WO2021038748A1 - 推定装置、推定方法、プログラム - Google Patents

推定装置、推定方法、プログラム Download PDF

Info

Publication number
WO2021038748A1
WO2021038748A1 PCT/JP2019/033689 JP2019033689W WO2021038748A1 WO 2021038748 A1 WO2021038748 A1 WO 2021038748A1 JP 2019033689 W JP2019033689 W JP 2019033689W WO 2021038748 A1 WO2021038748 A1 WO 2021038748A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
foot
estimation
left foot
right foot
Prior art date
Application number
PCT/JP2019/033689
Other languages
English (en)
French (fr)
Inventor
晨暉 黄
謙一郎 福司
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/635,510 priority Critical patent/US20220273193A1/en
Priority to JP2021541865A priority patent/JP7279798B2/ja
Priority to PCT/JP2019/033689 priority patent/WO2021038748A1/ja
Publication of WO2021038748A1 publication Critical patent/WO2021038748A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0024Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1121Determining geometric values, e.g. centre of rotation or angular range of movement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6807Footwear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement

Definitions

  • the present invention relates to an estimation device, an estimation method, and a program.
  • the step distance which indicates the distance between the heel of the left foot and the heel of the right foot during walking, is associated with the muscle strength of the lower limbs, walking stability, and increased joint load. It is also known that it affects the decrease in walking stability and increases the possibility that the joint burden increases. And if the stride is large, human fatigue increases.
  • Patent Document 1 is disclosed as a related technique.
  • a walking change determination device is attached to the lumbar region, a locus during walking is specified based on the acceleration detected by the gait change determination device, and one of the indexes indicating a walking posture from the locus. It is described that a certain step is calculated (Patent Document 1, paragraph 0124, etc.).
  • the estimation device includes an angle calculation unit that calculates the angle formed by the left foot tip direction and the right foot tip direction, and a step indicating the distance between the heel of the left foot and the heel of the right foot based on the angle. It is characterized by including a step distance estimation unit for estimating the distance.
  • the estimation method calculates the angle formed by the left foot tip direction and the right foot tip direction, and estimates the step distance indicating the distance between the heels of the left foot and the right foot based on the angle. ..
  • the estimation program is an angle calculation means for calculating the angle formed by the computer of the estimation device in the direction of the tip of the left foot and the direction of the tip of the right foot, and the heels of the left foot and the right foot based on the angle. It is characterized in that it functions as a step distance estimation means for estimating a step distance indicating an interval between the two.
  • the present invention it is possible to more accurately estimate the step distance indicating the distance between the heels of the left foot and the right foot only by the acceleration and the angular velocity measured by the sensor device provided on each sole of both feet.
  • FIG. 1 is a diagram showing a schematic configuration of a fatigue estimation system according to the same embodiment.
  • the fatigue estimation system 100 is composed of at least an estimation device 1, a first sensor device 2, and a second sensor device 3.
  • the estimation device 1 communicates with the first sensor device 2 and the second sensor device 3 in order to acquire the sensing information detected by the first sensor device 2 and the second sensor device 3.
  • the first sensor device 2 and the second sensor device 3 are each attached to the sole of the shoe.
  • the first sensor device 2 and the second sensor device 3 measure the acceleration and the angular velocity of the foot.
  • the first sensor device 2 measures the left acceleration and the angular velocity
  • the second sensor device 3 measures the acceleration and the angular velocity of the right foot.
  • the estimation device 1 receives sensing information indicating acceleration and angular velocity from each of the first sensor device 2 and the second sensor device 3, and based on the sensing information, the distance between the heels of the left foot and the right foot during walking. Calculate the step D indicating.
  • the estimation device 1 may be a mobile terminal such as a smartphone. Further, the estimation device 1 may be any device as long as it receives sensing information from the first sensor device 2 and the second sensor device 3 and performs a process of estimating the user's step distance and fatigue. Good. For example, the estimation device 1 may be a server device provided remotely.
  • FIG. 2 is a hardware configuration diagram of the estimation device, the first sensor device, and the second sensor device.
  • the estimation device 1 is a computer equipped with hardware such as a CPU (Central Processing Unit) 101, a ROM (Read Only Memory) 102, a RAM (Random Access Memory) 103, a storage unit 104, an RTC circuit 105, and a communication device 106. is there.
  • the first sensor device 2 is a computer provided with hardware such as CPU 201, ROM 202, RAM 203, storage unit 204, RTC circuit 205, communication device 206, and sensor 207.
  • the second sensor device 3 is a computer provided with hardware such as a CPU 301, a ROM 302, a RAM 303, a storage unit 304, an RTC circuit 305, a communication device 306, and a sensor 307.
  • the sensor 207 included in the first sensor device 2 and the sensor 307 included in the second sensor device 3 are inertial measurement units that sense acceleration and angular velocity based on the movement of the foot when the user walks. It is composed of units (IMU; Inertial Measurement Unit).
  • FIG. 3 is a functional block diagram of the estimation device, the first sensor device, and the second sensor device.
  • the estimation device 1 executes a fatigue estimation program stored in advance. As a result, the estimation device 1 exerts at least the functions of the control unit 11, the acquisition unit 12, the angle calculation unit 13, the step distance estimation unit 14, and the fatigue estimation unit 15.
  • the control unit 11 of the estimation device 1 controls other functional units of the estimation device 1.
  • the acquisition unit 12 of the estimation device 1 acquires the sensing information.
  • the angle calculation unit 13 of the estimation device 1 calculates the angle Q formed by the left foot tip direction and the right foot tip direction.
  • the step distance estimation unit 14 of the estimation device 1 estimates the step distance D indicating the distance between the heels of the left foot and the right foot based on the angle Q formed by the left foot tip direction and the right foot tip direction.
  • the fatigue estimation unit 15 of the estimation device 1 estimates human fatigue based on the step distance D.
  • the first sensor device 2 executes a sensing program stored in advance.
  • the first sensor device 2 includes at least a control unit 21, a sensing unit 22, and a transmission unit 23.
  • the control unit 21 of the first sensor device 2 controls other functional units of the first sensor device 2.
  • the sensing unit 22 of the first sensor device 2 acquires acceleration and angular velocity based on the movement of the left foot when the user walks from a sensor 207 such as an IMU.
  • the transmission unit 23 of the first sensor device 2 transmits sensing information indicating the acceleration and angular velocity of the left foot to the estimation device 1.
  • the second sensor device 3 executes a sensing program stored in advance.
  • the second sensor device 3 includes at least a control unit 31, a sensing unit 32, and a transmission unit 33.
  • the control unit 31 of the second sensor device 3 controls other functional units of the second sensor device 3.
  • the sensing unit 32 of the second sensor device 3 acquires the acceleration and the angular velocity based on the movement of the right foot when the user walks from the sensor 307 of the IMU or the like.
  • the transmission unit 33 of the second sensor device 3 transmits sensing information indicating the acceleration and the angular velocity of the right foot to the estimation device 1.
  • FIG. 4 is a diagram for explaining the acceleration and the angular velocity measured by the first sensor device and the second sensor device.
  • the first sensor device 2 and the second sensor device 3 have a Z-axis along the leg axis with the heel of the foot as the origin, a Y-axis perpendicular to the Z-axis from the heel to the toe of the foot, and a Z-axis.
  • the X-axis perpendicular to the Y-axis, and the acceleration and angular velocity around the axis of each axis are detected.
  • the X-axis, Y-axis, and Z-axis are orthogonal to each other.
  • the rotation angle around the X axis is regarded as the pitch angle
  • the rotation angle around the Y axis is regarded as the roll angle
  • the rotation around the Z axis is regarded as the yaw angle.
  • the estimation device 1 calculates the angle formed by the left foot tip direction and the right foot tip direction based on the acceleration and the angular velocity around the axes of each of these axes.
  • FIG. 5 is a diagram showing the relationship between the angle formed by the left foot tip direction and the right foot tip direction and the step distance during walking.
  • the angle formed by the left foot tip direction and the right foot tip direction is Q1 and the step distance is D1
  • the angle formed by the left foot tip direction and the right foot tip direction is Q2 and the step distance is.
  • D2 and FIG. 5 (3) show a case where the angle formed by the left foot tip direction and the right foot tip direction is Q3 and the step distance is D3.
  • the relationship between the angle Q formed by the left foot tip direction and the right foot tip direction and the step distance D is a proportional relationship in which the larger the Q, the larger the D.
  • the magnitude of each angle Q and the step distance The magnitude relationship of D is Q1 ⁇ Q2 ⁇ Q3, D1 ⁇ D2 ⁇ D3.
  • FIG. 6 is a graph showing the relationship between the angle formed by the left foot tip direction and the right foot tip direction and the step distance during walking. Specifically, as shown in the graph of FIG. 6A, as a result of the experiment, data was obtained in which the larger the angle Q formed by the left foot tip direction and the right foot tip direction, the larger the step distance D.
  • the relationship between the angle Q formed by the left foot tip direction and the right foot tip direction and the step distance D is shown in FIG. As shown in b), it can be expressed by the step distance calculation function f (x).
