WO2021037176A1 - 超大型六肢腿履带足极地科考车跨越雪丘步态规划方法 - Google Patents

超大型六肢腿履带足极地科考车跨越雪丘步态规划方法 Download PDF

Info

Publication number
WO2021037176A1
WO2021037176A1 PCT/CN2020/111921 CN2020111921W WO2021037176A1 WO 2021037176 A1 WO2021037176 A1 WO 2021037176A1 CN 2020111921 W CN2020111921 W CN 2020111921W WO 2021037176 A1 WO2021037176 A1 WO 2021037176A1
Authority
WO
WIPO (PCT)
Prior art keywords
leg
foreleg
crawler
center
foot
Prior art date
Application number
PCT/CN2020/111921
Other languages
English (en)
French (fr)
Inventor
赵富强
常宝玉
黄庆学
张晓东
郭井学
窦银科
杜鹏阳
Original Assignee
太原科技大学
太原理工大学
中国极地研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太原科技大学, 太原理工大学, 中国极地研究中心 filed Critical 太原科技大学
Publication of WO2021037176A1 publication Critical patent/WO2021037176A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/022Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members consisting of members having both rotational and walking movements

Definitions

  • the invention relates to a gait planning method for an ultra-large six-limb leg crawler foot polar scientific expedition vehicle crossing a snow hill.
  • the inland area of the Antarctic ice sheet is covered with 100 meters of ice and snow all year round. Snowstorms are prominent.
  • the ice surface often forms snow dunes and snow ridges of different shapes.
  • the snow dunes are usually about 1 meter high, 3 meters to 10 meters long, and about 3 meters wide.
  • a conventional polar scientific research vehicle encounters such extreme terrain, it usually makes a detour or directly passes over the surface of the snow hill.
  • the detour is limited by the ice surface terrain, and the vehicle body is prone to overturning when directly passing over the surface of the snow hill. Safety accidents will seriously affect the efficiency of scientific examinations.
  • a super large six-legged crawler foot polar scientific research vehicle has a special structure of six-legged crawler feet, which can solve the snow hills and snow ridges that are difficult for small and medium-sized polar vehicles to cross, and has irreplaceable advantages in future Antarctic scientific research.
  • it is necessary to design a unique gait planning method for a super large six-legged crawler foot polar scientific research vehicle to achieve crossing extreme terrain such as snow hills.
  • the purpose of the present invention is to provide a gait planning method for an ultra-large six-legged crawler foot polar scientific research vehicle to cross over snow hills smoothly and reliably, and to avoid large-span movements due to limbs and legs
  • the center of gravity of the whole vehicle is unstable, and the technical problem of the scientific research vehicle crossing the snow hill is solved.
  • the distance measuring sensor on the scientific research vehicle detects that there is a snow hill ahead, all six track feet stop moving forward, the scientific research vehicle as a whole remains motionless, and it starts to prepare for the action to cross the snow hill;
  • the second step is to unfold the limbs:
  • the travel distance of the track foot can be obtained as
  • the front and rear four groups of limbs and legs rotate in turn to the outside of the scientific examination vehicle; that is, the rotation joint connected to the left foreleg leg is unlocked and rotated, and the crawler foot connected to the left foreleg leg drives the left foreleg leg to be connected to the left foreleg leg.
  • the center of the revolving joint is the center of the circle and it rotates counterclockwise to the left middle leg.
  • the angle of rotation is 2 ⁇ , and ⁇ does not exceed 45 degrees.
  • the travel distance L, and its trajectory is in the shape of an arc. After reaching the predetermined position A', the crawler foot connected to the left foreleg leg Stop traveling, and the revolute joints connected to the left forelimb leg are locked. After that, the crawler foot connected to the left forelimb leg turns back to the original driving direction.
  • the upper, lower, and leg joints on the left forelimb leg remain stationary during the unfolding process. ;
  • the rotating joint connected to the right foreleg leg unlocks and rotates, and the track foot connected to the right foreleg leg drives the right foreleg leg to rotate clockwise in the direction of the right middle leg with the center of the rotating joint connected to the right foreleg leg as the center.
  • the angle of rotation is 2 ⁇ , and ⁇ does not exceed 45 degrees, travel distance L, its trajectory is arc shape, after reaching the predetermined position B', the crawler foot connected to the right foreleg leg stops traveling, the rotating joint connected to the right foreleg leg is locked, and then the crawler foot connected to the right foreleg leg turns in place
  • the upper limb leg, lower limb leg, and leg joints on the right forelimb leg remain stationary during the unfolding process;
  • the revolving joint connected to the left hind leg is unlocked and rotated, and the crawler foot connected to the left hind leg drives the left hind leg to rotate clockwise in the direction of the left middle leg with the center of the revolving joint connected to the left hind leg as the center.
  • the rotation angle is 2 ⁇ , and ⁇ does not exceed 45 degrees, travel distance L, its trajectory is arc shape, after reaching the predetermined position C', the crawler foot connected to the left hind leg stops traveling, the revolving joint connected to the left hind leg is locked, and then the crawler foot connected to the left hind leg turns in place
  • the upper limb leg, lower limb leg, and leg joints on the left hind leg remain stationary during the unfolding process;
  • the revolving joint connected to the right hind leg is unlocked and rotated, and the crawler foot connected to the right hind leg drives the right hind leg to rotate counterclockwise in the direction of the right middle leg with the center of the revolving joint connected to the right hind leg as the center.
  • the rotation angle is 2 ⁇ , and ⁇ does not exceed 45 degrees, travel distance L, its trajectory is arc shape, after reaching the predetermined position D', the crawler foot connected to the right hind leg stops traveling, the revolving joint connected to the right hind leg is locked, and then the crawler foot connected to the right hind leg turns in place
  • the upper limb leg, lower limb leg, and leg joints on the right hind leg remain stationary during the unfolding process;
  • the third step is to move forward across the snow hill: After the expansion of the left front, right front, left rear, and right hind limbs are all completed, the scientific research vehicle moves forward and passes over the snow hill.
  • the distance measuring sensor on the scientific research vehicle Detect snow hills at all times, and the scientific research vehicle adjusts the running direction of the crawler feet to ensure that the crawler feet do not run on the surface of the snow hill.
  • the six groups of limbs of the scientific research vehicle maintain the relative position of the platform;
  • the fourth step, retraction of the limbs and legs When the distance measuring sensor on the scientific research vehicle detects that the six crawler feet of the scientific research vehicle have completely crossed the snow hill and can ensure the distance L 3 required for the scientific research vehicle to return to the initial state, the scientific research vehicle will stop Move forward, turn back the front and rear limbs and legs to the initial position in turn, and continue to move forward.
  • L 3 is the vertical distance from the rear end of the scientific research vehicle to the snow hill.
  • step of returning the limbs and legs to the cage is:
  • the rotating joint connected to the left foreleg leg unlocks and rotates, and the tracked foot connected to the left foreleg leg drives the left foreleg leg to rotate clockwise in the direction away from the left middle leg with the center of the rotating joint connected to the left foreleg leg as the center.
  • the angle of rotation is 2 ⁇ , ⁇ is not Over 45 degrees, the travel distance L, its trajectory is in the shape of an arc, the crawler foot connected to the left foreleg leg stops after reaching the predetermined position A, the revolving joint connected to the left foreleg leg is locked, and then the crawler foot connected to the left foreleg leg turns in place
  • the upper limb leg, lower limb leg, and leg joints on the left forelimb leg remain stationary during the retraction process;
  • the rotating joint connected to the right foreleg leg unlocks and rotates, and the tracked foot connected to the right foreleg leg drives the right foreleg leg to rotate counterclockwise away from the right middle leg with the center of the rotating joint connected to the right foreleg leg as the center.
  • the angle of rotation is 2 ⁇ , ⁇ is not Over 45 degrees, the trajectory of the driving distance L is in the shape of an arc.
  • the revolving joint connected to the left hind leg is unlocked and rotated, and the crawler foot connected to the left hind leg drives the left hind leg to rotate counterclockwise away from the left middle leg with the center of the revolving joint connected to the left hind leg as the center.
  • the rotation angle is 2 ⁇ , ⁇ is not Over 45 degrees, the trajectory of the driving distance L is a circular arc shape.
  • the revolving joint connected to the right hind leg is unlocked and rotated, and the crawler foot connected to the right hind leg drives the right hind leg to rotate clockwise in the direction away from the right middle leg with the center of the revolving joint connected to the right hind leg as the center.
  • the rotation angle is 2 ⁇ , ⁇ is not Over 45 degrees, the trajectory of the driving distance L is in the shape of an arc.
  • the present invention proposes a new gait method that adjusts the coordinated movements of the four limbs and the crawler feet to realize the ultra-large six-limb crawler foot polar scientific research vehicle across the snow hills
  • Figure 1 is a schematic diagram of the ultra-large six-legged crawler foot polar scientific research vehicle of the present invention
  • FIG. 2 is a schematic diagram of the rotation angle of the crawler foot when the ultra-large six-legged crawler foot polar scientific research vehicle of the present invention crosses a snow hill;
  • Fig. 3 is a schematic diagram of the track of the limbs and legs of the crawler foot when the ultra-large six-legged crawler-foot polar scientific research vehicle of the present invention crosses a snow hill;
  • FIG. 4 is a time sequence diagram of the unfolding gait of the left foreleg when the ultra-large six-legged crawler foot polar scientific research vehicle of the present invention crosses a snow hill;
  • Figure 5 is a timing diagram of the gait of the right foreleg when the ultra-large six-legged crawler foot polar scientific research vehicle of the present invention crosses a snow hill;
  • Fig. 6 is a time sequence diagram of the unfolding gait of the left hind leg when the ultra-large six-legged crawler foot polar scientific research vehicle of the present invention crosses a snow hill;
  • FIG. 7 is a timing diagram of the gait of the right hind leg when the ultra-large six-legged crawler foot polar scientific research vehicle of the present invention crosses a snow hill;
  • FIG. 8 is a timing diagram of the gait of the left forelimb leg retracting when the ultra-large six-legged crawler foot polar scientific research vehicle of the present invention crosses a snow hill;
  • FIG. 9 is a timing diagram of the gait of the right foreleg leg retracting when the super large six-legged crawler foot polar scientific research vehicle of the present invention crosses a snow hill;
  • Figure 10 is a timing diagram of the gait of the left hind leg retracting to the cage when the ultra-large six-legged crawler foot polar scientific research vehicle of the present invention crosses a snow hill;
  • Fig. 11 is a time sequence diagram of the gait of the right hind leg retracting when the ultra-large six-legged crawler foot polar scientific research vehicle of the present invention crosses a snow hill.
  • Figure 1 1-platform, 2-rotation joint, 3-limb leg, 4-leg joint, 5-crawler foot slewing device, 6-crawler foot, e-left foreleg leg, f-right foreleg leg, m-left Middle leg, n-right middle leg, p-left hind leg, q-right front leg.
  • the ultra-large six-legged crawler foot polar scientific research vehicle in this embodiment is connected to the limb 3 by the platform 1 through the rotating joint 2.
  • the limb 3 can rotate left and right to set the angle.
  • Each group of limbs 3 includes upper limbs and lower limbs, connected by leg joints 4, in the whole gait planning method across snow hills The leg joint 4 does not move, the angle of the limb 3 and the ground remains unchanged, and the crawler foot 6 can rotate in place.
  • each limb can be rotated to both sides of the vehicle body with a rotation angle of 2 ⁇ , and a distance measuring sensor is provided on the scientific research vehicle platform. Since the trajectories of the left front, right front, left rear, and right hind limbs are the same when crossing a snow hill, and there is no vertical displacement, for the convenience of description, the present invention defines two coordinate systems, which are specifically as follows:
  • Figures 1 and 3 show the coordinate system of the limbs and legs.
  • the center of the circle is the projection of the center of the revolving joint connected by the limb to be rotated on the ground.
  • the x-axis combine the origins of the coordinate systems corresponding to the left front, right front, left rear, and right rear legs to form a coordinate system.
  • the left forelimb leg moves in the second quadrant, and the right forelimb leg is in the second quadrant.
  • One quadrant moves, the left hind leg moves in the third quadrant, and the right hind leg moves in the fourth quadrant;
  • Figure 2a and Figure 2b respectively show the crawler foot rotation angle-time coordinate system in the process of limb unfolding and limb retraction, with the projection of the center of the crawler foot turning device on the ground as the origin, and the time of the limb unfolding and limb retraction process as the t axis , The angle between the axis of the crawler foot body and the traveling direction of the scientific research vehicle is transformed into the ⁇ axis.
  • FIGS. 4 to 11 are the action sequence diagrams of the gait planning of each limb and leg when the ultra-large six-legged crawler foot polar scientific research vehicle of the present invention crosses a snow hill.
  • the gait planning method includes the following steps:
  • the distance measuring sensor on the scientific research vehicle detects that there is a snow hill in front, all six track feet stop moving forward, and the scientific research vehicle as a whole remains motionless, and begins to prepare for the action to cross the snow hill.
  • the second step is to unfold the limbs:
  • the travel distance of the track foot can be obtained as
  • the front and rear four groups of limbs and legs rotate in turn to the outside of the scientific examination vehicle; that is, the rotation joint connected to the left foreleg leg is unlocked and rotated, and the crawler foot connected to the left foreleg leg drives the left foreleg leg to be connected to the left foreleg leg.
  • the center of the revolving joint is the center of the circle and it rotates counterclockwise to the left middle leg.
  • the angle of rotation is 2 ⁇ , and ⁇ does not exceed 45 degrees.
  • the travel distance L, and its trajectory is in the shape of an arc.
