WO2021036738A1 - 离体器官灌注容器 - Google Patents

离体器官灌注容器 Download PDF

Info

Publication number
WO2021036738A1
WO2021036738A1 PCT/CN2020/107631 CN2020107631W WO2021036738A1 WO 2021036738 A1 WO2021036738 A1 WO 2021036738A1 CN 2020107631 W CN2020107631 W CN 2020107631W WO 2021036738 A1 WO2021036738 A1 WO 2021036738A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipeline
liquid
isolated organ
tank
oxygenator
Prior art date
Application number
PCT/CN2020/107631
Other languages
English (en)
French (fr)
Inventor
卢艳
陈静瑜
刘强
刘峰
林炎志
卫栋
周鹏
杨振坤
林祥华
张勃
钟嘉伟
李伯贵
魏晓磊
林冠金
Original Assignee
广东顺德工业设计研究院(广东顺德创新设计研究院)
无锡市人民医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921391975.6U external-priority patent/CN210580687U/zh
Priority claimed from CN201910790498.9A external-priority patent/CN110506733A/zh
Application filed by 广东顺德工业设计研究院(广东顺德创新设计研究院), 无锡市人民医院 filed Critical 广东顺德工业设计研究院(广东顺德创新设计研究院)
Publication of WO2021036738A1 publication Critical patent/WO2021036738A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts

Definitions

  • the present invention relates to the technical field of auxiliary medical devices, in particular to an isolated organ perfusion container.
  • organ transplantation the preservation of the organ can directly determine the success or failure of the transplant operation.
  • low-temperature static preservation is generally used to preserve the organs in vitro, that is, to extend the preservation time of the organs by reducing the energy consumption of the organs through low temperature.
  • an isolated organ perfusion container By placing the isolated organ in the perfusion container and continuously infusing the isolated organ with the perfusion fluid, the isolated organ can be recovered in a normal temperature environment. Long-term storage can effectively avoid problems such as damage to tissue cells and organ ischemia caused by low-temperature environments, and improve the success rate of transplantation operations.
  • the present invention provides an isolated organ perfusion container.
  • the isolated organ perfusion container includes a cover, a tray, a supporting film, and a power pump head.
  • the tray and the supporting film are arranged on the In the cover, the supporting film is fixedly arranged on the tray to support the organs in vitro, the bottom of the tray is provided with a liquid storage tank for containing the perfusion liquid, and the liquid storage tank is provided with a first liquid outlet,
  • the supporting film is provided with a through hole for communicating with the liquid storage tank, the power pump head is used for connecting with the output end of the power pump, and the power pump head is provided with a port for connecting with the first liquid outlet.
  • the first liquid inlet port connected with the pipeline and the first liquid outlet port used for communicating with the arterial pipeline of the isolated organ.
  • the above-mentioned isolated organ perfusion container has at least the following beneficial effects: firstly, the isolated organ is placed on the supporting membrane, and the perfusion liquid is injected into the liquid storage tank, and then the first liquid inlet port of the power pump head Connect the first liquid outlet of the liquid storage tank through the pipeline, connect the first liquid outlet of the power pump head to the artery of the isolated organ through the pipeline, and then start the power pump, which drives the perfusion fluid in the pipeline After flowing out from the first outlet of the reservoir, the perfusate flows through the first inlet port, the first outlet port and the artery in sequence, and finally drains from the isolated organs and passes through the through holes of the supporting membrane Reflux into the liquid storage tank to realize the circulating flow of the perfusate, so as to continuously perfuse the isolated organs with the perfusate, so as to realize the long-term preservation of the isolated organs under the normal temperature environment, thereby effectively avoiding the low temperature environment.
  • Tissue cells are damaged, organ ischemia and other problems; at the same time, the circulation of perfusion fluid is driven by a dynamic pump, which can effectively remove thrombus, inflammatory factors or other foreign harmful substances in the isolated organs, thereby maintaining the functional blood vessels of the isolated organs. , Which can improve pulmonary edema, improve the oxygenation capacity of the heart and lungs, etc., and can repair and treat isolated organs, reduce the risk of postoperative graft loss, and effectively increase the utilization rate of donor organs and the success rate of transplantation .
  • it further includes an oxygenator connected between the first liquid outlet port and the artery through a pipeline, and the oxygenator is provided with a mixing device for communicating with the mixed gas source pipeline. Air interface.
  • the oxygenator communicates with the heat exchange device through a pipeline to form a circulating heat exchange pipeline, and the perfusion liquid exchanges heat with the heat exchange liquid in the oxygenator.
  • a leukocyte filter is further included, and the leukocyte filter is connected between the oxygenator and the artery through a pipeline.
  • a micro-embolism filter is further included, and the micro-embolism filter is connected between the oxygenator and the artery or between the power pump head and the oxygenator through a pipeline.
  • it further includes a waste liquid tank and a replenishing tank
  • the liquid storage tank is also provided with a second liquid outlet
  • the waste liquid tank is in communication with the second liquid outlet pipeline
  • the waste The pipeline between the liquid tank and the second liquid outlet is provided with a second peristaltic pump for providing the perfusion liquid flowing from the second liquid outlet with power to flow into the waste liquid tank.
  • the fluid replacement tank is in communication with the fluid storage tank pipeline, and the pipeline between the fluid replacement tank and the fluid storage tank is provided with a means for supplying the perfusion fluid flowing out of the fluid replacement tank into the fluid storage tank. Powered third peristaltic pump.
  • it further includes a dialyzer, the dialyzer is connected between the second liquid outlet and the replenishing tank through a pipeline, and the second peristaltic pump is also used to transfer from the first The perfusate flowing out of the two liquid outlets provides power to flow through the dialyzer.
  • the supporting film is recessed in a direction close to the liquid storage tank.
