included.
 警告発生部176は、現在のラベル番号に対応する観察対象部位から、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位以外の観察対象部位へ超音波内視鏡12の先端部40が移動された場合に、警告を発する。 The warning generation unit 176 moves the tip of the ultrasonic endoscope 12 from the observation target part corresponding to the current label number to the observation target part other than the observation target part whose observation order corresponds to the label number next to the current label number. A warning is issued when the unit 40 is moved.
 現在のラベル番号とは、観察順序に従って観察する観察対象部位のうち、現在観察している観察対象部位に対応するラベル番号、言い換えると、現在、超音波画像認識部168によって認識されているラベル番号である。観察順序が現在のラベル番号の次のラベル番号は、現在観察している観察対象部位の次に観察する観察対象部位に対応するラベル番号である。
 同様に、1番目のラベル番号に対応する1番目の観察対象部位が肝左葉であり、2番目のラベル番号に対応する2番目の観察対象部位が大動脈、腹腔動脈、上腸間膜動脈の合流部であるとする。この場合、現在肝左葉を観察しているとすると、肝左葉に対応する1番目のラベル番号が現在のラベル番号であり、大動脈、腹腔動脈、上腸間膜動脈の合流部に対応する2番目のラベル番号が、観察順序が現在のラベル番号の次のラベル番号である。
The current label number is the label number corresponding to the observation target part currently being observed among the observation target parts to be observed according to the observation order, in other words, the label number currently recognized by the ultrasonic image recognition unit 168. Is. The label number next to the label number whose observation order is the current one is the label number corresponding to the observation target part to be observed next to the observation target part currently being observed.
Similarly, the first observation site corresponding to the first label number is the left lobe of the liver, and the second observation site corresponding to the second label number is the aorta, celiac artery, and superior mesenteric artery. It is assumed that it is a confluence. In this case, assuming that the left lobe of the liver is currently being observed, the first label number corresponding to the left lobe of the liver is the current label number, which corresponds to the confluence of the aorta, celiac artery, and superior mesenteric artery. The second label number is the label number next to the current label number in the observation order.
 前述のように、観察対象部位の観察順序は大体決められている。従って、現在のラベル番号に対応する観察対象部位から、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位以外の観察対象部位へ超音波内視鏡12の先端部40が移動された場合、警告発生部176は、術者の操作による超音波内視鏡12の先端部40の移動方向が間違っていると判断し、警告を発する。
 警告発生部176が警告を発することにより、術者は、間違った方向へ超音波内視鏡12の先端部40を移動させていることに気付くことができ、正しい方向に超音波内視鏡12の先端部40を移動させることができるようになる。
As described above, the observation order of the observation target sites is roughly determined. Therefore, the tip 40 of the ultrasonic endoscope 12 moves from the observation target part corresponding to the current label number to the observation target part other than the observation target part whose observation order corresponds to the label number next to the current label number. If so, the warning generating unit 176 determines that the moving direction of the tip 40 of the ultrasonic endoscope 12 operated by the operator is incorrect, and issues a warning.
When the warning generator 176 issues a warning, the operator can notice that the tip 40 of the ultrasonic endoscope 12 is being moved in the wrong direction, and the ultrasonic endoscope 12 can be moved in the correct direction. The tip 40 can be moved.
 本実施形態の場合、警告発生部176によって発せられる警告は表示制御部172へ出力され、表示制御部172の制御により、例えば「移動方向が間違っています!」等のような警告が文字情報としてモニタ20に表示される。なお、警告を発する手段は特に限定されず、例えば警告を音声情報としてスピーカから発してもよいし、もしくは、警告として、文字情報および音声情報の両方を同時に発してもよい。 In the case of the present embodiment, the warning issued by the warning generation unit 176 is output to the display control unit 172, and under the control of the display control unit 172, a warning such as "the moving direction is wrong!" Is displayed as character information. It is displayed on the monitor 20. The means for issuing the warning is not particularly limited, and for example, the warning may be issued from the speaker as voice information, or both text information and voice information may be issued at the same time as the warning.
 移動ルート登録部178は、観察対象部位の観察順序に基づいて超音波内視鏡12の先端部40が理想的に移動された場合の移動ルートを予め登録する。この理想的な移動ルートは、表示制御部172に出力される。
 理想的な移動ルートとは、観察対象部位の観察順序の通りに、超音波内視鏡12の先端部40が正しく操作されて移動された場合の移動ルートである。
The movement route registration unit 178 registers in advance a movement route when the tip 40 of the ultrasonic endoscope 12 is ideally moved based on the observation order of the observation target portion. This ideal movement route is output to the display control unit 172.
The ideal movement route is a movement route when the tip 40 of the ultrasonic endoscope 12 is correctly operated and moved according to the observation order of the observation target part.
 続いて、表示制御部172は、超音波画像認識部168によって認識されたラベル番号に対応する超音波内視鏡12の先端部40の位置および向きをモニタ20に表示させる。 Subsequently, the display control unit 172 causes the monitor 20 to display the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 corresponding to the label number recognized by the ultrasonic image recognition unit 168.
 また、表示制御部172は、術者からの指示に応じて、内視鏡画像に病変領域を重ねて表示したり、超音波画像に臓器の名称を重ねて表示したり、解剖学シェーマ図に超音波内視鏡12の先端部40の位置および向きを重ねて表示したりする。
 言い換えると、表示制御部172は、術者からの指示に応じて、病変領域が表示されていない内視鏡画像、病変領域が重ねて表示された内視鏡画像、臓器の名称が表示されていない超音波画像、臓器の名称が重ねて表示された超音波画像、超音波内視鏡12の先端部40の位置および向きが表示されていない解剖学シェーマ図、および超音波内視鏡12の先端部40の位置および向きが重ねて表示された解剖学シェーマ図の中から、1の画像または2以上の画像をモニタ20の画面内に並べて表示させる。
In addition, the display control unit 172 superimposes the lesion area on the endoscopic image, superimposes the name of the organ on the ultrasonic image, and displays the name of the organ on the anatomical schema according to the instruction from the operator. The position and orientation of the tip 40 of the ultrasonic endoscope 12 may be superimposed and displayed.
In other words, the display control unit 172 displays an endoscopic image in which the lesion area is not displayed, an endoscopic image in which the lesion area is superimposed, and an organ name in response to an instruction from the operator. No ultrasonic image, an ultrasonic image in which the names of organs are superimposed, an anatomical schema diagram in which the position and orientation of the tip 40 of the ultrasonic endoscope 12 are not displayed, and an ultrasonic endoscope 12. From the anatomical schema diagram in which the position and orientation of the tip portion 40 are superimposed and displayed, one image or two or more images are displayed side by side on the screen of the monitor 20.
 臓器の名称は、例えば超音波画像の上に重ねてその臓器の近傍、例えばその臓器の上に表示され、超音波内視鏡12の先端部40の位置および向きは、例えば解剖学シェーマ図の上に重ねて表示される。病変領域は、例えば内視鏡画像の上に重ねて病変領域を枠線で囲んで表示される。 The name of the organ is displayed in the vicinity of the organ, for example, on the organ by superimposing it on the ultrasonic image, and the position and orientation of the tip 40 of the ultrasonic endoscope 12 are, for example, in the anatomical schema diagram. It is displayed on top of it. The lesion area is displayed, for example, overlaid on the endoscopic image and surrounded by a frame.
 シネメモリ150は、1フレーム分又は数フレーム分の画像信号を蓄積するための容量を有する。ASIC148が生成した画像信号は、DSC154に出力される一方で、メモリコントローラ151によってシネメモリ150にも格納される。フリーズモード時には、メモリコントローラ151がシネメモリ150に格納された画像信号を読み出し、DSC154に出力する。これにより、モニタ20には、シネメモリ150から読み出された画像信号に基づく超音波画像(静止画像)が表示されるようになる。 The cine memory 150 has a capacity for accumulating image signals for one frame or several frames. The image signal generated by the ASIC 148 is output to the DSC 154, and is also stored in the cine memory 150 by the memory controller 151. In the freeze mode, the memory controller 151 reads the image signal stored in the cine memory 150 and outputs it to the DSC 154. As a result, the monitor 20 displays an ultrasonic image (still image) based on the image signal read from the cine memory 150.
 CPU152は、超音波観測装置14の各部を制御する制御部として機能し、受信回路142、送信回路144、A/Dコンバータ146、及びASIC148等と接続しており、これらの機器を制御する。具体的に説明すると、CPU152は、操作卓100と接続しており、操作卓100にて入力された検査情報および制御パラメータ等に従って超音波観測装置14各部を制御する。 The CPU 152 functions as a control unit that controls each part of the ultrasonic observation device 14, and is connected to a reception circuit 142, a transmission circuit 144, an A / D converter 146, an ASIC 148, and the like to control these devices. Specifically, the CPU 152 is connected to the console 100 and controls each part of the ultrasonic observation device 14 according to the inspection information, control parameters, and the like input by the console 100.
 また、CPU152は、超音波内視鏡12が超音波用コネクタ32aを介して超音波観測装置14に接続されると、PnP(Plug and Play)等の方式により超音波内視鏡12を自動認識する。 Further, when the ultrasonic endoscope 12 is connected to the ultrasonic observation device 14 via the ultrasonic connector 32a, the CPU 152 automatically recognizes the ultrasonic endoscope 12 by a method such as PnP (Plug and Play). To do.
