WO2021038798A1 - ダイアグラム描画システム、ダイアグラム描画方法及びプログラム - Google Patents

ダイアグラム描画システム、ダイアグラム描画方法及びプログラム Download PDF

Info

Publication number
WO2021038798A1
WO2021038798A1 PCT/JP2019/033930 JP2019033930W WO2021038798A1 WO 2021038798 A1 WO2021038798 A1 WO 2021038798A1 JP 2019033930 W JP2019033930 W JP 2019033930W WO 2021038798 A1 WO2021038798 A1 WO 2021038798A1
Authority
WO
WIPO (PCT)
Prior art keywords
events
event
diagram
computer
chain
Prior art date
Application number
PCT/JP2019/033930
Other languages
English (en)
French (fr)
Inventor
敏宏 浅井
Original Assignee
株式会社suki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社suki filed Critical 株式会社suki
Priority to PCT/JP2019/033930 priority Critical patent/WO2021038798A1/ja
Publication of WO2021038798A1 publication Critical patent/WO2021038798A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling

Definitions

  • the present invention relates to a diagram drawing system, a diagram drawing method, and a program for drawing a diagram representing a chain of causal relationships and actions and reactions of a plurality of events.
  • the robot is made to learn pattern information, and based on the pattern information acquired in the actual environment before and after the robot's own actions, the environment models before and after the change are acquired, and the prerequisites and deletion list are obtained. Generates an operator that includes the additional list and robot operation information, inputs the initial state and target state of the task to the planner for planning, and executes the operation according to the operation information in the plan output by the planner to the robot.
  • a technique for solving a problem is provided (see Patent Document 2).
  • An object of the present invention is to provide a diagram drawing system, a diagram drawing method, and a program capable of drawing a diagram showing a chain of a causal relationship between a plurality of events and an action / reaction.
  • the present invention provides the following solutions.
  • the present invention is a diagram drawing system that draws a diagram showing a chain of causal relationships between a plurality of events and actions and reactions.
  • a drawing means for drawing a diagram based on the generated chain Provided is a diagram drawing system characterized by comprising.
  • the diagram drawing system that draws a diagram showing the chain of the causal relationship between a plurality of events and the action / reaction acquires the plurality of events and converts the acquired plurality of events into parameters. From the converted parameters, a certain event and another event are associated with each other among the plurality of events, a chain of causal relationships and action / reactions between the associated events is generated, and a diagram is created based on the generated chain. draw.
  • the present invention is in the category of systems, but in other categories such as methods and programs, the same actions and effects are exhibited according to the categories.
  • FIG. 1 is a diagram showing an outline of the diagram drawing system 1.
  • FIG. 2 is an overall configuration diagram of the diagram drawing system 1.
  • FIG. 3 is a diagram showing a flowchart of a diagram drawing process executed by the computer 10.
  • FIG. 4 is a diagram showing a flowchart of the importance determination process executed by the computer 10.
  • FIG. 5 is a diagram schematically showing an example of a diagram 100 drawn by the computer 10.
  • FIG. 1 is a diagram for explaining an outline of a diagram drawing system 1 which is a preferred embodiment of the present invention.
  • the diagram drawing system 1 is a computer system composed of a computer 10 and draws a diagram showing a chain of causal relationships and action / reactions of a plurality of events.
  • the diagram drawing system 1 is a user terminal owned by the user (for example, a mobile terminal such as a smartphone or tablet terminal, a wearable terminal such as a head mount display such as smart glasses), an external system linked with this system, or a book. Even if an administrator terminal (for example, a mobile terminal such as a smartphone or tablet terminal or a wearable terminal such as a head mount display such as a smart glass) owned by the administrator of the system or an external system, or other terminals or devices are included. Good. In this case, the diagram drawing system 1 executes each process described later by any or a combination of the computer 10 and the terminals, devices, and the like included in the computer 10.
  • diagram drawing system 1 may be realized by one computer such as a computer 10, or may be realized by a plurality of computers such as a cloud computer.
  • the computer 10 is connected to a user terminal, an external system, an administrator terminal, other terminals, devices, etc. via a public network or the like so that data communication is possible, and transmits / receives necessary data and information. To do.
  • the computer 10 acquires a plurality of events.
  • the computer 10 acquires a plurality of events, for example, by accepting input from a user or from an external system.
  • An event is, for example, a matter or event related to an organization or an individual. Specifically, the solution power, average value of human resources, sales, number of Taiki human resources, achievements, sales retention rate, quality of mechanism to play at the time of hiring, number of offers from investors, quality of personnel manager, stocks The amount of procurement used, the amount of investment, the quality of executives, the ability to formulate strategies, and the attractiveness of strategies can be mentioned.
  • the computer 10 acquires not only the content of such an event but also a quantitative evaluation and a qualitative evaluation for this content.
  • the user terminal accepts the input of the above-mentioned event.
  • the user terminal transmits the received event to the computer 10.
  • the computer 0 acquires a plurality of events.
  • the external system transmits an event recorded by itself or an event received by itself to the computer 10 at regular intervals or at a predetermined timing. By receiving this event, the computer 10 acquires a plurality of events.
  • the computer 10 converts each of the acquired plurality of events into parameters.
  • This parameter is based on, for example, the KPI (Key Performance Indicator) of an organization or an individual, and is for quantitatively evaluating the performance evaluation of the organization or an individual. If this parameter is an organization, for example, items such as funding amount, sales, profit margin, number of employees, number of target achievers, number of non-achievement targets, numerical values of each item, and increase or decrease of each numerical value There is a transition.
  • this parameter is an individual, for example, items such as the frequency of interaction with family members, the frequency of interaction with friends, the number of friends, and the degree of friendship, the numerical values of each item, and the transition of the increase and decrease of each numerical value. Can be mentioned.
  • the computer 10 converts, for example, each event into a KPI item corresponding to each event.
  • the computer 10 converts each item into a numerical value and a transition of the numerical value based on the content and evaluation of the acquired event. As a result, the computer 10 converts a plurality of events into parameters.
  • the computer 10 associates a certain event with another event among a plurality of events from the converted parameters.
  • the computer 10 associates items and items related to the numerical values of the items in the converted parameters as related events.
  • the computer 10 associates events having similar predetermined keywords, numerical values, etc. included in parameters as related events.
  • the computer 10 generates a chain of causal relationships between related events and actions and reactions.
  • the computer 10 analyzes the causal relationship between related events and the action / reaction, respectively.
  • the computer 10 analyzes the causal relationship and action / reaction between events using the propensity score, and analyzes the cause / effect and action / reaction between events. Based on the analysis result, the computer 10 generates a chain of causal relationships between related events and actions and reactions.
  • the computer 10 draws a diagram based on this generated chain.
  • the diagram for example, organizes and symbolically illustrates this chain.
  • the computer 10 draws a diagram (or a result of associating events with each other or a result of generating a chain), an event causing the most events, or an event acting on the most events.
  • the configuration may be determined to be the most important event.
  • the computer 10 may be further configured to clarify the task for solving the problem of this most important event. Tasks include, for example, the policies and approaches required to curb the reaction of an event while maintaining (improving) the effect of the event.
  • the computer 10 may be configured to determine the order of importance of each event. For example, the computer 10 depends on the result of drawing a diagram (or the result of associating events or generating a chain), the number of events causing the event, or the number of events acting on the event. , Judge the order of importance. At this time, the computer 10 may be configured to clarify the task for solving the problem of each event according to the determined order.
  • the computer 10 may be configured to propose the task clarified in this way to the user or the like.
  • the computer 10 proposes this task to the user or the like via the user terminal or the like.
  • the computer 10 acquires a plurality of events (step S01).
  • the event is as described above.
