WO2021038669A1 - Terminal and wireless communication method - Google Patents

Terminal and wireless communication method Download PDF

Info

Publication number
WO2021038669A1
WO2021038669A1 PCT/JP2019/033180 JP2019033180W WO2021038669A1 WO 2021038669 A1 WO2021038669 A1 WO 2021038669A1 JP 2019033180 W JP2019033180 W JP 2019033180W WO 2021038669 A1 WO2021038669 A1 WO 2021038669A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
wideband
information
reported
pmi
Prior art date
Application number
PCT/JP2019/033180
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
ウェンジャ リュー
ジン ワン
ギョウリン コウ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/033180 priority Critical patent/WO2021038669A1/en
Priority to CN201980099681.2A priority patent/CN114287139A/en
Publication of WO2021038669A1 publication Critical patent/WO2021038669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • the wide band is the entire band to be reported by CSI, for example, the entire carrier (also referred to as a component carrier (CC), cell, serving cell, etc.).
  • the sub-band is a part of the wide band, and is, for example, one or more physical resource blocks (Physical Resource Block (PRB) or resource block (RB)).
  • PRB Physical Resource Block
  • RB resource block
  • the size of the subband may be determined according to the size of the wideband (wideband size, for example, the number of PRBs).
  • a wide bandwidth eg, a bandwidth wider than Rel.15 NR
  • a high frequency band eg, 7.125 GHz, 24.25 GHz, etc.
  • at least one of a frequency band higher than any of 52.6 GHz and a frequency band higher than Rel.15 NR will be available.
  • the subbandsize that depends on the wideband size becomes larger than the coherence bandwidth, resulting in the reliability of the CSI. May deteriorate.
  • the uplink (UL) overhead may increase.
  • one of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of preventing a decrease in the reliability of CSI while suppressing an increase in UL overhead.
  • At least one CSI part of the plurality of channel state information (CSI) parts corresponds to the first field indicating each of the plurality of precoding matrix indicators (PMI) and the PMI. It has a control unit that generates the plurality of CSI parts and a transmission unit that transmits the plurality of CSI parts, including a second field indicating the delay to be performed.
  • CSI channel state information
  • FIG. 1 is a diagram showing an example of CSI reporting operation.
  • 2A and 2B are diagrams showing an example of feedback of wideband information.
  • FIG. 3 is a diagram showing an example of a precoder based on wideband information.
  • FIG. 4 is a diagram showing another example of a precoder based on wideband information.
  • FIG. 5 is a diagram showing still another example of a precoder based on wideband information.
  • FIG. 6 is a diagram showing an example of the structure of CSI reporting in UCI.
  • FIG. 7 is a diagram showing an example of CSI report # n according to the first embodiment.
  • FIG. 8 is a diagram showing another example of CSI report # n according to the first embodiment.
  • FIG. 1 is a diagram showing an example of CSI reporting operation.
  • 2A and 2B are diagrams showing an example of feedback of wideband information.
  • FIG. 3 is a diagram showing an example of a precoder based on wideband information.
  • FIG. 4 is
  • FIG. 9 is a diagram showing an example of mapping of the CSI report according to the first embodiment.
  • FIG. 10 is a diagram showing an example of CSI part 1 of CSI report # n according to the embodiment 2-2-1.
  • FIG. 11 is a diagram showing an example of CSI part 2 of CSI report # n according to the embodiment 2-2-1.
  • 12A and 12B are diagrams showing an example of mapping of the CSI report according to the embodiment 2-2-1.
  • FIG. 13 is a diagram showing an example of UCI coding and rate matching according to the second embodiment.
  • FIG. 14 is a diagram showing an example of CSI part 1 of CSI report # n according to the second embodiment.
  • FIG. 15 is a diagram showing an example of CSI Part 2 of CSI Report # n according to the second embodiment.
  • FIG. 16 is a diagram showing an example of mapping of CSI Part 1 according to the second embodiment.
  • FIG. 17 is a diagram showing an example of mapping of CSI Part 2 according to the second embodiment.
  • FIG. 18 is a diagram showing an example of UCI coding and rate matching according to the second embodiment.
  • FIG. 19 is a diagram showing an example of CSI Part 1 of CSI Report # n according to the second embodiment 2-3-1.
  • 20A and 20B are diagrams showing an example of CSI Part 2 of CSI Report # n according to Embodiment 2-2-3-1.
  • FIG. 21 is a diagram showing an example of CSI part 1 of CSI report #n according to the second embodiment 2-3-2.
  • FIG. 22 is a diagram showing an example of wideband report # 1 of CSI part 2 of CSI report #n according to the second embodiment 2-3-2.
  • 23A and 23B are diagrams showing an example of wideband reports # q-1 and # q of CSI Part 2 of CSI Report # n according to Embodiment 2-2-3-2.
  • FIG. 24 is a diagram showing an example of mapping of CSI Part 1 according to Embodiment 2-2-3.
  • FIG. 25 is a diagram showing an example of mapping of CSI Part 2 according to Embodiment 2-2-3.
  • FIG. 26 is a diagram showing an example of UCI coding and rate matching according to the second embodiment.
  • FIG. 27 is a diagram showing an example of CSI Part 1 of CSI Report # n according to Embodiment 3-1.
  • FIG. 28 is a diagram showing an example of CSI part 1 of CSI report # n according to the embodiment 3-2-1.
  • 29A and 29B are diagrams showing an example of CSI part 2 and CSI part m of CSI report # n according to the embodiment 3-2-1.
  • FIG. 30 is a diagram showing an example of CSI Part 1 of CSI Report # n according to the third-2-2 embodiment.
  • FIG. 31 is a diagram showing an example of CSI Part 2 of CSI Report # n according to the third-2-2 embodiment.
  • 32A and 32B are diagrams showing an example of CSI part m-1 and CSI part m of CSI report #n according to the third-2-2 embodiment.
  • FIG. 33 is a diagram showing an example of CSI part 3 of CSI report # n of the three-part CSI according to the embodiment 3-2-2.
  • 34A and 34B are diagrams showing an example of mapping of the CSI report according to the third embodiment.
  • FIG. 35 is a diagram showing an example of UCI coding and rate matching according to the third embodiment.
  • FIG. 36 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 37 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 38 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 39 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the terminal also referred to as a user terminal, User Equipment (UE), etc.
  • the terminal has Channel State Information (CSI) based on the reference signal (Reference Signal (RS)) (or resource for the RS).
  • RS Reference Signal
  • Is generated also referred to as determination, calculation, estimation, measurement, etc.
  • the generated CSI is transmitted (also referred to as reporting, feedback, etc.) to the network (for example, a base station).
  • the CSI may be transmitted to the base station using, for example, an uplink control channel (eg, Physical Uplink Control Channel (PUCCH)) or an uplink shared channel (eg, Physical Uplink Shared Channel (PUSCH)).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the RS used to generate the CSI is, for example, a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), a synchronization signal / broadcast channel (Synchronization Signal / Physical Broadcast Channel (SS / PBCH)) block, and synchronization. At least one of a signal (Synchronization Signal (SS)), a reference signal for demodulation (DeModulation Reference Signal (DMRS)), and the like may be used.
  • CSI-RS Channel State Information Reference Signal
  • SS Synchrononization Signal
  • DMRS DeModulation Reference Signal
  • the CSI-RS may include at least one of non-zero power (NZP)) CSI-RS and CSI-Interference Management (CSI-IM).
  • the SS / PBCH block is a block containing SS and PBCH (and the corresponding DMRS), and may be referred to as an SS block (SSB) or the like.
  • the SS may include at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • CSI is a channel quality indicator (Channel Quality Indicator (CQI)), a precoding matrix indicator (Precoding Matrix Indicator (PMI)), a CSI-RS resource indicator (CSI-RS Resource Indicator (CRI)), SS / PBCH.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • CRI CSI-RS Resource Indicator
  • Block resource indicator (SS / PBCH Block Indicator (SSBRI)), layer indicator (Layer Indicator (LI)), rank indicator (Rank Indicator (RI)), L1-RSRP (reference signal reception power in layer 1 (Layer)) 1 Reference Signal Received Power)), L1-RSRQ (Reference Signal Received Quality), L1-SINR (Signal-to-Noise and Interference Ratio or Signal to Interference plus Noise Ratio), L1-SNR (Signal to Noise Ratio), etc.
  • At least one parameter may be included.
  • the UE may receive information regarding the CSI report (report configuration information) and control the CSI report based on the report setting information.
  • the report setting information may be, for example, "CSI-ReportConfig" of the information element (Information Element (IE)) of the radio resource control (Radio Resource Control (RRC)).
  • IE Information Element
  • RRC Radio Resource Control
  • RRC IE may be paraphrased as an RRC parameter, an upper layer parameter, or the like.
  • the report setting information may include at least one of the following, for example.
  • -Information about the type of CSI report (report type information, eg "reportConfigType” in RRC IE)
  • Information about one or more quantities of CSI to be reported (one or more CSI parameters)
  • CSI parameters eg, RRC IE "report Quantity”
  • -Information on RS resources used to generate the amount (the CSI parameter)
  • source information for example, "CSI-ResourceConfigId” of RRC IE
  • frequency domain information for example, "reportFreqConfiguration" of RRC IE
  • the report type information can be periodic CSI (Periodic CSI (P-CSI)) reports, aperiodic CSI (Aperiodic CSI (A-CSI)) reports, or semi-permanent (semi-persistent, semi-persistent) reports.
  • P-CSI Periodic CSI
  • A-CSI aperiodic CSI
  • SP-CSI semi-permanent CSI report
  • a stent (Semi-Persistent) CSI report (Semi-Persistent CSI (SP-CSI)) report may be indicated (indicate).
  • the reported amount information may specify at least one combination of the above CSI parameters (for example, CRI, RI, PMI, CQI, LI, L1-RSRP, etc.).
  • the resource information may be the ID of the resource for RS.
  • the RS resource may include, for example, a non-zero power CSI-RS resource or SSB and a CSI-IM resource (for example, a zero power CSI-RS resource).
  • the frequency domain information may indicate the frequency granularity of the CSI report.
  • the frequency particle size may include, for example, wideband and subband.
  • the wide band is the entire CSI reporting band (entire CSI reporting band).
  • the wide band may be, for example, the entire carrier (component carrier (CC), cell, serving cell), or the entire bandwidth part (BWP) within a carrier. There may be.
  • the wide band may be paraphrased as a CSI reporting band, an entire CSI reporting band (entire CSI reporting band), and the like.
  • the sub-band is a part of the wide band, and may be composed of one or more resource blocks (Resource Block (RB) or Physical Resource Block (PRB)).
  • the size of the subband may be determined according to the size of the BWP (number of PRBs).
  • the frequency domain information may indicate whether to report a wideband or subband PMI (frequency domain information is used, for example, to determine either a wideband PMI report or a subband PMI report) RRC IE. May include "pmi-Format Indicator").
  • the UE may determine the frequency particle size of the CSI report (ie, either the wideband PMI report or the subband PMI report) based on at least one of the reported amount information and the frequency domain information.
  • wideband PMI reporting is set (determined)
  • one wideband PMI may be reported for the entire CSI reporting band.
  • the subband PMI report is set, a single wideband display (single wideband indication) i 1 is reported for the entire CSI report bands, one or more sub-bands each of the subbands in entire CSI reported An indication (one subband indication) i 2 (eg, a subband indication of each subband) may be reported.
  • the UE performs channel estimation using the received RS and estimates the channel matrix H.
  • the UE feeds back an index (PMI) determined based on the estimated channel matrix.
  • the PMI may indicate a precoder matrix (simply also referred to as a precoder) that the UE considers appropriate for use in downlink (DL) transmission to the UE.
  • a precoder matrix (simply also referred to as a precoder) that the UE considers appropriate for use in downlink (DL) transmission to the UE.
  • Each value of PMI may correspond to one precoder matrix.
  • the set of PMI values may correspond to a different set of precoder matrices called a precoder codebook (also simply referred to as a codebook).
  • a CSI report may include one or more types of CSI.
  • the CSI may include at least one of a first type (type 1 CSI) used for single beam selection and a second type (type 2 CSI) used for multi-beam selection.
  • a single beam may be paraphrased as a single layer, and a multi-beam may be paraphrased as a plurality of beams.
  • the type 1 CSI may assume a multi-user multiple input multiple outpiut (MIMO), and the type 2 CSI may assume a multi-user MIMO.
  • MIMO multi-user multiple input multiple outpiut
  • the above codebook may include a codebook for type 1 CSI (also referred to as a type 1 codebook or the like) and a codebook for type 2 CSI (also referred to as a type 2 codebook or the like).
  • the type 1 CSI may include a type 1 single panel CSI and a type 1 multi-panel CSI, and different code books (type 1 single panel code book, type 1 multi-panel code book) may be specified.
  • type 1 and type I may be read interchangeably.
  • type 2 and type II may be read interchangeably.
  • the uplink control information (UCI) type may include at least one of Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), scheduling request (SR), and CSI.
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • SR scheduling request
  • CSI CSI
  • the UCI may be carried by PUCCH or by PUSCH.
  • the UCI can include one CSI part for wideband PMI feedback.
  • CSI report # n includes PMI wideband information if reported.
  • the UCI can include two CSI parts for subband PMI feedback.
  • CSI Part 1 contains wideband PMI information.
  • CSI Part 2 includes one wideband PMI information and several subband PMI information.
  • CSI Part 1 and CSI Part 2 are independently encoded.
  • the frequency particle size of the CSI report as described above depends on the uplink (UL) overhead.
  • a particular PUCCH format eg, PUCCH format 0 or 2 consisting of 1 or 2 symbols
  • PUCCH format 0 or 2 can only support wideband type 1 CSI.
  • the UL overhead due to the reporting of the CSI for example, PMI
  • the CSI for example, PMI
  • the frequency band may be referred to as a frequency range (FR) or the like.
  • the sub-bandwidth is smaller than the coherence bandwidth (bandwidth at which the magnitude of frequency correlation becomes 90%), so sub-band-based precoding is effective.
  • the coherence bandwidth may be 40 PRB and the subband size may be 4 or 8 PRB.
  • Rel. 15 When the CSI reporting band is wider than NR, the subband size becomes larger than the coherence bandwidth, and as a result, the CSI reporting accuracy may deteriorate. For example, if the CSI reporting band is 260 PRB, it is assumed that the coherence bandwidth is 12 PRB but the subband size is 16 or 32 PRB. On the other hand, the ratio of the CSI report band to the subband size was determined by Rel. 15 If you try to maintain the same as NR (if you try to make the subband size sufficiently smaller than the coherence bandwidth), UL overhead may increase.
  • Rel. 15 When using at least one of a bandwidth wider than NR and a frequency band higher than NR, the sparseness (sparse) of the precoder (delay domain precoder) using the delay domain (delay domain). Contribution to Rel. 15 It is assumed that the NR is higher than that of the precoder using the space domain and the frequency domain.
  • the present inventors feed back information for the delay domain precoder (for example, at least one of the delay information and the coefficient information described later) as information (wideband information) regarding the entire CSI reporting band (wideband). By doing so, it was conceived to prevent a decrease in the reliability of CSI while suppressing an increase in UL overhead.
  • the precoder and the precoding may be paraphrased with each other.
  • the precoding vector, the precoding matrix, the channel vector, and the channel matrix may be paraphrased with each other.
  • the delay may be paraphrased as the amount of delay (delay amount) or the like.
  • the delay domain may be paraphrased as a transform domain described later and one or more domains defined as the transform domain.
  • indicator indication, indicator, indicator
  • indication indication, indicator, indicator
  • the delay domain precoder will be mainly described, but at least the delay domain may be used.
  • a precoder using a space-delay domain also called a one-dimensional transform domain precoder, a one-dimensional sparse transform domain precoder, a space-delay domain precoder, etc.
  • an angle-delay domain also called 2D transform domain precoder (2D-TDP), 2D sparse transform domain precoder (2D sparse TDP), angle-delay domain precoder, etc.
  • the angle may be an arrival angle (angle of arrival) or a radiation angle (angle of departure).
  • the deferred domain precoder may be generated (determined) based on at least one of the following parameters. ⁇ Coefficient (s) for Q delays g for Q delays (Q different delay values) -Delays for the coefficient (s) ⁇ or quantized delay ⁇
  • the coefficient g may be defined for each of the Q delays (for each delay).
  • the delay ⁇ for the coefficient g may be, for example, ⁇ ⁇ R Q ⁇ 1 .
  • RQ ⁇ 1 may be a set of Q unquantized delays ⁇ .
  • the quantized delay ⁇ may be, for example, ⁇ ⁇ N Q ⁇ 1 .
  • N Q ⁇ 1 may be a set of quantized Q delays ⁇ .
  • the delay may be paraphrased as a delay time, a time, or the like.
  • the coefficient g may be transformed from the delay domain to the frequency domain by multiplying (multiply) the function of the delay ⁇ corresponding to the coefficient g and adding the multiplication result.
  • the coefficient of the frequency domain (element of the precoder) may be obtained (derive) by the conversion from this delay domain to the frequency domain.
  • the precoder d for N subcarriers based on the coefficient g and the delay ⁇ may be represented by the following equation 1.
  • Q is the number of delays ⁇ or coefficient g.
  • q is a subscript of the delay ⁇ or the coefficient g, and 0 ⁇ q ⁇ Q.
  • n is a subscript of the subcarrier, and 0 ⁇ n ⁇ N.
  • the coefficient of the subcarrier #n (nth subcarrier) in the delay #q (qth delay) converted into the frequency domain may be expressed by the following equation 2.
  • the power normalization may be expressed by the following equation 3.
  • the precoders d Q and n of the subcarrier # n (0 ⁇ n ⁇ N) may be represented by the following equations 4, 5 and 6, respectively, when the number of delays Q is 1, 2 and 3, respectively. Good.
  • the coefficient g for the delay domain precoder may be converted from the delay domain to the frequency domain by multiplying the coefficient g by the corresponding delay ⁇ . Further, the coefficient d of the frequency domain may be acquired by adding the converted coefficients.
  • the UE may feed back one or more information (one or more wideband information) about the entire CSI reporting band (wideband) to the base station. Specifically, the UE may estimate a channel in a certain domain and determine the wideband information based on the estimated channel (channel matrix).
  • the UE may estimate the channel in the spatial and frequency domains and transform the estimated channel matrix into a transform domain.
  • the UE may perform channel estimation in the transform domain.
  • the transform domain may be, for example, a domain for a precoding scheme different from at least one of a time domain, a frequency domain, and a spatial domain.
  • the transform domain may be, for example, any of the following domains, or a domain in which at least two are combined.
  • ⁇ Delay domain ⁇ Delay-angle domain
  • ⁇ Delay-spatial domain ⁇ sparse domain Domains that are converted or obtained from at least one of the frequency and time domains-Domains associated with at least one of the frequency and time domains-Related to domain sparseness at least one of the delays and angles Domain with (sparsity)
  • the UE When performing channel estimation in the space-frequency domain, the UE converts the estimated channel (channel matrix) into a transform domain, and uses the converted channel (channel matrix) information (channel information) as the wideband information. Feedback may be given to the base station.
  • the UE calculates a precoder in the transform domain based on the channel (channel matrix) estimated in the space-frequency domain, and uses the information about the transform precoder (precoder information) as the wideband information in the base station. You may give feedback.
  • the UE may feed back information (channel information) about the estimated channel (channel matrix) to the base station.
  • the UE calculates the precoder in the transform domain based on the channel (channel matrix) estimated in the transform domain, and feeds back the information about the transform precoder (precoder information) to the base station as the wideband information. You may.
  • the base station multiplies one or more wideband information (eg, the channel information or precoder information) to obtain a precoder vector (or channel vector) in each subcarrier, each PRB, or a plurality of PRBs. It may be acquired (decided).
  • one or more wideband information eg, the channel information or precoder information
  • FIG. 1 is a diagram showing an example of the operation of CSI reporting according to the first aspect.
  • the base station transmits the RS.
  • the UE estimates channels in a given domain (eg, space-frequency domain, or transform domain) based on RS from the base station.
  • a given domain eg, space-frequency domain, or transform domain
  • the UE determines the channel information about the estimated channel (channel matrix) or the precoder information about the precoder determined based on the estimated channel (channel matrix). As described above, when the channel estimation is performed in the space-frequency domain, the channel information or the precoder information is determined after changing the channel estimated in the space-frequency domain (channel upper row) to the transform domain. May be done.
  • step S103 the UE transmits one or more wideband information (eg, one or more channel information or one or more precoder information).
  • one or more wideband information eg, one or more channel information or one or more precoder information.
  • 2A and 2B are diagrams showing an example of feedback of wideband information according to the first aspect.
  • the UE may feed back one wideband information and information on subbands # 1 to # k (k> 1) to the base station (called a subband PMI report or the like). May be).
  • the UE may feed back a plurality of wideband information # 1 to # Q (1 ⁇ Q ⁇ k) to the base station (also called a wideband PMI report or the like). Good).
  • the base station may determine the precoding vector (or channel vector) for each subcarrier based on the feedback information from the UE in step S103.
  • the UE may transmit a downlink shared channel (for example, Physical Downlink Shared Channel) in the frequency domain and the spatial domain based on the precoding vector (or channel vector).
  • a downlink shared channel for example, Physical Downlink Shared Channel
  • a single wideband information and information on each subband are reported based on the report setting information (for example, “CSI-ReportConfig” of RRC IE).
  • the report setting information for example, “CSI-ReportConfig” of RRC IE.
  • a plurality of wideband information may be reported.
  • the UE may use one or more wideband information based on at least one of the above-mentioned report quantity information (for example, "report Quantity" of RRC IE) and frequency domain information (for example, "pmi-Format Indicator" of RRC IE). You may decide which to feed back.
  • a delayed domain precoder may be introduced in place of a subband-based precoder (subband-based precoder). Specifically, in a certain frequency range (Frequency Range (FR)), a subband-based precoder may not be supported, and a delayed domain precoder may be supported.
  • FR Frequency Range
  • FRs that do not support subband-based precoders but support delayed domain precoders include, for example, 7.125 GHz to 24.25 GHz (also referred to as FR3, etc.), 24.25 GHz to 52.6 GHz (also referred to as FR2, etc.). It may be at least one of 52.6 GHz to 114.25 GHz (also referred to as FR4 or the like).
  • FR may be paraphrased as a frequency band, a band, and the like.
  • the UE may receive the configuration information (delayed domain precoder setting information) related to the deferred domain precoder.
  • the delayed domain precoder setting information may be supported in place of the setting information related to the subband-based precoder (subband-based precoder setting information, for example, the parameter related to the subband in "reportFreqConfiguration" of RRC IE).
  • a delayed domain precoder may be introduced in addition to the subband-based precoder.
  • some FRs may support subband-based precoders and delayed domain precoders.
  • the FR that supports both the subband-based precoder and the delayed domain precoder is, for example, at least one of 410 MHz to 7.125 GHz (also referred to as FR1 etc.) and 24.25 GHz to 52.6 GHz (also referred to as FR2 etc.). It may be one.
  • the UE may receive information indicating whether to apply the subband-based precoder or the delayed domain precoder (application information, for example, "pmi-Format Indicator" of RRC IE).
  • application information for example, "pmi-Format Indicator" of RRC IE.
  • the UE may receive at least one of the delay domain precoder setting information and the subband-based precoder setting information.
  • each CSI parameter may be calculated based on a given rule.
  • the rule may be based on the dependency between CSI parameters.
  • the LI may be calculated based on the reported CQI, PMI, RI and CRI.
  • the CQI may also be calculated based on the reported PMI, RI and CRI.
  • the PMI may also be calculated based on the reported RI and CRI.
  • RI may be calculated based on the reported CRI.
  • the CSI may include parameters for a delayed precoder.
  • the parameters for the delay precoder may include, for example, at least one of the following: Information (coefficient information) about the coefficient g (for example, g ⁇ C Q ⁇ 1) for Q delays (Q different delay values) Information about delays for the coefficient (s) ⁇ (eg ⁇ ⁇ R Q ⁇ 1 ) or information about quantized delay ⁇ (eg ⁇ ⁇ N Q) ⁇ 1 )
  • the information on the delay ⁇ for the coefficient g and the information on the quantized delay ⁇ are collectively referred to as delay information.
  • the total number Q of delays may be notified to the UE by at least one of higher layer signaling (for example, RRC signaling) and physical layer signaling.
  • the delay domain precoder setting information may include information indicating the total number Q of delays.
  • the delay information may be, for example, information indicating each delay ⁇ (also referred to as a delay indicator (DI) or the like).
  • DI delay indicator
  • the value of the qth delay ⁇ q may not be quantized (non-quantized) or may be quantized.
  • R may be a set of Q unquantized delays ⁇ .
  • m ⁇ N. N may be a set of quantized Q delays ⁇ .
  • T DP may be a unit of quantization.
  • the T DP may be the reciprocal of the bandwidth, i.e. 1 / bandwidth.
  • the bandwidth may be the number of resource blocks constituting the bandwidth. Bandwidth in wide-band system is greater than the sub-band, by using the T DP, it is possible to increase the particle size.
  • the DI fed back as the CSI may indicate the offset between the delay ⁇ q and the adjacent delay ⁇ q + 1 (or ⁇ q-1 ), or the gap between the delay ⁇ q and the first delay ⁇ 1. Or may indicate the amount of delay ⁇ q itself.
  • the offset may be paraphrased as a gap, an offset amount, a difference, or the like.
  • equations 7 to 9 are merely examples, and are not limited to the above formulas.
  • the range in which the subscript q of the delay ⁇ can be taken may be 0 ⁇ q ⁇ Q-2 (or Q-1).
  • the coefficient information may be, for example, information indicating a matrix for delay precoding (Delay precoding Matrix Indicator (DMI)), or an existing precoding matrix display.
  • DMI Delay precoding Matrix Indicator
  • PMI Precoding Matrix Indicator
  • the DMI may indicate the delayed domain precoder explicitly or implicitly.
  • the DMI is defined separately from the existing PMI. Therefore, the UE can report the CSI including the DMI to the base station without making modifications to the existing PMI.
  • Rel. 15 PMI at NR may indicate the delayed domain precoder explicitly or implicitly. In this case, the existing signaling for PMI can be reused.
  • the DMI or PMI may be information that explicitly indicates the coefficient g, or information that indicates the coefficient g on a codebook basis.
  • the DMI / PMI may indicate (1) the amplitude and phase of the quantized coefficient g, and (2) the quantized coefficient based on the modulation order (or modulation method). g may be indicated, or (3) the unquantized coefficient g may be indicated.
  • one or more codebooks may be specified.
  • the DMI / PMI may indicate a coefficient g selected from the corresponding codebook.
  • the amplitude of the above-mentioned coefficient g may be quantized based on a given (given) number (for example, the number of bits) n.
  • the quantization set may be defined by ⁇ 1/2 ⁇ n, 2/2 ⁇ n, ..., 1 ⁇ "0: 1 / (2 ⁇ n-1): 1".
  • "0: 1 / (2 ⁇ n-1): 1" is a plurality of 1 / (2 ⁇ n-1) molecules incremented one by one between 0 and 1 and 0 to 1.
  • the set of quantization by modulation order may be a constellation with 2 n values normalized by the maximum amplitude on the constellation.
  • n may be a given number (for example, each modulation order).
  • n 2
  • QPSK Quadrature Phase Shift Keying
  • QAM quadrature amplitude modulation
  • codebooks of different sizes may be specified.
  • the DMI / PMI may indicate a coefficient g selected from the corresponding codebook.
  • the QAM may include not only 16QAM but also 64QAM, 256QAM and the like.
  • Codebooks One or more codebooks (for example, a plurality of codebooks of different sizes) may be specified.
  • a codebook a Discrete Fourier Transform (DFT) matrix of a certain size (for example, the size of 2 to the nth power * 2 to the nth power) may be used.
  • n may be a given number (for example, the number of feedback bits).
  • the codebook (also referred to as DFT codebook or the like) may be defined with one or more matrices of 2 ⁇ 1.
  • the codebook may be shown below.
  • the UE feeds back the wideband PMI and the subband PMI for each subband to the base station.
  • the base station the matrix W 1 is determined based on the wideband PMI, it may determine the matrix W 2 of each subband based on the subband PMI per subband.
  • the UE may determine the precoder matrix W to be used for precoding of downlink transmission (for example, PDSCH) based on the matrices W 1 and W 2.
  • each wideband information for example, at least one of coefficient information and delay information
  • the precoder d in the frequency domain (which may be obtained from the codebook g) is the coefficient g and delay information (eg DI) determined based on the coefficient information (eg DMI / PMI). It may be determined based on the delay ⁇ determined based on.
  • the precoder d may be determined using the following equation 12.
  • Q is the total number of delays
  • q is a subscript of the delay
  • N is the total number of subcarriers
  • n is a subscript (index) of the subcarriers.
  • FIG. 3 is a diagram showing an example of a precoder based on the wideband information according to the first aspect.
  • a one-dimensional sparse transform domain precoder (1 dimension (1D) -sparse transform domain precoder) (space-delay domain precoder) may be used.
  • Each wideband information may include at least one of delay information (eg, DI) and coefficient information (eg, DMI / PMI).
