WO2021039031A1 - Soot blower control system - Google Patents

Soot blower control system Download PDF

Info

Publication number
WO2021039031A1
WO2021039031A1 PCT/JP2020/023412 JP2020023412W WO2021039031A1 WO 2021039031 A1 WO2021039031 A1 WO 2021039031A1 JP 2020023412 W JP2020023412 W JP 2020023412W WO 2021039031 A1 WO2021039031 A1 WO 2021039031A1
Authority
WO
WIPO (PCT)
Prior art keywords
soot blower
control system
steam
temperature
controller
Prior art date
Application number
PCT/JP2020/023412
Other languages
French (fr)
Japanese (ja)
Inventor
智弘 土井
宏 権藤
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to KR1020227002680A priority Critical patent/KR102647151B1/en
Priority to MX2022001148A priority patent/MX2022001148A/en
Publication of WO2021039031A1 publication Critical patent/WO2021039031A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • F22B37/54De-sludging or blow-down devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J3/00Removing solid residues from passages or chambers beyond the fire, e.g. from flues by soot blowers

Definitions

  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a control system for a soot blower capable of improving the operating efficiency of the soot blower while suppressing a change in the steam temperature of a heat transfer tube due to the operation of the soot blower. To provide.
  • the temperature change value which is the difference between the inlet temperature and the second temperature difference, which is the difference between the steam outlet temperature, is obtained, and the operation interval of the soot blower is determined so that the temperature change value is within the target value range. It is characterized by doing.
  • control system of the soot blower According to the control system of the soot blower according to the present invention, it is possible to improve the operation efficiency of the soot blower while suppressing the change in the steam temperature of the heat transfer tube due to the operation of the soot blower. Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
  • FIG. 1 is a side view showing the overall configuration of a boiler to which the present invention is applied.
  • the boiler 1 includes a fireplace 2, a cage portion 3, and a sub-side wall 4 connecting the fireplace 2 and the cage portion 3.
  • the fireplace 2 is provided with a wind box 5 for blowing air into the fireplace 2, and a burner (not shown) for blowing pulverized coal, which is a solid fuel, into the fireplace 2 and burning the air box 5 is provided.
  • a burner not shown
  • FIG. 2 is a steam system diagram of the boiler 1 shown in FIG.
  • the water supplied from the water supply line is the economizer 10, the furnace wall (water wall) 11, the steam separator 12, the primary superheater 13, the secondary superheater 14, and the tertiary superheater 15.
  • heat is exchanged with the combustion gas to become high-temperature, high-pressure superheated steam, which is supplied to the high-pressure turbine 18.
  • the steam taken out from the high pressure turbine 18 exchanges heat with the combustion gas while flowing in the order of the primary reheater 16 and the secondary reheater 17, becomes reheated steam, and is supplied to the low pressure turbine 19 after being supplied to the low pressure turbine 19. Returned to the condenser.
  • Temperature sensors 20a to 20i for detecting the steam temperature are provided at the steam inlet / outlet of each heat exchanger.
  • the soot blower 30 is for removing clinker adhering to the surface of each heat transfer tube 6 constituting each heat exchanger 10, 13, 14, 15, 16 and 17, and the soot blower 40 is attached to the inner wall of the fireplace wall 11. It is for removing the clinker.
  • FIG. 3 is a diagram schematically showing the structure of the soot blower 30 shown in FIG. Since the soot blower 40 has the same structure as the soot blower 30, the description thereof will be omitted.
  • the soot blower 30 includes a nozzle block 32 having spray holes 33 and 34, a soot blower tube 31 whose tip is connected to the nozzle block 32 (a tube through which steam for soot blower flows) 31, and a motor 38. And.
  • the motor 38 and the soot blower tube 31 are connected via a power transmission mechanism such as a gear (not shown), and the rotation of the motor 38 causes the soot blower tube 31 to rotate around the central axis and move in the insertion / removal direction (axial direction). It is possible to move.
  • the motor 38 is driven via the inverter 39 based on a command from the controller 100.
  • the rear end of the soot blower tube 31 is connected to the spray steam supply line 35, and steam having a pressure adjusted by the steam pressure control valve 37 flows through the soot blower tube 31 and is sprayed into the furnace 2 from the spray holes 33 and 34. It has a structure of By spraying steam from the spray holes 33 and 34 to the heat transfer tube 6, the clinker adhering to the heat transfer tube 6 is removed.
  • the detection signal of the pressure sensor 36 is input to the controller 100, and the controller 100 controls the steam pressure control valve 37 to a desired opening degree. As a result, the pressure and flow rate of the steam sprayed from the soot blower 30 are adjusted.
  • FIG. 4 is a block diagram showing the electrical configuration of the controller 100.
  • the controller 100 is a storage device such as a CPU 100a that performs calculations for determining the operation schedules of the soot blowers 30 and 40, which will be described later, and a ROM, HDD, or the like that stores a program for executing the calculations by the CPU 100a.
  • the storage device 100b and hardware including 100b, RAM 100c which is a work area when the CPU 100a executes a program, and a communication interface (communication I / F) 100d which is an interface when transmitting and receiving data to and from other devices. It is composed of software that is executed by the CPU 100a.
  • Each function of the controller 100 is realized by the CPU 100a loading various programs stored in the storage device 100b into the RAM 100c and executing them.
  • the controller 100 includes a temperature sensor 20a for detecting the water inlet temperature of the coal saver 10, a temperature sensor 20b for detecting the cooling water inlet temperature of the furnace wall 11, and a temperature sensor 20c for detecting the steam inlet temperature of the primary heater 13.
  • the controller 100 drives the inverter 39 of the desired soot blowers 30 and 40 to rotate the motor 38 according to the operation schedule of the soot blowers 30 and 40 described below. That is, the controller 100 individually controls the operation of the soot blowers 30 and 40.
  • FIG. 5 is a flowchart showing a procedure for determining the operation schedule of the soot blowers 30 and 40.
  • the controller 100 executes the process shown in FIG. 5 for each operation of the soot blowers 30 and 40, and when a predetermined period (3 days in the present embodiment) elapses from the operation of the first soot blower 30 in the current operation schedule, the next operation is performed.
  • the operation schedule of the soot blowers 30 and 40 for the first 3 days when the boiler 1 is started is set in advance.
  • the controller 100 starts the process of FIG.
  • the procedure for determining the operation schedule will be described by taking the soot blower 30 installed for the secondary superheater 14 as an example, but for the other soot blowers 30 and 40, the procedure is the same for each of the soot blowers 30 and 40.
  • the operation schedule is decided.
  • the controller 100 is operated at the start of the soot blowers 30 steam inlet temperature T in of the secondary superheater 14 (heat transfer tube 6) of the (first time operation) acquired from the temperature sensor 20d, the secondary superheater 14
  • the steam outlet temperature To out is acquired from the temperature sensor 20e.
  • the controller 100 calculates the temperature difference between the steam inlet temperature T in the steam outlet temperature T out Delta] T1 (first temperature difference), and stores the temperature difference Delta] T1 to RAM 100c (step S1).
  • the controller 100 obtains the steam inlet temperature T in upon stopping of the sootblower 30 (second operating state) of the secondary superheater 14 (heat transfer tube 6) from the temperature sensor 20d, the secondary superheater 14
  • the steam outlet temperature To out of is acquired from the temperature sensor 20e.
  • the controller 100 calculates the temperature difference between the steam inlet temperature T in the steam outlet temperature T out Delta] T2 (second temperature difference), and stores the temperature difference Delta] T2 in RAM 100c (step S2).
  • the processing of steps S1 and S2 is not limited to the start of operation and the stop of operation of the soot blower 30.
  • Step S6 the controller 100, the interval time of the sootblowers 30, based on the accumulated ⁇ dT temperature change value dT to calculate the (headway) T int2 (step S6), and determines the operation schedule of the sootblowers 30 next 3 days ( Step S7).
  • the controller 100 controls the operation of the soot blower 30 for the next three days. That is, the soot blower 30 is operated every interval time Tint2 calculated in step S6. If three days have not passed in step S4 (step S4 / No), the controller 100 ends the process and waits until the next start of operation of the soot blower 30.
  • the integration time is H
  • the integration value is ⁇ dT
  • the target value of the temperature change of the heat transfer tube 6 is T *
  • the number of heat transfer tubes 6 is N
  • the operation interval of the soot blower this time is Tint1
  • the next interval is Tint1
  • time T int2 if the expected value is E x, the next time interval T int2 the formula (1) is calculated by (2).
  • E x T * / N ⁇ H / T int1 ... (Equation 1)
  • T int2 T int1 / ( ⁇ dT / E x) ⁇ ( Equation 2)
  • target value T * 2 ° C.
  • integrated time H 72 hours (3 days)
  • integrated value ⁇ dT 0.77 ° C.
  • number of heat transfer tubes N 12 (6 pairs)
  • current interval time Tint1 In the case of 9 hours (initial value)
  • the controller 100 performs this calculation on all the soot blowers 30A, B, C, D, E ..., And determines the operation schedule of each soot blower. For example, for the soot blowers 30A, B, C, D, and E, the integrated values ⁇ dT for the three days this time were 0.77 (described above), 0.33, 1.13, 0.54, and 1.92, respectively. Then, the controller 100 calculates the next interval time Tint2 as 15.2 hours (described above), 35.5 hours, 10.4 hours, 21.7 hours, and 6.1 hours, respectively. Therefore, the soot blowers 30A, B, C, D, and E are individually operated for the next three days at the calculated next interval time Tint2.
  • FIG. 6A is a diagram showing an operation schedule of a conventional soot blower
  • FIG. 6B is a diagram showing an operation schedule of the soot blower in the present embodiment.
  • 6A and 6B show the operation schedule for five soot blowers (SB).
  • the interval time of the soot blowers 30A, B, C, D, E (hereinafter abbreviated as A, B, C, D, E) is determined individually, so that the interval time is 3 days.
  • the operation schedule of the soot blowers A to E is as shown in FIG. 6B. That is, the soot blower A is operated every 15.2 hours, the soot blower B is operated every 35.5 hours, the soot blower C is operated every 10.4 hours, and the soot blower D is operated every 21.7 hours.
  • the soot blower E is operated every 6.1 hours. Therefore, the operation order for 3 days is E-> A-> E-> D-> C-> E ....
  • FIG. 7 is a diagram showing a display example of the monitor 50. As shown in FIG. 7, a schematic view of the side surface of the boiler 1 is displayed on the monitor 50, and a display area 60 for displaying the temperature information of the heat transfer tube 6 is provided at a position where the soot blowers 30 and 40 are arranged. It is formed.
  • the controller 100 calculates the integrated value ⁇ dT as described above, and controls the integrated value ⁇ dT to be displayed in a predetermined display area 60 corresponding to the arrangement of the soot blowers 30 and 40.
  • FIG. 8 is a diagram showing a display example on the next page of the monitor 50.
  • the integrated value ⁇ dT for each type of coal which is the fuel information of the boiler 1
  • the integrated value ⁇ dT of the temperature change value dT of the heat transfer tube 6 corresponding to each of the soot blowers A, B, C, C, and E is the coal type (coal type) No. 1 to No. It is displayed every 4.
  • the display is color-coded according to the temperature value.
  • the steam outlet temperature of the heat transfer tube 6 is set before operating the soot blowers 30 and 40 (that is, the clinker adhering to the heat transfer tube 6). It rises compared to before removing).
  • the change in the steam outlet temperature of the heat transfer tube 6 increases as the amount of clinker removed from the heat transfer tube 6 increases.
  • the temperature change at the steam inlet / outlet of the heat transfer tube 6 is small, but if the operation interval of the soot blower is fixed as in the conventional case, the steam temperature of each heat transfer tube 6 It is difficult to manage.
  • a schematic diagram of the boiler 1 is displayed on the monitor 50, and the integrated value ⁇ dT is displayed in association with the positions of the soot blowers 30 and 40 installed in the boiler 1, so that the temperature change of the heat transfer tube 6 in any area is displayed. It is easy to visually check if the size is large. Further, since the temperature is displayed in different colors according to the integrated value ⁇ dT, it is easy to visually grasp the distribution of the temperature change, and the operation management of the boiler 1 is easy. Further, when the screen of the monitor 50 is switched, the integrated value ⁇ dT is displayed in a list according to the type of coal, so that the optimum soot blowers 30 and 40 can be operated according to the type of coal.
  • the soot blower control system according to the second embodiment is characterized in that the controller 100 changes the target value T * according to the operation mode.
  • this feature will be mainly described.
  • FIG. 9 is a flowchart showing a procedure for determining the operation schedule of the soot blower according to the second embodiment. As shown in FIG. 9, the second embodiment is different from the first embodiment in that the target value T * is changed according to the operation mode of the boiler 1 (step S6-1).
  • the soot blowers 30 and 40 can be operated at a more suitable interval time Tint2 according to the operation mode, so that the operation efficiency of the soot blowers 30 and 40 is further improved.
  • the soot blower control system according to the third embodiment is characterized in that the controller 100 changes the spray steam pressures P of the soot blowers 30 and 40 according to the operation mode.
  • this feature will be mainly described.
  • FIG. 11 is a flowchart showing a procedure for determining the operation schedule of the soot blower according to the third embodiment. As shown in FIG. 11, in the third embodiment, after the next interval time Tint2 is calculated, the spray steam pressures P of the soot blowers 30 and 40 are determined according to the operation mode (step S6-2). There is a feature in.
  • FIG. 13 is a flowchart showing a procedure for determining the operation schedule of the soot blower according to the fourth embodiment. As shown in FIG. 13, in the fourth embodiment, after the next interval time Tint2 is calculated, the rotation speeds N of the soot blowers 30 and 40 are determined according to the operation mode (step S6-3). There is a feature.
  • FIG. 14 is a diagram showing the correspondence between the operation mode and the rotation speed N.
  • the controller 100 selects the rotation speeds N of the soot blowers 30 and 40 according to the operation mode, and controls the rotation speed of the motor 38.
  • the interval time Tint2 may be calculated by integrating the difference only in the steam outlet temperature of the heat transfer tube 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Incineration Of Waste (AREA)