  • the step distance calculation function f (x) is a monotonically increasing function.
  • FIG. 7 is a first diagram illustrating a walking motion.
  • FIG. 7 shows the stance period and the swing period of the left and right legs in a person's walking exercise.
  • the stance period of the right foot represents one cycle of the walking movement from 0% to 100%, the time when the heel of one foot lands is 0%, and the time when the heel of the same foot lands next. Is 100%.
  • the time from the time when the heel of the right foot lands to the time when the heel takes off next is the stance period of the right foot, and the time from the time when the heel of the left foot lands to the time when the heel takes off next. This is called the stance period of the left foot.
  • the time from the time when the heel of the right foot takes off to the time when the heel lands next is the swing period of the right foot, and the time from the time when the heel of the left foot takes off to the time when the heel lands next. Is called the swing period of the left foot.
  • FIG. 8 is a second diagram illustrating walking exercise.
  • FIG. 8 shows the acceleration on the vertical axis in the exercise cycle of the walking motion of the left foot and the right foot, and the horizontal axis represents time and the vertical axis represents acceleration. Negative acceleration indicates downward acceleration, and positive acceleration indicates upward acceleration.
  • the solid line shows the transition of the acceleration of the left foot, and the dotted line shows the transition of the acceleration of the right foot.
  • Time t11 indicates the timing immediately after the left foot takes off
  • time t12 indicates the timing immediately after the left foot lands.
  • the estimation device 1 periodically detects the time t12 at which the downward acceleration exceeds the threshold value A and peaks, and detects the rotation angle around the Z axis at that time t12.
  • the time t21 indicates the timing immediately after the right foot takes off
  • the time t22 indicates the timing immediately after the right foot lands.
  • the estimation device 1 periodically detects the time t22 at which the downward acceleration exceeds the threshold value A and peaks, and detects the rotation angle around the Z axis at that time t22.
  • the angle calculation unit 13 of the estimation device 1 calculates the angle Q formed with the tip of the right foot based on the rotation angle of the left foot around the Z axis at time t12 and the rotation angle of the right foot around the Z axis at time t22. ..
  • the angle calculation unit 13 of the estimation device 1 includes the lateral acceleration of the foot, the vertical acceleration, the front-back acceleration, and the vertical rotation angular velocity of the foot (angular velocity around the X-axis) included in the sensing information. , Left and right rotation angular velocity (angle velocity around the Z axis), inside and outside rotation angular velocity (angular velocity around the Y axis) are acquired.
  • the first axis (Y axis) connecting the heel and the toe the second axis (Z axis) parallel to the leg and passing through the ankle, and the first axis.
  • the third axis (X axis) perpendicular to the second axis.
  • the angular velocity of rotation around the third axis is called the vertical rotation angular velocity of the foot.
  • the angular velocity of rotation around the second axis (Z axis) is called the left-right angular velocity of the foot.
  • the angular velocity of rotation around the first axis (Y axis) is called an internal / external rotation angular velocity.
  • the estimation device 1 uses the angle calculation program to indicate the vertical rotation angle of the foot indicating the angle around the third axis (X axis), the horizontal rotation angle indicating the angle around the second axis (Z axis), and the third. Calculate the internal / external rotation angle that indicates the angle around the axis (X axis).
  • the angle calculation program for example, a Madgwick filter or the like is known, and a known technique may be used.
  • the angle calculation unit 13 indicates a left-right rotation angle indicating an angle around the second axis (Z-axis) of the left foot at time t12 and a left-right rotation angle indicating an angle around the second axis (Z-axis) of the right foot at time t22.
  • the angles formed by are summed up, and the angle Q formed by the tip direction of the left foot and the tip direction of the right foot is calculated.
  • the angle calculation unit 13 may calculate a statistical value such as the average of the angles formed by the left foot tip direction and the right foot tip direction as the angle Q.
  • FIG. 9 is a diagram showing a usage example of the estimation device, the first sensor device, and the second sensor device.
  • the estimation device 1 is carried by the user.
  • the first sensor device 2 is mounted in the insole of the shoe of the left foot and near the arch of the user's left foot.
  • the second sensor device 3 is mounted in the insole of the shoe of the right foot and near the arch of the user's right foot. Then, the first sensor device 2 and the second sensor device 3 transmit the sensing information including the acceleration and the angular velocity detected according to the movement of the foot due to the walking of the user to the estimation device 1.
  • FIG. 10 is a diagram showing an outline of a sensor device provided on a shoe sole. As shown in FIG. 10, the first sensor device 2 and the second sensor device 3 are provided on the sole of the shoe. The first sensor device 2 and the second sensor device 3 communicate with the estimation device 1 by wireless communication.
  • FIG. 11 is a diagram showing a processing flow of each device in the fatigue estimation system.
  • the user aligns the shoes of both feet in parallel and turns on the power of the first sensor device 2 and the second sensor device 3 (step S101).
  • the communication device 206 of the first sensor device 2 and the communication device 306 of the second sensor device 3 transmit the connection establishment signal (step S102).
  • These communication devices 206 and 306 have wireless communication functions such as BLE (Bluetooth Low Energy; registered trademark) and Wifi (registered trademark) as an example, and communicate with other devices.
  • BLE Bluetooth Low Energy
  • Wifi registered trademark
  • the user operates the estimation device 1 to allow communication connection with the first sensor device 2.
  • the estimation device 1 and the first sensor device 2 are communicated and connected (step S103).
  • the user operates the estimation device 1 to allow a communication connection with the second sensor device 3.
  • the estimation device 1 and the second sensor device 3 are communicated and connected (step S104).
  • the user instructs the estimation device 1 to start processing.
  • the control unit 11 of the estimation device 1 synchronizes the time between the first sensor device 2 and the second sensor device 3 (step S105).
  • the times measured by the first sensor device 2, the second sensor device 3, and the estimation device 1 coincide with each other. That is, the control unit 11 of the estimation device 1 has a function of a time synchronization processing unit.
  • the control unit 11 transmits an output request for the sensing information of the left foot to the first sensor device 2, and transmits an output request for the sensing information for the right foot to the second sensor device 3 (step S106).
  • the sensing unit 22 acquires the acceleration and the angular velocity from the sensor 207 (step S107). Then, the transmission unit 23 repeatedly transmits the sensing information of the left foot to the estimation device 1 at predetermined intervals (step S108). The first sensor device 2 sequentially transmits sensing information including the repeatedly detected acceleration and angular velocity to the estimation device 1.
  • the acceleration included in the sensing information generated by the first sensor device 2 indicates the left-right acceleration of the left foot, the up-down acceleration of the left foot, and the front-back acceleration of the left foot.
  • the angular velocities included in the sensing information generated by the first sensor device 2 are the vertical rotation angular velocity of the left foot (angular velocity around the X axis), the left and right rotational angular velocity of the left foot (angular velocity around the Z axis), and the internal and external rotation angular velocity of the left foot (Y). (Angular velocity around the axis) is shown.
  • the sensing unit 32 acquires the acceleration and the angular velocity from the sensor 307 (step S109). Then, the transmission unit 33 repeatedly transmits the sensing information of the right foot to the estimation device 1 at predetermined intervals (step S110). The second sensor device 3 sequentially transmits sensing information including acceleration and angular velocity detected a plurality of times in the motion cycle of the user's walking motion to the estimation device 1.
  • the acceleration included in the sensing information generated by the second sensor device 3 indicates the left-right acceleration of the right foot, the vertical acceleration of the right foot, and the front-back acceleration of the right foot.
  • the angular velocities included in the sensing information generated by the second sensor device 3 are the vertical rotation angular velocity of the right foot (angular velocity around the X axis), the left and right rotational angular velocity of the right foot (angular velocity around the Z axis), and the internal and external rotation angular velocity of the right foot (Y). (Angular velocity around the axis) is shown. Then, the angle calculation unit 14 of the estimation device 1 uses the angular velocity and acceleration included in the sensing information in a state where the directions of the left and right shoes are aligned and parallel, and the left and right in a state where the directions of the shoes are parallel. Set the reference position where the rotation angle is 0 degrees.
  • the angle calculation unit 13 includes lateral acceleration, vertical acceleration, front-rear acceleration, vertical rotation angular velocity (angle velocity around the X-axis), and lateral rotation angular velocity included in the sensing information of the left foot sequentially acquired.
  • Angular velocity around the Z axis internal and external rotation angular velocity (angular velocity around the Y axis) are input to the angle calculation program, and the vertical rotation angle (angle around the X axis) and left and right rotation angle (angle around the Z axis) of the left foot ,
  • the inside / outside rotation angle (angle around the Y axis) is calculated (step S111).
  • the angle calculation unit 13 uses the sequentially acquired sensing information and the angle calculation program to rotate the right foot up and down (angle around the X axis), left and right rotation angle (angle around the Z axis), and inside and outside at predetermined intervals.