  • Wideband information # 1 may include DI indicating delay ⁇ 1 and DMI / PMI indicating coefficient g 1 for delay ⁇ 1.
  • the wideband information # 2 may include DI indicating the delay ⁇ 2 and DMI / PMI indicating the coefficient g 2 for the delay ⁇ 2.
  • the length (size) of g 1 and g 2 may be related to the number of antennas.
  • the precoder W (i) is indicated by a delay ⁇ 1 indicated by DI in wideband information # 1 and a coefficient g 1 indicated by DMI / PMI, and DI in wideband information # 2. It is determined based on the delay ⁇ 2 and the coefficient g 2 indicated by DMI / PMI.
  • the index #i of the subcarrier is 1 ⁇ i ⁇ n, but the index # i is not limited to this, and may be 0 ⁇ i ⁇ n-1.
  • FIG. 4 is a diagram showing another example of the precoder based on the wideband information according to the first aspect.
  • a two-dimensional sparse transform domain precoder (2 dimension (2D) -sparse transform domain precoder (TDP), angle-delay domain precoder
  • TDP two-dimensional sparse transform domain precoder
  • angle domain and delay domain precoders may be joined.
  • Each wideband information may include at least one of delay information (eg, DI) and coefficient information (eg, DMI / PMI).
  • Spatial information may include information about at least one of the codeword w tilde (with a " ⁇ " above w) selected from the codebook W ** and the angle ⁇ .
  • the size of the codebook W ** may be related to the channel correlation.
  • the precoder W (i) has a delay ⁇ 1 indicated by DI in wideband information # 1 and a coefficient g tilde (1) indicated by DMI / PMI, and the wideband information # 2. It is determined based on the delay ⁇ 2 indicated by DI and the coefficient g tilde (2) indicated by DMI / PMI, and the angle ⁇ and codeword w tilde determined by spatial information.
  • the index i of the subcarrier is 1 ⁇ i ⁇ n, but is not limited to this, and may be 0 ⁇ i ⁇ n-1.
  • a ( ⁇ ) used for determining the precoder W (i) of the subcarrier #i (1 ⁇ i ⁇ n) in FIG. 4 may be defined by the following equations 13 and 14.
  • M is the number of antennas or radio frequency (RF) chains.
  • d is the antenna space.
  • ⁇ C is the wavelength.
  • FIG. 5 is a diagram showing still another example of the precoder based on the wideband information according to the first aspect.
  • FIG. 5 may differ from FIG. 4 in that the angle domain and delay domain precoders are separate.
  • the code word and the angle ⁇ rather than the common delays tau q, each delay tau q (i.e., a wide band by band information) differs from FIG. 4 in that the code words and the angle ⁇ are reported May be good.
  • the differences from FIG. 4 will be mainly described.
  • each wideband information includes information about a code word for delay ⁇ (code word information) and information about an angle ⁇ (angle). Information) may be included.
  • the precoder W (i) is wide with a delay ⁇ 1 indicated by DI in wideband information # 1, a coefficient g 1 indicated by DMI / PMI , an angle ⁇ 1, and a codeword w tilder. It is determined based on the delay ⁇ 2 indicated by DI in band information # 2, the coefficient g 2 indicated by DMI / PMI , the angle ⁇ 2 and the codeword.
  • a ( ⁇ 1 ) and A ( ⁇ 2 ) in FIG. 5 may be defined in the same manner as in the above equations 12 and 13, respectively. Further, in FIG. 5, the index i of the subcarrier is 1 ⁇ i ⁇ n, but is not limited to this, and may be 0 ⁇ i ⁇ n-1.
  • the UE feeds back each wideband information including at least one of the delay information and the coefficient information.
  • the base station determines the precoder for each subcarrier based on each wideband information.
  • FIG. 6 is a diagram showing an example of the structure of CSI reporting in UCI.
  • the number of CSI reports may be n.
  • the number of CSI parts in a CSI report may be m.
  • Number of wideband PMI feedback eg, PMI wideband information fields
  • the number of wideband PMI feedbacks other than CSI part 1 may be Q.
  • the number of wideband PMI feedbacks in the CSI part m may be Q (m).
  • the number of wideband reports within a CSI part may be q.
  • the number of wideband PMI feedbacks in the wideband report q may be Q (q).
  • the Q wideband PMI feedback may be split into q wideband reports.
  • the number of wideband PMI feedbacks included in the wideband reports # 1, # 2, ..., # Q is Q (1) , Q (2) , ..., Q (q) , respectively.
  • the CSI report # n in the CSI part m and the CSI part m in the CSI report #n may be read as each other.
  • wideband PMI, wideband PMI information, PMI wideband information, PMI wideband information field, and wideband PMI feedback may be read interchangeably.
  • DI, wideband DI, wideband DI information, DI wideband information, DI wideband information field, and wideband DI feedback may be read interchangeably.
  • the feedback for the 2D sparse TDP described above may be a set of ( ⁇ , g tilde), a set of ( ⁇ , w tilde), or a combination thereof.
  • the delay domain is the transform domain of the frequency domain (transformed domain)
  • the angular domain is the transform domain of the spatial domain (transformed domain).
  • the UE feeds back ( ⁇ , g) by merging the effects of both ( ⁇ , w tilde) and g tilde into g.
  • g represents the coefficients of all antennas or angles at the corresponding delay.
  • ⁇ 1 , g tilde 1 ), ( ⁇ 2 , g tilde 2 ), ( ⁇ 1 , w tilde 1 ), ( ⁇ 2 , w The tilde 2 ) may be calculated. From these values, the UE may calculate g 1 and g 2 using the following equation 15.
  • each of g 1 and g 2 may correspond to a PMI wideband information field (wideband PMI information).
  • Each of ⁇ 1 and ⁇ 2 may correspond to a delay index (DI) or delay indicator wideband information field (wideband DI information).
  • the UE may report ( ⁇ , g tilde) and ( ⁇ , w tilde).
  • ( ⁇ (DI), g (PMI)) may be read as ( ⁇ , g tilde) or may be read as ( ⁇ , w tilde) in the rules of each of the following embodiments. ..
  • some fields may be omitted or some other fields may be added to the CSI report.
  • the field types and order are not limited to the example in the figure.
  • CSI Part 1 there is no more than one CSI part in the UCI for one or more wideband PMI feedbacks, which describes the case where one CSI report contains one CSI part.
  • CSI bit generation of may be defined.
  • Q 0 one wideband PMI feedback (e.g., PMI wideband information fields) may include.
  • CSI field one CSI report if the case reported, a delay index corresponding to each of the Q 0 single wideband PMI feedback (DI, e.g., DI wideband information fields) may include.
  • CSI report #n may include a wideband PMI feedback or codebook index, if reported, and a corresponding DI, if reported.
  • the value of Q 0, the upper layer parameters (e.g., at least one RRC and MAC CE) or physical layer parameters (e.g., DCI) may be set or instructed by.
  • the upper layer parameters e.g., at least one RRC and MAC CE
  • physical layer parameters e.g., DCI
  • the value of Q 0 is determined by the UE, it may be reported to the base station in the UCI or otherwise.
  • the maximum value of Q 0 the upper layer parameters (e.g., at least one RRC and MAC CE) or physical layer parameters (e.g., DCI) may be set or instructed by.
  • the value of Q 0 is determined by the UE, it may be reported to the base station in the UCI or otherwise.
  • the value of Q 0 may be equal to or less than the maximum value set.
  • CSI reporting #n can include a plurality wideband PMI feedback or codebook index if it is reported if the DI corresponding to the case where if reported, a set of Q 0 It may be.
  • CSI reporting #n may not include the value of Q 0.
  • CSI reporting #n may comprise a value of Q 0.
  • DI may be reported with PMI except in the following two cases. Case 1: The DI for the first PMI is assumed to be always 0 and does not need to be reported. Case 2: If the CSI reporting settings do not include DI, then DI is not reported by the UE.
  • Embodiment 1-2 UCI bit sequence generated if no CSI report having more than one part, CSI field of all CSI reporting, UCI bit sequence a 0, a 1 starting with a 0, ..., a A It may be mapped to -1. If not, the UCI bit sequence may be generated according to embodiment 2 or 3 described below.
  • CSI field of CSI report # n may be the example shown in FIG. 7 or 8 described above.
  • A n may be set.
  • Rel. 15 NR or at least one of the existing code block segmentation, channel coding, and rate matching may be applied to the UCI bit sequence generated in Embodiment 1-2.
  • the wideband PMI when one CSI report has one CSI part, the wideband PMI can be appropriately reported.
  • CSI bit generation in UCI with a two-part CSI report may be defined.
  • Embodiment 2-1 CSI Field of CSI Part 1
  • Multiple CSI fields of one CSI report in CSI Part 1 are an indicator of the number Q of multiple wideband PMI feedbacks in CSI Part 2 if reported, and if reported.
  • reported Q 0 or wideband PMI feedback when the (e.g., PMI wideband information field) and, of may comprise at least one.
  • CSI field one CSI reported in CSI Part 1, if it is reported if, DI corresponding to each of the Q 0 single wideband PMI feedback (e.g., DI wideband information fields) may include.
  • CSI bit generation within UCI as defined in Embodiment 1 may be used.
  • only multiple wideband PMI feedbacks may be considered.
  • the multiple CSI fields of one CSI report in CSI Part 1 are of one wideband PMI feedback if reported and an indicator of the number of multiple wideband PMI feedbacks in CSI Part 2 if reported. At least one may be included. Multiple CSI fields in one CSI report in CSI Part 1 may further include DI if reported.
  • CSI part 1 includes one wideband PMI feedback, performance deterioration can be suppressed even when CSI part 2 is dropped.
  • the set or definition of Q 0, may be applied embodiment 1-1-2.
  • the flexibility of wideband PMI feedback can be increased.
  • CSI Part 1 of CSI Report # n is a set of 0 Qs, a wideband PMI feedback or codebook index if reported, and a DI if reported. And, if reported, an indicator of the number Q of multiple wideband PMI feedbacks in CSI Part 2 may be included.
  • Embodiment 2-2 >> CSI Field of CSI Part 2
  • Multiple CSI fields of one CSI report in CSI Part 2 may include one or more wideband reports.
  • CSI Part 2 of one CSI report may include one wideband report containing Q wideband PMI feedbacks (eg, PMI wideband information fields) if reported.
  • the wideband report may further include a DI (eg, DI wideband information field) corresponding to each of the Q wideband PMI feedbacks, if reported.
  • the value of Q may be set or indicated by at least one of RRC, MAC CE and DCI, or as in embodiment 2-1 the number of wideband PMI feedbacks in CSI part 1 determined by the UE. It may be displayed (reported) by the indicator of Q.
  • CSI Part 2 of CSI Report # n is reported as a set of Q, if reported, with wideband PMI feedback and if reported, with DI. If so, it may include an indicator of the number of multiple wideband PMI feedbacks in CSI Part 2.
  • all CSI reports # 1, # 2, ... # N multiple CSI fields are a (1) 0 , a (1) 1 , ... a in the order from top to bottom in FIG. 12A. (1) It may be mapped to A (1) -1 respectively.
  • the CSI field of CSI report #n may be the example shown in FIG. 7 or 8 or 10 described above.
  • all CSI reports # 1, # 2, ... # N multiple CSI fields are a (2) 0 , a (2) 1 , ... a in the order from top to bottom in FIG. 12B. (2) It may be mapped to A (2) -1 respectively.
  • the CSI field of CSI report # n may be the example shown in FIG. 11 above.
  • the multiple CSI fields in CSI part 1 are CSI report # n if CSI report # n is not 2 parts, even if it is CSI part 1 of CSI report # n if CSI report # n is 2 parts. Good.
  • the multiple CSI fields in CSI Part 2 may be CSI Part 1 in CSI Report # n.
  • the UCI bit sequence of CSI part 1 and the UCI bit sequence of CSI part 2 may be encoded independently. If the actual code rate is higher than the maximum code rate, CSI part 2 may be dropped first and then CSI part 1 until the code rate meets the maximum code rate requirement.
  • CSI part 1 and CSI part 2 may be encoded independently.
  • CSI Part 2 includes a wideband report of multiple CSI reports.
  • a wideband report of one CSI report contains Q wideband PMIs.
  • the UE may drop CSI part 2 first and then CSI part 1.
  • the output sequence length including the CSI part 1 may be min (E tot , E max).
  • the output sequence length based on CSI part 2 may be E tot- min (E tot , E max).
  • CSI Part 2 of one CSI report may include two wideband reports.
  • the two wideband reports may include Q (1) wideband PMI feedback (eg, PMI wideband information field) and Q (2) wideband PMI feedback, respectively.
  • CSI Part 2 of one CSI report may further include DI (eg, DI wideband information field) if reported.
  • the values of Q (1) and Q (2) may be set or indicated by at least one of RRC and MAC CE and DCI, and are determined by the UE and are indicators of the number of wideband PMI feedbacks in CSI Part 1. It may be displayed (reported) by, or it may be obtained by a combination thereof.
  • Q (1) and Q (2) may be set or instructed directly.
  • Q and Q (1) may be set or instructed.
  • Q (2) may be obtained as QQ (1).
  • Q may be set or instructed.
  • Q (1) may be obtained as a floor (Q / 2).
  • Q (2) may be obtained as QQ (1).
  • Q and ⁇ Q may be set or indicated.
  • Q (1) and Q (2) may be obtained by the functions of Q and ⁇ Q.
  • Q (1) floor ( (Q- ⁇ Q) / 2)
  • Q (2) may be obtained by Q-Q (1)
  • Q (1) floor (Q / 2) - ⁇ Q
  • Q (2) QQ (1) .
  • CSI part 1 of CSI report # n if reported, is the number of multiple wideband PMI feedbacks Q, Q (1) in CSI part 2. Indicators and may be included.
  • CSI part 2 of CSI report # n may include wideband reports # 1 and # 2.
  • Wideband report # 1 may include a Q (1) set of wideband PMI feedback or codebook index, if reported, and DI, if reported.
  • Wideband report # 2 is a set of Q (2) (QQ (1) ) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported. It may be included.
  • all CSI reports # 1, # 2, ... # N multiple CSI fields are a (1) 0 , a (1) 1 , ... a in the order from top to bottom in FIG. (1) It may be mapped to A (1) -1 respectively.
  • the CSI field of CSI report #n may be the example shown in FIG. 7 or 8 or 14 described above.
  • all CSI reports # 1, # 2, ... # n multiple CSI fields are a (2) 0 , a (2) 1 , ... a in the order from top to bottom in FIG. (2) It may be mapped to A (2) -1 respectively.
  • the CSI field of CSI report # n may be the example shown in FIG. 15 above.
  • the multiple CSI fields in CSI part 1 are CSI report # n if CSI report # n is not 2 parts, even if it is CSI part 1 of CSI report # n if CSI report # n is 2 parts. Good.
  • the multiple CSI fields in CSI Part 2 may be CSI Part 1 in CSI Report # n.
  • the UCI bit sequence of CSI part 1 and the UCI bit sequence of CSI part 2 may be encoded independently. If the actual code rate is higher than the maximum code rate, CSI part 2 may be dropped first and then CSI part 1 until the code rate meets the maximum code rate requirement.
  • FIG. 18 shows the case where CSI part 2 of the two-part CSI includes two wideband reports # 1 and # 2.
  • wideband reports # 1 for all CSI reports and wideband reports # 2 for all CSI reports are mapped in sequence.
  • Wideband reports # 1 for all CSI reports include wideband reports # 1 for one CSI report (Q (1) wideband PMIs).
  • Wideband reports # 2 for all CSI reports include one CSI report wideband report # 2 (QQ (1) wideband PMIs).
  • the output sequence length including the CSI part 1 may be min (E tot , E max).
  • the output sequence length based on CSI part 2 may be E tot- min (E tot , E max).
  • Rel. Has two reports in CSI part 2 of one CSI report. 15 Compatibility can be maintained for NR CSI reports.
  • CSI Part 2 of one CSI report may include q wideband reports.
  • the q wideband reports may include Q (1) , Q (2) , ..., Q (q) wideband PMI feedback (eg, PMI wideband information fields), respectively.
  • CSI Part 2 of one CSI report may further include DI (eg, DI wideband information field) if reported.
  • the first Q (1) wideband PMIs may be included in the wideband report # 1 of CSI Part 2 of CSI Report #n. If reported, the corresponding DI may also be included in CSI Part 2 Wideband Report # 1 of CSI Report # n.
  • the values of Q (1) , Q (2) , ..., Q (q) may be set or indicated by at least one of RRC and MAC CE and DCI, or are determined by the UE and wide within CSI Part 1. It may be indicated (reported) by an indicator of the number of band PMI feedbacks, or it may be obtained by a combination thereof. q may be obtained implicitly by the number of Q (1) , Q (2) , ..., Q (q) , or may be implicitly displayed (reported).
  • Q, Q (1) , Q (2) , ..., Q (q-1) may be set or instructed.
  • Q may be set or instructed.
  • Q (p) for 1 ⁇ p ⁇ q may be obtained as floor (Q / q).
  • CSI part 1 of CSI report # n if reported, the number of wideband PMI feedbacks Q (1) , Q (2) , ... , Q (q) indicators may be included.
  • the number q of wideband reports may be implicitly displayed (reported) by the number of Q (1) , Q (2) , ..., Q (q).
  • CSI part 2 of CSI report # n may include wideband reports # 1, # 2, ..., # Q.
  • wideband report # 1 may include Q (1) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported. Good.
  • wideband reporting #q may include Q (q) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported. Good.
  • Q (q) may be indicated (reported) by an indicator of the number of wideband PMI feedbacks in CSI Part 2 wideband report # q-1.
  • q may be determined by the UE and displayed (reported) within CSI Part 1, or may be explicitly set or indicated by at least one of the RRC and MAC CE and DCI.
  • CSI Part 1 of CSI Report # n may include an indicator of the number Q (1) of wideband PMI feedback if reported, or wide if reported. It may include an indicator of the number q of the band report.
  • CSI part 2 of CSI report # n may include wideband reports # 1, # 2, ..., # Q.
  • wideband report # 1 may include Q (1) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported.
  • the number Q (2) indicator of the number of wideband PMI feedbacks in the next wideband report # 2 may be included if reported.
  • the wideband report # q-1 is a Q (q-1) number of wideband PMI feedback or codebook indexes, if reported, and DI, if reported. It may include a set or, if reported, an indicator of the number Q (q) of wideband PMI feedback in the next wideband report # q.
  • the wideband report #q may include Q (q) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported. Good.
  • all CSI reports # 1, # 2, ... # N multiple CSI fields are a (1) 0 , a (1) 1 , ... a in the order from top to bottom in FIG. (1) It may be mapped to A (1) -1 respectively.
  • the CSI field of CSI report #n may be the example shown in FIG. 7 or 8 or 19 or 21 described above.
  • all CSI reports # 1, # 2, ... # n multiple CSI fields are a (2) 0 , a (2) 1 , ... a in the order from top to bottom in FIG. (2) It may be mapped to A (2) -1 respectively.
  • the CSI field of CSI report #n may be the example shown in FIG. 7 or 8 or 20A or 20B or 22 or 23A or 23B described above.
  • the multiple CSI fields in CSI part 1 are CSI report # n if CSI report # n is not 2 parts, even if it is CSI part 1 of CSI report # n if CSI report # n is 2 parts. Good.
  • the multiple CSI fields in CSI Part 2 may be CSI Part 1 in CSI Report # n.
  • the UCI bit sequence of CSI part 1 and the UCI bit sequence of CSI part 2 may be encoded independently. If the actual code rate is higher than the maximum code rate, CSI part 2 may be dropped first and then CSI part 1 until the code rate meets the maximum code rate requirement.
  • FIG. 26 shows the case where CSI part 2 of the two-part CSI contains q wideband reports # 1, # 2, ..., # Q.
  • wideband reports # 1 for all CSI reports wideband reports # 2 for all CSI reports, ..., and wideband reports # q for all CSI reports are mapped in that order.
  • Wideband reports # 1 for all CSI reports include wideband reports # 1 for one CSI report (Q (1) wideband PMIs).
  • Wideband reports #q for all CSI reports include wideband reports #q (Q (q) wideband PMIs) for one CSI report.
  • the output sequence length including the CSI part 1 may be min (E tot , E max).
  • the output sequence length based on CSI part 2 may be E tot- min (E tot , E max).
  • the flexibility of multiple wideband PMI feedback can be increased, and the flexibility of the mapping order of multiple CSI fields in one CSI report can be increased.
  • CSI bit generation in UCI with m-part CSI reports may be defined.
  • Embodiment 3-1 >> CSI field of CSI part 1
  • Multiple CSI fields of one CSI report in CSI part 1 are an indicator of several meters of CSI part if reported, and m- if reported.
  • 1 CSI part e.g., CSI Part 1 except the CSI Part
  • Q 0 or wideband PMI feedback when the number of indicators of a plurality wideband PMI feedback in are reported if (for example, PMI wideband information Field) and at least one of.
  • plurality CSI fields of one CSI reported in CSI Part 1 if it is reported if, DI corresponding to each of the Q 0 single wideband PMI feedback (e.g., DI wideband information fields) may include.
  • the multiple CSI fields of one CSI report in CSI Part 1 may only include indicators of the number of multiple wideband PMI feedbacks in each CSI part (eg, each CSI part other than CSI Part 1) if reported. If reported, it may further include an indicator of a few meters of the CSI part.
  • Multiple CSI fields in one CSI report in CSI Part 1 include one wideband PMI feedback if reported and each CSI part if reported (eg, each CSI part other than CSI Part 1). May include at least one indicator of the number of multiple wideband PMI feedbacks in, and a few meters of CSI parts, if reported. Multiple CSI fields in one CSI report in CSI Part 1 may further include DI if reported.
  • a few meters of CSI parts may be implicitly notified (reported) or explicitly notified (reported).
  • CSI part 1 of CSI report # n is PMI wideband information field information # 0 if reported and DI wideband information field information # 0 if reported.
  • the number m of the CSI part may be implicitly notified (reported) by the number m-1 of Q (1) , Q (2) , ..., Q (m-1). Further, the CSI part 1 of the CSI report #n may explicitly notify (report) the number m of the CSI part by including the indicator of the number m of the CSI part.
  • CSI bit generation in UCI in Embodiment 1 may be applied to one wideband PMI feedback.
  • each CSI part (e.g., the CSI part other than CSI Part 1 when Q and zero wideband PMI feedback is reported if the case is reported if ) May include at least one indicator of the number of multiple wideband PMI feedbacks and, if reported, a few meters of CSI parts. Multiple CSI fields in one CSI report in CSI Part 1 may further include DI if reported.
  • Setting or determination of Q 0 may be in accordance with at least one embodiment 1-1-2 and embodiment 1-1-2-1-1-1-2-3.
  • the indicator of the number of multiple wideband PMI feedbacks in m-1 CSI parts may depend on the design of CSI parts m as defined in Embodiment 3-2 below.
  • Embodiment 3-2 >> CSI field of CSI part m
  • Q (m) wideband PMI feedback eg, PMI wideband information
  • a field) and an indicator of the number of wideband PMI feedbacks may be included.
  • Multiple CSI fields in one CSI report in the CSI part m may further include DI (eg, DI wideband information field) if reported.
  • the CSI part m may have one or more wideband reports in CSI part 2 described in embodiment 2-2.
  • the configuration in which the CSI part 2 of the embodiment 2-2 is read as the CSI part m may be applied to the CSI part m of the embodiment 3-2.
  • the number of wideband PMI feedbacks Q (2) , ..., Q (m) in each CSI part other than CSI part 1 may be set or indicated by at least one of RRC and MAC CE and DCI. It may be determined by the UE and displayed (reported) by an indicator of the number of wideband PMI feedbacks in CSI Part 1 or may be obtained by a combination thereof. m may be obtained implicitly by the number of Q (2) , ..., Q (m) , or may be implicitly displayed (reported).
  • Q, Q (2) , ..., Q (m-1) may be set or instructed.
  • Q may be set or instructed.
  • Q (p) for 1 ⁇ p ⁇ m may be obtained as floor (Q / (m-1)).
  • CSI report # n CSI part 1 is the number of wideband PMI feedbacks in each of the remaining m-1 CSI parts (CSI parts 2 to CSI parts m) if reported Q (1) , Q (2) , ..., Q (m-1) indicators may be included.
  • the number m of the CSI part may be implicitly displayed (reported) by the number m-1 of Q (1) , Q (2) , ..., Q (m-1). As shown in FIG.
  • CSI Part 2 of CSI Report # n is a set of Q (1) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported. May include.
  • the CSI part m of CSI report # n is the wideband PMI feedback or codebook index, if reported, and the DI, if reported. It may include a set of Q (m-1) pieces.
  • the value of Q (m) may be determined by the UE and displayed (reported) by an indicator of the number of wideband PMI feedbacks within the CSI part m-1.
  • the number m of CSI parts may be explicitly set or indicated by at least one of RRC and MAC CE and DCI, or determined by the UE and indicated by an indicator of the number of wideband PMI feedbacks within CSI part 1 ( May be reported).
  • CSI Part 1 of CSI Report # n is an indicator of the number of wideband PMI feedbacks Q (1) in the next CSI Part (CSI Part 2) if reported, and if so.
  • An indicator of a few meters of the CSI part may be included when reported.
  • CSI Part 2 of CSI Report # n has a wideband PMI feedback or codebook index, if reported, and DI, if reported. It may include a set of Q (1) and an indicator of the number of wideband PMI feedbacks Q (2) in the next CSI part (CSI part 3) if reported.
  • the CSI part m-1 (m> 3) of CSI report # n is a wideband PMI feedback or codebook index, if reported, and DI, if reported. It may include a set of Q (m-2) and an indicator of the number of wideband PMI feedbacks Q (m-1) in the next CSI part (CSI part m) if reported.
  • the CSI part m (m> 2) of CSI report # n is the Q (if reported, with wideband PMI feedback or codebook index, and if reported, with DI. m-1) sets may be included.
  • CSI Part 2 of CSI Report # n is a wideband PMI feedback or codebook index, if reported, and DI, if reported. It may include a set of Q (1) and an indicator of the number of wideband PMI feedbacks Q (2) in the next CSI part (CSI part 3) if reported.
  • m may be any integer larger than 1 instead of the number of CSI parts.
  • CSI Part 3 of CSI Report # n is the number of next wideband PMI feedbacks Q ( if reported) between the Q (l-1) pairs and the Q (l) pairs. The indicator of l) may be included.
  • Embodiment 3-3 UCI bit sequence generation If at least one CSI report is an m part, m UCI bit sequences a (1) 0 , a (1) 1 , ... a (1) A (1) ) -1 (Length A (1) ), a (2) 0 , a (2) 1 , ... a (2) A (2) -1 (Length A (2) ), ..., a (m) 0 , a (m) 1 , ... a (m) A (m) -1 (length A (m) ) may be generated.
  • all CSI reports # 1, # 2, ... # N multiple CSI fields are a (1) 0 , a (1) 1 , ... a in the order from top to bottom in FIG. 34A. (1) It may be mapped to A (1) -1 respectively.
  • the CSI field of CSI report #n may be the example shown in FIG. 7 or 8 or 28 or 30 described above.
  • all CSI reports # 1, # 2, ... # n multiple CSI fields are a (m) 0 , a (m) 1 , ... a in the order from top to bottom in FIG. 34B.
  • ( M) It may be mapped to A (m) -1 respectively.
  • the CSI field of CSI report #n may be the example shown in FIG. 23A or 23B or FIG. 31 or FIG. 32A or FIG. 32B described above.
  • a (m) n may be set.
  • the multiple CSI fields in CSI Part 1 are CSI Report # n (eg, Embodiment 1-1-1 or 1-1-2) if CSI Report # n is not two parts, and if CSI Report # n is If it is two parts, it may be CSI part 1 of CSI report # n (for example, embodiment 3-1-1 or 3-1-2).
  • the plurality of CSI fields in the CSI part m may be the CSI part m of CSI report # n (eg, embodiment 3-2-1 or 3--2-2).
  • Embodiment 3-4 Coding / rate matching
  • the m UCI bit sequences of CSI part 1, CSI part 2, ..., CSI part m may be encoded independently. If the actual code rate is higher than the maximum code rate, it may be dropped in descending order of the CSI parts until the code rate meets the maximum code rate requirement (first the CSI part m is dropped, then the CSI part m). CSI part m-1 is dropped, then CSI part m-2 is dropped, 7)
  • At least one of NR or existing code block segmentation, channel coding, and rate matching may be applied to the m UCI bit sequences generated in Embodiment 3-3.
  • FIG. 35 shows an example of m-part CSI.
  • CSI parts 1, 2, ..., M are independently encoded.
  • CSI parts 1, 2, ..., M are mapped in order.
  • CSI Part 2 of one CSI report contains Q (1) wideband PMIs.
  • the CSI part m of one CSI report contains Q (m-1) wideband PMIs.
  • the output sequence length including the CSI part 1 may be min (E tot , E max).
  • the output sequence length based on CSI parts other than CSI part 1 (for example, CSI parts 2 to m) may be E tot- min (E tot , E max).
  • reliability can be improved by independently encoding the plurality of wideband PMIs in the plurality of CSI parts.