Abstract

The present invention increases the operation efficiency of a soot blower while suppressing a change in the steam temperature of a heat transfer tube. This soot blower control system is provided with: a soot blower (30) that jets steam onto the surface of a heat transfer tube (6); an inlet temperature sensor (20d) that detects the steam inlet temperature (Tin) of the heat transfer tube; an outlet temperature sensor (20e) that detects the steam outlet temperature (Tout) of the heat transfer tube; and a controller (100). The soot blower control system is characterized in that the controller calculates a temperature change value (dT) which is the difference between a first temperature difference (ΔT1) and a second temperature difference (ΔT2), which are differences between the steam inlet temperature and the steam outlet temperature at a first time point and a second time point, respectively, during operation of the soot blower and determines an operation interval of the soot blower so as to keep the temperature change value within the range of a target value.

Description

スートブロワの制御システムSoot blower control system
 本発明は、スートブロワの制御システムに関する。 The present invention relates to a soot blower control system.
 微粉炭等の固体燃料を燃焼させるボイラは、紛体化した固体燃料を燃料バーナから火炉内に噴射し、火炉内で燃焼させる。ボイラには過熱器や再熱器を構成する多数の伝熱管が設けられており、ボイラ運転中に燃焼した灰等はクリンカとして伝熱管に付着する。伝熱管にクリンカが付着したままボイラの運転を継続すると、伝熱管の熱交換効率が低下する。そのため、定期的にスートブロワを運転して、伝熱管に付着したクリンカを除去している。 A boiler that burns solid fuel such as pulverized coal injects pulverized solid fuel into the fireplace from a fuel burner and burns it in the fireplace. The boiler is provided with a large number of heat transfer tubes that make up a superheater and a reheater, and ash and the like burned during boiler operation adhere to the heat transfer tubes as clinker. If the boiler is continued to operate with the clinker attached to the heat transfer tube, the heat exchange efficiency of the heat transfer tube will decrease. Therefore, the clinker adhering to the heat transfer tube is removed by operating the soot blower on a regular basis.
 スートブロワの制御方法として、例えば特許文献1には、スートブロワを作動させた時のボイラ出口の蒸気温度を測定し、同測定値と所定の制御値からのずれのうち最大のずれの変動幅を求め、その最大変動幅の範囲によって次にスートブロワが作動する際の噴射流体圧力を、前回の噴射流体圧力から増減させて変化させることが記載されている。 As a method for controlling the soot blower, for example, in Patent Document 1, the steam temperature at the outlet of the boiler when the soot blower is operated is measured, and the fluctuation range of the maximum deviation between the measured value and the predetermined control value is obtained. , It is described that the injection fluid pressure at the time of the next operation of the soot blower is increased or decreased from the previous injection fluid pressure according to the range of the maximum fluctuation range.
 この特許文献1に記載の制御方法によれば、スートブロワの噴射流体圧力を調整できるため、スートブロワの作動によるボイラ出口の蒸気温度および蒸気圧力の変動を抑えることができる。 According to the control method described in Patent Document 1, since the injection fluid pressure of the soot blower can be adjusted, fluctuations in the steam temperature and steam pressure at the boiler outlet due to the operation of the soot blower can be suppressed.
特許第3615776号公報Japanese Patent No. 3615776
 しかしながら、特許文献1ではスートブロワの運転間隔が固定されているため、スートブロワを効率良く運転するためには、改善の余地がある。 However, in Patent Document 1, since the operation interval of the soot blower is fixed, there is room for improvement in order to operate the soot blower efficiently.
 本発明は、このような実情に鑑みてなされたもので、その目的は、スートブロワの作動による伝熱管の蒸気温度の変化を抑えつつ、スートブロワの運転効率を高めることが可能なスートブロワの制御システムを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a control system for a soot blower capable of improving the operating efficiency of the soot blower while suppressing a change in the steam temperature of a heat transfer tube due to the operation of the soot blower. To provide.
 上記目的を達成するために、代表的な本発明は、ボイラ内に設けられた伝熱管の表面に蒸気を噴射するスートブロワと、前記伝熱管の蒸気入口温度を検出する入口温度センサと、前記伝熱管の蒸気出口温度を検出する出口温度センサと、前記入口温度センサおよび前記出口温度センサから入力される各検出信号に基づいて前記スートブロワの運転を制御するコントローラと、を備えたスートブロワの制御システムにおいて、前記コントローラは、前記スートブロワの運転中の第1の時点における前記蒸気入口温度と前記蒸気出口温度との差である第1の温度差と、前記スートブロワの運転中の第2の時点における前記蒸気入口温度と前記蒸気出口温度との差である第2の温度差との差分である温度変化値を求め、当該温度変化値が目標値の範囲内になるように、前記スートブロワの運転間隔を決定することを特徴とする。 In order to achieve the above object, a typical present invention includes a soot blower that injects steam onto the surface of a heat transfer tube provided in a boiler, an inlet temperature sensor that detects the steam inlet temperature of the heat transfer tube, and the transfer. In a soot blower control system including an outlet temperature sensor that detects the steam outlet temperature of a hot tube, and a controller that controls the operation of the soot blower based on each detection signal input from the inlet temperature sensor and the outlet temperature sensor. In the controller, the first temperature difference, which is the difference between the steam inlet temperature and the steam outlet temperature at the first time point during the operation of the sootblower, and the steam at the second time point during the operation of the sootblower. The temperature change value, which is the difference between the inlet temperature and the second temperature difference, which is the difference between the steam outlet temperature, is obtained, and the operation interval of the soot blower is determined so that the temperature change value is within the target value range. It is characterized by doing.
 本発明に係るスートブロワの制御システムによれば、スートブロワの作動による伝熱管の蒸気温度の変化を抑えつつ、スートブロワの運転効率を高めることができる。なお、上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。 According to the control system of the soot blower according to the present invention, it is possible to improve the operation efficiency of the soot blower while suppressing the change in the steam temperature of the heat transfer tube due to the operation of the soot blower. Issues, configurations, and effects other than those described above will be clarified by the following description of the embodiments.
本発明が適用されるボイラの全体構成を示す側面図である。It is a side view which shows the whole structure of the boiler to which this invention is applied. ボイラの水蒸気系統図である。It is a steam system diagram of a boiler. スートブロワの構造を模式的に示す図である。It is a figure which shows typically the structure of a soot blower. コントローラの電気的構成を示すブロック図である。It is a block diagram which shows the electrical structure of a controller. 第1実施形態におけるスートブロワの運転スケジュールの決定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of determination process of the operation schedule of the soot blower in 1st Embodiment. 従来のスートブロワの運転スケジュールを示す図である。It is a figure which shows the operation schedule of the conventional soot blower. 第1実施形態におけるスートブロワの運転スケジュールを示す図である。It is a figure which shows the operation schedule of the soot blower in 1st Embodiment. モニタの表示例を示す図である。It is a figure which shows the display example of a monitor. モニタの次ページの表示例を示す図である。It is a figure which shows the display example of the next page of a monitor. 第2実施形態におけるスートブロワの運転スケジュールの決定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of determination process of the operation schedule of the soot blower in 2nd Embodiment. 操作モードと目標値との対応関係を示す図である。It is a figure which shows the correspondence relationship between an operation mode and a target value. 第3実施形態におけるスートブロワの運転スケジュールの決定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of determination process of the operation schedule of the soot blower in 3rd Embodiment. 操作モードと噴霧蒸気圧力との対応関係を示す図である。It is a figure which shows the correspondence relationship between the operation mode and the spray steam pressure. 第4実施形態におけるスートブロワの運転スケジュールの決定処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of determination process of the operation schedule of the soot blower in 4th Embodiment. 操作モードと回転速度との対応関係を示す図である。It is a figure which shows the correspondence relationship between an operation mode and a rotation speed.
(第1実施形態)
 以下、本発明に係るスートブロワの制御システムの実施形態について、図面を参照しつつ説明する。図1は、本発明が適用されるボイラの全体構成を示す側面図である。図1に示すように、ボイラ1は、火炉2と、ケージ部3と、火炉2とケージ部3とを繋ぐ副側壁4と、を備える。火炉2には、火炉2内に空気を吹き込む風箱5が備えられ、風箱5内には、火炉2内に固体燃料である微粉炭を吹き込んで燃焼させるためのバーナ(図示省略)が備えられている。また、火炉2、副側壁4およびケージ部3の内部には、多数の伝熱管(伝熱管群)6からなる熱交換器が複数設置されている。なお、これら熱交換器は、一次過熱器13、二次過熱器14、三次過熱器15、一次再熱器16、二次再熱器17、節炭器10を含む(図2参照)。
(First Embodiment)
Hereinafter, embodiments of the sootblower control system according to the present invention will be described with reference to the drawings. FIG. 1 is a side view showing the overall configuration of a boiler to which the present invention is applied. As shown in FIG. 1, the boiler 1 includes a fireplace 2, a cage portion 3, and a sub-side wall 4 connecting the fireplace 2 and the cage portion 3. The fireplace 2 is provided with a wind box 5 for blowing air into the fireplace 2, and a burner (not shown) for blowing pulverized coal, which is a solid fuel, into the fireplace 2 and burning the air box 5 is provided. Has been done. Further, a plurality of heat exchangers including a large number of heat transfer tubes (heat transfer tube group) 6 are installed inside the fireplace 2, the sub-side wall 4, and the cage portion 3. These heat exchangers include a primary superheater 13, a secondary superheater 14, a tertiary superheater 15, a primary reheater 16, a secondary reheater 17, and an economizer 10 (see FIG. 2).