  • the power pump head is detachably connected to the output end of the power pump.
  • a pipe support is provided on the tray, and a plurality of bayonet holes for fixing the pipe are provided on the pipe support.
  • Fig. 1 is a schematic structural diagram of an isolated organ perfusion container according to an embodiment of the present invention
  • Fig. 2 is a schematic diagram of the internal structure of the isolated organ perfusion container shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the structure of the tray in the isolated organ perfusion container shown in FIG. 2;
  • FIG. 4 is a schematic structural diagram of the power pump head in the isolated organ perfusion container shown in FIG. 1;
  • Figure 5 is a partial cross-sectional view of the isolated organ perfusion container shown in Figure 1;
  • Fig. 6 is a schematic structural diagram of the oxygenator in the isolated organ perfusion container shown in Fig. 2;
  • FIG. 7 is a schematic diagram of the structure of the leukocyte filter in the isolated organ perfusion container shown in FIG. 2;
  • FIG. 8 is a schematic diagram of the structure of the micro-plug filter in the isolated organ perfusion container shown in FIG. 2;
  • Fig. 9 is a schematic diagram of the connection structure of the isolated organ perfusion container shown in Fig. 1.
  • an isolated organ perfusion container is suitable for long-term preservation of isolated organs such as isolated lungs and isolated hearts in a normal temperature environment. It is also suitable for performing isolated organs For repair, the container includes a cover body 10, a tray 20, a supporting film 21, and a power pump head 30.
  • the tray 20 and the supporting film 21 are arranged in the cover body 10, and the supporting film 21 is fixedly arranged on the tray 20 to support isolated organs,
  • the bottom of the tray 20 is provided with a liquid storage tank 22 for accommodating the perfusion liquid
  • the liquid storage tank 22 is provided with a first liquid outlet 221
  • the support film 21 is provided with a through hole 211 for communicating with the liquid storage tank 22, and a power pump
  • the head 30 is used to connect with the output end of the power pump (not marked in the drawings).
  • the power pump head 30 is provided with a first liquid inlet port 31 for communicating with the first liquid outlet 221 pipeline and a The first liquid outlet port 32 communicated with the arterial pipeline of the organ.
  • the circulation of the perfusion fluid driven by the power pump can effectively remove thrombus, inflammatory factors or other foreign harmful substances in the isolated organs, thereby maintaining the functional blood vessels of the isolated organs Unobstructed, which can improve pulmonary edema, improve heart and lung oxygenation capacity, etc., and can repair and treat isolated organs, reduce the risk of postoperative graft loss, and effectively improve the utilization of donor organs and the success of transplantation rate.
  • FIG. 2 there are multiple through holes 211, and the multiple through holes 211 are evenly distributed on the supporting film 21.
  • the perfusion solution is mixed with DMEM/F12 medium components, albumin and Ficoll in a 70 ratio.
  • the above-mentioned isolated organ perfusion container further includes an oxygenator 40 connected between the first outlet port 32 and the artery through a pipeline, and the oxygenator 40 is provided with
  • the mixed gas interface 43 is connected with the mixed gas source (not shown in the figure) pipeline.
  • the power pump head 30, the oxygenator 40, the isolated organ and the liquid storage tank 22 are connected to form a circulating perfusion pipeline.
  • the perfusion fluid is combined with the mixed gas in the oxygenator 40 to form an oxygenated perfusion fluid to ensure that the perfusion fluid flows into the artery.
  • the oxygen content is sufficient.
  • the oxygenator 40 communicates with a heat exchange device (not shown in the drawings) through a pipeline to form a circulating heat exchange pipeline, and the perfusion liquid exchanges heat with the heat exchange liquid in the oxygenator 40.
  • the power pump head 30, the oxygenator 40, the isolated organs and the liquid storage tank 22 are connected to form a circulating perfusion pipeline.
  • the perfusion fluid exchanges heat with the heat exchange fluid in the oxygenator 40 to maintain the temperature of the perfusion fluid and the isolated fluid.
  • the organs are suitable.
  • the oxygenator 40 is provided with a second liquid inlet port 41, a second liquid outlet port 42, a heat exchange inlet 44 and a heat exchange outlet 45, and the second liquid storage tank 22
  • a liquid outlet 221 the first liquid inlet port 31 of the power pump head 30, the first liquid outlet port 32 of the power pump head 30, the second liquid inlet port 41, the second liquid outlet port 42 and the arteries of the isolated organs in sequence
  • the pipeline is connected to form the above-mentioned circulating perfusion pipeline, and the heat exchange liquid outlet, the heat exchange inlet 44, the heat exchange outlet 45 and the heat exchange liquid inlet of the heat exchange device are connected in turn to form the aforementioned circulating heat exchange pipeline.
  • the above-mentioned isolated organ perfusion container further includes a white blood cell filter 50, and the white blood cell filter 50 is connected between the oxygenator 40 and the artery through a pipeline.