 <<超音波内視鏡システム10の動作例について>>
 次に、超音波内視鏡システム10の動作例として、超音波診断に関する一連の処理(以下、診断処理とも言う)の流れを、図7および図8を参照しながら説明する。図7は、超音波内視鏡システム10を用いた診断処理の流れを示す図である。図8は、診断処理中の診断ステップの手順を示す図である。
<< About the operation example of the ultrasonic endoscopy system 10 >>
Next, as an operation example of the ultrasonic endoscopic system 10, the flow of a series of processes related to ultrasonic diagnosis (hereinafter, also referred to as diagnostic processes) will be described with reference to FIGS. 7 and 8. FIG. 7 is a diagram showing a flow of diagnostic processing using the ultrasonic endoscopy system 10. FIG. 8 is a diagram showing the procedure of the diagnostic step during the diagnostic process.
 超音波内視鏡12が超音波観測装置14、内視鏡プロセッサ16及び光源装置18に接続された状態で超音波内視鏡システム10各部の電源が投入されると、それをトリガとして診断処理が開始される。診断処理では、図7に示すように、先ず入力ステップが実施される(S001)。入力ステップでは、術者が操作卓100を通じて検査情報及び制御パラメータ等を入力する。入力ステップが完了すると、診断開始の指示があるまで、待機ステップが実施される(S002)。 When the power of each part of the ultrasonic endoscope system 10 is turned on while the ultrasonic endoscope 12 is connected to the ultrasonic observation device 14, the endoscope processor 16 and the light source device 18, diagnostic processing is performed using this as a trigger. Is started. In the diagnostic process, as shown in FIG. 7, an input step is first performed (S001). In the input step, the operator inputs inspection information, control parameters, and the like through the console 100. When the input step is completed, the standby step is executed until there is an instruction to start diagnosis (S002).
 続いて、術者からの診断開始指示があると(S003でYes)、CPU152が超音波観測装置14各部を制御して診断ステップを実施する(S004)。診断ステップは、図8に図示の流れに沿って進行し、指定された画像生成モードがBモードである場合には(S031でYes)、Bモード画像を生成するように超音波観測装置14各部を制御する(S032)。また、指定された画像生成モードがBモードではなく(S031でNo)CFモードである場合には(S033でYes)、CFモード画像を生成するように超音波観測装置14各部を制御する(S034)。さらに、指定された画像生成モードがCFモードではなく(S033でNo)PWモードである場合には(S035でYes)、PWモード画像を生成するように超音波観測装置14各部を制御する(S036)。なお、指定された画像生成モードがPWモードではない場合には(S035でNo)、ステップS037へ進む。 Subsequently, when there is a diagnosis start instruction from the operator (Yes in S003), the CPU 152 controls each part of the ultrasonic observation device 14 to perform the diagnosis step (S004). The diagnostic step proceeds according to the flow shown in FIG. 8, and when the designated image generation mode is the B mode (Yes in S031), each part of the ultrasonic observation device 14 so as to generate the B mode image. Is controlled (S032). Further, when the designated image generation mode is not the B mode (No in S031) and the CF mode (Yes in S033), each part of the ultrasonic observation device 14 is controlled so as to generate a CF mode image (S034). ). Further, when the designated image generation mode is not the CF mode (No in S033) but the PW mode (Yes in S035), each part of the ultrasonic observation device 14 is controlled so as to generate a PW mode image (S036). ). If the designated image generation mode is not the PW mode (No in S035), the process proceeds to step S037.
 続いて、CPU152は、超音波診断が終了したか否かを判定する(S037)。超音波診断が終了していない場合(S037でNo)、診断ステップS031へ戻り、各画像生成モードによる超音波画像の生成は、診断終了条件が成立するまで繰り返し実施される。診断終了条件としては、例えば、術者が操作卓100を通じて診断終了を指示すること等が挙げられる。 Subsequently, the CPU 152 determines whether or not the ultrasonic diagnosis has been completed (S037). When the ultrasonic diagnosis is not completed (No in S037), the process returns to the diagnosis step S031, and the generation of the ultrasonic image by each image generation mode is repeatedly performed until the diagnosis end condition is satisfied. Examples of the diagnosis end condition include, for example, an operator instructing the end of the diagnosis through the operation console 100.
 一方、診断終了条件が成立して超音波診断が終了すると(S037でYes)、診断ステップが終了する。
 続いて、図7に戻って、超音波内視鏡システム10各部の電源がオフとなると(S006でYes)、診断処理が終了する。一方で、超音波内視鏡システム10各部の電源がオン状態で維持される場合には(S005でNo)、入力ステップS001に戻り、上述した診断処理の各ステップを繰り返すことになる。
On the other hand, when the diagnosis end condition is satisfied and the ultrasonic diagnosis is completed (Yes in S037), the diagnosis step is completed.
Then, returning to FIG. 7, when the power of each part of the ultrasonic endoscopic system 10 is turned off (Yes in S006), the diagnostic process is completed. On the other hand, when the power of each part of the ultrasonic endoscopic system 10 is maintained in the on state (No in S005), the process returns to the input step S001 and each step of the above-mentioned diagnostic process is repeated.
 <<内視鏡画像、超音波画像および解剖学シェーマ図の表示方法>>
 次に、内視鏡画像、超音波画像および解剖学シェーマ図の表示方法について説明する。
<< How to display endoscopic images, ultrasound images and anatomical schema diagrams >>
Next, a method of displaying an endoscopic image, an ultrasonic image, and an anatomical schema diagram will be described.
 術者は、操作卓100を操作して指示を与えることにより、内視鏡画像、超音波画像、及び解剖学シェーマ図の少なくとも1つをモニタ20の画面内に表示させることができる。
 この場合、表示制御部172により、術者からの指示に応じて、内視鏡画像(病変領域の表示のあり/なし)、超音波画像(臓器の名称の表示のあり/なし)、及び解剖学シェーマ図(超音波内視鏡12の先端部40の位置および向きの表示のあり/なし)の中から、1の画像、もしくは2以上の画像がモニタ20の画面内に並べて表示される。
 また、術者からの指示に応じて、表示制御部172により、モニタ20に表示された2以上の画像の中から、1の画像を注目画像として他の画像よりも大きく表示させることができる。
By operating the console 100 and giving instructions, the surgeon can display at least one of the endoscopic image, the ultrasonic image, and the anatomical schema diagram on the screen of the monitor 20.
In this case, the display control unit 172 determines the endoscopic image (with / without display of the lesion area), the ultrasonic image (with / without the display of the organ name), and the anatomy according to the instruction from the operator. One image or two or more images are displayed side by side on the screen of the monitor 20 from the anatomical schema diagram (with / without display of the position and orientation of the tip 40 of the ultrasonic endoscope 12).
Further, in response to an instruction from the operator, the display control unit 172 can display one image as a attention image larger than the other images from the two or more images displayed on the monitor 20.
 超音波内視鏡システム10では、超音波画像または解剖学シェーマ図がモニタ20の画面内に表示される場合に超音波画像認識部168が動作し、内視鏡画像がモニタ20の画面内に表示される場合に内視鏡画像認識部170が動作する。
 これにより、術者からの指示に応じて、その上に病変領域が重ねて表示された内視鏡画像をモニタ20に表示させたり、その上に臓器の名称が重ねて表示された超音波画像をモニタ20に表示させたり、その上に超音波内視鏡12の先端部40の位置および向きが重ねて表示された解剖学シェーマ図をモニタ20に表示させることができる。
In the ultrasonic endoscope system 10, when an ultrasonic image or an anatomical schema diagram is displayed on the screen of the monitor 20, the ultrasonic image recognition unit 168 operates, and the endoscopic image is displayed on the screen of the monitor 20. When displayed, the endoscopic image recognition unit 170 operates.
As a result, according to the instruction from the surgeon, an endoscopic image in which the lesion area is superimposed and displayed on the monitor 20 is displayed, or an ultrasonic image in which the name of the organ is superimposed on the monitor 20. Can be displayed on the monitor 20, or an anatomical schema diagram in which the position and orientation of the tip 40 of the ultrasonic endoscope 12 are superimposed on the monitor 20 can be displayed on the monitor 20.
 例えば、術者は、図9に示すように、内視鏡画像、超音波画像および解剖学シェーマ図をモニタ20の画面内に表示させることができる。 For example, the surgeon can display an endoscopic image, an ultrasonic image, and an anatomical schema diagram on the screen of the monitor 20 as shown in FIG.
 図9に示すモニタ20の画面内の左部から中央部には超音波画像が表示され、超音波画像の上に臓器の名称Panc, PD, SV, SAが重ねて表示されている。Pancは膵臓、PDは膵管、SVは脾静脈、SAは脾動脈の名称を表す。モニタ20の画面内の右上部には解剖学シェーマ図が表示され、解剖学シェーマ図の上に超音波内視鏡12の先端部40の位置および向きが重ねて表示されている。モニタ20の画面内の右下部には、病変領域が表示されていない内視鏡画像が表示されている。この例の場合、超音波画像は、注目画像として、解剖学シェーマ図および内視鏡画像よりも大きく表示されている。また、モニタ20の画面内の右中央部の解剖学シェーマ図と内視鏡画像との間には、超音波内視鏡12の先端部40を移動させるための操作手順が、「次の観察対象部位:4番目の膵尾部 SVに沿って時計回りに回してください。」という文字情報として表示されている。 An ultrasonic image is displayed from the left to the center of the screen of the monitor 20 shown in FIG. 9, and the names of the organs Panc, PD, SV, and SA are superimposed on the ultrasonic image. Panc stands for pancreas, PD stands for pancreatic duct, SV stands for splenic vein, and SA stands for splenic artery. An anatomy schema diagram is displayed in the upper right portion of the screen of the monitor 20, and the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 are superimposed on the anatomy schema diagram. An endoscopic image in which the lesion area is not displayed is displayed in the lower right portion of the screen of the monitor 20. In the case of this example, the ultrasound image is displayed as a noteworthy image larger than the anatomical schema and endoscopic images. Further, the operation procedure for moving the tip portion 40 of the ultrasonic endoscope 12 between the anatomical schema diagram at the right center portion in the screen of the monitor 20 and the endoscope image is described in "Next observation. Target site: 4th tail of pancreas Please turn clockwise along the SV. "is displayed as text information.