  • the rotation angle (angle around the Y axis) is calculated (step S112).
  • the angle calculation unit 13 stores each calculated rotation angle as a reference angle (0 degree) in which the toe directions of the left and right feet are parallel (step S113).
  • the user then puts on the shoes.
  • the processes of steps S101 to S113 may be performed with the user wearing shoes and having their feet aligned.
  • FIG. 12 is a diagram showing a processing flow of the estimation device.
  • the estimation device 1 repeatedly receives the sensing information of the left foot from the first sensor device 2 at predetermined intervals. Further, the estimation device 1 repeatedly receives the sensing information of the right foot from the second sensor device 3 at predetermined intervals. Then, the acquisition unit 12 of the estimation device 1 acquires the sensing information of the left foot and the sensing information of the right foot.
  • the angle calculation unit 13 of the estimation device 1 sequentially acquires sensing information from the first sensor device 2 and the second sensor device 3 from the acquisition unit 12.
  • the angle calculation unit 13 includes lateral acceleration, vertical acceleration, vertical acceleration, vertical rotation angular velocity (angular velocity around the X-axis), and left-right rotation angular velocity (Z-axis) included in the sensing information of the left foot sequentially acquired.
  • (Angular velocity) and internal / external rotation angular velocity (angular velocity around the Y axis) are input to the angle calculation program, and the vertical rotation angle of the left foot (angle around the X axis), left / right rotation angle (angle around the Z axis), and internal / external rotation angle.
  • Angle around the Y axis is calculated (step S201). These angles are rotation angles from the reference angle calculated in step S111.
  • the angle calculation unit 13 also uses the sequentially acquired sensing information and the angle calculation program to determine the vertical rotation angle (angle around the X axis), the left and right rotation angle (angle around the Z axis) of the right foot at predetermined intervals.
  • the inside / outside rotation angle (angle around the Y axis) is calculated (step S202).
  • the angle calculation unit 13 records the calculated information of each angle in the storage unit 104 in association with the sensing time.
  • the sensing time may be the time counted by the first sensor device 2 and the second sensor device 3, and may be included in the sensing information.
  • the angle calculation unit 13 sequentially compares the value of the acceleration included in the sensing information of the left foot transmitted by the first sensor device 2 with the threshold value A, and the downward acceleration in the direction of lowering the left foot ( The time t12 when the negative acceleration) exceeds the threshold value A and shows a peak is specified (step S203). This time is the time when the left foot lands.
  • the angle calculation unit 13 sequentially compares the value of the acceleration included in the sensing information of the right foot transmitted by the second sensor device 3 with the threshold value A, and determines the downward acceleration (minus acceleration) in the direction of lowering the right foot.
  • the time t22 when the peak is shown beyond the threshold value A is specified (step S204). This time is the time when the right foot lands.
  • the angle calculation unit 13 acquires the left-right rotation angle of the left foot recorded in the storage unit 104 in association with the time t12 or a time in the vicinity thereof (step S205). Further, the angle calculation unit 13 acquires the left-right rotation angle of the right foot recorded in the storage unit 104 in association with the time t12 or a time in the vicinity thereof (step S206). The angle calculation unit 13 considers that these left-right rotation angles are angles based on the toe tip direction when a person faces the front, and the left foot tip direction indicated by the left-right rotation angle of the left foot and the left-right rotation angle of the right foot indicate. The angle Q formed with the direction of the tip of the right foot is calculated (step S207). The angle calculation unit 13 calculates the angle Q formed by the left foot tip direction and the right foot tip direction at predetermined intervals.
  • the step distance estimation unit 14 acquires the angle Q formed by the left foot tip direction and the right foot tip direction from the angle calculation unit 13.
  • the step distance estimation unit 14 calculates the step distance D by inputting the angle Q formed by the left foot tip direction and the right foot tip direction into the step distance calculation function f (x) (step S208).
  • the step estimation unit 14 calculates the step D using the angle Q and the step calculation function f (x). To do.
  • the step distance estimation unit 14 may calculate, for example, the average value of the step distance D calculated a plurality of times in one minute as the step distance D of a predetermined step distance calculation interval such as that one minute.
  • the fatigue estimation unit 15 acquires the step distance D calculated by the step distance estimation unit 14. The fatigue estimation unit 15 compares the step distance D with the fatigue threshold value. The fatigue estimation unit 15 estimates that the user has reached fatigue when the step distance D exceeds the fatigue threshold value (step S209). Then, if the estimation device 1 is a smartphone, the fatigue estimation unit 15 outputs information indicating that fatigue has been reached to the liquid crystal display (step S210).
  • the estimation device 1 can estimate the step distance D indicating the distance between the heels of the left foot and the right foot only by the acceleration and the angular velocity measured by the sensor devices provided on the soles of both feet. Since the estimation device 1 is not affected by the movements of the knee joint and the hip joint as the value of the step D, a more accurate value can be estimated. Further, the estimation device 1 can estimate the user's fatigue based on the step D.
  • the estimation device 1 bases the sensing information on the vertical rotation angle of the left foot (angle around the X axis), the left and right rotation angle of the left foot (angle around the Z axis), and the inside and outside of the left foot at predetermined intervals.
  • Rotation angle (angle around Y axis), vertical rotation angle of right foot (angle around X axis), left and right rotation angle of right foot (angle around Z axis), inside and outside rotation angle of right foot (angle around Y axis) Is being calculated.
  • the first sensor device 2 and the second sensor device 3 calculate these and transmit them to the estimation device 1, and the angle calculation unit 13 of the estimation device 1 determines the landing timing of the left foot acquired from the first sensor device 2.
  • the left foot tip direction and the right foot tip The angle Q formed by the direction may be calculated.
  • the estimation device 1 estimates the time t12 when the left foot lands based on the acceleration included in the sensing information received from the first sensor device 2, and the sensing information received from the second sensor device 3.
  • the time t22 when the right foot lands is estimated based on the acceleration included in.
  • the first sensor device 2 estimates the time t12 when the left foot lands based on the acceleration measured by the own device and transmits it to the estimation device 1, and the second sensor device 3 based on the acceleration measured by the own device.
  • the time when the right foot lands may be estimated and transmitted to the estimation device 1.
  • the estimation device 1 specifies the left-right rotation angle (angle around the Z axis) of the left foot corresponding to the time t12 when the left foot lands, which is acquired from the first sensor device 2, and is transmitted from the second sensor device 3.
  • the left / right rotation angle (angle around the Z axis) of the right foot corresponding to that time is specified, and based on the specified left / right rotation angle, the left foot tip direction and the right foot tip direction
  • the angle Q formed by may be calculated.
  • the estimation device 1 estimates the landing time, identifies the left-right rotation angle having the largest angle among the left-right rotation angles in the stance period measured after that time, and the left foot and the right foot thus specified.
  • the angle Q formed by the left foot tip direction and the right foot tip direction may be calculated using the left-right rotation angle.
  • FIG. 12 is a diagram showing a schematic configuration of a fatigue estimation system according to another embodiment.
  • the fatigue estimation system 100 may further include a server device 4, and the server device 4 may perform a part of the processing of the estimation device 1 described above. That is, the server device 4 may perform any of the processes described for the estimation device 1 described above.
  • the server device 4 receives the information for performing the processing via the estimation device 1, and returns the processing result to the estimation device 1. Then, the estimation device 1 may estimate the angle Q formed by the left foot tip direction and the right foot tip direction, the step distance D at that time, and the presence or absence of fatigue based on the information returned from the server device 4.
  • FIG. 13 is a diagram showing the minimum configuration of the estimation device.
  • FIG. 14 is a diagram showing a processing flow of the estimation device with the minimum configuration.
  • the estimation device 1 includes at least an angle calculation unit and a step distance estimation unit.
  • the angle calculation unit 13 calculates the angle formed by the left foot tip direction and the right foot tip direction (step S301).
  • the step distance estimation unit 14 estimates the step distance indicating the distance between the heels of the left foot and the right foot based on the angle formed by the tip direction of the left foot and the tip direction of the right foot (step S302).
  • Each of the above devices has a computer system inside.
  • the process of each process described above is stored in a computer-readable recording medium in the form of a program, and the process is performed by the computer reading and executing this program.
  • the computer-readable recording medium refers to a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • this computer program may be distributed to a computer via a communication line, and the computer receiving the distribution may execute the program.
  • the above program may be for realizing a part of the above-mentioned functions.
  • a so-called difference file difference program
  • difference program difference program