  • the perfusion fluid flows out from the oxygenator 40 and then enters the leukocyte filter 50 for leukocyte filtration, which effectively reduces the damage to the isolated organs due to the perfusion fluid perfusion. At the same time, it can effectively delay the occurrence of organ transplant rejection and further enhance the donor organs. The utilization rate and the success rate of transplant operations.
  • the white blood cell filter 50 is provided with a third inlet port 51 and a third outlet port 52, the third inlet port 51 is in pipeline communication with the second outlet port 42, and the third The liquid outlet port 52 is in communication with the arterial pipeline of the isolated organ.
  • the above-mentioned isolated organ perfusion container further includes a micro-embolic filter 60, which is connected between the oxygenator 40 and the artery through a pipeline or the power pump head 30 and the oxygenation ⁇ 40.
  • the perfusate flows out from the oxygenator 40 and then enters the microembolism filter 60.
  • the microembolism filter 60 is used to filter out various microembolisms in the perfusate, and prevent the ex vivo caused by various microembolisms such as thrombus or air embolism.
  • the embolization of the capillaries of the organs effectively improves the blood perfusion of the capillaries of the human body, and further improves the utilization rate of the donor organs and the success rate of transplantation operations.
  • the micro-plug filter 60 is provided with a fourth inlet 61 and a fourth outlet 62.
  • the fourth inlet 61 is in pipeline communication with the second outlet 42.
  • the four-outlet port 62 is in communication with the arterial pipeline of the isolated organ.
  • FIG. 2 Please refer to FIG. 2 to combine the foregoing two embodiments to connect the white blood cell filter 50 and the micro-embolic filter 60 between the oxygenator 40 and the isolated organ at the same time.
  • the white blood cell filter 50 and the micro-embolic filter The sequence of connection between the organs 60 is not limited, which further improves the utilization rate of the isolated organs and the success rate of the transplantation operation.
  • the above-mentioned isolated organ perfusion container further includes a waste liquid tank 70 and a rehydration tank 80, and the liquid storage tank 22 is also provided with a second liquid outlet 222, and the waste liquid tank 70 and The second liquid outlet 222 is in communication with the pipeline, and the pipeline between the waste liquid tank 70 and the second liquid outlet 222 is provided with a device for providing the perfusion liquid flowing out of the second liquid outlet 222 to flow into the waste liquid tank 70
  • the replenishment tank 80 is connected to the liquid storage tank 22 in pipeline, and the pipeline between the replenishment tank 80 and the liquid storage tank 22 is provided with a pipe for supplying the perfusion liquid flowing from the replenishment tank 80 into the liquid storage tank 22 Powered third peristaltic pump 81.
  • the perfusion liquid after multiple cycles flows out from the second liquid outlet 222 of the liquid storage tank 22 and flows into the waste liquid tank 70 under the drive of the second peristaltic pump 71.
  • the new perfusion liquid in the replenishment tank 80 is
  • the third peristaltic pump 81 is driven to flow into the liquid storage tank 22 to realize supplemental replacement of the perfusion liquid, so as to ensure that the volume of the perfusion liquid in the liquid storage tank 22 is constant.
  • the above-mentioned isolated organ perfusion container further includes a dialyzer 90, which is connected between the second liquid outlet 222 and the fluid replacement tank 80 through a pipeline, and the second peristaltic pump 71 also It is used to provide the perfusate flowing from the second liquid outlet 222 with power to flow through the dialyzer 90.
  • the perfusion fluid flowing out from the second outlet 222 flows into the waste liquid tank 70, and the other part passes through the dialyzer 90 and merges with the new perfusion fluid flowing out of the refill tank 80. It flows into the liquid storage tank 22, which effectively reduces the loss of the perfusion liquid and saves the use cost.
  • the supporting membrane 21 is recessed in the direction close to the reservoir 22, which provides more storage space for the isolated organs, and prevents the isolated organs from being compressed and damaged during the perfusion process.
  • the supporting membrane 21 can Use a flexible soft membrane, such as a silicone mold, to further avoid damage to the isolated organs.
  • the power pump head 30 is detachably connected to the output end of the power pump.
  • the perfusion fluid flows inside the isolated organ perfusion container and does not come into contact with the power pump.
  • the power pump head 30 can be detached from the power pump, and the isolated organ can be perfused into the container Disposal, when the next isolated organ perfusion operation is performed, replace the new isolated organ perfusion container and connect it with the power pump, so as to realize the one-time use of the isolated organ perfusion container and avoid every time the isolated organ perfusion is completed. The whole machine is replaced, effectively reducing the cost of use.
  • a pipe support 23 is provided on the tray 20, and the pipe support 23 is provided with a plurality of bayonet holes for fixing the pipe.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明涉及一种离体器官灌注容器,所述的离体器官灌注容器包括:罩体、托盘、支撑膜和动力泵头,所述托盘和所述支撑膜设于所述罩体内,所述支撑膜固定设置在所述托盘上以支撑离体器官,所述托盘的底部设有用于容置灌注液的储液槽,所述储液槽设有第一出液口,所述支撑膜上开设用于与所述储液槽连通的通孔,所述动力泵头用于与动力泵的输出端连接,所述动力泵头设有用于与所述第一出液口管路连通的第一进液接口和用于与所述离体器官的动脉管路连通的第一出液接口,上述离体器官灌注容器可在常温环境下实现离体器官的长时间保存,提升移植手术的成功率。