  • Embodiment 4-1 In a system using Embodiment 1 (1 part CSI) and embodiment 2 (2 part CSI), whether one CSI report contains 1 part or 2 parts is at least one of RRC and MAC CE and DCI. It may be explicitly set or instructed by, implicitly set or instructed by at least one of RRC and MAC CE and DCI, or determined by the UE and reported to the base station in UCI. ..
  • Embodiment 4-2 In a system using Embodiment 1 (1 part CSI) and embodiment 3 (m part CSI), whether one CSI report includes 1 part or m part is at least one of RRC and MAC CE and DCI. May be explicitly set or instructed by, implicitly set or instructed by at least one of the RRC and MAC CE and DCI, or determined by the UE and reported to the base station in the UCI. ..
  • the system may be a system using the first embodiment (1 part CSI), the second embodiment (2 part CSI), and the third embodiment (m part CSI).
  • Embodiment 4-3 In a system using Embodiment 2 (2-part CSI) and embodiment 3 (m-part CSI), whether one CSI report includes two-part or m-part is at least one of RRC and MAC CE and DCI. May be explicitly set or instructed by, implicitly set or instructed by at least one of the RRC and MAC CE and DCI, or determined by the UE and reported to the base station in the UCI. ..
  • each DI wideband information may be mapped after the corresponding PMI wideband information.
  • the wideband DI information field # 1 may be mapped after the corresponding wideband PMI information field # 1.
  • DI field # 1 may also be in CSI part 2. If PMI field # 1 is in CSI part 1, DI field # 1 may also be in CSI part 1.
  • Each DI wideband information can be given the same priority as the wideband PMI by mapping after the corresponding PMI wideband information and can be used with the wideband PMI.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 36 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for detecting PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat reQuest ACK knowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR)
  • the PRACH may transmit a random access preamble to establish a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 37 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer for data, control information, etc. acquired from the control unit 110 (for example,).
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the radio frequency band signal received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • FIG. 38 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmission unit and the reception unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmission / reception unit 220, the transmission / reception antenna 230, and the transmission line interface 240.
  • the control unit 210 has a first field (for example, a PMI wideband information field) indicating each of the plurality of precoding matrix indicators (PMIs) and a second field (for example, a DI wideband) indicating the delay corresponding to the PMI.
  • a channel state information (CSI) report may be generated that includes an information field).
  • the transmission / reception unit 220 may transmit the CSI report (Embodiment 1).
  • the CSI report may include a plurality of sets of the first field and the second field.
  • the control unit 210 may map the second field after the first field in the CSI report.
  • the first field may indicate PMI wideband information.
  • the second field may indicate the index of the delay corresponding to the PMI wideband information.
  • At least one CSI part of the plurality of channel state information (CSI) parts indicates a first field indicating each of the plurality of precoding matrix indicators (PMIs) and a delay corresponding to the PMI.
  • the plurality of CSI parts including the two fields may be generated.
  • the transmission / reception unit 220 may transmit the plurality of CSI parts (Embodiments 2 and 3).
  • the at least one CSI part may include a plurality of sets of the first field and the second field.
  • the control unit 210 may map the second field after the first field in the at least one CSI part.
  • the first field may indicate PMI wideband information.
  • the second field may indicate the index of the delay corresponding to the PMI wideband information.
  • each functional block is realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each is not particularly limited.
  • the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 39 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disc, a floppy (registered trademark) disc, an optical magnetic disc (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disc, etc. At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. May be configured by.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • the numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.).
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” such as solving, selecting, selecting, establishing, and comparing. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • the "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to an aspect of the present disclosure comprises: a control unit that generates a plurality of channel state information (CSI) parts at least one of which includes first fields respectively indicating a plurality of precoding matrix indicators (PMIs) and second fields indicating delays corresponding to the PMIs; and a transmission unit that transmits the plurality of CSI parts. This can prevent the degradation in the reliability of CSI, while suppressing the increase in UL overhead.

Description

端末及び無線通信方法Terminal and wireless communication method
 本開示は、次世代移動通信システムにおける端末及び無線通信方法に関する。 The present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
 Rel.15 NRでは、チャネル状態情報(Channel State Information(CSI))報告(reporting)の周波数粒度(frequency granularity)として、ワイドバンドとサブバンドとがサポートされている。 Rel. In 15 NR, wide band and sub band are supported as frequency granularity of channel state information (CSI) reporting.
 ここで、ワイドバンドは、CSIの報告対象となる帯域全体であり、例えば、ある(certain)キャリア(コンポーネントキャリア(Component Carrier(CC))、セル、サービングセル等ともいう)全体である。サブバンドは、ワイドバンドの一部であり、例えば、一以上の物理リソースブロック(Physical Resource Block(PRB)又はリソースブロック(RB))である。サブバンドのサイズ(サブバンドサイズ、例えば、PRB数)は、ワイドバンドのサイズ(ワイドバンドサイズ、例えば、PRB数)に応じて決定されてもよい。 Here, the wide band is the entire band to be reported by CSI, for example, the entire carrier (also referred to as a component carrier (CC), cell, serving cell, etc.). The sub-band is a part of the wide band, and is, for example, one or more physical resource blocks (Physical Resource Block (PRB) or resource block (RB)). The size of the subband (subband size, for example, the number of PRBs) may be determined according to the size of the wideband (wideband size, for example, the number of PRBs).
 将来の無線通信システム(例えば、Rel.16以降のNR)では、広い帯域幅(例えば、Rel.15 NRよりも広い帯域幅)、及び、高い周波数帯(例えば、7.125GHz、24.25GHz、52.6GHzのいずれかよりも高い周波数帯、Rel.15 NRよりも高い周波数帯)の少なくとも一つを利用可能となることも想定される。 In future wireless communication systems (eg, NR after Rel.16), a wide bandwidth (eg, a bandwidth wider than Rel.15 NR) and a high frequency band (eg, 7.125 GHz, 24.25 GHz, etc.) It is also expected that at least one of a frequency band higher than any of 52.6 GHz and a frequency band higher than Rel.15 NR) will be available.
 しかしながら、将来の無線通信システムにおいて、CSIの報告対象となるワイドバンドが広帯域化すると、ワイドバンドサイズに依存するサブバンドサイズがコヒーレンス(coherence)帯域幅よりも大きくなり、この結果、CSIの信頼性が劣化する恐れがある。一方、広帯域化したワイドバンドにおいて、サブバンドサイズをコヒーレンス帯域幅よりも十分に小さくしようとすると、上り(uplink(UL))のオーバヘッドが増大するおそれがある。 However, in future wireless communication systems, as the wideband covered by the CSI becomes wider, the subbandsize that depends on the wideband size becomes larger than the coherence bandwidth, resulting in the reliability of the CSI. May deteriorate. On the other hand, in a wide band with a wide band, if the subband size is made sufficiently smaller than the coherence bandwidth, the uplink (UL) overhead may increase.
 そこで、本開示は、ULオーバヘッドの増大を抑制しながら、CSIの信頼性の低下を防止可能な端末及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal and a wireless communication method capable of preventing a decrease in the reliability of CSI while suppressing an increase in UL overhead.
 本開示の一態様に係る端末は、複数のチャネル状態情報(CSI)パートの少なくとも1つのCSIパートが、複数のプリコーディング行列表示子(PMI)のそれぞれを示す第1フィールドと、前記PMIに対応する遅延を示す第2フィールドとを、含む、前記複数のCSIパートを生成する制御部と、前記複数のCSIパートを送信する送信部と、を有する。 In the terminal according to one aspect of the present disclosure, at least one CSI part of the plurality of channel state information (CSI) parts corresponds to the first field indicating each of the plurality of precoding matrix indicators (PMI) and the PMI. It has a control unit that generates the plurality of CSI parts and a transmission unit that transmits the plurality of CSI parts, including a second field indicating the delay to be performed.
 本開示の一態様によれば、ULオーバヘッドの増大を抑制しながら、CSIの信頼性の低下を防止できる。 According to one aspect of the present disclosure, it is possible to prevent a decrease in the reliability of CSI while suppressing an increase in UL overhead.
図1は、CSI報告の動作の一例を示す図である。FIG. 1 is a diagram showing an example of CSI reporting operation. 図2A及び2Bは、ワイドバンド情報のフィードバックの一例を示す図である。2A and 2B are diagrams showing an example of feedback of wideband information. 図3は、ワイドバンド情報に基づくプリコーダの一例を示す図である。FIG. 3 is a diagram showing an example of a precoder based on wideband information. 図4は、ワイドバンド情報に基づくプリコーダの他の例を示す図である。FIG. 4 is a diagram showing another example of a precoder based on wideband information. 図5は、ワイドバンド情報に基づくプリコーダの更に別の例を示す図である。FIG. 5 is a diagram showing still another example of a precoder based on wideband information. 図6は、UCIにおけるCSI報告の構造の一例を示す図である。FIG. 6 is a diagram showing an example of the structure of CSI reporting in UCI. 図7は、実施形態1に係るCSI報告#nの一例を示す図である。FIG. 7 is a diagram showing an example of CSI report # n according to the first embodiment. 図8は、実施形態1に係るCSI報告#nの別の一例を示す図である。FIG. 8 is a diagram showing another example of CSI report # n according to the first embodiment. 図9は、実施形態1に係るCSI報告のマッピングの一例を示す図である。FIG. 9 is a diagram showing an example of mapping of the CSI report according to the first embodiment. 図10は、実施形態2-2-1に係るCSI報告#nのCSIパート1の一例を示す図である。FIG. 10 is a diagram showing an example of CSI part 1 of CSI report # n according to the embodiment 2-2-1. 図11は、実施形態2-2-1に係るCSI報告#nのCSIパート2の一例を示す図である。FIG. 11 is a diagram showing an example of CSI part 2 of CSI report # n according to the embodiment 2-2-1. 図12A及び図12Bは、実施形態2-2-1に係るCSI報告のマッピングの一例を示す図である。12A and 12B are diagrams showing an example of mapping of the CSI report according to the embodiment 2-2-1. 図13は、実施形態2-2-1に係るUCIの符号化及びレートマッチングの一例を示す図である。FIG. 13 is a diagram showing an example of UCI coding and rate matching according to the second embodiment. 図14は、実施形態2-2-2に係るCSI報告#nのCSIパート1の一例を示す図である。FIG. 14 is a diagram showing an example of CSI part 1 of CSI report # n according to the second embodiment. 図15は、実施形態2-2-2に係るCSI報告#nのCSIパート2の一例を示す図である。FIG. 15 is a diagram showing an example of CSI Part 2 of CSI Report # n according to the second embodiment. 図16は、実施形態2-2-2に係るCSIパート1のマッピングの一例を示す図である。FIG. 16 is a diagram showing an example of mapping of CSI Part 1 according to the second embodiment. 図17は、実施形態2-2-2に係るCSIパート2のマッピングの一例を示す図である。FIG. 17 is a diagram showing an example of mapping of CSI Part 2 according to the second embodiment. 図18は、実施形態2-2-2に係るUCIの符号化及びレートマッチングの一例を示す図である。FIG. 18 is a diagram showing an example of UCI coding and rate matching according to the second embodiment. 図19は、実施形態2-2-3-1に係るCSI報告#nのCSIパート1の一例を示す図である。FIG. 19 is a diagram showing an example of CSI Part 1 of CSI Report # n according to the second embodiment 2-3-1. 図20A及び図20Bは、実施形態2-2-3-1に係るCSI報告#nのCSIパート2の一例を示す図である。20A and 20B are diagrams showing an example of CSI Part 2 of CSI Report # n according to Embodiment 2-2-3-1. 図21は、実施形態2-2-3-2に係るCSI報告#nのCSIパート1の一例を示す図である。FIG. 21 is a diagram showing an example of CSI part 1 of CSI report #n according to the second embodiment 2-3-2. 図22は、実施形態2-2-3-2に係るCSI報告#nのCSIパート2のワイドバンド報告#1の一例を示す図である。FIG. 22 is a diagram showing an example of wideband report # 1 of CSI part 2 of CSI report #n according to the second embodiment 2-3-2. 図23A及び図23Bは、実施形態2-2-3-2に係るCSI報告#nのCSIパート2のワイドバンド報告#q-1及び#qの一例を示す図である。23A and 23B are diagrams showing an example of wideband reports # q-1 and # q of CSI Part 2 of CSI Report # n according to Embodiment 2-2-3-2. 図24は、実施形態2-2-3に係るCSIパート1のマッピングの一例を示す図である。FIG. 24 is a diagram showing an example of mapping of CSI Part 1 according to Embodiment 2-2-3. 図25は、実施形態2-2-3に係るCSIパート2のマッピングの一例を示す図である。FIG. 25 is a diagram showing an example of mapping of CSI Part 2 according to Embodiment 2-2-3. 図26は、実施形態2-2-3に係るUCIの符号化及びレートマッチングの一例を示す図である。FIG. 26 is a diagram showing an example of UCI coding and rate matching according to the second embodiment. 図27は、実施形態3-1に係るCSI報告#nのCSIパート1の一例を示す図である。FIG. 27 is a diagram showing an example of CSI Part 1 of CSI Report # n according to Embodiment 3-1. 図28は、実施形態3-2-1に係るCSI報告#nのCSIパート1の一例を示す図である。FIG. 28 is a diagram showing an example of CSI part 1 of CSI report # n according to the embodiment 3-2-1. 図29A及び図29Bは、実施形態3-2-1に係るCSI報告#nのCSIパート2及びCSIパートmの一例を示す図である。29A and 29B are diagrams showing an example of CSI part 2 and CSI part m of CSI report # n according to the embodiment 3-2-1. 図30は、実施形態3-2-2に係るCSI報告#nのCSIパート1の一例を示す図である。FIG. 30 is a diagram showing an example of CSI Part 1 of CSI Report # n according to the third-2-2 embodiment. 図31は、実施形態3-2-2に係るCSI報告#nのCSIパート2の一例を示す図である。FIG. 31 is a diagram showing an example of CSI Part 2 of CSI Report # n according to the third-2-2 embodiment. 図32A及び図32Bは、実施形態3-2-2に係るCSI報告#nのCSIパートm-1及びCSIパートmの一例を示す図である。32A and 32B are diagrams showing an example of CSI part m-1 and CSI part m of CSI report #n according to the third-2-2 embodiment. 図33は、実施形態3-2-2に係る3パートCSIのCSI報告#nのCSIパート3の一例を示す図である。FIG. 33 is a diagram showing an example of CSI part 3 of CSI report # n of the three-part CSI according to the embodiment 3-2-2. 図34A及び図34Bは、実施形態3に係るCSI報告のマッピングの一例を示す図である。34A and 34B are diagrams showing an example of mapping of the CSI report according to the third embodiment. 図35は、実施形態3に係るUCIの符号化及びレートマッチングの一例を示す図である。FIG. 35 is a diagram showing an example of UCI coding and rate matching according to the third embodiment. 図36は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 36 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図37は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 37 is a diagram showing an example of the configuration of the base station according to the embodiment. 図38は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 38 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図39は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 39 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
(CSI報告(CSI report又はreporting))
 Rel.15 NRでは、端末(ユーザ端末、User Equipment(UE)等ともいう)は、参照信号(Reference Signal(RS))(又は、当該RS用のリソース)に基づいてチャネル状態情報(Channel State Information(CSI))を生成(決定、計算、推定、測定等ともいう)し、生成したCSIをネットワーク(例えば、基地局)に送信(報告、フィードバック等ともいう)する。当該CSIは、例えば、上り制御チャネル(例えば、Physical Uplink Control Channel(PUCCH))又は上り共有チャネル(例えば、Physical Uplink Shared Channel(PUSCH))を用いて基地局に送信されてもよい。
(CSI report or reporting)
Rel. In 15 NR, the terminal (also referred to as a user terminal, User Equipment (UE), etc.) has Channel State Information (CSI) based on the reference signal (Reference Signal (RS)) (or resource for the RS). )) Is generated (also referred to as determination, calculation, estimation, measurement, etc.), and the generated CSI is transmitted (also referred to as reporting, feedback, etc.) to the network (for example, a base station). The CSI may be transmitted to the base station using, for example, an uplink control channel (eg, Physical Uplink Control Channel (PUCCH)) or an uplink shared channel (eg, Physical Uplink Shared Channel (PUSCH)).
 CSIの生成に用いられるRSは、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、同期信号(Synchronization Signal(SS))、復調用参照信号(DeModulation Reference Signal(DMRS))等の少なくとも一つであればよい。 The RS used to generate the CSI is, for example, a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), a synchronization signal / broadcast channel (Synchronization Signal / Physical Broadcast Channel (SS / PBCH)) block, and synchronization. At least one of a signal (Synchronization Signal (SS)), a reference signal for demodulation (DeModulation Reference Signal (DMRS)), and the like may be used.
 CSI-RSは、ノンゼロパワー(Non Zero Power(NZP))CSI-RS及びCSI-Interference Management(CSI-IM)の少なくとも1つを含んでもよい。SS/PBCHブロックは、SS及びPBCH(及び対応するDMRS)を含むブロックであり、SSブロック(SSB)などと呼ばれてもよい。また、SSは、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも一つを含んでもよい。 The CSI-RS may include at least one of non-zero power (Non Zero Power (NZP)) CSI-RS and CSI-Interference Management (CSI-IM). The SS / PBCH block is a block containing SS and PBCH (and the corresponding DMRS), and may be referred to as an SS block (SSB) or the like. Further, the SS may include at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
 CSIは、チャネル品質表示子(Channel Quality Indicator(CQI))、プリコーディング行列表示子(Precoding Matrix Indicator(PMI))、CSI-RSリソース表示子(CSI-RS Resource Indicator(CRI))、SS/PBCHブロックリソース表示子(SS/PBCH Block Indicator(SSBRI))、レイヤ表示子(Layer Indicator(LI))、ランク表示子(Rank Indicator(RI))、L1-RSRP(レイヤ1における参照信号受信電力(Layer 1 Reference Signal Received Power))、L1-RSRQ(Reference Signal Received Quality)、L1-SINR(Signal-to-Noise and Interference Ratio又はSignal to Interference plus Noise Ratio)、L1-SNR(Signal to Noise Ratio)などの少なくとも一つのパラメータ(CSIパラメータ)を含んでもよい。 CSI is a channel quality indicator (Channel Quality Indicator (CQI)), a precoding matrix indicator (Precoding Matrix Indicator (PMI)), a CSI-RS resource indicator (CSI-RS Resource Indicator (CRI)), SS / PBCH. Block resource indicator (SS / PBCH Block Indicator (SSBRI)), layer indicator (Layer Indicator (LI)), rank indicator (Rank Indicator (RI)), L1-RSRP (reference signal reception power in layer 1 (Layer)) 1 Reference Signal Received Power)), L1-RSRQ (Reference Signal Received Quality), L1-SINR (Signal-to-Noise and Interference Ratio or Signal to Interference plus Noise Ratio), L1-SNR (Signal to Noise Ratio), etc. At least one parameter (CSI parameter) may be included.
 UEは、CSI報告に関する情報(報告設定(report configuration)情報)を受信し、当該報告設定情報に基づいてCSI報告を制御してもよい。当該報告設定情報は、例えば、無線リソース制御(Radio Resource Control(RRC))の情報要素(Information Element(IE))の「CSI-ReportConfig」であってもよい。なお、本開示において、RRC IEは、RRCパラメータ、上位レイヤパラメータ等と言い換えられてもよい。 The UE may receive information regarding the CSI report (report configuration information) and control the CSI report based on the report setting information. The report setting information may be, for example, "CSI-ReportConfig" of the information element (Information Element (IE)) of the radio resource control (Radio Resource Control (RRC)). In the present disclosure, RRC IE may be paraphrased as an RRC parameter, an upper layer parameter, or the like.
 当該報告設定情報(例えば、RRC IEの「CSI-ReportConfig」)は、例えば、以下の少なくとも一つを含んでもよい。
・CSI報告のタイプに関する情報(報告タイプ情報、例えば、RRC IEの「reportConfigType」)
・報告すべきCSIの一以上の量(quantity)(一以上のCSIパラメータ)に関する情報(報告量情報、例えば、RRC IEの「reportQuantity」)
・当該量(当該CSIパラメータ)の生成に用いられるRS用リソースに関する情報(リソース情報、例えば、RRC IEの「CSI-ResourceConfigId」)
・CSI報告の対象となる周波数ドメイン(frequency domain)に関する情報(周波数ドメイン情報、例えば、RRC IEの「reportFreqConfiguration」)
The report setting information (for example, "CSI-ReportConfig" of RRC IE) may include at least one of the following, for example.
-Information about the type of CSI report (report type information, eg "reportConfigType" in RRC IE)
Information about one or more quantities of CSI to be reported (one or more CSI parameters) (reported quantity information, eg, RRC IE "report Quantity").
-Information on RS resources used to generate the amount (the CSI parameter) (resource information, for example, "CSI-ResourceConfigId" of RRC IE).
-Information about the frequency domain subject to CSI reporting (frequency domain information, for example, "reportFreqConfiguration" of RRC IE)
 例えば、報告タイプ情報は、周期的なCSI(Periodic CSI(P-CSI))報告、非周期的なCSI(Aperiodic CSI(A-CSI))報告、又は、半永続的(半持続的、セミパーシステント(Semi-Persistent))なCSI報告(Semi-Persistent CSI(SP-CSI))報告を示し(indicate)てもよい。 For example, the report type information can be periodic CSI (Periodic CSI (P-CSI)) reports, aperiodic CSI (Aperiodic CSI (A-CSI)) reports, or semi-permanent (semi-persistent, semi-persistent) reports. A stent (Semi-Persistent) CSI report (Semi-Persistent CSI (SP-CSI)) report may be indicated (indicate).
 また、報告量情報は、上記CSIパラメータ(例えば、CRI、RI、PMI、CQI、LI、L1-RSRP等)の少なくとも一つの組み合わせを指定してもよい。 Further, the reported amount information may specify at least one combination of the above CSI parameters (for example, CRI, RI, PMI, CQI, LI, L1-RSRP, etc.).
 また、リソース情報は、RS用リソースのIDであってもよい。当該RS用リソースは、例えば、ノンゼロパワーのCSI-RSリソース又はSSBと、CSI-IMリソース(例えば、ゼロパワーのCSI-RSリソース)とを含んでもよい。 Further, the resource information may be the ID of the resource for RS. The RS resource may include, for example, a non-zero power CSI-RS resource or SSB and a CSI-IM resource (for example, a zero power CSI-RS resource).
 また、周波数ドメイン情報は、CSI報告の周波数粒度(frequency granularity)を示してもよい。当該周波数粒度は、例えば、ワイドバンド及びサブバンドを含んでもよい。ワイドバンドは、CSI報告バンド全体(entire CSI reporting band)である。ワイドバンドは、例えば、ある(certain)キャリア(コンポーネントキャリア(Component Carrier(CC))、セル、サービングセル)全体であってもよいし、あるキャリア内の帯域幅部分(Bandwidth part(BWP))全体であってもよい。ワイドバンドは、CSI報告バンド、CSI報告バンド全体(entire CSI reporting band)等と言い換えられてもよい。 Further, the frequency domain information may indicate the frequency granularity of the CSI report. The frequency particle size may include, for example, wideband and subband. The wide band is the entire CSI reporting band (entire CSI reporting band). The wide band may be, for example, the entire carrier (component carrier (CC), cell, serving cell), or the entire bandwidth part (BWP) within a carrier. There may be. The wide band may be paraphrased as a CSI reporting band, an entire CSI reporting band (entire CSI reporting band), and the like.
 また、サブバンドは、ワイドバンド内の一部であり、一以上のリソースブロック(Resource Block(RB)又は物理リソースブロック(Physical Resource Block(PRB)))で構成されてもよい。サブバンドのサイズは、BWPのサイズ(PRB数)に応じて決定されてもよい。 Further, the sub-band is a part of the wide band, and may be composed of one or more resource blocks (Resource Block (RB) or Physical Resource Block (PRB)). The size of the subband may be determined according to the size of the BWP (number of PRBs).
 周波数ドメイン情報は、ワイドバンド又はサブバンドのどちらのPMIを報告するかを示してもよい(周波数ドメイン情報は、例えば、ワイドバンドPMI報告又はサブバンドPMI報告の何れかの決定に用いられるRRC IEの「pmi-FormatIndicator」を含んでもよい)。UEは、上記報告量情報及び周波数ドメイン情報の少なくとも一つに基づいて、CSI報告の周波数粒度(すなわち、ワイドバンドPMI報告又はサブバンドPMI報告の何れか)を決定してもよい。 The frequency domain information may indicate whether to report a wideband or subband PMI (frequency domain information is used, for example, to determine either a wideband PMI report or a subband PMI report) RRC IE. May include "pmi-Format Indicator"). The UE may determine the frequency particle size of the CSI report (ie, either the wideband PMI report or the subband PMI report) based on at least one of the reported amount information and the frequency domain information.
 ワイドバンドPMI報告が設定(決定)される場合、一つのワイドバンドPMIがCSI報告バンド全体用に報告されてもよい。一方、サブバンドPMI報告が設定される場合、単一のワイドバンド表示(single wideband indication)iがCSI報告バンド全体用に報告され、当該CSI報告全体内の一以上のサブバンドそれぞれのサブバンド表示(one subband indication)i(例えば、各サブバンドのサブバンド表示)が報告されてもよい。 If wideband PMI reporting is set (determined), one wideband PMI may be reported for the entire CSI reporting band. On the other hand, if the subband PMI report is set, a single wideband display (single wideband indication) i 1 is reported for the entire CSI report bands, one or more sub-bands each of the subbands in entire CSI reported An indication (one subband indication) i 2 (eg, a subband indication of each subband) may be reported.
 UEは、受信したRSを用いてチャネル推定(channel estimation)を行い、チャネル行列(Channel matrix)Hを推定する。UEは、推定されたチャネル行列に基づいて決定されるインデックス(PMI)をフィードバックする。 The UE performs channel estimation using the received RS and estimates the channel matrix H. The UE feeds back an index (PMI) determined based on the estimated channel matrix.
 PMIは、UEが、UEに対する下り(downlink(DL))送信に用いるに適切と考えるプリコーダ行列(単に、プリコーダともいう)を示してもよい。PMIの各値は、一つのプリコーダ行列に対応してもよい。PMIの値のセットは、プリコーダコードブック(単に、コードブックともいう)と呼ばれる異なるプリコーダ行列のセットに対応してもよい。 The PMI may indicate a precoder matrix (simply also referred to as a precoder) that the UE considers appropriate for use in downlink (DL) transmission to the UE. Each value of PMI may correspond to one precoder matrix. The set of PMI values may correspond to a different set of precoder matrices called a precoder codebook (also simply referred to as a codebook).
 空間ドメイン(space domain)において、CSI報告は一以上のタイプのCSIを含んでもよい。例えば、当該CSIは、シングルビームの選択に用いられる第1のタイプ(タイプ1CSI)及びマルチビームの選択に用いられる第2のタイプ(タイプ2CSI)の少なくとも一つを含んでもよい。シングルビームは、単一のレイヤ、マルチビームは、複数のビームと言い換えられてもよい。また、タイプ1CSIは、マルチユーザmultiple input multiple outpiut(MIMO)を想定せず、タイプ2CSIは、マルチユーザMIMOを想定してもよい。 In a space domain, a CSI report may include one or more types of CSI. For example, the CSI may include at least one of a first type (type 1 CSI) used for single beam selection and a second type (type 2 CSI) used for multi-beam selection. A single beam may be paraphrased as a single layer, and a multi-beam may be paraphrased as a plurality of beams. Further, the type 1 CSI may assume a multi-user multiple input multiple outpiut (MIMO), and the type 2 CSI may assume a multi-user MIMO.
 上記コードブックは、タイプ1CSI用のコードブック(タイプ1コードブック等ともいう)と、タイプ2CSI用のコードブック(タイプ2コードブック等ともいう)を含んでもよい。また、タイプ1CSIは、タイプ1シングルパネルCSI及びタイプ1マルチパネルCSIを含んでもよく、それぞれ異なるコードブック(タイプ1シングルパネルコードブック、タイプ1マルチパネルコードブック)が規定されてもよい。 The above codebook may include a codebook for type 1 CSI (also referred to as a type 1 codebook or the like) and a codebook for type 2 CSI (also referred to as a type 2 codebook or the like). Further, the type 1 CSI may include a type 1 single panel CSI and a type 1 multi-panel CSI, and different code books (type 1 single panel code book, type 1 multi-panel code book) may be specified.
 本開示において、タイプ1及びタイプIは互いに読み替えられてもよい。本開示において、タイプ2及びタイプIIは互いに読み替えられてもよい。 In the present disclosure, type 1 and type I may be read interchangeably. In the present disclosure, type 2 and type II may be read interchangeably.
 上り制御情報(UCI)タイプは、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、スケジューリング要求(scheduling request(SR))、CSI、の少なくとも1つを含んでもよい。UCIは、PUCCHによって運ばれてもよいし、PUSCHによって運ばれてもよい。 The uplink control information (UCI) type may include at least one of Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), scheduling request (SR), and CSI. The UCI may be carried by PUCCH or by PUSCH.