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Physiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Psychiatry (AREA)
  • Geometry (AREA)
  • Artificial Intelligence (AREA)
  • Child & Adolescent Psychology (AREA)
  • Developmental Disabilities (AREA)
  • Educational Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychology (AREA)
  • Social Psychology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

推定装置(1)が、左足先端方向と右足先端方向との成す角度を計算する。推定装置(1)は、左足先端方向と右足先端方向との成す角度に基づいて左足と右足の踵の間隔を示す歩隔を推定する。

Description

推定装置、推定方法、プログラム
 本発明は、推定装置、推定方法、プログラムに関する。
 歩行時の左足と右足の踵の距離を示す歩隔は、下肢の筋力や、歩行安定性、関節負担の増加と関連性があり、歩隔が大きいほど、下肢の筋力の低下に影響し、また歩行安定性の低下に影響し、関節負担が増加する可能性が増すことが知られている。そして歩隔が大きい状態が続くと、人の疲労が増す。
 関連する技術として、特許文献1が開示されている。特許文献1の技術では、腰部に歩行変化判定装置を装着し、その歩行変化判定装置が検出した加速度に基づいて、歩行時の軌跡を特定し、その軌跡から歩行姿勢を示す指標の1つである歩隔を計算することが記載されている(特許文献1、段落0124等)。
特許第5724237号公報
 上述のような歩行における疲労を検出するために、より精度高く歩隔を推定する技術が求められている。特許文献1の技術では、膝、股関節の動きが影響し、歩行の軌跡が正確に得られず、この結果、歩隔のより良い計算精度を得られない可能性が有る。
 そこでこの発明は、上述の課題を解決する推定装置、推定方法、プログラムを提供することを目的としている。
 本実施形態の第一の態様によれば、推定装置は、左足先端方向と右足先端方向との成す角度を計算する角度計算部と、前記角度に基づいて左足と右足の踵の間隔を示す歩隔を推定する歩隔推定部と、を備えることを特徴とする。
 本実施形態の第二の態様によれば、推定方法は、左足先端方向と右足先端方向との成す角度を計算し、前記角度に基づいて左足と右足の踵の間隔を示す歩隔を推定する。
 本実施形態の第三の態様によれば、推定プログラムは、推定装置のコンピュータを、左足先端方向と右足先端方向との成す角度を計算する角度計算手段、前記角度に基づいて左足と右足の踵の間隔を示す歩隔を推定する歩隔推定手段、として機能させることを特徴とする。
 本発明によれば、両足の各靴底に設けたセンサ装置の測定する加速度と角速度のみで、左足と右足の踵の間隔を示す歩隔をより精度良く推定することができる。
本発明の一実施形態による疲労推定システムの概略構成を示す図である。 本発明の一実施形態による推定装置、第一センサ装置、第二センサ装置のハードウェア構成図である。 本発明の一実施形態による推定装置、第一センサ装置、第二センサ装置の機能ブロック図である。 本発明の一実施形態による第一センサ装置や第二センサ装置が計測する加速度と角速度を説明する図である。 本発明の一実施形態による歩行時における左足先端方向と右足先端方向との成す角度と歩隔との関係を示す図である。 本発明の一実施形態による歩行時における左足先端方向と右足先端方向との成す角度と歩隔との関係を示すグラフである。 本発明の一実施形態による歩行運動を説明する第一の図である。 本発明の一実施形態による歩行運動を説明する第二の図である。 本発明の一実施形態による推定装置、第一センサ装置、第二センサ装置の利用例を示す図である。 本発明の一実施形態による靴底に備わるセンサ装置の概要を示す図である。 本発明の一実施形態による疲労推定システムにおける各装置の処理フローを示す図である。 本発明の一実施形態による推定装置の処理フローを示す図である。 本発明の他の実施形態による疲労推定システムの概略構成を示す図である。 本発明の一実施形態による推定装置の最小構成を示す図である。 本発明の一実施形態による最小構成による推定装置の処理フローを示す図である。
 以下、本発明の一実施形態による疲労の推定装置を図面を用いて説明する。
 図1は同実施形態による疲労推定システムの概略構成を示す図である。
 図1で示すように、疲労推定システム100は、少なくとも、推定装置1、第一センサ装置2、第二センサ装置3により構成される。推定装置1は、第一センサ装置2、第二センサ装置3の検出したセンシング情報を取得するために第一センサ装置2、第二センサ装置3と通信接続する。
 第一センサ装置2と第二センサ装置3とは、それぞれは靴底に装着さる。第一センサ装置2と第二センサ装置3は、足の加速度と角速度を計測する。一例として第一センサ装置2が左の加速度と角速度とを計測し、第二センサ装置3が右足の加速度と角速度とを計測する。推定装置1は、第一センサ装置2や第二センサ装置3のそれぞれから加速度と角速度とを示すセンシング情報を受信して、それらのセンシング情報に基づいて、歩行時の左足と右足の踵の距離を示す歩隔Dを計算する。
 推定装置1はスマートフォンなどの携帯端末であってよい。また推定装置1は、第一センサ装置2や第二センサ装置3からセンシング情報を受信して、ユーザの歩隔と、疲労を推定する処理を行う装置であればどの様な装置であってもよい。例えば推定装置1は遠隔に設けられたサーバ装置であってもよい。
 図2は、推定装置、第一センサ装置、第二センサ装置のハードウェア構成図である。
 推定装置1は、CPU(Central Processing Unit)101、ROM(Read Only Memory)102、RAM(Random Access Memory)103、記憶部104、RTC回路105、通信装置106等の各ハードウェアを備えたコンピュータである。
 また、第一センサ装置2は、CPU201、ROM202、RAM203、記憶部204、RTC回路205、通信装置206、センサ207等の各ハードウェアを備えたコンピュータである。
 また、第二センサ装置3は、CPU301、ROM302、RAM303、記憶部304、RTC回路305、通信装置306、センサ307等の各ハードウェアを備えたコンピュータである。
 本実施形態においては、第一センサ装置2に含まれるセンサ207と、第二センサ装置3に含まれるセンサ307とは、ユーザが歩行した際の足の動きに基づく加速度や角速度をセンシングする慣性計測ユニット(IMU;Inertial Measurement Unit)により構成される。