Description

离体器官灌注容器 技术领域
本发明涉及辅助医疗器械技术领域,特别是涉及一种离体器官灌注容器。
背景技术
在进行器官移植时,器官的保存能够直接决定移植手术的成败。
目前,一般是采用低温静态保存的方法进行离体器官的保存,即通过低温降低器官能耗,来延长器官的保存时间。
但是,长时间的低温环境,会引起离体器官上组织细胞受到损害、器官缺血等问题,从而降低了移植手术的成功率。
发明内容
基于此,有必要针对上述技术问题,提供一种离体器官灌注容器,通过将离体器官置于灌注容器内,并持续向离体器官灌注灌注液,以在常温环境下实现离体器官的长时间保存,进而有效避免低温环境所带来的诸如组织细胞受到损害、器官缺血等问题,提升移植手术的成功率。
为实现上述目的,本发明提供一种离体器官灌注容器,所述的离体器官灌注容器包括:罩体、托盘、支撑膜和动力泵头,所述托盘和所述支撑膜设于所述罩体内,所述支撑膜固定设置在所述托盘上以支撑离体器官,所述托盘的底部设有用于容置灌注液的储液槽,所述储液槽设有第一出液口,所述支撑膜上开设用于与所述储液槽连通的通孔,所述动力泵头用于与动力泵的输出端连接,所述动力泵头设有用于与所述第一出液口管路连通的第一进液接口和用于与所 述离体器官的动脉管路连通的第一出液接口。
上述离体器官灌注容器与背景技术相比,至少具有以下有益效果:首先将离体器官放置在支撑膜上,并往储液槽内注入灌注液,接着将动力泵头的第一进液接口通过管路与储液槽的第一出液口连通,将动力泵头的第一出液接口通过管路与离体器官的动脉连通,之后启动动力泵,动力泵驱动灌注液在管路中流动,灌注液从储液槽的第一出液口流出后,依次流经第一进液接口、第一出液接口和动脉,最后从离体器官向外排出,并经支撑膜的通孔回流至储液槽中,如此实现灌注液的循环流动,从而实现持续向离体器官灌注灌注液,以在常温环境下实现离体器官的长时间保存,进而有效避免低温环境所带来的诸如组织细胞受到损害、器官缺血等问题;同时,通过动力泵驱动灌注液循环流动,能够有效去除离体器官中的血栓、炎症因子或其他异物有害物质,进而可维持离体器官的功能血管通畅,从而可改善诸如肺水肿、提高心肺氧合能力等,并可以以对离体器官进行修复治疗,降低术后移植物失功的风险,有效提升供体器官的利用率以及移植手术的成功率。
在其中一实施例中,还包括通过管路连接于所述第一出液接口和所述动脉之间的氧合器,所述氧合器上设有用于与混合气源管路连通的混合气接口。
在其中一实施例中,所述氧合器通过管路与换热装置连通形成循环换热管路,所述灌注液在所述氧合器内与所述换热液进行热交换。
在其中一实施例中,还包括白细胞过滤器,所述白细胞过滤器通过管路连接于所述氧合器与所述动脉之间。
在其中一实施例中,还包括微栓过滤器,所述微栓过滤器通过管路连接于所述氧合器与所述动脉之间或所述动力泵头与所述氧合器之间。
在其中一实施例中,还包括废液罐和补液罐,所述储液槽还设有第二出液 口,所述废液罐与所述第二出液口管路连通,所述废液罐与所述第二出液口之间的管路上设有用于向从所述第二出液口流出的所述灌注液提供流入所述废液罐的动力的第二蠕动泵,所述补液罐与所述储液槽管路连通,所述补液罐与所述储液槽之间的管路上设有用于向从所述补液罐流出的所述灌注液提供流入所述储液槽的动力的第三蠕动泵。
在其中一实施例中,还包括透析器,所述透析器通过管路连通于所述第二出液口和所述补液罐之间,所述第二蠕动泵还用于向从所述第二出液口流出的所述灌注液提供流经所述透析器的动力。
在其中一实施例中,所述支撑膜向靠近所述储液槽方向凹陷。
在其中一实施例中,所述动力泵头与所述动力泵的输出端可拆卸地连接。
在其中一实施例中,所述托盘上设有管路支架,所述管路支架上设有多个用于固定管路的卡口。
附图说明
图1为本发明一实施例所述的离体器官灌注容器的结构示意图;
图2为图1所示离体器官灌注容器的内部结构示意图;
图3为图2所示离体器官灌注容器中的托盘的结构示意图;
图4为图1所示离体器官灌注容器中的动力泵头的结构示意图;
图5为图1所示离体器官灌注容器的局部剖视图;
图6为图2所示离体器官灌注容器中的氧合器的结构示意图;
图7为图2所示离体器官灌注容器中的白细胞过滤器的结构示意图;
图8为图2所示离体器官灌注容器中的微栓过滤器的结构示意图;
图9为图1所示离体器官灌注容器的连接结构示意图。
10、罩体,20、托盘,21、支撑膜,211、通孔,22、储液槽,221、第一出液口,222、第二出液口,23、管路支架,30、动力泵头,31、第一进液接口,32、第一出液接口,40、氧合器,41、第二进液接口,42、第二出液接口,43、混合气接口,44、换热进口,45、换热出口,50、白细胞过滤器,51、第三进液接口,52、第三出液接口,60、微栓过滤器,61、第四进液接口,62、第四出液接口,70、废液罐,71、第二蠕动泵,80、补液罐,81、第三蠕动泵,90、透析器。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。相反,当元件被称作“直接在”另一元件“上”时,不存在中间元件。本发明中所述“第一”、“第二”、“第三”、“第四”不代表具体的数量及顺序,仅仅是用于名称的区分。
如图1至4所示,一种离体器官灌注容器,可适用于在常温环境中对诸如离体肺脏、离体心脏等离体器官进行长时间保存,同时也适用于对离体器官进行修复,该容器包括:罩体10、托盘20、支撑膜21和动力泵头30,托盘20和 支撑膜21设于罩体10内,支撑膜21固定设置在托盘20上以支撑离体器官,托盘20的底部设有用于容置灌注液的储液槽22,储液槽22设有第一出液口221,支撑膜21上开设用于与储液槽22连通的通孔211,动力泵头30用于与动力泵(附图中并未标识)的输出端连接,动力泵头30设有用于与第一出液口221管路连通的第一进液接口31和用于与离体器官的动脉管路连通的第一出液接口32。
在应用中,首先将离体器官放置在支撑膜21上,并往储液槽22内注入灌注液,接着将动力泵头30的第一进液接口31通过管路与储液槽22的第一出液口221连通,将动力泵头30的第一出液接口32通过管路与离体器官的动脉连通,之后启动动力泵,动力泵驱动灌注液在管路中流动,灌注液从储液槽22的第一出液口221流出后,依次流经第一进液接口31、第一出液接口32和动脉,最后从离体器官向外排出,并经支撑膜21的通孔211回流至储液槽22中,如此实现灌注液的循环流动,从而实现持续向离体器官灌注灌注液,以在常温环境下实现离体器官的长时间保存,进而有效避免低温环境所带来的诸如组织细胞受到损害、器官缺血等问题;同时,通过动力泵驱动灌注液循环流动,能够有效去除离体器官中的血栓、炎症因子或其他异物有害物质,进而可维持离体器官的功能血管通畅,从而可改善诸如肺水肿、提高心肺氧合能力等,并可以以对离体器官进行修复治疗,降低术后移植物失功的风险,有效提升供体器官的利用率以及移植手术的成功率。
具体地,请结合图2,通孔211具有多个,且多个通孔211均匀分布在支撑膜21上。
具体地,灌注液由DMEM/F12培养基成分、白蛋白和聚蔗糖70比例混合而成。
在一实施例中,请结合图2和图6,上述离体器官灌注容器还包括通过管路连接于第一出液接口32和动脉之间的氧合器40,氧合器40上设有用于与混合气源(附图中并未示出)管路连通的混合气接口43。动力泵头30、氧合器40、离体器官和储液槽22连通形成循环灌注管路,灌注液在氧合器40中与混合气结合形成氧合灌注液,以保证流入动脉的灌注液的氧含量充足。
在一实施例中,氧合器40通过管路与换热装置(附图中并未示出)连通形成循环换热管路,灌注液在氧合器40内与换热液进行热交换。动力泵头30、氧合器40、离体器官和储液槽22连通形成循环灌注管路,灌注液在氧合器40中与换热液进行热交换,以保持灌注液的温度与离体器官相适宜。
具体地,请结合图2、图6和图9,氧合器40设有第二进液接口41、第二出液接口42、换热进口44和换热出口45,储液槽22的第一出液口221、动力泵头30的第一进液接口31、动力泵头30的第一出液接口32、第二进液接口41、第二出液接口42和离体器官的动脉依次管路连通形成上述循环灌注管路,换热装置的换热液出口、换热进口44、换热出口45和换热装置的换热液进口依次管路连通形成上述循环换热管路。
在一实施例中,请结合图2,上述离体器官灌注容器还包括白细胞过滤器50,白细胞过滤器50通过管路连接于氧合器40与动脉之间。灌注液从氧合器40流出后进入白细胞过滤器50中进行白细胞过滤,有效减少离体器官因进行灌注液灌注而发生的损伤,同时可有效延缓器官移植排异反应发生,进一步提升供体器官的利用率以及移植手术的成功率。
具体地,请结合图7和图9,白细胞过滤器50设有第三进液接口51和第三出液接口52,第三进液接口51与第二出液接口42管路连通,第三出液接口52与离体器官的动脉管路连通。
在一实施例中,请结合图2,上述离体器官灌注容器还包括微栓过滤器60,微栓过滤器60通过管路连接于氧合器40与动脉之间或动力泵头30和氧合器40。灌注液从氧合器40流出后进入微栓过滤器60中,微栓过滤器60用于滤除灌注液中的各种微栓,防止因血栓或气栓等各种微栓而造成离体器官的微血管的栓塞,有效地改善人体微血管的血液灌注,进一步提升供体器官的利用率以及移植手术的成功率。
具体地,请结合图8和图9,微栓过滤器60设有第四进液接口61和第四出液接口62,第四进液接口61与第二出液接口42管路连通,第四出液接口62与离体器官的动脉管路连通。
进一步地,请结合图2,将前述两实施例结合,将白细胞过滤器50和微栓过滤器60同时连接在氧合器40和离体器官之间,其中,白细胞过滤器50和微栓过滤器60之间的连接先后顺序不限,更进一步地提升离体器官的利用率以及移植手术的成功率。
在一实施例中,请结合图5和图9,上述离体器官灌注容器还包括废液罐70和补液罐80,储液槽22还设有第二出液口222,废液罐70与第二出液口222管路连通,废液罐70与第二出液口222之间的管路上设有用于向从第二出液口222流出的灌注液提供流入废液罐70的动力的第二蠕动泵71,补液罐80与储液槽22管路连通,补液罐80与储液槽22之间的管路上设有用于向从补液罐80流出的灌注液提供流入储液槽22的动力的第三蠕动泵81。经多次循环后的灌注液从储液槽22的第二出液口222流出,在第二蠕动泵71的驱动下流入废液罐70中,同时,补液罐80中的新的灌注液在第三蠕动泵81驱动下流入储液槽22中,实现灌注液的补充置换,以保证储液槽22中的灌注液容量恒定。
在一实施例中,请结合图9,上述离体器官灌注容器还包括透析器90,透 析器90通过管路连通于第二出液口222和补液罐80之间,第二蠕动泵71还用于向从第二出液口222流出的灌注液提供流经透析器90的动力。从第二出液口222流出的灌注液在第二蠕动泵71的驱动下,一部分流入废液罐70中,另一部分经过透析器90后与从补液罐80流出的新的灌注液汇集成一路流入储液槽22中,有效减少灌注液的损耗,节约使用成本。
在一实施例中,支撑膜21向靠近储液槽22方向凹陷,为离体器官提供更多的保存空间,避免离体器官在灌注过程中受到压迫而造成损伤,特别地,支撑膜21可采用具有弹性的软质膜,如硅胶模,进一步避免离体器官受到损伤。
在一实施例中,所述动力泵头30与所述动力泵的输出端可拆卸连接。在灌注过程中,灌注液在离体器官灌注容器内部流动,并不与动力泵发生接触,在完成灌注操作后,可将动力泵头30从动力泵中拆出,并将离体器官灌注容器弃置,在进行下一离体器官灌注操作时,更换新的离体器官灌注容器与动力泵安装连接即可,从而实现离体器官灌注容器的一次性使用,避免每次离体器官灌注完成后整机更换,有效降低使用成本。
在一实施例中,请结合图2,托盘20上设有管路支架23,管路支架23上设有多个用于固定管路的卡口。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权 利要求为准。