 なお、図9の例に限定されず、術者は、1の画像、または2以上の画像を任意に組み合わせてモニタ20の画面内に並べて表示させることができる。また、術者は、内視鏡画像、超音波画像、解剖学シェーマ図および操作手順をどの位置に配置するのかを任意に設定することができる。また、術者は、モニタ20に表示されている画像の中から、注目画像を切り替えて表示させることができる。 Not limited to the example of FIG. 9, the operator can arbitrarily combine one image or two or more images and display them side by side on the screen of the monitor 20. In addition, the surgeon can arbitrarily set the position where the endoscopic image, the ultrasonic image, the anatomical schema diagram, and the operation procedure are arranged. In addition, the surgeon can switch and display the image of interest from the images displayed on the monitor 20.
 <<表示制御部による表示制御方法>>
 次に、表示制御部172による様々な表示の制御方法について説明する。
 まず、超音波内視鏡12の先端部40の位置および向きの表示方法について説明する。
<< Display control method by display control unit >>
Next, various display control methods by the display control unit 172 will be described.
First, a method of displaying the position and orientation of the tip 40 of the ultrasonic endoscope 12 will be described.
 表示制御部172は、超音波画像認識部168によって認識されたラベル番号に対応する超音波内視鏡12の先端部40の位置および向きを文字情報としてモニタ20に表示させることができる。この場合、表示制御部172により、例えば「現在、超音波内視鏡の先端部は胃内より肝左葉の方向を描出しています。」等のように、超音波内視鏡12の先端部40の位置および向きを説明する文字情報がモニタ20に表示される。また、表示制御部172は、超音波画像認識部168によって認識されたラベル番号に対応する観察対象部位の名称を文字情報としてモニタ20に表示させることができる。 The display control unit 172 can display the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 corresponding to the label number recognized by the ultrasonic image recognition unit 168 on the monitor 20 as character information. In this case, the display control unit 172 determines the tip of the ultrasonic endoscope 12 such as "Currently, the tip of the ultrasonic endoscope depicts the direction of the left lobe of the liver from the stomach." Character information explaining the position and orientation of the unit 40 is displayed on the monitor 20. Further, the display control unit 172 can display the name of the observation target portion corresponding to the label number recognized by the ultrasonic image recognition unit 168 on the monitor 20 as character information.
 また、表示制御部172は、超音波画像認識部168によって認識された超音波内視鏡12の先端部40の位置および向きが画像情報として重ねて表示された解剖学シェーマ図をモニタ20に表示させることができる。この場合、表示制御部172により、図9の右上部に示すように、解剖学シェーマ図がモニタ20に表示され、超音波内視鏡12の先端部40の位置および向きが画像情報として解剖学シェーマ図上に重ねて表示される。 Further, the display control unit 172 displays on the monitor 20 an anatomical schema diagram in which the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 recognized by the ultrasonic image recognition unit 168 are superimposed and displayed as image information. Can be made to. In this case, the display control unit 172 displays an anatomical schema diagram on the monitor 20 as shown in the upper right part of FIG. 9, and the position and orientation of the tip 40 of the ultrasonic endoscope 12 are anatomical as image information. It is overlaid on the schema diagram.
 このように、超音波内視鏡12の先端部40の位置および向きをモニタ20に表示させることにより、たとえ超音波画像に不慣れな術者であっても、今現在、超音波内視鏡12の先端部40がどの位置にあって、どの方向を向いていて、どの部位を観察しているのかを確実に把握することができる。
 なお、表示制御部172は、超音波内視鏡12の先端部40の位置および向きを文字情報としてモニタ20に表示させ、かつ画像情報としてモニタ20に表示させてもよい。つまり、文字情報および画像情報の両方を同時に表示させてもよい。
By displaying the position and orientation of the tip 40 of the ultrasonic endoscope 12 on the monitor 20 in this way, even an operator who is unfamiliar with ultrasonic images can now display the ultrasonic endoscope 12 It is possible to reliably grasp which position, which direction, and which part of the tip 40 is being observed.
The display control unit 172 may display the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 on the monitor 20 as character information and display it on the monitor 20 as image information. That is, both the character information and the image information may be displayed at the same time.
 続いて、操作手順の表示方法について説明する。 Next, the display method of the operation procedure will be explained.
 表示制御部172は、超音波内視鏡12の先端部40を移動させるための操作手順をモニタ20に表示させることができる。この場合、表示制御部172により、現在のラベル番号に対応する観察対象部位から、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位へ超音波内視鏡12の先端部40を移動させるための操作手順が操作手順記憶部174から取得され、操作手順記憶部174から取得された操作手順がモニタ20に表示される。
 これにより、たとえ超音波画像に不慣れな術者であっても、被検体の体内において迷うことなく、現在の観察対象部位から次の観察対象部位へ超音波内視鏡12の先端部40を正しく移動させることができる。
The display control unit 172 can display the operation procedure for moving the tip portion 40 of the ultrasonic endoscope 12 on the monitor 20. In this case, the display control unit 172 moves the observation target portion corresponding to the current label number to the observation target portion whose observation order corresponds to the label number next to the current label number. The tip portion 40 of the ultrasonic endoscope 12 The operation procedure for moving the label is acquired from the operation procedure storage unit 174, and the operation procedure acquired from the operation procedure storage unit 174 is displayed on the monitor 20.
As a result, even if the operator is unfamiliar with ultrasonic images, the tip 40 of the ultrasonic endoscope 12 can be correctly moved from the current observation target site to the next observation target site without hesitation in the body of the subject. Can be moved.
 例えば、表示制御部172は、操作手順を、この操作手順を説明する文字情報としてモニタ20に表示させることができる。 For example, the display control unit 172 can display the operation procedure on the monitor 20 as character information explaining the operation procedure.
 この場合、操作手順は、図9の右中央部に示すように、操作の目印となる1以上の臓器の名称を含んでいてもよい。図9の操作手順の例では、「SVに沿って時計回りに回してください。」のうちの「SV」が操作の目印となる臓器の名称である。
 これにより、術者は、超音波内視鏡12の先端部40を移動させる方向を容易に把握することができ、超音波内視鏡12の先端部40を正しい方向へ移動させることができる。
In this case, the operating procedure may include the names of one or more organs that serve as landmarks for the operation, as shown in the center right of FIG. In the example of the operation procedure of FIG. 9, "SV" in "Turn clockwise along the SV" is the name of the organ that serves as a mark of operation.
As a result, the surgeon can easily grasp the direction in which the tip 40 of the ultrasonic endoscope 12 is moved, and can move the tip 40 of the ultrasonic endoscope 12 in the correct direction.
 操作の目印となる臓器は、超音波内視鏡12の先端部40を移動させる際の目標物となる臓器であって、超音波内視鏡12の先端部40を移動させる際に描出される臓器、言い換えると、現在のラベル番号に対応する観察対象部位から、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位へ向かう方向に存在する臓器であれば特に限定されないが、現在の超音波画像に表示されている臓器、現在の超音波画像の超音波内視鏡12の先端部40の位置から一定の範囲内に表示されている臓器、および、定められた複数の臓器、の中から選択された1以上の臓器を例示することができる。 The organ that serves as a marker for operation is an organ that is a target when the tip 40 of the ultrasonic endoscope 12 is moved, and is drawn when the tip 40 of the ultrasonic endoscope 12 is moved. There is no particular limitation as long as the organ exists in the direction from the observation target site corresponding to the current label number to the observation target site corresponding to the label number next to the current label number. Organs displayed in the current ultrasonic image, organs displayed within a certain range from the position of the tip 40 of the ultrasonic endoscope 12 in the current ultrasonic image, and a plurality of defined organs. , One or more organs selected from the above can be exemplified.
 また、表示制御部172は、操作手順が、超音波内視鏡12の先端部40の移動ルートを表す画像情報として重ねて表示された解剖学シェーマ図をモニタ20に表示させることができる。 Further, the display control unit 172 can display the anatomical schema diagram in which the operation procedure is superimposed as image information representing the movement route of the tip portion 40 of the ultrasonic endoscope 12 on the monitor 20.
 この場合、表示制御部172は、解剖学シェーマ図上において、操作の目印となる1以上の臓器の領域を着色し、この領域が着色された解剖学シェーマ図をモニタ20に表示させてもよい。
 また、表示制御部172は、解剖学シェーマ図上において、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位の領域と、上記の操作の目印となる1以上の臓器の領域とを異なる色に着色し、これらの領域が異なる色に着色された解剖学シェーマ図をモニタ20に表示させてもよい。
In this case, the display control unit 172 may color an area of one or more organs that serves as a mark of operation on the anatomy schema diagram, and display the colored anatomy schema diagram on the monitor 20. ..
Further, on the anatomy schema diagram, the display control unit 172 includes a region of an observation target site whose observation order corresponds to the label number next to the current label number, and a region of one or more organs that serves as a mark for the above operation. The anatomical schema diagram may be displayed on the monitor 20 in which the and is colored in different colors and these areas are colored in different colors.
 このように、超音波内視鏡12の先端部40を移動させる方向に存在する臓器の領域を着色することにより、術者は、超音波内視鏡12の先端部40を移動させる方向を容易に把握することができる。
 なお、表示制御部172は、超音波内視鏡12の先端部40の位置および向きと、操作手順と、の両方を同時にモニタ20に表示させてもよい。
By coloring the region of the organ existing in the direction of moving the tip 40 of the ultrasonic endoscope 12 in this way, the operator can easily move the tip 40 of the ultrasonic endoscope 12. Can be grasped.