 図3は、推定装置、第一センサ装置、第二センサ装置の機能ブロック図である。
 推定装置1は、予め記憶する疲労推定プログラムを実行する。これにより推定装置1は、少なくとも制御部11、取得部12、角度計算部13、歩隔推定部14、疲労推定部15、の各機能を発揮する。
 推定装置1の制御部11は、推定装置1の他の機能部を制御する。
 推定装置1の取得部12は、センシング情報を取得する。
 推定装置1の角度計算部13は、左足先端方向と右足先端方向との成す角度Qを計算する。
 推定装置1の歩隔推定部14は、左足先端方向と右足先端方向との成す角度Qに基づいて左足と右足の踵の間隔を示す歩隔Dを推定する。
 推定装置1の疲労推定部15は、歩隔Dに基づいて人の疲労を推定する。
 また第一センサ装置2は、予め記憶するセンシングプログラムを実行する。これにより第一センサ装置2は、少なくとも、制御部21、センシング部22、送信部23、を備える。
 第一センサ装置2の制御部21は、第一センサ装置2の他の機能部を制御する。第一センサ装置2のセンシング部22は、ユーザが歩行した際の左足の動きに基づく加速度や角速度をIMU等のセンサ207から取得する。第一センサ装置2の送信部23は、左足の加速度や角速度を示すセンシング情報を推定装置1へ送信する。
 また第二センサ装置3は、予め記憶するセンシングプログラムを実行する。これにより第二センサ装置3は、少なくとも、制御部31、センシング部32、送信部33、を備える。
 第二センサ装置3の制御部31は、第二センサ装置3の他の機能部を制御する。第二センサ装置3のセンシング部32は、ユーザが歩行した際の右足の動きに基づく加速度や角速度をIMU等のセンサ307から取得する。第二センサ装置3の送信部33は、右足の加速度や角速度を示すセンシング情報を推定装置1へ送信する。
 図4は、第一センサ装置や第二センサ装置が計測する加速度と角速度を説明する図である。
 本実施形態において第一センサ装置2や第二センサ装置3は、足の踵を原点として脚軸に沿ったZ軸と、踵から足のつま先方向のZ軸に直角なY軸と、Z軸とY軸に直角なX軸と、の各軸の軸回りの加速度と角速度とを検出する。X軸、Y軸、Z軸は互いに直交する。X軸回りの回転角度をピッチ角、Y軸回りの回転角度をロール角、Z軸回りの回転をヨー角とみなす。推定装置1は、これらの各軸の軸回りの加速度と角速度に基づいて、左足先端方向と右足先端方向との成す角度を計算する。
 図5は、歩行時における左足先端方向と右足先端方向との成す角度と歩隔との関係を示す図である。
 図5(1)には左足先端方向と右足先端方向との成す角度がQ1で歩隔がD1、図5(2)には左足先端方向と右足先端方向との成す角度がQ2で歩隔がD2、図5(3)には左足先端方向と右足先端方向との成す角度がQ3で歩隔がD3である場合を示す。多くの場合、左足先端方向と右足先端方向との成す角度Qと歩隔Dとの関係はQが大きければDも大きくなる比例の関係となる、図5において各角度Qの大小と、歩隔Dの大小の関係は、Q1<Q2<Q3、D1<D2<D3の関係となる。
 図6は、歩行時における左足先端方向と右足先端方向との成す角度と歩隔との関係を示すグラフである。
 具体的には図6(a)のグラフに示すように、実験の結果、左足先端方向と右足先端方向との成す角度Qが大きいほど歩隔Dが大きいデータが得られた。このグラフを作成するための被験者の骨盤から足裏までの脚の長さLで正規化すると、左足先端方向と右足先端方向との成す角度Qと、歩隔Dとの関係は、図6(b)で示すように、歩隔計算関数f(x)で表すことができる。歩隔計算関数f(x)は単調増加関数である。
 図7は、歩行運動を説明する第一の図である。
 図7は、人の歩行運動における左足と右足の立脚期間と遊脚期間とを示している。右足の立脚期間は、歩行運動の運動周期の一周期を0%から100%で表し、一方の足の踵が着地する際の時刻を0%、同じ足の踵が次に着地する際の時刻を100%とする。この歩行運動の運動周期において右足の踵が着地した時刻から次にその踵が離地する時刻までを右足の立脚期間、左足の踵が着地した時刻から次にその踵が離地する時刻までを左足の立脚期間と呼ぶ。また歩行運動の運動周期において右足の踵が離地した時刻から次に踵が着地するまでの時刻を右足の遊脚期間、左足の踵が離地した時刻から次に踵が着地するまでの時刻を左足の遊脚期間と呼ぶ。
 図8は、歩行運動を説明する第二の図である。
 図8は、左足と右足の歩行運動の運動周期における垂直軸の加速度を示しており、横軸に時間、縦軸に加速度を表す。なおマイナスの加速度は下方への加速度、プラスの加速度は上方への加速度を示す。また図5において実線は左足の加速度の推移、点線は右足の加速度の推移を示す。
 時刻t11は左足の離地直後のタイミングを示し、また時刻t12は左足の着地直後のタイミングを示す。時刻t11の離地直後のタイミングでは上方加速度が閾値Bを越えてピークとなり、また時刻t12の着地直後のタイミングでは下方加速度が閾値Aを超えてピークとなる。本実施形態において推定装置1は、下方加速度が閾値Aを越えてピークとなる時刻t12を周期的に検出し、その時刻t12におけるZ軸回りの回転角度を検出する。
 また時刻t21は右足の離地直後のタイミングを示し、また時刻t22は右足の着地直後のタイミングを示す。時刻t21の離地直後のタイミングでは上方加速度が閾値Bを越えてピークとなり、また時刻t22の着地直後のタイミングでは下方加速度が閾値Aを超えてピークとなる。本実施形態において推定装置1は、下方加速度が閾値Aを越えてピークとなる時刻t22を周期的に検出し、その時刻t22におけるZ軸回りの回転角度を検出する。
 推定装置1の角度計算部13は、時刻t12における左足のZ軸回りの回転角度と、時刻t22における右足のZ軸回りの回転角度とに基づいて、右足先端方向との成す角度Qを計算する。
 より具体的には、推定装置1の角度計算部13は、センシング情報に含まれる足の左右方向の加速度、上下方向の加速度、前後方向の加速度、足の上下回転角速度(X軸回りの角速度)、左右回転角速度(Z軸回りの角速度)、内外回転角速度(Y軸回りの角速度)を取得する。なお、足裏面と脚部とを垂直にした場合の、踵とつま先とを結ぶ第一軸(Y軸)と、脚部に平行で足首を通る第二軸(Z軸)と、第一軸と第二軸に垂直な第三軸(X軸)とする。この場合に、第三軸(X軸)回りの回転の角速度を足の上下回転角速度と呼ぶ。また第二軸(Z軸)回りの回転の角速度を足の左右回転角速度と呼ぶ。また第一軸(Y軸)回り回転の角速度を内外回転角速度と呼ぶ。そして、推定装置1は、角度計算プログラムを用いて、第三軸(X軸)回りの角度を示す足の上下回転角度、第二軸(Z軸)回りの角度を示す左右回転角度、第三軸(X軸)回りの角度を示す内外回転角度を計算する。角度計算プログラムは、例えばMadgwickフィルタなどが知られており、公知の技術を利用すればよい。