Claims (10)

  1. 一种离体器官灌注容器,其特征在于,所述的离体器官灌注容器包括:罩体、托盘、支撑膜和动力泵头,所述托盘和所述支撑膜设于所述罩体内,所述支撑膜固定设置在所述托盘上以支撑离体器官,所述托盘的底部设有用于容置灌注液的储液槽,所述储液槽设有第一出液口,所述支撑膜上开设用于与所述储液槽连通的通孔,所述动力泵头用于与动力泵的输出端连接,所述动力泵头设有用于与所述第一出液口管路连通的第一进液接口和用于与所述离体器官的动脉管路连通的第一出液接口。
  2. 根据权利要求1所述的离体器官灌注容器,其特征在于,还包括通过管路连接于所述第一出液接口和所述动脉之间的氧合器,所述氧合器上设有用于与混合气源管路连通的混合气接口。
  3. 根据权利要求2所述的离体器官灌注容器,其特征在于,所述氧合器通过管路与换热装置连通形成循环换热管路,所述灌注液在所述氧合器内与所述换热液进行热交换。
  4. 根据权利要求2所述的离体器官灌注容器,其特征在于,还包括白细胞过滤器,所述白细胞过滤器通过管路连接于所述氧合器与所述动脉之间。
  5. 根据权利要求2所述的离体器官灌注容器,其特征在于,还包括微栓过滤器,所述微栓过滤器通过管路连接于所述氧合器与所述动脉之间或所述动力泵头与所述氧合器之间。
  6. 根据权利要求1所述的离体器官灌注容器,其特征在于,还包括废液罐和补液罐,所述储液槽还设有第二出液口,所述废液罐与所述第二出液口管路连通,所述废液罐与所述第二出液口之间的管路上设有用于向从所述第二出液口流出的所述灌注液提供流入所述废液罐的动力的第二蠕动泵,所述补液罐与所述储液槽管路连通,所述补液罐与所述储液槽之间的管路上设有用于向从所 述补液罐流出的所述灌注液提供流入所述储液槽的动力的第三蠕动泵。
  7. 根据权利要求6所述的离体器官灌注容器,其特征在于,还包括透析器,所述透析器通过管路连通于所述第二出液口和所述补液罐之间,所述第二蠕动泵还用于向从所述第二出液口流出的所述灌注液提供流经所述透析器的动力。
  8. 根据权利要求1-7任一项所述的离体器官灌注容器,其特征在于,所述支撑膜向靠近所述储液槽方向凹陷。
  9. 根据权利要求1-7任一项所述的离体器官灌注容器,其特征在于,所述动力泵头与所述动力泵的输出端可拆卸地连接。
  10. 根据权利要求1-7任一项所述的离体器官灌注容器,其特征在于,所述托盘上设有管路支架,所述管路支架上设有多个用于固定管路的卡口。
PCT/CN2020/107631 2019-08-26 2020-08-07 离体器官灌注容器 WO2021036738A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910790498.9 2019-08-26
CN201921391975.6U CN210580687U (zh) 2019-08-26 2019-08-26 离体器官灌注容器
CN201921391975.6 2019-08-26
CN201910790498.9A CN110506733A (zh) 2019-08-26 2019-08-26 离体器官灌注容器

Publications (1)

Publication Number Publication Date
WO2021036738A1 true WO2021036738A1 (zh) 2021-03-04

Family

ID=74685000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107631 WO2021036738A1 (zh) 2019-08-26 2020-08-07 离体器官灌注容器

Country Status (1)

Country Link
WO (1) WO2021036738A1 (zh)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024214A1 (en) * 2001-09-14 2003-03-27 Organ Transport Systems, Inc. Organ preservation apparatus and methods
CN202459484U (zh) * 2012-02-28 2012-10-03 中国人民解放军第四军医大学 一种体外循环整体灌注系统
CN105379707A (zh) * 2015-12-16 2016-03-09 浙江大学 肝脏常温灌注修复系统
CN205547132U (zh) * 2015-12-16 2016-09-07 浙江大学 肝脏常温灌注修复系统
US20170188571A1 (en) * 2016-01-06 2017-07-06 Washington University Systems and methods for normothermic extracorporeal organ perfusion
CN107156109A (zh) * 2017-05-31 2017-09-15 上海市杨浦区市东医院 一种离体器官保存系统
CN108094403A (zh) * 2017-11-30 2018-06-01 广东顺德工业设计研究院(广东顺德创新设计研究院) 离体器官灌注容器
CN108157352A (zh) * 2018-02-11 2018-06-15 广东顺德工业设计研究院(广东顺德创新设计研究院) 多器官一体灌注设备
CN208490702U (zh) * 2018-02-11 2019-02-15 广东顺德工业设计研究院(广东顺德创新设计研究院) 多器官一体灌注设备
CN109362710A (zh) * 2018-11-28 2019-02-22 广东丁沃生医疗器械有限公司 肝脏灌注装置
CN109479872A (zh) * 2018-11-28 2019-03-19 广东丁沃生医疗器械有限公司 一种肝脏灌注耗材组件
CN109907037A (zh) * 2019-04-10 2019-06-21 广东顺德工业设计研究院(广东顺德创新设计研究院) 恒温灌注式离体器官灌注容器
CN110506733A (zh) * 2019-08-26 2019-11-29 广东顺德工业设计研究院(广东顺德创新设计研究院) 离体器官灌注容器
CN110506734A (zh) * 2019-08-26 2019-11-29 陈静瑜 离体器官灌注设备
CN210580687U (zh) * 2019-08-26 2020-05-22 广东顺德工业设计研究院(广东顺德创新设计研究院) 离体器官灌注容器
CN210610819U (zh) * 2019-08-26 2020-05-26 陈静瑜 离体器官灌注设备