The display control unit 172 may display both the position and orientation of the tip portion 40 of the ultrasonic endoscope 12 and the operation procedure on the monitor 20 at the same time.
 表示制御部172は、図9の右中央部に示すように、さらに、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位の名称を文字情報としてモニタ20に表示させてもよい。図9の操作手順の例では、「次の観察対象部位:4番目の膵尾部」が、次のラベル番号に対応する観察対象部位の名称である。ラベル番号は、観察対象部位の観察順序に対応付けられているため、ラベル番号から、観察順序がこのラベル番号の次のラベル番号に対応する観察対象部位の名称を得ることができる。
 これにより、術者は、次の観察対象部位がどこなのかを容易に把握することができる。
As shown in the right center portion of FIG. 9, the display control unit 172 further causes the monitor 20 to display the name of the observation target portion whose observation order corresponds to the label number next to the current label number as character information. Good. In the example of the operation procedure of FIG. 9, "next observation target site: fourth pancreatic tail" is the name of the observation target site corresponding to the next label number. Since the label number is associated with the observation order of the observation target part, the name of the observation target part whose observation order corresponds to the label number next to this label number can be obtained from the label number.
As a result, the operator can easily grasp where the next observation target site is.
 その他、表示制御部172は、超音波内視鏡12の先端部40が各々のラベル番号に対応する観察対象部位に到達する毎に、到達した観察対象部位に対応するラベル番号にチェックマークを付与し、図10に示すように、チェックマークが付与されたラベル番号を文字情報としてモニタ20に表示させてもよい。つまり、超音波内視鏡12の先端部40が到達した観察対象部位に対応するラベル番号にはチェックマークが付与される。図10の例の場合、ラベル番号の(1)肝左葉、(2)大動脈、腹腔動脈、上腸間膜動脈の合流部、(3)膵体部の左側にチェックマークが付けられ、ラベル番号の(4)膵尾部以降にはチェックマークが付けられていないことから、超音波内視鏡12の先端部40は、ラベル番号の(3)膵体部に対応する観察対象部位まで到達していることが分かる。
 また、表示制御部172は、超音波内視鏡12の先端部40が各々のラベル番号に対応する観察対象部位に到達する毎に、解剖学シェーマ図上において、到達した観察対象部位の領域を着色し、到達した観察対象部位の領域が着色された解剖学シェーマ図をモニタ20に表示させてもよい。つまり、超音波内視鏡12の先端部40が到達した観察対象部位の領域は着色される。
In addition, the display control unit 172 adds a check mark to the label number corresponding to the reached observation target part each time the tip 40 of the ultrasonic endoscope 12 reaches the observation target part corresponding to each label number. Then, as shown in FIG. 10, the label number to which the check mark is added may be displayed on the monitor 20 as character information. That is, a check mark is added to the label number corresponding to the observation target portion reached by the tip portion 40 of the ultrasonic endoscope 12. In the case of the example of FIG. 10, a check mark is attached to the label numbers (1) left lobe of the liver, (2) aorta, celiac artery, confluence of superior mesenteric artery, and (3) left side of pancreatic body. Since no check mark is attached after the number (4) pancreatic tail, the tip 40 of the ultrasonic endoscope 12 reaches the observation target site corresponding to the label number (3) pancreatic body. You can see that.
In addition, the display control unit 172 determines the area of the observation target portion reached on the anatomical schema diagram each time the tip portion 40 of the ultrasonic endoscope 12 reaches the observation target region corresponding to each label number. The monitor 20 may display an anatomical schema diagram in which the area of the observation target site that has been colored and reached is colored. That is, the region of the observation target portion reached by the tip portion 40 of the ultrasonic endoscope 12 is colored.
 これにより、術者は、超音波内視鏡12の先端部40が、現在、観察順序が何番目のラベル番号に対応する観察対象部位まで到達しているのかを容易に把握することができる。つまり、術者は、超音波内視鏡12の先端部40が、チェックマークが付与されたラベル番号に対応する観察対象部位まで、または、着色された観察対象部位まで到達していることを確認することができる。これに応じて、術者は、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位が、どの観察対象部位なのかを容易に把握することができる。 As a result, the operator can easily grasp which label number the observation order currently reaches the observation target site, which is the tip 40 of the ultrasonic endoscope 12. That is, the surgeon confirms that the tip 40 of the ultrasonic endoscope 12 has reached the observation target site corresponding to the label number with the check mark, or the colored observation target site. can do. Correspondingly, the operator can easily grasp which observation target site is the observation target site whose observation order corresponds to the label number next to the current label number.
 また、表示制御部172は、解剖学シェーマ図上において、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位の領域を強調し、観察対象部位の領域が強調された解剖学シェーマ図をモニタ20に表示させてもよい。
 例えば、表示制御部172は、解剖学シェーマ図上において、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位の領域を、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位以外の観察対象部位の領域とは異なる色に着色し、例えば観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位の領域を、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位以外の観察対象部位の領域よりも濃い色あるいは薄い色に着色し、これらの観察対象部位の領域が着色された解剖学シェーマ図をモニタ20に表示させてもよい。
Further, the display control unit 172 emphasizes the area of the observation target part whose observation order corresponds to the label number next to the current label number on the anatomy schema diagram, and the anatomy in which the area of the observation target part is emphasized. The schema diagram may be displayed on the monitor 20.
For example, the display control unit 172 sets the area of the observation target portion whose observation order corresponds to the label number next to the current label number on the anatomical schema diagram to the label number next to the current label number in the observation order. Colored in a color different from the area of the observation target part other than the corresponding observation target part, for example, the area of the observation target part whose observation order corresponds to the label number next to the current label number, and the observation order is the current label number. The monitor 20 displays an anatomical schema diagram in which the areas of the observation target parts other than the observation target parts corresponding to the following label numbers are colored darker or lighter than those of the observation target parts. You may.
 これにより、解剖学シェーマ図上において、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位の領域が、これ以外の観察対象部位の領域よりも強調して表示される。このため、術者は、現在のラベル番号に対応する観察対象部位から、観察順序が現在のラベル番号の次のラベル番号に対応する観察対象部位へ超音波内視鏡12の先端部40を容易に移動させることができる。
 観察対象部位の領域を強調する方法は上記に限らず、例えば強調したい観察対象部位の領域を太枠で囲む、強調したい観察対象部位の領域だけを着色する、強調したい観察対象部位を示す矢印を付ける等を例示することができる。
As a result, on the anatomical schema diagram, the region of the observation target portion whose observation order corresponds to the label number next to the current label number is displayed more emphasized than the region of the other observation target region. Therefore, the surgeon can easily move the tip 40 of the ultrasonic endoscope 12 from the observation target site corresponding to the current label number to the observation target site whose observation order corresponds to the label number next to the current label number. Can be moved to.
The method of emphasizing the area of the observation target part is not limited to the above. For example, the area of the observation target part to be emphasized is surrounded by a thick frame, only the area of the observation target part to be emphasized is colored, and an arrow indicating the observation target part to be emphasized is indicated. It is possible to exemplify attaching and the like.
 また、表示制御部172は、移動ルート登録部178から、観察対象部位の観察順序に基づいて超音波内視鏡12の先端部40が理想的に移動された場合の移動ルートを取得し、観察対象部位の観察順序に基づいて超音波内視鏡12の先端部40が理想的に移動された場合の移動ルート、および、術者による実際の操作に基づいて超音波内視鏡12の先端部40が実際に移動された場合の移動ルートを、これらのルートを表す画像情報として解剖学シェーマ図上に並べてモニタ20に表示させてもよい。
 これにより、術者は、理想的な移動ルートを確認しながら、かつ、自分自身の操作による移動ルートを確認しながら、超音波内視鏡12の先端部40を移動させることができる。従って、術者は、実際のルートが理想的なルートに一致するように、超音波内視鏡12の先端部40を移動させることができ、その結果、実際の移動ルートを理想的な移動ルートに近づけることができる。
Further, the display control unit 172 acquires a movement route when the tip portion 40 of the ultrasonic endoscope 12 is ideally moved based on the observation order of the observation target part from the movement route registration unit 178, and observes the movement route. The movement route when the tip 40 of the ultrasonic endoscope 12 is ideally moved based on the observation order of the target site, and the tip of the ultrasonic endoscope 12 based on the actual operation by the operator. The movement routes when the 40 is actually moved may be displayed on the monitor 20 side by side on the anatomical schema diagram as image information representing these routes.
As a result, the surgeon can move the tip 40 of the ultrasonic endoscope 12 while confirming the ideal movement route and the movement route by his / her own operation. Therefore, the surgeon can move the tip 40 of the ultrasonic endoscope 12 so that the actual route matches the ideal route, and as a result, the actual movement route is changed to the ideal movement route. Can be approached to.
 <<超音波画像認識部168および内視鏡画像認識部170の配置場所>>
 次に、超音波画像認識部168および内視鏡画像認識部170の配置場所について説明する。
<< Placement of ultrasonic image recognition unit 168 and endoscopic image recognition unit 170 >>
Next, the locations of the ultrasonic image recognition unit 168 and the endoscopic image recognition unit 170 will be described.
 超音波画像認識部168は、本実施形態の場合、超音波観測装置14に内蔵されているが、これに限らず、例えば内視鏡プロセッサ16に内蔵されていてもよいし、あるいは、超音波観測装置14および内視鏡プロセッサ16の外部に設けられていてもよい。 In the case of the present embodiment, the ultrasonic image recognition unit 168 is built in the ultrasonic observation device 14, but is not limited to this, and may be built in, for example, the endoscope processor 16 or an ultrasonic wave. It may be provided outside the observation device 14 and the endoscope processor 16.