 そして、角度計算部13は、時刻t12における左足の第二軸(Z軸)回りの角度を示す左右回転角度と、時刻t22における右足の第二軸(Z軸)回りの角度を示す左右回転角度との成す角度を合計し、左足先端方向と右足先端方向との成す角度Qを計算する。角度計算部13は、左足先端方向と右足先端方向との成す角度の平均などの統計値を、角度Qと計算してもよい。
 図9は、推定装置、第一センサ装置、第二センサ装置の利用例を示す図である。
 一例として推定装置1はユーザが携帯する。そして第一センサ装置2は、左足の靴のインソール内、ユーザの左足の土踏まず近傍に装着される。また第二センサ装置3は、右足の靴のインソール内、ユーザの右足の土踏まず近傍に装着される。そして、第一センサ装置2と第二センサ装置3は、ユーザの歩行による足の動きに応じて検出した加速度や角速度を含むセンシング情報を推定装置1へ送信する。
 図10は、靴底に備わるセンサ装置の概要を示す図である。
 図10で示すように第一センサ装置2と、第二センサ装置3とは、靴の底に設けられる。第一センサ装置2と、第二センサ装置3とは無線通信により、推定装置1と通信接続する。
 図11は、疲労推定システムにおける各装置の処理フローを示す図である。
 ユーザは、両足の靴を平行に揃えて、第一センサ装置2と第二センサ装置3の電源をONにする(ステップS101)。これにより第一センサ装置2の通信装置206と、第二センサ装置3の通信装置306は、接続確立信号を送信する(ステップS102)。これら通信装置206、306は、一例としてはBLE(Bluetooth Low Energy;登録商標)やWifi(登録商標)などの無線通信の機能を備えて他の装置と通信接続する。
 ユーザは、推定装置1を操作して、第一センサ装置2との通信接続を許可する。これにより推定装置1と、第一センサ装置2とが通信接続する(ステップS103)。同様にユーザは、推定装置1を操作して、第二センサ装置3との通信接続を許可する。これにより推定装置1と、第二センサ装置3とが通信接続する(ステップS104)。ユーザは推定装置1に処理の開始を指示する。すると推定装置1の制御部11は、第一センサ装置2と第二センサ装置3との間で時刻を同期する(ステップS105)。これにより第一センサ装置2と第二センサ装置3と推定装置1とが計時する時刻が一致する。つまり推定装置1の制御部11は、時刻の同期処理部の機能を有する。制御部11は第一センサ装置2に対して左足のセンシング情報の出力要求を送信し、第二センサ装置3に対して右足のセンシング情報の出力要求を送信する(ステップS106)。
 第一センサ装置2はセンシング部22がセンサ207から加速度と角速度とを取得する(ステップS107)。そして送信部23が左足のセンシング情報を所定の間隔で繰り返し推定装置1へ送信する(ステップS108)。第一センサ装置2は、繰り返し検出した加速度や角速度を含むセンシング情報を、順次、推定装置1へ送信する。なお、第一センサ装置2の生成するセンシング情報に含まれる加速度は、左足の左右方向の加速度、左足の上下方向の加速度、左足の前後方向の加速度を示す。また第一センサ装置2の生成するセンシング情報に含まれる角速度は、左足の上下回転角速度(X軸回りの角速度)、左足の左右回転角速度(Z軸回りの角速度)、左足の内外回転角速度(Y軸回りの角速度)を示す。
 同様に、第二センサ装置3はセンシング部32がセンサ307から加速度と角速度とを取得する(ステップS109)。そして送信部33が右足のセンシング情報を所定の間隔で繰り返し推定装置1へ送信する(ステップS110)。第二センサ装置3は、ユーザの歩行運動の運動周期において複数回検出した加速度や角速度を含むセンシング情報を、順次、推定装置1へ送信する。なお、第二センサ装置3の生成するセンシング情報に含まれる加速度は、右足の左右方向の加速度、右足の上下方向の加速度、右足の前後方向の加速度を示す。また第二センサ装置3の生成するセンシング情報に含まれる角速度は、右足の上下回転角速度(X軸回りの角速度)、右足の左右回転角速度(Z軸回りの角速度)、右足の内外回転角速度(Y軸回りの角速度)を示す。そして推定装置1の角度算出部14は、左右の靴の向きをつま先をそろえて平行にした状態における、センシング情報に含まれる角速度と加速度を用いて、当該靴の向きを平行にした状態の左右回転角度が0度となる基準位置を設定する。
 具体的には、角度計算部13は、順次取得した左足のセンシング情報に含まれる左右方向の加速度、上下方向の加速度、前後方向の加速度、上下回転角速度(X軸回りの角速度)、左右回転角速度(Z軸回りの角速度)、内外回転角速度(Y軸回りの角速度)を、角度計算プログラムに入力し、左足の上下回転角度(X軸回りの角度)、左右回転角度(Z軸回りの角度)、内外回転角度(Y軸回りの角度)を計算する(ステップS111)。また角度計算部13は、順次取得したセンシング情報と角度計算プログラムとを用いて、所定の間隔で右足の上下回転角度(X軸回りの角度)、左右回転角度(Z軸回りの角度)、内外回転角度(Y軸回りの角度)を計算する(ステップS112)。角度計算部13は計算した各回転角度を、左右の足のつま先方向が平行となる基準の角度(0度)として記憶する(ステップS113)。そしてユーザは靴を装着する。なおユーザが靴を履いて足をそろえた状態で上述のステップS101からステップS113の処理が行われてもよい。
 図12は、推定装置の処理フローを示す図である。
 次に図12を用いて上記図11を用いて説明した処理の後の推定装置1の処理について説明する。
 推定装置1は、第一センサ装置2から左足のセンシング情報を所定の間隔で繰り返し受信する。また推定装置1は、第二センサ装置3から右足のセンシング情報を所定の間隔で繰り返し受信する。そして、推定装置1の取得部12は、左足のセンシング情報と、右足のセンシング情報とを取得する。推定装置1の角度計算部13は、取得部12から、第一センサ装置2と第二センサ装置3からセンシング情報を順次取得する。
 そして角度計算部13は、順次取得した左足のセンシング情報に含まれる左右方向の加速度、上下方向の加速度、前後方向の加速度、上下回転角速度(X軸回りの角速度)、左右回転角速度(Z軸回りの角速度)、内外回転角速度(Y軸回りの角速度)を、角度計算プログラムに入力し、左足の上下回転角度(X軸回りの角度)、左右回転角度(Z軸回りの角度)、内外回転角度(Y軸回りの角度)を計算する(ステップS201)。これらの角度はステップS111で計算した基準の角度からの回転角度である。
 角度計算部13は、また、順次取得したセンシング情報と角度計算プログラムとを用いて、所定の間隔で右足の上下回転角度(X軸回りの角度)、左右回転角度(Z軸回りの角度)、内外回転角度(Y軸回りの角度)を計算する(ステップS202)。
 角度計算部13は、計算した各角度の情報をセンシング時刻に対応付けて記憶部104に記録する。なおセンシング時刻は第一センサ装置2や第二センサ装置3がカウントした時刻であってよく、センシング情報に含まれていてよい。