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003024214A1 (en) * 2001-09-14 2003-03-27 Organ Transport Systems, Inc. Organ preservation apparatus and methods
CN202459484U (zh) * 2012-02-28 2012-10-03 中国人民解放军第四军医大学 一种体外循环整体灌注系统
CN105379707A (zh) * 2015-12-16 2016-03-09 浙江大学 肝脏常温灌注修复系统
CN205547132U (zh) * 2015-12-16 2016-09-07 浙江大学 肝脏常温灌注修复系统
US20170188571A1 (en) * 2016-01-06 2017-07-06 Washington University Systems and methods for normothermic extracorporeal organ perfusion
CN107156109A (zh) * 2017-05-31 2017-09-15 上海市杨浦区市东医院 一种离体器官保存系统
CN108094403A (zh) * 2017-11-30 2018-06-01 广东顺德工业设计研究院(广东顺德创新设计研究院) 离体器官灌注容器
CN108157352A (zh) * 2018-02-11 2018-06-15 广东顺德工业设计研究院(广东顺德创新设计研究院) 多器官一体灌注设备
CN208490702U (zh) * 2018-02-11 2019-02-15 广东顺德工业设计研究院(广东顺德创新设计研究院) 多器官一体灌注设备
CN109362710A (zh) * 2018-11-28 2019-02-22 广东丁沃生医疗器械有限公司 肝脏灌注装置
CN109479872A (zh) * 2018-11-28 2019-03-19 广东丁沃生医疗器械有限公司 一种肝脏灌注耗材组件
CN109907037A (zh) * 2019-04-10 2019-06-21 广东顺德工业设计研究院(广东顺德创新设计研究院) 恒温灌注式离体器官灌注容器
CN110506733A (zh) * 2019-08-26 2019-11-29 广东顺德工业设计研究院(广东顺德创新设计研究院) 离体器官灌注容器
CN110506734A (zh) * 2019-08-26 2019-11-29 陈静瑜 离体器官灌注设备
CN210580687U (zh) * 2019-08-26 2020-05-22 广东顺德工业设计研究院(广东顺德创新设计研究院) 离体器官灌注容器
CN210610819U (zh) * 2019-08-26 2020-05-26 陈静瑜 离体器官灌注设备

Similar Documents

Publication Publication Date Title
CN210580687U (zh) 离体器官灌注容器
CN211407436U (zh) 一种生物体器官的机械灌注保存装置
RU2489855C2 (ru) Устройство для консервации печеночного трансплантата в условиях нормотермии
US6677150B2 (en) Organ preservation apparatus and methods
US5356771A (en) Combined perfusion and oxygenation organ preservation apparatus
ES2210825T3 (es) Composiciones, metodos y sistemas para mantener un organo.
US5362622A (en) Combined perfusion and oxygenation apparatus
US20070009881A1 (en) Perfusion circuit
CN108432743B (zh) 便携式器官捐献供体机械灌注系统
CN210610819U (zh) 离体器官灌注设备
EP2926657A1 (en) Device for the perfusion of a liver graft
CN110506734A (zh) 离体器官灌注设备
CN110506733A (zh) 离体器官灌注容器
JP2024042048A (ja) 器官維持および輸送のためのシステムならびに方法
JPH0499701A (ja) 移植に使用するヒトの臓器の輸送用装置
WO2021036738A1 (zh) 离体器官灌注容器
JP5136977B2 (ja) 生体組織形成維持装置
US20210076668A1 (en) Organ container with oxygenation option
CN113016778A (zh) 基于间充质干细胞的离体器官灌注保存系统
Koul et al. Pulmonary sequelae of prolonged total venoarterial bypass: evaluation with a new experimental model
US20200288701A1 (en) Oxygenator device
CN215531163U (zh) 一种离体肝脏灌注活性维持装置
Yoo et al. Pneumatic driven pulsatile ECMO in vitro evaluation with oxygen tanks
WO2022166611A1 (zh) 温血器官转运平台及排气方法
CN211932279U (zh) 一种用于器官机械灌注的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859050

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859050

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20859050

Country of ref document: EP

Kind code of ref document: A1