 風箱5から火炉2内に空気を導入しながら、バーナから燃料を噴射して火炉2内で微粉炭が燃焼すると、高温の燃焼ガスが発生する。火炉2内で発生した燃焼ガスは、火炉2、副側壁4およびケージ部3の順に流れ、最後は図示しない煙突を経て外部に排出される。高温の燃焼ガスは、火炉2、副側壁4およびケージ部3を流れる過程で伝熱管6内の流体と熱交換する。これにより、高温の過熱蒸気が生成される。 While introducing air from the wind box 5 into the fireplace 2, when fuel is injected from the burner and the pulverized coal burns in the fireplace 2, high-temperature combustion gas is generated. The combustion gas generated in the fireplace 2 flows in the order of the fireplace 2, the sub-side wall 4, and the cage portion 3, and is finally discharged to the outside through a chimney (not shown). The high-temperature combustion gas exchanges heat with the fluid in the heat transfer tube 6 in the process of flowing through the fireplace 2, the auxiliary side wall 4, and the cage portion 3. This produces high temperature superheated steam.
 次に、ボイラ1の水蒸気系統について説明する。図2は、図1に示すボイラ1の水蒸気系統図である。図2に示すように、給水ラインより供給された給水は、節炭器10、火炉壁(水壁)11、汽水分離器12、一次過熱器13、二次過熱器14、三次過熱器15の順に流れる間に燃焼ガスと熱交換されて高温・高圧の過熱蒸気となり、高圧タービン18に供給される。さらに、高圧タービン18から取り出された蒸気は、一次再熱器16、二次再熱器17の順に流れる間に燃焼ガスと熱交換されて再熱蒸気となり、低圧タービン19に供給された後、復水器へと戻される。なお、各熱交換器の蒸気出入口には、蒸気温度を検出するための温度センサ20a~20iが設けられている。 Next, the steam system of the boiler 1 will be described. FIG. 2 is a steam system diagram of the boiler 1 shown in FIG. As shown in FIG. 2, the water supplied from the water supply line is the economizer 10, the furnace wall (water wall) 11, the steam separator 12, the primary superheater 13, the secondary superheater 14, and the tertiary superheater 15. During the sequential flow, heat is exchanged with the combustion gas to become high-temperature, high-pressure superheated steam, which is supplied to the high-pressure turbine 18. Further, the steam taken out from the high pressure turbine 18 exchanges heat with the combustion gas while flowing in the order of the primary reheater 16 and the secondary reheater 17, becomes reheated steam, and is supplied to the low pressure turbine 19 after being supplied to the low pressure turbine 19. Returned to the condenser. Temperature sensors 20a to 20i for detecting the steam temperature are provided at the steam inlet / outlet of each heat exchanger.
 図1に戻って、ボイラ1には、多数のスートブロワ30A,B,C・・・,40A,B,C・・・が設けられている。なお、以下の説明において、スートブロワ30A,B,C・・・を区別する必要がない場合、単にスートブロワ30と表記する場合がある。スートブロワ40A,B,C・・・についても同様である。 Returning to FIG. 1, the boiler 1 is provided with a large number of soot blowers 30A, B, C ..., 40A, B, C ... In the following description, when it is not necessary to distinguish the soot blowers 30A, B, C ..., It may be simply referred to as the soot blower 30. The same applies to the soot blowers 40A, B, C ...
 スートブロワ30は各熱交換器10,13,14,15,16,17を構成する各伝熱管6の表面に付着したクリンカを除去するためのものであり、スートブロワ40は火炉壁11の内壁に付着したクリンカを除去するためのものである。 The soot blower 30 is for removing clinker adhering to the surface of each heat transfer tube 6 constituting each heat exchanger 10, 13, 14, 15, 16 and 17, and the soot blower 40 is attached to the inner wall of the fireplace wall 11. It is for removing the clinker.
 次に、スートブロワ30の構造について説明する。図3は、図1に示すスートブロワ30の構造を模式的に示す図である。なお、スートブロワ40はスートブロワ30と構造が同じであるため、説明を省略する。 Next, the structure of the soot blower 30 will be described. FIG. 3 is a diagram schematically showing the structure of the soot blower 30 shown in FIG. Since the soot blower 40 has the same structure as the soot blower 30, the description thereof will be omitted.
 図3に示すように、スートブロワ30は、噴霧孔33,34を有するノズルブロック32と、先端がノズルブロック32に連結されたスートブロワチューブ(内部をスートブロワ用蒸気が流通するチューブ)31と、モータ38と、を備える。なお、モータ38とスートブロワチューブ31とは図示しない歯車等の動力伝達機構を介して連結されており、モータ38の回転により、スートブロワチューブ31の中心軸回りの回転と抜き差し方向(軸方向)への移動とが可能となっている。 As shown in FIG. 3, the soot blower 30 includes a nozzle block 32 having spray holes 33 and 34, a soot blower tube 31 whose tip is connected to the nozzle block 32 (a tube through which steam for soot blower flows) 31, and a motor 38. And. The motor 38 and the soot blower tube 31 are connected via a power transmission mechanism such as a gear (not shown), and the rotation of the motor 38 causes the soot blower tube 31 to rotate around the central axis and move in the insertion / removal direction (axial direction). It is possible to move.
 モータ38は、コントローラ100からの指令に基づき、インバータ39を介して駆動される。スートブロワチューブ31の後端は噴霧蒸気供給ライン35に接続されており、蒸気圧力調節弁37により調整された圧力の蒸気がスートブロワチューブ31を流通し、噴霧孔33,34から火炉2内に噴霧される構成となっている。噴霧孔33,34から伝熱管6に蒸気が噴霧されることで、伝熱管6に付着したクリンカが除去される。圧力センサ36の検出信号はコントローラ100に入力され、コントローラ100により蒸気圧力調節弁37が所望の開度に制御される。これにより、スートブロワ30から噴霧される蒸気の圧力と流量が調整される。 The motor 38 is driven via the inverter 39 based on a command from the controller 100. The rear end of the soot blower tube 31 is connected to the spray steam supply line 35, and steam having a pressure adjusted by the steam pressure control valve 37 flows through the soot blower tube 31 and is sprayed into the furnace 2 from the spray holes 33 and 34. It has a structure of By spraying steam from the spray holes 33 and 34 to the heat transfer tube 6, the clinker adhering to the heat transfer tube 6 is removed. The detection signal of the pressure sensor 36 is input to the controller 100, and the controller 100 controls the steam pressure control valve 37 to a desired opening degree. As a result, the pressure and flow rate of the steam sprayed from the soot blower 30 are adjusted.
 図4は、コントローラ100の電気的構成を示すブロック図である。図4に示すように、コントローラ100は、後述するスートブロワ30,40の運転スケジュールを決定するための演算等を行うCPU100a、CPU100aによる演算を実行するためのプログラムを格納するROMやHDD等の記憶装置100b、CPU100aがプログラムを実行する際の作業領域となるRAM100c、および他の機器とデータを送受信する際のインタフェースである通信インタフェース(通信I/F)100dを含むハードウェアと、記憶装置100bに記憶され、CPU100aにより実行されるソフトウェアとから構成される。コントローラ100の各機能は、CPU100aが、記憶装置100bに格納された各種プログラムをRAM100cにロードして実行することにより、実現される。 FIG. 4 is a block diagram showing the electrical configuration of the controller 100. As shown in FIG. 4, the controller 100 is a storage device such as a CPU 100a that performs calculations for determining the operation schedules of the soot blowers 30 and 40, which will be described later, and a ROM, HDD, or the like that stores a program for executing the calculations by the CPU 100a. Stored in the storage device 100b and hardware including 100b, RAM 100c which is a work area when the CPU 100a executes a program, and a communication interface (communication I / F) 100d which is an interface when transmitting and receiving data to and from other devices. It is composed of software that is executed by the CPU 100a. Each function of the controller 100 is realized by the CPU 100a loading various programs stored in the storage device 100b into the RAM 100c and executing them.
 コントローラ100には、節炭器10の給水入口温度を検出する温度センサ20a、火炉壁11の冷却水入口温度を検出する温度センサ20b、一次過熱器13の蒸気入口温度を検出する温度センサ20c、一次過熱器13の蒸気出口温度(二次過熱器14の蒸気入口温度)を検出する温度センサ20d、二次過熱器14の蒸気出口温度(三次過熱器15の蒸気入口温度)を検出する温度センサ20e、三次過熱器15の蒸気出口温度を検出する温度センサ20f、一次再熱器16の蒸気入口温度を検出する温度センサ20g、一次再熱器16の蒸気出口温度(二次再熱器17の蒸気入口温度)を検出する温度センサ20h、および二次再熱器17の蒸気出口温度を検出する温度センサ20iからの検出信号が入力される。また、ボイラ1に投入される石炭の種類に関する情報や、操作モードの情報もコントローラ100に入力される。 The controller 100 includes a temperature sensor 20a for detecting the water inlet temperature of the coal saver 10, a temperature sensor 20b for detecting the cooling water inlet temperature of the furnace wall 11, and a temperature sensor 20c for detecting the steam inlet temperature of the primary heater 13. Temperature sensor 20d that detects the steam outlet temperature of the primary superheater 13 (steam inlet temperature of the secondary superheater 14), temperature sensor that detects the steam outlet temperature of the secondary superheater 14 (steam inlet temperature of the tertiary superheater 15) 20e, temperature sensor 20f for detecting the steam outlet temperature of the tertiary superheater 15, temperature sensor 20g for detecting the steam inlet temperature of the primary reheater 16, steam outlet temperature of the primary reheater 16 (of the secondary reheater 17) The detection signals from the temperature sensor 20h that detects the steam inlet temperature) and the temperature sensor 20i that detects the steam outlet temperature of the secondary reheater 17 are input. In addition, information on the type of coal to be put into the boiler 1 and information on the operation mode are also input to the controller 100.
 そして、コントローラ100は、以下に述べるスートブロワ30,40の運転スケジュールに従って、所望のスートブロワ30,40のインバータ39を駆動してモータ38を回転させるよう制御する。即ち、コントローラ100は、各スートブロワ30,40の運転を個別に制御している。 Then, the controller 100 drives the inverter 39 of the desired soot blowers 30 and 40 to rotate the motor 38 according to the operation schedule of the soot blowers 30 and 40 described below. That is, the controller 100 individually controls the operation of the soot blowers 30 and 40.