 角度計算部13は、また上述の処理と並行して、第一センサ装置2の送信した左足のセンシング情報に含まれる加速度の値と閾値Aとを順次比較し、左足を下げる方向の下方加速度(マイナスの加速度)が閾値Aを越えてピークを示した際の時刻t12を特定する(ステップS203)。この時刻は左足が着地した際の時刻である。同様に、角度計算部13は、第二センサ装置3の送信した右足のセンシング情報に含まれる加速度の値と閾値Aとを順次比較して、右足を下げる方向の下方加速度(マイナスの加速度)が閾値Aを越えてピークを示した際の時刻t22を特定する(ステップS204)。この時刻は右足が着地した際の時刻である。
 角度計算部13は、時刻t12またはその近傍の時刻に紐づいて記憶部104に記録される左足の左右回転角度を取得する(ステップS205)。また角度計算部13は、時刻t12またはその近傍の時刻に紐づいて記憶部104に記録される右足の左右回転角度を取得する(ステップS206)。これら左右回転角度は人が正面を向いた際のつま先先端方向を基準とする角度であるとする角度計算部13は、左足の左右回転角度が示す左足先端方向と、右足の左右回転角度が示す右足先端方向との成す角度Qを計算する(ステップS207)。角度計算部13は、左足先端方向と右足先端方向との成す角度Qを所定の間隔で計算する。
 歩隔推定部14は、左足先端方向と右足先端方向との成す角度Qを角度計算部13から取得する。歩隔推定部14は、歩隔計算関数f(x)に、左足先端方向と右足先端方向との成す角度Qを入力して歩隔Dを計算する(ステップS208)。歩隔推定部14は、角度計算部13が左足先端方向と右足先端方向との成す角度Qを計算する度に、その角度Qと歩隔計算関数f(x)を用いて歩隔Dを計算する。歩隔推定部14は、例えば一分間に複数回計算した歩隔Dの平均値を、その一分間などの所定の歩隔計算間隔の歩隔Dとして計算してよい。
 疲労推定部15は、歩隔推定部14の計算した歩隔Dを取得する。疲労推定部15は歩隔Dと疲労閾値とを比較する。疲労推定部15は、歩隔Dが疲労閾値を越えた場合、ユーザが疲労に達したと推定する(ステップS209)。そして疲労推定部15は、推定装置1がスマートフォンであれば、液晶ディスプレイに、疲労に達したことを示す情報を出力する(ステップS210)。
 以上の処理によれば、推定装置1は、両足の各靴底に設けたセンサ装置の測定する加速度と角速度のみで、左足と右足の踵の間隔を示す歩隔Dを推定できる。そして推定装置1は、この歩隔Dの値として、膝関節や股関節などの動きの影響を受けないため、より正確な値を推定することができる。また推定装置1は、その歩隔Dに基づいてユーザの疲労を推定することができる。
 上述の処理においては、推定装置1がセンシング情報に基づいて、所定の間隔で、左足の上下回転角度(X軸回りの角度)、左足の左右回転角度(Z軸回りの角度)、左足の内外回転角度(Y軸回りの角度)と、右足の上下回転角度(X軸回りの角度)、右足の左右回転角度(Z軸回りの角度)、右足の内外回転角度(Y軸回りの角度)とを計算している。しかしながら、第一センサ装置2や第二センサ装置3がこれらを計算して、推定装置1へ送信し、推定装置1の角度計算部13は、第一センサ装置2から取得した左足の着地タイミングにおける左足の左右回転角度(Z軸回りの角度)と、第二センサ装置3から取得した右足の着地タイミングにおける右足の左右回転角度(Z軸回りの角度)とを用いて、左足先端方向と右足先端方向との成す角度Qを計算するようにしてもよい。
 またさらに上述の処理においては、推定装置1が、第一センサ装置2から受信したセンシング情報に含まれる加速度に基づいて左足が着地した時刻t12を推定し、第二センサ装置3から受信したセンシング情報に含まれる加速度に基づいて右足が着地した時刻t22を推定している。しかしながら第一センサ装置2が、自装置で計測した加速度に基づいて左足が着地した時刻t12を推定して推定装置1へ送信し、第二センサ装置3が、自装置で計測した加速度に基づいて右足が着地した時刻を推定して推定装置1へ送信してもよい。そして推定装置1は、第一センサ装置2から取得した左足が着地した時刻t12を用いてその時刻に対応する左足の左右回転角度(Z軸回りの角度)を特定し、第二センサ装置3から取得した左足が着地した時刻t22を用いてその時刻に対応する右足の左右回転角度(Z軸回りの角度)を特定して、それら特定した左右回転角度に基づいて左足先端方向と右足先端方向との成す角度Qを計算してもよい。
 また上述の処理においては、足が着地した時刻を推定し、その時刻の左右回転角度を用いて左足先端方向と右足先端方向との成す角度Qを計算している。しかしながら、推定装置1は、着地した時刻を推定し、その時刻の後に計測された立脚期間における左右回転角度のうち、最も角度が大きい左右回転角度を特定し、そのように特定した左足と右足の左右回転角度を用いて左足先端方向と右足先端方向との成す角度Qを計算してもよい。
 図12は、他の実施形態による疲労推定システムの概略構成を示す図である。
 疲労推定システム100は、さらにサーバ装置4を備え、サーバ装置4が、上述した推定装置1の処理の一部を行うようにしてもよい。つまり、サーバ装置4は、上述の推定装置1について説明した、何れかの処理を行うようにしてよい。この場合、サーバ装置4はその処理を行う為の情報を、推定装置1を介して受信し、処理の結果を推定装置1へ返信する。そして、推定装置1はサーバ装置4から返信された情報に基づいて、左足先端方向と右足先端方向との成す角度Qや、その時の歩隔D、疲労の有無を推定するようにしてもよい。
 図13は、推定装置の最小構成を示す図である。
 図14は、最小構成による推定装置の処理フローを示す図である。
 推定装置1は、少なくとも角度計算部と、歩隔推定部とを備える。
 角度計算部13は、左足先端方向と右足先端方向との成す角度を計算する(ステップS301)。
 歩隔推定部14は、左足先端方向と右足先端方向との成す角度に基づいて左足と右足の踵の間隔を示す歩隔を推定する(ステップS302)。
 上述の各装置は内部に、コンピュータシステムを有している。そして、上述した各処理の過程は、プログラムの形式でコンピュータ読み取り可能な記録媒体に記憶されており、このプログラムをコンピュータが読み出して実行することによって、上記処理が行われる。ここでコンピュータ読み取り可能な記録媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等をいう。また、このコンピュータプログラムを通信回線によってコンピュータに配信し、この配信を受けたコンピュータが当該プログラムを実行するようにしても良い。
 また、上記プログラムは、前述した機能の一部を実現するためのものであっても良い。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
1・・・推定装置
2・・・第一センサ装置
3・・・第二センサ装置
4・・・サーバ装置
11,21・・・制御部
12・・・取得部
13・・・角度計算部
14・・・歩隔推定部
15・・・疲労推定部
21,31・・・制御部
22,32・・・センシング部
23,33・・・送信部