 本実施形態のように、超音波画像認識部168が超音波観測装置14に内蔵されている場合、図11に示すように、内視鏡画像が、内視鏡プロセッサ16から、超音波観測装置14へ転送される。 When the ultrasonic image recognition unit 168 is built in the ultrasonic observation device 14 as in the present embodiment, as shown in FIG. 11, the endoscopic image is transmitted from the endoscope processor 16 to the ultrasonic observation device. Transferred to 14.
 また、超音波画像認識部168が内視鏡プロセッサ16に内蔵されている場合、図12に示すように、超音波画像が、超音波観測装置14から、内視鏡プロセッサ16へ転送される。 Further, when the ultrasonic image recognition unit 168 is built in the endoscope processor 16, the ultrasonic image is transferred from the ultrasonic observation device 14 to the endoscope processor 16 as shown in FIG.
 超音波画像認識部168が超音波観測装置14および内視鏡プロセッサ16の外部に設けられている場合、図13に示すように、内視鏡画像が、内視鏡プロセッサ16から超音波観測装置14へ転送され、さらに、内視鏡画像および超音波画像が、超音波観測装置14から、超音波画像認識部168へ転送される。
 この場合、超音波画像を、超音波観測装置14から内視鏡プロセッサ16へ転送し、さらに、内視鏡画像および超音波画像を、内視鏡プロセッサ16から超音波画像認識部168へ転送してもよい。あるいは、内視鏡画像を、内視鏡プロセッサ16から超音波観測装置14へ転送し、さらに、超音波観測装置14から超音波画像認識部168へ転送するのではなく、内視鏡プロセッサ16から超音波画像認識部168へ転送してもよい。
When the ultrasonic image recognition unit 168 is provided outside the ultrasonic observation device 14 and the endoscope processor 16, as shown in FIG. 13, the endoscopic image is transmitted from the endoscope processor 16 to the ultrasonic observation device. It is transferred to 14, and further, the endoscopic image and the ultrasonic image are transferred from the ultrasonic observation device 14 to the ultrasonic image recognition unit 168.
In this case, the ultrasonic image is transferred from the ultrasonic observation device 14 to the endoscope processor 16, and the endoscope image and the ultrasonic image are further transferred from the endoscope processor 16 to the ultrasonic image recognition unit 168. You may. Alternatively, the endoscopic image is not transferred from the endoscope processor 16 to the ultrasonic observation device 14, and further transferred from the ultrasonic observation device 14 to the ultrasonic image recognition unit 168, but from the endoscope processor 16. It may be transferred to the ultrasonic image recognition unit 168.
 表示制御部172は、モニタ20へ出力される最終的な画像信号と、モニタ20と、の間に配置される。 The display control unit 172 is arranged between the final image signal output to the monitor 20 and the monitor 20.
 表示制御部172は、超音波画像認識部168が超音波観測装置14に内蔵されている場合、例えば超音波観測装置14に内蔵されるか、あるいは、超音波観測装置14とモニタ20との間に設けることができる。
 また、表示制御部172は、超音波画像認識部168が内視鏡プロセッサ16に内蔵されている場合、例えば内視鏡プロセッサ16に内蔵されるか、あるいは、内視鏡プロセッサ16とモニタ20との間に設けることができる。
 さらに、表示制御部172は、超音波画像認識部168が超音波観測装置14および内視鏡プロセッサ16の外部に設けられている場合、例えば超音波観測装置14および内視鏡プロセッサ16の外部に設けることができる。
When the ultrasonic image recognition unit 168 is built in the ultrasonic observation device 14, the display control unit 172 is, for example, built in the ultrasonic observation device 14, or between the ultrasonic observation device 14 and the monitor 20. Can be provided in.
Further, when the ultrasonic image recognition unit 168 is built in the endoscope processor 16, the display control unit 172 is, for example, built in the endoscope processor 16, or the endoscope processor 16 and the monitor 20. Can be provided between.
Further, when the ultrasonic image recognition unit 168 is provided outside the ultrasonic observation device 14 and the endoscope processor 16, the display control unit 172 is, for example, outside the ultrasonic observation device 14 and the endoscope processor 16. Can be provided.
 表示制御部172は、術者からの指示に応じて、内視鏡画像(病変領域の表示のあり/なし)、超音波画像(臓器の名称の表示のあり/なし)、および解剖学シェーマ図(超音波内視鏡12の先端部40の位置および向きの表示のあり/なし)の中から、1の画像または2以上の画像を並べてモニタ20の画面内に表示させる。 The display control unit 172 responds to instructions from the operator, and displays an endoscopic image (with / without display of the lesion area), an ultrasonic image (with / without display of the name of the organ), and an anatomical schema diagram. One image or two or more images are arranged side by side and displayed on the screen of the monitor 20 from (with / without display of the position and orientation of the tip portion 40 of the ultrasonic endoscope 12).
 内視鏡画像認識部170の配置場所も、超音波画像認識部168の配置場所と同様に決定することができる。つまり、内視鏡画像認識部170は、本実施形態の場合、内視鏡プロセッサ16に内蔵されているが、これに限らず、例えば超音波観測装置14に内蔵されていてもよいし、あるいは、超音波観測装置14および内視鏡プロセッサ16の外部に設けられていてもよい。 The location of the endoscopic image recognition unit 170 can be determined in the same manner as the location of the ultrasonic image recognition unit 168. That is, in the case of this embodiment, the endoscope image recognition unit 170 is built in the endoscope processor 16, but is not limited to this, and may be built in, for example, the ultrasonic observation device 14. , It may be provided outside the ultrasonic observation device 14 and the endoscope processor 16.
 このように、超音波内視鏡システム10において、超音波画像認識部168および内視鏡画像認識部170の配置場所は固定的ではなく、超音波画像認識部168および内視鏡画像認識部170を任意の配置場所に設けることができる。 As described above, in the ultrasonic endoscopic system 10, the positions of the ultrasonic image recognition unit 168 and the endoscopic image recognition unit 170 are not fixed, and the ultrasonic image recognition unit 168 and the endoscopic image recognition unit 170 are not fixed. Can be provided at any arrangement location.
 本発明の装置において、例えば、内視鏡画像認識部170(病変領域検出部102、位置情報取得部104、選択部106、および病変領域検出制御部108)、超音波画像認識部168(ラベル番号検出部112、位置情報取得部114、選択部116、ラベル番号検出制御部118、臓器名称検出部120、および位置及び向き検出部122)、表示制御部172、警告発生部176および操作卓(指示取得部)100等の各種の処理を実行する処理部(Processing Unit)のハードウェア的な構成は、専用のハードウェアであってもよいし、プログラムを実行する各種のプロセッサまたはコンピュータであってもよい。また、操作手順記憶部174および移動ルート登録部178のハードウェア的な構成は、専用のハードウェアであってもよいし、あるいは半導体メモリ等のメモリであってもよい。 In the apparatus of the present invention, for example, an endoscopic image recognition unit 170 (lesion area detection unit 102, position information acquisition unit 104, selection unit 106, and lesion area detection control unit 108), ultrasonic image recognition unit 168 (label number). Detection unit 112, position information acquisition unit 114, selection unit 116, label number detection control unit 118, organ name detection unit 120, and position and orientation detection unit 122), display control unit 172, warning generation unit 176, and operation console (instruction). The hardware configuration of the processing unit (Processing Unit) that executes various processes such as the acquisition unit) 100 may be dedicated hardware, or may be various processors or computers that execute programs. Good. Further, the hardware configuration of the operation procedure storage unit 174 and the movement route registration unit 178 may be dedicated hardware or a memory such as a semiconductor memory.
 各種のプロセッサには、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPU(Central Processing Unit)、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device:PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理をさせるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。 For various processors, the circuit configuration can be changed after manufacturing the CPU (Central Processing Unit), FPGA (Field Programmable Gate Array), etc., which are general-purpose processors that execute software (programs) and function as various processing units. Programmable Logic Device (PLD), ASIC (Application Specific Integrated Circuit), and other dedicated electric circuits that are processors with a circuit configuration designed exclusively for performing specific processing are included. ..
 1つの処理部を、これら各種のプロセッサのうちの1つで構成してもよいし、同種または異種の2つ以上のプロセッサの組み合わせ、例えば、複数のFPGAの組み合わせ、または、FPGAおよびCPUの組み合わせ等によって構成してもよい。また、複数の処理部を、各種のプロセッサのうちの1つで構成してもよいし、複数の処理部のうちの2以上をまとめて1つのプロセッサを用いて構成してもよい。 One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types, for example, a combination of a plurality of FPGAs, or a combination of an FPGA and a CPU. And so on. Further, a plurality of processing units may be configured by one of various processors, or two or more of the plurality of processing units may be collectively configured by using one processor.
 例えば、サーバおよびクライアント等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。また、システムオンチップ(System on Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。 For example, as typified by computers such as servers and clients, there is a form in which one processor is configured by a combination of one or more CPUs and software, and this processor functions as a plurality of processing units. Further, as typified by System on Chip (SoC), there is a form in which a processor that realizes the functions of the entire system including a plurality of processing units with one IC (Integrated Circuit) chip is used.
 さらに、これらの各種のプロセッサのハードウェア的な構成は、より具体的には、半導体素子などの回路素子を組み合わせた電気回路(Circuitry)である。 Furthermore, the hardware configuration of these various processors is, more specifically, an electric circuit (Circuitry) that combines circuit elements such as semiconductor elements.
 また、本発明の方法は、例えば、その各々のステップをコンピュータに実行させるためのプログラムにより実施することができる。また、このプログラムが記録されたコンピュータ読み取り可能な記録媒体を提供することもできる。 Further, the method of the present invention can be carried out, for example, by a program for causing a computer to execute each step. It is also possible to provide a computer-readable recording medium on which this program is recorded.
 以上、本発明について詳細に説明したが、本発明は上記実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良および変更をしてもよいのはもちろんである。 Although the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and it goes without saying that various improvements and changes may be made without departing from the gist of the present invention.
 10 超音波内視鏡システム
 12 超音波内視鏡
 14 超音波観測装置
 16 内視鏡プロセッサ
 18 光源装置
 20 モニタ
 21a 送水タンク
 21b 吸引ポンプ
 22 挿入部
 24 操作部
 26 ユニバーサルコード
 28a 送気送水ボタン
 28b 吸引ボタン
 29 アングルノブ
 30 処置具挿入口
 32a 超音波用コネクタ
 32b 内視鏡用コネクタ
 32c 光源用コネクタ
 34a 送気送水用チューブ
 34b 吸引用チューブ
 36 超音波観察部
 38 内視鏡観察部
 40 先端部
 42 湾曲部
 43 軟性部
 44 処置具導出口
 45 処置具チャンネル
 46 超音波振動子ユニット
 48 超音波振動子
 50 超音波振動子アレイ
 54 バッキング材層
 56 同軸ケーブル
 60 FPC
 74 音響整合層
 76 音響レンズ
 82 観察窓
 84 対物レンズ
 86 固体撮像素子
 88 照明窓
 90 洗浄ノズル
 92 配線ケーブル
 100 操作卓
 102 病変領域検出部
 102A~102K 第1~第12検出部
 104、114 位置情報取得部
 106、116 選択部
 108 病変領域検出制御部
 112 ラベル番号検出部
 112A~112L 第1~第12検出部
 118 ラベル番号検出制御部
 120 臓器名称検出部
 122 位置及び向き検出部
 140 マルチプレクサ
 142 受信回路
 144 送信回路
 146 A/Dコンバータ
 148 ASIC
 150 シネメモリ
 151 メモリコントローラ
 152 CPU
 154 DSC
 158 パルス発生回路
 160 位相整合部
 162 Bモード画像生成部
 164 PWモード画像生成部
 166 CFモード画像生成部
 168 超音波画像認識部
 170 内視鏡画像認識部
 172 表示制御部
 174 操作手順記憶部
 176 警告発生部
 178 移動ルート登録部
10 Ultrasonic endoscopic system 12 Ultrasonic endoscope 14 Ultrasonic observation device 16 Endoscopic processor 18 Light source device 20 Monitor 21a Water supply tank 21b Suction pump 22 Insertion unit 24 Operation unit 26 Universal cord 28a Air supply water supply button 28b Suction Button 29 Angle knob 30 Treatment tool insertion port 32a Ultrasonic connector 32b Endoscopic connector 32c Light source connector 34a Air supply and water supply tube 34b Suction tube 36 Ultrasonic observation part 38 Endoscopic observation part 40 Tip part 42 Curved Part 43 Flexible part 44 Treatment tool outlet 45 Treatment tool channel 46 Ultrasonic transducer unit 48 Ultrasonic transducer 50 Ultrasonic transducer array 54 Backing material layer 56 Coaxial cable 60 FPC
74 Acoustic matching layer 76 Acoustic lens 82 Observation window 84 Objective lens 86 Solid-state image sensor 88 Illumination window 90 Cleaning nozzle 92 Wiring cable 100 Operation console 102 Disease area detection unit 102A to 102K 1st to 12th detection units 104, 114 Position information acquisition Part 106, 116 Selection part 108 Disease area detection control part 112 Label number detection part 112A to 112L 1st to 12th detection parts 118 Label number detection control part 120 Organ name detection part 122 Position and orientation detection part 140 multiplexer 142 Reception circuit 144 Transmission circuit 146 A / D converter 148 ASIC
150 cine memory 151 memory controller 152 CPU
154 DSC
158 Pulse generation circuit 160 Phase matching unit 162 B mode image generation unit 164 PW mode image generation unit 166 CF mode image generation unit 168 Ultrasonic image recognition unit 170 Endoscopic image recognition unit 172 Display control unit 174 Operation procedure storage unit 176 Warning Generation part 178 Movement route registration part

Claims (27)

  1.  超音波振動子を先端に有する超音波内視鏡と、
     前記超音波振動子により超音波を送受信させ、前記超音波の受信信号から診断用超音波画像を生成する超音波観測装置と、
     被検体の体腔内における前記超音波内視鏡の先端部の位置と観察対象部位の観察順序に基づくラベル番号とを対応付けて、学習用超音波画像と前記学習用超音波画像の撮像時の前記超音波内視鏡の先端部の位置に対応するラベル番号との関係を複数の前記学習用超音波画像について予め学習しておき、学習結果に基づいて、前記診断用超音波画像から、前記診断用超音波画像の撮像時の前記超音波内視鏡の先端部の位置に対応するラベル番号を認識する超音波画像認識部と、
     前記超音波画像認識部によって認識されたラベル番号に対応する超音波内視鏡の先端部の位置をモニタに表示させる表示制御部と、を備える、超音波内視鏡システム。
    An ultrasonic endoscope with an ultrasonic transducer at the tip,
    An ultrasonic observation device that transmits and receives ultrasonic waves by the ultrasonic transducer and generates a diagnostic ultrasonic image from the received signal of the ultrasonic waves.
    At the time of capturing the learning ultrasonic image and the learning ultrasonic image by associating the position of the tip of the ultrasonic endoscope in the body cavity of the subject with the label number based on the observation order of the observation target part. The relationship with the label number corresponding to the position of the tip of the ultrasonic endoscope is learned in advance for the plurality of the learning ultrasonic images, and based on the learning result, the diagnostic ultrasonic image is used to obtain the above. An ultrasonic image recognition unit that recognizes a label number corresponding to the position of the tip of the ultrasonic endoscope when capturing an ultrasonic image for diagnosis, and an ultrasonic image recognition unit.
    An ultrasonic endoscopic system including a display control unit that displays on a monitor the position of the tip of the ultrasonic endoscope corresponding to the label number recognized by the ultrasonic image recognition unit.
  2.  前記表示制御部は、前記認識されたラベル番号に対応する観察対象部位の名称を文字情報として前記モニタに表示させる、請求項1に記載の超音波内視鏡システム。 The ultrasonic endoscopic system according to claim 1, wherein the display control unit displays the name of the observation target part corresponding to the recognized label number on the monitor as character information.
  3.  前記表示制御部は、前記認識されたラベル番号に対応する超音波内視鏡の先端部の位置が画像情報として重ねて表示された解剖学シェーマ図を前記モニタに表示させる、請求項1に記載の超音波内視鏡システム。 The first aspect of the present invention, wherein the display control unit causes the monitor to display an anatomical schema diagram in which the position of the tip of the ultrasonic endoscope corresponding to the recognized label number is superimposed and displayed as image information. Ultrasound endoscopy system.
  4.  前記超音波画像認識部は、前記超音波内視鏡の先端部の位置および向きと前記ラベル番号とを対応付けて、前記学習用超音波画像と前記学習用超音波画像の撮像時の前記超音波内視鏡の先端部の位置および向きに対応するラベル番号との関係を前記複数の学習用超音波画像について予め学習しておき、学習結果に基づいて、前記診断用超音波画像から、前記診断用超音波画像の撮像時の前記超音波内視鏡の先端部の位置および向きに対応するラベル番号を認識し、
     前記表示制御部は、前記超音波画像認識部によって認識されたラベル番号に対応する超音波内視鏡の先端部の位置および向きを前記モニタに表示させる、請求項1に記載の超音波内視鏡システム。
    The ultrasonic image recognition unit associates the position and orientation of the tip of the ultrasonic endoscope with the label number, and the ultrasonic image for learning and the ultrasonic image for learning at the time of imaging are described. The relationship between the position and orientation of the tip of the ultrasonic endoscope and the label number corresponding to the orientation is learned in advance for the plurality of learning ultrasonic images, and based on the learning results, the diagnostic ultrasonic image is used to obtain the above. Recognize the label number corresponding to the position and orientation of the tip of the ultrasonic endoscope when capturing an ultrasonic image for diagnosis.
    The ultrasonic endoscopy according to claim 1, wherein the display control unit causes the monitor to display the position and orientation of the tip of the ultrasonic endoscope corresponding to the label number recognized by the ultrasonic image recognition unit. Mirror system.
  5.  前記表示制御部は、前記認識されたラベル番号に対応する観察対象部位の名称を文字情報として前記モニタに表示させる、請求項4に記載の超音波内視鏡システム。 The ultrasonic endoscopic system according to claim 4, wherein the display control unit displays the name of the observation target part corresponding to the recognized label number on the monitor as character information.
  6.  前記表示制御部は、前記認識されたラベル番号に対応する超音波内視鏡の先端部の位置および向きが画像情報として重ねて表示された解剖学シェーマ図を前記モニタに表示させる、請求項4に記載の超音波内視鏡システム。 4. The display control unit causes the monitor to display an anatomical schema diagram in which the position and orientation of the tip of the ultrasonic endoscope corresponding to the recognized label number are superimposed and displayed as image information. The ultrasonic endoscopy system described in.
  7.  さらに、1のラベル番号に対応する観察対象部位から、前記観察順序が前記1のラベル番号の次のラベル番号に対応する観察対象部位へ前記超音波内視鏡の先端部を移動させるための操作手順を記憶する操作手順記憶部を備え、
     前記表示制御部は、現在のラベル番号に対応する観察対象部位から、前記観察順序が前記現在のラベル番号の次のラベル番号に対応する観察対象部位へ前記超音波内視鏡の先端部を移動させるための操作手順を前記操作手順記憶部から取得し、前記取得された操作手順を前記モニタに表示させる、請求項1ないし6のいずれか一項に記載の超音波内視鏡システム。
    Further, an operation for moving the tip of the ultrasonic endoscope from the observation target part corresponding to the label number 1 to the observation target part whose observation order corresponds to the label number next to the label number 1 Equipped with an operation procedure storage unit that stores procedures
    The display control unit moves the tip of the ultrasonic endoscope from the observation target part corresponding to the current label number to the observation target part whose observation order corresponds to the label number next to the current label number. The ultrasonic endoscopic system according to any one of claims 1 to 6, wherein an operation procedure for causing the operation is acquired from the operation procedure storage unit, and the acquired operation procedure is displayed on the monitor.
  8.  前記表示制御部は、さらに、前記観察順序が前記現在のラベル番号の次のラベル番号に対応する観察対象部位の名称を文字情報として前記モニタに表示させる、請求項7に記載の超音波内視鏡システム。 The endoscopic ultrasonography according to claim 7, wherein the display control unit further causes the monitor to display the name of the observation target portion whose observation order corresponds to the label number next to the current label number as character information. Mirror system.
  9.  前記表示制御部は、前記操作手順を文字情報として前記モニタに表示させる、請求項7または8に記載の超音波内視鏡システム。 The ultrasonic endoscopy system according to claim 7 or 8, wherein the display control unit displays the operation procedure as character information on the monitor.
  10.  前記操作手順は、前記超音波内視鏡の先端部を移動させる際に描出される1以上の臓器の名称を含む、請求項9に記載の超音波内視鏡システム。 The ultrasonic endoscopy system according to claim 9, wherein the operating procedure includes the names of one or more organs drawn when moving the tip of the ultrasonic endoscope.
  11.  前記表示制御部は、前記操作手順が画像情報として重ねて表示された解剖学シェーマ図を前記モニタに表示させる、請求項7または8に記載の超音波内視鏡システム。 The ultrasonic endoscopy system according to claim 7 or 8, wherein the display control unit displays an anatomical schema diagram in which the operation procedure is superimposed as image information on the monitor.
  12.  前記表示制御部は、解剖学シェーマ図上において、前記超音波内視鏡の先端部を移動させる際に描出される1以上の臓器の領域を着色し、前記領域が着色された解剖学シェーマ図を前記モニタに表示させる、請求項11に記載の超音波内視鏡システム。 The display control unit colors the region of one or more organs drawn when moving the tip of the ultrasonic endoscope on the anatomy schema diagram, and the anatomy schema diagram in which the region is colored. The ultrasonic endoscopic system according to claim 11, wherein the above-mentioned monitor is displayed.
  13.  前記表示制御部は、解剖学シェーマ図上において、前記観察順序が前記現在のラベル番号の次のラベル番号に対応する観察対象部位の領域と、前記超音波内視鏡の先端部を移動させる際に描出される1以上の臓器の領域とを異なる色に着色し、前記領域が異なる色に着色された解剖学シェーマ図を前記モニタに表示させる、請求項12に記載の超音波内視鏡システム。 When the display control unit moves the region of the observation target portion whose observation order corresponds to the label number next to the current label number and the tip portion of the ultrasonic endoscope on the anatomy schema diagram. The endoscopic ultrasonography system according to claim 12, wherein the region of one or more organs depicted in the above is colored in a different color, and an anatomical schema diagram in which the region is colored in a different color is displayed on the monitor. ..
  14.  さらに、前記現在のラベル番号に対応する観察対象部位から、前記観察順序が前記現在のラベル番号の次のラベル番号に対応する観察対象部位以外の観察対象部位へ前記超音波内視鏡の先端部が移動された場合に、警告を発する警告発生部を備える、請求項7ないし13のいずれか一項に記載の超音波内視鏡システム。 Further, from the observation target part corresponding to the current label number to the observation target part other than the observation target part whose observation order corresponds to the label number next to the current label number, the tip of the ultrasonic endoscope. The ultrasonic endoscopic system according to any one of claims 7 to 13, further comprising a warning generating unit that issues a warning when the label is moved.
  15.  前記警告発生部は、前記警告を音声情報として発するか、もしくは、前記警告として、文字情報および音声情報の両方を同時に発する、請求項14に記載の超音波内視鏡システム。 The ultrasonic endoscopic system according to claim 14, wherein the warning generating unit issues the warning as voice information, or simultaneously emits both text information and voice information as the warning.
  16.  前記表示制御部は、前記超音波内視鏡の先端部が各々のラベル番号に対応する観察対象部位に到達する毎に、前記到達した観察対象部位に対応するラベル番号にチェックマークを付与し、前記チェックマークが付与されたラベル番号を文字情報として前記モニタに表示させる、請求項7ないし15のいずれか一項に記載の超音波内視鏡システム。 Each time the tip of the ultrasonic endoscope reaches the observation target part corresponding to each label number, the display control unit adds a check mark to the label number corresponding to the reached observation target part. The ultrasonic endoscopic system according to any one of claims 7 to 15, wherein the label number to which the check mark is attached is displayed on the monitor as character information.
  17.  前記表示制御部は、前記超音波内視鏡の先端部が各々のラベル番号に対応する観察対象部位に到達する毎に、解剖学シェーマ図上において、前記到達した観察対象部位の領域を着色し、前記到達した観察対象部位の領域が着色された解剖学シェーマ図を前記モニタに表示させる、請求項7ないし16のいずれか一項に記載の超音波内視鏡システム。 Each time the tip of the ultrasonic endoscope reaches the observation target site corresponding to each label number, the display control unit colors the area of the reached observation target site on the anatomical schema diagram. The ultrasonic endoscopic system according to any one of claims 7 to 16, wherein an anatomical schema diagram in which a region of an observation target portion reached is colored is displayed on the monitor.
  18.  前記表示制御部は、解剖学シェーマ図上において、前記観察順序が前記現在のラベル番号の次のラベル番号に対応する観察対象部位の領域を強調し、前記観察対象部位の領域が強調された解剖学シェーマ図を前記モニタに表示させる、請求項7ないし17のいずれか一項に記載の超音波内視鏡システム。 The display control unit emphasizes the region of the observation target portion whose observation order corresponds to the label number next to the current label number on the anatomy schema diagram, and the anatomy in which the region of the observation target portion is emphasized. The ultrasonic endoscopic system according to any one of claims 7 to 17, wherein an anatomical schema diagram is displayed on the monitor.
  19.  前記表示制御部は、解剖学シェーマ図上において、前記観察順序が前記現在のラベル番号の次のラベル番号に対応する観察対象部位の領域を、前記観察順序が前記現在のラベル番号の次のラベル番号に対応する観察対象部位以外の観察対象部位の領域とは異なる色に着色し、前記観察対象部位の領域が着色された解剖学シェーマ図を前記モニタに表示させる、請求項18に記載の超音波内視鏡システム。 On the anatomical schema diagram, the display control unit displays a region of an observation target site whose observation order corresponds to the label number next to the current label number, and the observation order is the label next to the current label number. The super-superior according to claim 18, wherein an anatomical schema diagram in which the area of the observation target part is colored differently from the area of the observation target part other than the observation target part corresponding to the number is displayed on the monitor. Endoscopic ultrasound system.
  20.  前記表示制御部は、前記観察対象部位の観察順序に基づいて前記超音波内視鏡の先端部が理想的に移動された場合の移動ルート、および、実際の操作に基づいて前記超音波内視鏡の先端部が実際に移動された場合の移動ルートを画像情報として解剖学シェーマ図上に並べて前記モニタに表示させる、請求項7ないし19のいずれか一項に記載の超音波内視鏡システム。 The display control unit performs the ultrasonic endoscopy based on the movement route when the tip of the ultrasonic endoscope is ideally moved based on the observation order of the observation target portion and the actual operation. The ultrasonic endoscopic system according to any one of claims 7 to 19, wherein the movement route when the tip of the mirror is actually moved is arranged as image information on an anatomical schema diagram and displayed on the monitor. ..
  21.  さらに、前記観察対象部位の観察順序に基づいて前記超音波内視鏡の先端部が理想的に移動された場合の移動ルートを予め登録する移動ルート登録部を備える、請求項20に記載の超音波内視鏡システム。 The super-accordion according to claim 20, further comprising a movement route registration unit for pre-registering a movement route when the tip of the ultrasonic endoscope is ideally moved based on the observation order of the observation target portion. Endoscopic ultrasound system.
  22.  前記超音波画像認識部は、前記超音波観測装置に内蔵されている、請求項1ないし21のいずれか一項に記載の超音波内視鏡システム。 The ultrasonic endoscopic system according to any one of claims 1 to 21, wherein the ultrasonic image recognition unit is built in the ultrasonic observation device.
  23.  前記超音波内視鏡が、さらに照明部および撮像部を先端に有し、
     さらに、前記照明部から照射される照明光の反射光を前記撮像部によって受信させ、前記反射光の撮像信号から診断用内視鏡画像を生成する内視鏡プロセッサを備え、
     前記超音波画像認識部は、前記内視鏡プロセッサに内蔵されている、請求項1ないし21のいずれか一項に記載の超音波内視鏡システム。
    The ultrasonic endoscope further has an illumination unit and an imaging unit at the tip thereof.
    Further, an endoscope processor is provided, which receives the reflected light of the illumination light emitted from the illumination unit by the imaging unit and generates a diagnostic endoscope image from the image pickup signal of the reflected light.
    The ultrasonic endoscope system according to any one of claims 1 to 21, wherein the ultrasonic image recognition unit is built in the endoscope processor.
  24.  前記超音波内視鏡が、さらに照明部および撮像部を先端に有し、
     さらに、前記照明部から照射される照明光の反射光を前記撮像部によって受信させ、前記反射光の撮像信号から診断用内視鏡画像を生成する内視鏡プロセッサを備え、
     前記超音波画像認識部は、前記超音波観測装置および前記内視鏡プロセッサの外部に設けられている、請求項1ないし21のいずれか一項に記載の超音波内視鏡システム。
    The ultrasonic endoscope further has an illumination unit and an imaging unit at the tip thereof.
    Further, an endoscope processor is provided, which receives the reflected light of the illumination light emitted from the illumination unit by the imaging unit and generates a diagnostic endoscope image from the image pickup signal of the reflected light.
    The ultrasonic endoscopic system according to any one of claims 1 to 21, wherein the ultrasonic image recognition unit is provided outside the ultrasonic observation device and the endoscopic processor.
  25.  超音波画像認識部が、被検体の体腔内における超音波内視鏡の先端部の位置と観察対象部位の観察順序に基づくラベル番号とを対応付けて、学習用超音波画像と前記学習用超音波画像の撮像時の前記超音波内視鏡の先端部の位置に対応するラベル番号との関係を複数の前記学習用超音波画像について予め学習しておくステップと、
     超音波観測装置が、前記超音波内視鏡の先端に有する超音波振動子により超音波を送受信させ、前記超音波の受信信号から診断用超音波画像を生成するステップと、
     前記超音波画像認識部が、学習結果に基づいて、前記診断用超音波画像から、前記診断用超音波画像の撮像時の前記超音波内視鏡の先端部の位置に対応するラベル番号を認識するステップと、
     表示制御部が、前記超音波画像認識部によって認識されたラベル番号に対応する超音波内視鏡の先端部の位置をモニタに表示させるステップと、を含む、超音波内視鏡システムの作動方法。
    The ultrasonic image recognition unit associates the position of the tip of the ultrasonic endoscope in the body cavity of the subject with the label number based on the observation order of the observation target site, and the learning ultrasonic image and the learning super A step of learning in advance the relationship with the label number corresponding to the position of the tip of the ultrasonic endoscope at the time of capturing the ultrasonic image for the plurality of the ultrasonic images for learning.
    A step in which an ultrasonic observation device transmits and receives ultrasonic waves by an ultrasonic transducer at the tip of the ultrasonic endoscope and generates a diagnostic ultrasonic image from the received signal of the ultrasonic waves.
    Based on the learning result, the ultrasonic image recognition unit recognizes a label number corresponding to the position of the tip of the ultrasonic endoscope at the time of capturing the diagnostic ultrasonic image from the diagnostic ultrasonic image. Steps to do and
    A method of operating an ultrasonic endoscopic system, which includes a step in which a display control unit displays a position of a tip portion of an ultrasonic endoscope corresponding to a label number recognized by the ultrasonic image recognition unit on a monitor. ..
  26.  前記超音波内視鏡の先端部の位置および向きと前記ラベル番号とを対応付けて、前記学習用超音波画像と前記学習用超音波画像の撮像時の前記超音波内視鏡の先端部の位置および向きに対応するラベル番号との関係を前記複数の学習用超音波画像について予め学習しておき、
     学習結果に基づいて、前記診断用超音波画像から、前記診断用超音波画像の撮像時の前記超音波内視鏡の先端部の位置および向きに対応するラベル番号を認識し、
     前記超音波画像認識部によって認識されたラベル番号に対応する超音波内視鏡の先端部の位置および向きを前記モニタに表示させる、請求項25に記載の超音波内視鏡システムの作動方法。
    By associating the position and orientation of the tip portion of the ultrasonic endoscope with the label number, the tip portion of the ultrasonic endoscope at the time of capturing the learning ultrasonic image and the learning ultrasonic image The relationship between the position and the label number corresponding to the orientation is learned in advance for the plurality of learning ultrasonic images.
    Based on the learning result, the label number corresponding to the position and orientation of the tip of the ultrasonic endoscope at the time of capturing the diagnostic ultrasonic image is recognized from the diagnostic ultrasonic image.
    The method for operating an ultrasonic endoscopy system according to claim 25, wherein the position and orientation of the tip of the ultrasonic endoscope corresponding to the label number recognized by the ultrasonic image recognition unit are displayed on the monitor.
  27.  さらに、操作手順記憶部が、1のラベル番号に対応する観察対象部位から、前記観察順序が前記1のラベル番号の次のラベル番号に対応する観察対象部位へ前記超音波内視鏡の先端部を移動させるための操作手順を記憶するステップを含み、
     前記認識されたラベル番号を現在のラベル番号として、前記現在のラベル番号に対応する観察対象部位から、前記観察順序が前記現在のラベル番号の次のラベル番号に対応する観察対象部位へ前記超音波内視鏡の先端部を移動させるための操作手順を前記操作手順記憶部から取得し、
     前記取得された操作手順を前記モニタに表示させる、請求項25または26に記載の超音波内視鏡システムの作動方法。
    Further, the operation procedure storage unit moves from the observation target portion corresponding to the label number of 1 to the observation target portion whose observation order corresponds to the label number next to the label number of 1 and the tip portion of the ultrasonic endoscope. Includes steps to memorize operating procedures for moving
    Using the recognized label number as the current label number, the ultrasonic wave from the observation target site corresponding to the current label number to the observation target site whose observation order corresponds to the label number next to the current label number. The operation procedure for moving the tip of the endoscope is acquired from the operation procedure storage unit.
    The method of operating an ultrasonic endoscopic system according to claim 25 or 26, wherein the acquired operating procedure is displayed on the monitor.
PCT/JP2020/025725 2019-08-27 2020-06-30 Ultrasonic endoscope system and operating method for ultrasonic endoscope system WO2021039101A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021542583A JP7158596B2 (en) 2019-08-27 2020-06-30 Endoscopic Ultrasound System and Method of Operating Endoscopic Ultrasound System
CN202080060272.4A CN114302679A (en) 2019-08-27 2020-06-30 Ultrasonic endoscope system and method for operating ultrasonic endoscope system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019154475 2019-08-27
JP2019-154475 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021039101A1 true WO2021039101A1 (en) 2021-03-04

Family

ID=74683660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/025725 WO2021039101A1 (en) 2019-08-27 2020-06-30 Ultrasonic endoscope system and operating method for ultrasonic endoscope system

Country Status (3)

Country Link
JP (1) JP7158596B2 (en)
CN (1) CN114302679A (en)
WO (1) WO2021039101A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054467A1 (en) * 2021-09-30 2023-04-06 テルモ株式会社 Model generation method, learning model, computer program, information processing method, and information processing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130035596A1 (en) * 2011-07-14 2013-02-07 Siemens Corporation Model-based positioning for intracardiac echocardiography volume stitching
WO2017195540A1 (en) * 2016-05-12 2017-11-16 株式会社日立製作所 Ultrasound imaging device, image processing device and method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639049B (en) * 2010-09-29 2014-11-26 奥林巴斯医疗株式会社 Information processing device and capsule endoscope system
EP3479769B1 (en) * 2016-06-30 2023-08-02 FUJIFILM Corporation Ultrasonic endoscope and method for manufacturing same
CN107886503A (en) * 2017-10-27 2018-04-06 重庆金山医疗器械有限公司 A kind of alimentary canal anatomical position recognition methods and device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130035596A1 (en) * 2011-07-14 2013-02-07 Siemens Corporation Model-based positioning for intracardiac echocardiography volume stitching
WO2017195540A1 (en) * 2016-05-12 2017-11-16 株式会社日立製作所 Ultrasound imaging device, image processing device and method therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023054467A1 (en) * 2021-09-30 2023-04-06 テルモ株式会社 Model generation method, learning model, computer program, information processing method, and information processing device

Also Published As

Publication number Publication date
CN114302679A (en) 2022-04-08
JPWO2021039101A1 (en) 2021-03-04
JP7158596B2 (en) 2022-10-21

Similar Documents

Publication Publication Date Title
JP6899804B2 (en) How to operate the ultrasonic diagnostic equipment and the ultrasonic diagnostic equipment
US20210369238A1 (en) Ultrasound endoscope system and method of operating ultrasound endoscope system
JP7265593B2 (en) Ultrasound system and ultrasound image generation method
JP2022040175A (en) Ultrasonic diagnostic apparatus and operation method for ultrasonic diagnostic apparatus
WO2021039101A1 (en) Ultrasonic endoscope system and operating method for ultrasonic endoscope system
JP2021035442A (en) Ultrasonic diagnostic system and operation method for ultrasonic diagnostic system
JP7157710B2 (en) Measuring device, ultrasonic diagnostic device, measuring method, measuring program
US20200245978A1 (en) Failure diagnosis system of ultrasonic endoscope apparatus, failure diagnosis method of ultrasonic endoscope apparatus, and failure diagnosis program of ultrasonic endoscope apparatus
JP7094237B2 (en) How to operate the ultrasonic diagnostic system and the ultrasonic diagnostic system
US20200305834A1 (en) Ultrasound observation apparatus and ultrasonic endoscope system
JP6987029B2 (en) How to operate the ultrasonic diagnostic device and the ultrasonic diagnostic device
JP7041014B2 (en) How to operate the ultrasonic diagnostic device and the ultrasonic diagnostic device
JP7292184B2 (en) LEARNING APPARATUS, LEARNING METHOD AND TRAINED MODEL
JP7301114B2 (en) ULTRASOUND DIAGNOSTIC SYSTEM AND METHOD OF OPERATION OF ULTRASOUND DIAGNOSTIC SYSTEM
JP7300029B2 (en) ULTRASOUND DIAGNOSTIC SYSTEM AND METHOD OF OPERATION OF ULTRASOUND DIAGNOSTIC SYSTEM
WO2021019851A1 (en) Measurement device, ultrasonic diagnostic device, measurement method, measurement program
WO2023053662A1 (en) Ultrasonic endoscope system and operating method for ultrasonic endoscope system
JP2022132940A (en) Endoscope and endoscope system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542583

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857666

Country of ref document: EP

Kind code of ref document: A1