 また、コントローラ100には圧力センサ36からの検出信号が入力され、コントローラ100は、その検出信号に基づいて蒸気圧力調節弁37の開度を制御している。なお、コントローラ100はモニタ50と接続されており、コントローラ100による演算結果はモニタ50に適宜表示されるよう構成されている(図7,8参照)。 Further, a detection signal from the pressure sensor 36 is input to the controller 100, and the controller 100 controls the opening degree of the steam pressure control valve 37 based on the detection signal. The controller 100 is connected to the monitor 50, and the calculation result by the controller 100 is appropriately displayed on the monitor 50 (see FIGS. 7 and 8).
 次に、スートブロワ30,40の運転スケジュールの決定処理の手順について説明する。図5は、スートブロワ30,40の運転スケジュールの決定処理の手順を示すフローチャートである。コントローラ100は、図5に示す処理をスートブロワ30,40の運転毎に実行し、今回の運転スケジュールにおける最初のスートブロワ30の運転から所定の期間(本実施形態では3日間)が経過すると、次回の3日間のスートブロワ30,40の運転スケジュールを作成する。なお、ボイラ1起動時における最初の3日間のスートブロワ30,40の運転スケジュールは予め設定されており、例えば本実施形態では、全てのスートブロワ30,40が9時間毎に運転される内容の運転スケジュールが予め設定されている。よって、本実施形態では、ボイラ1起動時から最初の3日間は全てのスートブロワ30,40が9時間毎に運転され、4日目以降から伝熱管6の温度変化に基づく運転スケジュールに従ってスートブロワ30,40が個別に運転されることとなる。 Next, the procedure for determining the operation schedule of the soot blowers 30 and 40 will be described. FIG. 5 is a flowchart showing a procedure for determining the operation schedule of the soot blowers 30 and 40. The controller 100 executes the process shown in FIG. 5 for each operation of the soot blowers 30 and 40, and when a predetermined period (3 days in the present embodiment) elapses from the operation of the first soot blower 30 in the current operation schedule, the next operation is performed. Create an operation schedule for the soot blowers 30 and 40 for 3 days. The operation schedule of the soot blowers 30 and 40 for the first 3 days when the boiler 1 is started is set in advance. For example, in the present embodiment, the operation schedule of all the soot blowers 30 and 40 is operated every 9 hours. Is preset. Therefore, in the present embodiment, all the soot blowers 30 and 40 are operated every 9 hours for the first 3 days from the start of the boiler 1, and from the 4th day onward, the soot blowers 30 and 40 are operated according to the operation schedule based on the temperature change of the heat transfer tube 6. 40 will be operated individually.
 スートブロワ30,40の運転が開始されると、コントローラ100は図5の処理を開始する。ここでは、二次過熱器14用に設置されたスートブロワ30を例に挙げて運転スケジュールの決定処理の手順を説明するが、他のスートブロワ30,40についても同様の手順によりスートブロワ30,40毎の運転スケジュールが決定される。 When the operation of the soot blowers 30 and 40 is started, the controller 100 starts the process of FIG. Here, the procedure for determining the operation schedule will be described by taking the soot blower 30 installed for the secondary superheater 14 as an example, but for the other soot blowers 30 and 40, the procedure is the same for each of the soot blowers 30 and 40. The operation schedule is decided.
 まず、コントローラ100は、スートブロワ30の運転開始時(第1の運転時)の二次過熱器14(伝熱管6)の蒸気入口温度Tinを温度センサ20dから取得し、二次過熱器14の蒸気出口温度Toutを温度センサ20eから取得する。そして、コントローラ100は、蒸気入口温度Tinと蒸気出口温度Toutとの温度差ΔT1(第1の温度差)を算出し、この温度差ΔT1をRAM100cに記憶する(ステップS1)。 First, the controller 100 is operated at the start of the soot blowers 30 steam inlet temperature T in of the secondary superheater 14 (heat transfer tube 6) of the (first time operation) acquired from the temperature sensor 20d, the secondary superheater 14 The steam outlet temperature To out is acquired from the temperature sensor 20e. Then, the controller 100 calculates the temperature difference between the steam inlet temperature T in the steam outlet temperature T out Delta] T1 (first temperature difference), and stores the temperature difference Delta] T1 to RAM 100c (step S1).
 次に、コントローラ100は、スートブロワ30の運転停止時(第2の運転時)の二次過熱器14(伝熱管6)の蒸気入口温度Tinを温度センサ20dから取得し、二次過熱器14の蒸気出口温度Toutを温度センサ20eから取得する。そして、コントローラ100は、蒸気入口温度Tinと蒸気出口温度Toutとの温度差ΔT2(第2の温度差)を算出し、この温度差ΔT2をRAM100cに記憶する(ステップS2)。なお、ステップS1とステップS2の処理は、スートブロワ30の運転開始時と運転停止時とに限らない。 Next, the controller 100 obtains the steam inlet temperature T in upon stopping of the sootblower 30 (second operating state) of the secondary superheater 14 (heat transfer tube 6) from the temperature sensor 20d, the secondary superheater 14 The steam outlet temperature To out of is acquired from the temperature sensor 20e. Then, the controller 100 calculates the temperature difference between the steam inlet temperature T in the steam outlet temperature T out Delta] T2 (second temperature difference), and stores the temperature difference Delta] T2 in RAM 100c (step S2). The processing of steps S1 and S2 is not limited to the start of operation and the stop of operation of the soot blower 30.
 次に、コントローラ100は、温度差ΔT2と温度差ΔT1との差分、即ち温度変化値dT(=ΔT2-ΔT1)を算出し、この温度変化値dTをRAM100cに記憶する(ステップS3)。今回の運転スケジュールにおける最初のスートブロワ30の運転から3日間が経過した場合(ステップS4/YES)、コントローラ100は、RAM100cに記憶されている3日間(積算時間H)の温度変化値dTを読み出し、3日間の温度変化値dTの積算値ΣdTを算出する(ステップS5)。 Next, the controller 100 calculates the difference between the temperature difference ΔT2 and the temperature difference ΔT1, that is, the temperature change value dT (= ΔT2-ΔT1), and stores the temperature change value dT in the RAM 100c (step S3). When three days have passed from the operation of the first soot blower 30 in the current operation schedule (step S4 / YES), the controller 100 reads out the temperature change value dT for three days (integrated time H) stored in the RAM 100c. The integrated value ΣdT of the temperature change value dT for 3 days is calculated (step S5).
 次に、コントローラ100は、温度変化値dTの積算値ΣdTに基づいてスートブロワ30のインターバル時間(運転間隔)Tint2を算出し(ステップS6)、次回3日間のスートブロワ30の運転スケジュールを決定する(ステップS7)。この運転スケジュールに従って、コントローラ100は、次回3日間のスートブロワ30の運転を制御する。即ち、ステップS6で算出したインターバル時間Tint2毎にスートブロワ30が運転される。なお、ステップS4にて3日間が経過していない場合(ステップS4/No)には、コントローラ100は処理を終了し、次回のスートブロワ30の運転開始時まで待機する。 Next, the controller 100, the interval time of the sootblowers 30, based on the accumulated ΣdT temperature change value dT to calculate the (headway) T int2 (step S6), and determines the operation schedule of the sootblowers 30 next 3 days ( Step S7). According to this operation schedule, the controller 100 controls the operation of the soot blower 30 for the next three days. That is, the soot blower 30 is operated every interval time Tint2 calculated in step S6. If three days have not passed in step S4 (step S4 / No), the controller 100 ends the process and waits until the next start of operation of the soot blower 30.
 次に、ステップS6におけるインターバル時間Tint2の算出方法について説明する。積算時間をH、積算値をΣdT、伝熱管6の温度変化の目標値をT、伝熱管6の本数をN、今回のスートブロワの運転間隔(今回のインターバル時間)をTint1、次回のインターバル時間をTint2、期待値をEとすると、次回のインターバル時間Tint2は、式(1)、(2)により算出される。
 E=T/N×H/Tint1 ・・・(式1)
 Tint2=Tint1/(ΣdT/E) ・・・(式2)
Next, a method of calculating the interval time Tint2 in step S6 will be described. The integration time is H, the integration value is ΣdT, the target value of the temperature change of the heat transfer tube 6 is T * , the number of heat transfer tubes 6 is N, the operation interval of the soot blower this time (this interval time) is Tint1 , and the next interval. time T int2, if the expected value is E x, the next time interval T int2 the formula (1) is calculated by (2).
E x = T * / N × H / T int1 ... (Equation 1)
T int2 = T int1 / (ΣdT / E x) ··· ( Equation 2)
 例えば、目標値T=2℃、積算時間H=72時間(3日間)、積算値ΣdT=0.77℃、伝熱管の本数N=12本(6ペア)、今回のインターバル時間Tint1=9時間(初期値)の場合、(式1)より、期待値E=2℃/12本×72時間/9時間=1.3が求まる。この期待値E=1.3を(式2)に代入して、次回のインターバル時間Tint2=9h/(0.77℃/1.3)=15.2時間となる。 For example, target value T * = 2 ° C., integrated time H = 72 hours (3 days), integrated value ΣdT = 0.77 ° C., number of heat transfer tubes N = 12 (6 pairs), current interval time Tint1 = In the case of 9 hours (initial value), the expected value Ex = 2 ° C./12 pieces x 72 hours / 9 hours = 1.3 can be obtained from (Equation 1). By substituting this expected value Ex = 1.3 into (Equation 2), the next interval time Tint2 = 9h / (0.77 ° C./1.3) = 15.2 hours.
 コントローラ100は、全てのスートブロワ30A,B,C,D,E・・・に対してこの演算を行い、各スートブロワの運転スケジュールを決定する。例えば、スートブロワ30A,B,C,D,Eについて、今回の3日間の積算値ΣdTが、それぞれ0.77(上述)、0.33、1.13、0.54、1.92であったとすると、コントローラ100は、次回のインターバル時間Tint2をそれぞれ、15.2時間(上述)、35.5時間、10.4時間、21.7時間、6.1時間と算出する。よって、スートブロワ30A,B,C,D,Eは算出された次回のインターバル時間Tint2でそれぞれ個別に次の3日間の運転が行われることとなる。 The controller 100 performs this calculation on all the soot blowers 30A, B, C, D, E ..., And determines the operation schedule of each soot blower. For example, for the soot blowers 30A, B, C, D, and E, the integrated values ΣdT for the three days this time were 0.77 (described above), 0.33, 1.13, 0.54, and 1.92, respectively. Then, the controller 100 calculates the next interval time Tint2 as 15.2 hours (described above), 35.5 hours, 10.4 hours, 21.7 hours, and 6.1 hours, respectively. Therefore, the soot blowers 30A, B, C, D, and E are individually operated for the next three days at the calculated next interval time Tint2.
 本実施形態におけるスートブロワの運転スケジュールを従来と比較して説明する。図6Aは従来のスートブロワの運転スケジュールを示す図、図6Bは本実施形態におけるスートブロワの運転スケジュールを示す図である。なお、図6A,Bはスートブロワ(SB)5台分の運転スケジュールを示している。 The operation schedule of the soot blower in this embodiment will be described in comparison with the conventional one. FIG. 6A is a diagram showing an operation schedule of a conventional soot blower, and FIG. 6B is a diagram showing an operation schedule of the soot blower in the present embodiment. 6A and 6B show the operation schedule for five soot blowers (SB).
 図6Aに示すように、従来はスートブロワA~Eを全て9時間のインターバルで順番に運転していた。そのため、従来は、9時間毎にスートブロワをA→B→C→D→Eの順番に運転する運転スケジュールとなっていた。 As shown in FIG. 6A, conventionally, all the soot blowers A to E were operated in order at intervals of 9 hours. Therefore, conventionally, the operation schedule has been such that the soot blower is operated in the order of A → B → C → D → E every 9 hours.
 一方、本実施形態では、上述したようにスートブロワ30A,B,C,D,E(以下、A,B,C,D,Eと略記)のインターバル時間は個別に決定されるため、3日間のスートブロワA~Eの運転スケジュールは図6Bに示す通りとなる。即ち、スートブロワAは15.2時間毎に運転され、スートブロワBは35.5時間毎に運転され、スートブロワCは10.4時間毎に運転され、スートブロワDは21.7時間毎に運転され、スートブロワEは6.1時間毎に運転される。よって、3日間の運転順は、E→A→E→D→C→E・・・となる。 On the other hand, in the present embodiment, as described above, the interval time of the soot blowers 30A, B, C, D, E (hereinafter abbreviated as A, B, C, D, E) is determined individually, so that the interval time is 3 days. The operation schedule of the soot blowers A to E is as shown in FIG. 6B. That is, the soot blower A is operated every 15.2 hours, the soot blower B is operated every 35.5 hours, the soot blower C is operated every 10.4 hours, and the soot blower D is operated every 21.7 hours. The soot blower E is operated every 6.1 hours. Therefore, the operation order for 3 days is E-> A-> E-> D-> C-> E ....
 次に、モニタ50の表示例について説明する。コントローラ100は、各スートブロワ30,40の積算値ΣdTをモニタ50の所定の表示領域に表示させる。図7はモニタ50の表示例を示す図である。図7に示すように、モニタ50にはボイラ1の側面の模式図が表示されており、スートブロワ30,40が配置されている位置に伝熱管6の温度情報を表示するための表示領域60が形成されている。コントローラ100は、上記したように積算値ΣdTを算出し、この積算値ΣdTをスートブロワ30,40の配置と対応する所定の表示領域60に表示するよう制御している。積算値ΣdTは3日間経過する毎に1回算出されるため、表示領域60に表示される積算値ΣdTも3日毎に更新されることとなる。なお、表示領域60は積算値ΣdTに応じて色分けされており、見た目で温度分布を把握し易くなっている。 Next, a display example of the monitor 50 will be described. The controller 100 displays the integrated value ΣdT of each of the soot blowers 30 and 40 in a predetermined display area of the monitor 50. FIG. 7 is a diagram showing a display example of the monitor 50. As shown in FIG. 7, a schematic view of the side surface of the boiler 1 is displayed on the monitor 50, and a display area 60 for displaying the temperature information of the heat transfer tube 6 is provided at a position where the soot blowers 30 and 40 are arranged. It is formed. The controller 100 calculates the integrated value ΣdT as described above, and controls the integrated value ΣdT to be displayed in a predetermined display area 60 corresponding to the arrangement of the soot blowers 30 and 40. Since the integrated value ΣdT is calculated once every three days, the integrated value ΣdT displayed in the display area 60 is also updated every three days. The display area 60 is color-coded according to the integrated value ΣdT, which makes it easy to visually grasp the temperature distribution.
 また、モニタ50の右下部には表示領域65が設けられており、この表示領域65には「次ページ」の文字が表示されている。この表示領域65を例えばタッチ操作すると画面の表示が切り換わる。図8はモニタ50の次ページの表示例を示す図である。図8に示すように、モニタ50の画面が切り替わると、ボイラ1の燃料情報である石炭の種類(炭種)ごとの積算値ΣdTが表示される。図8の例では、スートブロワA,B,C,C,Eのそれぞれに対応する伝熱管6の温度変化値dTの積算値ΣdTの値が、石炭の種類(炭種)No.1~No.4毎に表示されている。なお、図示していないが、温度の値に応じて表示が色分けされている。 In addition, a display area 65 is provided at the lower right of the monitor 50, and the characters "next page" are displayed in this display area 65. When the display area 65 is touch-operated, for example, the screen display is switched. FIG. 8 is a diagram showing a display example on the next page of the monitor 50. As shown in FIG. 8, when the screen of the monitor 50 is switched, the integrated value ΣdT for each type of coal (coal type), which is the fuel information of the boiler 1, is displayed. In the example of FIG. 8, the integrated value ΣdT of the temperature change value dT of the heat transfer tube 6 corresponding to each of the soot blowers A, B, C, C, and E is the coal type (coal type) No. 1 to No. It is displayed every 4. Although not shown, the display is color-coded according to the temperature value.
 このように構成された本実施形態によれば、次のような作用効果を奏することができる。  According to the present embodiment configured in this way, the following effects can be achieved.
 伝熱管6に付着したクリンカが除去されると、伝熱管6の伝熱効率が向上するため、伝熱管6の蒸気出口温度はスートブロワ30,40を運転する前(即ち、伝熱管6に付着したクリンカを除去する前)と比べて上昇する。そして、伝熱管6の蒸気出口温度の変化は、伝熱管6から除去されるクリンカの量が多いほど大きくなる。ボイラ1の安定的な運転を考慮すると、伝熱管6の蒸気出入口の温度変化は小さい方が好ましいが、従来のようにスートブロワの運転間隔が固定されていると、伝熱管6毎の蒸気温度の管理は困難である。 When the clinker adhering to the heat transfer tube 6 is removed, the heat transfer efficiency of the heat transfer tube 6 is improved. Therefore, the steam outlet temperature of the heat transfer tube 6 is set before operating the soot blowers 30 and 40 (that is, the clinker adhering to the heat transfer tube 6). It rises compared to before removing). The change in the steam outlet temperature of the heat transfer tube 6 increases as the amount of clinker removed from the heat transfer tube 6 increases. Considering the stable operation of the boiler 1, it is preferable that the temperature change at the steam inlet / outlet of the heat transfer tube 6 is small, but if the operation interval of the soot blower is fixed as in the conventional case, the steam temperature of each heat transfer tube 6 It is difficult to manage.
 そこで、本実施形態では、各スートブロワ30,40(30A,B,C・・・、40A,B,C・・・)の運転間隔(インターバル時間)を、上記した演算手法により求め、その運転スケジュールに従って各スートブロワ30,40を運転するように制御している。 Therefore, in the present embodiment, the operation interval (interval time) of each soot blower 30, 40 (30A, B, C ..., 40A, B, C ...) is obtained by the above-mentioned calculation method, and the operation schedule is obtained. The soot blowers 30 and 40 are controlled to be operated according to the above.
 これにより、クリンカが付着し易い伝熱管6については頻繁にスートブロワ30,40を運転してクリンカを除去することで、伝熱管6の温度上昇を抑えることができる。また、クリンカが付着し難い伝熱管6についてはスートブロワ30,40の運転間隔を長めにすることで、不要なスートブロワ30,40の運転を抑止できる。このように、本実施形態では、スートブロワ30,40の運転の前後における伝熱管6の蒸気出口温度の変化を抑えつつ、スートブロワ30,40の運転効率を向上させることができる。 As a result, for the heat transfer tube 6 to which the clinker easily adheres, the temperature rise of the heat transfer tube 6 can be suppressed by frequently operating the soot blowers 30 and 40 to remove the clinker. Further, for the heat transfer tube 6 to which the clinker is hard to adhere, the operation of the soot blowers 30 and 40 can be suppressed by lengthening the operation interval of the soot blowers 30 and 40. As described above, in the present embodiment, it is possible to improve the operating efficiency of the soot blowers 30 and 40 while suppressing the change in the steam outlet temperature of the heat transfer tube 6 before and after the operation of the soot blowers 30 and 40.
 また、モニタ50にはボイラ1の模式図が表示され、このボイラ1に設置されるスートブロワ30,40の位置と対応付けて積算値ΣdTが表示されるため、どの辺りの伝熱管6の温度変化が大きいかを目視確認し易い。また、積算値ΣdTに応じて色分けして温度が表示されるため、視覚を通じて温度変化の分布を把握し易く、ボイラ1の運転管理が容易である。さらに、モニタ50の画面を切り換えると、石炭の種類に応じて積算値ΣdTが一覧で表示されるため、石炭の種類によって最適なスートブロワ30,40の運転を行うことができる。 Further, a schematic diagram of the boiler 1 is displayed on the monitor 50, and the integrated value ΣdT is displayed in association with the positions of the soot blowers 30 and 40 installed in the boiler 1, so that the temperature change of the heat transfer tube 6 in any area is displayed. It is easy to visually check if the size is large. Further, since the temperature is displayed in different colors according to the integrated value ΣdT, it is easy to visually grasp the distribution of the temperature change, and the operation management of the boiler 1 is easy. Further, when the screen of the monitor 50 is switched, the integrated value ΣdT is displayed in a list according to the type of coal, so that the optimum soot blowers 30 and 40 can be operated according to the type of coal.
(第2実施形態)
 次に、本発明の第2実施形態に係るスートブロワの制御システムについて説明する。第2実施形態に係るスートブロワの制御システムでは、コントローラ100が操作モードに応じて目標値Tを変更している点に特徴がある。以下、この特徴を中心に説明する。
(Second Embodiment)
Next, the control system of the soot blower according to the second embodiment of the present invention will be described. The soot blower control system according to the second embodiment is characterized in that the controller 100 changes the target value T * according to the operation mode. Hereinafter, this feature will be mainly described.
 図9は、第2実施形態におけるスートブロワの運転スケジュールの決定処理の手順を示すフローチャートである。図9に示すように、第2実施形態では、目標値Tをボイラ1の操作モードに応じて変更する構成(ステップS6-1)とした点が第1実施形態と異なっている。 FIG. 9 is a flowchart showing a procedure for determining the operation schedule of the soot blower according to the second embodiment. As shown in FIG. 9, the second embodiment is different from the first embodiment in that the target value T * is changed according to the operation mode of the boiler 1 (step S6-1).
 図10は操作モードと目標値Tとの対応関係を示す図である。図10に示すように、操作モードaに対して目標値T=2℃、操作モードbに対して目標値T=3℃、操作モードcに対して目標値T=4℃が対応付けられたテーブルが予め記憶装置100bに記憶されている。コントローラ100は、ステップS6-1の処理を実行する際に、入力された操作モードに対応する目標値Tを記憶装置100bから読み出して、上記した(式1)のTに代入して期待値Eを算出し、最終的に、次回のインターバル時間Tint2を演算する。 FIG. 10 is a diagram showing a correspondence relationship between the operation mode and the target value T *. As shown in FIG. 10, the target value T * = 2 ° C. corresponds to the operation mode a, the target value T * = 3 ° C. corresponds to the operation mode b, and the target value T * = 4 ° C. corresponds to the operation mode c. The attached table is stored in the storage device 100b in advance. When the controller 100 executes the process of step S6-1, the controller 100 reads the target value T * corresponding to the input operation mode from the storage device 100b, substitutes it into the T * of the above (Equation 1), and expects it. The value Ex is calculated, and finally, the next interval time Tint2 is calculated.
 この第2実施形態によれば、操作モードに応じて、より適したインターバル時間Tint2でスートブロワ30,40を運転することができるため、スートブロワ30,40の運転効率がさらに高まる。 According to this second embodiment, the soot blowers 30 and 40 can be operated at a more suitable interval time Tint2 according to the operation mode, so that the operation efficiency of the soot blowers 30 and 40 is further improved.
(第3実施形態)
 次に、本発明の第3実施形態に係るスートブロワの制御システムについて説明する。第3実施形態に係るスートブロワの制御システムでは、コントローラ100が操作モードに応じてスートブロワ30,40の噴霧蒸気圧力Pを変更している点に特徴がある。以下、この特徴を中心に説明する。
(Third Embodiment)
Next, the control system of the soot blower according to the third embodiment of the present invention will be described. The soot blower control system according to the third embodiment is characterized in that the controller 100 changes the spray steam pressures P of the soot blowers 30 and 40 according to the operation mode. Hereinafter, this feature will be mainly described.
 図11は、第3実施形態におけるスートブロワの運転スケジュールの決定処理の手順を示すフローチャートである。図11に示すように、第3実施形態では、次回のインターバル時間Tint2を算出した後に、操作モードに応じてスートブロワ30,40の噴霧蒸気圧力Pを決定している構成(ステップS6-2)に特徴がある。 FIG. 11 is a flowchart showing a procedure for determining the operation schedule of the soot blower according to the third embodiment. As shown in FIG. 11, in the third embodiment, after the next interval time Tint2 is calculated, the spray steam pressures P of the soot blowers 30 and 40 are determined according to the operation mode (step S6-2). There is a feature in.
 図12は操作モードと噴霧蒸気圧力Pとの対応関係を示す図である。図12に示すように、操作モードaに対して噴霧蒸気圧力P=Pa、操作モードbに対して噴霧蒸気圧力P=Pb、操作モードcに対して噴霧蒸気圧力P=Pcが対応付けられたテーブルが予め記憶装置100bに記憶されている。コントローラ100は、ステップS6-2において操作モードに応じたスートブロワ30,40の噴霧蒸気圧力Pを選択し、噴霧蒸気供給ライン35の圧力が選択した噴霧蒸気圧力Pになるように、蒸気圧力調節弁37の開度を調整する。 FIG. 12 is a diagram showing the correspondence between the operation mode and the spray vapor pressure P. As shown in FIG. 12, the spray vapor pressure P = Pa is associated with the operation mode a, the spray vapor pressure P = Pb is associated with the operation mode b, and the spray vapor pressure P = Pc is associated with the operation mode c. The table is stored in the storage device 100b in advance. The controller 100 selects the spray steam pressure P of the soot blowers 30 and 40 according to the operation mode in step S6-2, and the steam pressure control valve so that the pressure of the spray steam supply line 35 becomes the selected spray steam pressure P. Adjust the opening degree of 37.
 この第3実施形態によれば、スートブロワ30,40から噴霧される蒸気圧力を調整できるため、操作モードに応じてきめ細かく伝熱管6の蒸気温度の変化を抑えることができる。 According to this third embodiment, since the steam pressure sprayed from the soot blowers 30 and 40 can be adjusted, it is possible to finely suppress the change in the steam temperature of the heat transfer tube 6 according to the operation mode.
(第4実施形態)
 次に、本発明の第4実施形態に係るスートブロワの制御システムについて説明する。第4実施形態に係るスートブロワの制御システムでは、コントローラ100が操作モードに応じてスートブロワ30,40の回転速度Nを変更している点に特徴がある。以下、この特徴を中心に説明する。
(Fourth Embodiment)
Next, the control system of the soot blower according to the fourth embodiment of the present invention will be described. The soot blower control system according to the fourth embodiment is characterized in that the controller 100 changes the rotation speeds N of the soot blowers 30 and 40 according to the operation mode. Hereinafter, this feature will be mainly described.
 図13は、第4実施形態におけるスートブロワの運転スケジュールの決定処理の手順を示すフローチャートである。図13に示すように、第4実施形態では、次回のインターバル時間Tint2を算出した後に、操作モードに応じてスートブロワ30,40の回転速度Nを決定している構成(ステップS6-3)に特徴がある。 FIG. 13 is a flowchart showing a procedure for determining the operation schedule of the soot blower according to the fourth embodiment. As shown in FIG. 13, in the fourth embodiment, after the next interval time Tint2 is calculated, the rotation speeds N of the soot blowers 30 and 40 are determined according to the operation mode (step S6-3). There is a feature.
 図14は操作モードと回転速度Nとの対応関係を示す図である。図12に示すように、操作モードaに対して回転速度N=Na、操作モードbに対して回転速度N=Nb、操作モードcに対して回転速度N=Ncが対応付けられたテーブルが予め記憶装置100bに記憶されている。コントローラ100は、ステップS6-3において操作モードに応じたスートブロワ30,40の回転速度Nを選択し、モータ38の回転速度を制御する。 FIG. 14 is a diagram showing the correspondence between the operation mode and the rotation speed N. As shown in FIG. 12, a table in which the rotation speed N = Na for the operation mode a, the rotation speed N = Nb for the operation mode b, and the rotation speed N = Nc for the operation mode c is previously provided. It is stored in the storage device 100b. In step S6-3, the controller 100 selects the rotation speeds N of the soot blowers 30 and 40 according to the operation mode, and controls the rotation speed of the motor 38.
 この第4実施形態によれば、スートブロワ30,40の回転速度を調整できるため、操作モードに応じてきめ細かく伝熱管6の蒸気温度の変化を抑えることができる。 According to this fourth embodiment, since the rotation speeds of the soot blowers 30 and 40 can be adjusted, it is possible to finely suppress changes in the steam temperature of the heat transfer tube 6 according to the operation mode.
 なお、本発明は上記した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の変形が可能であり、特許請求の範囲に記載された技術思想に含まれる技術的事項の全てが本発明の対象となる。前記実施形態は、好適な例を示したものであるが、当業者ならば、本明細書に開示の内容から、各種の代替例、修正例、変形例あるいは改良例を実現することができ、これらは添付の特許請求の範囲に記載された技術的範囲に含まれる。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the gist of the present invention, and all the technical matters included in the technical idea described in the claims are all. It is the subject of the present invention. Although the above-described embodiment shows a suitable example, those skilled in the art can realize various alternative examples, modifications, modifications or improvements from the contents disclosed in the present specification. These are included in the technical scope described in the appended claims.
 上記した実施形態では、伝熱管6の蒸気入口温度と蒸気出口温度の差を積算してスートブロワ30,40のインターバル時間Tint2を算出した。これは、ボイラ1の運転中、伝熱管6の蒸気入口温度と蒸気出口温度とが常に変動しているからであるが、伝熱管6の蒸気入口温度と蒸気出口温度とが共に比較的安定している運転状態であれば、伝熱管6の蒸気出口温度のみの差を積算して、インターバル時間Tint2を算出しても良い。 In the embodiments described above, to calculate the time interval T int2 soot blowers 30, 40 by integrating the difference between the steam inlet temperature and the steam outlet temperature of the heat transfer tube 6. This is because the steam inlet temperature and the steam outlet temperature of the heat transfer tube 6 are constantly fluctuating during the operation of the boiler 1, but both the steam inlet temperature and the steam outlet temperature of the heat transfer tube 6 are relatively stable. In the operating state, the interval time Tint2 may be calculated by integrating the difference only in the steam outlet temperature of the heat transfer tube 6.
 また、上記した実施形態では、積算値ΣdTを用いてインターバル時間Tint2を算出したが、温度変化値dTを算出する毎にインターバル時間Tint2を算出してスートブロワ30,40の運転を制御しても良い。 Further, in the above embodiments, to calculate the time interval T int2 using an integrated value ShigumadT, and controls the operation of the sootblowers 30 and 40 calculates the interval time T int2 each time to calculate a temperature change value dT Is also good.
 また、上記した実施形態において、インターバル時間Tint2を決定する処理(ステップS6)の後、スートブロワの噴霧蒸気圧力Pを選択する処理(ステップS6-2)とスートブロワの回転速度Nを決定する処理(ステップS6-3)の両方を行っても良い。 Further, in the above-described embodiment, after the process of determining the interval time Tint2 (step S6), the process of selecting the spray vapor pressure P of the sootblower (step S6-2) and the process of determining the rotation speed N of the sootblower (step S6-2). Both steps S6-3) may be performed.
 また、上記の実施形態では、熱交換器に設置されたスートブロワ30のインターバル時間Tint2の算出方法について説明したが、火炉壁11に設置されたスートブロワ40のインターバル時間Tint2を算出する場合、火炉壁11の冷却水の出入口の温度差を積算すれば良い。 In the above embodiment has described the method of calculating the interval time of the soot blowers 30 installed in the heat exchanger T int2, when calculating the interval time T int2 soot blower 40 installed in the furnace wall 11, the furnace The temperature difference between the inlet and outlet of the cooling water of the wall 11 may be integrated.
 1 ボイラ
 2 火炉
 3 ケージ部
 4 副側壁
 6 伝熱管
 10 節炭器
 13 一次過熱器
 14 二次過熱器
 15 三次過熱器
 16 一次再熱器
 17 二次再熱器
 20a~20i 温度センサ(入口温度センサ、出口温度センサ)
 30,40 スートブロワ
 31 スートブロワチューブ
 32 ノズルブロック
 33,34 噴霧孔
 35 噴霧蒸気供給ライン
 36 圧力センサ
 37 蒸気圧力調節弁
 38 モータ
 39 インバータ
 50 モニタ
 100 コントローラ
1 Boiler 2 Fire furnace 3 Cage part 4 Secondary side wall 6 Heat transfer tube 10 Economizer 13 Primary superheater 14 Secondary superheater 15 Secondary superheater 16 Primary reheater 17 Secondary reheater 20a to 20i Temperature sensor (inlet temperature sensor) , Outlet temperature sensor)
30, 40 Soot blower 31 Soot blower tube 32 Nozzle block 33, 34 Spray hole 35 Spray steam supply line 36 Pressure sensor 37 Steam pressure control valve 38 Motor 39 Inverter 50 Monitor 100 Controller

Claims (8)

  1.  ボイラ内に設けられた伝熱管の表面に蒸気を噴射するスートブロワと、前記伝熱管の蒸気入口温度を検出する入口温度センサと、前記伝熱管の蒸気出口温度を検出する出口温度センサと、前記入口温度センサおよび前記出口温度センサから入力される各検出信号に基づいて前記スートブロワの運転を制御するコントローラと、を備えたスートブロワの制御システムにおいて、
     前記コントローラは、
     前記スートブロワの運転中の第1の時点における前記蒸気入口温度と前記蒸気出口温度との差である第1の温度差と、前記スートブロワの運転中の第2の時点における前記蒸気入口温度と前記蒸気出口温度との差である第2の温度差との差分である温度変化値を求め、当該温度変化値が目標値の範囲内になるように、前記スートブロワの運転間隔を決定することを特徴とするスートブロワの制御システム。
    A soot blower that injects steam onto the surface of a heat transfer tube provided in a boiler, an inlet temperature sensor that detects the steam inlet temperature of the heat transfer tube, an outlet temperature sensor that detects the steam outlet temperature of the heat transfer tube, and the inlet. In a steam blower control system comprising a temperature sensor and a controller that controls the operation of the steam blower based on each detection signal input from the outlet temperature sensor.
    The controller
    The first temperature difference, which is the difference between the steam inlet temperature and the steam outlet temperature at the first time point during the operation of the soot blower, and the steam inlet temperature and the steam at the second time point during the operation of the soot blower. The feature is that the temperature change value, which is the difference from the second temperature difference, which is the difference from the outlet temperature, is obtained, and the operation interval of the soot blower is determined so that the temperature change value is within the range of the target value. Control system of the soot blower.
  2.  請求項1に記載のスートブロワの制御システムにおいて、
     前記コントローラは、前記温度変化値を所定の期間に亘って積算して積算値を求め、当該積算値が前記目標値の範囲内になるように、前記スートブロワの運転間隔を決定することを特徴とするスートブロワの制御システム。
    In the control system of the soot blower according to claim 1,
    The controller is characterized in that the temperature change value is integrated over a predetermined period to obtain an integrated value, and the operation interval of the soot blower is determined so that the integrated value is within the range of the target value. Soot blower control system.
  3.  請求項2に記載のスートブロワの制御システムにおいて、
     前記スートブロワが複数設けられ、
     前記コントローラは、前記スートブロワ毎に前記スートブロワの運転間隔を決定し、当該運転間隔に従って複数の前記スートブロワをそれぞれ独立して制御することを特徴とするスートブロワの制御システム。
    In the control system of the soot blower according to claim 2.
    A plurality of the soot blowers are provided,
    The controller is a control system for a soot blower, characterized in that an operation interval of the soot blower is determined for each soot blower, and a plurality of the soot blowers are independently controlled according to the operation interval.
  4.  請求項1~3の何れか1項に記載のスートブロワの制御システムにおいて、
     前記目標値が前記ボイラの操作モードと対応付けて予め複数設定されており、
     前記コントローラは、外部から入力された前記操作モードと対応する前記目標値に基づいて、前記スートブロワの運転間隔を決定することを特徴とするスートブロワの制御システム。
    In the control system of the soot blower according to any one of claims 1 to 3,
    A plurality of the target values are set in advance in association with the operation mode of the boiler.
    The controller is a control system for a soot blower, which determines an operation interval of the soot blower based on the target value corresponding to the operation mode input from the outside.
  5.  請求項1~3の何れか1項に記載のスートブロワの制御システムにおいて、
     前記スートブロワの噴霧蒸気圧力が前記ボイラの操作モードと対応付けて予め複数設定されており、
     前記コントローラは、外部から入力された前記操作モードに応じて、前記スートブロワの噴霧蒸気圧力を決定することを特徴とするスートブロワの制御システム。
    In the control system of the soot blower according to any one of claims 1 to 3,
    A plurality of spray steam pressures of the soot blower are set in advance in association with the operation mode of the boiler.
    The controller is a control system for a soot blower, characterized in that the spray steam pressure of the soot blower is determined according to the operation mode input from the outside.
  6.  請求項1~3の何れか1項に記載のスートブロワの制御システムにおいて、
     前記スートブロワの回転速度が前記ボイラの操作モードと対応付けて予め複数設定されており、
     前記コントローラは、外部から入力された前記操作モードに応じて、前記スートブロワの回転速度を決定することを特徴とするスートブロワの制御システム。
    In the control system of the soot blower according to any one of claims 1 to 3,
    A plurality of rotation speeds of the soot blower are set in advance in association with the operation mode of the boiler.
    The controller is a control system for a soot blower, characterized in that the rotation speed of the soot blower is determined according to the operation mode input from the outside.
  7.  請求項2または3に記載のスートブロワの制御システムにおいて、
     前記コントローラと接続され、前記伝熱管の温度情報を表示するモニタをさらに備え、
     前記コントローラは、前記モニタに、前記スートブロワの配置と対応するように前記積算値を表示させることを特徴とするスートブロワの制御システム。
    In the control system of the soot blower according to claim 2 or 3.
    Further equipped with a monitor connected to the controller and displaying temperature information of the heat transfer tube,
    The controller is a control system for a soot blower, characterized in that the monitor displays the integrated value so as to correspond to the arrangement of the soot blower.
  8.  請求項7に記載のスートブロワの制御システムにおいて、
     前記コントローラは、外部から入力される前記ボイラの燃料情報と対応付けて記憶すると共に、前記モニタに、前記積算値を前記ボイラに投入される燃料の種類毎に表示することを特徴とするスートブロワの制御システム。
     
    In the control system of the soot blower according to claim 7.
    The controller is characterized in that it stores the fuel information of the boiler input from the outside in association with the fuel information of the boiler, and displays the integrated value on the monitor for each type of fuel charged into the boiler. Control system.
PCT/JP2020/023412 2019-08-26 2020-06-15 Soot blower control system WO2021039031A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227002680A KR102647151B1 (en) 2019-08-26 2020-06-15 Control system of soot blower
MX2022001148A MX2022001148A (en) 2019-08-26 2020-06-15 Soot blower control system.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-153910 2019-08-26
JP2019153910A JP6808001B1 (en) 2019-08-26 2019-08-26 Soot blower control system

Publications (1)

Publication Number Publication Date
WO2021039031A1 true WO2021039031A1 (en) 2021-03-04

Family

ID=73992812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023412 WO2021039031A1 (en) 2019-08-26 2020-06-15 Soot blower control system

Country Status (5)

Country Link
JP (1) JP6808001B1 (en)
KR (1) KR102647151B1 (en)
MX (1) MX2022001148A (en)
TW (1) TWI755784B (en)
WO (1) WO2021039031A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248802A (en) * 2000-03-03 2001-09-14 Nippon Steel Corp Soot blower
US20060191896A1 (en) * 2005-02-14 2006-08-31 Emerson Process Management Power & Water Solutions, Inc. Method and apparatus for improving steam temperature control
JP2008111578A (en) * 2006-10-30 2008-05-15 Babcock Hitachi Kk Soot blower device and boiler device comprising the same
CN106247308A (en) * 2016-07-26 2016-12-21 浙江大学 Boiler scaling condition monitoring based on furnace exit temperature and control method
JP2019132515A (en) * 2018-01-31 2019-08-08 三菱日立パワーシステムズ株式会社 Suit blower operation control device, suit blower operation control method, and combustion system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS615776B2 (en) 1979-08-21 1986-02-21 Kimiko Metarugichesukii Inst
JP2549097B2 (en) * 1986-06-20 1996-10-30 日本製紙 株式会社 Boiler soot blow control device
JP3776596B2 (en) * 1998-07-07 2006-05-17 三菱重工業株式会社 Suit blower control device
TWI644191B (en) * 2016-12-02 2018-12-11 財團法人資訊工業策進會 Intelligent soot-blowing device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001248802A (en) * 2000-03-03 2001-09-14 Nippon Steel Corp Soot blower
US20060191896A1 (en) * 2005-02-14 2006-08-31 Emerson Process Management Power & Water Solutions, Inc. Method and apparatus for improving steam temperature control
JP2008111578A (en) * 2006-10-30 2008-05-15 Babcock Hitachi Kk Soot blower device and boiler device comprising the same
CN106247308A (en) * 2016-07-26 2016-12-21 浙江大学 Boiler scaling condition monitoring based on furnace exit temperature and control method
JP2019132515A (en) * 2018-01-31 2019-08-08 三菱日立パワーシステムズ株式会社 Suit blower operation control device, suit blower operation control method, and combustion system

Also Published As

Publication number Publication date
TWI755784B (en) 2022-02-21
KR102647151B1 (en) 2024-03-14
JP6808001B1 (en) 2021-01-06
TW202117232A (en) 2021-05-01
MX2022001148A (en) 2022-02-22
JP2021032497A (en) 2021-03-01
KR20220027999A (en) 2022-03-08

Similar Documents

Publication Publication Date Title
US4996951A (en) Method for soot blowing automation/optimization in boiler operation
JP5142508B2 (en) Operation method of soot blower device
EP2738371A2 (en) A system and method for operating a gas turbine in a turndown mode
JP4735548B2 (en) High-humidity air-utilizing gas turbine and its operating method
JP5452634B2 (en) Fuel control method and fuel control apparatus for gas turbine combustor installed in gas turbine using high humidity air
CN103776020B (en) Double reheat power station boiler with three rear flues and double rear baffles and capable of recycling jet flow flue gas
CN103328887B (en) For controlling the method and apparatus of vapor (steam) temperature in boiler
CN110454765A (en) The method that Circulating Fluidized Bed Boilers depth sliding parameter is stopped transport
CN108625989B (en) System and method for operating a combined cycle power plant
WO2021039031A1 (en) Soot blower control system
CN104075309A (en) Eastern-Junggar-coal fired double-reheat steam power plant boiler
JP5665621B2 (en) Waste heat recovery boiler and power plant
FI20175975A1 (en) A method and a system for maintaining steam temperatures with decreased loads of a steam turbine power plant comprising a fluidized bed boiler
JP6087226B2 (en) Boiler control device
CN113091046A (en) Double reheat boiler and outlet steam temperature control method and device thereof
JP5164561B2 (en) Reheat steam temperature control method
JP4625374B2 (en) Furnace cleaning method and furnace cleaning apparatus
JP2019132515A (en) Suit blower operation control device, suit blower operation control method, and combustion system
JP7185507B2 (en) Steam turbine equipment, method for starting steam turbine equipment, and combined cycle plant
TW202032302A (en) Plant operation assistance device
JP5537475B2 (en) Waste heat recovery boiler and power plant
RU2450206C1 (en) Boiler plant
JP2010196935A (en) Reheat steam temperature control system
JP4972533B2 (en) Regenerative gas turbine and fuel control method for regenerative gas turbine
WO1998039599A1 (en) Staged supplemental firing of high vanadium content fuel oils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227002680

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856188

Country of ref document: EP

Kind code of ref document: A1