  • the rotating joint connected to the right foreleg leg unlocks and rotates, and the track foot connected to the right foreleg leg drives the right foreleg leg to rotate clockwise in the direction of the right middle leg with the center of the rotating joint connected to the right foreleg leg as the center.
  • the angle of rotation is 2 ⁇ , and ⁇ does not exceed 45 degrees, travel distance L, its trajectory is in the shape of an arc, the crawler foot connected to the right foreleg leg stops after reaching the predetermined position B', the revolving joint connected to the right foreleg leg is locked ( Figure 5), and then the crawler connected to the right foreleg leg Turn the foot back to the original driving direction, and the upper limb leg, lower limb leg, and leg joints on the right foreleg leg remain stationary during the unfolding process;
  • the revolving joint connected to the left hind leg is unlocked and rotated, and the crawler foot connected to the left hind leg drives the left hind leg to rotate clockwise in the direction of the left middle leg with the center of the revolving joint connected to the left hind leg as the center.
  • the rotation angle is 2 ⁇ , and ⁇ does not exceed 45 degrees, travel distance L, its trajectory is arc shape, after reaching the predetermined position C', the crawler foot connected to the left hind leg stops traveling, the revolving joint connected to the left hind leg is locked ( Figure 6), and then the crawler connected to the left hind leg Turn the foot back to the original driving direction, and the upper limb leg, lower limb leg, and leg joints on the left hind leg remain stationary during the unfolding process;
  • the revolving joint connected to the right hind leg is unlocked and rotated, and the crawler foot connected to the right hind leg drives the right hind leg to rotate counterclockwise in the direction of the right middle leg with the center of the revolving joint connected to the right hind leg as the center.
  • the rotation angle is 2 ⁇ , and ⁇ does not exceed 45 degrees, travel distance L, its trajectory is arc shape, after reaching the predetermined position D', the crawler foot connected to the right hind leg stops traveling, the rotating joint connected to the right hind leg is locked ( Figure 7), and then the crawler connected to the right hind leg The foot is turned back to the original driving direction, and the upper limb leg, lower limb leg, and leg joints on the right hind leg remain in the relative position during the unfolding process; the trajectory of the crawler foot of the limbs and legs is shown in Figure 3.
  • the angle change of the tracked vehicle connected to the left foreleg leg during the unfolding of the left foreleg leg is shown in Figure 2a.
  • the tracked foot connected to the left foreleg leg turns to the trajectory circle In the tangent direction of the arc L, the rotation angle is ⁇ 1 , and the angle ⁇ 1 does not exceed 90 degrees.
  • the crawler foot connected to the left foreleg leg reaches A'(x 1 , y 1 ) from A(x 1 , y 1) to A'(x 1', y 1 ') Position, the rotation angle is 2 ⁇ , the angle ⁇ does not exceed 45 degrees, the angle between the axis of the track foot body connected to the left foreleg leg and the direction of the scientific research vehicle during t 1 to t 2 gradually decreases, and the left foreleg leg at t 3
  • the connected crawler foot rotates back to the initial angle.
  • the crawler foot connected to the right front, left rear, and right hind limb legs changes in the same way as the crawler foot connected to the left front leg during the expansion of the corresponding limbs.
  • the third step is to move forward across the snow hill: After the expansion of the left front, right front, left rear, and right hind limbs are all completed, the scientific research vehicle moves forward and passes over the snow hill.
  • the distance measuring sensor on the scientific research vehicle Detect snow hills at all times, and the scientific research vehicle adjusts the running direction of the crawler feet to ensure that the crawler feet do not run on the surface of the snow hill.
  • the six groups of limbs of the scientific research vehicle maintain the relative position of the platform;
  • the fourth step, retraction of the limbs and legs When the distance measuring sensor on the scientific research vehicle detects that the six crawler feet of the scientific research vehicle have completely crossed the snow hill and can ensure the distance L 3 required for the scientific research vehicle to return to the initial state, the scientific research vehicle will stop Go forward, turn the front and rear limbs and legs back to the initial position in turn, and continue to move forward.
  • L 3 is the vertical distance from the rear end of the scientific research vehicle to the snow hill.
  • the steps of returning the limbs to the cage are:
  • the rotating joint connected to the left foreleg leg unlocks and rotates, and the tracked foot connected to the left foreleg leg drives the left foreleg leg to rotate clockwise in the direction away from the left middle leg with the center of the rotating joint connected to the left foreleg leg as the center.
  • the angle of rotation is 2 ⁇ , ⁇ is not More than 45 degrees, the travel distance L, its trajectory is in the shape of an arc, the crawler foot connected to the left foreleg leg stops after reaching the predetermined position A, the rotating joint connected to the left foreleg leg is locked ( Figure 8), and then the crawler connected to the left foreleg leg Turn the foot back to the original driving direction, and the upper limb, lower limb, and leg joints on the left forelimb leg remain stationary during the retraction process;
  • the rotating joint connected to the right foreleg leg unlocks and rotates, and the tracked foot connected to the right foreleg leg drives the right foreleg leg to rotate counterclockwise away from the right middle leg with the center of the rotating joint connected to the right foreleg leg as the center.
  • the angle of rotation is 2 ⁇ , ⁇ is not Over 45 degrees, the travel distance L has a circular arc shape.
  • the revolving joint connected to the left hind leg is unlocked and rotated, and the crawler foot connected to the left hind leg drives the left hind leg to rotate counterclockwise in the direction away from the left middle leg with the center of the revolving joint connected to the left hind leg as the center.
  • the rotation angle is 2 ⁇ , ⁇ is not Over 45 degrees, the travel distance L, its trajectory is in the shape of a circular arc.
  • the revolving joint connected to the right hind leg is unlocked and rotated, and the crawler foot connected to the right hind leg drives the right hind leg to rotate clockwise in the direction away from the right middle leg with the center of the revolving joint connected to the right hind leg as the center.
  • the rotation angle is 2 ⁇ , ⁇ is not Over 45 degrees, the trajectory of the driving distance L is in the shape of a circular arc.
  • the crawler foot connected to the right hind leg stops traveling, the revolving joint connected to the right hind leg is locked ( Figure 11), and then the crawler connected to the right hind leg Turn the foot back to the original driving direction, and the upper limb leg, lower limb leg, and leg joints on the right hind leg remain stationary during the retraction process.
  • the angle ⁇ does not exceed 45 degrees, and the angle between the axis of the crawler foot body connected by the left foreleg leg and the traveling direction of the scientific research vehicle from t 1 to t 2 gradually increases, and the crawler foot connected by the left foreleg leg turns back at t 3 To the initial angle.
  • the crawler foot connected to the right front, left rear, and right hind limbs changes its turning angle during the retraction process of the corresponding