  • the computer 10 acquires the plurality of events from the user terminal or an external system.
  • the computer 10 acquires a plurality of events from either or both of the user terminal and the external system.
  • the user terminal accepts the input of the above-mentioned event.
  • the user terminal transmits the received event to the computer 10.
  • the computer 10 acquires a plurality of events from the user terminal.
  • the external system transmits a plurality of events recorded by itself to the computer 10 at regular intervals or at predetermined timings.
  • the external system receives input of an event from an external system administrator or the like.
  • the external system transmits the received event to the computer 10.
  • the computer 10 acquires a plurality of events from the external system.
  • the computer 10 converts each of the acquired plurality of events into parameters (step S02).
  • the parameters are as described above.
  • the computer 10 converts a plurality of events into parameters based on a predetermined KPI or the like.
  • the computer 10 associates a certain event with another event among a plurality of events from the converted parameters (step S03).
  • the computer 10 will associate events with each other based on the parameters.
  • the computer 10 associates events with similar predetermined keywords, numerical values, and the like included in the parameters with each other as related events.
  • the computer 10 generates a chain of causal relationships between related events and actions and reactions (step S04).
  • the computer 10 analyzes the causal relationship between events and the action / reaction using the propensity score, and generates this chain based on the analysis result.
  • the computer 10 draws a diagram based on this generated chain (step S05).
  • the diagram is as described above.
  • FIG. 2 is a diagram showing a system configuration of the diagram drawing system 1 which is a preferred embodiment of the present invention.
  • the diagram drawing system 1 is a computer system composed of a computer 10 and draws a diagram showing a chain of causal relationships and action / reactions of a plurality of events.
  • the computer 10 is connected to a user terminal, an external system, an administrator terminal, other terminals, devices, etc. via a public network or the like so that data communication is possible, and transmits / receives necessary data and information. To do.
  • diagram drawing system 1 may include a user terminal, an external system, an administrator terminal, other terminals, devices, etc., which are not shown. In this case, the diagram drawing system 1 executes each process described later by any or a combination of the computer 10 and the terminals and devices included in the computer 10.
  • diagram drawing system 1 may be realized by one computer such as a computer 10, or may be realized by a plurality of computers such as a cloud computer.
  • the computer 10 is provided with a CPU (Central Processing Unit), GPU (Graphics Processing Unit), RAM (Random Access Memory), ROM (Read Only Memory), etc., and can communicate with other terminals, devices, etc. as a communication unit.
  • a device for this purpose for example, a Wi-Fi (Wireless-Fidelity) compatible device conforming to IEEE802.11 and the like.
  • the computer 10 includes a data storage unit such as a hard disk, a semiconductor memory, a recording medium, and a memory card as a recording unit.
  • the computer 10 includes various devices and the like that execute various processes as a processing unit.
  • control unit reads a predetermined program to realize the event data acquisition module 20 and the proposal module 21 in cooperation with the communication unit. Further, in the computer 10, the control unit reads a predetermined program to realize the recording module 30 in cooperation with the recording unit. Further, in the computer 10, the control unit reads a predetermined program, and in cooperation with the processing unit, the parameter conversion module 40, the related module 41, the causal relationship analysis module 42, the action / reaction analysis module 43, the generation module 44, A drawing module 45, a clarification module 46, an importance determination module 47, and a ranking module 48 are realized.
  • FIG. 3 is a diagram showing a flowchart of a diagram drawing process executed by the computer 10. The process executed by each of the above-mentioned modules will be described together with this process.
  • the event data acquisition module 20 acquires a plurality of events (step S10).
  • the event is, for example, a matter or event related to an organization or an individual. Specifically, solution power, average value of human resources, sales, number of Taiki human resources, achievements, sales retention rate, quality of mechanism to play at the time of hiring, number of offers from investors, quality of personnel manager, stocks The amount of procurement used, the amount of investment, the quality of executives, the ability to formulate strategies, and the attractiveness of strategies can be mentioned.
  • the event data acquisition module 20 acquires the content of such an event and the quantitative evaluation or qualitative evaluation for the content as event data via the user terminal or an external system.
  • the event data acquisition module 20 acquires event data from either or both of the user terminal and the external system.
  • the user terminal accepts the input of event data.
  • the user terminal transmits the received event data to the computer 10.
  • the event data acquisition module 20 acquires the event data by receiving the event data.
  • the computer 10 acquires a plurality of events.
  • the external system transmits the event data recorded by itself to the computer 10 at regular intervals or at predetermined timings.
  • the external system accepts input of event data.
  • the external system transmits the received event data to the computer 10.
  • the event data acquisition module 20 acquires event data by receiving these event data.
  • the computer 10 acquires a plurality of events.
  • the parameter conversion module 40 converts each of the acquired plurality of events into parameters (step S11).
  • the parameter is based on the KPI of the organization or individual, and is for quantitatively evaluating the performance evaluation of the organization or individual.
  • this parameter includes items such as the amount of funds raised, sales, profit margin, number of employees, number of people who have achieved the target, number of people who have not achieved the target, numerical values of each item, and changes in the increase and decrease of each value. Things can be mentioned.
  • this parameter is an individual, for example, items such as the frequency of interaction with family members, the frequency of interaction with friends, the number of friends, and the degree of friendship, the numerical values of each item, and the transition of the increase and decrease of each numerical value. Can be mentioned.
  • the parameter conversion module 40 converts each event into a KPI item corresponding to each event. This may be converted by referring to a database or the like in which the event and the item are associated with each other and recorded in the recording module 30, or the event is converted into an item based on a preset rule or the like. You may.
  • the parameter conversion module 40 converts each event into a numerical value of each item corresponding to each event and a transition of this numerical value based on the content of the event in the event data and its quantitative evaluation or qualitative evaluation. As a result, the parameter conversion module 40 converts a plurality of events into parameters.
  • the related module 41 associates a certain event with another event among a plurality of events from the converted parameters (step S12).
  • step S12 the related module 41 associates the events with each other based on a predetermined keyword, numerical value, or the like included in the parameter.
  • the related module 41 associates events having similar keywords, numerical values, and the like as related events.
  • the related module 41 associates one or more events with one event.
  • the related module 41 excludes unrelated events such as predetermined keywords and numerical values included in the parameters from the target of association.
  • the causal relationship analysis module 42 analyzes the causal relationship between related events (step S13).
  • the causal relationship is a relationship in which one event is the cause and another event is the result among the related events.
  • the causal relationship analysis module 42 analyzes the causal relationship between related events using the propensity score.
  • the causal relationship analysis module 42 analyzes the causal relationship between events based on the analysis result.
  • the action / reaction analysis module 43 analyzes the action / reaction between related events (step S14). In step S14, among the effects of a certain event on other events, those that increase positives and events are referred to as actions, and those that decrease negatives and events are referred to as reactions.
  • the action-reaction analysis module 43 analyzes the action-reaction between related events using a propensity score.
  • the action / reaction analysis module 43 analyzes the action / reaction between events based on the analysis result.
  • action / reaction analysis module 43 does not necessarily analyze both the action and the reaction, but it is also possible to analyze only one of them.
  • the generation module 44 generates a chain of the causal relationship between the events and the action / reaction between the events based on the causal relationship between the analyzed events and the action / reaction between the events (step S15).