Claims (9)

  1.  左足先端方向と右足先端方向との成す角度を計算する角度計算部と、
     前記角度に基づいて左足と右足の踵の間隔を示す歩隔を推定する歩隔推定部と、
     を備える推定装置。
  2.  前記角度計算部は、前記左足先端方向と前記右足先端方向との成す角度が0であると推定できるタイミングから前記左足と前記右足の加速度と角速度を計測し、その加速度と角速度とに基づいて前記左足先端方向と前記右足先端方向との成す角度を計算する
     を備える請求項1に記載の推定装置。
  3.  前記歩隔に基づいて人の疲労を推定する疲労推定部と、
     を備える請求項1または請求項2に記載の推定装置。
  4.  前記疲労推定部は前記歩隔と前記疲労と推定する閾値との比較を所定間隔で繰り返し、前記歩隔が前記閾値を越えた場合に疲労と推定する
     請求項3に記載の推定装置。
  5.  左足先端方向と右足先端方向との成す角度を計算し、
     前記角度に基づいて左足と右足の踵の間隔を示す歩隔を推定する
     推定方法。
  6.  前記左足先端方向と前記右足先端方向との成す角度が0であると推定できるタイミングから前記左足と前記右足の加速度と角速度を計測し、その加速度と角速度とに基づいて前記左足先端方向と前記右足先端方向との成す角度を計算する
     請求項5に記載の推定方法。
  7.  前記歩隔に基づいて人の疲労を推定する
     請求項5または請求項6に記載の推定方法。
  8.  前記歩隔と前記疲労と推定する閾値との比較を所定間隔で繰り返し、前記歩隔が前記閾値を越えた場合に疲労と推定する
     請求項7に記載の推定方法。
  9.  推定装置のコンピュータを、
     左足先端方向と右足先端方向との成す角度を計算する角度計算手段、
     前記角度に基づいて左足と右足の踵の間隔を示す歩隔を推定する歩隔推定手段、
     として機能させる推定プログラム。
PCT/JP2019/033689 2019-08-28 2019-08-28 推定装置、推定方法、プログラム WO2021038748A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/635,510 US20220273193A1 (en) 2019-08-28 2019-08-28 Estimation device, estimation method, and program
JP2021541865A JP7279798B2 (ja) 2019-08-28 2019-08-28 推定装置、推定方法、プログラム
PCT/JP2019/033689 WO2021038748A1 (ja) 2019-08-28 2019-08-28 推定装置、推定方法、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/033689 WO2021038748A1 (ja) 2019-08-28 2019-08-28 推定装置、推定方法、プログラム

Publications (1)

Publication Number Publication Date
WO2021038748A1 true WO2021038748A1 (ja) 2021-03-04

Family

ID=74683943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033689 WO2021038748A1 (ja) 2019-08-28 2019-08-28 推定装置、推定方法、プログラム

Country Status (3)

Country Link
US (1) US20220273193A1 (ja)
JP (1) JP7279798B2 (ja)
WO (1) WO2021038748A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024449A (ja) * 2010-07-27 2012-02-09 Omron Healthcare Co Ltd 歩行変化判定装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2218242C (en) * 1996-10-11 2005-12-06 Kenneth R. Fyfe Motion analysis system
JP6241488B2 (ja) 2016-03-03 2017-12-06 カシオ計算機株式会社 運動支援装置、運動支援方法及び運動支援プログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024449A (ja) * 2010-07-27 2012-02-09 Omron Healthcare Co Ltd 歩行変化判定装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUANG YANGJIAN ET AL.: "Novel Foot Progression Angle Algorithm Estimation via Foot-Worn, Magneto-Inertial Sensing", IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 63, no. Issue 11, 30 November 2016 (2016-11-30), pages 2278 - 2285, XP011625957, DOI: 10.1109/TBME.2016.2523512 *
MIYATSUJI, KAZUKI ET AL: "A study on normal walking in elderly people with special reference to foot angle and step width", OSAKA RESEARCH JOURNAL OF PHYSICAL EDUCATION, vol. 49, 1 March 2011 (2011-03-01), pages 1 - 13 *
XIA HAISHENG ET AL.: "Validation of a smart shoe for estimating foot progression angle during walking gait", JOURNAL OF BIOMECHANICS, vol. 61, 16 August 2017 (2017-08-16), pages 193 - 198, XP085164688, DOI: 10.1016/j.jbiomech.2017.07.012 *

Also Published As

Publication number Publication date
JPWO2021038748A1 (ja) 2021-03-04
US20220273193A1 (en) 2022-09-01
JP7279798B2 (ja) 2023-05-23

Similar Documents

Publication Publication Date Title
US11596832B2 (en) Method and apparatus for early detection of diabetic foot disorders by analyzing foot temperature and vertical and shear forces on feet
US10543143B2 (en) Gait data management system, gait data management method, walking assistance device and server
JP6387425B2 (ja) 歩行分析システム及び方法
KR20180033652A (ko) 보행 보조 장치 및 보행 보조 장치의 동작 방법
CN108836344A (zh) 步长步频估算方法和装置及步态检测仪
JP2012161402A (ja) 運動特性評価システムおよび運動特性評価方法
JP2023145448A (ja) マルチモーダルセンサフュージョンプラットフォーム
AU2022206835A1 (en) Gait profiler system and method
KR102343379B1 (ko) 착용형 보행 시작 의도 판단 장치
WO2021038748A1 (ja) 推定装置、推定方法、プログラム
JP2021065393A (ja) 生体計測システム及び方法
JP2020092955A (ja) 測定装置、測定方法及びプログラム
JP2022013405A (ja) 推定装置、推定方法、プログラム
US20220000430A1 (en) Determination apparatus, sensor apparatus, determination method, and non-transitory computer-readable recording medium
US20240115162A1 (en) Calculation device, calculation method, and program recording medium
US20210059566A1 (en) Step Analysis Device
US20240099608A1 (en) Detection device, detection method, and program recording medium
EP4302627A1 (en) Body condition estimation system and shoe
WO2022250098A1 (ja) 情報処理装置、電子機器、情報処理システム、情報処理方法及びプログラム
US10157260B2 (en) Walking state estimating device and walking state estimating method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943579

Country of ref document: EP

Kind code of ref document: A1