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Motorcycle And Bicycle Frame (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Toys (AREA)

Abstract

一种超大型六肢腿履带足极地科考车跨越雪丘步态规划方法,包括以下步骤:第一步骤,当科考车上的测距传感器监测到前方有雪丘时,六个履带足(6)全部停止前进,科考车整体保持不动,开始进行跨越雪丘动作准备;第二步骤,肢腿(3)展开;第三步骤,前行跨越雪丘;第四步骤,肢腿(3)回笼。所述肢腿(3)展开、肢腿(3)回笼步态规划中,履带足(6)始终与冰面保持接触,避免科考车跨越障碍时,车体出现严重偏移和倾侧问题,保证了这种超大型六肢腿履带足极地科考车在横跨南极雪丘、雪垄时平稳行进。

Description

超大型六肢腿履带足极地科考车跨越雪丘步态规划方法 技术领域
本发明涉及一种超大型六肢腿履带足极地科考车跨越雪丘步态规划方法。
背景技术
南极冰盖内陆地区常年覆盖百米冰雪,暴风雪天气突出,冰面常形成不同形状的雪丘、雪垄,通常雪丘高1米左右,长3米到10米,宽3米左右,现有常规极地科考车辆遇到这种极端地形时,通常实行绕行或直接从雪丘表面越过,但绕行受冰面地形限制,而直接从雪丘表面越过时易发生车体倾覆,造成安全事故,都会严重影响科考效率。
一种超大型六肢腿履带足极地科考车具有六肢腿履带足特殊结构,可以解决中小型极地车难以越过的雪丘、雪垄,在未来的南极科考中有不可替代的优势。对此,需要针对一种超大型六肢腿履带足极地科考车,设计出特有的步态规划方法,实现跨越雪丘等极端地形。
发明内容
本发明的目的是,提供一种超大型六肢腿履带足极地科考车跨越雪丘步态规划方法,实现科考车平稳、可靠地跨越雪丘等极端地形,避免因肢腿大跨度动作造成整车重心失稳,解决科考车跨越雪丘的技术问题。
为解决上述技术问题,本发明采用的技术方案是:
一种超大型六肢腿履带足极地科考车跨越雪丘步态规划方法,其包括以下步骤:
第一步骤,当科考车上的测距传感器监测到前方有雪丘时,六个履带足全部停止前进,科考车整体保持不动,开始进行跨越雪丘动作准备;
第二步骤,肢腿展开:
1)科考车上的测距传感器测量出雪丘宽度为b,依据前端两肢腿连接的履带足之间的距离B和履带足车身宽度L 2,计算前端两肢腿连接的履带足需要移动的水平距离,计算水平距离的公式为L 1=(B+L 2-b)/2;
2)建立平面直角坐标系:以所需要转动肢腿连接的转动关节中心在地面的投影为圆心,科考车行驶的方向为y轴,垂直于y轴且肢腿要偏转的方向为x轴,建立平面直角坐标系x-y;
3)计算履带足的行驶路程L:以左前肢腿展开为例,左前肢腿的履带足回转装置圆心在地面的投影为A(x 1,y 1),左前肢腿的履带足回转装置圆心移动后到达的位置在地面的投影 为A’(x 1’,y 1’),左前肢腿的转动关节中心在地面的投影为左前肢腿展开动作的相对坐标圆心Oe,左前肢腿的履带足回转装置圆心与Oe在地面的投影距离为半径r,可得,
Figure PCTCN2020111921-appb-000001
A-A’点之间的直线距离为d,
Figure PCTCN2020111921-appb-000002
sinα=d/2r,
A-A’间弧长公式为
Figure PCTCN2020111921-appb-000003
整合上述公式可得履带足的行驶路程为
Figure PCTCN2020111921-appb-000004
4)依据履带足行驶路程L,前后四组肢腿依次向科考车外侧转动;即左前肢腿连接的转动关节解锁转动,左前肢腿连接的履带足带动左前肢腿以左前肢腿连接的转动关节中心为圆心向左中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置A’后左前肢腿连接的履带足停止行进,左前肢腿连接的转动关节锁定,此后左前肢腿连接的履带足原地转回初始行驶方向,左前肢腿上的上肢腿、下肢腿、腿关节在展开过程中相对位置保持不动;
右前肢腿连接的转动关节解锁转动,右前肢腿连接的履带足带动右前肢腿以右前肢腿连接的转动关节中心为圆心向右中肢腿方向顺时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置B’后右前肢腿连接的履带足停止行进,右前肢腿连接的转动关节锁定,此后右前肢腿连接的履带足原地转回初始行驶方向,右前肢腿上的上肢腿、下肢腿、腿关节在展开过程中相对位置保持不动;
左后肢腿连接的转动关节解锁转动,左后肢腿连接的履带足带动左后肢腿以左后肢腿连接的转动关节中心为圆心向左中肢腿方向顺时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置C’后左后肢腿连接的履带足停止行进,左后肢腿连接的转动关节锁定,此后左后肢腿连接的履带足原地转回初始行驶方向,左后肢腿上的上肢腿、下肢腿、腿关节在展开过程中相对位置保持不动;
右后肢腿连接的转动关节解锁转动,右后肢腿连接的履带足带动右后肢腿以右后肢腿连 接的转动关节中心为圆心向右中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置D’后右后肢腿连接的履带足停止行进,右后肢腿连接的转动关节锁定,此后右后肢腿连接的履带足原地转回初始行驶方向,右后肢腿上的上肢腿、下肢腿、腿关节在展开过程中相对位置保持不动;
第三步骤,前行跨越雪丘:所述的左前、右前、左后、右后肢腿展开动作全部完成后,科考车向前行进,从雪丘上方越过,科考车上的测距传感器时刻检测雪丘,科考车调节履带足行驶方向,确保履带足不在雪丘表面行驶,上述过程中科考车六组肢腿与平台保持相对位置不变;
第四步骤,肢腿回笼:当科考车上的测距传感器检测到科考车六个履带足完全越过雪丘并且能保证科考车恢复初始状态所需距离L 3时,科考车停止前进,前后四肢腿依次转回初始位置,继续前进。
Figure PCTCN2020111921-appb-000005
式中L 3为科考车后端履带足车尾距雪丘的垂直距离。
进一步地,所述肢腿回笼的步骤为:
左前肢腿连接的转动关节解锁转动,左前肢腿连接的履带足带动左前肢腿以左前肢腿连接的转动关节中心为圆心向远离左中肢腿方向顺时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置A后左前肢腿连接的履带足停止行进,左前肢腿连接的转动关节锁定,此后左前肢腿连接的履带足原地转回初始行驶方向,左前肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动;
右前肢腿连接的转动关节解锁转动,右前肢腿连接的履带足带动右前肢腿以右前肢腿连接的转动关节中心为圆心向远离右中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置B后右前肢腿连接的履带足停止行进,右前肢腿连接的转动关节锁定,此后右前肢腿连接的履带足原地转回初始行驶方向,右前肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动;
左后肢腿连接的转动关节解锁转动,左后肢腿连接的履带足带动左后肢腿以左后肢腿连接的转动关节中心为圆心向远离左中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置C后左后肢腿连接的履带足停止行进,左后 肢腿连接的转动关节锁定,此后左后肢腿连接的履带足原地转回初始行驶方向,左后肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动;
右后肢腿连接的转动关节解锁转动,右后肢腿连接的履带足带动右后肢腿以右后肢腿连接的转动关节中心为圆心向远离右中肢腿方向顺时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置D后右后肢腿连接的履带足停止行进,右后肢腿连接的转动关节锁定,此后右后肢腿连接的履带足原地转回初始行驶方向,右后肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动。
本发明的有益效果是:
本发明针对南极冰面上的雪丘或雪垄,提出一种通过调节四部分肢腿与履带足协同动作的新步态方法,实现超大型六肢腿履带足极地科考车横跨雪丘、雪垄的目的;在本发明中的肢腿展开与肢腿回笼步态规划中,履带足始终与冰面保持接触,避免科考车跨越障碍时,车体出现严重偏移和倾侧问题,保证了这种超大型六肢腿履带足极地科考车在横跨南极雪丘、雪垄时平稳行进。
附图说明
图1为本发明超大型六肢腿履带足极地科考车示意简图;
图2为本发明超大型六肢腿履带足极地科考车跨越雪丘时履带足转动角度变化示意图;
图3为本发明超大型六肢腿履带足极地科考车跨越雪丘时四肢腿履带足轨迹示意图;
图4为本发明超大型六肢腿履带足极地科考车跨越雪丘时左前肢腿展开步态时序图;
图5为本发明超大型六肢腿履带足极地科考车跨越雪丘时右前肢腿展开步态时序图;
图6为本发明超大型六肢腿履带足极地科考车跨越雪丘时左后肢腿展开步态时序图;
图7为本发明超大型六肢腿履带足极地科考车跨越雪丘时右后肢腿展开步态时序图;
图8为本发明超大型六肢腿履带足极地科考车跨越雪丘时左前肢腿回笼步态时序图;
图9为本发明超大型六肢腿履带足极地科考车跨越雪丘时右前肢腿回笼步态时序图;
图10为本发明超大型六肢腿履带足极地科考车跨越雪丘时左后肢腿回笼步态时序图;
图11为本发明超大型六肢腿履带足极地科考车跨越雪丘时右后肢腿回笼步态时序图。
图1中:1-平台,2-转动关节,3-肢腿,4-腿关节,5-履带足回转装置,6-履带足,e-左前肢腿,f-右前肢腿,m-左中肢腿,n-右中肢腿,p-左后肢腿,q-右前肢腿。
具体实施方式
下面结合附图和实施例对本发明作进一步的描述。
如图1所示,本实施例中的一种超大型六肢腿履带足极地科考车,由平台1通过转动关节2与肢腿3连接,肢腿3可以左右转动设定角度,肢腿3有六组,每组肢腿3与履带足6通过履带足回转装置5连接,每组肢腿3包括上肢腿和下肢腿,由腿关节4连接,在整个跨越雪丘步态规划方法中腿关节4不运动,肢腿3与地面角度保持不变,履带足6可以原地转动。
本发明的超大型六肢腿履带足极地科考车,各肢腿可以向车身两侧转动,转动角为2α,并在科考车平台上设有测距传感器。由于跨越雪丘时左前、右前、左后、右后肢腿所运行的轨迹长度一样,且没有竖直方向上的位移,为了方便说明,本发明定义了两个坐标系,具体如下:
图1、3出示肢腿坐标系,以所需要转动肢腿连接的转动关节中心在地面的投影为圆心,科考车行驶的方向为y轴,垂直于y轴且肢腿要偏转的方向为x轴,为了方便说明,将左前、右前、左后、右后四个肢腿所对应的坐标系的原点合在一起组成一个坐标系,左前肢腿在第二象限活动,右前肢腿在第一象限活动,左后肢腿在第三象限活动,右后肢腿在第四象限活动;
图2a、图2b分别出示了肢腿展开、肢腿回笼过程中履带足转角-时间坐标系,以履带足回转装置圆心在地面的投影为原点,肢腿展开、肢腿回笼过程时间为t轴,履带足车身的轴线与科考车行进方向的夹角变换为β轴。
图4-图11是本发明超大型六肢腿履带足极地科考车跨越雪丘时各肢腿步态规划的动作时序图,其步态规划方法包括以下步骤:
第一步骤,当科考车上的测距传感器监测到前方有雪丘时,六个履带足全部停止前进,科考车整体保持不动,开始进行跨越雪丘动作准备。
第二步骤,肢腿展开:
1)科考车上的测距传感器测量出雪丘宽度为b,依据前端两肢腿连接的履带足之间的距离B和履带足车身宽度L 2,计算前端两肢腿连接的履带足需要移动的水平距离,计算水平距离的公式为L 1=(B+L 2-b)/2;
2)建立平面直角坐标系:以所需要转动肢腿连接的转动关节中心在地面的投影为圆心,科考车行驶的方向为y轴,垂直于y轴且肢腿要偏转的方向为x轴,建立平面直角坐标系x-y;
3)计算履带足的行驶路程L:以左前肢腿展开为例,左前肢腿的履带足回转装置圆心在地面的投影为A(x 1,y 1),左前肢腿的履带足回转装置圆心移动后到达的位置在地面的投影为A’(x 1’,y 1’),左前肢腿的转动关节中心在地面的投影为左前肢腿展开动作的相对坐标圆心Oe,左前肢腿的履带足回转装置圆心与Oe在地面的投影距离为半径r,可得
Figure PCTCN2020111921-appb-000006
A-A’点之间的直线距离为d,
Figure PCTCN2020111921-appb-000007
sinα=d/2r,
A-A’间弧长公式为
Figure PCTCN2020111921-appb-000008
整合上述公式可得履带足的行驶路程为
Figure PCTCN2020111921-appb-000009
4)依据履带足行驶路程L,前后四组肢腿依次向科考车外侧转动;即左前肢腿连接的转动关节解锁转动,左前肢腿连接的履带足带动左前肢腿以左前肢腿连接的转动关节中心为圆心向左中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置A’后左前肢腿连接的履带足停止行进,左前肢腿连接的转动关节锁定(图4),此后左前肢腿连接的履带足原地转回初始行驶方向,左前肢腿上的上肢腿、下肢腿、腿关节在展开过程中相对位置保持不动;
右前肢腿连接的转动关节解锁转动,右前肢腿连接的履带足带动右前肢腿以右前肢腿连接的转动关节中心为圆心向右中肢腿方向顺时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置B’后右前肢腿连接的履带足停止行进,右前肢腿连接的转动关节锁定(图5),此后右前肢腿连接的履带足原地转回初始行驶方向,右前肢腿上的上肢腿、下肢腿、腿关节在展开过程中相对位置保持不动;
左后肢腿连接的转动关节解锁转动,左后肢腿连接的履带足带动左后肢腿以左后肢腿连接的转动关节中心为圆心向左中肢腿方向顺时针转动,转动角度为2α,α不超过45度,行驶 路程L,其轨迹为圆弧形状,到达预定位置C’后左后肢腿连接的履带足停止行进,左后肢腿连接的转动关节锁定(图6),此后左后肢腿连接的履带足原地转回初始行驶方向,左后肢腿上的上肢腿、下肢腿、腿关节在展开过程中相对位置保持不动;
右后肢腿连接的转动关节解锁转动,右后肢腿连接的履带足带动右后肢腿以右后肢腿连接的转动关节中心为圆心向右中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置D’后右后肢腿连接的履带足停止行进,右后肢腿连接的转动关节锁定(图7),此后右后肢腿连接的履带足原地转回初始行驶方向,右后肢腿上的上肢腿、下肢腿、腿关节在展开过程中相对位置保持不动;上述四肢腿履带足轨迹如图3所示。
以左前肢腿连接的履带车转动为例,左前肢腿连接的履带车在左前肢腿展开过程中角度变化如图2a所示,在t 1时刻,左前肢腿连接的履带足转至轨迹圆弧L切线方向,旋转角度为β 1,β 1角不超过90度,t 2时刻左前肢腿连接的履带足由A(x 1,y 1)到达A’(x 1’,y 1’)位置,转动角度为2α,α角不超过45度,t 1到t 2过程中左前肢腿连接的履带足车身的轴线与科考车行进方向的夹角逐渐减小,t 3时刻左前肢腿连接的履带足转回到初始角度。右前、左后、右后肢腿连接的履带足在对应的肢腿展开过程中转角变化过程与左前肢腿连接的履带足相同。
第三步骤,前行跨越雪丘:所述的左前、右前、左后、右后肢腿展开动作全部完成后,科考车向前行进,从雪丘上方越过,科考车上的测距传感器时刻检测雪丘,科考车调节履带足行驶方向,确保履带足不在雪丘表面行驶,上述过程中科考车六组肢腿与平台保持相对位置不变;
第四步骤,肢腿回笼:当科考车上的测距传感器检测到科考车六个履带足完全越过雪丘并且能保证科考车恢复初始状态所需距离L 3时,科考车停止前进,前后四肢腿依次转回初始位置,继续前进。
Figure PCTCN2020111921-appb-000010
式中L 3为科考车后端履带足车尾距雪丘的垂直距离。
所述肢腿回笼的步骤为:
左前肢腿连接的转动关节解锁转动,左前肢腿连接的履带足带动左前肢腿以左前肢腿连接的转动关节中心为圆心向远离左中肢腿方向顺时针转动,转动角度为2α,α不超过45度, 行驶路程L,其轨迹为圆弧形状,到达预定位置A后左前肢腿连接的履带足停止行进,左前肢腿连接的转动关节锁定(图8),此后左前肢腿连接的履带足原地转回初始行驶方向,左前肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动;
右前肢腿连接的转动关节解锁转动,右前肢腿连接的履带足带动右前肢腿以右前肢腿连接的转动关节中心为圆心向远离右中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置B后右前肢腿连接的履带足停止行进,右前肢腿连接的转动关节锁定(图9),此后右前肢腿连接的履带足原地转回初始行驶方向,右前肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动;
左后肢腿连接的转动关节解锁转动,左后肢腿连接的履带足带动左后肢腿以左后肢腿连接的转动关节中心为圆心向远离左中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置C后左后肢腿连接的履带足停止行进,左后肢腿连接的转动关节锁定(图10),此后左后肢腿连接的履带足原地转回初始行驶方向,左后肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动;
右后肢腿连接的转动关节解锁转动,右后肢腿连接的履带足带动右后肢腿以右后肢腿连接的转动关节中心为圆心向远离右中肢腿方向顺时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置D后右后肢腿连接的履带足停止行进,右后肢腿连接的转动关节锁定(图11),此后右后肢腿连接的履带足原地转回初始行驶方向,右后肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动。
以左前肢腿连接的履带车转动为例,左前肢腿连接的履带车在左前肢腿回笼过程中角度变化如图2b所示,在t 1时刻,左前肢腿连接的履带足转至轨迹圆弧L切线方向,旋转角度为β 1-2α,t 2时刻左前肢腿连接的履带足由A’(x 1,y 1)到达A(x 1’,y 1’)位置,转动角度为2α,α角不超过45度,t 1到t 2过程中左前肢腿连接的履带足车身的轴线与科考车行进方向的夹角逐渐增大,t 3时刻左前肢腿连接的履带足转回到初始角度。右前、左后、右后肢腿连接的履带足在对应的肢腿回笼过程中转角变化过程与左前肢腿连接的履带足相同。

Claims (2)

  1. 一种超大型六肢腿履带足极地科考车跨越雪丘步态规划方法,其特征在于:包括以下步骤,
    第一步骤,当科考车上的测距传感器监测到前方有雪丘时,六个履带足全部停止前进,科考车整体保持不动,开始进行跨越雪丘动作准备;
    第二步骤,肢腿展开:
    1)科考车上的测距传感器测量出雪丘宽度为b,依据前端两肢腿连接的履带足之间的距离B和履带足车身宽度L 2,计算前端两肢腿连接的履带足需要移动的水平距离,计算水平距离的公式为L 1=(B+L 2-b)/2;
    2)建立平面直角坐标系:以所需要转动肢腿连接的转动关节中心在地面的投影为圆心,科考车行驶的方向为y轴,垂直于y轴且肢腿要偏转的方向为x轴,建立平面直角坐标系x-y;
    3)计算履带足的行驶路程L:以左前肢腿展开为例,左前肢腿的履带足回转装置圆心在地面的投影为A(x 1,y 1),左前肢腿的履带足回转装置圆心移动后到达的位置在地面的投影为A’(x 1’,y 1’),左前肢腿的转动关节中心在地面的投影为左前肢腿展开动作的相对坐标圆心Oe,左前肢腿的履带足回转装置圆心与Oe在地面的投影距离为半径r,可得
    x 1'=x 1+L 1
    Figure PCTCN2020111921-appb-100001
    A-A’点之间的直线距离为d,
    Figure PCTCN2020111921-appb-100002
    sinα=d/2r,
    A-A’间弧长公式为
    Figure PCTCN2020111921-appb-100003
    整合上述公式可得履带足的行驶路程为
    Figure PCTCN2020111921-appb-100004
    4)依据履带足行驶路程L,前后四组肢腿依次向科考车外侧转动;即左前肢腿连接的转动关节解锁转动,左前肢腿连接的履带足带动左前肢腿以左前肢腿连接的转动关节中心为圆心向左中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置A’后左前肢腿连接的履带足停止行进,左前肢腿连接的转动关节锁定,此后左前肢腿连接的履带足原地转回初始行驶方向,左前肢腿上的上肢腿、下肢腿、腿关节 在展开过程中相对位置保持不动;
    右前肢腿连接的转动关节解锁转动,右前肢腿连接的履带足带动右前肢腿以右前肢腿连接的转动关节中心为圆心向右中肢腿方向顺时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置B’后右前肢腿连接的履带足停止行进,右前肢腿连接的转动关节锁定,此后右前肢腿连接的履带足原地转回初始行驶方向,右前肢腿上的上肢腿、下肢腿、腿关节在展开过程中相对位置保持不动;
    左后肢腿连接的转动关节解锁转动,左后肢腿连接的履带足带动左后肢腿以左后肢腿连接的转动关节中心为圆心向左中肢腿方向顺时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置C’后左后肢腿连接的履带足停止行进,左后肢腿连接的转动关节锁定,此后左后肢腿连接的履带足原地转回初始行驶方向,左后肢腿上的上肢腿、下肢腿、腿关节在展开过程中相对位置保持不动;
    右后肢腿连接的转动关节解锁转动,右后肢腿连接的履带足带动右后肢腿以右后肢腿连接的转动关节中心为圆心向右中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置D’后右后肢腿连接的履带足停止行进,右后肢腿连接的转动关节锁定,此后右后肢腿连接的履带足原地转回初始行驶方向,右后肢腿上的上肢腿、下肢腿、腿关节在展开过程中相对位置保持不动;
    第三步骤,前行跨越雪丘:所述的左前、右前、左后、右后肢腿展开动作全部完成后,科考车向前行进,从雪丘上方越过,科考车上的测距传感器时刻检测雪丘,科考车调节履带足行驶方向,确保履带足不在雪丘表面行驶,上述过程中科考车六组肢腿与平台保持相对位置不变;
    第四步骤,肢腿回笼:当科考车上的测距传感器检测到科考车六个履带足完全越过雪丘并且能保证科考车恢复初始状态所需距离L 3时,科考车停止前进,前后四肢腿依次转回初始位置,继续前进。
    Figure PCTCN2020111921-appb-100005
    式中L 3为科考车后端履带足车尾距雪丘的垂直距离。
  2. 根据权利要求1所述的一种超大型六肢腿履带足极地科考车跨越雪丘步态规划方法,其特征在于:所述肢腿回笼的步骤为:左前肢腿连接的转动关节解锁转动,左前肢腿连接的 履带足带动左前肢腿以左前肢腿连接的转动关节中心为圆心向远离左中肢腿方向顺时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置A后左前肢腿连接的履带足停止行进,左前肢腿连接的转动关节锁定,此后左前肢腿连接的履带足原地转回初始行驶方向,左前肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动;
    右前肢腿连接的转动关节解锁转动,右前肢腿连接的履带足带动右前肢腿以右前肢腿连接的转动关节中心为圆心向远离右中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置B后右前肢腿连接的履带足停止行进,右前肢腿连接的转动关节锁定,此后右前肢腿连接的履带足原地转回初始行驶方向,右前肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动;
    左后肢腿连接的转动关节解锁转动,左后肢腿连接的履带足带动左后肢腿以左后肢腿连接的转动关节中心为圆心向远离左中肢腿方向逆时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置C后左后肢腿连接的履带足停止行进,左后肢腿连接的转动关节锁定,此后左后肢腿连接的履带足原地转回初始行驶方向,左后肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动;
    右后肢腿连接的转动关节解锁转动,右后肢腿连接的履带足带动右后肢腿以右后肢腿连接的转动关节中心为圆心向远离右中肢腿方向顺时针转动,转动角度为2α,α不超过45度,行驶路程L,其轨迹为圆弧形状,到达预定位置D后右后肢腿连接的履带足停止行进,右后肢腿连接的转动关节锁定,此后右后肢腿连接的履带足原地转回初始行驶方向,右后肢腿上的上肢腿、下肢腿、腿关节在回笼过程中相对位置保持不动。
PCT/CN2020/111921 2019-08-28 2020-08-27 超大型六肢腿履带足极地科考车跨越雪丘步态规划方法 WO2021037176A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910804080.9 2019-08-28
CN201910804080.9A CN110481666B (zh) 2019-08-28 2019-08-28 超大型六肢腿履带足极地科考车跨越雪丘步态规划方法

Publications (1)

Publication Number Publication Date
WO2021037176A1 true WO2021037176A1 (zh) 2021-03-04

Family

ID=68555213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/111921 WO2021037176A1 (zh) 2019-08-28 2020-08-27 超大型六肢腿履带足极地科考车跨越雪丘步态规划方法

Country Status (2)

Country Link
CN (1) CN110481666B (zh)
WO (1) WO2021037176A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114228855A (zh) * 2021-11-29 2022-03-25 上海交通大学 成型攀爬楼梯机器人轮腿模型的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110481666B (zh) * 2019-08-28 2022-06-21 太原科技大学 超大型六肢腿履带足极地科考车跨越雪丘步态规划方法
CN110481665B (zh) * 2019-08-28 2021-05-28 太原科技大学 巨型六肢腿履带足极地科考车跨越冰裂隙步态规划方法
CN113788081B (zh) * 2021-08-23 2022-12-16 同济大学 一种基于车体变形驱动的多地形行驶无人车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082223A (ja) * 2002-08-22 2004-03-18 Atsuo Takanishi 歩行パターン作成装置、2足歩行ロボット装置、歩行パターン作成方法、2足歩行ロボット装置の制御方法、プログラムおよび記録媒体
US20040168837A1 (en) * 2002-11-27 2004-09-02 Universite De Sherbrooke Modular robotic platform
CN1544211A (zh) * 2003-11-11 2004-11-10 东华大学 高度可调的自主变位履带式管道机器人的行走机构
CN106741263A (zh) * 2016-12-23 2017-05-31 哈尔滨工程大学 四履带自适应路况可调重心机构
CN109533082A (zh) * 2019-01-07 2019-03-29 太原理工大学 一种巨型六肢腿履带足极地科考车
CN110481666A (zh) * 2019-08-28 2019-11-22 太原科技大学 超大型六肢腿履带足极地科考车跨越雪丘步态规划方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE507352C2 (sv) * 1994-04-29 1998-05-18 Aelvsjoe Data Ab Av ledade ben uppburet och framdrivet fordon
JP2014161991A (ja) * 2013-02-28 2014-09-08 Nsk Ltd ロボットの移動機構及びそれを備えるロボット
CN105480320A (zh) * 2014-10-09 2016-04-13 无锡津天阳激光电子有限公司 一种基于stm32控制的六足十八自由度的探险机器人
CN109176461B (zh) * 2018-10-31 2021-05-11 北京林业大学 轮腿式越障机器人
CN109733500B (zh) * 2019-01-28 2024-04-05 南昌大学 一种可重构六足机器人装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004082223A (ja) * 2002-08-22 2004-03-18 Atsuo Takanishi 歩行パターン作成装置、2足歩行ロボット装置、歩行パターン作成方法、2足歩行ロボット装置の制御方法、プログラムおよび記録媒体
US20040168837A1 (en) * 2002-11-27 2004-09-02 Universite De Sherbrooke Modular robotic platform
CN1544211A (zh) * 2003-11-11 2004-11-10 东华大学 高度可调的自主变位履带式管道机器人的行走机构
CN106741263A (zh) * 2016-12-23 2017-05-31 哈尔滨工程大学 四履带自适应路况可调重心机构
CN109533082A (zh) * 2019-01-07 2019-03-29 太原理工大学 一种巨型六肢腿履带足极地科考车
CN110481666A (zh) * 2019-08-28 2019-11-22 太原科技大学 超大型六肢腿履带足极地科考车跨越雪丘步态规划方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114228855A (zh) * 2021-11-29 2022-03-25 上海交通大学 成型攀爬楼梯机器人轮腿模型的方法
CN114228855B (zh) * 2021-11-29 2022-10-25 上海交通大学 成型攀爬楼梯机器人轮腿模型的方法

Also Published As

Publication number Publication date
CN110481666A (zh) 2019-11-22
CN110481666B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
WO2021037176A1 (zh) 超大型六肢腿履带足极地科考车跨越雪丘步态规划方法
CN100469645C (zh) 变结构腿轮式机器虫
CN103723144B (zh) 半自动泊车的方法及系统
CN104881027B (zh) 轮履复合式变电站巡检机器人自主越障系统及控制方法
CN2825410Y (zh) 变结构腿轮式机器虫
CN107380204A (zh) 轨道几何参数检测车及轨道几何参数检测方法
CN105737838B (zh) 一种agv路径跟踪方法
CN108756934A (zh) 运营病害隧道装配式处治结构施工作业台车
JP2010143465A (ja) 駐車支援装置
CN104153625B (zh) 地面无避让式载车板
CN111391883B (zh) 一种动车组底部故障检测装置
CN104552236A (zh) 一种基于并联六自由度运动机构的足轮式自主运动平台
CN204557216U (zh) 轮履复合式变电站巡检机器人自主越障系统
US5042957A (en) Moving type three-dimensional road
CN106567337A (zh) 钢桁架梁的转运平台及其施工方法
CN207274715U (zh) 轨道几何参数检测车
CN103186139A (zh) 四足机器人平面全向运动设计方法
CN208330395U (zh) 运营病害隧道装配式处治结构施工作业台车
CN204095635U (zh) 一种无人直升机锁紧机构
WO2019012073A1 (de) Verfahren zur beibehaltung der spur eines zweispurigen fahrzeugs
CN109834711B (zh) 一种四足机器人运动控制方法、系统及机器人
CN212656290U (zh) 一种轨道式平地机
CN206109964U (zh) 用于自行走栈桥的中间位置校正装置
CN204081608U (zh) 地面无避让式载车板
JP3406378B2 (ja) セグメント組立装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859101

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859101

Country of ref document: EP

Kind code of ref document: A1