  • the chain represents the connection of causal relationships between events and the connection of actions and reactions in this causal relationship.
  • the computer 10 will perform visualization of the causes and effects of various events and visualization of the actions and reactions of various events.
  • the parameter conversion module 40 converts this event into a parameter.
  • the parameter conversion module 40 converts the parameters of this "actual result” into sales, profit margin, number of employees, number of target achievers, and the like.
  • the parameter conversion module 40 converts the numerical values of these items, the transitions of the numerical values, and the like as parameters.
  • the related module 41 associates this event with another event from the converted parameters.
  • the related module 41 identifies "the number of Taiki human resources”, “the number of offers from investors”, “sales”, and “sales retention rate” as events with similar converted parameters, and sets these as "actual results”. Associate with.
  • the causal relationship analysis module 42 analyzes the causal relationship between these events. Based on the propensity score, the causal relationship analysis module 42 analyzes that "actual results”, “the number of Taiki human resources who come by” and “the number of offers from investors” have a causal relationship.
  • the action / reaction analysis module 43 analyzes the action / reaction between these events. Based on the propensity score, the action-reaction analysis module 43 analyzes "the number of Taiki human resources” and “the number of offers from investors” as the action of "actual results”, and analyzes that there is no reaction. To do.
  • the generation module 44 uses "the number of Taiki human resources” and “the number of offers from investors” as the relationship of action as a chain of causal relationship and action / reaction in "actual results”. Generate a chain.
  • the drawing module 45 draws a diagram based on the generated chain (step S16).
  • the diagram organizes and symbolically illustrates this chain.
  • the drawing module 45 draws this diagram based on the chain generated in each of the plurality of events.
  • FIG. 5 is a diagram showing an example of a diagram drawn by the drawing module 45.
  • the drawing module 45 draws a chain of causal relationships and action / reactions of a plurality of events as a diagram 100.
  • Diagram 100 connects each of the events 110 based on the generated chain.
  • the drawing module 45 draws each causal relationship in the diagram 100 with arrow symbols starting from the causal event 110 and ending at the resulting event 110.
  • the drawing module 45 draws an action symbol by adding a “+” action symbol to the arrow.
  • the drawing module 45 draws a reaction symbol by adding a “ ⁇ ” reaction symbol to the arrow.
  • the drawing module 45 draws only a part of the action symbol and the reaction symbol as the diagram 100, but in reality, the action symbol and the reaction symbol are drawn for each of the events. Will be drawn.
  • the clarification module 46 clarifies the task for solving the problem of each event (step S17).
  • the task includes policies and approaches necessary to suppress the reaction caused by this event while maintaining (improving) the action caused by the event.
  • the clarification module 46 clarifies the task by referring to a database or the like recorded in the recording module 30 in association with the problem of each event and the task.
  • the clarification module 46 is a task for solving the phenomenon of "decrease in solution power" when a reaction of "decrease in solution power” occurs due to, for example, "increase in the number of Taiki human resources if approached". To clarify. That is, the task clarified by the clarification module 46 is to solve an event that has a reaction to a certain event.
  • important events for solving the problem of "decreased resolution” are, for example, “quality of personnel evaluation” and “quality of human resources education” as a result of referring to the above-mentioned database. In this case, clarify "personnel evaluation” and "human resources education” as tasks.
  • the clarification module 46 clarifies as tasks such as increasing the evaluation of positiveness, increasing the evaluation of voice, increasing the evaluation of the number of measures implemented, and changing to the evaluation system in the personnel evaluation. Will be done.
  • the clarification module 46 clarifies as a task the task of changing human resources education to include education that enhances positiveness, education that enhances voice, and education that enhances creativity.
  • the proposal module 21 proposes the clarified task to the user or the like (step S18).
  • the proposal module 21 transmits this clarified task as task data to the user terminal and proposes it to the user.
  • the user terminal receives this task data and displays it on its own display unit or the like to make a proposal to the user.
  • the task data may include not only the clarified task but also the drawn diagram itself, the problem of each event that can be solved by the clarified task, and the like.
  • FIG. 4 is a diagram showing a flowchart of the importance determination process executed by the computer 10. The process executed by each of the above-mentioned modules will be described together with this process. The detailed description of the same processing as the above-mentioned processing will be omitted.
  • This process can be executed by the computer 10 instead of the process of step S17 described above, and is executed after the process of step S16 described above.
  • the importance determination module 47 determines the importance of each of the plurality of events acquired by the process of step S10 described above (step S20). In step S20, the importance determination module 47 determines the importance based on the causal relationship between the events analyzed by the process of step S13 described above or the action and reaction of the events analyzed by the process of step S14 described above. In the causal relationship between the analyzed events, the importance determination module 47 determines the importance based on the number of events causing the other events or the number of the events acting on the other events.
  • the importance determination module 47 determines that the greater the number of causes of a certain event, the higher the importance. Further, the importance determination module 47 determines that the greater the number of actions of a certain event on another event, the higher the importance.
  • the ranking module 48 ranks each event based on the determination result of importance (step S21). In step S21, the ranking module 48 ranks the events in descending order of importance. At this time, the ranking module 48 ranks the events based on the higher of the importance based on the number causing the other event and the importance based on the number acting on the other event. I do.
  • the ranking module 48 ranks the ranking based on the lower of the importance based on the number causing other events and the importance based on the number acting on other events. It may be done, or the ranking may be performed based on the average value in the ranking of each importance.
  • the clarification module 46 clarifies the task for solving the problem of each event according to this order (step S22).
  • the process of clarifying the task executed by the clarification module 46 itself is the same as the process of step S17 described above.
  • Clarification module 46 clarifies the task for solving the problem of the event within the predetermined order.
  • the clarification module 46 can also change the number and types of tasks to be clarified according to the order. Specifically, the higher the ranking, the greater the number and types of tasks to be clarified.
  • the importance determination module 48 also determines the event having the highest importance.
  • the proposal module 21 proposes the clarified task to the user or the like (step S23).
  • the process of step S23 is the same as the process of step S18 described above.
  • the proposal module 21 proposes the order of importance of the event and the clarified task.
  • the task data may include not only the clarified task but also the drawn diagram itself, the problem of each event that can be solved by the clarified task, and the like.
  • the above-mentioned means and functions are realized by a computer (including a CPU, an information processing device, and various terminals) reading and executing a predetermined program.
  • the program is provided, for example, in the form of being provided from a computer via a network (Software as a Service). Further, the program is provided in a form recorded on a computer-readable recording medium such as a flexible disc, a CD (CD-ROM or the like), or a DVD (DVD-ROM, DVD-RAM or the like).
  • the computer reads the program from the recording medium, transfers it to an internal recording device or an external recording device, records the program, and executes the program.
  • the program may be recorded in advance on a recording device (recording medium) such as a magnetic disk, an optical disk, or a magneto-optical disk, and the program may be provided to the computer from the recording device via a communication line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Economics (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Educational Administration (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】本発明は、複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画することが可能なダイアグラム描画システム、ダイアグラム描画方法及びプログラムを提供することを目的とする。 【解決手段】複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画するダイアグラム描画システム1は、前記複数の事象を取得し、取得した前記複数の事象を、各々パラメータに変換し、変換した前記パラメータから、前記複数の事象の内、ある事象と他事象とを関連付け、関連付けた事象同士の因果関係と作用反作用との連鎖を生成し、生成した前記連鎖に基づいて、ダイアグラムを描画する。