 Rel.15 NRにおいて、UCIは、ワイドバンドPMIフィードバック用の1つのCSIパートを含むことができる。CSI報告#nは、もし報告される場合にPMIワイドバンド情報を含む。 Rel. At 15 NR, the UCI can include one CSI part for wideband PMI feedback. CSI report # n includes PMI wideband information if reported.
 Rel.15 NRにおいて、UCIは、サブバンドPMIフィードバック用の2つのCSIパートを含むことができる。CSIパート1は、ワイドバンドPMI情報を含む。CSIパート2は、1つのワイドバンドPMI情報と幾つかのサブバンドPMI情報とを含む。CSIパート1及びCSIパート2は、独立に符号化される。 Rel. At 15 NR, the UCI can include two CSI parts for subband PMI feedback. CSI Part 1 contains wideband PMI information. CSI Part 2 includes one wideband PMI information and several subband PMI information. CSI Part 1 and CSI Part 2 are independently encoded.
 以上のようなCSI報告の周波数粒度は、上り(Uplink(UL))のオーバヘッドに依存する。例えば、特定のPUCCHフォーマット(例えば、1又は2シンボルで構成されるPUCCHフォーマット0又は2)は、ワイドバンドのタイプ1CSIだけをサポートできる。また、CSI報告バンド(例えば、BWPのサイズ)が大きくなるにつれてサブバンドのサイズを大きくすることで、CSI報告バンドの拡大による、サブバンド毎のCSI(例えば、PMI)の報告によるULオーバヘッドの増加を防止する。 The frequency particle size of the CSI report as described above depends on the uplink (UL) overhead. For example, a particular PUCCH format (eg, PUCCH format 0 or 2 consisting of 1 or 2 symbols) can only support wideband type 1 CSI. In addition, by increasing the size of the subband as the CSI reporting band (for example, the size of the BWP) increases, the UL overhead due to the reporting of the CSI (for example, PMI) for each subband increases due to the expansion of the CSI reporting band. To prevent.
 Rel.16以降のNRでは、Rel.15 NRよりも広い帯域幅を利用可能となることが想定される。また、Rel.16以降のNRでは、高い周波数帯(例えば、7.125GHz、24.25GHz、52.6GHzのいずれかよりも高い周波数帯、Rel.15 NRよりも高い周波数帯)を利用可能となることも想定される。なお、周波数帯は周波数範囲(Frequency range(FR))等と呼ばれてもよい。 Rel. In NR after 16, Rel. It is expected that a bandwidth wider than 15 NR will be available. In addition, Rel. It is also assumed that a high frequency band (for example, a frequency band higher than any of 7.125 GHz, 24.25 GHz, and 52.6 GHz, and a frequency band higher than Rel.15 NR) can be used in the NR after 16 Will be done. The frequency band may be referred to as a frequency range (FR) or the like.
 Rel.15 NRでは、サブバンドサイズは、コヒーレンス帯域幅(coherence bandwidth、周波数相関の大きさが90%になる帯域幅)よりも小さくなるため、サブバンドベースのプリコーディングが有効である。例えば、CSI報告バンドが51PRBである場合、コヒーレンス帯域幅は40PRBであり、サブバンドサイズが4又は8PRBであってもよい。 Rel. At 15 NR, the sub-bandwidth is smaller than the coherence bandwidth (bandwidth at which the magnitude of frequency correlation becomes 90%), so sub-band-based precoding is effective. For example, if the CSI reporting band is 51 PRB, the coherence bandwidth may be 40 PRB and the subband size may be 4 or 8 PRB.
 一方、Rel.15 NRよりもCSI報告バンドが広くなる場合、サブバンドサイズがコヒーレンス帯域幅よりも大きくなる結果、CSIの報告精度が劣化するおそれがある。例えば、CSI報告バンドが260PRBである場合、コヒーレンス帯域幅は12PRBであるのに、サブバンドサイズが16又は32PRBとなることが想定される。一方、CSI報告バンドとサブバンドサイズとの比をRel.15 NRと同様に維持しようとすると(コヒーレンス帯域幅よりもサブバンドサイズを十分に小さくしようとすると)、ULオーバヘッドが増大するおそれがある。 On the other hand, Rel. 15 When the CSI reporting band is wider than NR, the subband size becomes larger than the coherence bandwidth, and as a result, the CSI reporting accuracy may deteriorate. For example, if the CSI reporting band is 260 PRB, it is assumed that the coherence bandwidth is 12 PRB but the subband size is 16 or 32 PRB. On the other hand, the ratio of the CSI report band to the subband size was determined by Rel. 15 If you try to maintain the same as NR (if you try to make the subband size sufficiently smaller than the coherence bandwidth), UL overhead may increase.
 このように、将来の無線通信システムにおいては、ULオーバヘッドの増大、CSIの信頼性の低下、などが問題となる。 As described above, in the future wireless communication system, there are problems such as an increase in UL overhead and a decrease in CSI reliability.
 ところで、Rel.15 NRよりも広い帯域幅及び高い周波数帯の少なくとも一つを用いる場合、遅延ドメイン(delay domain)を用いたプリコーダ(遅延ドメインプリコーダ(delay domain precoder))のスパース性(sparsity、疎(sparse)であること)に対する貢献は、Rel.15 NRにおける空間ドメイン及び周波数ドメイン(space-frequency domain)を用いたプリコーダよりも高いことが想定される。 By the way, Rel. 15 When using at least one of a bandwidth wider than NR and a frequency band higher than NR, the sparseness (sparse) of the precoder (delay domain precoder) using the delay domain (delay domain). Contribution to Rel. 15 It is assumed that the NR is higher than that of the precoder using the space domain and the frequency domain.
 そこで、本発明者らは、CSI報告バンド全体(ワイドバンド)に関する情報(ワイドバンド情報)として、遅延ドメインプリコーダ用の情報(例えば、後述する遅延情報及び係数情報の少なくも一つ)をフィードバックすることにより、ULオーバヘッドの増大を抑制しながら、CSIの信頼性の低下を防止することを着想した。 Therefore, the present inventors feed back information for the delay domain precoder (for example, at least one of the delay information and the coefficient information described later) as information (wideband information) regarding the entire CSI reporting band (wideband). By doing so, it was conceived to prevent a decrease in the reliability of CSI while suppressing an increase in UL overhead.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied individually or in combination.
(無線通信方法)
 本開示において、プリコーダ、プリコーディングは相互に言い換えられてもよい。また、プリコーディングベクトル、プリコーディング行列、チャネルベクトル、チャネル行列は互いに言い換えられてもよい。また、遅延は、遅延の量(遅延量)等と言い換えられてもよい。また、遅延ドメインは、後述するトランスフォーム(変換)ドメイン、当該トランスフォームドメインとして定義される一以上のドメインと言い換えられてもよい。
(Wireless communication method)
In the present disclosure, the precoder and the precoding may be paraphrased with each other. Further, the precoding vector, the precoding matrix, the channel vector, and the channel matrix may be paraphrased with each other. Further, the delay may be paraphrased as the amount of delay (delay amount) or the like. Further, the delay domain may be paraphrased as a transform domain described later and one or more domains defined as the transform domain.
 本開示において、indicator(表示子、標示子、指示子)、indication(表示、標示子、指示)、は互いに読み替えられてもよい。 In the present disclosure, indicator (indication, indicator, indicator) and indication (indication, indicator, indicator) may be read as each other.
 また、本実施形態では、遅延ドメインプリコーダを中心に説明するが、少なくとも遅延ドメインが用いられればよい。例えば、空間及び遅延のドメイン(space-delay domain)を用いたプリコーダ(1次元トランスフォームドメインプリコーダ、1次元スパーストランスフォームドメインプリコーダ、空間-遅延ドメインプリコーダ等ともいう)、角度-遅延ドメイン(angular-delay domain)を用いたプリコーダ(2次元トランスフォームドメインプリコーダ(2D-TDP)、2次元スパーストランスフォームドメインプリコーダ(2DスパースTDP)、角度-遅延ドメインプリコーダ等ともいう)にも適宜適用可能である。角度は、到来角(angle of arrival)又は放射角(angle of departure)であってもよい。 Further, in the present embodiment, the delay domain precoder will be mainly described, but at least the delay domain may be used. For example, a precoder using a space-delay domain (also called a one-dimensional transform domain precoder, a one-dimensional sparse transform domain precoder, a space-delay domain precoder, etc.), an angle-delay domain. Also for precoders using (angular-delay domain) (also called 2D transform domain precoder (2D-TDP), 2D sparse transform domain precoder (2D sparse TDP), angle-delay domain precoder, etc.) Applicable as appropriate. The angle may be an arrival angle (angle of arrival) or a radiation angle (angle of departure).
(遅延ドメインプリコーダ)
 ワイドバンド情報としてフィードバックされる遅延ドメインプリコーダ用の情報を中心に説明する。
(Delayed domain precoder)
The explanation will focus on the information for the delayed domain precoder that is fed back as wideband information.
<遅延ドメインプリコーダ>
 遅延ドメインプリコーダは、以下の少なくとも一つのパラメータに基づいて生成(決定)されてもよい。
・Q個の遅延(Q個の異なる遅延値)用の係数(coefficient(s) for Q delays)g
・係数g用の遅延(delays for the coefficient(s))τ、又は、量子化された遅延(quantized delay)用のτ
<Delayed domain precoder>
The deferred domain precoder may be generated (determined) based on at least one of the following parameters.
・ Coefficient (s) for Q delays g for Q delays (Q different delay values)
-Delays for the coefficient (s) τ or quantized delay τ
 ここで、係数gは、Q個の遅延それぞれ(遅延毎に)に規定されてもよい。例えば、g∈CQ×1である。また、係数g用の遅延τは、例えば、τ∈RQ×1であってもよい。ここで、RQ×1は、量子化されていないQ個の遅延τの集合であってもよい。また、量子化された遅延用のτは、例えば、τ∈NQ×1であってもよい。ここで、NQ×1は、量子化されたQ個の遅延τの集合であってもよい。なお、遅延は、遅延時間、時間等と言い換えられてもよい。 Here, the coefficient g may be defined for each of the Q delays (for each delay). For example, g ∈ C Q × 1 . Further, the delay τ for the coefficient g may be, for example, τ ∈ R Q × 1 . Here, RQ × 1 may be a set of Q unquantized delays τ. Further, the quantized delay τ may be, for example, τ ∈ N Q × 1 . Here, N Q × 1 may be a set of quantized Q delays τ. The delay may be paraphrased as a delay time, a time, or the like.
 係数gは、当該係数gに対応する遅延τの関数を乗算(multiply)し、乗算結果を加算することにより、遅延ドメインから周波数ドメインに変換(transform)されてもよい。周波数ドメインの係数(プリコーダの要素)は、この遅延ドメインから周波数ドメインへの変換により取得(obtain)(導出(derive))されてもよい。 The coefficient g may be transformed from the delay domain to the frequency domain by multiplying (multiply) the function of the delay τ corresponding to the coefficient g and adding the multiplication result. The coefficient of the frequency domain (element of the precoder) may be obtained (derive) by the conversion from this delay domain to the frequency domain.
 例えば、係数g及び遅延τに基づくN個のサブキャリア用のプリコーダdは、下記式1によって示されてもよい。なお、式1において、Qは遅延τ又は係数gの数である。qは遅延τ又は係数gの添え字であり、0≦q≦Qである。また、nはサブキャリアの添え字であり、0≦n≦Nである。
Figure JPOXMLDOC01-appb-M000001
For example, the precoder d for N subcarriers based on the coefficient g and the delay τ may be represented by the following equation 1. In Equation 1, Q is the number of delays τ or coefficient g. q is a subscript of the delay τ or the coefficient g, and 0 ≦ q ≦ Q. Further, n is a subscript of the subcarrier, and 0 ≦ n ≦ N.
Figure JPOXMLDOC01-appb-M000001
 ここで、周波数ドメインに変換された遅延#q(q番目の遅延)におけるサブキャリア#n(n番目のサブキャリア)の係数は、下記式2によって示されてもよい。また、電力正規化(power normalization)は、下記式3によって示されてもよい。
Figure JPOXMLDOC01-appb-M000002
Here, the coefficient of the subcarrier #n (nth subcarrier) in the delay #q (qth delay) converted into the frequency domain may be expressed by the following equation 2. Further, the power normalization may be expressed by the following equation 3.
Figure JPOXMLDOC01-appb-M000002
 例えば、サブキャリア#n(0≦n≦N)のプリコーダdQ、nは、遅延の数Qが1、2、3である場合、それぞれ、以下の式4、5、6で示されてもよい。
Figure JPOXMLDOC01-appb-M000003
For example, the precoders d Q and n of the subcarrier # n (0 ≦ n ≦ N) may be represented by the following equations 4, 5 and 6, respectively, when the number of delays Q is 1, 2 and 3, respectively. Good.
Figure JPOXMLDOC01-appb-M000003
 例えば、式4では、遅延の数Q=1であるので、遅延#0(q=0)用の係数g及び係数#0用の遅延τとの乗算結果g・e-j2πnτ0により、遅延#0におけるサブキャリア#nのプリコーダd1、nが導出されてもよい。 For example, in Formula 4, since the number Q = 1 of the delay, the result of multiplication g 0 · e -j2πnτ0 the delay # 0 (q = 0) coefficients g 0 and coefficient # delay tau 0 for 0 for, Precoders d1 and n of subcarriers #n at delay # 0 may be derived.
 また、式5では、遅延の数Q=1であるので、遅延#0におけるサブキャリア#nのプリコーダd1、nと、遅延#1(q=1)用の係数g及び係数#1用の遅延τとの乗算結果g・e-j2πnτ1との加算結果により、遅延#0、#1におけるサブキャリア#nのプリコーダd2、nが導出されてもよい。 Further, in Formula 5, since the number Q = 1 delay, the precoder d 1, n of the sub-carrier #n in the delay # 0, delay # 1 (q = 1) coefficient g 1 and the coefficient # 1 for the addition result of the delay tau 1 and the multiplication result g 1 · e -j2πnτ1 of, delay # 0, the precoder d 2, n subcarriers #n may be derived in # 1.
 また、式6では、遅延の数Q=3であるので、遅延#0、#1におけるサブキャリア#nのプリコーダd2、nと、遅延#2(q=2)用の係数g及び係数#2用の遅延τとの乗算結果g・e-j2πnτ2との加算結果により、遅延#0~#2におけるサブキャリア#nのプリコーダd3、nが導出されてもよい。 Further, in Formula 6, because the number Q = 3 of the delay, the delay # 0, and precoder d 2, n subcarriers #n in # 1, the coefficient g 2 and the coefficient for delay # 2 (q = 2) # the addition result of the multiplication result g 2 · e -j2πnτ2 the delay tau 2 for 2, delay # 0 ~ # precoder d 3 subcarriers #n in 2, n may be derived.
 このように、遅延ドメインプリコーダ用の係数gは、当該係数gを対応する遅延τと乗算することにより、遅延ドメインから周波数ドメインに変換されてもよい。また、変換された係数を加算することにより、周波数ドメインの係数dが取得されてもよい。 In this way, the coefficient g for the delay domain precoder may be converted from the delay domain to the frequency domain by multiplying the coefficient g by the corresponding delay τ. Further, the coefficient d of the frequency domain may be acquired by adding the converted coefficients.
<CSI報告>
 UEは、CSI報告バンド全体(ワイドバンド)に関する一以上の情報(一以上のワイドバンド情報)を基地局にフィードバックしてもよい。具体的には、UEは、ある(certain)ドメインにおいてチャネルを推定し、推定されたチャネル(チャネル行列)に基づいて当該ワイドバンド情報を決定してもよい。
<CSI report>
The UE may feed back one or more information (one or more wideband information) about the entire CSI reporting band (wideband) to the base station. Specifically, the UE may estimate a channel in a certain domain and determine the wideband information based on the estimated channel (channel matrix).
 例えば、UEは、空間及び周波数のドメインにおいて当該チャネルの推定を行い、推定されたチャネル行列をトランスフォームドメインに変換(transform)してもよい。或いは、UEは、トランスフォームドメインでチャネルの推定を行ってもよい。 For example, the UE may estimate the channel in the spatial and frequency domains and transform the estimated channel matrix into a transform domain. Alternatively, the UE may perform channel estimation in the transform domain.
 ここで、トランスフォームドメインとは、例えば、時間ドメイン、周波数ドメイン及び空間ドメインの少なくとも一つとは異なるプリコーディング方式(precoding scheme)用のドメインであってもよい。トランスフォームドメインは、例えば、以下のいずれか、又は、少なくとも2つを組み合わせたドメインであってもよい。
・遅延ドメイン
・遅延-角度ドメイン
・遅延-空間ドメイン
・スパースドメイン(sparse domain)
・周波数ドメイン及び時間ドメインの少なくとも1つから変換又は取得されるドメイン
・周波数ドメイン及び時間ドメインの少なくとも1つに関連付けられるドメイン
・遅延及び角度の少なくとも一つに関係する(related to)ドメイン
・スパース性(sparsity)を有するドメイン
Here, the transform domain may be, for example, a domain for a precoding scheme different from at least one of a time domain, a frequency domain, and a spatial domain. The transform domain may be, for example, any of the following domains, or a domain in which at least two are combined.
· Delay domain · Delay-angle domain · Delay-spatial domain · sparse domain
Domains that are converted or obtained from at least one of the frequency and time domains-Domains associated with at least one of the frequency and time domains-Related to domain sparseness at least one of the delays and angles Domain with (sparsity)
≪空間及び周波数のドメインにおけるチャネル推定≫
 空間-周波数ドメインにおいてチャネル推定を行う場合、UEは、推定されたチャネル(チャネル行列)をトランスフォームドメインに変換し、変換されたチャネル(チャネル行列)に関する情報(チャネル情報)を上記ワイドバンド情報として基地局にフィードバックしてもよい。
≪Channel estimation in spatial and frequency domains≫
When performing channel estimation in the space-frequency domain, the UE converts the estimated channel (channel matrix) into a transform domain, and uses the converted channel (channel matrix) information (channel information) as the wideband information. Feedback may be given to the base station.
 或いは、UEは、空間-周波数ドメインで推定されたチャネル(チャネル行列)に基づいて、トランスフォームドメインにおけるプリコーダを計算し、トランスフォームプリコーダに関する情報(プリコーダ情報)を上記ワイドバンド情報として基地局にフィードバックしてもよい。 Alternatively, the UE calculates a precoder in the transform domain based on the channel (channel matrix) estimated in the space-frequency domain, and uses the information about the transform precoder (precoder information) as the wideband information in the base station. You may give feedback.
≪トランスフォームドメインにおけるチャネル推定≫
 トランスフォームドメインにおいてチャネル推定を行う場合、UEは、推定されたチャネル(チャネル行列)に関する情報(チャネル情報)を基地局にフィードバックしてもよい。
≪Channel estimation in transform domain≫
When performing channel estimation in the transform domain, the UE may feed back information (channel information) about the estimated channel (channel matrix) to the base station.
 或いは、UEは、トランスフォームドメインで推定されたチャネル(チャネル行列)に基づいて、トランスフォームドメインにおけるプリコーダを計算し、トランスフォームプリコーダに関する情報(プリコーダ情報)を上記ワイドバンド情報として基地局にフィードバックしてもよい。 Alternatively, the UE calculates the precoder in the transform domain based on the channel (channel matrix) estimated in the transform domain, and feeds back the information about the transform precoder (precoder information) to the base station as the wideband information. You may.
≪プリコーダ(チャネル)ベクトルの決定≫
 基地局は、一以上のワイドバンド情報(例えば、上記チャネル情報又はプリコーダ情報)を乗算することにより、各サブキャリア、各PRB又は複数のPRBにおけるプリコーダベクトル(precoder vector)(又はチャネルベクトル)を取得(決定)してもよい。
≪Determining precoder (channel) vector≫
The base station multiplies one or more wideband information (eg, the channel information or precoder information) to obtain a precoder vector (or channel vector) in each subcarrier, each PRB, or a plurality of PRBs. It may be acquired (decided).
 図1は、第1の態様に係るCSI報告の動作の一例を示す図である。図1に示すように、ステップS101において、基地局は上記RSを送信する。ステップS102において、UEは、基地局からのRSに基づいて、与えられた(given)ドメイン(例えば、空間-周波数ドメイン、又は、トランスフォームドメイン)においてチャネルを推定する。 FIG. 1 is a diagram showing an example of the operation of CSI reporting according to the first aspect. As shown in FIG. 1, in step S101, the base station transmits the RS. In step S102, the UE estimates channels in a given domain (eg, space-frequency domain, or transform domain) based on RS from the base station.
 UEは、推定されたチャネル(チャネル行列)に関するチャネル情報、又は、当該推定されたチャネル(チャネル行列)に基づいて決定されるプリコーダに関するプリコーダ情報を決定する。なお、上記の通り、チャネル推定が空間-周波数ドメインで行われる場合、当該チャネル情報又はプリコーダ情報は、空間-周波数ドメインで推定されたチャネル(チャネル上列)をトランスフォームドメインに変更してから決定されてもよい。 The UE determines the channel information about the estimated channel (channel matrix) or the precoder information about the precoder determined based on the estimated channel (channel matrix). As described above, when the channel estimation is performed in the space-frequency domain, the channel information or the precoder information is determined after changing the channel estimated in the space-frequency domain (channel upper row) to the transform domain. May be done.
 ステップS103において、UEは、一以上のワイドバンド情報(例えば、一以上のチャネル情報又は一以上のプリコーダ情報)を送信する。図2A及び2Bは、第1の態様に係るワイドバンド情報のフィードバックの一例を示す図である。 In step S103, the UE transmits one or more wideband information (eg, one or more channel information or one or more precoder information). 2A and 2B are diagrams showing an example of feedback of wideband information according to the first aspect.
 例えば、図2Aに示すように、UEは、一つのワイドバンド情報とサブバンド#1~#k(k>1)に関する情報とを基地局にフィードバックしてもよい(サブバンドPMI報告等と呼ばれてもよい)。 For example, as shown in FIG. 2A, the UE may feed back one wideband information and information on subbands # 1 to # k (k> 1) to the base station (called a subband PMI report or the like). May be).
 また、図2Bに示すように、UEは、複数のワイドバンド情報#1~#Q(1<Q<<k)を基地局にフィードバックしてもよい(ワイドバンドPMI報告等と呼ばれてもよい)。 Further, as shown in FIG. 2B, the UE may feed back a plurality of wideband information # 1 to # Q (1 << Q << k) to the base station (also called a wideband PMI report or the like). Good).
 図1のステップS104において、基地局は、ステップS103におけるUEからのフィードバック情報に基づいて、サブキャリア毎のプリコーディングベクトル(又はチャネルベクトル)を決定してもよい。UEは、当該プリコーディングベクトル(又はチャネルベクトル)に基づいて周波数ドメイン及び空間ドメインにおいて下り共有チャネル(例えば、Physical Downlink Shared Channel)を送信してもよい。 In step S104 of FIG. 1, the base station may determine the precoding vector (or channel vector) for each subcarrier based on the feedback information from the UE in step S103. The UE may transmit a downlink shared channel (for example, Physical Downlink Shared Channel) in the frequency domain and the spatial domain based on the precoding vector (or channel vector).
 このように、本実施形態では、報告設定情報(例えば、RRC IEの「CSI-ReportConfig」)に基づいて、単一のワイドバンド情報及び各サブバンドに関する情報(例えば、図2A)が報告されてもよいし、複数のワイドバンド情報(例えば、図2B)が報告されてもよい。UEは、上記報告量情報(例えば、RRC IEの「reportQuantity」)及び周波数ドメイン情報(例えば、RRC IEの「pmi-FormatIndicator」)の少なくとも一つに基づいて、単一又は複数のワイドバンド情報のどちらをフィードバックするかを決定してもよい。 As described above, in the present embodiment, a single wideband information and information on each subband (for example, FIG. 2A) are reported based on the report setting information (for example, “CSI-ReportConfig” of RRC IE). Alternatively, a plurality of wideband information (eg, FIG. 2B) may be reported. The UE may use one or more wideband information based on at least one of the above-mentioned report quantity information (for example, "report Quantity" of RRC IE) and frequency domain information (for example, "pmi-Format Indicator" of RRC IE). You may decide which to feed back.
<遅延ドメインプリコーダの定義(definition)>
≪第1の定義≫
 第1の定義では、サブバンドベースのプリコーダ(サブバンドベースプリコーダ)(subband-based precoder)に置き換えて、遅延ドメインプリコーダが導入されてもよい。具体的には、ある周波数範囲(Frequency Range(FR))では、サブバンドベースプリコーダがサポートされず、遅延ドメインプリコーダがサポートされてもよい。
<Definition of delayed domain precoder>
≪First definition≫
In the first definition, a delayed domain precoder may be introduced in place of a subband-based precoder (subband-based precoder). Specifically, in a certain frequency range (Frequency Range (FR)), a subband-based precoder may not be supported, and a delayed domain precoder may be supported.
 サブバンドベースプリコーダをサポートせず、遅延ドメインプリコーダをサポートするFRは、例えば、7.125GHz~24.25GHz(FR3等ともいう)、24.25GHz~52.6GHz(FR2等ともいう)、52.6GHz~114.25GHz(FR4等ともいう)の少なくとも一つであってもよい。なお、FRは、周波数帯(frequency band)、帯域(band)等と言い換えられてもよい。 FRs that do not support subband-based precoders but support delayed domain precoders include, for example, 7.125 GHz to 24.25 GHz (also referred to as FR3, etc.), 24.25 GHz to 52.6 GHz (also referred to as FR2, etc.). It may be at least one of 52.6 GHz to 114.25 GHz (also referred to as FR4 or the like). In addition, FR may be paraphrased as a frequency band, a band, and the like.
 UEは、遅延ドメインプリコーダに関する設定(configuration)情報(遅延ドメインプリコーダ設定情報)を受信してもよい。遅延ドメインプリコーダ設定情報は、サブバンドベースプリコーダに関する設定情報(サブバンドベースプリコーダ設定情報、例えば、RRC IEの「reportFreqConfiguration」内のサブバンドに関するパラメータ)に代えてサポートされてもよい。 The UE may receive the configuration information (delayed domain precoder setting information) related to the deferred domain precoder. The delayed domain precoder setting information may be supported in place of the setting information related to the subband-based precoder (subband-based precoder setting information, for example, the parameter related to the subband in "reportFreqConfiguration" of RRC IE).
≪第2の定義≫
 第2の定義では、サブバンドベースプリコーダに加えて遅延ドメインプリコーダが導入されてもよい。具体的には、あるFRでは、サブバンドベースプリコーダ及び遅延ドメインプリコーダがサポートされてもよい。
≪Second definition≫
In the second definition, a delayed domain precoder may be introduced in addition to the subband-based precoder. Specifically, some FRs may support subband-based precoders and delayed domain precoders.
 サブバンドベースプリコーダ及び遅延ドメインプリコーダの双方をサポートするFRは、例えば、410MHz~7.125GHz(FR1等ともいう)、及び、24.25GHz~52.6GHz(FR2等ともいう)の少なくとも一つであってもよい。 The FR that supports both the subband-based precoder and the delayed domain precoder is, for example, at least one of 410 MHz to 7.125 GHz (also referred to as FR1 etc.) and 24.25 GHz to 52.6 GHz (also referred to as FR2 etc.). It may be one.
 UEは、サブバンドベースプリコーダ又は遅延ドメインプリコーダのどちらを適用するかを示す情報(適用情報、例えば、RRC IEの「pmi-FormatIndicator」)を受信してもよい。UEは、上記遅延ドメインプリコーダ設定情報及びサブバンドベースプリコーダ設定情報の少なくとも一つを受信してもよい。 The UE may receive information indicating whether to apply the subband-based precoder or the delayed domain precoder (application information, for example, "pmi-Format Indicator" of RRC IE). The UE may receive at least one of the delay domain precoder setting information and the subband-based precoder setting information.
<遅延ドメインプリコーダ用のCSIパラメータ>
 Rel.15 NRにおいて、各CSIパラメータは、与えられたルールに基づいて計算されてもよい。当該ルールは、CSIパラメータ間の依存関係(dependency)に基づいてもよい。例えば、上記LIは、報告されるCQI、PMI、RI及びCRIに基づいて計算されてもよい。また、上記CQIは、報告されるPMI、RI及びCRIに基づいて計算されてもよい。また、PMIは、報告されるRI及びCRIに基づいて計算されてもよい。RIは、報告されるCRIに基づいて計算されてもよい。
<CSI parameters for delayed domain precoder>
Rel. At 15 NR, each CSI parameter may be calculated based on a given rule. The rule may be based on the dependency between CSI parameters. For example, the LI may be calculated based on the reported CQI, PMI, RI and CRI. The CQI may also be calculated based on the reported PMI, RI and CRI. The PMI may also be calculated based on the reported RI and CRI. RI may be calculated based on the reported CRI.
 第1の態様において、CSIは、遅延プリコーダ用のパラメータを含んでもよい。遅延プリコーダ用のパラメータは、例えば、以下の少なくとも一つを含んでもよい。
・Q個の遅延(Q個の異なる遅延値)用の係数g(例えば、g∈CQ×1)に関する情報(係数情報)
・係数g用の遅延(delays for the coefficient(s))τに関する情報(例えば、τ∈RQ×1)、又は、量子化された遅延(quantized delay)τに関する情報(例えば、τ∈NQ×1)、なお、以下では、係数g用の遅延τに関する情報及び量子化された遅延τに関する情報を総称して遅延情報と呼ぶ。
In the first aspect, the CSI may include parameters for a delayed precoder. The parameters for the delay precoder may include, for example, at least one of the following:
Information (coefficient information) about the coefficient g (for example, g ∈ C Q × 1) for Q delays (Q different delay values)
Information about delays for the coefficient (s) τ (eg τ ∈ R Q × 1 ) or information about quantized delay τ (eg τ ∈ N Q) × 1 ) In the following, the information on the delay τ for the coefficient g and the information on the quantized delay τ are collectively referred to as delay information.
 ここで、遅延の総数Qは、上位レイヤシグナリング(例えば、RRCシグナリング)及び物理レイヤシグナリングの少なくとも一つにより、UEに通知されてもよい。例えば、上記遅延ドメインプリコーダ設定情報は、遅延の総数Qを示す情報を含んでもよい。 Here, the total number Q of delays may be notified to the UE by at least one of higher layer signaling (for example, RRC signaling) and physical layer signaling. For example, the delay domain precoder setting information may include information indicating the total number Q of delays.
≪遅延情報≫
 遅延情報は、例えば、各遅延τを示す情報(遅延表示子(delay indicator(DI))等ともいう)であってもよい。q番目の遅延τの値は、量子化されていなくともよいし(non-quantized)、又は、量子化されていてもよい。
≪Delay information≫
The delay information may be, for example, information indicating each delay τ (also referred to as a delay indicator (DI) or the like). The value of the qth delay τ q may not be quantized (non-quantized) or may be quantized.
 量子化されない場合、例えば、τ∈R、及び、τ≧0であってもよい。ここで、Rは、量子化されていないQ個の遅延τの集合であってもよい。 If it is not quantized, it may be, for example, τ q ∈ R and τ q ≧ 0. Here, R may be a set of Q unquantized delays τ.
 一方、量子化される場合、例えば、τ=m・TDPであってもよい。ここで、m∈Nである。Nは、量子化されたQ個の遅延τの集合であってもよい。TDPは、量子化の単位であってもよい。例えば、TDPは、帯域幅の逆数(reciprocal)、すなわち、1/帯域幅であってもよい。なお、帯域幅は、帯域幅を構成するリソースブロック数であってもよい。ワイドバンドシステムにおける帯域幅は、サブバンドと比べて大きいので、TDPを用いることにより、粒度を高くすることができる。 On the other hand, when it is quantized, for example, τ q = m · T DP may be used. Here, m ∈ N. N may be a set of quantized Q delays τ. T DP may be a unit of quantization. For example, the T DP may be the reciprocal of the bandwidth, i.e. 1 / bandwidth. The bandwidth may be the number of resource blocks constituting the bandwidth. Bandwidth in wide-band system is greater than the sub-band, by using the T DP, it is possible to increase the particle size.
 CSIとしてフィードバックされるDIは、遅延τと隣接する遅延τq+1(又はτq-1)との間のオフセットを示してもよいし、遅延τと最初の遅延τとの間のギャップを示してもよいし、又は、遅延τの量そのものを示してもよい。なお、オフセット(offset)は、ギャップ(gap)、オフセット量、差(difference)等と言い換えられてもよい。 The DI fed back as the CSI may indicate the offset between the delay τ q and the adjacent delay τ q + 1 (or τ q-1 ), or the gap between the delay τ q and the first delay τ 1. Or may indicate the amount of delay τ q itself. The offset may be paraphrased as a gap, an offset amount, a difference, or the like.
 例えば、DIが遅延τと隣接する遅延τq+1(又はτq-1)との間のオフセットを示す場合、当該オフセットΔτは、以下の式7によって示されてもよい。
(式7)
  Δτ=[Δτ,…,ΔτQ-1]、ここで、Δτ=τq+1-τ(例えば、1≦q≦Q-1)
For example, if DI indicates an offset between the delay τ q and the adjacent delay τ q + 1 (or τ q-1 ), the offset Δτ may be expressed by Equation 7 below.
(Equation 7)
Δτ = [Δτ 1 , ..., Δτ Q-1 ], where Δτ q = τ q + 1 −τ q (for example, 1 ≦ q ≦ Q-1)
 また、DIが遅延τと最初の遅延τとの間のオフセットを示す場合、当該オフセットΔτは、以下の式8によって示されてもよい。
(式8)
  Δτ=[Δτ,…,ΔτQ-1]、ここで、Δτ=τq+1-τ(例えば、1≦q≦Qの場合)
Further, when DI indicates an offset between the delay τ q and the first delay τ 1 , the offset Δτ may be expressed by the following equation 8.
(Equation 8)
Δτ = [Δτ 1 , ..., Δτ Q-1 ], where Δτ q = τ q + 1 −τ 1 (for example, when 1 ≦ q ≦ Q)
 また、DIが遅延τの量そのものを示す場合、当該遅延τは、以下の式9によって示されてもよい。
(式9)
  τ=[τ,…,τ]、(例えば、1≦q≦Qの場合)
Further, when DI indicates the amount of delay τ q itself, the delay τ may be expressed by the following equation 9.
(Equation 9)
τ = [τ 1 , ..., τ Q ], (for example, when 1 ≦ q ≦ Q)
 なお、上記式7~9は例示にすぎず、上記のものに限られない。例えば、式7~9において、遅延τの添え字qの取り得る範囲は、0≦q≦Q-2(又はQ-1)であってもよい。また、式7は、Δτ=τ-τq-1であってもよいし、この場合、τq-1=0であってもよい。また、式8は、Δτ=τ-τ(例えば、0≦q≦Q-1の場合)であってもよい。 The above formulas 7 to 9 are merely examples, and are not limited to the above formulas. For example, in equations 7 to 9, the range in which the subscript q of the delay τ can be taken may be 0 ≦ q ≦ Q-2 (or Q-1). Further, the equation 7 may have Δτ q = τ q −τ q-1 , and in this case, τ q-1 = 0. Further, the equation 8 may be Δτ q = τ q −τ 0 (for example, in the case of 0 ≦ q ≦ Q-1).
≪係数情報≫
 係数情報は、例えば、遅延プリコーディング用の行列(matrix)を示す情報(遅延プリコーディング行列表示子(Delay precoding Matrix Indicator(DMI)))であってもよいし、又は、既存のプリコーディング行列表示子(Precoding Matrix Indicator(PMI))を再利用するものであってもよい。
≪Coefficient information≫
The coefficient information may be, for example, information indicating a matrix for delay precoding (Delay precoding Matrix Indicator (DMI)), or an existing precoding matrix display. The child (Precoding Matrix Indicator (PMI)) may be reused.
 例えば、DMIは、遅延ドメインプリコーダを明示的に(explicitly)又は黙示的(implicitly)に示してもよい。DMIは、既存のPMIとは別に規定される。したがって、UEは、既存のPMIに対する修正を加えることなく、DMIを含むCSIを基地局に報告できる。 For example, the DMI may indicate the delayed domain precoder explicitly or implicitly. The DMI is defined separately from the existing PMI. Therefore, the UE can report the CSI including the DMI to the base station without making modifications to the existing PMI.
 一方、Rel.15 NRにおけるPMIが遅延ドメインプリコーダを明示的又は黙示的に示してもよい。この場合、PMI用の既存のシグナリングを再利用できる。 On the other hand, Rel. 15 PMI at NR may indicate the delayed domain precoder explicitly or implicitly. In this case, the existing signaling for PMI can be reused.
 上記DMI又はPMI(DMI/PMI)は、係数gを明示的に示す情報であってもよいし、係数gをコードブックベースで示す情報であってもよい。 The DMI or PMI (DMI / PMI) may be information that explicitly indicates the coefficient g, or information that indicates the coefficient g on a codebook basis.
 上記DMI/PMIは、(1)量子化された係数gの振幅(amplitude)及び位相(phase)を示してもよいし、(2)変調次数(又は変調方式)に基づいて量子化された係数gを示してもよいし、又は、(3)量子化していない係数gを示してもよい。 The DMI / PMI may indicate (1) the amplitude and phase of the quantized coefficient g, and (2) the quantized coefficient based on the modulation order (or modulation method). g may be indicated, or (3) the unquantized coefficient g may be indicated.
 或いは、(4)一以上のコードブック(例えば、異なるサイズの複数のコードブック)が規定されてもよい。この場合、上記DMI/PMIは、対応するコードブックの中から選択される係数gを示してもよい。 Alternatively, (4) one or more codebooks (for example, a plurality of codebooks of different sizes) may be specified. In this case, the DMI / PMI may indicate a coefficient g selected from the corresponding codebook.
 例えば、係数gが以下の式10によって示されるものとする。
Figure JPOXMLDOC01-appb-M000004
For example, it is assumed that the coefficient g is represented by the following equation 10.
Figure JPOXMLDOC01-appb-M000004
(1)量子化された係数gの振幅及び位相
 上記係数gの振幅は、与えられた(given)数(例えば、ビット数)nに基づいて量子化されてもよい。当該量子化のセット(quantization set)は、{1/2^n, 2/2^n, …, 1}「0:1/(2^n-1):1」で規定されてもよい。「0:1/(2^n-1):1」は、0及び1と、0~1の間において、1/(2^n-1)の分子を1ずつインクルメント(increment)した複数の分数とを含む集合を示してもよい。例えば、n=2の場合、当該量子化のセットは、{1/4, 1/2, 3/4, 1}であってもよい。また、n=3の場合、当該量子化のセットは、{1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 1}であってもよい。
(1) Amplitude and Phase of Quantized Coefficient g The amplitude of the above-mentioned coefficient g may be quantized based on a given (given) number (for example, the number of bits) n. The quantization set may be defined by {1/2 ^ n, 2/2 ^ n, ..., 1} "0: 1 / (2 ^ n-1): 1". "0: 1 / (2 ^ n-1): 1" is a plurality of 1 / (2 ^ n-1) molecules incremented one by one between 0 and 1 and 0 to 1. You may show a set containing a fraction of. For example, when n = 2, the set of quantizations may be {1/4, 1/2, 3/4, 1}. Also, when n = 3, even if the set of quantization is {1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8, 1} Good.
 UEは、上記量子化のセットの中から上記係数gの振幅に最も近い値(closet value)を選択してもよい。例えば、上記n=3の場合、量子化前後の振幅は以下のように示されてもよい。
Figure JPOXMLDOC01-appb-M000005
The UE may select the value closest to the amplitude of the coefficient g from the set of quantizations. For example, when n = 3, the amplitude before and after quantization may be shown as follows.
Figure JPOXMLDOC01-appb-M000005
 また、上記係数gの位相は、与えられた(given)数(例えば、ビット数)mに基づいて量子化されてもよい。当該量子化のセットは、{-π, -π+1/2^m*2*π, …, -π+(2^m-1)/2^m*2*π}で規定されてもよい。例えば、m=2の場合、当該量子化のセットは、{-π, -π/2, 0, π/2}であってもよい。 Further, the phase of the coefficient g may be quantized based on a given (given) number (for example, the number of bits) m. Even if the set of quantization is specified by {-π, -π + 1/2 ^ m * 2 * π, ..., -π + (2 ^ m-1) / 2 ^ m * 2 * π} Good. For example, when m = 2, the quantization set may be {-π, -π / 2, 0, π / 2}.
 UEは、上記量子化のセットの中から上記係数gの位相に最も近い値(closet value)を選択してもよい。例えば、上記m=2の場合、量子化前後の位相は以下のように示されてもよい。
Figure JPOXMLDOC01-appb-M000006
 なお、πは特定の値であればよく、例えば、-1/2πの代わりに-πとして量子化されてもよい。
The UE may select the value closest to the phase of the coefficient g from the set of quantizations. For example, in the case of m = 2, the phase before and after quantization may be shown as follows.
Figure JPOXMLDOC01-appb-M000006
Note that π may be a specific value and may be quantized as −π instead of −1 / 2π, for example.
(2)変調次数に基づいて量子化された係数g
 変調次数による量子化のセットは、コンステレーション(constellation)上の最大の振幅によって正規化される2のn乗個の値を有するコンステレーションであってもよい。ここで、nは、与えられた(given)数(例えば、各変調次数)であってもよい。
(2) Coefficient g quantized based on modulation order
The set of quantization by modulation order may be a constellation with 2 n values normalized by the maximum amplitude on the constellation. Here, n may be a given number (for example, each modulation order).
 例えば、n=2の場合、Quadrature Phase Shift Keying(QPSK)であり、量子化のセットは、{0.7071+0.7071i, 0.7071-0.7071i, -0.7071+0.7071i,-0.7071-0.7071i}であってもよい。 For example, when n = 2, it is Quadrature Phase Shift Keying (QPSK), and the quantization set is {0.7071 + 0.7071i, 0.7071-0.7071i, -0.7071 + 0.7071i, -0.7701-0.7071i}. May be good.
 また、n=3の場合、16直交振幅変調(Quadrature Amplitude Modulation(QAM))(例えば、√1.8により正規化が行われるQAM)であり、量子化のセットは、{0.2357+0.2357i,0.2357+0.7071i,0.7071+0.2357i,0.7071+0.7071i,0.2357-0.2357i,0.2357-0.7071i,0.7071-0.2357i,0.7071-0.7071i,-0.2357+0.2357i,-0.2357+0.7071i,-0.7071+0.2357i,-0.7071+0.7071i,-0.2357-0.2357i,-0.2357-0.7071i,-0.7071-0.2357i,-0.7071-0.7071i}であってもよい。 Further, when n = 3, it is 16 quadrature amplitude modulation (QAM) (for example, QAM in which normalization is performed by √1.8), and the set of quantization is {0.2357 + 0.2357i, 0.2357 +. 0.7071i, 0.7071 + 0.2357i, 0.7071 + 0.7071i, 0.2357-0.2357i, 0.2357-0.7071i, 0.7071-0.2357i, 0.7071-0.7071i, -0.2357 + 0.2357i, -0.2357 + 0.7071i, -0.7071 + 0.2357i , -0.7071 + 0.7071i, -0.2357-0.2357i, -0.2357-0.7071i, -0.7701-0.2357i, -0.7701-0.7071i}.
 UEは、上記量子化のセットの中から上記係数gに最も近い値を選択してもよい。例えば、上記n=4の場合、量子化前後の係数gは以下のように示されてもよい。
Figure JPOXMLDOC01-appb-M000007
The UE may select the value closest to the coefficient g from the set of quantizations. For example, when n = 4, the coefficient g before and after quantization may be shown as follows.
Figure JPOXMLDOC01-appb-M000007
 或いは、異なるサイズのコードブックが規定されてもよい。この場合、上記DMI/PMIは、対応するコードブックの中から選択される係数gを示してもよい。 Alternatively, codebooks of different sizes may be specified. In this case, the DMI / PMI may indicate a coefficient g selected from the corresponding codebook.
 なお、上記QAMは、16QAMだけでなく、64QAM、256QAM等を含んでもよい。 Note that the QAM may include not only 16QAM but also 64QAM, 256QAM and the like.
(3)コードブック
 一以上のコードブック(例えば、異なるサイズの複数のコードブック)が規定されてもよい。当該コードブックとしては、ある(certain)サイズ(例えば、2のn乗*2のn乗のサイズ)の離散フーリエ変換(Discrete Fourier Transform(DFT))行列が用いられてもよい。ここで、nは、与えられた数(例えば、フィードバックビット数)であってもよい。
(3) Codebooks One or more codebooks (for example, a plurality of codebooks of different sizes) may be specified. As the codebook, a Discrete Fourier Transform (DFT) matrix of a certain size (for example, the size of 2 to the nth power * 2 to the nth power) may be used. Here, n may be a given number (for example, the number of feedback bits).
 例えば、n=1の場合、当該コードブック(DFTコードブック等ともいう)には、2×1の一以上の行列が規定されてもよい。例えば、当該コードブックは、下記で示されてもよい。
Figure JPOXMLDOC01-appb-M000008
For example, when n = 1, the codebook (also referred to as DFT codebook or the like) may be defined with one or more matrices of 2 × 1. For example, the codebook may be shown below.
Figure JPOXMLDOC01-appb-M000008
 UEは、上記コードブック内で上記係数gと最も近い距離を有するベクトルを選択してもよい。例えば、上記n=1の場合、上記コードブックから上記係数g(上記式10参照)用に選択されるベクトルは、以下のように示されてもよい。量子化前後の係数gは以下のように示されてもよい。
Figure JPOXMLDOC01-appb-M000009
The UE may select the vector having the closest distance to the coefficient g in the codebook. For example, when n = 1, the vector selected from the codebook for the coefficient g (see Equation 10) may be shown as follows. The coefficient g before and after quantization may be shown as follows.
Figure JPOXMLDOC01-appb-M000009
<周波数ドメインにおけるプリコーダ生成>
 上記の通り、Rel.15 NRにおいて、サブバンドPMI報告がUEに設定される場合、UEは、ワイドバンドPMIとサブバンド毎のサブバンドPMIとを基地局にフィードバックする。基地局は、ワイドバンドPMIに基づいて行列Wを決定し、サブバンド毎のサブバンドPMIに基づいてサブバンド毎の行列Wを決定してもよい。
<Precoder generation in frequency domain>
As mentioned above, Rel. At 15 NR, when subband PMI reporting is set to the UE, the UE feeds back the wideband PMI and the subband PMI for each subband to the base station. The base station, the matrix W 1 is determined based on the wideband PMI, it may determine the matrix W 2 of each subband based on the subband PMI per subband.
 UEは、当該行列W及びWに基づいて、下り送信(例えば、PDSCH)のプリコーディングに用いるプリコーダ行列Wを決定してもよい。例えば、当該プリコーダ行列は、下記式11により計算されてもよい。
(式11)
   W=W
The UE may determine the precoder matrix W to be used for precoding of downlink transmission (for example, PDSCH) based on the matrices W 1 and W 2. For example, the precoder matrix may be calculated by the following equation 11.
(Equation 11)
W = W 1 W 2
 一方、UEが、各ワイドバンド情報(例えば、係数情報及び遅延情報の少なくとも一つ)をフィードバックする場合、プリコーダdをどのように規定するかが問題となる。 On the other hand, when the UE feeds back each wideband information (for example, at least one of coefficient information and delay information), how to define the precoder d becomes a problem.
 第1の態様において、周波数ドメインにおけるプリコーダd(コードブックgから得られてもよい)は、係数情報(例えば、DMI/PMI)に基づいて決定される係数g及び遅延情報(例えば、DI)に基づいて決定される遅延τに基づいて決定されてもよい。例えば、プリコーダdは、以下の式12を用いて決定されてもよい。
Figure JPOXMLDOC01-appb-M000010
 ここで、Qは、遅延の総数であり、qは遅延の添え字である。Nはサブキャリアの総数であり、nはサブキャリアの添え字(インデックス)である。
In the first aspect, the precoder d in the frequency domain (which may be obtained from the codebook g) is the coefficient g and delay information (eg DI) determined based on the coefficient information (eg DMI / PMI). It may be determined based on the delay τ determined based on. For example, the precoder d may be determined using the following equation 12.
Figure JPOXMLDOC01-appb-M000010
Here, Q is the total number of delays, and q is a subscript of the delay. N is the total number of subcarriers, and n is a subscript (index) of the subcarriers.
 図3は、第1の態様に係るワイドバンド情報に基づくプリコーダの一例を示す図である。図3では、例えば、1次元スパーストランスフォームドメインプリコーダ(1 dimension(1D)-sparse transform domain precoder)(空間-遅延ドメインプリコーダ(space-delay domain precoder))が用いられてもよい。 FIG. 3 is a diagram showing an example of a precoder based on the wideband information according to the first aspect. In FIG. 3, for example, a one-dimensional sparse transform domain precoder (1 dimension (1D) -sparse transform domain precoder) (space-delay domain precoder) may be used.
 また、図3では、図2Bで説明したように、m(m>1、ここでは、m=2)個のワイドバンド情報がUEから報告されるものとする。各ワイドバンド情報は、遅延情報(例えば、上記DI)及び当該係数情報(例えば、上記DMI/PMI)の少なくとも一つを含んでもよい。 Further, in FIG. 3, as described in FIG. 2B, it is assumed that m (m> 1, here, m = 2) wideband information is reported from the UE. Each wideband information may include at least one of delay information (eg, DI) and coefficient information (eg, DMI / PMI).
 例えば、図3では、遅延の総数Q=2であり、ワイドバンド情報#1及び#2がUEから基地局に報告される。ワイドバンド情報#1は、遅延τを示すDI及び遅延τ用の係数gを示すDMI/PMIを含んでもよい。また、ワイドバンド情報#2は、遅延τを示すDI及び遅延τ用の係数gを示すDMI/PMIを含んでもよい。なお、g、gの長さ(サイズ)は、アンテナの数に関係してもよい。 For example, in FIG. 3, the total number of delays Q = 2, and wideband information # 1 and # 2 are reported from the UE to the base station. Wideband information # 1 may include DI indicating delay τ 1 and DMI / PMI indicating coefficient g 1 for delay τ 1. Further, the wideband information # 2 may include DI indicating the delay τ 2 and DMI / PMI indicating the coefficient g 2 for the delay τ 2. The length (size) of g 1 and g 2 may be related to the number of antennas.
 図3に示すように、Q=2である場合のサブキャリア#i(1≦i≦n)のプリコーダW(i)は、m個のワイドバンド情報それぞれに含まれるDI及びDMI/PMIの少なくとも一つに基づいて決定されてもよい。 As shown in FIG. 3, the precoder W (i) of the subcarrier #i (1 ≦ i ≦ n) when Q = 2 has at least DI and DMI / PMI included in each of the m wideband information. It may be determined based on one.
 例えば、図3では、当該プリコーダW(i)は、ワイドバンド情報#1内のDIによって示される遅延τ及びDMI/PMIによって示される係数gと、ワイドバンド情報#2内のDIによって示される遅延τ及びDMI/PMIによって示される係数gとに基づいて、決定される。 For example, in FIG. 3, the precoder W (i) is indicated by a delay τ 1 indicated by DI in wideband information # 1 and a coefficient g 1 indicated by DMI / PMI, and DI in wideband information # 2. It is determined based on the delay τ 2 and the coefficient g 2 indicated by DMI / PMI.
 なお、図3では、サブキャリアのインデックス#iは、1≦i≦nであるが、これに限られず、0≦i≦n-1であってもよい。 In FIG. 3, the index #i of the subcarrier is 1 ≦ i ≦ n, but the index # i is not limited to this, and may be 0 ≦ i ≦ n-1.
 図4は、第1の態様に係るワイドバンド情報に基づくプリコーダの他の例を示す図である。図4では、例えば、2次元スパーストランスフォームドメインプリコーダ(2 dimension(2D)-sparse transform domain precoder(TDP)、角度-遅延ドメインプリコーダ)が用いられてもよい。また、図4では、角度ドメイン及び遅延ドメインのプリコーダが結合(joint)されてもよい。 FIG. 4 is a diagram showing another example of the precoder based on the wideband information according to the first aspect. In FIG. 4, for example, a two-dimensional sparse transform domain precoder (2 dimension (2D) -sparse transform domain precoder (TDP), angle-delay domain precoder) may be used. Also, in FIG. 4, the angle domain and delay domain precoders may be joined.
 図4では、m(m>1、ここでは、m=2)個のワイドバンド情報に加えて空間に関する情報(空間情報)がUEから報告されるものとする。各ワイドバンド情報は、遅延情報(例えば、上記DI)及び当該係数情報(例えば、上記DMI/PMI)の少なくとも一つを含んでもよい。 In FIG. 4, it is assumed that the UE reports information on space (spatial information) in addition to m (m> 1, here m = 2) wideband information. Each wideband information may include at least one of delay information (eg, DI) and coefficient information (eg, DMI / PMI).
 空間情報は、コードブックW**から選択されるコードワードwチルダ(wの上に"~"を付す)及び角度θの少なくとも一つに関する情報を含んでもよい。なお、コードブックW**のサイズは、チャネル相関(channel correlation)に関係してもよい。 Spatial information may include information about at least one of the codeword w tilde (with a "~" above w) selected from the codebook W ** and the angle θ. The size of the codebook W ** may be related to the channel correlation.
 図4に示すように、Q=2である場合のサブキャリア#i(1≦i≦n)のプリコーダW(i)は、m個のワイドバンド情報それぞれに含まれるDI及びDMI/PMIと、空間情報によって決定される角度θ及びコードワードwチルダとの少なくとも一つに基づいて決定されてもよい。 As shown in FIG. 4, the precoder W (i) of the subcarrier #i (1 ≦ i ≦ n) when Q = 2 includes DI and DMI / PMI included in each of the m wideband information. It may be determined based on at least one of the angle θ determined by the spatial information and the codeword w tilde.
 例えば、図4では、当該プリコーダW(i)は、ワイドバンド情報#1内のDIによって示される遅延τ及びDMI/PMIによって示される係数gチルダ(1)と、ワイドバンド情報#2内のDIによって示される遅延τ及びDMI/PMIによって示される係数gチルダ(2)と、空間情報によって決定される角度θ及びコードワードwチルダに基づいて、決定される。なお、図4では、サブキャリアのインデックスiは、1≦i≦nであるが、これに限られず、0≦i≦n-1であってもよい。 For example, in FIG. 4, the precoder W (i) has a delay τ 1 indicated by DI in wideband information # 1 and a coefficient g tilde (1) indicated by DMI / PMI, and the wideband information # 2. It is determined based on the delay τ 2 indicated by DI and the coefficient g tilde (2) indicated by DMI / PMI, and the angle θ and codeword w tilde determined by spatial information. In FIG. 4, the index i of the subcarrier is 1 ≦ i ≦ n, but is not limited to this, and may be 0 ≦ i ≦ n-1.
 ここで、図4のサブキャリア#i(1≦i≦n)のプリコーダW(i)の決定に用いられるA(θ)は、以下の式13及び式14によって規定されてもよい。
Figure JPOXMLDOC01-appb-M000011
 ここで、Mは、アンテナ又はradio frequency(RF)チェーンの数である。L(=Q)は、ベクトルg及びθの長さである。gml及びθmlはそれぞれベクトルg及びθのl(1≦l≦L)番目の要素である。dはアンテナ空間である。また、λは波長である。
Here, A (θ) used for determining the precoder W (i) of the subcarrier #i (1 ≦ i ≦ n) in FIG. 4 may be defined by the following equations 13 and 14.
Figure JPOXMLDOC01-appb-M000011
Here, M is the number of antennas or radio frequency (RF) chains. L (= Q) is the length of the vectors g m and θ m. g ml and theta ml is l (1 ≦ l ≦ L) th element of each vector g m and theta m. d is the antenna space. Also, λ C is the wavelength.
 図5は、第1の態様に係るワイドバンド情報に基づくプリコーダの更に別の例を示す図である。図5では、角度ドメイン及び遅延ドメインのプリコーダが別々となる点で図4と異なってもよい。また、図5では、コードワード及び角度θは遅延τ間で共通ではなく、遅延τ毎(すなわち、ワイドバンド情報毎)にコードワード及び角度θが報告される点で図4と異なってもよい。以下では、図4との相違点を中心に説明する。 FIG. 5 is a diagram showing still another example of the precoder based on the wideband information according to the first aspect. FIG. 5 may differ from FIG. 4 in that the angle domain and delay domain precoders are separate. Further, in FIG. 5, the code word and the angle θ rather than the common delays tau q, each delay tau q (i.e., a wide band by band information) differs from FIG. 4 in that the code words and the angle θ are reported May be good. In the following, the differences from FIG. 4 will be mainly described.
 図5では、m(m>1、ここでは、m=2)個のワイドバンド情報がUEから報告されるものとする。各ワイドバンド情報は、遅延情報(例えば、上記DI)及び当該係数情報(例えば、上記DMI/PMI)に加えて、遅延τ用のコードワードに関する情報(コードワード情報)及び角度θに関する情報(角度情報)の少なくとも一つを含んでもよい。 In FIG. 5, it is assumed that m (m> 1, here m = 2) wideband information is reported from the UE. In addition to the delay information (for example, DI) and the coefficient information (for example, DMI / PMI), each wideband information includes information about a code word for delay τ (code word information) and information about an angle θ (angle). Information) may be included.
 図5に示すように、L=2である場合のサブキャリア#i(1≦i≦n)のプリコーダW(i)は、m個のワイドバンド情報それぞれに含まれるDI及びDMI/PMIと、角度情報に基づいて決定される角度θ及びコードワード情報に基づいて決定されるコードワードとの少なくとも一つに基づいて決定されてもよい。 As shown in FIG. 5, the precoder W (i) of the subcarrier #i (1 ≦ i ≦ n) when L = 2 includes DI and DMI / PMI included in each of the m wideband information. It may be determined based on at least one of the angle θ determined based on the angle information and the codeword determined based on the codeword information.
 例えば、図5では、当該プリコーダW(i)は、ワイドバンド情報#1内のDIによって示される遅延τ、DMI/PMIによって示される係数g1、角度θ及びコードワードwチルダと、ワイドバンド情報#2内のDIによって示される遅延τ2、DMI/PMIによって示される係数g2、角度θ及びコードワードとに基づいて、決定される。 For example, in FIG. 5, the precoder W (i) is wide with a delay τ 1 indicated by DI in wideband information # 1, a coefficient g 1 indicated by DMI / PMI , an angle θ 1, and a codeword w tilder. It is determined based on the delay τ 2 indicated by DI in band information # 2, the coefficient g 2 indicated by DMI / PMI , the angle θ 2 and the codeword.
 なお、図5のA(θ)及びA(θ)は、それぞれ、上記の式12及び式13と同様に規定されてもよい。また、図5では、サブキャリアのインデックスiは、1≦i≦nであるが、これに限られず、0≦i≦n-1であってもよい。 Note that A (θ 1 ) and A (θ 2 ) in FIG. 5 may be defined in the same manner as in the above equations 12 and 13, respectively. Further, in FIG. 5, the index i of the subcarrier is 1 ≦ i ≦ n, but is not limited to this, and may be 0 ≦ i ≦ n-1.
 以上のように、UEは、遅延情報及び係数情報の少なくとも一つを含む各ワイドバンド情報をフィードバックする。基地局は、各ワイドバンド情報に基づいてサブキャリア毎のプリコーダを決定する。これにより、CSIの報告対象となるワイドバンドが広帯域化されても、ULオーバヘッドを削減しながら、CSIの信頼性の低下を防止できる。 As described above, the UE feeds back each wideband information including at least one of the delay information and the coefficient information. The base station determines the precoder for each subcarrier based on each wideband information. As a result, even if the wide band to be reported by CSI is widened, UL overhead can be reduced and the reliability of CSI can be prevented from being lowered.
(CSI構造)
 図6は、UCIにおけるCSI報告の構造の一例を示す図である。ここで、CSI報告の数はnであってもよい。1つのCSI報告内のCSIパートの数はmであってもよい。CSIパート1内の(1よりも多いCSIパートを有しないCSI報告内の、又は、1よりも多いCSIパートにおけるCSIパート1内の)ワイドバンドPMIフィードバック(例えば、PMIワイドバンド情報フィールド)の数はQであってもよい。CSIパート1以外のワイドバンドPMIフィードバックの数はQであってもよい。CSIパートm内のワイドバンドPMIフィードバックの数はQ(m)であってもよい。1つのCSIパート内のワイドバンド報告の数はqであってもよい。ワイドバンド報告q内のワイドバンドPMIフィードバックの数はQ(q)であってもよい。Q個のワイドバンドPMIフィードバックが、q個のワイドバンド報告に分割されてもよい。ワイドバンド報告#1、#2、…、#qに含まれるワイドバンドPMIフィードバックの数は、それぞれ、Q(1)、Q(2)で、…、Q(q)であってもよい。
(CSI structure)
FIG. 6 is a diagram showing an example of the structure of CSI reporting in UCI. Here, the number of CSI reports may be n. The number of CSI parts in a CSI report may be m. Number of wideband PMI feedback (eg, PMI wideband information fields) in CSI part 1 (in CSI reports that do not have more than 1 CSI part or in CSI part 1 in more than 1 CSI part) it may be a Q 0. The number of wideband PMI feedbacks other than CSI part 1 may be Q. The number of wideband PMI feedbacks in the CSI part m may be Q (m). The number of wideband reports within a CSI part may be q. The number of wideband PMI feedbacks in the wideband report q may be Q (q). The Q wideband PMI feedback may be split into q wideband reports. The number of wideband PMI feedbacks included in the wideband reports # 1, # 2, ..., # Q is Q (1) , Q (2) , ..., Q (q) , respectively.
 本開示において、CSIパートmにおけるCSI報告#n、CSI報告#nのCSIパートm、は互いに読み替えられてもよい。 In the present disclosure, the CSI report # n in the CSI part m and the CSI part m in the CSI report #n may be read as each other.
 本開示において、ワイドバンドPMI、ワイドバンドPMI情報、PMIワイドバンド情報、PMIワイドバンド情報フィールド、ワイドバンドPMIフィードバック、は互いに読み替えられてもよい。本開示において、DI、ワイドバンドDI、ワイドバンドDI情報、DIワイドバンド情報、DIワイドバンド情報フィールド、ワイドバンドDIフィードバック、は互いに読み替えられてもよい。 In the present disclosure, wideband PMI, wideband PMI information, PMI wideband information, PMI wideband information field, and wideband PMI feedback may be read interchangeably. In the present disclosure, DI, wideband DI, wideband DI information, DI wideband information, DI wideband information field, and wideband DI feedback may be read interchangeably.
 前述の2DスパースTDPに対するフィードバックは、(τ,gチルダ)の組であってもよいし、(θ,wチルダ)の組であってもよいし、それらの組み合わせであってもよい。ここで、遅延ドメインは周波数ドメインのトランスフォームドメイン(変換されたドメイン)であり、角度ドメインは空間ドメインのトランスフォームドメイン(変換されたドメイン)である。 The feedback for the 2D sparse TDP described above may be a set of (τ, g tilde), a set of (θ, w tilde), or a combination thereof. Here, the delay domain is the transform domain of the frequency domain (transformed domain), and the angular domain is the transform domain of the spatial domain (transformed domain).
 τは遅延を表し、gチルダは対応する遅延における係数を表す。θは角度を表し、wチルダは対応する角度における係数を表す。 Τ represents the delay and g tilde represents the coefficient at the corresponding delay. θ represents an angle and w tilde represents a coefficient at the corresponding angle.
 以下の各実施形態において、遅延ドメインにおけるフィードバックを用いる例について述べる。すなわち、(θ,wチルダ)とgチルダの両方の影響をgにマージされることによって、UEが(τ,g)をフィードバックする。gは、対応する遅延における全てのアンテナ又は角度の係数を表す。 An example of using feedback in the delayed domain will be described in each of the following embodiments. That is, the UE feeds back (τ, g) by merging the effects of both (θ, w tilde) and g tilde into g. g represents the coefficients of all antennas or angles at the corresponding delay.
 例えば、2DスパースTDPにおいて2つの遅延と2つの角度を用い、まず、(τ,gチルダ)、(τ,gチルダ)、(θ,wチルダ)、(θ,wチルダ)を計算してもよい。UEは、これらの値から、次の式15を用いてgとgを計算してもよい。
Figure JPOXMLDOC01-appb-M000012
For example, using two delays and two angles in a 2D sparse TDP, first, (τ 1 , g tilde 1 ), (τ 2 , g tilde 2 ), (θ 1 , w tilde 1 ), (θ 2 , w The tilde 2 ) may be calculated. From these values, the UE may calculate g 1 and g 2 using the following equation 15.
Figure JPOXMLDOC01-appb-M000012
 これによって、UEは、(τ,g)と(τ,g)の2つをフィードバックする。g,gのそれぞれは、PMIワイドバンド情報フィールド(ワイドバンドPMI情報)に対応してもよい。τ,τのそれぞれは、遅延インデックス(delay index(DI)又はdelay indicator)ワイドバンド情報フィールド(ワイドバンドDI情報)に対応してもよい。 As a result, the UE feeds back two (τ 1 , g 1 ) and (τ 2 , g 2). Each of g 1 and g 2 may correspond to a PMI wideband information field (wideband PMI information). Each of τ 1 and τ 2 may correspond to a delay index (DI) or delay indicator wideband information field (wideband DI information).
 UEは、(τ,gチルダ)と(θ,wチルダ)とを報告してもよい。この場合、以下の各実施形態のルールにおいて(τ(DI),g(PMI))が、(τ,gチルダ)と読み替えられてもよいし、(θ,wチルダ)と読み替えられてもよい。 The UE may report (τ, g tilde) and (θ, w tilde). In this case, (τ (DI), g (PMI)) may be read as (τ, g tilde) or may be read as (θ, w tilde) in the rules of each of the following embodiments. ..
 以下の図に示されたCSI報告において、幾つかのフィールドが省かれてもよいし、別の幾つかのフィールドがCSI報告に追加されてもよい。以下の図に示されたCSI報告において、フィールドの種類及び順序は、図の例に限られない。 In the CSI report shown in the figure below, some fields may be omitted or some other fields may be added to the CSI report. In the CSI report shown in the figure below, the field types and order are not limited to the example in the figure.
<実施形態1>1つのCSIパート
 この実施形態では、1つのCSI報告が1つのCSIパートを含む場合について説明する1又は複数のワイドバンドPMIフィードバックのために、1より多いCSIパートがないUCI内のCSIビット生成が定義されてもよい。
<Embodiment 1> One CSI Part In this embodiment, there is no more than one CSI part in the UCI for one or more wideband PMI feedbacks, which describes the case where one CSI report contains one CSI part. CSI bit generation of may be defined.
《実施形態1-1》CSIフィールド
 1つのCSI報告内の複数CSIフィールドは、Q個のワイドバンドPMIフィードバック(例えば、PMIワイドバンド情報フィールド)を含んでもよい。1つのCSI報告のCSIフィールドは更に、もし報告される場合に、Q個のワイドバンドPMIフィードバックのそれぞれに対応する遅延インデックス(DI、例えば、DIワイドバンド情報フィールド)を含んでもよい。
Multiple CSI fields of "Embodiment 1-1" CSI field within a CSI reporting, Q 0 one wideband PMI feedback (e.g., PMI wideband information fields) may include. Furthermore CSI field one CSI report, if the case reported, a delay index corresponding to each of the Q 0 single wideband PMI feedback (DI, e.g., DI wideband information fields) may include.
[実施形態1-1-1]
 Q=1であってもよい。すなわち、1つのCSI報告内の複数CSIフィールドは、1つのワイドバンドPMIフィードバックを含んでもよい。1つのCSI報告のCSIフィールドは更に、もし報告される場合にDIを含んでもよい。
[Embodiment 1-1-1]
Q 0 = 1 may be set. That is, multiple CSI fields within a CSI report may include one wideband PMI feedback. The CSI field of one CSI report may further include DI if reported.
 例えば、図7に示すように、CSI報告#nは、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合に対応するDIと、を含んでもよい。 For example, as shown in FIG. 7, CSI report #n may include a wideband PMI feedback or codebook index, if reported, and a corresponding DI, if reported.
[実施形態1-1-2]
 Q>=1であってもよい。すなわち、1つのCSI報告内の複数CSIフィールドは、複数ワイドバンドPMIフィードバックを含んでもよい。1つのCSI報告のCSIフィールドは更に、もし報告される場合にDIを含んでもよい。
[Embodiment 1-1-2]
Q 0 > = 1 may be used. That is, multiple CSI fields in one CSI report may include multiple wideband PMI feedback. The CSI field of one CSI report may further include DI if reported.
[[実施形態1-1-2-1]]
 Qの値は、上位レイヤパラメータ(例えば、RRC及びMAC CEの少なくとも1つ)又は物理レイヤパラメータ(例えば、DCI)によって設定又は指示されてもよい。
[[Embodiment 1-1-2-1]]
The value of Q 0, the upper layer parameters (e.g., at least one RRC and MAC CE) or physical layer parameters (e.g., DCI) may be set or instructed by.
[[実施形態1-1-2-2]]
 Qの値は、UEによって決定され、UCI又はそれ以外において基地局へ報告されてもよい。
[[Embodiment 1-1-2-2]]
The value of Q 0 is determined by the UE, it may be reported to the base station in the UCI or otherwise.
[[実施形態1-1-2-3]]
 Qの最大値は、上位レイヤパラメータ(例えば、RRC及びMAC CEの少なくとも1つ)又は物理レイヤパラメータ(例えば、DCI)によって設定又は指示されてもよい。Qの値は、UEによって決定され、UCI又はそれ以外において基地局へ報告されてもよい。Qの値は、設定された最大値以下であってもよい。
[[Embodiment 1-1-2-3]]
The maximum value of Q 0, the upper layer parameters (e.g., at least one RRC and MAC CE) or physical layer parameters (e.g., DCI) may be set or instructed by. The value of Q 0 is determined by the UE, it may be reported to the base station in the UCI or otherwise. The value of Q 0 may be equal to or less than the maximum value set.
 例えば、図8に示すように、CSI報告#nは、もし報告される場合に複数ワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合に対応するDIとの、Qの組を含んでもよい。実施形態1-1-2-1において、CSI報告#nは、Qの値を含まなくてもよい。実施形態1-1-2-2、実施形態1-1-2-3において、CSI報告#nは、Qの値を含んでもよい。 For example, as shown in FIG. 8, CSI reporting #n can include a plurality wideband PMI feedback or codebook index if it is reported if the DI corresponding to the case where if reported, a set of Q 0 It may be. In embodiments 1-1-2-1, CSI reporting #n may not include the value of Q 0. In embodiments 1-1-2-2, embodiments 1-1-2-3, CSI reporting #n may comprise a value of Q 0.
 DIは、次の2つのケースを除いてPMIと共に報告されてもよい。
 ケース1:最初のPMIに対するDIが常に0であると想定され、報告される必要がない。
 ケース2:もしCSI報告の設定がDIを含まない場合、DIはUEによって報告されない。
DI may be reported with PMI except in the following two cases.
Case 1: The DI for the first PMI is assumed to be always 0 and does not need to be reported.
Case 2: If the CSI reporting settings do not include DI, then DI is not reported by the UE.
《実施形態1-2》UCIビット系列生成
 もし1より多いパートを有するCSI報告がない場合、全てのCSI報告のCSIフィールドは、aから始まるUCIビット系列a,a,…,aA-1にマップされてもよい。そうでない場合、UCIビット系列は、後述の実施形態2又は実施形態3に従って生成されてもよい。
"Embodiment 1-2" UCI bit sequence generated if no CSI report having more than one part, CSI field of all CSI reporting, UCI bit sequence a 0, a 1 starting with a 0, ..., a A It may be mapped to -1. If not, the UCI bit sequence may be generated according to embodiment 2 or 3 described below.
 例えば、図9に示すように、1より多いパートを有するCSI報告が無いCSI報告において、CSI報告優先度(priority value、優先順位)の昇順の全てのCSI報告#1,#2,…#nのCSIフィールドは、UCIビット系列a,a,…,aA-1にそれぞれマップされてもよい。ここで、CSI報告#nのCSIフィールドは、前述の図7又は図8に示された例であってもよい。A=nであってもよい。 For example, as shown in FIG. 9, in a CSI report in which there is no CSI report having more than 1 part, all CSI reports in ascending order of CSI report priority (priority value) # 1, # 2, ... # N The CSI field of may be mapped to the UCI bit sequence a 0 , a 1 , ..., A A-1, respectively. Here, the CSI field of CSI report # n may be the example shown in FIG. 7 or 8 described above. A = n may be set.
 Rel.15 NR又は既存の、コードブロック分割(code block segmentation)、チャネル符号化、レートマッチング、の少なくとも1つが、実施形態1-2において生成されるUCIビット系列に適用されてもよい。 Rel. 15 NR or at least one of the existing code block segmentation, channel coding, and rate matching may be applied to the UCI bit sequence generated in Embodiment 1-2.
 この実施形態によれば、1つのCSI報告が1つのCSIパートを有する場合に、適切にワイドバンドPMIを適切に報告できる。 According to this embodiment, when one CSI report has one CSI part, the wideband PMI can be appropriately reported.
<実施形態2>2つのCSIパート
 この実施形態では、1つのCSI報告が2つのCSIパートを含む場合について説明する。
<Embodiment 2> Two CSI Parts In this embodiment, a case where one CSI report includes two CSI parts will be described.
 複数ワイドバンドPMIフィードバックのために、2パートCSI報告を有するUCIにおけるCSIビット生成が定義されてもよい。 For multiple wideband PMI feedback, CSI bit generation in UCI with a two-part CSI report may be defined.
 Rel.15 NRに対して互換性を保つことができる。 Rel. 15 Compatibility with NR can be maintained.
《実施形態2-1》CSIパート1のCSIフィールド
 CSIパート1における1つのCSI報告の複数CSIフィールドは、もし報告される場合にCSIパート2における複数ワイドバンドPMIフィードバックの数Qのインジケータと、もし報告される場合にQ個のワイドバンドPMIフィードバック(例えば、PMIワイドバンド情報フィールド)と、の少なくとも1つを含んでもよい。CSIパート1における1つのCSI報告のCSIフィールドは更に、もし報告される場合に、Q個のワイドバンドPMIフィードバックのそれぞれに対応するDI(例えば、DIワイドバンド情報フィールド)を含んでもよい。
<< Embodiment 2-1 >> CSI Field of CSI Part 1 Multiple CSI fields of one CSI report in CSI Part 1 are an indicator of the number Q of multiple wideband PMI feedbacks in CSI Part 2 if reported, and if reported. reported Q 0 or wideband PMI feedback when the (e.g., PMI wideband information field) and, of may comprise at least one. Furthermore CSI field one CSI reported in CSI Part 1, if it is reported if, DI corresponding to each of the Q 0 single wideband PMI feedback (e.g., DI wideband information fields) may include.
[実施形態2-1-1]
 CSIパート1における1つのCSI報告の複数CSIフィールドに対し、もし報告される場合にCSIパート2における複数ワイドバンドPMIフィードバックの数のインジケータのみが追加されてもよい。
[Embodiment 2-1-1]
For multiple CSI fields in one CSI report in CSI Part 1, only an indicator of the number of multiple wideband PMI feedbacks in CSI Part 2 if reported may be added.
 1つのワイドバンドPMIフィードバックに対し、実施形態1に定義されたUCI内のCSIビット生成が用いられてもよい。実施形態2においては、複数ワイドバンドPMIフィードバックのみが考慮されてもよい。 For one wideband PMI feedback, CSI bit generation within UCI as defined in Embodiment 1 may be used. In the second embodiment, only multiple wideband PMI feedbacks may be considered.
[実施形態2-1-2]
 CSIパート1における1つのCSI報告の複数CSIフィールドは、もし報告される場合に1つのワイドバンドPMIフィードバックと、もし報告される場合にCSIパート2における複数ワイドバンドPMIフィードバックの数のインジケータと、の少なくとも1つを、含んでもよい。CSIパート1における1つのCSI報告の複数CSIフィールドは更に、もし報告される場合にDIを含んでもよい。
[Embodiment 2-1-2]
The multiple CSI fields of one CSI report in CSI Part 1 are of one wideband PMI feedback if reported and an indicator of the number of multiple wideband PMI feedbacks in CSI Part 2 if reported. At least one may be included. Multiple CSI fields in one CSI report in CSI Part 1 may further include DI if reported.
 CSIパート1は、1つのワイドバンドPMIフィードバックを含むため、CSIパート2がドロップされる場合であっても、性能劣化を抑えることができる。 Since CSI part 1 includes one wideband PMI feedback, performance deterioration can be suppressed even when CSI part 2 is dropped.
[実施形態2-1-2]
 CSIパート1における1つのCSI報告の複数CSIフィールドは、もし報告される場合にQ個のワイドバンドPMIフィードバックと、もし報告される場合にCSIパート2における複数ワイドバンドPMIフィードバックの数のインジケータと、の少なくとも1つを、を含んでもよい。CSIパート1における1つのCSI報告の複数CSIフィールドは更に、もし報告される場合にDIを含んでもよい。
[Embodiment 2-1-2]
Multiple CSI fields of one CSI reported in CSI part 1, and Q 0 one wideband PMI feedback to be reported if the number of indicators of a plurality wideband PMI feedback in CSI Part 2 when if reported , At least one of, may be included. Multiple CSI fields in one CSI report in CSI Part 1 may further include DI if reported.
 Qの設定又は定義に対して、実施形態1-1-2が適用されてもよい。 The set or definition of Q 0, may be applied embodiment 1-1-2.
 ワイドバンドPMIフィードバックの柔軟性を高めることができる。 The flexibility of wideband PMI feedback can be increased.
 例えば、図10に示すように、CSI報告#nのCSIパート1は、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q個の組と、もし報告される場合にCSIパート2における複数ワイドバンドPMIフィードバックの数Qのインジケータと、を含んでもよい。 For example, as shown in FIG. 10, CSI Part 1 of CSI Report # n is a set of 0 Qs, a wideband PMI feedback or codebook index if reported, and a DI if reported. And, if reported, an indicator of the number Q of multiple wideband PMI feedbacks in CSI Part 2 may be included.
《実施形態2-2》CSIパート2のCSIフィールド
 CSIパート2における1つのCSI報告の複数CSIフィールドは、1又は複数のワイドバンド報告を含んでもよい。
<< Embodiment 2-2 >> CSI Field of CSI Part 2 Multiple CSI fields of one CSI report in CSI Part 2 may include one or more wideband reports.
[実施形態2-2-1]
 1つのCSI報告のCSIパート2は、もし報告される場合にQ個のワイドバンドPMIフィードバック(例えば、PMIワイドバンド情報フィールド)を含む1つのワイドバンド報告を含んでもよい。当該ワイドバンド報告は更に、もし報告される場合に、Q個のワイドバンドPMIフィードバックのそれぞれに対応するDI(例えば、DIワイドバンド情報フィールド)を含んでもよい。
[Embodiment 2-2-1]
CSI Part 2 of one CSI report may include one wideband report containing Q wideband PMI feedbacks (eg, PMI wideband information fields) if reported. The wideband report may further include a DI (eg, DI wideband information field) corresponding to each of the Q wideband PMI feedbacks, if reported.
[[実施形態2-2-1-1]]
 Qの値は、RRCとMAC CEとDCIとの少なくとも1つによって設定又は指示されてもよいし、実施形態2-1のように、UEによって決定されCSIパート1内のワイドバンドPMIフィードバックの数Qのインジケータによって表示(報告)されてもよい。
[[Embodiment 2-2-1-1]]
The value of Q may be set or indicated by at least one of RRC, MAC CE and DCI, or as in embodiment 2-1 the number of wideband PMI feedbacks in CSI part 1 determined by the UE. It may be displayed (reported) by the indicator of Q.
 例えば、図11に示すように、CSI報告#nのCSIパート2は、もし報告される場合にワイドバンドPMIフィードバックと、もし報告される場合にDIとの、Q個の組と、もし報告される場合にCSIパート2における複数ワイドバンドPMIフィードバックの数のインジケータと、を含んでもよい。 For example, as shown in FIG. 11, CSI Part 2 of CSI Report # n is reported as a set of Q, if reported, with wideband PMI feedback and if reported, with DI. If so, it may include an indicator of the number of multiple wideband PMI feedbacks in CSI Part 2.
[[実施形態2-2-1-2]]
 もし少なくとも1つのCSI報告が2パートである場合、2つのUCIビット系列a(1) ,a(1) ,…a(1) A(1)-1(長さA(1))と、a(2) ,a(2) ,…a(2) A(2)-1(長さA(2))とが、生成されてもよい。
[[Embodiment 2-2-1-2]]
If at least one CSI report is two parts, then two UCI bit sequences a (1) 0 , a (1) 1 , ... a (1) A (1) -1 (length A (1) ) , A (2) 0 , a (2) 1 , ... a (2) A (2) -1 (length A (2) ) may be generated.
 CSIパート1に対し、全てのCSI報告#1,#2,…#nの複数CSIフィールドは、図12Aの上から下への順序で、a(1) ,a(1) ,…a(1) A(1)-1にそれぞれマップされてもよい。ここで、CSI報告#nのCSIフィールドは、前述の図7又は図8又は図10に示された例であってもよい。A(1)=nであってもよい。CSIパート2に対し、全てのCSI報告#1,#2,…#nの複数CSIフィールドは、図12Bの上から下への順序で、a(2) ,a(2) ,…a(2) A(2)-1にそれぞれマップされてもよい。ここで、CSI報告#nのCSIフィールドは、前述の図11に示された例であってもよい。A(2)=nであってもよい。 For CSI Part 1, all CSI reports # 1, # 2, ... # N multiple CSI fields are a (1) 0 , a (1) 1 , ... a in the order from top to bottom in FIG. 12A. (1) It may be mapped to A (1) -1 respectively. Here, the CSI field of CSI report #n may be the example shown in FIG. 7 or 8 or 10 described above. A (1) = n may be set. For CSI Part 2, all CSI reports # 1, # 2, ... # N multiple CSI fields are a (2) 0 , a (2) 1 , ... a in the order from top to bottom in FIG. 12B. (2) It may be mapped to A (2) -1 respectively. Here, the CSI field of CSI report # n may be the example shown in FIG. 11 above. A (2) = n may be set.
 CSIパート1における複数CSIフィールドは、もしCSI報告#nが2パートでなければCSI報告#nであり、もしCSI報告#nが2パートであればCSI報告#nのCSIパート1であってもよい。CSIパート2における複数CSIフィールドは、CSI報告#nのCSIパート1であってもよい。 The multiple CSI fields in CSI part 1 are CSI report # n if CSI report # n is not 2 parts, even if it is CSI part 1 of CSI report # n if CSI report # n is 2 parts. Good. The multiple CSI fields in CSI Part 2 may be CSI Part 1 in CSI Report # n.
[[実施形態2-2-1-3]]
 CSIパート1のUCIビット系列と、CSIパート2のUCIビット系列とは、独立に符号化されてもよい。実際の符号化率が最大符号化率よりも高い場合、符号化率が最大符号化率の要件を満たすまで、まずCSIパート2がドロップされ、その後にCSIパート1がドロップされてもよい。
[[Embodiment 2-2-1-3]]
The UCI bit sequence of CSI part 1 and the UCI bit sequence of CSI part 2 may be encoded independently. If the actual code rate is higher than the maximum code rate, CSI part 2 may be dropped first and then CSI part 1 until the code rate meets the maximum code rate requirement.
 Rel.15 NR又は既存の、コードブロック分割(code block segmentation)、チャネル符号化、レートマッチング、の少なくとも1つが、実施形態2-2-1-2において生成される2つのUCIビット系列に適用されてもよい。 Rel. 15 Even if at least one of NR or existing code block segmentation, channel coding, and rate matching is applied to the two UCI bit sequences generated in Embodiment 2-2-1-2. Good.
 図13に示すように、CSIパート1及びCSIパート2は独立に符号化されてもよい。CSIパート2は、複数のCSI報告のワイドバンド報告を含む。1つのCSI報告のワイドバンド報告は、Q個のワイドバンドPMIを含む。 As shown in FIG. 13, CSI part 1 and CSI part 2 may be encoded independently. CSI Part 2 includes a wideband report of multiple CSI reports. A wideband report of one CSI report contains Q wideband PMIs.
 もし実際の符号化率が所望の値を超える場合、UEは、まずCSIパート2をドロップし、その後にCSIパート1をドロップしてもよい。 If the actual code rate exceeds the desired value, the UE may drop CSI part 2 first and then CSI part 1.
 レートマッチされた出力系列長Etotと、最大PUCCH符号化率を超えない符号化率に対する最大符号化ビット長Emaxと、を用いると、2パートCSIを用いる場合の、HARQ-ACK及びSR及びCSIパート1を合わせた出力系列長は、min(Etot,Emax)であってもよい。CSIパート2に基づく出力系列長は、Etot-min(Etot,Emax)であってもよい。 Using the rate-matched output sequence length E tot and the maximum coding bit length E max for a coding rate that does not exceed the maximum PUCCH coding rate, HARQ-ACK and SR and when using two-part CSI The output sequence length including the CSI part 1 may be min (E tot , E max). The output sequence length based on CSI part 2 may be E tot- min (E tot , E max).
 この実施形態2-2-1によれば、複雑性を抑えることができる。 According to this embodiment 2-2-1, complexity can be suppressed.
[実施形態2-2-2]
 1つのCSI報告のCSIパート2は、2つのワイドバンド報告を含んでもよい。2つのワイドバンド報告は、Q(1)個のワイドバンドPMIフィードバック(例えば、PMIワイドバンド情報フィールド)と、Q(2)個のワイドバンドPMIフィードバックとを、それぞれ含んでもよい。1つのCSI報告のCSIパート2は更に、もし報告される場合、DI(例えば、DIワイドバンド情報フィールド)を含んでもよい。
[Embodiment 2-2-2]
CSI Part 2 of one CSI report may include two wideband reports. The two wideband reports may include Q (1) wideband PMI feedback (eg, PMI wideband information field) and Q (2) wideband PMI feedback, respectively. CSI Part 2 of one CSI report may further include DI (eg, DI wideband information field) if reported.
[[実施形態2-2-2-1]]
 Q(1)及びQ(2)の値は、RRC及びMAC CE及びDCIの少なくとも1つによって設定又は指示されてもよいし、UEによって決定されCSIパート1内のワイドバンドPMIフィードバックの数のインジケータによって表示(報告)されてもよいし、それらの組み合わせによって得られてもよい。
[[Embodiment 2-2-2-1]]
The values of Q (1) and Q (2) may be set or indicated by at least one of RRC and MAC CE and DCI, and are determined by the UE and are indicators of the number of wideband PMI feedbacks in CSI Part 1. It may be displayed (reported) by, or it may be obtained by a combination thereof.
[[[オプション1]]]
 Q(1)及びQ(2)は、直接設定又は指示されてもよい。
[[[Option 1]]]
Q (1) and Q (2) may be set or instructed directly.
[[[オプション2]]]
 Q及びQ(1)が設定又は指示されてもよい。Q(2)はQ-Q(1)として得られてもよい。
[[[Option 2]]]
Q and Q (1) may be set or instructed. Q (2) may be obtained as QQ (1).
[[[オプション3]]]
 Qが設定又は指示されてもよい。Q(1)はfloor(Q/2)として得られてもよい。Q(2)はQ-Q(1)として得られてもよい。
[[[Option 3]]]
Q may be set or instructed. Q (1) may be obtained as a floor (Q / 2). Q (2) may be obtained as QQ (1).
[[[オプション4]]]
 Q及びΔQが設定又は指示されてもよい。Q(1)及びQ(2)は、Q及びΔQの関数によって得られてもよい。例えば、Q(1)=floor((Q-ΔQ)/2)、Q(2)=Q-Q(1)によって得られてもよいし、Q(1)=floor(Q/2)-ΔQ、Q(2)=Q-Q(1)によって得られてもよい。
[[[Option 4]]]
Q and ΔQ may be set or indicated. Q (1) and Q (2) may be obtained by the functions of Q and ΔQ. For example, Q (1) = floor ( (Q-ΔQ) / 2), Q (2) = may be obtained by Q-Q (1), Q (1) = floor (Q / 2) -ΔQ , Q (2) = QQ (1) .
 例えば、オプション2が適用される場合、図14に示すように、CSI報告#nのCSIパート1は、もし報告される場合にCSIパート2における複数ワイドバンドPMIフィードバックの数Q、Q(1)のインジケータと、を含んでもよい。図15に示すように、CSI報告#nのCSIパート2は、ワイドバンド報告#1、#2を含んでもよい。ワイドバンド報告#1は、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(1)個の組を含んでもよい。ワイドバンド報告#2は、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(2)個(Q-Q(1)個)の組を含んでもよい。 For example, if option 2 is applied, as shown in FIG. 14, CSI part 1 of CSI report # n, if reported, is the number of multiple wideband PMI feedbacks Q, Q (1) in CSI part 2. Indicators and may be included. As shown in FIG. 15, CSI part 2 of CSI report # n may include wideband reports # 1 and # 2. Wideband report # 1 may include a Q (1) set of wideband PMI feedback or codebook index, if reported, and DI, if reported. Wideband report # 2 is a set of Q (2) (QQ (1) ) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported. It may be included.
[[実施形態2-2-2-2]]
 もし少なくとも1つのCSI報告が2パートである場合、2つのUCIビット系列a(1) ,a(1) ,…a(1) A(1)-1(長さA(1))と、a(2) ,a(2) ,…a(2) A(2)-1(長さA(2))とが、生成されてもよい。
[[Embodiment 2-2-2-2]]
If at least one CSI report is two parts, then two UCI bit sequences a (1) 0 , a (1) 1 , ... a (1) A (1) -1 (length A (1) ) , A (2) 0 , a (2) 1 , ... a (2) A (2) -1 (length A (2) ) may be generated.
 CSIパート1に対し、全てのCSI報告#1,#2,…#nの複数CSIフィールドは、図16の上から下への順序で、a(1) ,a(1) ,…a(1) A(1)-1にそれぞれマップされてもよい。ここで、CSI報告#nのCSIフィールドは、前述の図7又は図8又は図14に示された例であってもよい。A(1)=nであってもよい。CSIパート2に対し、全てのCSI報告#1,#2,…#nの複数CSIフィールドは、図17の上から下への順序で、a(2) ,a(2) ,…a(2) A(2)-1にそれぞれマップされてもよい。ここで、CSI報告#nのCSIフィールドは、前述の図15に示された例であってもよい。A(2)=nであってもよい。 For CSI Part 1, all CSI reports # 1, # 2, ... # N multiple CSI fields are a (1) 0 , a (1) 1 , ... a in the order from top to bottom in FIG. (1) It may be mapped to A (1) -1 respectively. Here, the CSI field of CSI report #n may be the example shown in FIG. 7 or 8 or 14 described above. A (1) = n may be set. For CSI Part 2, all CSI reports # 1, # 2, ... # n multiple CSI fields are a (2) 0 , a (2) 1 , ... a in the order from top to bottom in FIG. (2) It may be mapped to A (2) -1 respectively. Here, the CSI field of CSI report # n may be the example shown in FIG. 15 above. A (2) = n may be set.
 CSIパート1における複数CSIフィールドは、もしCSI報告#nが2パートでなければCSI報告#nであり、もしCSI報告#nが2パートであればCSI報告#nのCSIパート1であってもよい。CSIパート2における複数CSIフィールドは、CSI報告#nのCSIパート1であってもよい。 The multiple CSI fields in CSI part 1 are CSI report # n if CSI report # n is not 2 parts, even if it is CSI part 1 of CSI report # n if CSI report # n is 2 parts. Good. The multiple CSI fields in CSI Part 2 may be CSI Part 1 in CSI Report # n.
[[実施形態2-2-2-3]]
 CSIパート1のUCIビット系列と、CSIパート2のUCIビット系列とは、独立に符号化されてもよい。実際の符号化率が最大符号化率よりも高い場合、符号化率が最大符号化率の要件を満たすまで、まずCSIパート2がドロップされ、その後にCSIパート1がドロップされてもよい。
[[Embodiment 2-2-2-3]]
The UCI bit sequence of CSI part 1 and the UCI bit sequence of CSI part 2 may be encoded independently. If the actual code rate is higher than the maximum code rate, CSI part 2 may be dropped first and then CSI part 1 until the code rate meets the maximum code rate requirement.
 Rel.15 NR又は既存の、コードブロック分割(code block segmentation)、チャネル符号化、レートマッチング、の少なくとも1つが、実施形態2-2-2-2において生成される2つのUCIビット系列に適用されてもよい。 Rel. 15 Even if at least one of NR or existing code block segmentation, channel coding, and rate matching is applied to the two UCI bit sequences generated in Embodiment 2-2-2-2. Good.
 図18は、2パートCSIのCSIパート2が2つのワイドバンド報告#1、#2を含む場合を示す。CSIパート2において、全てのCSI報告のワイドバンド報告#1と、全てのCSI報告のワイドバンド報告#2と、が順にマップされる。全てのCSI報告のワイドバンド報告#1は、1つのCSI報告のワイドバンド報告#1(Q(1)個のワイドバンドPMI)を含む。全てのCSI報告のワイドバンド報告#2は、1つのCSI報告のワイドバンド報告#2(Q-Q(1)個のワイドバンドPMI)を含む。 FIG. 18 shows the case where CSI part 2 of the two-part CSI includes two wideband reports # 1 and # 2. In CSI Part 2, wideband reports # 1 for all CSI reports and wideband reports # 2 for all CSI reports are mapped in sequence. Wideband reports # 1 for all CSI reports include wideband reports # 1 for one CSI report (Q (1) wideband PMIs). Wideband reports # 2 for all CSI reports include one CSI report wideband report # 2 (QQ (1) wideband PMIs).
 レートマッチされた出力系列長Etotと、最大PUCCH符号化率を超えない符号化率に対する最大符号化ビット長Emaxと、を用いると、2パートCSIを用いる場合の、HARQ-ACK及びSR及びCSIパート1を合わせた出力系列長は、min(Etot,Emax)であってもよい。CSIパート2に基づく出力系列長は、Etot-min(Etot,Emax)であってもよい。 Using the rate-matched output sequence length E tot and the maximum coding bit length E max for a coding rate that does not exceed the maximum PUCCH coding rate, HARQ-ACK and SR and when using two-part CSI The output sequence length including the CSI part 1 may be min (E tot , E max). The output sequence length based on CSI part 2 may be E tot- min (E tot , E max).
 この実施形態2-2-2によれば、1つのCSI報告のCSIパート2内に2つの報告を有するRel.15 NRのCSI報告に対して、互換性を保つことができる。 According to this embodiment 2-2-2, Rel. Has two reports in CSI part 2 of one CSI report. 15 Compatibility can be maintained for NR CSI reports.
[実施形態2-2-3]
 1つのCSI報告のCSIパート2は、q個のワイドバンド報告を含んでもよい。q個のワイドバンド報告は、Q(1),Q(2),…,Q(q)個のワイドバンドPMIフィードバック(例えば、PMIワイドバンド情報フィールド)をそれぞれ含んでもよい。1つのCSI報告のCSIパート2は更に、もし報告される場合、DI(例えば、DIワイドバンド情報フィールド)を含んでもよい。
[Embodiment 2-2-3]
CSI Part 2 of one CSI report may include q wideband reports. The q wideband reports may include Q (1) , Q (2) , ..., Q (q) wideband PMI feedback (eg, PMI wideband information fields), respectively. CSI Part 2 of one CSI report may further include DI (eg, DI wideband information field) if reported.
 1番目のQ(1)個のワイドバンドPMIは、CSI報告#nのCSIパート2のワイドバンド報告#1に含まれてもよい。もし報告される場合、対応するDIが更に、CSI報告#nのCSIパート2のワイドバンド報告#1に含まれてもよい。 The first Q (1) wideband PMIs may be included in the wideband report # 1 of CSI Part 2 of CSI Report #n. If reported, the corresponding DI may also be included in CSI Part 2 Wideband Report # 1 of CSI Report # n.
 インデックスΣl=1 q-1(l)+1,…,Σl=1 q(l)を有するq番目のQ(q)個のワイドバンドPMIフィードバックが、CSI報告#nのCSIパート2のワイドバンド報告#q(q>1)に含まれてもよい。もし報告される場合、対応するDIが更に、CSI報告#nのCSIパート2のワイドバンド報告#qに含まれてもよい。 Index Σ l = 1 q-1 Q (l) +1, ..., Σ l = 1 q Q (q) wideband PMI feedback with Q (l) is the CSI part 2 of CSI report # n. It may be included in the wideband report # q (q> 1) of. If reported, the corresponding DI may also be included in CSI Part 2 Wideband Report # q of CSI Report # n.
[[実施形態2-2-3-1]]
 Q(1),Q(2),…,Q(q)の値は、RRC及びMAC CE及びDCIの少なくとも1つによって設定又は指示されてもよいし、UEによって決定されCSIパート1内のワイドバンドPMIフィードバックの数のインジケータによって表示(報告)されてもよいし、それらの組み合わせによって得られてもよい。qは、Q(1),Q(2),…,Q(q)の数によって暗示的に得られてもよいし、暗示的に表示(報告)されてもよい。
[[Embodiment 2-2-3-1]]
The values of Q (1) , Q (2) , ..., Q (q) may be set or indicated by at least one of RRC and MAC CE and DCI, or are determined by the UE and wide within CSI Part 1. It may be indicated (reported) by an indicator of the number of band PMI feedbacks, or it may be obtained by a combination thereof. q may be obtained implicitly by the number of Q (1) , Q (2) , ..., Q (q) , or may be implicitly displayed (reported).
[[[オプション1]]]
 Q(1),Q(2),…,Q(q)は、直接設定又は指示されてもよい。
[[[Option 1]]]
Q (1) , Q (2) , ..., Q (q) may be set or instructed directly.
[[[オプション2]]]
 Q,Q(1),Q(2),…,Q(q-1)が設定又は指示されてもよい。Q(q)はQ-Σp=1 q-1(p)として得られてもよい。
[[[Option 2]]]
Q, Q (1) , Q (2) , ..., Q (q-1) may be set or instructed. Q (q) may be obtained as Q−Σ p = 1 q-1 Q (p).
[[[オプション3]]]
 Qが設定又は指示されてもよい。1≦p<qに対するQ(p)はfloor(Q/q)として得られてもよい。Q(q)はQ-Σp=1 q-1(p)として得られてもよい。
[[[Option 3]]]
Q may be set or instructed. Q (p) for 1 ≦ p <q may be obtained as floor (Q / q). Q (q) may be obtained as Q−Σ p = 1 q-1 Q (p).
 例えば、オプション1が適用される場合、図19に示すように、CSI報告#nのCSIパート1は、もし報告される場合にワイドバンドPMIフィードバックの数Q(1),Q(2),…,Q(q)のインジケータを含んでもよい。ここで、ワイドバンド報告の数qは、Q(1),Q(2),…,Q(q)の数によって暗示的に表示(報告)されてもよい。CSI報告#nのCSIパート2は、のワイドバンド報告#1,#2,…,#qを含んでもよい。図20Aに示すように、ワイドバンド報告#1は、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(1)個の組を含んでもよい。図20Bに示すように、ワイドバンド報告#qは、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(q)個の組を含んでもよい。 For example, if option 1 is applied, as shown in FIG. 19, CSI part 1 of CSI report # n, if reported, the number of wideband PMI feedbacks Q (1) , Q (2) , ... , Q (q) indicators may be included. Here, the number q of wideband reports may be implicitly displayed (reported) by the number of Q (1) , Q (2) , ..., Q (q). CSI part 2 of CSI report # n may include wideband reports # 1, # 2, ..., # Q. As shown in FIG. 20A, wideband report # 1 may include Q (1) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported. Good. As shown in FIG. 20B, wideband reporting #q may include Q (q) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported. Good.
[[実施形態2-2-3-2]]
 Q(q)は、CSIパート2のワイドバンド報告#q-1内のワイドバンドPMIフィードバックの数のインジケータによって表示(報告)されてもよい。qは、UEによって決定されCSIパート1内で表示(報告)されてもよいし、RRC及びMAC CE及びDCIの少なくとも1つによって明示的に設定又は指示されてもよい。
[[Embodiment 2-2-3-2]]
Q (q) may be indicated (reported) by an indicator of the number of wideband PMI feedbacks in CSI Part 2 wideband report # q-1. q may be determined by the UE and displayed (reported) within CSI Part 1, or may be explicitly set or indicated by at least one of the RRC and MAC CE and DCI.
 例えば、図21に示すように、CSI報告#nのCSIパート1は、もし報告される場合にワイドバンドPMIフィードバックの数Q(1)のインジケータを含んでもよいし、もし報告される場合にワイドバンド報告の数qのインジケータを含んでもよい。 For example, as shown in FIG. 21, CSI Part 1 of CSI Report # n may include an indicator of the number Q (1) of wideband PMI feedback if reported, or wide if reported. It may include an indicator of the number q of the band report.
 CSI報告#nのCSIパート2は、のワイドバンド報告#1,#2,…,#qを含んでもよい。図22に示すように、ワイドバンド報告#1は、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(1)個の組を含んでもよいし、もし報告される場合に次のワイドバンド報告#2のワイドバンドPMIフィードバックの数Q(2)のインジケータを含んでもよい。図23Aに示すように、ワイドバンド報告#q-1は、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(q-1)個の組を含んでもよいし、もし報告される場合に次のワイドバンド報告#qのワイドバンドPMIフィードバックの数Q(q)のインジケータを含んでもよい。図23Bに示すように、ワイドバンド報告#qは、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(q)個の組を含んでもよい。 CSI part 2 of CSI report # n may include wideband reports # 1, # 2, ..., # Q. As shown in FIG. 22, wideband report # 1 may include Q (1) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported. Alternatively, the number Q (2) indicator of the number of wideband PMI feedbacks in the next wideband report # 2 may be included if reported. As shown in FIG. 23A, the wideband report # q-1 is a Q (q-1) number of wideband PMI feedback or codebook indexes, if reported, and DI, if reported. It may include a set or, if reported, an indicator of the number Q (q) of wideband PMI feedback in the next wideband report # q. As shown in FIG. 23B, the wideband report #q may include Q (q) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported. Good.
[[実施形態2-2-3-3]]
 もし少なくとも1つのCSI報告が2パートである場合、2つのUCIビット系列a(1) ,a(1) ,…a(1) A(1)-1(長さA(1))と、a(2) ,a(2) ,…a(2) A(2)-1(長さA(2))とが、生成されてもよい。
[[Embodiment 2-2-3-3]]
If at least one CSI report is two parts, then two UCI bit sequences a (1) 0 , a (1) 1 , ... a (1) A (1) -1 (length A (1) ) , A (2) 0 , a (2) 1 , ... a (2) A (2) -1 (length A (2) ) may be generated.
 CSIパート1に対し、全てのCSI報告#1,#2,…#nの複数CSIフィールドは、図24の上から下への順序で、a(1) ,a(1) ,…a(1) A(1)-1にそれぞれマップされてもよい。ここで、CSI報告#nのCSIフィールドは、前述の図7又は図8又は図19又は図21に示された例であってもよい。A(1)=nであってもよい。CSIパート2に対し、全てのCSI報告#1,#2,…#nの複数CSIフィールドは、図25の上から下への順序で、a(2) ,a(2) ,…a(2) A(2)-1にそれぞれマップされてもよい。ここで、CSI報告#nのCSIフィールドは、前述の図7又は図8又は図20A又は図20B又は図22又は図23A又は図23Bに示された例であってもよい。A(2)=nであってもよい。 For CSI Part 1, all CSI reports # 1, # 2, ... # N multiple CSI fields are a (1) 0 , a (1) 1 , ... a in the order from top to bottom in FIG. (1) It may be mapped to A (1) -1 respectively. Here, the CSI field of CSI report #n may be the example shown in FIG. 7 or 8 or 19 or 21 described above. A (1) = n may be set. For CSI Part 2, all CSI reports # 1, # 2, ... # n multiple CSI fields are a (2) 0 , a (2) 1 , ... a in the order from top to bottom in FIG. (2) It may be mapped to A (2) -1 respectively. Here, the CSI field of CSI report #n may be the example shown in FIG. 7 or 8 or 20A or 20B or 22 or 23A or 23B described above. A (2) = n may be set.
 CSIパート1における複数CSIフィールドは、もしCSI報告#nが2パートでなければCSI報告#nであり、もしCSI報告#nが2パートであればCSI報告#nのCSIパート1であってもよい。CSIパート2における複数CSIフィールドは、CSI報告#nのCSIパート1であってもよい。 The multiple CSI fields in CSI part 1 are CSI report # n if CSI report # n is not 2 parts, even if it is CSI part 1 of CSI report # n if CSI report # n is 2 parts. Good. The multiple CSI fields in CSI Part 2 may be CSI Part 1 in CSI Report # n.
[[実施形態2-2-3-4]]
 CSIパート1のUCIビット系列と、CSIパート2のUCIビット系列とは、独立に符号化されてもよい。実際の符号化率が最大符号化率よりも高い場合、符号化率が最大符号化率の要件を満たすまで、まずCSIパート2がドロップされ、その後にCSIパート1がドロップされてもよい。
[[Embodiment 2-2-3-4]]
The UCI bit sequence of CSI part 1 and the UCI bit sequence of CSI part 2 may be encoded independently. If the actual code rate is higher than the maximum code rate, CSI part 2 may be dropped first and then CSI part 1 until the code rate meets the maximum code rate requirement.
 Rel.15 NR又は既存の、コードブロック分割(code block segmentation)、チャネル符号化、レートマッチング、の少なくとも1つが、実施形態2-2-3-2において生成される2つのUCIビット系列に適用されてもよい。 Rel. 15 Even if at least one of NR or existing code block segmentation, channel coding, and rate matching is applied to the two UCI bit sequences generated in embodiment 2-3-2. Good.
 図26は、2パートCSIのCSIパート2がq個のワイドバンド報告#1、#2、…、#qを含む場合を示す。CSIパート2において、全てのCSI報告のワイドバンド報告#1、全てのCSI報告のワイドバンド報告#2、…、全てのCSI報告のワイドバンド報告#qと、が順にマップされる。全てのCSI報告のワイドバンド報告#1は、1つのCSI報告のワイドバンド報告#1(Q(1)個のワイドバンドPMI)を含む。全てのCSI報告のワイドバンド報告#qは、1つのCSI報告のワイドバンド報告#q(Q(q)個のワイドバンドPMI)を含む。 FIG. 26 shows the case where CSI part 2 of the two-part CSI contains q wideband reports # 1, # 2, ..., # Q. In CSI Part 2, wideband reports # 1 for all CSI reports, wideband reports # 2 for all CSI reports, ..., and wideband reports # q for all CSI reports are mapped in that order. Wideband reports # 1 for all CSI reports include wideband reports # 1 for one CSI report (Q (1) wideband PMIs). Wideband reports #q for all CSI reports include wideband reports #q (Q (q) wideband PMIs) for one CSI report.
 レートマッチされた出力系列長Etotと、最大PUCCH符号化率を超えない符号化率に対する最大符号化ビット長Emaxと、を用いると、2パートCSIを用いる場合の、HARQ-ACK及びSR及びCSIパート1を合わせた出力系列長は、min(Etot,Emax)であってもよい。CSIパート2に基づく出力系列長は、Etot-min(Etot,Emax)であってもよい。 Using the rate-matched output sequence length E tot and the maximum coding bit length E max for a coding rate that does not exceed the maximum PUCCH coding rate, HARQ-ACK and SR and when using two-part CSI The output sequence length including the CSI part 1 may be min (E tot , E max). The output sequence length based on CSI part 2 may be E tot- min (E tot , E max).
 この実施形態2-2-3によれば、複数ワイドバンドPMIフィードバックの柔軟性を高め、1つのCSI報告の複数CSIフィールドのマッピングの順序の柔軟性を高めることができる。 According to this embodiment 2-2-3, the flexibility of multiple wideband PMI feedback can be increased, and the flexibility of the mapping order of multiple CSI fields in one CSI report can be increased.
<実施形態3>m個のCSIパート
 この実施形態では、1つのCSI報告がm個のCSIパートを含む場合について説明する。
<Embodiment 3> m CSI Parts In this embodiment, a case where one CSI report includes m CSI parts will be described.
 複数ワイドバンドPMIフィードバックのために、mパートCSI報告を有するUCIにおけるCSIビット生成が定義されてもよい。 For multiple wideband PMI feedback, CSI bit generation in UCI with m-part CSI reports may be defined.
《実施形態3-1》CSIパート1のCSIフィールド
 CSIパート1における1つのCSI報告の複数CSIフィールドは、もし報告される場合にCSIパートの数mのインジケータと、もし報告される場合にm-1個のCSIパート(例えば、CSIパート1以外の各CSIパート)における複数ワイドバンドPMIフィードバックの数のインジケータと、もし報告される場合にQ個のワイドバンドPMIフィードバック(例えば、PMIワイドバンド情報フィールド)と、の少なくとも1つを含んでもよい。CSIパート1における1つのCSI報告の複数CSIフィールドは更に、もし報告される場合に、Q個のワイドバンドPMIフィードバックのそれぞれに対応するDI(例えば、DIワイドバンド情報フィールド)を含んでもよい。
<< Embodiment 3-1 >> CSI field of CSI part 1 Multiple CSI fields of one CSI report in CSI part 1 are an indicator of several meters of CSI part if reported, and m- if reported. 1 CSI part (e.g., CSI Part 1 except the CSI Part) Q 0 or wideband PMI feedback when the number of indicators of a plurality wideband PMI feedback in are reported if (for example, PMI wideband information Field) and at least one of. Furthermore plurality CSI fields of one CSI reported in CSI Part 1, if it is reported if, DI corresponding to each of the Q 0 single wideband PMI feedback (e.g., DI wideband information fields) may include.
[実施形態3-1-1]
 CSIパート1における1つのCSI報告の複数CSIフィールドは、もし報告される場合に各CSIパート(例えば、CSIパート1以外の各CSIパート)における複数ワイドバンドPMIフィードバックの数のインジケータのみを含んでもよいし、もし報告される場合にCSIパートの数mのインジケータを更に含んでもよい。
[Embodiment 3-1-1]
The multiple CSI fields of one CSI report in CSI Part 1 may only include indicators of the number of multiple wideband PMI feedbacks in each CSI part (eg, each CSI part other than CSI Part 1) if reported. If reported, it may further include an indicator of a few meters of the CSI part.
[実施形態3-1-2]
 CSIパート1における1つのCSI報告の複数CSIフィールドは、もし報告される場合に1個のワイドバンドPMIフィードバックと、もし報告される場合に各CSIパート(例えば、CSIパート1以外の各CSIパート)における複数ワイドバンドPMIフィードバックの数のインジケータと、もし報告される場合にCSIパートの数mのインジケータと、の少なくとも1つを含んでもよい。CSIパート1における1つのCSI報告の複数CSIフィールドは更に、もし報告される場合にDIを含んでもよい。
[Embodiment 3-1-2]
Multiple CSI fields in one CSI report in CSI Part 1 include one wideband PMI feedback if reported and each CSI part if reported (eg, each CSI part other than CSI Part 1). May include at least one indicator of the number of multiple wideband PMI feedbacks in, and a few meters of CSI parts, if reported. Multiple CSI fields in one CSI report in CSI Part 1 may further include DI if reported.
 CSIパートの数mは、暗示的に通知(報告)されてもよいし、明示的に通知(報告)されてもよい。 A few meters of CSI parts may be implicitly notified (reported) or explicitly notified (reported).
 例えば、図27に示すように、CSI報告#nのCSIパート1は、もし報告される場合にPMIワイドバンド情報フィールド情報#0と、もし報告される場合にDIワイドバンド情報フィールド情報#0と、もし報告される場合に残りのm-1個のCSIパート(CSIパート2~CSIパートm)のそれぞれにおけるワイドバンドPMIフィードバックの数Q(1),Q(2),…,Q(m-1)のインジケータと、を含んでもよい。 For example, as shown in FIG. 27, CSI part 1 of CSI report # n is PMI wideband information field information # 0 if reported and DI wideband information field information # 0 if reported. , If reported, the number of wideband PMI feedbacks in each of the remaining m-1 CSI parts (CSI parts 2 to CSI parts m) Q (1) , Q (2) , ..., Q (m-) It may include the indicator of 1).
 この場合、Q(1),Q(2),…,Q(m-1)の数m-1によって、CSIパートの数mが暗示的に通知(報告)されてもよい。また、CSI報告#nのCSIパート1が、CSIパートの数mのインジケータを含むことによって、CSIパートの数mが明示的に通知(報告)されてもよい。 In this case, the number m of the CSI part may be implicitly notified (reported) by the number m-1 of Q (1) , Q (2) , ..., Q (m-1). Further, the CSI part 1 of the CSI report #n may explicitly notify (report) the number m of the CSI part by including the indicator of the number m of the CSI part.
 1つのワイドバンドPMIフィードバックに対し、実施形態1におけるUCI内のCSIビット生成が適用されてもよい。 CSI bit generation in UCI in Embodiment 1 may be applied to one wideband PMI feedback.
[実施形態3-1-3]
 CSIパート1における1つのCSI報告の複数CSIフィールドは、もし報告される場合にQ個のワイドバンドPMIフィードバックと、もし報告される場合に各CSIパート(例えば、CSIパート1以外の各CSIパート)における複数ワイドバンドPMIフィードバックの数のインジケータと、もし報告される場合にCSIパートの数mのインジケータと、の少なくとも1つを含んでもよい。CSIパート1における1つのCSI報告の複数CSIフィールドは更に、もし報告される場合にDIを含んでもよい。
[Embodiment 3-1-3]
Multiple CSI fields of one CSI reported in CSI Part 1, each CSI part (e.g., the CSI part other than CSI Part 1 when Q and zero wideband PMI feedback is reported if the case is reported if ) May include at least one indicator of the number of multiple wideband PMI feedbacks and, if reported, a few meters of CSI parts. Multiple CSI fields in one CSI report in CSI Part 1 may further include DI if reported.
 Qの設定又は決定は、実施形態1-1-2及び実施形態1-1-2-1~1-1-2-3の少なくとも1つに従ってもよい。 Setting or determination of Q 0 may be in accordance with at least one embodiment 1-1-2 and embodiment 1-1-2-1-1-1-2-3.
 実施形態3-1において、m-1個のCSIパートにおける複数ワイドバンドPMIフィードバックの数のインジケータは、後述の実施形態3-2に定義されるCSIパートmの設計に依存してもよい。 In Embodiment 3-1 the indicator of the number of multiple wideband PMI feedbacks in m-1 CSI parts may depend on the design of CSI parts m as defined in Embodiment 3-2 below.
《実施形態3-2》CSIパートmのCSIフィールド
 CSIパートmにおける1つのCSI報告の複数CSIフィールドは、もし報告される場合にQ(m)個のワイドバンドPMIフィードバック(例えば、PMIワイドバンド情報フィールド)と、ワイドバンドPMIフィードバックの数に関するインジケータと、の少なくとも1つを含んでもよい。CSIパートmにおける1つのCSI報告の複数CSIフィールドは更に、もし報告される場合にDI(例えば、DIワイドバンド情報フィールド)を含んでもよい。
<< Embodiment 3-2 >> CSI field of CSI part m Multiple CSI fields of one CSI report in CSI part m, if reported, have Q (m) wideband PMI feedback (eg, PMI wideband information). A field) and an indicator of the number of wideband PMI feedbacks may be included. Multiple CSI fields in one CSI report in the CSI part m may further include DI (eg, DI wideband information field) if reported.
 CSIパートmは、実施形態2-2で述べたCSIパート2における1又は複数のワイドバンド報告を有してもよい。言い換えれば、実施形態3-2のCSIパートmに対し、実施形態2-2のCSIパート2をCSIパートmと読み替えた構成が適用されてもよい。 The CSI part m may have one or more wideband reports in CSI part 2 described in embodiment 2-2. In other words, the configuration in which the CSI part 2 of the embodiment 2-2 is read as the CSI part m may be applied to the CSI part m of the embodiment 3-2.
 例えば、インデックスΣl=1 m-1(l)+1,…,Σl=1 m(l)を有するq番目のQ(m)個のワイドバンドPMIフィードバックが、CSI報告#nのCSIパートmに含まれてもよい。もし報告される場合、対応するDIが更に、CSI報告#nのCSIパートmに含まれてもよい。 For example, the qth Q (m) wideband PMI feedback with index Σ l = 1 m-1 Q (l) +1, ..., Σ l = 1 m Q (l) is the CSI of CSI report # n. It may be included in part m. If reported, the corresponding DI may also be included in the CSI part m of CSI report # n.
[実施形態3-2-1]
 CSIパート1以外の各CSIパートにおけるワイドバンドPMIフィードバックの数Q(2),…,Q(m)の値は、RRC及びMAC CE及びDCIの少なくとも1つによって設定又は指示されてもよいし、UEによって決定されCSIパート1内のワイドバンドPMIフィードバックの数のインジケータによって表示(報告)されてもよいし、それらの組み合わせによって得られてもよい。mは、Q(2),…,Q(m)の数によって暗示的に得られてもよいし、暗示的に表示(報告)されてもよい。
[Embodiment 3-2-1]
The number of wideband PMI feedbacks Q (2) , ..., Q (m) in each CSI part other than CSI part 1 may be set or indicated by at least one of RRC and MAC CE and DCI. It may be determined by the UE and displayed (reported) by an indicator of the number of wideband PMI feedbacks in CSI Part 1 or may be obtained by a combination thereof. m may be obtained implicitly by the number of Q (2) , ..., Q (m) , or may be implicitly displayed (reported).
[[[オプション1]]]
 Q(2),…,Q(m)は、直接設定又は指示されてもよい。
[[[Option 1]]]
Q (2) , ..., Q (m) may be directly set or instructed.
[[[オプション2]]]
 Q,Q(2),…,Q(m-1)が設定又は指示されてもよい。Q(m)はQ-Σp=2 m-1(p)として得られてもよい。
[[[Option 2]]]
Q, Q (2) , ..., Q (m-1) may be set or instructed. Q (m) may be obtained as Q-Σ p = 2 m-1 Q (p).
[[[オプション3]]]
 Qが設定又は指示されてもよい。1≦p<mに対するQ(p)はfloor(Q/(m-1))として得られてもよい。Q(m)はQ-Σp=2 m-1(p)として得られてもよい。
[[[Option 3]]]
Q may be set or instructed. Q (p) for 1 ≦ p <m may be obtained as floor (Q / (m-1)). Q (m) may be obtained as Q-Σ p = 2 m-1 Q (p).
 例えば、m(m>2)個のCSIパートに対し、実施形態3-1-1と実施形態3-2-1のオプション1とが適用される場合、図28に示すように、CSI報告#nのCSIパート1は、もし報告される場合に残りのm-1個のCSIパート(CSIパート2~CSIパートm)のそれぞれにおけるワイドバンドPMIフィードバックの数Q(1),Q(2),…,Q(m-1)のインジケータを含んでもよい。ここで、CSIパートの数mは、Q(1),Q(2),…,Q(m-1)の数m-1によって暗示的に表示(報告)されてもよい。図29Aに示すように、CSI報告#nのCSIパート2は、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(1)個の組を含んでもよい。m>2である場合、図29Bに示すように、CSI報告#nのCSIパートmは、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(m-1)個の組を含んでもよい。 For example, if option 1 of embodiment 3-1-1 and embodiment 3-2-1 is applied to m (m> 2) CSI parts, as shown in FIG. 28, CSI report # n CSI part 1 is the number of wideband PMI feedbacks in each of the remaining m-1 CSI parts (CSI parts 2 to CSI parts m) if reported Q (1) , Q (2) , ..., Q (m-1) indicators may be included. Here, the number m of the CSI part may be implicitly displayed (reported) by the number m-1 of Q (1) , Q (2) , ..., Q (m-1). As shown in FIG. 29A, CSI Part 2 of CSI Report # n is a set of Q (1) pairs of wideband PMI feedback or codebook index, if reported, and DI, if reported. May include. When m> 2, as shown in FIG. 29B, the CSI part m of CSI report # n is the wideband PMI feedback or codebook index, if reported, and the DI, if reported. It may include a set of Q (m-1) pieces.
[実施形態3-2-2]
 Q(m)の値は、UEによって決定されCSIパートm-1内のワイドバンドPMIフィードバックの数のインジケータによって表示(報告)されてもよい。CSIパートの数mは、RRC及びMAC CE及びDCIの少なくとも1つによって明示的に設定又は指示されてもよいし、UEによって決定されCSIパート1内のワイドバンドPMIフィードバックの数のインジケータによって表示(報告)されてもよい。
[Embodiment 3-2-2]
The value of Q (m) may be determined by the UE and displayed (reported) by an indicator of the number of wideband PMI feedbacks within the CSI part m-1. The number m of CSI parts may be explicitly set or indicated by at least one of RRC and MAC CE and DCI, or determined by the UE and indicated by an indicator of the number of wideband PMI feedbacks within CSI part 1 ( May be reported).
 例えば、図30に示すように、CSI報告#nのCSIパート1は、もし報告される場合に次のCSIパート(CSIパート2)におけるワイドバンドPMIフィードバックの数Q(1)のインジケータと、もし報告される場合にCSIパートの数mのインジケータとを、含んでもよい。 For example, as shown in FIG. 30, CSI Part 1 of CSI Report # n is an indicator of the number of wideband PMI feedbacks Q (1) in the next CSI Part (CSI Part 2) if reported, and if so. An indicator of a few meters of the CSI part may be included when reported.
 mが3より大きい場合、図31に示すように、CSI報告#nのCSIパート2は、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(1)個の組と、もし報告される場合に次のCSIパート(CSIパート3)におけるワイドバンドPMIフィードバックの数Q(2)のインジケータとを、含んでもよい。図32Aに示すように、CSI報告#nのCSIパートm-1(m>3)は、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(m-2)個の組と、もし報告される場合に次のCSIパート(CSIパートm)におけるワイドバンドPMIフィードバックの数Q(m-1)のインジケータとを、含んでもよい。図32Bに示すように、CSI報告#nのCSIパートm(m>2)は、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(m-1)個の組を、含んでもよい。 If m is greater than 3, then CSI Part 2 of CSI Report # n, if reported, has a wideband PMI feedback or codebook index, if reported, and DI, if reported. It may include a set of Q (1) and an indicator of the number of wideband PMI feedbacks Q (2) in the next CSI part (CSI part 3) if reported. As shown in FIG. 32A, the CSI part m-1 (m> 3) of CSI report # n is a wideband PMI feedback or codebook index, if reported, and DI, if reported. It may include a set of Q (m-2) and an indicator of the number of wideband PMI feedbacks Q (m-1) in the next CSI part (CSI part m) if reported. As shown in FIG. 32B, the CSI part m (m> 2) of CSI report # n is the Q (if reported, with wideband PMI feedback or codebook index, and if reported, with DI. m-1) sets may be included.
 3パートCSIを用いる場合、前述の図31と同様、CSI報告#nのCSIパート2は、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(1)個の組と、もし報告される場合に次のCSIパート(CSIパート3)におけるワイドバンドPMIフィードバックの数Q(2)のインジケータとを、含んでもよい。CSI報告#nのCSIパート3は、図33に示すように、l=2,3,…,m-1に対し、もし報告される場合にワイドバンドPMIフィードバック又はコードブックインデックスと、もし報告される場合にDIとの、Q(l)個の組を含んでもよい。ここでのmはCSIパート数ではなく1より大きい任意の整数であってもよい。CSI報告#nのCSIパート3は、Q(l-1)個の組と、Q(l)個の組と、の間において、もし報告される場合に次のワイドバンドPMIフィードバックの数Q(l)のインジケータを含んでもよい。 When using a three-part CSI, as in FIG. 31 above, CSI Part 2 of CSI Report # n is a wideband PMI feedback or codebook index, if reported, and DI, if reported. It may include a set of Q (1) and an indicator of the number of wideband PMI feedbacks Q (2) in the next CSI part (CSI part 3) if reported. CSI Part 3 of CSI Report #n is reported for l = 2,3, ..., m-1, with wideband PMI feedback or codebook index, if reported, as shown in FIG. In this case, Q (l) pairs with DI may be included. Here, m may be any integer larger than 1 instead of the number of CSI parts. CSI Part 3 of CSI Report # n is the number of next wideband PMI feedbacks Q ( if reported) between the Q (l-1) pairs and the Q (l) pairs. The indicator of l) may be included.
《実施形態3-3》UCIビット系列生成
 もし少なくとも1つのCSI報告がmパートである場合、m個のUCIビット系列a(1) ,a(1) ,…a(1) A(1)-1(長さA(1)),a(2) ,a(2) ,…a(2) A(2)-1(長さA(2)),…,a(m) ,a(m) ,…a(m) A(m)-1(長さA(m))が、生成されてもよい。
<< Embodiment 3-3 >> UCI bit sequence generation If at least one CSI report is an m part, m UCI bit sequences a (1) 0 , a (1) 1 , ... a (1) A (1) ) -1 (Length A (1) ), a (2) 0 , a (2) 1 , ... a (2) A (2) -1 (Length A (2) ), ..., a (m) 0 , a (m) 1 , ... a (m) A (m) -1 (length A (m) ) may be generated.
 CSIパート1に対し、全てのCSI報告#1,#2,…#nの複数CSIフィールドは、図34Aの上から下への順序で、a(1) ,a(1) ,…a(1) A(1)-1にそれぞれマップされてもよい。ここで、CSI報告#nのCSIフィールドは、前述の図7又は図8又は図28又は図30に示された例であってもよい。A(1)=nであってもよい。CSIパートmに対し、全てのCSI報告#1,#2,…#nの複数CSIフィールドは、図34Bの上から下への順序で、a(m) ,a(m) ,…a(m) A(m)-1にそれぞれマップされてもよい。ここで、CSI報告#nのCSIフィールドは、前述の図23A又は図23B又は図31又は図32A又は図32Bに示された例であってもよい。A(m)=nであってもよい。 For CSI Part 1, all CSI reports # 1, # 2, ... # N multiple CSI fields are a (1) 0 , a (1) 1 , ... a in the order from top to bottom in FIG. 34A. (1) It may be mapped to A (1) -1 respectively. Here, the CSI field of CSI report #n may be the example shown in FIG. 7 or 8 or 28 or 30 described above. A (1) = n may be set. For the CSI part m, all CSI reports # 1, # 2, ... # n multiple CSI fields are a (m) 0 , a (m) 1 , ... a in the order from top to bottom in FIG. 34B. ( M) It may be mapped to A (m) -1 respectively. Here, the CSI field of CSI report #n may be the example shown in FIG. 23A or 23B or FIG. 31 or FIG. 32A or FIG. 32B described above. A (m) = n may be set.
 CSIパート1における複数CSIフィールドは、もしCSI報告#nが2パートでなければCSI報告#n(例えば、実施形態1-1-1又は1-1-2)であり、もしCSI報告#nが2パートであればCSI報告#nのCSIパート1(例えば、実施形態3-1-1又は3-1-2)であってもよい。CSIパートmにおける複数CSIフィールドは、CSI報告#nのCSIパートm(例えば、実施形態3-2-1又は3-2-2)であってもよい。 The multiple CSI fields in CSI Part 1 are CSI Report # n (eg, Embodiment 1-1-1 or 1-1-2) if CSI Report # n is not two parts, and if CSI Report # n is If it is two parts, it may be CSI part 1 of CSI report # n (for example, embodiment 3-1-1 or 3-1-2). The plurality of CSI fields in the CSI part m may be the CSI part m of CSI report # n (eg, embodiment 3-2-1 or 3--2-2).
《実施形態3-4》符号化/レートマッチング
 CSIパート1、CSIパート2、…、CSIパートmのm個のUCIビット系列は、独立に符号化されてもよい。実際の符号化率が最大符号化率よりも高い場合、符号化率が最大符号化率の要件を満たすまで、CSIパートの降順にドロップされてもよい(まずCSIパートmがドロップされ、その後にCSIパートm-1がドロップされ、その後にCSIパートm-2がドロップされ、…)
<< Embodiment 3-4 >> Coding / rate matching The m UCI bit sequences of CSI part 1, CSI part 2, ..., CSI part m may be encoded independently. If the actual code rate is higher than the maximum code rate, it may be dropped in descending order of the CSI parts until the code rate meets the maximum code rate requirement (first the CSI part m is dropped, then the CSI part m). CSI part m-1 is dropped, then CSI part m-2 is dropped, ...)
 Rel.15 NR又は既存の、コードブロック分割(code block segmentation)、チャネル符号化、レートマッチング、の少なくとも1つが、実施形態3-3において生成されるm個のUCIビット系列に適用されてもよい。 Rel. 15 At least one of NR or existing code block segmentation, channel coding, and rate matching may be applied to the m UCI bit sequences generated in Embodiment 3-3.
 図35は、mパートCSIの一例を示す。CSIパート1、2、…、mが独立に符号化される。CSIパート1、2、…、mが順にマップされる。1つのCSI報告のCSIパート2は、Q(1)個のワイドバンドPMIを含む。1つのCSI報告のCSIパートmは、Q(m-1)個のワイドバンドPMIを含む。 FIG. 35 shows an example of m-part CSI. CSI parts 1, 2, ..., M are independently encoded. CSI parts 1, 2, ..., M are mapped in order. CSI Part 2 of one CSI report contains Q (1) wideband PMIs. The CSI part m of one CSI report contains Q (m-1) wideband PMIs.
 レートマッチされた出力系列長Etotと、最大PUCCH符号化率を超えない符号化率に対する最大符号化ビット長Emaxと、を用いると、2パートCSIを用いる場合の、HARQ-ACK及びSR及びCSIパート1を合わせた出力系列長は、min(Etot,Emax)であってもよい。CSIパート1以外のCSIパート(例えば、CSIパート2~m)に基づく出力系列長は、Etot-min(Etot,Emax)であってもよい。 Using the rate-matched output sequence length E tot and the maximum coding bit length E max for a coding rate that does not exceed the maximum PUCCH coding rate, HARQ-ACK and SR and when using two-part CSI The output sequence length including the CSI part 1 may be min (E tot , E max). The output sequence length based on CSI parts other than CSI part 1 (for example, CSI parts 2 to m) may be E tot- min (E tot , E max).
 この実施形態3によれば、複数ワイドバンドPMIが複数CSIパートにおいて独立に符号化されることによって、信頼性を高めることができる。 According to the third embodiment, reliability can be improved by independently encoding the plurality of wideband PMIs in the plurality of CSI parts.
<実施形態4>CSIパート数決定方法
 この実施形態では、1つのCSI報告の1以上のCSIパートの決定又は設定の方法について説明する。
<Embodiment 4> Method for determining the number of CSI parts In this embodiment, a method for determining or setting one or more CSI parts in one CSI report will be described.
《実施形態4-1》
 実施形態1(1パートCSI)と実施形態2(2パートCSI)とを用いるシステムにおいて、1つのCSI報告が1パート及び2パートのいずれを含むかが、RRC及びMAC CE及びDCIの少なくとも1つによって明示的に設定又は指示されてもよいし、RRC及びMAC CE及びDCIの少なくとも1つによって暗示的に設定又は指示されてもよいし、UEによって決定されUCIにおいて基地局へ報告されてもよい。
<< Embodiment 4-1 >>
In a system using Embodiment 1 (1 part CSI) and embodiment 2 (2 part CSI), whether one CSI report contains 1 part or 2 parts is at least one of RRC and MAC CE and DCI. It may be explicitly set or instructed by, implicitly set or instructed by at least one of RRC and MAC CE and DCI, or determined by the UE and reported to the base station in UCI. ..
《実施形態4-2》
 実施形態1(1パートCSI)と実施形態3(mパートCSI)とを用いるシステムにおいて、1つのCSI報告が1パート及びmパートのいずれを含むかが、RRC及びMAC CE及びDCIの少なくとも1つによって明示的に設定又は指示されてもよいし、RRC及びMAC CE及びDCIの少なくとも1つによって暗示的に設定又は指示されてもよいし、UEによって決定されUCIにおいて基地局へ報告されてもよい。
<< Embodiment 4-2 >>
In a system using Embodiment 1 (1 part CSI) and embodiment 3 (m part CSI), whether one CSI report includes 1 part or m part is at least one of RRC and MAC CE and DCI. May be explicitly set or instructed by, implicitly set or instructed by at least one of the RRC and MAC CE and DCI, or determined by the UE and reported to the base station in the UCI. ..
 mが2以上である場合、実施形態1、2、3の組み合わせを含む。すなわち、当該システムは、実施形態1(1パートCSI)と実施形態2(2パートCSI)と実施形態3(mパートCSI)とを用いるシステムであってもよい。 When m is 2 or more, the combination of embodiments 1, 2 and 3 is included. That is, the system may be a system using the first embodiment (1 part CSI), the second embodiment (2 part CSI), and the third embodiment (m part CSI).
《実施形態4-3》
 実施形態2(2パートCSI)と実施形態3(mパートCSI)とを用いるシステムにおいて、1つのCSI報告が2パート及びmパートのいずれを含むかが、RRC及びMAC CE及びDCIの少なくとも1つによって明示的に設定又は指示されてもよいし、RRC及びMAC CE及びDCIの少なくとも1つによって暗示的に設定又は指示されてもよいし、UEによって決定されUCIにおいて基地局へ報告されてもよい。
<< Embodiment 4-3 >>
In a system using Embodiment 2 (2-part CSI) and embodiment 3 (m-part CSI), whether one CSI report includes two-part or m-part is at least one of RRC and MAC CE and DCI. May be explicitly set or instructed by, implicitly set or instructed by at least one of the RRC and MAC CE and DCI, or determined by the UE and reported to the base station in the UCI. ..
(その他)
 各実施形態において、各DIワイドバンド情報は、対応するPMIワイドバンド情報の後にマップされてもよい。例えば、CSI報告#1において、ワイドバンドDI情報フィールド#1は、対応するワイドバンドPMI情報フィールド#1の後にマップされてもよい。
(Other)
In each embodiment, each DI wideband information may be mapped after the corresponding PMI wideband information. For example, in CSI report # 1, the wideband DI information field # 1 may be mapped after the corresponding wideband PMI information field # 1.
 もしPMIフィールド#1がCSIパート2内にある場合、DIフィールド#1もCSIパート2内にあってもよい。もしPMIフィールド#1がCSIパート1内にある場合、DIフィールド#1もCSIパート1内にあってもよい。 If PMI field # 1 is in CSI part 2, DI field # 1 may also be in CSI part 2. If PMI field # 1 is in CSI part 1, DI field # 1 may also be in CSI part 1.
 もしワイドバンドPMIのみが、対応するDIを伴わずに基地局に正常に受信される場合、CSIは正確に再構築されない可能性がある。各DIワイドバンド情報は、対応するPMIワイドバンド情報の後にマップされることによって、DIに対して、ワイドバンドPMIと同じ優先度を与えることができ、ワイドバンドPMIと共に用いることができる。 If only the wideband PMI is successfully received by the base station without the corresponding DI, the CSI may not be reconstructed correctly. Each DI wideband information can be given the same priority as the wideband PMI by mapping after the corresponding PMI wideband information and can be used with the wideband PMI.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
 図36は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 36 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is MN, and the LTE (E-UTRA) base station (eNB) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to a relay station (relay) is IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. In addition, Master Information Block (MIB) may be transmitted by PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for detecting PDCCH. CORESET corresponds to a resource that searches for DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, may be called Hybrid Automatic Repeat reQuest ACK knowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble to establish a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図37は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 37 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, the Packet Data Convergence Protocol (PDCP) layer and the Radio Link Control (RLC) layer for data, control information, etc. acquired from the control unit 110 (for example,). RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the radio frequency band signal received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
(ユーザ端末)
 図38は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 38 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. The transmission / reception unit 220 (transmission processing unit 2211) described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。 The transmission unit and the reception unit of the user terminal 20 in the present disclosure may be composed of at least one of the transmission / reception unit 220, the transmission / reception antenna 230, and the transmission line interface 240.
 制御部210は、複数のプリコーディング行列表示子(PMI)のそれぞれを示す第1フィールド(例えば、PMIワイドバンド情報フィールド)と、前記PMIに対応する遅延を示す第2フィールド(例えば、DIワイドバンド情報フィールド)とを、含むチャネル状態情報(CSI)報告を生成してもよい。送受信部220は、前記CSI報告を送信してもよい(実施形態1)。 The control unit 210 has a first field (for example, a PMI wideband information field) indicating each of the plurality of precoding matrix indicators (PMIs) and a second field (for example, a DI wideband) indicating the delay corresponding to the PMI. A channel state information (CSI) report may be generated that includes an information field). The transmission / reception unit 220 may transmit the CSI report (Embodiment 1).
 前記CSI報告は、前記第1フィールド及び前記第2フィールドの複数の組を含んでもよい。 The CSI report may include a plurality of sets of the first field and the second field.
 制御部210は、前記CSI報告において、前記第1フィールドの後に前記第2フィールドをマップしてもよい。 The control unit 210 may map the second field after the first field in the CSI report.
 前記第1フィールドは、PMIワイドバンド情報を示してもよい。 The first field may indicate PMI wideband information.
 前記第2フィールドは、前記PMIワイドバンド情報に対応する前記遅延のインデックスを示してもよい。 The second field may indicate the index of the delay corresponding to the PMI wideband information.
 制御部210は、複数のチャネル状態情報(CSI)パートの少なくとも1つのCSIパートが、複数のプリコーディング行列表示子(PMI)のそれぞれを示す第1フィールドと、前記PMIに対応する遅延を示す第2フィールドとを、含む、前記複数のCSIパートを生成してもよい。送受信部220は、前記複数のCSIパートを送信してもよい(実施形態2、3)。 In the control unit 210, at least one CSI part of the plurality of channel state information (CSI) parts indicates a first field indicating each of the plurality of precoding matrix indicators (PMIs) and a delay corresponding to the PMI. The plurality of CSI parts including the two fields may be generated. The transmission / reception unit 220 may transmit the plurality of CSI parts (Embodiments 2 and 3).
 前記少なくとも1つのCSIパートは、前記第1フィールド及び前記第2フィールドの複数の組を含んでもよい。 The at least one CSI part may include a plurality of sets of the first field and the second field.
 制御部210は、前記少なくとも1つのCSIパートにおいて、前記第1フィールドの後に前記第2フィールドをマップしてもよい。 The control unit 210 may map the second field after the first field in the at least one CSI part.
 前記第1フィールドは、PMIワイドバンド情報を示してもよい。 The first field may indicate PMI wideband information.
 前記第2フィールドは、前記PMIワイドバンド情報に対応する前記遅延のインデックスを示してもよい。 The second field may indicate the index of the delay corresponding to the PMI wideband information.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one physically or logically connected device, or directly or indirectly (for example, two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図39は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, etc. in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 39 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, and is, for example, a flexible disc, a floppy (registered trademark) disc, an optical magnetic disc (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disc, etc. At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. May be configured by. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal can also be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. The numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). In addition, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may be voltage, current, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to inter-terminal communication (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. In addition, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), LTE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems that utilize suitable wireless communication methods, next-generation systems extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Also, "judgment (decision)" means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as "judgment (decision)" of "accessing" (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" such as solving, selecting, selecting, establishing, and comparing. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 The "maximum transmission power" described in the present disclosure may mean the maximum value of the transmission power, may mean the nominal UE maximum transmit power, or may mean the rated maximum transmission power (the). It may mean rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used herein, are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as a modified or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (6)

  1.  複数のチャネル状態情報(CSI)パートの少なくとも1つのCSIパートが、複数のプリコーディング行列表示子(PMI)のそれぞれを示す第1フィールドと、前記PMIに対応する遅延を示す第2フィールドとを、含む、前記複数のCSIパートを生成する制御部と、
     前記複数のCSIパートを送信する送信部と、を有する端末。
    At least one CSI part of the plurality of channel state information (CSI) parts comprises a first field indicating each of the plurality of precoding matrix indicators (PMIs) and a second field indicating the delay corresponding to the PMI. A control unit that generates the plurality of CSI parts, including
    A terminal having a transmission unit that transmits the plurality of CSI parts.
  2.  前記少なくとも1つのCSIパートは、前記第1フィールド及び前記第2フィールドの複数の組を含む、請求項1に記載の端末。 The terminal according to claim 1, wherein the at least one CSI part includes a plurality of sets of the first field and the second field.
  3.  前記制御部は、前記少なくとも1つのCSIパートにおいて、前記第1フィールドの後に前記第2フィールドをマップする、請求項1又は請求項2に記載の端末。 The terminal according to claim 1 or 2, wherein the control unit maps the second field after the first field in the at least one CSI part.
  4.  前記第1フィールドは、PMIワイドバンド情報を示す、請求項1から請求項3のいずれかに記載の端末。 The terminal according to any one of claims 1 to 3, wherein the first field indicates PMI wideband information.
  5.  前記第2フィールドは、前記PMIワイドバンド情報に対応する前記遅延のインデックスを示す、請求項4に記載の端末。 The terminal according to claim 4, wherein the second field indicates the index of the delay corresponding to the PMI wideband information.
  6.  複数のチャネル状態情報(CSI)パートの少なくとも1つのCSIパートが、複数のプリコーディング行列表示子(PMI)のそれぞれを示す第1フィールドと、前記PMIに対応する遅延を示す第2フィールドとを、含む、前記複数のCSIパートを生成するステップと、
     前記複数のCSIパートを送信するステップと、を有する端末の無線通信方法。
    At least one CSI part of the plurality of channel state information (CSI) parts comprises a first field indicating each of the plurality of precoding matrix indicators (PMIs) and a second field indicating the delay corresponding to the PMI. Including the step of generating the plurality of CSI parts, and
    A method of wireless communication of a terminal having the step of transmitting the plurality of CSI parts.
PCT/JP2019/033180 2019-08-23 2019-08-23 Terminal and wireless communication method WO2021038669A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/033180 WO2021038669A1 (en) 2019-08-23 2019-08-23 Terminal and wireless communication method
CN201980099681.2A CN114287139A (en) 2019-08-23 2019-08-23 Terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/033180 WO2021038669A1 (en) 2019-08-23 2019-08-23 Terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2021038669A1 true WO2021038669A1 (en) 2021-03-04

Family

ID=74685401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/033180 WO2021038669A1 (en) 2019-08-23 2019-08-23 Terminal and wireless communication method

Country Status (2)

Country Link
CN (1) CN114287139A (en)
WO (1) WO2021038669A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104541456B (en) * 2013-04-15 2017-11-28 华为技术有限公司 A kind of method, user equipment and the base station of reporting channel status information
WO2017193404A1 (en) * 2016-05-13 2017-11-16 华为技术有限公司 Channel state information reporting method, reading method, and related apparatus
US11201771B2 (en) * 2016-11-25 2021-12-14 Ntt Docomo, Inc. User terminal and radio communication method
EP3474459A1 (en) * 2017-10-18 2019-04-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Receiver, transmitter, system and method employing space-delay precoding

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP: "3rd Generation Partnership Project, Technical Specification Group Radio Access Network; NR; Multiplexing and channel coding (Release 15", 3GPP TS 38.212 V15.6.0, 24 June 2019 (2019-06-24), XP051751236 *
FRAUNHOFER IIS, FRAUNHOFER HHI: "Enhancements on Type-II CSI reporting", 3GPP TSG RAN WG1 #95 R1-1813130, 2 November 2018 (2018-11-02), pages 1 - 6, XP051479396 *

Also Published As

Publication number Publication date
CN114287139A (en) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2020222279A1 (en) User terminal and wireless communication method
JP7244633B2 (en) Terminal, wireless communication method, base station and system
WO2021049013A1 (en) Terminal and radio communication method
WO2021064962A1 (en) Terminal and wireless communication method
WO2021229758A1 (en) Terminal, radio communication method, and base station
JP7383624B2 (en) Terminal and wireless communication method
WO2021220474A1 (en) Terminal, wireless communication method and base station
EP4145877A1 (en) Terminal, wireless communication method, and base station
WO2021220475A1 (en) Terminal, wireless communication method and base station
WO2020250289A1 (en) Terminal and radio communication method
WO2020202394A1 (en) User terminal and wireless communication method
WO2021014501A1 (en) Terminal and wireless communication method
WO2022153458A1 (en) Terminal, wireless communication method, and base station
WO2021220473A1 (en) Terminal, wireless communication method, and base station
JP7431231B2 (en) Terminals, wireless communication methods and systems
EP4075883A1 (en) Terminal and wireless communication method
WO2021084753A1 (en) Terminal and wireless communication method
WO2021038669A1 (en) Terminal and wireless communication method
WO2021038668A1 (en) Terminal and wireless communication method
WO2021014502A1 (en) Terminal and wireless communication method
WO2021172149A1 (en) Terminal, wireless communication method, and base station
WO2021049012A1 (en) Terminal and wireless communication method
WO2022029948A1 (en) Terminal, wireless communication method, and base station
WO2021156944A1 (en) Terminal, wireless communication method, and base station
WO2021156943A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP