WO2021038614A1 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
WO2021038614A1
WO2021038614A1 PCT/JP2019/032944 JP2019032944W WO2021038614A1 WO 2021038614 A1 WO2021038614 A1 WO 2021038614A1 JP 2019032944 W JP2019032944 W JP 2019032944W WO 2021038614 A1 WO2021038614 A1 WO 2021038614A1
Authority
WO
WIPO (PCT)
Prior art keywords
movable tooth
tooth
scroll
autonomous movable
fixed
Prior art date
Application number
PCT/JP2019/032944
Other languages
French (fr)
Japanese (ja)
Inventor
秀明 北川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021541752A priority Critical patent/JP7154421B2/en
Priority to PCT/JP2019/032944 priority patent/WO2021038614A1/en
Publication of WO2021038614A1 publication Critical patent/WO2021038614A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a mechanical capacity control technique in a scroll compressor.
  • a scroll compressor equipped with a compression mechanism unit that compresses a fluid in a compression chamber formed by combining a fixed scroll and a swing scroll and an electric motor connected to the compression mechanism unit via a rotation shaft has been known.
  • a method is known in which the electric motor is driven by an inverter and the capacity of the scroll compressor is controlled by controlling the rotation speed.
  • the rotation speed is too low when the load is low, the efficiency of the scroll compressor is lowered due to an increase in refrigerant leakage in the compression chamber, and the performance is lowered. Therefore, it is difficult to maintain high efficiency with a low load capacity at a low speed only by controlling the rotation speed with an inverter.
  • a bypass port capable of communicating a compression chamber and a suction chamber is provided in a fixed scroll, and the suction volume is increased by opening and closing the bypass port with a bypass valve. It is made variable.
  • the bypass valve opens and closes by switching the pressure acting on the bypass valve to high pressure or low pressure by a pressure switching device provided outside the scroll compressor.
  • Patent Document 1 when adjusting the suction volume, it is necessary to adjust the pressure acting on the bypass valve from the outside of the scroll compressor. That is, additional piping or the like was required outside the scroll compressor, and the surrounding structure had to be changed.
  • the present invention is for solving the above-mentioned problems, and an object of the present invention is to provide a scroll compressor capable of adjusting the suction volume without changing the peripheral structure of the scroll compressor.
  • the scroll compressor according to the present invention has a fixed base plate and a fixed scroll having fixed spiral teeth formed on the fixed base plate, and a rocking base plate and swinging spiral teeth formed on the rocking base plate.
  • the oscillating spiral tooth is combined with the fixed vortex tooth of the fixed scroll to form a plurality of compression chambers that compress the working gas from low pressure to high pressure, and the driving shaft for driving the oscillating scroll and the driving shaft.
  • An autonomous movable tooth that is inserted into an insertion hole formed through a fixed scroll in the axial direction to form a part of a fixed spiral tooth and moves up and down autonomously inside the insertion hole, and a fixed scroll.
  • the suction volume is adjusted by switching.
  • a part of the fixed scroll is composed of autonomous movable teeth, and the autonomous movable teeth move up and down autonomously based on the magnetic force of the magnet and the pressure in the closed container.
  • the tip surface is switched between a contact state in which the tip surface is flush with the tip surface of the fixed spiral tooth excluding the autonomous movable tooth and a separated state in which the tip surface is separated without being flush. Therefore, the suction volume can be adjusted without changing the peripheral structure of the scroll compressor.
  • FIG. 5 is a schematic vertical cross-sectional view showing a state in which autonomous movable teeth are removed from the fixed scroll of the scroll compressor according to the embodiment.
  • FIG. 5 is a schematic cross-sectional view showing a state in which autonomous movable teeth are removed from the fixed scroll of the scroll compressor according to the embodiment.
  • It is a perspective view of the autonomous movable tooth of the scroll compressor which concerns on embodiment.
  • It is a spiral operation diagram which shows the compression stroke when the autonomous movable tooth is separated in the scroll compressor which concerns on embodiment. It is explanatory drawing of the force acting on the autonomous movable tooth of the scroll compressor which concerns on embodiment.
  • FIG. 1 is a schematic vertical cross-sectional view showing a scroll compressor according to the embodiment.
  • the scroll compressor 100 of FIG. 1 is a so-called vertical scroll compressor, which compresses and discharges a working gas such as a refrigerant.
  • the Z direction indicates the axial direction.
  • the scroll compressor 100 includes a closed container 1, a compression mechanism unit 2 having a swing scroll 3 and a fixed scroll 4, an electric motor 16, a drive shaft 19, and an oil reservoir space 5.
  • the closed container 1 is formed in a cylindrical shape, for example, and has pressure resistance.
  • a suction pipe 7 for taking the working gas into the closed container 1 is connected to the side surface of the closed container 1.
  • a discharge pipe 11 for discharging compressed working gas from the closed container 1 to the outside is connected to the other side surface of the closed container 1.
  • the arrow in the pipe indicates the direction in which the working gas flows.
  • a check valve 9 and a spring 10 are arranged inside the suction pipe 7. The check valve 9 is urged by the spring 10 in the direction of closing the suction pipe 7, and prevents the backflow of the working gas.
  • the closed container 1 has a high pressure gas atmosphere 6 in the closed container 1.
  • An oil reservoir space 5 for storing refrigerating machine oil (hereinafter referred to as oil) is formed at the bottom of the closed container 1.
  • the oil reservoir space 5 is located in the high-pressure gas atmosphere 6, is below the subframe 37 that supports the lower end of the drive shaft 19, is below the auxiliary bearing 27 provided on the subframe 37, and is below the lower end of the drive shaft 19. It is a space below.
  • the lower end surface of the drive shaft 19 is supported by a thrust bearing 28.
  • the thrust bearing 28 is fixed to a holder 29 fixed to the subframe 37.
  • the compression mechanism unit 2, the electric motor 16, and the drive shaft 19 are housed in the closed container 1.
  • a guide frame 30 is fixed to the closed container 1 at the upper part of the electric motor 16 and the lower part of the compression mechanism portion 2, and a subframe 37 holding the drive shaft 19 is fixed at the lower part of the electric motor 16. It is fixed at 1.
  • the compliant frame 31 is housed on the inner peripheral side of the guide frame 30.
  • An upper fitting cylindrical surface 30a is formed on the compression mechanism portion 2 side of the inner peripheral surface of the guide frame 30.
  • the upper fitting cylindrical surface 30a is engaged with the upper fitting cylindrical surface 35a formed on the outer peripheral surface of the compliant frame 31.
  • a gap is formed in a part of the circumferential direction between the upper fitting cylindrical surface 30a and the upper fitting cylindrical surface 35a to form the compliant frame upper space 32a.
  • a lower fitting cylindrical surface 30b is formed on the motor 16 side of the inner peripheral surface of the guide frame 30.
  • the lower fitting cylindrical surface 30b is engaged with the lower fitting cylindrical surface 35b formed on the outer peripheral surface of the compliant frame 31.
  • An upper annular seal member 36a and a lower annular seal member 36b are arranged at two locations on the outer peripheral surface of the compliant frame 31.
  • the inner surface of the guide frame 30 and the outer surface of the compliant frame 31 are partitioned by an upper annular seal member 36a and a lower annular seal member 36b.
  • a compliant frame lower space 32b is provided between the upper annular seal member 36a and the lower annular seal member 36b.
  • the upper annular seal member 36a and the lower annular seal member 36b are arranged at two locations on the outer peripheral surface of the compliant frame 31 in FIG. 1, but the positions of the seal members are not limited to the example of FIG. ..
  • the upper annular seal member 36a and the lower annular seal member 36b may be arranged at two locations on the inner peripheral surface of the guide frame 30.
  • the compliant frame 31 is formed with a gas introduction flow path 14 that communicates the thrust surface 33 that slides with the swing scroll 3 and the compliant frame lower space 32b.
  • the gas introduction flow path 14 is provided so as to communicate with the bleeding hole 3e formed in the rocking base plate 3a described later of the rocking scroll 3.
  • a flow path 14a is formed between the guide frame 30 and the inner wall of the closed container 1.
  • the flow path 14a is a flow path through which the high-pressure working gas flowing out from the discharge hole 4f formed in the fixed base plate 4a described later of the fixed scroll 4 passes.
  • An intermediate pressure space 38 which is an intermediate pressure space having a pressure lower than the discharge pressure and higher than the suction pressure, is formed between the outside of the boss portion 3c provided on the swing scroll 3 and the compliant frame 31. ing. Further, an intermediate pressure adjusting valve space 39d is formed in the compliant frame 31, and an intermediate pressure adjusting valve 39a for adjusting the pressure in the intermediate pressure space 38 and an intermediate pressure adjusting valve are formed in the intermediate pressure adjusting valve space 39d. A holding 39b and an intermediate pressure adjusting spring 39c are arranged. The intermediate pressure adjusting spring 39c is shortened from its natural length and is housed in the intermediate pressure adjusting valve space 39d. Further, the compliant frame 31 is formed with a through flow path 39e that communicates the intermediate pressure space 38 and the intermediate pressure adjusting valve space 39d.
  • the intermediate pressure regulating valve space 39d and the compliant frame upper space 32a communicate with each other. Further, the compliant frame upper space 32a is formed so as to communicate with the inside of the old dam ring 40. Therefore, the intermediate pressure space 38 and the reciprocating sliding surface 41 of the old dam ring 40 communicate with each other via the through flow path 39e, the intermediate pressure adjusting valve space 39d, and the compliant frame upper space 32a.
  • the compression mechanism unit 2 compresses the working gas sucked into the closed container 1 from the suction pipe 7, and has a swing scroll 3 and a fixed scroll 4.
  • the fixed scroll 4 is arranged above the swing scroll 3.
  • the fixed scroll 4 is made of a metal such as cast iron, and is fixed to a guide frame 30 fixedly supported by the closed container 1 with bolts (not shown) or the like.
  • the fixed scroll 4 has a fixed base plate 4a and fixed spiral teeth 4b formed on one surface of the fixed base plate 4a.
  • the rocking scroll 3 has a rocking base plate 3a and a rocking spiral tooth 3b formed on one surface of the rocking base plate 3a.
  • the fixed scroll 4 and the swing scroll 3 are arranged in the closed container 1 by combining the fixed spiral teeth 4b and the swing spiral teeth 3b so as to face each other.
  • the fixed spiral tooth 4b and the swinging spiral tooth 3b are combined in opposite phases, and a compression chamber 12 is formed between the fixed spiral tooth 4b of the fixed scroll 4 and the swinging spiral tooth 3b of the swing scroll 3. ing.
  • a pair of fixed side old dam ring grooves 15a are formed in a straight line on the outer peripheral portion of the fixed scroll 4.
  • two pairs of fixed side keys 42a of the old dam ring 40 are installed so as to be reciprocally slidable.
  • a discharge hole 4f for discharging the high-pressure working gas compressed by the compression mechanism portion 2 is formed in the central portion of the fixed base plate 4a.
  • a tubular boss portion 3c is formed on the surface side facing the surface on which the swing spiral teeth 3b are formed.
  • a swing bearing 26 is provided on the inner surface side of the boss portion 3c. The swing shaft portion 21 of the drive shaft 19 is inserted into the swing bearing 26, and the swing scroll 3 revolves due to the rotation of the swing shaft portion 21.
  • the compliant frame 31 is located below the oscillating base plate 3a of the oscillating scroll 3, and the oscillating scroll 3 is supported by the compliant frame 31 so as to revolve.
  • An old dam ring 40 oscillatingly supported by the compliant frame 31 is provided between the oscillating scroll 3 and the compliant frame 31 in order to give an oscillating motion while preventing the oscillating scroll 3 from rotating. Has been done.
  • a pair of swing-side oldham ring grooves 15b are formed in a straight line on the outer peripheral portion of the swing scroll 3.
  • the swinging side old dam ring groove 15b has a phase difference of about 90 degrees from the fixed side old dam ring groove 15a, and two pairs of swinging side keys 42b of the old dam ring 40 are installed so as to be reciprocally slidable. ..
  • a thrust surface 3d slidable with the thrust surface 33 of the compliant frame 31 is formed on the outer peripheral portion of the surface on which the boss portion 3c is formed.
  • a reciprocating sliding surface 41 is formed on the outer peripheral portion of the thrust surface 33 of the compliant frame 31, and the swinging side key 42b of the old dam ring 40 slides reciprocatingly.
  • the outer peripheral space of the base plate hereinafter, the suction side space 8 outside the fixed spiral teeth 4b of the fixed scroll 4 and the swinging spiral teeth 3b of the swing scroll 3 is a low pressure space having an suction gas atmosphere which is the suction pressure. It has become.
  • the electric motor 16 rotationally drives the drive shaft 19, has an electric motor rotor 16a and an electric motor stator 16b, has a variable rotation speed, and generates a rotational force.
  • the motor rotor 16a is fixed to the drive shaft 19 by shrink fitting or the like, and the motor stator 16b is fixed to the closed container 1 by shrink fitting or the like.
  • a glass terminal (not shown) is connected to the motor stator 16b, and the glass terminal is connected to a lead wire (not shown) for obtaining electric power from the outside. Then, when the electric power is supplied to the electric motor stator 16b, the drive shaft 19 and the electric motor rotor 16a rotate with respect to the electric motor stator 16b.
  • a balance weight 18a and a balance weight 18b are fixed to the motor rotor 16a and the drive shaft 19 in order to balance the entire rotating system in the scroll compressor 100.
  • the drive shaft 19 transmits the rotational force generated by the electric motor 16 to the compression mechanism unit 2.
  • the drive shaft 19 has a spindle portion 20 joined to the motor rotor 16a, a swing shaft portion 21 provided above the spindle portion 20, and a sub-shaft portion 22 provided below the spindle portion 20. ..
  • the central axis of the swing shaft portion 21 is eccentric from the central axis of the main shaft portion 20.
  • the drive shaft 19 is a sub-shaft with a main bearing 25 provided on the inner peripheral surface of the compliant frame 31 supporting the main shaft portion 20 and a sub-bearing 27 provided in the sub-frame 37 fixedly supported by the closed container 1. Part 22 is supported. Further, the lower end surface of the drive shaft 19 is supported by its own weight by the thrust bearing 28.
  • the main bearing 25 and the sub-bearing 27 have a cylindrical structure, and are composed of a bearing structure made of a slide bearing such as a copper-lead alloy, so that the main shaft portion 20 and the sub-shaft portion 22 of the drive shaft 19 can be rotated. It supports.
  • An oil supply passage 23, a supply passage 24a, and a supply passage 24b are formed inside the drive shaft 19.
  • the oil supply passage 23 is formed so as to extend the inside of the drive shaft 19 in the axial direction from the lower end portion of the drive shaft 19 toward the upper end portion.
  • the supply path 24a and the supply path 24b are formed so as to extend in the radial direction inside the drive shaft 19 and lead to the oil supply path 23.
  • the supply path 24b is installed at a position where the opening thereof is covered with the main bearing 25. The oil is supplied to each sliding portion such as the main bearing 25 and the sub bearing 27 via the oil supply path 23, the supply path 24a and the supply path 24b.
  • the check valve 9 overcomes the spring force of the spring 10 by the low-pressure (suction pressure) working gas that has flowed into the suction pipe 7, and is pushed down to the valve stop (not shown). After that, the working gas flows into the suction side space 8 in the closed container 1.
  • the drive shaft 19 rotates when electric power is supplied from the inverter device (not shown) to the electric motor 16.
  • the swing shaft portion 21 rotates due to the rotation of the drive shaft 19, and the swing scroll 3 performs a swing motion (revolution motion).
  • the working gas is sucked into the outermost chamber of the plurality of compression chambers 12 formed between the swing scroll 3 and the fixed scroll 4.
  • the outermost chamber reduces the volume while moving from the outer peripheral portion toward the center along with the rocking motion of the rocking scroll 3, and boosts the working gas from low pressure to high pressure.
  • the boosted working gas is guided to the high-pressure gas atmosphere 6 from the discharge hole 4f, passes through the flow path 14a, makes the inside of the closed container 1 a high-pressure gas atmosphere 6, and the discharge pipe 11 provided on the side surface of the closed container 1. Is discharged to the outside.
  • the working gas of the intermediate pressure during compression by the compression mechanism unit 2 is guided from the bleeding hole 3e of the rocking base plate 3a to the compliant frame lower space 32b via the gas introduction flow path 14.
  • the intermediate pressure is a pressure equal to or higher than the suction pressure and lower than the discharge pressure.
  • the compliant frame lower space 32b is a space sealed by the upper annular seal member 36a and the lower annular seal member 36b. Therefore, the compliant frame 31 floats in the axial direction due to the intermediate pressure working gas introduced into the compliant frame lower space 32b.
  • the intermediate pressure Pm1 of the intermediate pressure space 38 is "a predetermined pressure ⁇ determined by the elastic force of the intermediate pressure adjusting spring 39c and the area exposed to the intermediate pressure of the intermediate pressure adjusting valve 39a" and “the suction side space 8". It is the sum of the pressure Ps and Ps + ⁇ .
  • the intermediate pressure Pm2 of the compliant frame lower space 32b is the product of "a predetermined magnification ⁇ determined by the position of the communicating compression chamber 12" and "pressure Ps of the suction side space 8", and is Ps ⁇ ⁇ . It becomes.
  • the intermediate pressure Pm1 and the intermediate pressure Pm2 act downward on the compliant frame 31, and the high pressure Pd due to the high pressure gas atmosphere 6 acts upward on the lower end surface 34 of the compliant frame.
  • the upward load acting on the compliant frame 31 by the pressure Pd is larger than the downward load acting on the compliant frame 31 by the intermediate pressure Pm1 and the intermediate pressure Pm2. Therefore, the compliant frame 31 floats in the axial direction along the inner peripheral surface of the guide frame 30.
  • the swing scroll 3 also floats via the thrust surface 33, so that the gap between the tips of the spiral teeth of the fixed scroll 4 and the swing scroll 3 forming the compression chamber 12 and the base plate becomes small.
  • the high-pressure working gas is less likely to leak from the compression chamber 12, and a highly efficient scroll compressor can be obtained.
  • the drive shaft 19 rotates with the rotation of the electric motor rotor 16a
  • the inside of the closed container 1 is filled with the gas compressed by the compression mechanism unit 2 to create a high-pressure gas atmosphere 6. Since the oil reservoir space 5 exposed to the high-pressure gas atmosphere 6 and the suction side space 8 of the compression mechanism unit 2 communicate with each other through the oil supply passage 23 of the drive shaft 19, the oil in the oil reservoir space 5 is affected by the differential pressure. It is sucked up.
  • This oil is supplied from the oil supply path 23, the supply path 24a and the supply path 24b to the main bearing 25, the sub bearing 27 and the swing bearing 26, respectively.
  • the oil supplied to the sub-bearing 27 lubricates the sub-bearing 27 and is then returned to the oil reservoir space 5 below the closed container 1.
  • the oil that has passed through the oil supply passage 23 and rises and is supplied to the main bearing 25 is guided to the intermediate pressure space 38 or the high pressure gas atmosphere 6 after lubricating the space between the main bearing 25 and the main shaft portion 20.
  • the oil supplied to the boss portion 3c of the swing scroll 3 lubricates the swing bearing 26, is depressurized in the process, becomes an intermediate pressure, and is eventually guided to the intermediate pressure space 38.
  • the oil guided to the intermediate pressure space 38 overcomes the spring force of the intermediate pressure adjusting spring 39c when passing through the through flow path 39e, pushes up the intermediate pressure adjusting valve 39a, and once discharges to the compliant frame upper space 32a. Will be done. After that, this oil is discharged inside the Oldam ring 40 and supplied to the suction side space 8.
  • the present embodiment is characterized in a structure in which the suction volume is adjusted and the capacity is controlled without changing the peripheral structure of the scroll compressor. Further, in the present embodiment, the suction volume is adjusted without reducing the rotation speed of the electric motor 16 to switch between full load operation and partial load operation.
  • the capacity control technique of the present embodiment will be described.
  • FIG. 2 is a schematic cross-sectional view of the compression mechanism portion of the scroll compressor according to the embodiment.
  • FIG. 3 is an explanatory diagram of the operation of the autonomous movable tooth in the fixed scroll of the scroll compressor according to the embodiment.
  • FIG. 3A shows the position of the autonomous movable tooth during full load operation
  • FIG. 3B shows the position of the autonomous movable tooth during partial load operation.
  • FIG. 4 is a schematic vertical cross-sectional view showing a state in which the autonomous movable teeth are removed from the fixed scroll of the scroll compressor according to the embodiment.
  • FIG. 5 is a schematic cross-sectional view showing a state in which the autonomous movable teeth are removed from the fixed scroll of the scroll compressor according to the embodiment.
  • FIG. 6 is a perspective view of the autonomous movable teeth of the scroll compressor according to the embodiment.
  • the fixed scroll 4 of the present embodiment has an insertion hole 46 formed so as to penetrate in the axial direction as shown in FIGS. 3 and 4, and the autonomous movable tooth 50 can be moved in the axial direction in the insertion hole 46. It has been inserted.
  • the autonomous movable tooth 50 operates autonomously by the force relationship acting on the autonomous movable tooth 50, and switches between full load operation and partial load operation. Specifically, the autonomous movable tooth 50 moves downward, that is, toward the swing scroll 3 side as shown in FIG. 3A when the load is high, whereby the scroll compressor 100 performs the high load operation. When the load is low, the autonomous movable tooth 50 moves upward, that is, in a direction away from the swing scroll 3, whereby the scroll compressor 100 performs a partial load operation.
  • the specific configuration and operation of the autonomous movable tooth 50 will be described in detail again.
  • the insertion hole 46 has a stepped communication hole 44 formed in the fixed base plate 4a and a tooth hole 45 formed in the fixed spiral tooth 4b as shown in FIGS. 4 and 5.
  • the stepped communication hole 44 and the tooth hole 45 communicate with each other in the axial direction.
  • the stepped communication hole 44 has a columnar upper hole 44a and a columnar lower hole 44b having a diameter smaller than that of the upper hole 44a.
  • the tooth hole 45 is formed by cutting out the fixed spiral tooth 4b from the base end portion to the tip end portion facing the rocking base plate 3a.
  • the autonomous movable tooth 50 mainly has a pressure receiving portion 51 having a columnar shape and a partial spiral tooth 53 integrally formed with the pressure receiving portion 51.
  • the pressure receiving portion 51 has a diameter larger than the outer shape of the partial spiral tooth 53 when viewed in a plane, and is inserted into the upper hole 44a of the insertion hole 46.
  • the partial spiral tooth 53 is inserted into the lower hole 44b and the tooth hole 45 of the insertion hole 46.
  • the upper opening of the upper hole 44a is closed with a magnet 13.
  • the magnet 13 is held by the fixed base plate 4a by a magnetic force acting between the magnet 13 and the fixed scroll 4 made of iron.
  • the magnet 13 is provided to attract the autonomous movable tooth 50 and move the autonomous movable tooth 50 in a direction away from the swing scroll 3.
  • a step 44c for positioning the autonomous movable tooth 50 on the lower side in the axial direction is formed.
  • the fixed base plate 4a of the fixed scroll 4 is further formed with a high-pressure gas introduction flow path 43 extending radially inward from the outer peripheral surface of the fixed base plate 4a.
  • the radial inner end of the high pressure gas introduction flow path 43 communicates with the upper hole 44a of the stepped communication hole 44.
  • the high-pressure gas introduction flow path 43 communicates with the high-pressure gas atmosphere 6, and introduces the high-pressure gas of the high-pressure gas atmosphere 6 into the upper hole 44a.
  • the pressure receiving portion 51 of the autonomous movable tooth 50 has a curved surface 51a on the upper surface, and has a surface shape that is easily affected by the force of high pressure gas. Further, the pressure receiving portion 51 of the autonomous movable tooth 50 is provided with a seal groove 52, and a seal member (not shown) such as an O-ring is mounted on the seal groove 52 to form the pressure receiving portion 51 and the upper hole 44a. Is tightly sealed. As a result, the high-pressure gas introduced into the upper hole 44a from the high-pressure gas introduction flow path 43 is prevented from flowing into the compression mechanism portion 2.
  • both end surfaces of the partial spiral tooth 53 in the circumferential direction are tapered surfaces 53a, and the tapered surfaces along the inclined surface 45a (see FIG. 5) of the tooth hole 45 formed in the fixed spiral tooth 4b. It has become.
  • Each tapered surface 53a of the partial spiral tooth 53 is composed of an inclined surface whose distance from each other decreases from the inner side in the radial direction to the outer side in the radial direction.
  • the tapered surface 53a of the partial spiral tooth 53 is in the opposite direction, that is, the tapered surface in which the distance between the partial spiral teeth 53 increases from the inner side in the radial direction to the outer side in the radial direction, the following problems occur.
  • the pressure increases from the outer side in the radial direction toward the central portion, so that a gas load outward in the radial direction acts on the autonomous movable tooth 50. Therefore, if the tapered surface 53a of the partial spiral tooth 53 is inclined so that the distance between the partial spiral teeth 53 increases from the inside in the radial direction to the outside in the radial direction, the partial spiral tooth 53 is pressed outward in the radial direction by this gas load. , There is a possibility of forming a gap with the tooth hole 45. If a gap is formed between the partial spiral tooth 53 and the tooth hole 45, the compression efficiency is lowered, which is not preferable.
  • the tapered surface 53a of the partial spiral tooth 53 is composed of a tapered surface whose distance from each other decreases from the inner side in the radial direction to the outer side in the radial direction.
  • the pressure receiving portion 51 is in contact with the step 44c, and as shown in FIG. 3B, the pressure receiving portion 51 is separated from the step 44c of the pressure receiving portion 51. It moves up and down in the stepped communication hole 44 at a position where the upper surface abuts on the magnet 13.
  • the tip surface 53b of the partial spiral tooth 53 follows the tip surface 4ba of the fixed spiral tooth 4b excluding the partial spiral tooth 53. It is flush with the virtual surface 60.
  • the state in which the tip surface 53b of the partial spiral tooth 53 is flush with the virtual surface 60 is referred to as a “contact state”.
  • the tip surface 53b of the partial spiral tooth 53 is in a state of being separated from the virtual surface 60.
  • the state in which the tip surface 53b of the partial spiral tooth 53 is separated from the virtual surface 60 is referred to as a “separation state”.
  • a gap 61 is formed between the tip surface 53b of the autonomous movable tooth 50 and the virtual surface 60.
  • FIG. 7 is a spiral operation diagram showing a compression stroke when the autonomous movable teeth are in a separated state in the scroll compressor according to the embodiment. It should be noted that the illustration of the autonomous movable tooth is omitted in FIG. 7.
  • (a) shows the time when the suction is completed when the outermost chamber is formed, and the rotation phase of the drive shaft 19 in this state is set to 0 °.
  • (B), (c), and (d) show the states of the fixed spiral tooth 4b and the swinging spiral tooth 3b when the rotation phase is advanced by 90 ° from 0 °.
  • the suction volume when the autonomous movable tooth 50 is in contact is the volume V1 of the outermost chamber 70 indicated by dots in FIG. 7A.
  • the outermost chamber 70 that is, outer compression chambers 12a adjacent to each other in the radial direction with the autonomous movable teeth 50 as a boundary.
  • the inner compression chamber 12b communicate with each other through the gap 61.
  • the outer compression chamber 12a is formed between the outer surface of the fixed spiral tooth 4b and the inner surface of the swinging spiral tooth 3b.
  • the inner compression chamber 12b is formed between the inner surface of the fixed spiral tooth 4b and the outer surface of the swinging spiral tooth 3b.
  • the outer compression chamber 12a and the inner compression chamber 12b are not communicated with each other, so that the compression operation is started in the outer compression chamber 12a.
  • the compression of the working gas is continued, and when the outer compression chamber 12a becomes the innermost chamber, the maximum The working gas in the inner chamber is discharged from the discharge hole 4f.
  • the compression is started from the state shown in FIG. 7C, so that the volume V2 of the outer compression chamber 12a shown by the cross hatching becomes the suction volume.
  • the inner compression chamber 12b which is not communicated with the outer compression chamber 12a in FIG. 7C, communicates with the outside of the inner compression chamber 12b through the gap 61 in the rotation phase of FIG. 7D, so that it is compressed. It does not function as a room.
  • the suction volume is reduced from V1 to V2 as compared with the case where the autonomous movable tooth 50 is in the contact state. Therefore, the operation with a low load can be performed without reducing the rotation speed of the electric motor 16. That is, since it is not necessary to reduce the rotation speed of the electric motor 16 when the load is low, leakage of working gas can be prevented.
  • FIG. 8 is an explanatory diagram of a force acting on the autonomous movable teeth of the scroll compressor according to the embodiment.
  • the pressure in the closed container 1 gradually increases, and the pressure in the high pressure gas atmosphere 6 also increases. Since the high-pressure gas introduction flow path 43 communicates with the high-pressure gas atmosphere 6, the pressure of the high-pressure gas introduction flow path 43 is the same pressure Pd as the high-pressure gas atmosphere 6.
  • the gas force Fd due to the pressure Pd is applied downward in the axial direction to the curved surface 51a of the pressure receiving portion 51. Further, an axially upward force Fm is applied to the autonomous movable tooth 50 by the magnetic force of the magnet 13.
  • an axially upward force Fs due to the suction pressure Ps is applied to the tip surface 53b of the partial spiral tooth 53. Due to these force relationships, the autonomous movable tooth 50 moves up and down autonomously to switch between full load operation and partial load operation.
  • the scroll compressor 100 of the present embodiment includes a fixed scroll 4 having a fixed base plate 4a and fixed spiral teeth 4b formed on the fixed base plate 4a, a swing base plate 3a, and a rocking base. It has a swinging spiral tooth 3b formed on the plate 3a.
  • the scroll compressor 100 includes a swing scroll 3 in which the swing spiral teeth 3b are combined with the fixed spiral teeth 4b of the fixed scroll 4 to form a plurality of compression chambers 12 for compressing the working gas from low pressure to high pressure.
  • the drive shaft 19 for driving the scroll 3 and the insertion hole 46 formed through the fixed scroll 4 in the axial direction of the drive shaft 19 are inserted to form a part of the fixed spiral tooth 4b, and the inside of the insertion hole 46 is formed.
  • the autonomous movable tooth 50 that moves up and down autonomously and the fixed scroll 4 are provided, and the autonomous movable tooth 50 is pulled to the opposite side of the swing scroll 3 in the insertion hole 46 to pull the tip surface 43b of the autonomous movable tooth 50.
  • It has a magnet 13 that is separated from the swing base plate 3a, and a closed container 1 that houses a fixed scroll 4, a swing scroll 3, a drive shaft 19, an autonomous movable tooth 50, and a magnet 13.
  • the autonomous movable tooth 50 is autonomous inside the insertion hole 46 due to the magnitude relationship between the combined force of the magnetic force of the magnet 13 and the force acting on the autonomous movable tooth 50 by the low pressure and the force acting on the autonomous movable tooth 50 by the high pressure.
  • the tip surface 53b of the autonomous movable tooth 50 moves up and down so that it is flush with the tip surface 4ba of the fixed spiral tooth 4b excluding the autonomous movable tooth 50, and the separated state is separated without being flush with each other. Adjust the suction volume by switching to.
  • a part of the fixed spiral teeth 4b of the fixed scroll 4 is composed of autonomous movable teeth 50 that move up and down autonomously inside the insertion hole 46, and the magnetic force of the magnet 13 and the pressure in the closed container 1 are combined.
  • the tip surface 53b of the autonomous movable tooth 50 is flush with the tip surface 4ba of the fixed spiral tooth 4b excluding the autonomous movable tooth 50. It is configured to switch to a separated state without being separated.
  • the suction volume can be adjusted according to the position of the autonomous movable tooth 50 without changing the peripheral structure of the scroll compressor 100.
  • the autonomous movable tooth 50 when the force acting on the autonomous movable tooth 50 due to high pressure is larger than the resultant force, the autonomous movable tooth 50 is pressed toward the swing scroll 3 side, and among the plurality of compression chambers 12, Two compression chambers 12 adjacent to each other in the radial direction of the drive shaft 19 are partitioned by the autonomous movable tooth 50 as a boundary. Further, when the force acting on the autonomous movable tooth 50 due to the high pressure is equal to or less than the resultant force, the autonomous movable tooth 50 is pressed in a direction away from the swing scroll 3 to communicate the two compression chambers 12.
  • the two compression chambers 12 adjacent to each other in the radial direction of the drive shaft 19 are partitioned by the autonomous movable tooth 50 as a boundary, so that when the load is high. Full load operation can be performed. Further, when the force acting on the autonomous movable tooth 50 due to the high pressure is equal to or less than the resultant force, the two compression chambers 12 adjacent to each other in the radial direction of the drive shaft 19 with the autonomous movable tooth 50 as a boundary do not communicate with each other to perform the compression operation. Partial load operation can be performed when the load is low.
  • the autonomous movable tooth 50 has a columnar pressure receiving portion 51 and a partial spiral tooth 53, and the partial spiral tooth 53 forms a part of the fixed spiral tooth 4b.
  • the fixed base plate 4a is formed with a high-pressure gas introduction flow path 43 extending radially inward from the outer peripheral surface and communicating with the insertion hole 46, and the high-pressure gas introduction flow path 43 allows high-pressure operation in the closed container 1.
  • the gas is guided to the insertion hole 46, and a high pressure acts on the pressure receiving portion 51 of the autonomous movable tooth 50.
  • a high pressure can be applied to the pressure receiving portion 51 of the autonomous movable tooth 50 by the high pressure gas introduction flow path 43, and the autonomous movable tooth 50 can be operated by the pressure in the closed container 1.

Abstract

A scroll compressor includes: an autonomously-movable tooth that is inserted into an insertion hole penetrating through a fixed scroll and constitutes a part of fixed spiral teeth, the autonomously-movable tooth being configured to autonomously move up and down in the insertion hole; and a magnet that is provided on the fixed scroll and attracts the autonomously-movable tooth in the insertion hole toward a side away from a swing scroll so that an end face of the autonomously-movable tooth is moved away from a swing base plate. The autonomously-movable tooth autonomously moves up and down in the insertion hole according to a magnitude relation between: a force applied to the autonomously-movable tooth by a high pressure; and a combined force of a magnetic force of the magnet and a force applied to the autonomously-movable tooth by a low pressure. A suction volume is adjusted by switching between an abutting state in which the end face of the autonomously-movable tooth is flush with end surfaces of the fixed spiral teeth other than the autonomously-movable tooth and a spaced state in which the end face of the autonomously-movable tooth is not flush with the other end surfaces and is away from the swing base plate.

Description

スクロール圧縮機Scroll compressor
 本発明は、スクロール圧縮機における機械式容量制御技術に関するものである。 The present invention relates to a mechanical capacity control technique in a scroll compressor.
 従来から、固定スクロールと揺動スクロールとを組み合わせて形成した圧縮室にて流体を圧縮する圧縮機構部と、圧縮機構部に回転軸を介して連結された電動機とを備えたスクロール圧縮機が知られている。この種のスクロール圧縮機では、幅広い負荷範囲に対して高効率を実現するため、電動機をインバータ駆動とし、回転数を制御することによりスクロール圧縮機の容量制御を行う方法が知られている。しかし、低負荷時に回転数を低くしすぎると、圧縮室での冷媒漏れの増加等によりスクロール圧縮機効率が低下し、性能が低下する。このため、インバータによる回転数制御のみでは、低速の低負荷能力で高効率を維持することは難しい。 Conventionally, a scroll compressor equipped with a compression mechanism unit that compresses a fluid in a compression chamber formed by combining a fixed scroll and a swing scroll and an electric motor connected to the compression mechanism unit via a rotation shaft has been known. Has been done. In this type of scroll compressor, in order to realize high efficiency over a wide load range, a method is known in which the electric motor is driven by an inverter and the capacity of the scroll compressor is controlled by controlling the rotation speed. However, if the rotation speed is too low when the load is low, the efficiency of the scroll compressor is lowered due to an increase in refrigerant leakage in the compression chamber, and the performance is lowered. Therefore, it is difficult to maintain high efficiency with a low load capacity at a low speed only by controlling the rotation speed with an inverter.
 そこで、機械的に排除容積(吸入容積)を可変する機械式容量制御を用いたスクロール圧縮機が提案されている。機械式容量制御では、冷媒を圧縮する通常運転である全負荷運転と、圧縮室内の冷媒の一部を圧縮せずに吸込側へとバイパスさせ、圧縮開始時の容積を縮小することで容量を低減する部分負荷運転とを、電動機の回転数を落とさずに切り替えることで、低負荷時における性能を改善する。 Therefore, a scroll compressor using mechanical capacity control that mechanically changes the exclusion volume (suction volume) has been proposed. In mechanical capacity control, the capacity is reduced by full-load operation, which is a normal operation of compressing the refrigerant, and by bypassing a part of the refrigerant in the compression chamber to the suction side without compressing and reducing the volume at the start of compression. By switching between the reduced partial load operation and the reduced partial load operation without reducing the rotation speed of the motor, the performance at low load is improved.
 機械式容量制御を用いたスクロール圧縮機として、例えば特許文献1では、固定スクロールに、圧縮室と吸入室とを連通可能なバイパスポートを設け、バイパスポートをバイパス弁で開閉することで吸入容積を可変とするようにしている。バイパス弁は、スクロール圧縮機の外部に備えられた圧力切替装置によってバイパス弁に作用する圧力が高圧または低圧に切り替えられることにより、開閉動作する。 As a scroll compressor using mechanical capacity control, for example, in Patent Document 1, a bypass port capable of communicating a compression chamber and a suction chamber is provided in a fixed scroll, and the suction volume is increased by opening and closing the bypass port with a bypass valve. It is made variable. The bypass valve opens and closes by switching the pressure acting on the bypass valve to high pressure or low pressure by a pressure switching device provided outside the scroll compressor.
特願2016-217758号公報Japanese Patent Application No. 2016-217758
 特許文献1では、吸入容積を調整するにあたり、スクロール圧縮機の外部からバイパス弁に作用する圧力を調整する必要がある。つまり、スクロール圧縮機の外部に追加の配管等が必要であり、周囲構造の変更が必要であった。 In Patent Document 1, when adjusting the suction volume, it is necessary to adjust the pressure acting on the bypass valve from the outside of the scroll compressor. That is, additional piping or the like was required outside the scroll compressor, and the surrounding structure had to be changed.
 本発明は、上記のような課題を解決するためのものであり、スクロール圧縮機の周囲構造を変更することなく吸入容積を調整することが可能なスクロール圧縮機を提供することを目的とする。 The present invention is for solving the above-mentioned problems, and an object of the present invention is to provide a scroll compressor capable of adjusting the suction volume without changing the peripheral structure of the scroll compressor.
 本発明に係るスクロール圧縮機は、固定台板および固定台板に形成された固定渦巻歯を有する固定スクロールと、揺動台板および揺動台板に形成された揺動渦巻歯を有し、揺動渦巻歯が固定スクロールの固定渦巻歯に組み合わされて、作動ガスを低圧から高圧に圧縮する複数の圧縮室を形成する揺動スクロールと、揺動スクロールを駆動する駆動軸と、駆動軸の軸方向に固定スクロールを貫通して形成された挿入穴に挿入されて固定渦巻歯の一部を形成し、挿入穴の内部で自律的に上下動する自律可動歯と、固定スクロールに設けられ、自律可動歯を挿入穴内で揺動スクロールとは反対側に引き寄せて自律可動歯の先端面を揺動台板から離間させる磁石と、固定スクロール、揺動スクロール、駆動軸、自律可動歯および磁石を収容する密閉容器とを有し、自律可動歯は、磁石による磁力と低圧により自律可動歯に作用する力との合力と、高圧により自律可動歯に作用する力との大小関係によって、挿入穴の内部で自律的に上下動し、自律可動歯の先端面が、自律可動歯を除く固定渦巻歯の先端面と面一になる当接状態と、面一にならずに離間する離間状態とに切り替わることで吸入容積を調整するものである。 The scroll compressor according to the present invention has a fixed base plate and a fixed scroll having fixed spiral teeth formed on the fixed base plate, and a rocking base plate and swinging spiral teeth formed on the rocking base plate. The oscillating spiral tooth is combined with the fixed vortex tooth of the fixed scroll to form a plurality of compression chambers that compress the working gas from low pressure to high pressure, and the driving shaft for driving the oscillating scroll and the driving shaft. An autonomous movable tooth that is inserted into an insertion hole formed through a fixed scroll in the axial direction to form a part of a fixed spiral tooth and moves up and down autonomously inside the insertion hole, and a fixed scroll. A magnet that pulls the autonomous movable tooth in the insertion hole to the opposite side of the swing scroll to separate the tip surface of the autonomous movable tooth from the swing base plate, and a fixed scroll, swing scroll, drive shaft, autonomous movable tooth, and magnet. It has a closed container to accommodate, and the autonomous movable tooth has an insertion hole depending on the magnitude relationship between the resultant force of the magnetic force of the magnet and the force acting on the autonomous movable tooth by low pressure and the force acting on the autonomous movable tooth by high pressure. It moves up and down autonomously inside, and the tip surface of the autonomous movable tooth is in a contact state where it is flush with the tip surface of the fixed spiral tooth excluding the autonomous movable tooth, and in a separated state where it is separated without being flush. The suction volume is adjusted by switching.
 本発明のスクロール圧縮機によれば、固定スクロールの一部を自律可動歯で構成し、磁石による磁力と密閉容器内の圧力とに基づく自律可動歯の自律的な上下動により、自律可動歯の先端面が、自律可動歯を除く固定渦巻歯の先端面と面一になる当接状態と、面一にならずに離間する離間状態とに切り替わる。このため、スクロール圧縮機の周囲構造を変更することなく吸入容積を調整できる。 According to the scroll compressor of the present invention, a part of the fixed scroll is composed of autonomous movable teeth, and the autonomous movable teeth move up and down autonomously based on the magnetic force of the magnet and the pressure in the closed container. The tip surface is switched between a contact state in which the tip surface is flush with the tip surface of the fixed spiral tooth excluding the autonomous movable tooth and a separated state in which the tip surface is separated without being flush. Therefore, the suction volume can be adjusted without changing the peripheral structure of the scroll compressor.
実施の形態に係るスクロール圧縮機を示す縦断面模式図である。It is a vertical cross-sectional schematic diagram which shows the scroll compressor which concerns on embodiment. 実施の形態に係るスクロール圧縮機の圧縮機構部の横断面模式図である。It is sectional drawing of the compression mechanism part of the scroll compressor which concerns on embodiment. 実施の形態に係るスクロール圧縮機の固定スクロールにおける自律可動歯の動作説明図である。It is operation explanatory figure of the autonomous movable tooth in the fixed scroll of the scroll compressor which concerns on embodiment. 実施の形態に係るスクロール圧縮機の固定スクロールから自律可動歯を取り外した状態を示す縦断面模式図である。FIG. 5 is a schematic vertical cross-sectional view showing a state in which autonomous movable teeth are removed from the fixed scroll of the scroll compressor according to the embodiment. 実施の形態に係るスクロール圧縮機の固定スクロールから自律可動歯を取り外した状態の横断面模式図である。FIG. 5 is a schematic cross-sectional view showing a state in which autonomous movable teeth are removed from the fixed scroll of the scroll compressor according to the embodiment. 実施の形態に係るスクロール圧縮機の自律可動歯の斜視図である。It is a perspective view of the autonomous movable tooth of the scroll compressor which concerns on embodiment. 実施の形態に係るスクロール圧縮機において自律可動歯が離間状態にあるときの圧縮行程を示す渦巻動作図である。It is a spiral operation diagram which shows the compression stroke when the autonomous movable tooth is separated in the scroll compressor which concerns on embodiment. 実施の形態に係るスクロール圧縮機の自律可動歯に作用する力の説明図である。It is explanatory drawing of the force acting on the autonomous movable tooth of the scroll compressor which concerns on embodiment.
実施の形態
 図1は、実施の形態に係るスクロール圧縮機を示す縦断面模式図である。以下、図1を参照しながらスクロール圧縮機100の構成について説明する。図1のスクロール圧縮機100は、いわゆる縦置型のスクロール圧縮機であって、例えば冷媒等の作動ガスを圧縮し吐出するものである。図1においてZ方向は軸方向を示している。
Embodiment FIG. 1 is a schematic vertical cross-sectional view showing a scroll compressor according to the embodiment. Hereinafter, the configuration of the scroll compressor 100 will be described with reference to FIG. The scroll compressor 100 of FIG. 1 is a so-called vertical scroll compressor, which compresses and discharges a working gas such as a refrigerant. In FIG. 1, the Z direction indicates the axial direction.
 スクロール圧縮機100は、密閉容器1と、揺動スクロール3および固定スクロール4を有する圧縮機構部2と、電動機16と、駆動軸19と、油溜め空間5とを備える。 The scroll compressor 100 includes a closed container 1, a compression mechanism unit 2 having a swing scroll 3 and a fixed scroll 4, an electric motor 16, a drive shaft 19, and an oil reservoir space 5.
 密閉容器1は、例えば円筒形状に形成されており、耐圧性を有している。密閉容器1の側面には、作動ガスを密閉容器1内に取り込むための吸入配管7が接続されている。密閉容器1の他の側面には、圧縮した作動ガスを密閉容器1から外へと吐出する吐出配管11が接続されている。配管内の矢印は、作動ガスの流れる方向を示す。吸入配管7の内部には、逆止弁9とバネ10とが配置されている。逆止弁9は、バネ10により吸入配管7を閉じる方向に付勢されており、作動ガスの逆流を防ぐ。 The closed container 1 is formed in a cylindrical shape, for example, and has pressure resistance. A suction pipe 7 for taking the working gas into the closed container 1 is connected to the side surface of the closed container 1. A discharge pipe 11 for discharging compressed working gas from the closed container 1 to the outside is connected to the other side surface of the closed container 1. The arrow in the pipe indicates the direction in which the working gas flows. A check valve 9 and a spring 10 are arranged inside the suction pipe 7. The check valve 9 is urged by the spring 10 in the direction of closing the suction pipe 7, and prevents the backflow of the working gas.
 密閉容器1は、密閉容器1内に高圧ガス雰囲気6を有する。密閉容器1の底部には、冷凍機油(以下、油)を貯留するための油溜め空間5が形成されている。油溜め空間5は、高圧ガス雰囲気6中に有り、駆動軸19の下端部を支持するサブフレーム37よりも下、サブフレーム37に設けられた副軸受27よりも下、駆動軸19の下端部よりも下などにある空間である。駆動軸19の下端面は、スラスト軸受28で支持されている。スラスト軸受28はサブフレーム37に固定されたホルダー29に固定されている。そして、密閉容器1内に圧縮機構部2、電動機16および駆動軸19が収容されている。 The closed container 1 has a high pressure gas atmosphere 6 in the closed container 1. An oil reservoir space 5 for storing refrigerating machine oil (hereinafter referred to as oil) is formed at the bottom of the closed container 1. The oil reservoir space 5 is located in the high-pressure gas atmosphere 6, is below the subframe 37 that supports the lower end of the drive shaft 19, is below the auxiliary bearing 27 provided on the subframe 37, and is below the lower end of the drive shaft 19. It is a space below. The lower end surface of the drive shaft 19 is supported by a thrust bearing 28. The thrust bearing 28 is fixed to a holder 29 fixed to the subframe 37. The compression mechanism unit 2, the electric motor 16, and the drive shaft 19 are housed in the closed container 1.
 密閉容器1内において、電動機16の上部且つ圧縮機構部2の下部にはガイドフレーム30が密閉容器1に固定されており、電動機16の下部には駆動軸19を保持するサブフレーム37が密閉容器1に固定されている。ガイドフレーム30の内周側にはコンプライアントフレーム31が収納されている。ガイドフレーム30の内周面の圧縮機構部2側には、上部嵌合円筒面30aが形成されている。この上部嵌合円筒面30aは、コンプライアントフレーム31の外周面に形成された上部嵌合円筒面35aと係合されている。上部嵌合円筒面30aと上部嵌合円筒面35aとの間の周方向の一部には隙間が形成されてコンプライアントフレーム上部空間32aを形成している。 In the closed container 1, a guide frame 30 is fixed to the closed container 1 at the upper part of the electric motor 16 and the lower part of the compression mechanism portion 2, and a subframe 37 holding the drive shaft 19 is fixed at the lower part of the electric motor 16. It is fixed at 1. The compliant frame 31 is housed on the inner peripheral side of the guide frame 30. An upper fitting cylindrical surface 30a is formed on the compression mechanism portion 2 side of the inner peripheral surface of the guide frame 30. The upper fitting cylindrical surface 30a is engaged with the upper fitting cylindrical surface 35a formed on the outer peripheral surface of the compliant frame 31. A gap is formed in a part of the circumferential direction between the upper fitting cylindrical surface 30a and the upper fitting cylindrical surface 35a to form the compliant frame upper space 32a.
 一方、ガイドフレーム30の内周面の電動機16側には、下部嵌合円筒面30bが形成されている。この下部嵌合円筒面30bは、コンプライアントフレーム31の外周面に形成された下部嵌合円筒面35bと係合されている。コンプライアントフレーム31の外周面の2ヶ所には、上部円環状シール部材36aおよび下部円環状シール部材36bが配置されている。ガイドフレーム30の内面とコンプライアントフレーム31の外面との間は、上部円環状シール部材36aおよび下部円環状シール部材36bで仕切られている。 On the other hand, a lower fitting cylindrical surface 30b is formed on the motor 16 side of the inner peripheral surface of the guide frame 30. The lower fitting cylindrical surface 30b is engaged with the lower fitting cylindrical surface 35b formed on the outer peripheral surface of the compliant frame 31. An upper annular seal member 36a and a lower annular seal member 36b are arranged at two locations on the outer peripheral surface of the compliant frame 31. The inner surface of the guide frame 30 and the outer surface of the compliant frame 31 are partitioned by an upper annular seal member 36a and a lower annular seal member 36b.
 上部円環状シール部材36aと下部円環状シール部材36bとの間には、コンプライアントフレーム下部空間32bが設けられている。なお、上部円環状シール部材36aおよび下部円環状シール部材36bは、図1においてコンプライアントフレーム31の外周面の2ヶ所に配置されているが、シール部材の位置は図1の例に限られない。例えば、上部円環状シール部材36aおよび下部円環状シール部材36bは、ガイドフレーム30の内周面の2ヶ所に配置されても良い。 A compliant frame lower space 32b is provided between the upper annular seal member 36a and the lower annular seal member 36b. The upper annular seal member 36a and the lower annular seal member 36b are arranged at two locations on the outer peripheral surface of the compliant frame 31 in FIG. 1, but the positions of the seal members are not limited to the example of FIG. .. For example, the upper annular seal member 36a and the lower annular seal member 36b may be arranged at two locations on the inner peripheral surface of the guide frame 30.
 コンプライアントフレーム31には、揺動スクロール3と摺動するスラスト面33とコンプライアントフレーム下部空間32bとを連通するガス導入流路14が形成されている。ガス導入流路14は、揺動スクロール3の後述の揺動台板3aに形成された抽気孔3eと連通するように設けられている。さらに、ガイドフレーム30と密閉容器1の内壁との間には、流路14aが形成されている。流路14aは、固定スクロール4の後述の固定台板4aに形成された吐出孔4fから流出した高圧の作動ガスが通る流路である。 The compliant frame 31 is formed with a gas introduction flow path 14 that communicates the thrust surface 33 that slides with the swing scroll 3 and the compliant frame lower space 32b. The gas introduction flow path 14 is provided so as to communicate with the bleeding hole 3e formed in the rocking base plate 3a described later of the rocking scroll 3. Further, a flow path 14a is formed between the guide frame 30 and the inner wall of the closed container 1. The flow path 14a is a flow path through which the high-pressure working gas flowing out from the discharge hole 4f formed in the fixed base plate 4a described later of the fixed scroll 4 passes.
 揺動スクロール3に設けられたボス部3cの外部とコンプライアントフレーム31との間には、吐出圧より低く、かつ吸入圧よりも高い圧力の中間圧の空間である中間圧空間38が形成されている。また、コンプライアントフレーム31には、中間圧調整弁空間39dが形成されており、中間圧調整弁空間39dには、中間圧空間38の圧力を調整する中間圧調整弁39aと、中間圧調整弁おさえ39bと、中間圧調整バネ39cとが配置されている。なお、中間圧調整バネ39cは自然長より縮められて中間圧調整弁空間39dに収納されている。さらに、コンプライアントフレーム31には、中間圧空間38と中間圧調整弁空間39dとを連通する貫通流路39eが形成されている。 An intermediate pressure space 38, which is an intermediate pressure space having a pressure lower than the discharge pressure and higher than the suction pressure, is formed between the outside of the boss portion 3c provided on the swing scroll 3 and the compliant frame 31. ing. Further, an intermediate pressure adjusting valve space 39d is formed in the compliant frame 31, and an intermediate pressure adjusting valve 39a for adjusting the pressure in the intermediate pressure space 38 and an intermediate pressure adjusting valve are formed in the intermediate pressure adjusting valve space 39d. A holding 39b and an intermediate pressure adjusting spring 39c are arranged. The intermediate pressure adjusting spring 39c is shortened from its natural length and is housed in the intermediate pressure adjusting valve space 39d. Further, the compliant frame 31 is formed with a through flow path 39e that communicates the intermediate pressure space 38 and the intermediate pressure adjusting valve space 39d.
 また、中間圧調整弁空間39dとコンプライアントフレーム上部空間32aとは連通している。さらに、コンプライアントフレーム上部空間32aは、オルダムリング40の内側に連通するように形成されている。したがって、中間圧空間38とオルダムリング40の往復摺動面41とは、貫通流路39e、中間圧調整弁空間39d、コンプライアントフレーム上部空間32aを介して連通している。 Further, the intermediate pressure regulating valve space 39d and the compliant frame upper space 32a communicate with each other. Further, the compliant frame upper space 32a is formed so as to communicate with the inside of the old dam ring 40. Therefore, the intermediate pressure space 38 and the reciprocating sliding surface 41 of the old dam ring 40 communicate with each other via the through flow path 39e, the intermediate pressure adjusting valve space 39d, and the compliant frame upper space 32a.
 圧縮機構部2は、吸入配管7から密閉容器1内に吸入される作動ガスを圧縮するものであり、揺動スクロール3および固定スクロール4を有する。固定スクロール4は、揺動スクロール3の上部に配置されている。固定スクロール4は、例えば鋳鉄等の金属で構成されており、密閉容器1に固定支持されたガイドフレーム30にボルト(図示せず)等で固定されている。 The compression mechanism unit 2 compresses the working gas sucked into the closed container 1 from the suction pipe 7, and has a swing scroll 3 and a fixed scroll 4. The fixed scroll 4 is arranged above the swing scroll 3. The fixed scroll 4 is made of a metal such as cast iron, and is fixed to a guide frame 30 fixedly supported by the closed container 1 with bolts (not shown) or the like.
 固定スクロール4は、固定台板4aと、固定台板4aの一方の面に形成された固定渦巻歯4bとを有する。揺動スクロール3は、揺動台板3aと、揺動台板3aの一方の面に形成された揺動渦巻歯3bとを有する。固定スクロール4および揺動スクロール3は、固定渦巻歯4bと揺動渦巻歯3bとが互いに向き合うように組み合わされて密閉容器1内に配置されている。固定渦巻歯4bと揺動渦巻歯3bとは、逆位相で組み合わされており、固定スクロール4の固定渦巻歯4bおよび揺動スクロール3の揺動渦巻歯3bとの間に圧縮室12が形成されている。 The fixed scroll 4 has a fixed base plate 4a and fixed spiral teeth 4b formed on one surface of the fixed base plate 4a. The rocking scroll 3 has a rocking base plate 3a and a rocking spiral tooth 3b formed on one surface of the rocking base plate 3a. The fixed scroll 4 and the swing scroll 3 are arranged in the closed container 1 by combining the fixed spiral teeth 4b and the swing spiral teeth 3b so as to face each other. The fixed spiral tooth 4b and the swinging spiral tooth 3b are combined in opposite phases, and a compression chamber 12 is formed between the fixed spiral tooth 4b of the fixed scroll 4 and the swinging spiral tooth 3b of the swing scroll 3. ing.
 固定スクロール4の外周部には2個1対の固定側オルダムリング溝15aが一直線上に形成されている。固定側オルダムリング溝15aには、オルダムリング40の2個1対の固定側キー42aが往復摺動自在に設置されている。固定台板4aの中心部には、圧縮機構部2で圧縮された高圧の作動ガスを吐出するための吐出孔4fが形成されている。 A pair of fixed side old dam ring grooves 15a are formed in a straight line on the outer peripheral portion of the fixed scroll 4. In the fixed side old dam ring groove 15a, two pairs of fixed side keys 42a of the old dam ring 40 are installed so as to be reciprocally slidable. A discharge hole 4f for discharging the high-pressure working gas compressed by the compression mechanism portion 2 is formed in the central portion of the fixed base plate 4a.
 揺動スクロール3の揺動台板3aにおいて、揺動渦巻歯3bが形成されている面と対向する面側には筒状のボス部3cが形成されている。ボス部3cの内面側には、揺動軸受26が設けられている。揺動軸受26には駆動軸19の揺動軸部21が挿入されており、揺動軸部21の回転により、揺動スクロール3が公転運動を行う。 In the swing base plate 3a of the swing scroll 3, a tubular boss portion 3c is formed on the surface side facing the surface on which the swing spiral teeth 3b are formed. A swing bearing 26 is provided on the inner surface side of the boss portion 3c. The swing shaft portion 21 of the drive shaft 19 is inserted into the swing bearing 26, and the swing scroll 3 revolves due to the rotation of the swing shaft portion 21.
 揺動スクロール3の揺動台板3aの下方にコンプライアントフレーム31が位置しており、揺動スクロール3は、コンプライアントフレーム31に公転運動可能に支持されている。揺動スクロール3とコンプライアントフレーム31との間には、揺動スクロール3の自転を防止しながら揺動運動を与えるために、コンプライアントフレーム31に揺動自在に支持されたオルダムリング40が設けられている。揺動スクロール3の外周部には2個1対の揺動側オルダムリング溝15bが一直線上に形成されている。この揺動側オルダムリング溝15bは、固定側オルダムリング溝15aと約90度の位相差を持ち、オルダムリング40の2個1対の揺動側キー42bが往復摺動自在に設置されている。 The compliant frame 31 is located below the oscillating base plate 3a of the oscillating scroll 3, and the oscillating scroll 3 is supported by the compliant frame 31 so as to revolve. An old dam ring 40 oscillatingly supported by the compliant frame 31 is provided between the oscillating scroll 3 and the compliant frame 31 in order to give an oscillating motion while preventing the oscillating scroll 3 from rotating. Has been done. A pair of swing-side oldham ring grooves 15b are formed in a straight line on the outer peripheral portion of the swing scroll 3. The swinging side old dam ring groove 15b has a phase difference of about 90 degrees from the fixed side old dam ring groove 15a, and two pairs of swinging side keys 42b of the old dam ring 40 are installed so as to be reciprocally slidable. ..
 揺動スクロール3の揺動台板3aにおいて、ボス部3cが形成されている面の外周部には、コンプライアントフレーム31のスラスト面33と摺動可能なスラスト面3dが形成されている。コンプライアントフレーム31のスラスト面33の外周部には、往復摺動面41が形成されており、オルダムリング40の揺動側キー42bが往復摺動する。ここで、固定スクロール4の固定渦巻歯4bと揺動スクロール3の揺動渦巻歯3bの外側の台板外周部空間(以下、吸入側空間8)は、吸入圧である吸入ガス雰囲気の低圧空間となっている。 In the rocking base plate 3a of the rocking scroll 3, a thrust surface 3d slidable with the thrust surface 33 of the compliant frame 31 is formed on the outer peripheral portion of the surface on which the boss portion 3c is formed. A reciprocating sliding surface 41 is formed on the outer peripheral portion of the thrust surface 33 of the compliant frame 31, and the swinging side key 42b of the old dam ring 40 slides reciprocatingly. Here, the outer peripheral space of the base plate (hereinafter, the suction side space 8) outside the fixed spiral teeth 4b of the fixed scroll 4 and the swinging spiral teeth 3b of the swing scroll 3 is a low pressure space having an suction gas atmosphere which is the suction pressure. It has become.
 電動機16は、駆動軸19を回転駆動させるものであって、電動機回転子16aおよび電動機固定子16bを有しており、回転数可変で、回転力を発生する。電動機回転子16aは焼嵌め等により駆動軸19に固定されており、電動機固定子16bは焼嵌め等により密閉容器1に固定されている。電動機固定子16bには、ガラス端子(図示せず)が接続されており、ガラス端子は外部から電力を得るためのリード線(図示せず)に接続されている。そして、電動機固定子16bに電力が供給されたとき、駆動軸19および電動機回転子16aが電動機固定子16bに対して回転する。なお、スクロール圧縮機100における回転系全体のバランシングを行うため、電動機回転子16aおよび駆動軸19にはバランスウェイト18aおよびバランスウェイト18bが固定されている。 The electric motor 16 rotationally drives the drive shaft 19, has an electric motor rotor 16a and an electric motor stator 16b, has a variable rotation speed, and generates a rotational force. The motor rotor 16a is fixed to the drive shaft 19 by shrink fitting or the like, and the motor stator 16b is fixed to the closed container 1 by shrink fitting or the like. A glass terminal (not shown) is connected to the motor stator 16b, and the glass terminal is connected to a lead wire (not shown) for obtaining electric power from the outside. Then, when the electric power is supplied to the electric motor stator 16b, the drive shaft 19 and the electric motor rotor 16a rotate with respect to the electric motor stator 16b. A balance weight 18a and a balance weight 18b are fixed to the motor rotor 16a and the drive shaft 19 in order to balance the entire rotating system in the scroll compressor 100.
 駆動軸19は、電動機16により発生する回転力を圧縮機構部2に伝える。駆動軸19は、電動機回転子16aに接合された主軸部20と、主軸部20の上部に設けられた揺動軸部21と、主軸部20の下部に設けられ副軸部22と、を有する。揺動軸部21は、その中心軸が主軸部20の中心軸から偏心している。駆動軸19は、コンプライアントフレーム31の内周面に設けられた主軸受25で主軸部20が支持され、密閉容器1に固定支持されたサブフレーム37内に設けられた副軸受27で副軸部22が支持されている。また、駆動軸19の下端面はスラスト軸受28にその自重を支えられている。主軸受25および副軸受27は円筒形の構造をしており、例えば銅鉛合金等の滑り軸受からなる軸受構造で構成され、駆動軸19の主軸部20および副軸部22を回転可能に軸支している。 The drive shaft 19 transmits the rotational force generated by the electric motor 16 to the compression mechanism unit 2. The drive shaft 19 has a spindle portion 20 joined to the motor rotor 16a, a swing shaft portion 21 provided above the spindle portion 20, and a sub-shaft portion 22 provided below the spindle portion 20. .. The central axis of the swing shaft portion 21 is eccentric from the central axis of the main shaft portion 20. The drive shaft 19 is a sub-shaft with a main bearing 25 provided on the inner peripheral surface of the compliant frame 31 supporting the main shaft portion 20 and a sub-bearing 27 provided in the sub-frame 37 fixedly supported by the closed container 1. Part 22 is supported. Further, the lower end surface of the drive shaft 19 is supported by its own weight by the thrust bearing 28. The main bearing 25 and the sub-bearing 27 have a cylindrical structure, and are composed of a bearing structure made of a slide bearing such as a copper-lead alloy, so that the main shaft portion 20 and the sub-shaft portion 22 of the drive shaft 19 can be rotated. It supports.
 駆動軸19の内部には、給油路23と、供給路24aおよび供給路24bとが形成されている。給油路23は、駆動軸19の下端部から上端部に向けて駆動軸19の内部を軸方向に延びて形成されている。供給路24aおよび供給路24bは、駆動軸19の内部を径方向に延びて形成されており、給油路23に通じている。供給路24bは、その開口部が主軸受25に覆われる位置に設置されている。油は、給油路23、供給路24aおよび供給路24bを介して主軸受25および副軸受27等の各摺動部位に供給される。 An oil supply passage 23, a supply passage 24a, and a supply passage 24b are formed inside the drive shaft 19. The oil supply passage 23 is formed so as to extend the inside of the drive shaft 19 in the axial direction from the lower end portion of the drive shaft 19 toward the upper end portion. The supply path 24a and the supply path 24b are formed so as to extend in the radial direction inside the drive shaft 19 and lead to the oil supply path 23. The supply path 24b is installed at a position where the opening thereof is covered with the main bearing 25. The oil is supplied to each sliding portion such as the main bearing 25 and the sub bearing 27 via the oil supply path 23, the supply path 24a and the supply path 24b.
 次に、スクロール圧縮機100の動作について説明する。吸入配管7に流れ込んだ低圧(吸入圧)の作動ガスにより、逆止弁9がバネ10のバネ力に打ち勝ち、弁止まり(図示せず)まで押し下げられる。その後、作動ガスは密閉容器1内の吸入側空間8に流入する。 Next, the operation of the scroll compressor 100 will be described. The check valve 9 overcomes the spring force of the spring 10 by the low-pressure (suction pressure) working gas that has flowed into the suction pipe 7, and is pushed down to the valve stop (not shown). After that, the working gas flows into the suction side space 8 in the closed container 1.
 一方、インバータ装置(図示せず)から電動機16へ電力が供給されることにより、駆動軸19が回転する。駆動軸19の回転により揺動軸部21が回転し、揺動スクロール3が揺動運動(公転運動)を行う。このとき、揺動スクロール3と固定スクロール4との間に形成された複数の圧縮室12のうち最外室に作動ガスが吸い込まれる。 On the other hand, the drive shaft 19 rotates when electric power is supplied from the inverter device (not shown) to the electric motor 16. The swing shaft portion 21 rotates due to the rotation of the drive shaft 19, and the swing scroll 3 performs a swing motion (revolution motion). At this time, the working gas is sucked into the outermost chamber of the plurality of compression chambers 12 formed between the swing scroll 3 and the fixed scroll 4.
 そして、最外室は、揺動スクロール3の揺動運動に伴い、外周部から中心方向に移動しながら容積を減じ、作動ガスを低圧から高圧へと昇圧させる。そして、昇圧した作動ガスは、吐出孔4fから高圧ガス雰囲気6に導かれ、流路14aを通り、密閉容器1の内部を高圧ガス雰囲気6とし、密閉容器1の側面に設けられた吐出配管11から外部へ吐出される。 Then, the outermost chamber reduces the volume while moving from the outer peripheral portion toward the center along with the rocking motion of the rocking scroll 3, and boosts the working gas from low pressure to high pressure. Then, the boosted working gas is guided to the high-pressure gas atmosphere 6 from the discharge hole 4f, passes through the flow path 14a, makes the inside of the closed container 1 a high-pressure gas atmosphere 6, and the discharge pipe 11 provided on the side surface of the closed container 1. Is discharged to the outside.
 圧縮機構部2で圧縮途中の中間圧の作動ガスは、揺動台板3aの抽気孔3eからガス導入流路14を介し、コンプライアントフレーム下部空間32bへと導かれる。中間圧とは、吸入圧以上、吐出圧以下の圧力である。コンプライアントフレーム下部空間32bは、上部円環状シール部材36aと下部円環状シール部材36bとで密閉された空間となっている。そのため、コンプライアントフレーム下部空間32bに導入された中間圧の作動ガスにより、コンプライアントフレーム31は軸方向に浮上する。 The working gas of the intermediate pressure during compression by the compression mechanism unit 2 is guided from the bleeding hole 3e of the rocking base plate 3a to the compliant frame lower space 32b via the gas introduction flow path 14. The intermediate pressure is a pressure equal to or higher than the suction pressure and lower than the discharge pressure. The compliant frame lower space 32b is a space sealed by the upper annular seal member 36a and the lower annular seal member 36b. Therefore, the compliant frame 31 floats in the axial direction due to the intermediate pressure working gas introduced into the compliant frame lower space 32b.
 中間圧空間38の中間圧力Pm1は、「中間圧調整バネ39cの弾性力と中間圧調整弁39aとの中間圧に晒された面積によって決定される所定の圧力α」と、「吸入側空間8の圧力Ps」との和であり、Ps+αとなる。また、コンプライアントフレーム下部空間32bの中間圧力Pm2は、「連通する圧縮室12の位置で決定される所定の倍率β」と「吸入側空間8の圧力Ps」との積であり、Ps×βとなる。 The intermediate pressure Pm1 of the intermediate pressure space 38 is "a predetermined pressure α determined by the elastic force of the intermediate pressure adjusting spring 39c and the area exposed to the intermediate pressure of the intermediate pressure adjusting valve 39a" and "the suction side space 8". It is the sum of the pressure Ps and Ps + α. Further, the intermediate pressure Pm2 of the compliant frame lower space 32b is the product of "a predetermined magnification β determined by the position of the communicating compression chamber 12" and "pressure Ps of the suction side space 8", and is Ps × β. It becomes.
 コンプライアントフレーム31には、中間圧力Pm1および中間圧力Pm2が下向きに作用し、コンプライアントフレーム下端面34には高圧ガス雰囲気6による高圧の圧力Pdが上向きに作用する。圧力Pdによりコンプライアントフレーム31に作用する上向きの荷重は、中間圧力Pm1および中間圧力Pm2によりコンプライアントフレーム31に作用する下向きの荷重よりも大きい。このため、コンプライアントフレーム31は、ガイドフレーム30の内周面に沿って軸方向に浮上する。 The intermediate pressure Pm1 and the intermediate pressure Pm2 act downward on the compliant frame 31, and the high pressure Pd due to the high pressure gas atmosphere 6 acts upward on the lower end surface 34 of the compliant frame. The upward load acting on the compliant frame 31 by the pressure Pd is larger than the downward load acting on the compliant frame 31 by the intermediate pressure Pm1 and the intermediate pressure Pm2. Therefore, the compliant frame 31 floats in the axial direction along the inner peripheral surface of the guide frame 30.
 これにより、揺動スクロール3もスラスト面33を介して浮上するため、圧縮室12を形成する固定スクロール4と揺動スクロール3とのそれぞれの渦巻歯の先端と台板との隙間が小さくなる。その結果、高圧の作動ガスは圧縮室12から漏れにくくなり、高効率なスクロール圧縮機を得ることができる。 As a result, the swing scroll 3 also floats via the thrust surface 33, so that the gap between the tips of the spiral teeth of the fixed scroll 4 and the swing scroll 3 forming the compression chamber 12 and the base plate becomes small. As a result, the high-pressure working gas is less likely to leak from the compression chamber 12, and a highly efficient scroll compressor can be obtained.
 一方、起動時または液圧縮時において、圧縮室12内が異常に高圧になる場合、揺動スクロール3に作用する軸方向のガス負荷が過大になる。そうすると、揺動スクロール3は、スラスト面33を介してコンプライアントフレーム31を押し下げる。すなわち固定スクロール4と揺動スクロール3のそれぞれの渦巻歯の先端と台板との間に比較的大きな隙間が生じる。この隙間により、圧縮室12内の異常な圧力上昇を抑制でき、摺動部の損傷がない信頼性の高いスクロール圧縮機を得ることができる。 On the other hand, if the pressure inside the compression chamber 12 becomes abnormally high during startup or liquid compression, the gas load in the axial direction acting on the swing scroll 3 becomes excessive. Then, the swing scroll 3 pushes down the compliant frame 31 via the thrust surface 33. That is, a relatively large gap is generated between the tips of the spiral teeth of the fixed scroll 4 and the swing scroll 3 and the base plate. With this gap, an abnormal increase in pressure in the compression chamber 12 can be suppressed, and a highly reliable scroll compressor without damage to the sliding portion can be obtained.
 次に、図1を参照して油の流れについて説明する。電動機回転子16aの回転に伴い、駆動軸19が回転すると、密閉容器1内が圧縮機構部2で圧縮されたガスで満たされ高圧ガス雰囲気6となる。高圧ガス雰囲気6に晒された油溜め空間5と圧縮機構部2の吸入側空間8とは、駆動軸19の給油路23で連通しているため、油溜め空間5の油は、差圧によって吸い上げられる。この油が、給油路23、供給路24aおよび供給路24bから、主軸受25、副軸受27および揺動軸受26にそれぞれ供給される。副軸受27に給油された油は副軸受27を潤滑した後、密閉容器1の下部の油溜め空間5に戻される。 Next, the flow of oil will be described with reference to FIG. When the drive shaft 19 rotates with the rotation of the electric motor rotor 16a, the inside of the closed container 1 is filled with the gas compressed by the compression mechanism unit 2 to create a high-pressure gas atmosphere 6. Since the oil reservoir space 5 exposed to the high-pressure gas atmosphere 6 and the suction side space 8 of the compression mechanism unit 2 communicate with each other through the oil supply passage 23 of the drive shaft 19, the oil in the oil reservoir space 5 is affected by the differential pressure. It is sucked up. This oil is supplied from the oil supply path 23, the supply path 24a and the supply path 24b to the main bearing 25, the sub bearing 27 and the swing bearing 26, respectively. The oil supplied to the sub-bearing 27 lubricates the sub-bearing 27 and is then returned to the oil reservoir space 5 below the closed container 1.
 給油路23を通過して上昇し、主軸受25に給油された油は、主軸部20との間を潤滑した後、中間圧空間38または、高圧ガス雰囲気6へと導かれる。主軸受25を通過後、揺動スクロール3のボス部3cまで供給された油は、揺動軸受26を潤滑し、その過程で減圧され、中間圧となり結果的に中間圧空間38に導かれる。中間圧空間38に導かれた油は、貫通流路39eを通る際に、中間圧調整バネ39cのバネ力に打ち勝ち、中間圧調整弁39aを押し上げて、一旦、コンプライアントフレーム上部空間32aに排出される。その後、この油はオルダムリング40の内側に排出され、吸入側空間8に供給される。 The oil that has passed through the oil supply passage 23 and rises and is supplied to the main bearing 25 is guided to the intermediate pressure space 38 or the high pressure gas atmosphere 6 after lubricating the space between the main bearing 25 and the main shaft portion 20. After passing through the main bearing 25, the oil supplied to the boss portion 3c of the swing scroll 3 lubricates the swing bearing 26, is depressurized in the process, becomes an intermediate pressure, and is eventually guided to the intermediate pressure space 38. The oil guided to the intermediate pressure space 38 overcomes the spring force of the intermediate pressure adjusting spring 39c when passing through the through flow path 39e, pushes up the intermediate pressure adjusting valve 39a, and once discharges to the compliant frame upper space 32a. Will be done. After that, this oil is discharged inside the Oldam ring 40 and supplied to the suction side space 8.
 また、一部の油は、中間圧空間38からスラスト面3dに給油された後に、往復摺動面41に供給され、吸入側空間8へと流入する。吸入側空間8へと流入した油は、低圧の作動ガスと共に圧縮機構部2へと吸入される。吸入された油は、圧縮機構部2を構成する固定スクロール4および揺動スクロール3の隙間のシールおよび潤滑をすることで正常な運転を可能にする。 Further, some oil is supplied to the reciprocating sliding surface 41 after being supplied from the intermediate pressure space 38 to the thrust surface 3d, and flows into the suction side space 8. The oil that has flowed into the suction side space 8 is sucked into the compression mechanism 2 together with the low-pressure working gas. The sucked oil enables normal operation by sealing and lubricating the gaps between the fixed scroll 4 and the swing scroll 3 constituting the compression mechanism unit 2.
 次に、本実施の形態の特徴部分の構成について説明する。本実施の形態は、スクロール圧縮機の周囲構造を変更することなく吸入容積を調整して容量制御を行う構造に特徴がある。また、本実施の形態では、電動機16の回転数を落とすことなく吸入容積を調整して、全負荷運転と部分負荷運転とを切り替える。以下、本実施の形態の容量制御技術について説明する。 Next, the configuration of the characteristic portion of the present embodiment will be described. The present embodiment is characterized in a structure in which the suction volume is adjusted and the capacity is controlled without changing the peripheral structure of the scroll compressor. Further, in the present embodiment, the suction volume is adjusted without reducing the rotation speed of the electric motor 16 to switch between full load operation and partial load operation. Hereinafter, the capacity control technique of the present embodiment will be described.
 図2は、実施の形態に係るスクロール圧縮機の圧縮機構部の横断面模式図である。図3は、実施の形態に係るスクロール圧縮機の固定スクロールにおける自律可動歯の動作説明図である。図3(a)は、全負荷運転時の自律可動歯の位置を示し、(b)は部分負荷運転時の自律可動歯の位置を示している。図4は、実施の形態に係るスクロール圧縮機の固定スクロールから自律可動歯を取り外した状態を示す縦断面模式図である。図5は、実施の形態に係るスクロール圧縮機の固定スクロールから自律可動歯を取り外した状態の横断面模式図である。図6は、実施の形態に係るスクロール圧縮機の自律可動歯の斜視図である。 FIG. 2 is a schematic cross-sectional view of the compression mechanism portion of the scroll compressor according to the embodiment. FIG. 3 is an explanatory diagram of the operation of the autonomous movable tooth in the fixed scroll of the scroll compressor according to the embodiment. FIG. 3A shows the position of the autonomous movable tooth during full load operation, and FIG. 3B shows the position of the autonomous movable tooth during partial load operation. FIG. 4 is a schematic vertical cross-sectional view showing a state in which the autonomous movable teeth are removed from the fixed scroll of the scroll compressor according to the embodiment. FIG. 5 is a schematic cross-sectional view showing a state in which the autonomous movable teeth are removed from the fixed scroll of the scroll compressor according to the embodiment. FIG. 6 is a perspective view of the autonomous movable teeth of the scroll compressor according to the embodiment.
 本実施の形態の固定スクロール4は、図3および図4に示すように軸方向に貫通して形成された挿入穴46を有し、挿入穴46に自律可動歯50が軸方向に移動可能に挿入されている。自律可動歯50は、自律可動歯50に作用する力関係により自律的に動作し、全負荷運転と部分負荷運転とを切り替える。具体的には、自律可動歯50は、高負荷時に図3(a)に示すように下方向、つまり揺動スクロール3側に移動し、これによりスクロール圧縮機100は高負荷運転を行う。自律可動歯50は、低負荷時に図3(b)に示すように上方向、つまり揺動スクロール3から離れる方向に移動し、これによりスクロール圧縮機100は部分負荷運転を行う。自律可動歯50の具体的な構成および動作については改めて詳述する。 The fixed scroll 4 of the present embodiment has an insertion hole 46 formed so as to penetrate in the axial direction as shown in FIGS. 3 and 4, and the autonomous movable tooth 50 can be moved in the axial direction in the insertion hole 46. It has been inserted. The autonomous movable tooth 50 operates autonomously by the force relationship acting on the autonomous movable tooth 50, and switches between full load operation and partial load operation. Specifically, the autonomous movable tooth 50 moves downward, that is, toward the swing scroll 3 side as shown in FIG. 3A when the load is high, whereby the scroll compressor 100 performs the high load operation. When the load is low, the autonomous movable tooth 50 moves upward, that is, in a direction away from the swing scroll 3, whereby the scroll compressor 100 performs a partial load operation. The specific configuration and operation of the autonomous movable tooth 50 will be described in detail again.
 挿入穴46は、図4および図5に示すように固定台板4aに形成された段付き連通穴44と、固定渦巻歯4bに形成された歯穴45とを有する。段付き連通穴44と歯穴45とは軸方向に連通している。段付き連通穴44は、円柱状の上部穴44aと、上部穴44aよりも小径で円柱状の下部穴44bとを有する。歯穴45は、固定渦巻歯4bを、基端部から揺動台板3aと対向する先端部まで切り欠いて形成されている。 The insertion hole 46 has a stepped communication hole 44 formed in the fixed base plate 4a and a tooth hole 45 formed in the fixed spiral tooth 4b as shown in FIGS. 4 and 5. The stepped communication hole 44 and the tooth hole 45 communicate with each other in the axial direction. The stepped communication hole 44 has a columnar upper hole 44a and a columnar lower hole 44b having a diameter smaller than that of the upper hole 44a. The tooth hole 45 is formed by cutting out the fixed spiral tooth 4b from the base end portion to the tip end portion facing the rocking base plate 3a.
 自律可動歯50は、図6に示すように主にその形状が円柱状の受圧部51と、受圧部51に一体に形成された部分渦巻歯53とを有する。受圧部51は、平面的に見て部分渦巻歯53の外形よりも大きい径で形成されており、挿入穴46の上部穴44aに挿入されている。部分渦巻歯53は、挿入穴46の下部穴44bおよび歯穴45に挿入されている。このように、部分渦巻歯53が歯穴45に挿入されることで、固定渦巻歯4bの少なくとも1箇所が部分渦巻歯53で構成されている。 As shown in FIG. 6, the autonomous movable tooth 50 mainly has a pressure receiving portion 51 having a columnar shape and a partial spiral tooth 53 integrally formed with the pressure receiving portion 51. The pressure receiving portion 51 has a diameter larger than the outer shape of the partial spiral tooth 53 when viewed in a plane, and is inserted into the upper hole 44a of the insertion hole 46. The partial spiral tooth 53 is inserted into the lower hole 44b and the tooth hole 45 of the insertion hole 46. By inserting the partial spiral tooth 53 into the tooth hole 45 in this way, at least one portion of the fixed spiral tooth 4b is composed of the partial spiral tooth 53.
 上部穴44aの上部開口は磁石13で塞がれている。磁石13は、鉄で形成された固定スクロール4との間に作用する磁力によって固定台板4aに保持されている。磁石13は、自律可動歯50を引き寄せ、自律可動歯50を揺動スクロール3から離れる方向に移動させるために設けられている。上部穴44aと下部穴44bとの境界部分には、自律可動歯50の軸方向下側の位置決めを行う段差44cが形成されている。 The upper opening of the upper hole 44a is closed with a magnet 13. The magnet 13 is held by the fixed base plate 4a by a magnetic force acting between the magnet 13 and the fixed scroll 4 made of iron. The magnet 13 is provided to attract the autonomous movable tooth 50 and move the autonomous movable tooth 50 in a direction away from the swing scroll 3. At the boundary between the upper hole 44a and the lower hole 44b, a step 44c for positioning the autonomous movable tooth 50 on the lower side in the axial direction is formed.
 固定スクロール4の固定台板4aにはさらに、固定台板4aの外周面から径方向内側に延びる高圧ガス導入流路43が形成されている。高圧ガス導入流路43の径方向内側の端部は、段付き連通穴44の上部穴44aに連通している。高圧ガス導入流路43は、高圧ガス雰囲気6と連通しており、高圧ガス雰囲気6の高圧ガスを上部穴44aに導入する。上部穴44aに高圧ガスが導入されることにより、自律可動歯50の受圧部51には下向きの押圧力が作用するようになっている。 The fixed base plate 4a of the fixed scroll 4 is further formed with a high-pressure gas introduction flow path 43 extending radially inward from the outer peripheral surface of the fixed base plate 4a. The radial inner end of the high pressure gas introduction flow path 43 communicates with the upper hole 44a of the stepped communication hole 44. The high-pressure gas introduction flow path 43 communicates with the high-pressure gas atmosphere 6, and introduces the high-pressure gas of the high-pressure gas atmosphere 6 into the upper hole 44a. By introducing the high pressure gas into the upper hole 44a, a downward pressing force acts on the pressure receiving portion 51 of the autonomous movable tooth 50.
 なお、自律可動歯50の受圧部51は、図6に示すように上面が湾曲面51aとなっており、高圧ガスの力を受けやすい面形状となっている。また、自律可動歯50の受圧部51にはシール溝52が設けられており、シール溝52に例えばO-ringのようなシール部材(図示せず)が装着されて受圧部51と上部穴44aとが密接にシールされている。これにより、高圧ガス導入流路43から上部穴44aに導入された高圧ガスが圧縮機構部2へ流入しないようになっている。 As shown in FIG. 6, the pressure receiving portion 51 of the autonomous movable tooth 50 has a curved surface 51a on the upper surface, and has a surface shape that is easily affected by the force of high pressure gas. Further, the pressure receiving portion 51 of the autonomous movable tooth 50 is provided with a seal groove 52, and a seal member (not shown) such as an O-ring is mounted on the seal groove 52 to form the pressure receiving portion 51 and the upper hole 44a. Is tightly sealed. As a result, the high-pressure gas introduced into the upper hole 44a from the high-pressure gas introduction flow path 43 is prevented from flowing into the compression mechanism portion 2.
 また、自律可動歯50において部分渦巻歯53の周方向の両端面はテーパ面53aとなっており、固定渦巻歯4bに形成された歯穴45の傾斜面45a(図5参照)に沿うテーパ面となっている。部分渦巻歯53の各テーパ面53aは、径方向内側から径方向外側に向かうにつれて互いの距離が狭まる傾斜面で構成されている。 Further, in the autonomous movable tooth 50, both end surfaces of the partial spiral tooth 53 in the circumferential direction are tapered surfaces 53a, and the tapered surfaces along the inclined surface 45a (see FIG. 5) of the tooth hole 45 formed in the fixed spiral tooth 4b. It has become. Each tapered surface 53a of the partial spiral tooth 53 is composed of an inclined surface whose distance from each other decreases from the inner side in the radial direction to the outer side in the radial direction.
 ここで、仮に、部分渦巻歯53のテーパ面53aが逆向き、つまり径方向内側から径方向外側に向かうにつれて互いの距離が広がるテーパ面であると、以下の問題が生じる。圧縮機構部2では、径方向外側から中心部に向かうにつれて圧力が高くなるため、自律可動歯50には、径方向外向きのガス荷重が作用する。したがって、部分渦巻歯53のテーパ面53aが、径方向内側から径方向外側に向かうにつれて互いの距離が広がる傾斜となっていると、このガス荷重によって部分渦巻歯53が径方向外向きに押圧され、歯穴45との間に隙間を形成する可能性がある。部分渦巻歯53と歯穴45との間に隙間が形成されると、圧縮効率の低下を招くため好ましくない。 Here, if the tapered surface 53a of the partial spiral tooth 53 is in the opposite direction, that is, the tapered surface in which the distance between the partial spiral teeth 53 increases from the inner side in the radial direction to the outer side in the radial direction, the following problems occur. In the compression mechanism portion 2, the pressure increases from the outer side in the radial direction toward the central portion, so that a gas load outward in the radial direction acts on the autonomous movable tooth 50. Therefore, if the tapered surface 53a of the partial spiral tooth 53 is inclined so that the distance between the partial spiral teeth 53 increases from the inside in the radial direction to the outside in the radial direction, the partial spiral tooth 53 is pressed outward in the radial direction by this gas load. , There is a possibility of forming a gap with the tooth hole 45. If a gap is formed between the partial spiral tooth 53 and the tooth hole 45, the compression efficiency is lowered, which is not preferable.
 このことから、部分渦巻歯53のテーパ面53aは、径方向内側から径方向外側に向かうにつれて互いの距離が狭まるテーパ面で構成されている。これにより径方向外向きに押圧するガス荷重が部分渦巻歯53に作用しても、部分渦巻歯53は歯穴45の傾斜面45aによって支持され、部分渦巻歯53と歯穴45との間に隙間が生じることを避けることができる。その結果、部分渦巻歯53と歯穴45との気密性を保ちつつ、部分渦巻歯53と歯穴45の傾斜面45aとの間に隙間が生じることを防止できる。 From this, the tapered surface 53a of the partial spiral tooth 53 is composed of a tapered surface whose distance from each other decreases from the inner side in the radial direction to the outer side in the radial direction. As a result, even if a gas load that presses outward in the radial direction acts on the partial spiral tooth 53, the partial spiral tooth 53 is supported by the inclined surface 45a of the tooth hole 45, and is between the partial spiral tooth 53 and the tooth hole 45. It is possible to avoid the formation of gaps. As a result, it is possible to prevent a gap from being formed between the partial spiral tooth 53 and the inclined surface 45a of the tooth hole 45 while maintaining the airtightness between the partial spiral tooth 53 and the tooth hole 45.
 次に、図3を参照して、自律可動歯50の位置について説明する。
 自律可動歯50は、図3(a)に示すように受圧部51が段差44cに当接した位置と、図3(b)に示すように受圧部51が段差44cから離れて受圧部51の上面が磁石13に当接した位置とに、段付き連通穴44内で上下動する。図3(a)に示すように受圧部51が段差44cに当接した位置にあるとき、部分渦巻歯53の先端面53bは、部分渦巻歯53を除く固定渦巻歯4bの先端面4baに倣う仮想面60と面一となる。以下、部分渦巻歯53の先端面53bが仮想面60と面一になる状態を「当接状態」と呼称する。
Next, the position of the autonomous movable tooth 50 will be described with reference to FIG.
In the autonomous movable tooth 50, as shown in FIG. 3A, the pressure receiving portion 51 is in contact with the step 44c, and as shown in FIG. 3B, the pressure receiving portion 51 is separated from the step 44c of the pressure receiving portion 51. It moves up and down in the stepped communication hole 44 at a position where the upper surface abuts on the magnet 13. As shown in FIG. 3A, when the pressure receiving portion 51 is in contact with the step 44c, the tip surface 53b of the partial spiral tooth 53 follows the tip surface 4ba of the fixed spiral tooth 4b excluding the partial spiral tooth 53. It is flush with the virtual surface 60. Hereinafter, the state in which the tip surface 53b of the partial spiral tooth 53 is flush with the virtual surface 60 is referred to as a “contact state”.
 自律可動歯50は、図3(b)に示すように受圧部51が段差44cから離れた位置にあるとき、部分渦巻歯53の先端面53bは、仮想面60から離間した状態となる。以下、部分渦巻歯53の先端面53bが仮想面60から離間した状態を「離間状態」と呼称する。離間状態では、自律可動歯50の先端面53bと仮想面60との間に隙間61が形成される。 In the autonomous movable tooth 50, when the pressure receiving portion 51 is at a position away from the step 44c as shown in FIG. 3B, the tip surface 53b of the partial spiral tooth 53 is in a state of being separated from the virtual surface 60. Hereinafter, the state in which the tip surface 53b of the partial spiral tooth 53 is separated from the virtual surface 60 is referred to as a “separation state”. In the separated state, a gap 61 is formed between the tip surface 53b of the autonomous movable tooth 50 and the virtual surface 60.
 図7は、実施の形態に係るスクロール圧縮機において自律可動歯が離間状態にあるときの圧縮行程を示す渦巻動作図である。なお、図7において自律可動歯の図示は省略している。図7において(a)は、最外室が形成された吸入完了時を示しており、この状態の駆動軸19の回転位相を0°とする。(b)、(c)、(d)は、回転位相を0°から90°ずつ進めたときの固定渦巻歯4bおよび揺動渦巻歯3bの状態を示している。 FIG. 7 is a spiral operation diagram showing a compression stroke when the autonomous movable teeth are in a separated state in the scroll compressor according to the embodiment. It should be noted that the illustration of the autonomous movable tooth is omitted in FIG. 7. In FIG. 7, (a) shows the time when the suction is completed when the outermost chamber is formed, and the rotation phase of the drive shaft 19 in this state is set to 0 °. (B), (c), and (d) show the states of the fixed spiral tooth 4b and the swinging spiral tooth 3b when the rotation phase is advanced by 90 ° from 0 °.
 自律可動歯50が当接状態の場合、作動ガスの吸入を完了した最外室70は、揺動スクロール3の揺動運動に伴って中心方向に移動しながら容積を減じることで内部の作動ガスの圧縮を行う。したがって、自律可動歯50が当接状態の場合の吸入容積は、図7(a)においてドットで示した最外室70の容積V1となる。 When the autonomous movable teeth 50 are in contact with each other, the outermost chamber 70, which has completed sucking the working gas, moves toward the center along with the swinging motion of the swinging scroll 3 and reduces the volume of the working gas inside. Compress. Therefore, the suction volume when the autonomous movable tooth 50 is in contact is the volume V1 of the outermost chamber 70 indicated by dots in FIG. 7A.
 一方、自律可動歯50が離間状態の場合、図7(a)に示すように最外室70を構成する2つの圧縮室、つまり自律可動歯50を境として径方向に隣接する外側圧縮室12aおよび内側圧縮室12bが隙間61を介して連通する。外側圧縮室12aは、固定渦巻歯4bの外面と揺動渦巻歯3bの内面との間に形成されている。内側圧縮室12bは、固定渦巻歯4bの内面と揺動渦巻歯3bの外面との間に形成されている。外側圧縮室12aおよび内側圧縮室12bが隙間61を介して連通する場合、最外室70は、揺動スクロール3の揺動運動に伴い、図7(a)→(b)→(c)に示すように中心方向に移動しながら容積を減じるものの、圧縮動作を行わない。 On the other hand, when the autonomous movable teeth 50 are in a separated state, as shown in FIG. 7A, two compression chambers constituting the outermost chamber 70, that is, outer compression chambers 12a adjacent to each other in the radial direction with the autonomous movable teeth 50 as a boundary. And the inner compression chamber 12b communicate with each other through the gap 61. The outer compression chamber 12a is formed between the outer surface of the fixed spiral tooth 4b and the inner surface of the swinging spiral tooth 3b. The inner compression chamber 12b is formed between the inner surface of the fixed spiral tooth 4b and the outer surface of the swinging spiral tooth 3b. When the outer compression chamber 12a and the inner compression chamber 12b communicate with each other through the gap 61, the outermost chamber 70 is shown in FIGS. 7 (a) → (b) → (c) as the rocking scroll 3 swings. As shown, the volume is reduced while moving toward the center, but the compression operation is not performed.
 そして、図7(c)に示すように外側圧縮室12aと内側圧縮室12bとが非連通となることで、外側圧縮室12aにて圧縮動作が開始される。引き続き図7の(c)→(d)のように外側圧縮室12aが中心方向に移動しながら容積を減じることで作動ガスの圧縮が続けられ、外側圧縮室12aが最内室となると、最内室の作動ガスが吐出孔4fから吐出される。 Then, as shown in FIG. 7C, the outer compression chamber 12a and the inner compression chamber 12b are not communicated with each other, so that the compression operation is started in the outer compression chamber 12a. Continuing to reduce the volume while the outer compression chamber 12a moves toward the center as shown in FIGS. 7 (c) to 7 (d), the compression of the working gas is continued, and when the outer compression chamber 12a becomes the innermost chamber, the maximum The working gas in the inner chamber is discharged from the discharge hole 4f.
 このように、自律可動歯50が離間状態の場合、図7(c)に示す状態から圧縮が開始されるため、クロスハッチングで示した外側圧縮室12aの容積V2が吸入容積となる。なお、図7(c)において外側圧縮室12aと非連通となった内側圧縮室12bは、図7(d)の回転位相において隙間61を介して内側圧縮室12bの外側に連通するため、圧縮室としては機能しない。 As described above, when the autonomous movable teeth 50 are in the separated state, the compression is started from the state shown in FIG. 7C, so that the volume V2 of the outer compression chamber 12a shown by the cross hatching becomes the suction volume. The inner compression chamber 12b, which is not communicated with the outer compression chamber 12a in FIG. 7C, communicates with the outside of the inner compression chamber 12b through the gap 61 in the rotation phase of FIG. 7D, so that it is compressed. It does not function as a room.
 このように、自律可動歯50が離間状態にあるときは、自律可動歯50が当接状態にあるときに比べて吸入容積がV1からV2に減る。このため、電動機16の回転数を落とすことなく低負荷での運転を行うことができる。つまり、低負荷時に電動機16の回転数を落とさなくてよいため、作動ガスの漏れを防ぐことができる。 In this way, when the autonomous movable tooth 50 is in the separated state, the suction volume is reduced from V1 to V2 as compared with the case where the autonomous movable tooth 50 is in the contact state. Therefore, the operation with a low load can be performed without reducing the rotation speed of the electric motor 16. That is, since it is not necessary to reduce the rotation speed of the electric motor 16 when the load is low, leakage of working gas can be prevented.
 次に、自律可動歯50に作用する力に応じた自律可動歯50の自律的な上下動作について説明する。 Next, the autonomous up-and-down movement of the autonomous movable tooth 50 according to the force acting on the autonomous movable tooth 50 will be described.
 図8は、実施の形態に係るスクロール圧縮機の自律可動歯に作用する力の説明図である。
 スクロール圧縮機100の起動後、密閉容器1内の圧力は徐々に上昇し、高圧ガス雰囲気6の圧力も上昇する。高圧ガス導入流路43は高圧ガス雰囲気6と連通しているため、高圧ガス導入流路43の圧力は、高圧ガス雰囲気6と同じ圧力Pdとなる。いま、自律可動歯50にかかる力を考えると、受圧部51の湾曲面51aには、圧力Pdによるガス力Fdが軸方向下向きに加わる。また、自律可動歯50には、磁石13の磁力により軸方向上向きの力Fmが加わる。さらに、自律可動歯50には、部分渦巻歯53の先端面53bに、吸入圧力Psによる軸方向上向きの力Fsが加わる。これらの力関係により自律可動歯50は自律的に上下動し、全負荷運転と部分負荷運転との切り替えを行う。
FIG. 8 is an explanatory diagram of a force acting on the autonomous movable teeth of the scroll compressor according to the embodiment.
After the scroll compressor 100 is started, the pressure in the closed container 1 gradually increases, and the pressure in the high pressure gas atmosphere 6 also increases. Since the high-pressure gas introduction flow path 43 communicates with the high-pressure gas atmosphere 6, the pressure of the high-pressure gas introduction flow path 43 is the same pressure Pd as the high-pressure gas atmosphere 6. Considering the force applied to the autonomous movable tooth 50, the gas force Fd due to the pressure Pd is applied downward in the axial direction to the curved surface 51a of the pressure receiving portion 51. Further, an axially upward force Fm is applied to the autonomous movable tooth 50 by the magnetic force of the magnet 13. Further, in the autonomous movable tooth 50, an axially upward force Fs due to the suction pressure Ps is applied to the tip surface 53b of the partial spiral tooth 53. Due to these force relationships, the autonomous movable tooth 50 moves up and down autonomously to switch between full load operation and partial load operation.
(全負荷運転)
 高負荷時、すなわち高圧ガス導入流路43を介して上部穴44aに高圧の作動ガスが流入し、自律可動歯50に作用する力関係がFd>Fm+Fsとなるとき、自律可動歯50は軸方向下向きに押し付けられる。つまり、自律可動歯50は揺動スクロール3側に押圧されて当接状態となり、吸入容積がV1となる全負荷運転が行われる。
(Full load operation)
When the load is high, that is, when the high-pressure working gas flows into the upper hole 44a through the high-pressure gas introduction flow path 43 and the force relationship acting on the autonomous movable tooth 50 is Fd> Fm + Fs, the autonomous movable tooth 50 is axially oriented. Pressed downwards. That is, the autonomous movable tooth 50 is pressed against the swing scroll 3 side and is in a contact state, and full load operation is performed in which the suction volume is V1.
(部分負荷運転)
 低負荷時、すなわち自律可動歯50に作用する力関係がFd≦Fm+Fsとなるとき、自律可動歯50は磁石13に引きつけられ、離間状態となる。このため、最外室70は圧縮室として機能しない無効空間となり、吸入容積がV2となる部分負荷運転が行われる。
(Partial load operation)
When the load is low, that is, when the force relationship acting on the autonomous movable tooth 50 is Fd ≦ Fm + Fs, the autonomous movable tooth 50 is attracted to the magnet 13 and becomes separated. Therefore, the outermost chamber 70 becomes an invalid space that does not function as a compression chamber, and a partial load operation in which the suction volume becomes V2 is performed.
 以上説明したように、本実施の形態のスクロール圧縮機100は、固定台板4aおよび固定台板4aに形成された固定渦巻歯4bを有する固定スクロール4と、揺動台板3aおよび揺動台板3aに形成された揺動渦巻歯3bを有する。スクロール圧縮機100は、揺動渦巻歯3bが固定スクロール4の固定渦巻歯4bに組み合わされて、作動ガスを低圧から高圧に圧縮する複数の圧縮室12を形成する揺動スクロール3と、揺動スクロール3を駆動する駆動軸19と、駆動軸19の軸方向に固定スクロール4を貫通して形成された挿入穴46に挿入されて固定渦巻歯4bの一部を形成し、挿入穴46の内部で自律的に上下動する自律可動歯50と、固定スクロール4に設けられ、自律可動歯50を挿入穴46内で揺動スクロール3とは反対側に引き寄せて自律可動歯50の先端面43bを揺動台板3aから離間させる磁石13と、固定スクロール4、揺動スクロール3、駆動軸19、自律可動歯50および磁石13を収容する密閉容器1とを有する。自律可動歯50は、磁石13による磁力と低圧により自律可動歯50に作用する力との合力と、高圧により自律可動歯50に作用する力との大小関係によって、挿入穴46の内部で自律的に上下動し、自律可動歯50の先端面53bが、自律可動歯50を除く固定渦巻歯4bの先端面4baと面一になる当接状態と、面一にならずに離間する離間状態とに切り替わることで吸入容積を調整する。 As described above, the scroll compressor 100 of the present embodiment includes a fixed scroll 4 having a fixed base plate 4a and fixed spiral teeth 4b formed on the fixed base plate 4a, a swing base plate 3a, and a rocking base. It has a swinging spiral tooth 3b formed on the plate 3a. The scroll compressor 100 includes a swing scroll 3 in which the swing spiral teeth 3b are combined with the fixed spiral teeth 4b of the fixed scroll 4 to form a plurality of compression chambers 12 for compressing the working gas from low pressure to high pressure. The drive shaft 19 for driving the scroll 3 and the insertion hole 46 formed through the fixed scroll 4 in the axial direction of the drive shaft 19 are inserted to form a part of the fixed spiral tooth 4b, and the inside of the insertion hole 46 is formed. The autonomous movable tooth 50 that moves up and down autonomously and the fixed scroll 4 are provided, and the autonomous movable tooth 50 is pulled to the opposite side of the swing scroll 3 in the insertion hole 46 to pull the tip surface 43b of the autonomous movable tooth 50. It has a magnet 13 that is separated from the swing base plate 3a, and a closed container 1 that houses a fixed scroll 4, a swing scroll 3, a drive shaft 19, an autonomous movable tooth 50, and a magnet 13. The autonomous movable tooth 50 is autonomous inside the insertion hole 46 due to the magnitude relationship between the combined force of the magnetic force of the magnet 13 and the force acting on the autonomous movable tooth 50 by the low pressure and the force acting on the autonomous movable tooth 50 by the high pressure. The tip surface 53b of the autonomous movable tooth 50 moves up and down so that it is flush with the tip surface 4ba of the fixed spiral tooth 4b excluding the autonomous movable tooth 50, and the separated state is separated without being flush with each other. Adjust the suction volume by switching to.
 このように、固定スクロール4の固定渦巻歯4bの一部を、挿入穴46の内部で自律的に上下動する自律可動歯50で構成し、磁石13による磁力と密閉容器1内の圧力とに基づく自律可動歯50の自律的な上下動により、自律可動歯50の先端面53bが、自律可動歯50を除く固定渦巻歯4bの先端面4baと面一になる当接状態と、面一にならずに離間する離間状態とに切り替わる構成とした。これにより、スクロール圧縮機100の周囲構造を変更することなく自律可動歯50の位置に応じて吸入容積を調整できる。 In this way, a part of the fixed spiral teeth 4b of the fixed scroll 4 is composed of autonomous movable teeth 50 that move up and down autonomously inside the insertion hole 46, and the magnetic force of the magnet 13 and the pressure in the closed container 1 are combined. Based on the autonomous vertical movement of the autonomous movable tooth 50, the tip surface 53b of the autonomous movable tooth 50 is flush with the tip surface 4ba of the fixed spiral tooth 4b excluding the autonomous movable tooth 50. It is configured to switch to a separated state without being separated. As a result, the suction volume can be adjusted according to the position of the autonomous movable tooth 50 without changing the peripheral structure of the scroll compressor 100.
 本実施の形態のスクロール圧縮機100は、高圧により自律可動歯50に作用する力が合力よりも大きいとき、自律可動歯50は揺動スクロール3側に押圧され、複数の圧縮室12のうち、自律可動歯50を境として駆動軸19の径方向に隣接する2つの圧縮室12を仕切る。また、高圧により自律可動歯50に作用する力が合力以下のとき、自律可動歯50は揺動スクロール3から離れる方向に押圧され、2つの圧縮室12を連通させる。 In the scroll compressor 100 of the present embodiment, when the force acting on the autonomous movable tooth 50 due to high pressure is larger than the resultant force, the autonomous movable tooth 50 is pressed toward the swing scroll 3 side, and among the plurality of compression chambers 12, Two compression chambers 12 adjacent to each other in the radial direction of the drive shaft 19 are partitioned by the autonomous movable tooth 50 as a boundary. Further, when the force acting on the autonomous movable tooth 50 due to the high pressure is equal to or less than the resultant force, the autonomous movable tooth 50 is pressed in a direction away from the swing scroll 3 to communicate the two compression chambers 12.
 このように、高圧により自律可動歯50に作用する力が合力よりも大きいとき、自律可動歯50を境として駆動軸19の径方向に隣接する2つの圧縮室12が仕切られるので、高負荷時に全負荷運転を行うことができる。また、高圧により自律可動歯50に作用する力が合力以下のとき、自律可動歯50を境として駆動軸19の径方向に隣接する2つの圧縮室12が連通して圧縮動作を行わないので、低負荷時に部分負荷運転を行うことができる。 In this way, when the force acting on the autonomous movable tooth 50 due to the high pressure is larger than the resultant force, the two compression chambers 12 adjacent to each other in the radial direction of the drive shaft 19 are partitioned by the autonomous movable tooth 50 as a boundary, so that when the load is high. Full load operation can be performed. Further, when the force acting on the autonomous movable tooth 50 due to the high pressure is equal to or less than the resultant force, the two compression chambers 12 adjacent to each other in the radial direction of the drive shaft 19 with the autonomous movable tooth 50 as a boundary do not communicate with each other to perform the compression operation. Partial load operation can be performed when the load is low.
 本実施の形態のスクロール圧縮機100において自律可動歯50は、円柱状の受圧部51と部分渦巻歯53とを有し、部分渦巻歯53が固定渦巻歯4bの一部を形成している。固定台板4aには、外周面から径方向内側に延びて挿入穴46に連通する高圧ガス導入流路43が形成されており、高圧ガス導入流路43により、密閉容器1内の高圧の作動ガスが挿入穴46に導びかれて自律可動歯50の受圧部51に高圧が作用する。 In the scroll compressor 100 of the present embodiment, the autonomous movable tooth 50 has a columnar pressure receiving portion 51 and a partial spiral tooth 53, and the partial spiral tooth 53 forms a part of the fixed spiral tooth 4b. The fixed base plate 4a is formed with a high-pressure gas introduction flow path 43 extending radially inward from the outer peripheral surface and communicating with the insertion hole 46, and the high-pressure gas introduction flow path 43 allows high-pressure operation in the closed container 1. The gas is guided to the insertion hole 46, and a high pressure acts on the pressure receiving portion 51 of the autonomous movable tooth 50.
 このように、高圧ガス導入流路43によって自律可動歯50の受圧部51に高圧を作用させることができ、密閉容器1内の圧力により自律可動歯50を動作させることができる。 In this way, a high pressure can be applied to the pressure receiving portion 51 of the autonomous movable tooth 50 by the high pressure gas introduction flow path 43, and the autonomous movable tooth 50 can be operated by the pressure in the closed container 1.
 1 密閉容器、2 圧縮機構部、3 揺動スクロール、3a 揺動台板、3b 揺動渦巻歯、3c ボス部、3d スラスト面、3e 抽気孔、4 固定スクロール、4a 固定台板、4b 固定渦巻歯、4ba 先端面、4f 吐出孔、5 油溜め空間、6 高圧ガス雰囲気、7 吸入配管、8 吸入側空間、9 逆止弁、10 バネ、11 吐出配管、12 圧縮室、12a 外側圧縮室、12b 内側圧縮室、13 磁石、14 ガス導入流路、14a 流路、15a 固定側オルダムリング溝、15b 揺動側オルダムリング溝、16 電動機、16a 電動機回転子、16b 電動機固定子、18a バランスウェイト、18b バランスウェイト、19 駆動軸、20 主軸部、21 揺動軸部、22 副軸部、23 給油路、24a 供給路、24b 供給路、25 主軸受、26 揺動軸受、27 副軸受、28 スラスト軸受、29 ホルダー、30 ガイドフレーム、30a 上部嵌合円筒面、30b 下部嵌合円筒面、31 コンプライアントフレーム、32a コンプライアントフレーム上部空間、32b コンプライアントフレーム下部空間、33 スラスト面、34 コンプライアントフレーム下端面、35a 上部嵌合円筒面、35b 下部嵌合円筒面、36a 上部円環状シール部材、36b 下部円環状シール部材、37 サブフレーム、38 中間圧空間、39a 中間圧調整弁、39c 中間圧調整バネ、39d 中間圧調整弁空間、39e 貫通流路、40 オルダムリング、41 往復摺動面、42a 固定側キー、42b 揺動側キー、43 高圧ガス導入流路、44 段付き連通穴、44a 上部穴、44b 下部穴、44c 段差、45 歯穴、45a 傾斜面、46 挿入穴、50 自律可動歯、51 受圧部、51a 湾曲面、52 シール溝、53 部分渦巻歯、53a テーパ面、53b 先端面、60 仮想面、61 隙間、70 最外室、100 スクロール圧縮機。 1 closed container, 2 compression mechanism, 3 rocking scroll, 3a rocking base plate, 3b rocking spiral tooth, 3c boss part, 3d thrust surface, 3e air extraction hole, 4 fixed scroll, 4a fixed base plate, 4b fixed spiral Teeth, 4ba tip surface, 4f discharge hole, 5 oil reservoir space, 6 high-pressure gas atmosphere, 7 suction pipe, 8 suction side space, 9 check valve, 10 spring, 11 discharge pipe, 12 compression chamber, 12a outer compression chamber, 12b inner compression chamber, 13 magnets, 14 gas introduction flow path, 14a flow path, 15a fixed side old dam ring groove, 15b rocking side old dam ring groove, 16 electric motor, 16a electric motor rotor, 16b electric motor stator, 18a balance weight, 18b balance weight, 19 drive shaft, 20 spindle, 21 swing shaft, 22 sub-shaft, 23 refueling path, 24a supply path, 24b supply path, 25 main bearing, 26 swing bearing, 27 sub-bearing, 28 thrust Bearing, 29 holder, 30 guide frame, 30a upper fitting cylindrical surface, 30b lower fitting cylindrical surface, 31 compliant frame, 32a compliant frame upper space, 32b compliant frame lower space, 33 thrust surface, 34 compliant frame Lower end surface, 35a upper fitting cylindrical surface, 35b lower fitting cylindrical surface, 36a upper annular seal member, 36b lower annular seal member, 37 subframe, 38 intermediate pressure space, 39a intermediate pressure adjusting valve, 39c intermediate pressure adjustment Spring, 39d intermediate pressure control valve space, 39e through flow path, 40 old dam ring, 41 reciprocating sliding surface, 42a fixed side key, 42b rocking side key, 43 high pressure gas introduction flow path, 44 stepped communication hole, 44a upper part Hole, 44b lower hole, 44c step, 45 tooth hole, 45a inclined surface, 46 insertion hole, 50 autonomous movable tooth, 51 pressure receiving part, 51a curved surface, 52 seal groove, 53 partial spiral tooth, 53a tapered surface, 53b tip surface , 60 virtual surface, 61 gap, 70 outermost room, 100 scroll compressor.

Claims (4)

  1.  固定台板および前記固定台板に形成された固定渦巻歯を有する固定スクロールと、
     揺動台板および前記揺動台板に形成された揺動渦巻歯を有し、前記揺動渦巻歯が前記固定スクロールの前記固定渦巻歯に組み合わされて、作動ガスを低圧から高圧に圧縮する複数の圧縮室を形成する揺動スクロールと、
     前記揺動スクロールを駆動する駆動軸と、
     前記駆動軸の軸方向に前記固定スクロールを貫通して形成された挿入穴に挿入されて前記固定渦巻歯の一部を形成し、前記挿入穴の内部で自律的に上下動する自律可動歯と、
     前記固定スクロールに設けられ、前記自律可動歯を前記挿入穴内で前記揺動スクロールとは反対側に引き寄せて前記自律可動歯の先端面を前記揺動台板から離間させる磁石と、
     前記固定スクロール、前記揺動スクロール、前記駆動軸、前記自律可動歯および前記磁石を収容する密閉容器とを有し、
     前記自律可動歯は、前記磁石による磁力と前記低圧により前記自律可動歯に作用する力との合力と、前記高圧により前記自律可動歯に作用する力との大小関係によって、前記挿入穴の内部で自律的に上下動し、前記自律可動歯の先端面が、前記自律可動歯を除く前記固定渦巻歯の先端面と面一になる当接状態と、面一にならずに離間する離間状態とに切り替わることで吸入容積を調整するスクロール圧縮機。
    A fixed base plate and a fixed scroll having fixed spiral teeth formed on the fixed base plate,
    It has a rocking base plate and swinging spiral teeth formed on the rocking base plate, and the swinging spiral teeth are combined with the fixed spiral teeth of the fixed scroll to compress the working gas from low pressure to high pressure. Swirling scrolls that form multiple compression chambers,
    The drive shaft that drives the swing scroll and
    An autonomous movable tooth that is inserted into an insertion hole formed through the fixed scroll in the axial direction of the drive shaft to form a part of the fixed spiral tooth and autonomously moves up and down inside the insertion hole. ,
    A magnet provided on the fixed scroll that attracts the autonomous movable tooth to the side opposite to the swing scroll in the insertion hole to separate the tip surface of the autonomous movable tooth from the swing base plate.
    It has the fixed scroll, the swing scroll, the drive shaft, the autonomous movable tooth, and a closed container for accommodating the magnet.
    The autonomous movable tooth has a magnitude relationship between the magnetic force of the magnet and the force acting on the autonomous movable tooth due to the low pressure and the force acting on the autonomous movable tooth due to the high pressure in the inside of the insertion hole. A contact state in which the tip surface of the autonomous movable tooth moves up and down autonomously and is flush with the tip surface of the fixed spiral tooth excluding the autonomous movable tooth, and a separated state in which the tip surface is separated without being flush with each other. A scroll compressor that adjusts the suction volume by switching to.
  2.  前記高圧により前記自律可動歯に作用する力が前記合力よりも大きいとき、前記自律可動歯は前記揺動スクロール側に押圧され、前記複数の圧縮室のうち、前記自律可動歯を境として前記駆動軸の径方向に隣接する2つの圧縮室を仕切り、
     前記高圧により前記自律可動歯に作用する力が前記合力以下のとき、前記自律可動歯は前記揺動スクロールから離れる方向に押圧され、前記2つの圧縮室を連通させる請求項1記載のスクロール圧縮機。
    When the force acting on the autonomous movable tooth due to the high pressure is larger than the resultant force, the autonomous movable tooth is pressed toward the swing scroll side, and the driving is performed with the autonomous movable tooth as a boundary among the plurality of compression chambers. Dividing two compression chambers adjacent to each other in the radial direction of the shaft,
    The scroll compressor according to claim 1, wherein when the force acting on the autonomous movable tooth due to the high pressure is equal to or less than the resultant force, the autonomous movable tooth is pressed in a direction away from the swing scroll to communicate the two compression chambers. ..
  3.  前記自律可動歯は、円柱状の受圧部と部分渦巻歯とを有し、前記部分渦巻歯が前記固定渦巻歯の一部を形成しており、
     前記固定台板には、外周面から径方向内側に延びて前記挿入穴に連通する高圧ガス導入流路が形成されており、前記高圧ガス導入流路により、前記密閉容器内の高圧の作動ガスが前記挿入穴に導びかれて前記自律可動歯の前記受圧部に前記高圧が作用する請求項1または請求項2記載のスクロール圧縮機。
    The autonomous movable tooth has a columnar pressure receiving portion and a partial spiral tooth, and the partial spiral tooth forms a part of the fixed spiral tooth.
    The fixed base plate is formed with a high-pressure gas introduction flow path extending radially inward from the outer peripheral surface and communicating with the insertion hole, and the high-pressure gas introduction flow path causes the high-pressure working gas in the closed container. The scroll compressor according to claim 1 or 2, wherein the high pressure acts on the pressure receiving portion of the autonomous movable tooth, which is guided to the insertion hole.
  4.  前記自律可動歯の前記部分渦巻歯は、周方向の両端面が径方向内側から径方向外側に向かうに連れて互いの距離が狭まるテーパ面を有し、前記挿入穴は前記テーパ面に沿う傾斜面を有する請求項3記載のスクロール圧縮機。 The partial spiral tooth of the autonomously movable tooth has a tapered surface in which both end surfaces in the circumferential direction are narrowed from each other as the distance between them decreases from the inner side in the radial direction to the outer side in the radial direction, and the insertion hole is inclined along the tapered surface. The scroll compressor according to claim 3, which has a surface.
PCT/JP2019/032944 2019-08-23 2019-08-23 Scroll compressor WO2021038614A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021541752A JP7154421B2 (en) 2019-08-23 2019-08-23 scroll compressor
PCT/JP2019/032944 WO2021038614A1 (en) 2019-08-23 2019-08-23 Scroll compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032944 WO2021038614A1 (en) 2019-08-23 2019-08-23 Scroll compressor

Publications (1)

Publication Number Publication Date
WO2021038614A1 true WO2021038614A1 (en) 2021-03-04

Family

ID=74685012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032944 WO2021038614A1 (en) 2019-08-23 2019-08-23 Scroll compressor

Country Status (2)

Country Link
JP (1) JP7154421B2 (en)
WO (1) WO2021038614A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108896A (en) * 1982-12-11 1984-06-23 Toyoda Autom Loom Works Ltd Capacity control mechanism for scroll type compressor
JPS60101285A (en) * 1983-11-07 1985-06-05 Sanden Corp Scroll type compressor
JPH0476289A (en) * 1990-07-16 1992-03-11 Mitsubishi Heavy Ind Ltd Scroll type fluid machine
JP2004084654A (en) * 2002-08-28 2004-03-18 Lg Electronics Inc Capacity variable device for scroll compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108896A (en) * 1982-12-11 1984-06-23 Toyoda Autom Loom Works Ltd Capacity control mechanism for scroll type compressor
JPS60101285A (en) * 1983-11-07 1985-06-05 Sanden Corp Scroll type compressor
JPH0476289A (en) * 1990-07-16 1992-03-11 Mitsubishi Heavy Ind Ltd Scroll type fluid machine
JP2004084654A (en) * 2002-08-28 2004-03-18 Lg Electronics Inc Capacity variable device for scroll compressor

Also Published As

Publication number Publication date
JP7154421B2 (en) 2022-10-17
JPWO2021038614A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
EP2574791B1 (en) Scroll compressor
JP5083401B2 (en) Scroll compressor
AU2003211213B2 (en) Scroll compressor
EP2205873A1 (en) Compressor having a shutdown valve
US20080304994A1 (en) Scroll Fluid Machine
JP3893487B2 (en) Scroll compressor
JP2008031920A (en) Rotary compressor
JP2008038616A (en) Rotary compressor
JP4836712B2 (en) Hermetic scroll compressor
WO2021038614A1 (en) Scroll compressor
WO2015177851A1 (en) Scroll compressor
JP7051005B2 (en) Compressor
CN114144586B (en) Scroll compressor having a rotor with a rotor shaft having a rotor shaft with a
JP2004150406A (en) Compressor
JP2006161818A (en) Scroll compressor
JP2005180317A (en) Rotary compressor
WO2023162058A1 (en) Scroll compressor
CN209743154U (en) Electric compressor device
JP6972391B2 (en) Scroll compressor
EP4102074A1 (en) Scroll compressor
CN113316687B (en) Scroll compressor having a discharge port
JP6071681B2 (en) Scroll compressor
CN113454341B (en) Scroll compressor having a discharge port
JP6808089B2 (en) Compressor
JP2018076791A (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942938

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021541752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942938

Country of ref document: EP

Kind code of ref document: A1