Description

ダイアグラム描画システム、ダイアグラム描画方法及びプログラム
 本発明は、複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画するダイアグラム描画システム、ダイアグラム描画方法及びプログラムに関する。
 近年、様々な事象から発生する問題や様々な事象が抱える課題を解決するための技術が注目されている。このような技術として、問題や課題を抽出し、抽出したものに対する解決策を計画立案又は実行するものが知られている。
 例えば、事業の少なくとも売上、総原価、業務のパフォーマンスを示す指標の各データに基づいて、業務分析処理を行うことにより、この事業の業績向上のための課題の抽出処理を実行し、この課題の解決策を計画立案する技術が提供されている(特許文献1参照)。
 また、他にも、ロボットにパターン情報を学習させ、ロボット自身の行動の前後の実環境で其々取得したパターン情報に基づいて、変化前後の環境モデルを其々取得し、前提条件と削除リストと追加リストとロボットの動作情報とを含むオペレータを生成し、タスクの初期状態及び目標状態をプランナに入力してプランニングをし、プランナが出力するプラン中の動作情報に応じた動作をロボットに実行させて問題解決する技術が提供されている(特許文献2参照)。
特開2001-282981号公報 特開2011-170789号公報
 このような問題や課題を解決するためには、複数の事象同士の因果関係と作用反作用との連鎖を理解することが重要となる。しかしながら、特許文献1及び2の構成では、複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画することはできなかった。
 本発明は、複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画することが可能なダイアグラム描画システム、ダイアグラム描画方法及びプログラムを提供することを目的とする。
 本発明では、以下のような解決手段を提供する。
 本発明は、複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画するダイアグラム描画システムであって、
 前記複数の事象を取得する取得手段と、
 取得した前記複数の事象を、各々パラメータに変換する変換手段と、
 変換した前記パラメータから、前記複数の事象の内、ある事象と他事象とを関連付ける関連手段と、
 関連付けた事象同士の因果関係と作用反作用との連鎖を生成する生成手段と、
 生成した前記連鎖に基づいて、ダイアグラムを描画する描画手段と、
 を備えることを特徴とするダイアグラム描画システムを提供する。
 本発明によれば、複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画するダイアグラム描画システムは、前記複数の事象を取得し、取得した前記複数の事象を、各々パラメータに変換し、変換した前記パラメータから、前記複数の事象の内、ある事象と他事象とを関連付け、関連付けた事象同士の因果関係と作用反作用との連鎖を生成し、生成した前記連鎖に基づいて、ダイアグラムを描画する。
 本発明は、システムのカテゴリであるが、方法及びプログラム等の他のカテゴリにおいても、そのカテゴリに応じた同様の作用・効果を発揮する。
 本発明によれば、複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画することが可能なダイアグラム描画システム、ダイアグラム描画方法及びプログラムを提供することが可能となる。
図1は、ダイアグラム描画システム1の概要を示す図である。 図2は、ダイアグラム描画システム1の全体構成図である。 図3は、コンピュータ10が実行するダイアグラム描画処理のフローチャートを示す図である。 図4は、コンピュータ10が実行する重要度判定処理のフローチャートを示す図である。 図5は、コンピュータ10が描画するダイアグラム100の一例を模式的に示した図である。
 以下、本発明を実施するための最良の形態について図を参照しながら説明する。なお、これはあくまでも例であって、本発明の技術的範囲はこれに限られるものではない。
 [ダイアグラム描画システム1の概要]
 本発明の好適な実施形態の概要について、図1に基づいて説明する。図1は、本発明の好適な実施形態であるダイアグラム描画システム1の概要を説明するための図である。ダイアグラム描画システム1は、コンピュータ10から構成され、複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画するコンピュータシステムである。
 なお、ダイアグラム描画システム1は、利用者が所持する利用者端末(例えば、スマートフォンやタブレット端末等の携帯端末や、スマートグラス等のヘッドマウントディスプレイといったウェアラブル端末)、本システムと連携する外部システム、本システムや外部システムの管理者が所持する管理者端末(例えば、スマートフォンやタブレット端末等の携帯端末や、スマートグラス等のヘッドマウントディスプレイといったウェアラブル端末)、その他の端末や装置類が含まれていてもよい。この場合、ダイアグラム描画システム1は、後述する各処理を、コンピュータ10と含まれる端末や装置類等との何れか又は複数の組み合わせにより実行することになる。
 また、ダイアグラム描画システム1は、例えば、コンピュータ10等の1台のコンピュータで実現されてもよいし、クラウドコンピュータのように、複数のコンピュータで実現されてもよい。
 コンピュータ10は、利用者端末、外部システム、管理者端末、その他の端末や装置類等と、公衆回線網等を介して、データ通信可能に接続されており、必要なデータや情報の送受信を実行する。
 コンピュータ10は、複数の事象を取得する。コンピュータ10は、複数の事象を、例えば、利用者からの入力を受け付けることにより取得する又は外部システムから取得する。事象は、例えば、組織や個人に関係する事柄や出来事である。具体的には、解決力、人材の平均値、売上、寄らば大樹人材の数、実績、営業定着率、採用時に弾く仕組みの質、投資家からのオファー数、人事責任者の質、株式を活用いた調達量、投資額、幹部の質、戦略立案能力、戦略の魅力度といったものが挙げられる。コンピュータ10は、このような事象の内容だけでなく、この内容に対する定量的な評価や定性的な評価を併せて取得する。
 例えば、利用者端末は、上述した事象の入力を受け付ける。利用者端末は、受け付けた事象を、コンピュータ10に送信する。コンピュータ0は、この事象を受信することにより、複数の事象を取得することになる。
 また、例えば、外部システムは、定期的又は所定のタイミングで、自身が記録した事象又は自身が入力を受け付けた事象を、コンピュータ10に送信する。コンピュータ10は、この事象を受信することにより、複数の事象を取得することになる。
 コンピュータ10は、取得した複数の事象を、各々パラメータに変換する。このパラメータは、例えば、組織や個人のKPI(Key Performance Indicator)に基づいたものであり、組織や個人の業績評価を定量的に評価するためのものである。このパラメータは、組織である場合、例えば、資金調達額、売上高、利益率、従業員数、目標達成者数、目標未達者数といった項目や、各項目の数値や、各数値の上昇や下降の推移といったものが挙げられる。また、このパラメータは、個人である場合、例えば、家族との交流頻度、友人との交流頻度、友人数、仲良し度数といった項目や、各項目の数値や、各数値の上昇や下降の推移といったものが挙げられる。
 コンピュータ10は、例えば、各事象を、各事象に対応するKPIの項目に変換する。コンピュータ10は、取得した事象の内容と評価とに基づいて、各項目と数値や数値の推移とに変換する。この結果、コンピュータ10は、複数の事象を、パラメータに変換することになる。
 コンピュータ10は、変換したパラメータから、複数の事象の内、ある事象と他事象とを関連付ける。コンピュータ10は、変換したパラメータにおける項目や項目の数値が関連するもの同士を、関連する事象同士として関連付ける。
 例えば、コンピュータ10は、パラメータに含まれる所定のキーワード、数値等が類似する事象同士を関連性がある事象同士であるとして、関連付ける。
 コンピュータ10は、関連付けた事象同士の因果関係と、作用反作用との連鎖を生成する。
 例えば、コンピュータ10は、関連付けた事象同士の因果関係と作用反作用とを其々解析する。コンピュータ10は、傾向スコアを用いた事象同士の因果関係や作用反作用を解析し、事象同士の原因と結果と作用反作用とを解析する。コンピュータ10は、この解析結果に基づいて、関連付けた事象同士の因果関係と、作用反作用との連鎖を生成する。
 コンピュータ10は、この生成した連鎖に基づいて、ダイアグラムを描画する。ダイアグラムは、例えば、この連鎖を整理し、象徴的に図示したものである。
 なお、コンピュータ10は、ダイアグラムを描画した結果(又は事象同士を関連付けた結果あるいは連鎖を生成した結果)、最も多くの事象の原因となっている事象又は最も多くの事象に作用している事象を、最も重要度が高い事象であると判定する構成であってもよい。このとき、さらに、コンピュータ10は、この最も重要度が高い事象の問題を解決するためのタスクを明確化する構成であってもよい。タスクは、例えば、事象による作用を維持しつつ(向上させつつ)、この事象による反作用を抑制するために必要な方針やアプローチといったものが挙げられる。
 また、コンピュータ10は、各事象の重要度の順位を判定する構成であってもよい。例えば、コンピュータ10は、ダイアグラムを描画した結果(又は事象同士を関連付けた結果あるいは連鎖を生成した結果)、事象の原因となっている事象の個数又は事象に作用している事象の数に応じて、重要度の順位を判定する。このとき、コンピュータ10は、この判定した順位に応じて、各事象の問題を解決するためのタスクを明確化する構成であってもよい。
 コンピュータ10は、このようにして明確化したタスクを、利用者等に提案する構成であってもよい。例えば、コンピュータ10は、利用者端末等を介して、利用者等に、このタスクを提案する。
 次に、ダイアグラム描画システム1が実行する処理の概要について説明する。
 はじめに、コンピュータ10は、複数の事象を取得する(ステップS01)。事象は、上述した通りである。コンピュータ10は、この複数の事象を、利用者端末や外部システムから取得する。コンピュータ10は、複数の事象を、利用者端末又は外部システムのいずれか又は双方から取得する。
 利用者端末は、上述したような事象の入力を受け付ける。利用者端末は、受け付けた事象を、コンピュータ10に送信する。コンピュータ10は、この事象を受信することにより、利用者端末から複数の事象を取得することになる。
 また、外部システムは、定期的又は所定のタイミングで、自身が記録する複数の事象をコンピュータ10に送信する。また、外部システムは、外部システム管理者等から事象の入力を受け付ける。外部システムは、受け付けた事象を、コンピュータ10に送信する。コンピュータ10は、これらの事象を受信することにより、外部システムから複数の事象を取得することになる。
 コンピュータ10は、取得した複数の事象を、各々パラメータに変換する(ステップS02)。パラメータは、上述した通りである。コンピュータ10は、所定のKPI等に基づいて、複数の事象を各々パラメータに変換する。
 コンピュータ10は、変換したパラメータから、複数の事象の内、ある事象と他事象とを関連付ける(ステップS03)。コンピュータ10は、パラメータに基づいて、事象同士を関連付けることになる。コンピュータ10は、パラメータに含まれる所定のキーワード、数値等が類似するもの同士を、関連性がある事象であるとして、事象同士を関連付ける。
 コンピュータ10は、関連付けた事象同士の因果関係と、作用反作用との連鎖を生成する(ステップS04)。コンピュータ10は、傾向スコアを用いて、事象同士の因果関係や作用反作用を解析し、この解析結果に基づいて、この連鎖を生成する。
 コンピュータ10は、この生成した連鎖に基づいて、ダイアグラムを描画する(ステップS05)。ダイアグラムは、上述した通りである。
 以上が、ダイアグラム描画システム1が実行する処理の概要である。
 [ダイアグラム描画システム1のシステム構成]
 図2に基づいて、本発明の好適な実施形態であるダイアグラム描画システム1のシステム構成について説明する。図2は、本発明の好適な実施形態であるダイアグラム描画システム1のシステム構成を示す図である。図2において、ダイアグラム描画システム1は、コンピュータ10から構成され、複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画するコンピュータシステムである。
 コンピュータ10は、利用者端末、外部システム、管理者端末、その他の端末や装置類等と、公衆回線網等を介して、データ通信可能に接続されており、必要なデータや情報の送受信を実行する。
 なお、ダイアグラム描画システム1は、図示していない利用者端末、外部システム、管理者端末、その他の端末や装置類等が含まれていてもよい。この場合、ダイアグラム描画システム1は、後述する各処理を、コンピュータ10と含まれる端末や装置類等との何れか又は複数の組み合わせにより実行することになる。
 また、ダイアグラム描画システム1は、例えば、コンピュータ10等の1台のコンピュータで実現されてもよいし、クラウドコンピュータのように、複数のコンピュータで実現されてもよい。
 コンピュータ10は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を備え、通信部として、他の端末や装置等と通信可能にするためのデバイス、例えば、IEEE802.11に準拠したWi―Fi(Wireless―Fidelity)対応デバイス等を備える。また、コンピュータ10は、記録部として、ハードディスクや半導体メモリ、記録媒体、メモリカード等によるデータのストレージ部を備える。また、コンピュータ10は、処理部として、各種処理を実行する各種デバイス等を備える。
 コンピュータ10において、制御部が所定のプログラムを読み込むことにより、通信部と協働して、事象データ取得モジュール20、提案モジュール21を実現する。また、コンピュータ10において、制御部が所定のプログラムを読み込むことにより、記録部と協働して、記録モジュール30を実現する。また、コンピュータ10において、制御部が所定のプログラムを読み込むことにより、処理部と協働して、パラメータ変換モジュール40、関連モジュール41、因果関係解析モジュール42、作用反作用解析モジュール43、生成モジュール44、描画モジュール45、明確化モジュール46、重要度判定モジュール47、順位付モジュール48を実現する。
 [ダイアグラム描画処理]
 図3に基づいて、ダイアグラム描画システム1が実行するダイアグラム描画処理について説明する。図3は、コンピュータ10が実行するダイアグラム描画処理のフローチャートを示す図である。上述した各モジュールが実行する処理について、本処理に併せて説明する。
 事象データ取得モジュール20は、複数の事象を取得する(ステップS10)。ステップS10において、事象は、例えば、組織や個人に関係する事柄や出来事である。具体的には、解決力、人材の平均値、売上、寄らば大樹人材の数、実績、営業定着率、採用時に弾く仕組みの質、投資家からのオファー数、人事責任者の質、株式を活用いた調達量、投資額、幹部の質、戦略立案能力、戦略の魅力度といったものが挙げられる。事象データ取得モジュール20は、このような事象の内容と、この内容に対する定量的な評価や定性的な評価を、利用者端末や外部システムを介して事象データとして取得する。事象データ取得モジュール20は、利用者端末又は外部システムの何れか又は双方から事象データを取得する。
 利用者端末は、事象データの入力を受け付ける。利用者端末は、受け付けた事象データを、コンピュータ10に送信する。事象データ取得モジュール20は、この事象データを受信することにより、事象データを取得することになる。この結果、コンピュータ10は、複数の事象を取得することになる。
 また、外部システムは、定期的又は所定のタイミングで、自身が記録した事象データを、コンピュータ10に送信する。また、外部システムは、事象データの入力を受け付ける。外部システムは、受け付けた事象データを、コンピュータ10に送信する。事象データ取得モジュール20は、これらの事象データを受信することにより、事象データを取得することになる。この結果、コンピュータ10は、複数の事象を取得することになる。
 パラメータ変換モジュール40は、取得した複数の事象を、各々パラメータに変換する(ステップS11)。ステップS11において、パラメータは、組織や個人のKPIに基づいたものであり、組織や個人の業績評価を定量的に評価するためのものである。このパラメータは、組織である場合、資金調達額、売上高、利益率、従業員数、目標達成者数、目標未達者数といった項目や、各項目の数値や、各数値の上昇や下降の推移といったものが挙げられる。また、このパラメータは、個人である場合、例えば、家族との交流頻度、友人との交流頻度、友人数、仲良し度数といった項目や、各項目の数値や、各数値の上昇や下降の推移といったものが挙げられる。
 パラメータ変換モジュール40は、各事象を、各事象に対応するKPIの項目に変換する。これは、予め、事象と項目とを対応付けて記録モジュール30に記録させたデータベース等を参照することにより変換してもよいし、予め設定された規則等に基づいて、事象を項目に変換してもよい。パラメータ変換モジュール40は、事象データにおける事象の内容とその定量的な評価や定性的な評価とに基づいて、各事象を、各事象に対応する各項目の数値やこの数値の推移に変換する。この結果、パラメータ変換モジュール40は、複数の事象を、パラメータに変換することになる。
 関連モジュール41は、変換したパラメータから、複数の事象の内、ある事象と他事象とを関連付ける(ステップS12)。ステップS12において、関連モジュール41は、パラメータに含まれる所定のキーワードや数値等に基づいて、事象同士を関連付ける。関連モジュール41は、このキーワードや数値等が類似する事象同士を、関連性がある事象として、関連付ける。関連モジュール41は、一の事象に対して、一又は複数の事象を関連付けることになる。また、関連モジュール41は、パラメータに含まれる所定のキーワードや数値等の関連性がない事象を、関連付けの対象から除外する。
 因果関係解析モジュール42は、関連付けた事象同士の因果関係を解析する(ステップS13)。ステップS13において、因果関係は、関連付けた事象同士のうち、ある事象が原因となり、他事象が結果となる関係である。因果関係解析モジュール42は、関連付けられた事象同士の因果関係を、傾向スコアを用いて解析する。因果関係解析モジュール42は、この解析結果に基づいて、事象同士の因果関係を解析することになる。
 作用反作用解析モジュール43は、関連付けた事象同士の作用反作用を解析する(ステップS14)。ステップS14において、ある事象が他事象に対して与える影響のうち、ポジティブなものや事象を増加させるものを作用と称し、ネガティブなものや事象を減少させるものを反作用と称す。作用反作用解析モジュール43は、関連付けた事象同士の作用反作用を、傾向スコアを用いて解析する。作用反作用解析モジュール43は、この解析結果に基づいて、事象同士の作用反作用を解析することになる。
 なお、作用反作用解析モジュール43は、必ずしも、作用と反作用との両者を解析するのではなく、何れか一方のみを解析することも可能である。
 生成モジュール44は、解析した事象同士の因果関係と、事象同士の作用反作用とに基づいて、事象同士の因果関係と、事象同士の作用反作用との連鎖を生成する(ステップS15)。ステップS15において、連鎖は、事象同士の因果関係の繋がりと、この因果関係における作用反作用の繋がりとを表すものである。この結果、コンピュータ10は、様々な事象の原因と結果の視覚化、様々な事象の作用反作用の視覚化を実行することになる。
 一例として、事象として、「実績」に基づいて、説明する。
 パラメータ変換モジュール40は、この事象を、パラメータに変換する。パラメータ変換モジュール40は、この「実績」のパラメータとして、売上高、利益率、従業員数、目標達成者数等に変換する。併せて、パラメータ変換モジュール40は、これらの項目の数値や数値の推移等をパラメータとして変換する。
 関連モジュール41は、変換したパラメータから、この事象と他事象とを関連付ける。関連モジュール41は、変換したパラメータが類似する事象として、「寄らば大樹人材の数」、「投資家からのオファー数」、「売上」、「営業定着率」を特定し、これらを「実績」に関連付ける。
 因果関係解析モジュール42は、これらの事象同士の因果関係を解析する。因果関係解析モジュール42は、傾向スコアに基づいて、「実績」と、「寄らば大樹人材の数」及び「投資家からのオファー数」とが因果関係にあるものと解析する。
 作用反作用解析モジュール43は、これらの事象同士の作用反作用を解析する。作用反作用解析モジュール43は、傾向スコアに基づいて、「実績」の作用として、「寄らば大樹人材の数」及びを「投資家からのオファー数」を作用として解析し、反作用が存在しないと解析する。
 生成モジュール44は、この解析結果に基づいて、「実績」における因果関係と作用反作用との連鎖として、「寄らば大樹人材の数」及びを「投資家からのオファー数」を作用の関係としてこの連鎖を生成する。
 なお、上述した事象における因果関係と作用反作用との連鎖は、あくまでも例であり、必ずしもこの通りであるとは限らない。
 描画モジュール45は、生成した連鎖に基づいて、ダイアグラムを描画する(ステップS16)。ステップS16において、ダイアグラムは、この連鎖を整理し、象徴的に図示したものである。描画モジュール45は、複数の事象の其々において生成した連鎖に基づいて、このダイアグラムを描画する。
 図5に基づいて、描画モジュール45が描画するダイアグラムについて説明する。図5は、描画モジュール45が描画したダイアグラムの一例を示す図である。図5において、描画モジュール45は、複数の事象の因果関係と作用反作用との連鎖をダイアグラム100として描画する。ダイアグラム100は、事象110の其々を、生成した連鎖に基づいて、接続する。具体的には、描画モジュール45は、ダイアグラム100において、原因となる事象110を起点として、結果となる事象110を終点とする矢印の記号で其々の因果関係を描画する。また、描画モジュール45は、事象110において、作用となるものを矢印に「+」の作用記号を付与して描画する。また、描画モジュール45は、事象110において、反作用となるものを矢印に「-」の反作用記号を付与して描画する。図5において、描画モジュール45は、作用記号及び反作用記号の一部のみを描画したものをダイアグラム100として描画しているが、実際には、各事象の其々に対して、作用記号及び反作用記号が描画されることになる。
 明確化モジュール46は、各事象の問題を解決するためのタスクを明確化する(ステップS17)。ステップS17において、タスクは、事象による作用を維持しつつ(向上させつつ)、この事象による反作用を抑制するために必要な方針やアプローチといったものが挙げられる。明確化モジュール46は、各事象の問題と、タスクとを関連付けて記録モジュール30に記録させたデータベース等を参照することにより、タスクを明確化する。
 明確化モジュール46が実行するタスクの明確化について説明する。
 明確化モジュール46は、例えば、「寄らば大樹人材の数の増加」に伴って、「解決力が減る」という反作用が発生する場合、この「解決力が減る」という事象を解決するためのタスクを明確化する。すなわち、明確化モジュール46が明確化するタスクは、ある事象に反作用を与える事象を解決するためのものである。明確化モジュール46は、この「解決力が減る」という問題を解決するために重要な事象が、例えば、上述したデータベースを参照した結果、「人事評価の質」、「人材教育の質」である場合、「人事評価」や「人材教育」をタスクとして明確化する。すなわち、明確化モジュール46は、人事評価において、積極性の評価を高くする、発言力の評価を高くする、実施した施策数の評価を高くする、評価制度に変更するといったものを、タスクとして明確化することになる。また、明確化モジュール46は、人材教育において、積極性を高める教育、発言力を高める教育、発想力を高める教育、を行うように変更するといったものを、タスクとして明確化することになる。
 提案モジュール21は、明確化したタスクを利用者等に提案する(ステップS18)。ステップS18において、提案モジュール21は、この明確化したタスクを、タスクデータとして、利用者端末に送信し、利用者に提案する。利用者端末は、このタスクデータを受信し、自身の表示部等に表示することにより、利用者に提案することになる。
 なお、タスクデータには、明確化したタスクのみならず、描画したダイアグラムそのもの、明確化したタスクにより解決が図れる各事象の問題等が含まれていてもよい。
 以上が、ダイアグラム描画処理である。
 [重要度判定処理]
 図4に基づいて、ダイアグラム描画システム1が実行する重要度判定処理について説明する。図4は、コンピュータ10が実行する重要度判定処理のフローチャートを示す図である。上述した各モジュールが実行する処理について、本処理に併せて説明する。なお、上述した処理と同様の処理については、その詳細な説明を省略する。
 本処理は、コンピュータ10が、上述したステップS17の処理の代わりに実行することが可能なものであり、上述したステップS16の処理の後に実行するものである。
 重要度判定モジュール47は、上述したステップS10の処理により取得した複数の事象の其々に対して、重要度を判定する(ステップS20)。ステップS20において、重要度判定モジュール47は、上述したステップS13の処理により解析した事象同士の因果関係又は上述したステップS14の処理により解析した事象同士の作用反作用に基づいて、重要度を判定する。重要度判定モジュール47は、解析した事象同士の因果関係において、ある事象が、他事象の原因となっている数又は他事象に作用する数に基づいて、重要度を判定する。
 重要度判定モジュール47は、ある事象が、他事象の原因となっている数が多いものほど、重要度が高いと判定する。また、重要度判定モジュール47は、ある事象が、他事象に作用する数が多いものほど、重要度が高いと判定する。
 順位付モジュール48は、重要度の判定結果に基づいて、各事象を順位付けする(ステップS21)。ステップS21において、順位付モジュール48は、重要度が高いもの順に、事象の順位付けを行う。このとき、順位付モジュール48は、他事象の原因となっている数に基づいた重要度と、他事象に作用する数に基づいた重要度とのうち、高い方に基づいて、事象の順位付けを行う。
 なお、順位付モジュール48は、他事象の原因となっている数に基づいた重要度と、他事象に作用する数に基づいた重要度とのうち、低い方に基づいて、順位の順位付けを行ってもよいし、其々の重要度の順位における平均値に基づいて、順位の順位付けを行ってもよい。
 明確化モジュール46は、この順位に応じて、各事象の問題を解決するためのタスクを明確化する(ステップS22)。明確化モジュール46が実行するタスクの明確化の処理そのものは、上述したステップS17の処理と同様である。
 明確化モジュール46は、所定の順位内にある事象の問題を解決するためのタスクを明確化する。このとき、明確化モジュール46は、順位に応じて、明確化するタスクの数や種類を変化させることも可能である。具体的には、順位が高いものほど、明確化するタスクの数や種類が多くなるといったものである。これに伴い、重要度判定モジュール48は、最も重要度が高い事象を判定することにもなる。
 提案モジュール21は、明確化したタスクを利用者等に提案する(ステップS23)。ステップS23の処理は、上述したステップS18の処理と同様である。このとき、提案モジュール21は、事象の重要度の順位と、明確化したタスクとを併せて提案する。また、タスクデータには、明確化したタスクのみならず、描画したダイアグラムそのもの、明確化したタスクにより解決が図れる各事象の問題等が含まれていてもよい。
 なお、上述した重要度判定処理は、ダイアグラムの描画後に行われものとして説明しているが、事象同士を関連付けた後あるいは連鎖を生成した後に実行される構成であってもよい。
 以上が、重要度判定処理である。
 上述した手段、機能は、コンピュータ(CPU、情報処理装置、各種端末を含む)が、所定のプログラムを読み込んで、実行することによって実現される。プログラムは、例えば、コンピュータからネットワーク経由で提供される(SaaS:ソフトウェア・アズ・ア・サービス)形態で提供される。また、プログラムは、例えば、フレキシブルディスク、CD(CD-ROMなど)、DVD(DVD-ROM、DVD-RAMなど)等のコンピュータ読取可能な記録媒体に記録された形態で提供される。この場合、コンピュータはその記録媒体からプログラムを読み取って内部記録装置又は外部記録装置に転送し記録して実行する。また、そのプログラムを、例えば、磁気ディスク、光ディスク、光磁気ディスク等の記録装置(記録媒体)に予め記録しておき、その記録装置から通信回線を介してコンピュータに提供するようにしてもよい。
 以上、本発明の実施形態について説明したが、本発明は上述したこれらの実施形態に限るものではない。また、本発明の実施形態に記載された効果は、本発明から生じる最も好適な効果を列挙したに過ぎず、本発明による効果は、本発明の実施形態に記載されたものに限定されるものではない。
 1 ダイアグラム描画システム、10 コンピュータ

Claims (9)

  1.  複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画するダイアグラム描画システムであって、
     前記複数の事象を取得する取得手段と、
     取得した前記複数の事象を、各々パラメータに変換する変換手段と、
     変換した前記パラメータから、前記複数の事象の内、ある事象と他事象とを関連付ける関連手段と、
     関連付けた事象同士の因果関係と作用反作用との連鎖を生成する生成手段と、
     生成した前記連鎖に基づいて、ダイアグラムを描画する描画手段と、
     を備えることを特徴とするダイアグラム描画システム。
  2.  前記変換手段は、所定のKPIに基づいて、取得した前記複数の事象を、各々パラメータに変換する、
     ことを特徴とする請求項1に記載のダイアグラム描画システム。
  3.  最も多くの事象の原因となっている事象又は最も多くの事象に作用している事象を、最も重要度が高い事象であると判定する第1判定手段と、
     をさらに備えることを特徴とする請求項1に記載のダイアグラム描画システム。
  4.  最も重要度が高い事象の問題を解決するためのタスクを明確化する第1明確化手段と、
     をさらに備えることを特徴とする請求項3に記載のダイアグラム描画システム。
  5.  各事象の重要度の順位を判定する第2判定手段と、
     判定した前記順位に応じて、各事象の問題を解決するためのタスクを明確化する第2明確化手段と、
     をさらに備えることを特徴とする請求項1に記載のダイアグラム描画システム。
  6.  前記ダイアグラムの描画後、事象の重要度を判定する第3判定手段と、
     をさらに備えることを特徴とする請求項1に記載のダイアグラム描画システム。
  7.  前記ダイアグラムの描画後、事象の問題を解決するためのタスクを提案する提案手段と、
     をさらに備えることを特徴とする請求項1に記載のダイアグラム描画システム。
  8.  複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画するコンピュータが実行するダイアグラム描画方法であって、
     前記複数の事象を取得するステップと、
     取得した前記複数の事象を、各々パラメータに変換するステップと、
     変換した前記パラメータから、前記複数の事象の内、ある事象と他事象とを関連付けるステップと、
     関連付けた事象同士の因果関係と作用反作用との連鎖を生成するステップと、
     生成した前記連鎖に基づいて、ダイアグラムを描画するステップと、
     を備えることを特徴とするダイアグラム描画方法。
  9.  複数の事象の因果関係と作用反作用との連鎖を表すダイアグラムを描画するコンピュータに、
     前記複数の事象を取得するステップ、
     取得した前記複数の事象を、各々パラメータに変換するステップ、
     変換した前記パラメータから、前記複数の事象の内、ある事象と他事象とを関連付けるステップ、
     関連付けた事象同士の因果関係と作用反作用との連鎖を生成するステップと、
     生成した前記連鎖に基づいて、ダイアグラムを描画するステップ、
     を実行させるためのコンピュータ読み取り可能なプログラム。
PCT/JP2019/033930 2019-08-29 2019-08-29 ダイアグラム描画システム、ダイアグラム描画方法及びプログラム WO2021038798A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/033930 WO2021038798A1 (ja) 2019-08-29 2019-08-29 ダイアグラム描画システム、ダイアグラム描画方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/033930 WO2021038798A1 (ja) 2019-08-29 2019-08-29 ダイアグラム描画システム、ダイアグラム描画方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2021038798A1 true WO2021038798A1 (ja) 2021-03-04

Family

ID=74683962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033930 WO2021038798A1 (ja) 2019-08-29 2019-08-29 ダイアグラム描画システム、ダイアグラム描画方法及びプログラム

Country Status (1)

Country Link
WO (1) WO2021038798A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119169B1 (ja) 2021-05-18 2022-08-16 ヤフー株式会社 情報処理装置、情報処理方法および情報処理プログラム
JP2023000419A (ja) * 2021-06-17 2023-01-04 ヤフー株式会社 情報処理装置、情報処理方法および情報処理プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047865A (ja) * 1998-07-31 2000-02-18 Hitachi Ltd プロジェクト管理システムのアローダイアグラム作成装置
JP2008146206A (ja) * 2006-12-07 2008-06-26 Fujitsu Ltd 事業継続性分析プログラムおよび事業継続性分析装置
JP2010092312A (ja) * 2008-10-09 2010-04-22 Toshiba Corp 因果関係可視化装置及び因果関係可視化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000047865A (ja) * 1998-07-31 2000-02-18 Hitachi Ltd プロジェクト管理システムのアローダイアグラム作成装置
JP2008146206A (ja) * 2006-12-07 2008-06-26 Fujitsu Ltd 事業継続性分析プログラムおよび事業継続性分析装置
JP2010092312A (ja) * 2008-10-09 2010-04-22 Toshiba Corp 因果関係可視化装置及び因果関係可視化方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119169B1 (ja) 2021-05-18 2022-08-16 ヤフー株式会社 情報処理装置、情報処理方法および情報処理プログラム
JP2022177750A (ja) * 2021-05-18 2022-12-01 ヤフー株式会社 情報処理装置、情報処理方法および情報処理プログラム
JP2023000419A (ja) * 2021-06-17 2023-01-04 ヤフー株式会社 情報処理装置、情報処理方法および情報処理プログラム
JP7273107B2 (ja) 2021-06-17 2023-05-12 ヤフー株式会社 情報処理装置、情報処理方法および情報処理プログラム

Similar Documents

Publication Publication Date Title
Hoornaert et al. Identifying new product ideas: waiting for the wisdom of the crowd or screening ideas in real time
US20180373753A1 (en) Technologies for implementing ontological models for natural language queries
US20190207876A1 (en) Systems and methods for using natural language instructions with an ai assistant associated with machine learning conversations
Imhoff et al. Self-service business intelligence
US11551188B2 (en) Systems and methods for improved automated conversations with attendant actions
US11004005B1 (en) Electronic problem solving board
JP2009043144A (ja) 電子メールメッセージの特性を検出する装置及び方法
US20190221133A1 (en) Systems and methods for improving user engagement in machine learning conversation management using gamification
Năstase et al. A new business dimension-business analytics.
WO2021038798A1 (ja) ダイアグラム描画システム、ダイアグラム描画方法及びプログラム
JP2019028910A (ja) 対話分析システムおよび対話分析プログラム
Reiter et al. Digital transformation of Organisations in the context of ITIL® 4
Reggio et al. Big-data/analytics projects failure: a literature review
KR102176249B1 (ko) 사용자 맞춤형 광고 플랫폼을 제공하는 온라인 서비스를 운용하는 서버 및 그 시스템
Winston et al. How does attitude impact IT implementation: a study of small business owners
Sakib ARTIFICIAL INTELLIGENCE IN MARKETING
Moysan et al. Chatbots as a lever to redefine customer experience in banking
US20190220773A1 (en) Systems and methods for training and auditing ai systems in machine learning conversations
Timmermans et al. Risk-based educational accountability in Dutch primary education
Popescu et al. Intersecting Environmental Social Governance and AI for Business Sustainability
Coad et al. Scale-ups and High-Growth Firms: Theory, Definitions, and Measurement
KR102176268B1 (ko) 매칭 점수에 기반하여 맞춤형 광고 정보를 제공하는 방법 및 그 시스템
KR102176151B1 (ko) 인공지능 모듈 및 블록체인 모듈을 포함하는 광고 플랫폼을 제공하는 서버
US20230259856A1 (en) Project success probability calculation system, method of calculating project success probability, and non-transitory computer-readable medium
US11227112B2 (en) Contributions collection based on parsed electronic communications by a QA system which generates a reply indicating a contributor, their contribution and a confidence level

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19943197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP