WO2021036598A1 - 一种直线电机推力与推力波动测试装置及测试系统 - Google Patents

一种直线电机推力与推力波动测试装置及测试系统 Download PDF

Info

Publication number
WO2021036598A1
WO2021036598A1 PCT/CN2020/103673 CN2020103673W WO2021036598A1 WO 2021036598 A1 WO2021036598 A1 WO 2021036598A1 CN 2020103673 W CN2020103673 W CN 2020103673W WO 2021036598 A1 WO2021036598 A1 WO 2021036598A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust
linear motor
test
block
fixed
Prior art date
Application number
PCT/CN2020/103673
Other languages
English (en)
French (fr)
Inventor
刘元江
贺子和
Original Assignee
歌尔股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔股份有限公司 filed Critical 歌尔股份有限公司
Publication of WO2021036598A1 publication Critical patent/WO2021036598A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/12Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring axial thrust in a rotary shaft, e.g. of propulsion plants

Definitions

  • the invention belongs to the technical field of motor testing, and in particular relates to a linear motor thrust and thrust fluctuation testing device and a testing system.
  • the linear motor thrust testing device has some shortcomings; 1) Some linear motor thrust testing devices use magnetic levitation or air floatation devices to achieve the purpose of not contacting the measured linear motor mover and the stator. The device is complicated, difficult to achieve, and safety factor. Not high; 2) Some use servo motors and ball screws or pulleys to provide movement and thrust.
  • the thrust is small, easy to wear, the accuracy is not high, and the acceleration process is not stable, and the inertial flywheel is required; 3)
  • the screw thread connection is used to measure the force When measuring and testing the linear motor, not only the connection is unstable, but also interference force will be generated; the instantaneous thrust value is measured, the data obtained is unstable, and the reliability is not high; 3) At present, most linear motor thrust testing devices can only perform single To test.
  • the present invention provides a linear motor thrust and thrust fluctuation test device and test system, which has a simple structure, high compatibility, can perform bidirectional testing, high test accuracy, and test data. Stable and reliable.
  • a linear motor thrust and thrust fluctuation test device including:
  • a rack, a test platform is slidably installed on the rack;
  • the linear motor under test the stator of the linear motor under test is fixed on the frame, the mover of the linear motor under test that is matched with the stator is fixed on the bottom of the test platform, and the stator There is an air gap with the mover;
  • a dynamometer which is fixed on the top of the test platform and is used to measure the thrust of the linear motor under test
  • a linear motion drive mechanism the linear motion drive mechanism is installed on the frame and connected with the dynamometer, and is used to indirectly drive the mover to make a reciprocating linear motion;
  • the displacement detection component is installed on the frame and used to directly or indirectly obtain the displacement of the test platform.
  • the rack includes a base and a bracket set spaced apart from the base; the linear motion drive mechanism is installed on the front side of the bracket set, and the test platform is slidably installed on the top of the base;
  • the bracket group includes at least two bracket monomers arranged side by side along the sliding direction of the test platform.
  • the base has a U-shaped structure, and first slide rail assemblies are respectively provided between the tops of both sides of the base and the test platform;
  • the first sliding rail assembly includes a first sliding rail arranged on the base and a first sliding block slidingly matched with the first sliding rail, and the first sliding block is fixed to the bottom of the test platform;
  • the bases at both ends of the first sliding rail are each provided with a first limiting block for preventing the first sliding block from derailing, and an elastic buffer member is installed on the first limiting block.
  • the displacement detection assembly includes a magnetic scale arranged on the front side of the base or/and a scale arranged on the rear side of the base;
  • the test platform is provided with a magnetic grating reading head adapted to the magnetic grating ruler or/and a grating reading head adapted to the grating ruler.
  • a first positioning/reset sensing component is provided between the detection platform and the base;
  • the first positioning/reset sensing component includes a first positioning piece arranged on the detection platform and a plurality of first photoelectric sensors that are arranged on the base at intervals and are all adapted to the first positioning piece .
  • the linear motion drive mechanism includes a double-acting linear motor, two connecting blocks, a connecting frame and a floating joint; the connecting block is connected to the mover of the double-acting linear motor, and one of the connecting blocks is connected to The connecting frame is connected, and the connecting frame is connected with the dynamometer via the floating joint.
  • a back plate is provided on the front side of the bracket group, and two fixed blocks are arranged in parallel and vertically spaced on the back plate, and the fixed blocks extend along the sliding direction of the test platform; the double mover is linear
  • the stator of the motor is fixed to the back plate;
  • a second slide rail assembly is arranged between the connecting block and the fixed block; a second positioning/reset sensing assembly is arranged between the back plate and the connecting block.
  • the second sliding rail assembly includes a second sliding rail provided on the fixed block and a second sliding block slidingly matched with the second sliding rail, and the second sliding block is fixed to the connecting block
  • the fixed blocks at both ends of the second slide rail are provided with a second limit block for preventing the second sliding block from derailing, and an elastic buffer is installed on the second limit block;
  • the second positioning/reset sensing component includes a second positioning piece arranged on the connecting block and a plurality of second photoelectric sensors which are arranged on the back plate and are all adapted to the second positioning piece .
  • both ends of the fixed block are provided with end plates, a baffle is provided between the two end plates, the baffle is connected to the front side of the second limiting block, and the connecting block is located at the The rear of the baffle is in sliding fit with the baffle.
  • the displacement detection assembly includes a grating ruler or a magnetic grating ruler arranged at the bottom of a fixed block, and a grating reading head adapted to the grating ruler or the magnetic grating ruler is provided on the connecting block.
  • a grating reading head adapted to the grating ruler or the magnetic grating ruler is provided on the connecting block.
  • Compatible magnetic grid reading head is provided on the connecting block.
  • a linear motor thrust and thrust fluctuation test system includes an upper computer, a servo drive connected to the upper electromechanical device, and a DC power supply, and also includes the linear motor according to any one of claims 1-9.
  • Both the linear motion drive mechanism and the displacement detection assembly are electrically connected with the servo driver, the dynamometer is connected with the upper electromechanical device, and the measured linear motor is electrically connected with the direct current power supply.
  • the linear motor thrust and thrust fluctuation test device of the present invention includes a frame, a tested linear motor, a dynamometer, a linear motion drive mechanism and a displacement detection component.
  • a test platform is slidably installed on the frame; the stator of the linear motor under test is fixed on the frame, and the mover of the linear motor under test that matches the stator is fixed on the bottom of the test platform, leaving air between the stator and the mover
  • the dynamometer is fixed on the top of the test platform to measure the thrust of the linear motor under test; the linear motion drive mechanism is installed on the frame and connected with the dynamometer to indirectly drive the mover for reciprocating linear motion; displacement
  • displacement The detection component is installed on the frame to directly or indirectly obtain the displacement of the test platform.
  • the test system includes a host computer, a servo drive connected to the host electromechanical system, and a DC power supply. It also includes the above-mentioned linear motor thrust and thrust fluctuation test device; the linear motion drive mechanism and displacement detection components are electrically connected to the servo drive, and the dynamometer is electrically connected to the servo drive. The upper electromechanical connection, the linear motor under test is electrically connected with the DC power supply.
  • the linear motor under test is connected to a DC power supply, and the DC power supply is gradually increased to control the energized current of the linear motor under test; at the same time, the servo controller is used to control the linear motion drive mechanism to drive the mover of the linear motor under test to move at a uniform speed.
  • the displacement detection component to collect the running speed/time curve of the test platform (that is, the mover of the linear motor under test) and the thrust/time curve collected by the dynamometer for data matching analysis, the measured linear motor can be measured at different currents. , The thrust value that can be output at different speeds and thrust fluctuations.
  • the linear motor thrust and thrust fluctuation test device and test system of the present invention have a simple structure, high compatibility, bidirectional testing, high test accuracy, and stable and reliable test data.
  • Figure 1 is a schematic diagram of the structure of the linear motor thrust and thrust fluctuation test device of the present invention
  • Figure 2 is a schematic diagram of the installation structure of the test platform, the linear motor under test, the dynamometer and the base;
  • Fig. 3 is a schematic diagram of the structure of Fig. 2 from another perspective;
  • Fig. 4 is an enlarged schematic diagram of A in Fig. 3;
  • Fig. 5 is a schematic diagram of the installation structure of the linear motion drive mechanism and the bracket group in Fig. 1;
  • Fig. 6 is an enlarged schematic diagram of B in Fig. 5;
  • Fig. 7 is a schematic diagram of the structure of Fig. 5 after the baffle is hidden;
  • Fig. 8 is a schematic diagram of a part of the structure of Fig. 7 after the linear motion drive mechanism is hidden;
  • Figure 9 is a schematic diagram of the installation structure of the backplane, the fixing block and the connecting block;
  • Figure 10 is a schematic diagram of the structure of a single stent
  • FIG. 11 is a block diagram of the principle of the linear motor thrust and thrust fluctuation test system of the present invention.
  • the linear motor thrust and thrust fluctuation test device of this embodiment mainly includes a frame 1, a test platform 2, a linear motor under test 3, a dynamometer 5, a linear motion drive mechanism 6 and a displacement detection component.
  • the frame 1 includes a U-shaped structure base 11 (integrated, or formed by a horizontal plate and two vertical plates) and a bracket set spaced apart from the base 11; the linear motion drive mechanism 6 is installed in front of the bracket set
  • the test platform 2 is slidably mounted on the top of the base 11; the support group includes at least two support units 12 arranged side by side along the sliding direction of the test platform 2.
  • the stator 31 of the linear motor 3 under test is fixed on the bottom surface of the base 11, and the mover 32 of the linear motor 3 under test, which is matched with the stator 31, is fixed on the test platform 2 (test platform The bottom of 2 is provided with a groove for accommodating the mover 32) and is electrically connected to the DC power supply.
  • test platform 2 The bottom of 2 is provided with a groove for accommodating the mover 32) and is electrically connected to the DC power supply.
  • the purpose of non-contact is to ensure the safety, stability and reliability of the test process.
  • a fixed plate 4 is fixedly installed on the top of the test platform 2, and a dynamometer 5 is installed on the fixed plate 4 to measure the thrust of the linear motor 3 under test.
  • the linear motion driving mechanism 6 (force source) is connected to the dynamometer 5, and is used to indirectly drive the mover 32 (directly drive the dynamometer 5, drive the test platform 2, and then drive the mover 32) to make a reciprocating linear motion during the test.
  • the displacement detection component is installed on the frame 1 to directly or indirectly obtain the displacement of the test platform 2.
  • a first slide rail assembly 13 is provided between the top of both sides of the U-shaped opening of the base 1 and the bottom of the test platform 2 respectively; the first slide rail assembly 13 includes a first slide rail 131 and a first slide rail 131 provided on the top of the base 1
  • the first slider 132 slidably fits with the first slide rail 131, and the first slider 132 is fixed to the bottom of the test platform 2 (the test platform 2 on both sides of the groove that accommodates the mover 32 is used to fix the first slider 132 );
  • the base 1 at both ends of the first slide rail 131 is provided with a first limit block 133 for preventing the first sliding block 132 from derailing, and an elastic buffer 134 is installed on the first limit block 133; in this embodiment
  • the elastic buffer 134 is a tapered rubber block.
  • the displacement detection component (used to directly obtain the displacement of the test platform 2) includes a magnetic scale 71 or/and a grating 73 arranged on the back side of the base 11; the test platform 2 is provided with a magnetic grid 71
  • the magnetic grating reading head 72 adapted to the ruler 71 or/and the grating reading head 74 adapted to the grating ruler 73.
  • the positions of the magnetic scale 71 and the scale 73 can be interchanged.
  • the grating scale 73 and the magnetic scale 71 are set at the same time.
  • the displacement can be verified twice to ensure the reliability of the data; on the other hand, it can be used to broaden its applicable occasions.
  • the magnetic scale 71 cannot be used in some specific occasions, it can be used.
  • Grating scale 73 The speed/time curve of the operation of the test platform 2 (that is, the speed/time curve of the mover 32 of the linear motor 3 under test) is collected through the displacement detection component to lay a foundation for obtaining thrust and thrust fluctuations.
  • the initial position is determined to prevent collisions due to excessive movement;
  • a first positioning/reset sensing component is provided between the detection platform 2 and the base 1;
  • the first positioning/reset sensing component includes A first positioning piece 141 on the front side of the detection platform 2 and a plurality of first photoelectric sensors 142 spaced apart on the front side of the base 1 and all adapted to the first positioning piece 141.
  • the linear motion drive mechanism 6 includes a double mover linear motor 61 (including two movers 63, which can increase its applicability and can be used for the tested linear motor with different loads).
  • 3 Provide driving force), two connecting blocks 64, connecting frame 65 and floating joint 66.
  • the connecting block 64 includes a first vertical plate 641 and two first horizontal plates 642 arranged vertically at intervals. The first vertical plate 641 and the two first horizontal plates 642 are connected to form a U-shaped body. The bottom of the U-shaped body A connecting portion 643 is provided in the middle; the connecting frame 65 includes a second vertical plate 651 and a second horizontal plate 652.
  • a stiffener plate 653 is provided between the second vertical plate 651 and the second horizontal plate 652; the front end of the second horizontal plate 652 Two ears 654 arranged at intervals are extended. At the beginning of the ear 654 there is a threaded hole 655 through which the threaded hole 655 extends in the same direction as the movement direction of the connecting frame 65.
  • the connecting portion 643 is connected to the mover 63 of the double-moving linear motor 61, and the front sides of the two first horizontal plates 642 of one connecting block 64 are connected to the second vertical plate 651 of the connecting frame 65; one ear of the connecting frame 65
  • the part 654 is connected to one end of the floating joint 66 by means of a bolt 656 and a threaded hole 655, and the other end of the floating joint 66 is threadedly connected to the interface 51 (shown in FIG. 2) of the dynamometer 5.
  • the double-acting linear motor 61 as the power source, the thrust force is large, the life is long, and the speed is stable. While the floating joint 66 transmits motion and force, it can also play a role in eliminating errors, damping and buffering.
  • the bracket unit 12 includes a vertical plate 121 and a bottom plate 122.
  • a connecting rib 124 is provided between the front side of the vertical plate 121 and the bottom plate 122, and a triangular rib 123 is provided between the rear side of the vertical plate 121 and the bottom plate 122.
  • the back plate 15 extending along the sliding direction of the test platform 2 is fixed to the front side of the vertical plate 121 of the support unit 12, and the bottom of the back plate 15 is against the top of the connecting rib 124.
  • Two fixed blocks 16 are arranged in parallel and vertically spaced on the back plate 15.
  • the fixed blocks 16 also extend along the sliding direction of the test platform 2; the stator 62 of the double-acting linear motor 61 is fixed to the back plate 15;
  • a second slide rail assembly 17 is arranged between the connecting block 64 and the corresponding fixing block 16; a second positioning/reset sensing assembly 18 is arranged between the front side of the back plate 15 and the top of the connecting block 64.
  • the second slide rail assembly 17 includes a second slide rail 171 arranged on the front side of the fixed block 16 and a second slider 172 slidingly fitted with the second slide rail 171.
  • the second slider 172 and the first connecting block 64 The rear side of the vertical plate 641 is fixed; the fixing blocks 16 at both ends of the second slide rail 171 are both provided with a second limit block 173 for preventing the second sliding block 172 from derailing, and an elastic buffer member is installed on the second limit block 173 174 (rubber block).
  • the second positioning/reset sensing assembly 18 includes a second positioning piece 181 arranged on the top of the connecting block 64 and a plurality of second positioning pieces 181 which are arranged on the front side of the back plate 15 by means of a mounting frame 151 and are all adapted to the second positioning pieces 181 Photoelectric sensor 182.
  • the first photoelectric sensors 142 need to be arranged at unequal intervals; the two photoelectric sensors 142 for positioning are separated from each other (close to the two ends of the back plate 15) to prevent The amount of movement is too large; two are used for the reset of the initial position point; a photoelectric sensor 142 for resetting and a photoelectric sensor 142 for positioning are adjacent to and located inside.
  • both ends of the fixed block 14 are provided with end plates 161 (one end plate 161 is fixed to the same side ends of the two fixed blocks 14 at the same time), and a baffle 162 is provided between the two end plates 161.
  • the plate fixing block 163 is fixedly connected to the front sides of the two second limiting blocks 173.
  • the first vertical plate 641 of the connecting block 64 is located behind the baffle 162, and the two first horizontal plates 642 are in sliding engagement with the vertical ends of the baffle 16, which can also be understood as the two first horizontal plates 642 and the baffle 16 A gap is reserved at the vertical ends of the connecting block 64; furthermore, when the front sides of the two first horizontal plates 642 of the connecting block 64 are connected to the second vertical plate 651 of the connecting frame 65, the first vertical plate 641 of the connecting block 64 and A through groove for the baffle 16 to pass through is formed between the second vertical plates 651 of the connecting frame 65; when the connecting block 64 drives the connecting frame 65 to move, the baffle 162 can play a guiding role.
  • the displacement detection component in addition to the displacement detection component that "can directly obtain the displacement of the test platform 2", another displacement detection component can also be used; the displacement detection component (used to indirectly obtain the displacement of the test platform 2 ) Includes a magnetic grating 75 (or grating ruler) arranged at the bottom of a fixed block 16, and the bottom of the first horizontal plate 642 under the connecting block 64 is provided with a magnetic grating reading head 76 (or grating ruler) adapted to the magnetic grating 75 Grating reading head compatible with grating ruler). Since the movement distance between the mover 63 of the double-mover linear motor 61 and the mover of the linear motor 3 under test can be obtained by analysis and calculation, the above-mentioned displacement detection component can be used.
  • This embodiment discloses a linear motor thrust and thrust fluctuation test system, which includes a servo drive connected to an upper computer and an upper electromechanical system (the servo drive has the function of driving module and encoder data processing), and also includes the above-mentioned linear motor thrust and thrust fluctuation Testing device; the double-acting linear motor 61 in the linear motion drive mechanism 6, the magnetic grid reading heads 72, 76 and the grating reading head 74 in the displacement detection assembly are electrically connected to the servo drive, the dynamometer 5 and the upper computer (computer ) Electrical connection.
  • the data is read in real time through the software installed on the host computer and processed to obtain stable and reliable thrust and thrust fluctuation values.
  • the measured can be measured.
  • the thrust value that the linear motor 3 can output at different currents and different speeds and thrust fluctuations (the measured thrust is a sinusoidal fluctuating force, so the measured thrust is fluctuating).
  • the linear motor thrust and thrust fluctuation test device and test system of the present invention have a simple structure, high compatibility, bidirectional testing, high test accuracy, and stable and reliable test data.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Linear Motors (AREA)

Abstract

一种直线电机推力与推力波动测试装置及测试系统,测试系统包括上位机,与上位机电连接的伺服驱动器,直流电源以及直线电机推力与推力波动测试装置;该测试装置包括机架(1)和滑装在机架(1)上的测试平台(2);被测直线电机(3)的定子(31)固定在机架(1)上,动子(32)固定在测试平台(2)上,定子(31)与动子(32)之间留有气隙;测力计(5)固定在测试平台(2)上;直线运动驱动机构(6)安装在机架(1)上且与测力计(5)连接;位移检测组件(71,72,73,74,75,76)安装在机架(1)上用于直接或间接获取测试平台(2)的位移量。直线运动驱动机构(6)和位移检测组件(71,72,73,74,75,76)均与伺服驱动器电连接,测力计(5)与上位机电连接,被测直线电机(3)与直流电源电连接。该测试装置结构简单,兼容性高,且可进行双向测试,测试精度高,测试数据稳定可靠。

Description

一种直线电机推力与推力波动测试装置及测试系统 技术领域
本发明属于电机测试技术领域,尤其涉及一种直线电机推力与推力波动测试装置及测试系统。
背景技术
在工业自动化领域中,高精度高速度的直线电机已被广泛使用。而直线电机的设计、生产后需要有专门的测试平台对其性能进行评估。测试平台的作用是模拟电机在机床中的运行工况通过对电机输出的速度、推力等性能参数进行采集,从而对电机性能进行评估。通常厂家在这个测试中会进行定位力、推力波动、推力常数、推力线性度等项目的测试。通过这些参数的核实可对电机的性能有全面了解。
目前,直线电机推力测试装置存在一些不足;1)有的直线电机推力测试装置使用磁悬浮或气浮装置来达到被测直线电机动子与定子不接触的目的,装置复杂,实现困难,而且安全系数不高;2)有的使用伺服电机与滚珠丝杆或者皮带轮来提供运动与推力,推力小,易磨损,精度不高,且加速过程不平稳需要使用惯性飞轮;3)使用螺钉螺纹连接测力计与被测直线电机时,不仅连接不稳定,而且会产生干扰力;测量瞬时推力值,得到的数据不稳定,可信度不高;3)目前大多数直线电机推力测试装置只能进行单向测试。
发明内容
旨在克服上述现有技术中存在的不足,本发明提供了一种直线电机推力与推力波动测试装置及测试系统,其结构简单,兼容性高,且可进行双向测试,测试精度高,测试数据稳定可靠。
本发明是这样实现的,一种直线电机推力与推力波动测试装置,包括:
机架,所述机架上滑动安装有测试平台;
被测直线电机,所述被测直线电机的定子固定在所述机架上,与所述定子相适配的所述被测直线电机的动子固定在所述测试平台的底部,所述定子与所 述动子之间留有气隙;
测力计,所述测力计固定在所述测试平台的顶部,用于测量所述被测直线电机的推力;
直线运动驱动机构,所述直线运动驱动机构安装在所述机架上且与所述测力计连接,用于间接驱动所述动子做往复直线运动;
位移检测组件,所述位移检测组件安装在所述机架上,用于直接或间接获取所述测试平台的位移量。
进一步,所述机架包括底座和与所述底座间隔设置的支架组;所述直线运动驱动机构安装在所述支架组的前侧,所述测试平台滑动安装在所述底座的顶部;
所述支架组包括至少2个沿所述测试平台滑动方向并排设置的支架单体。
进一步,所述底座呈U型结构,所述底座两侧的顶部与所述测试平台之间分别设置有第一滑轨组件;
所述第一滑轨组件包括设置于所述底座上的第一滑轨和与所述第一滑轨滑动配合的第一滑块,所述第一滑块与所述测试平台的底部固定;所述第一滑轨两端的所述底座上均设置有用于防止所述第一滑块脱轨的第一限位块,所述第一限位块上安装有弹性缓冲件。
进一步,所述位移检测组件包括设置于所述底座前侧面的磁栅尺或/和设置于所述底座后侧面的光栅尺;
所述测试平台上设置有与所述磁栅尺相适配的磁栅读数头或/和与所述光栅尺相适配的光栅读数头。
进一步,所述检测平台和所述底座之间设置有第一定位/复位感应组件;
所述第一定位/复位感应组件包括设置于所述检测平台上的第一定位片和多个间隔设置于所述底座上且均与所述第一定位片相适配的第一光电感应器。
进一步,所述直线运动驱动机构包括双动子直线电机、两个连接块、连接架和浮动接头;所述连接块与所述双动子直线电机的动子连接,其中一所述连接块与所述连接架连接,所述连接架借助所述浮动接头与所述测力计连接。
进一步,所述支架组的前侧设置有背板,所述背板上平行且竖向间隔设置有两个固定块,所述固定块沿所述测试平台滑动方向延伸;所述双动子直线电机的定子与所述背板固定;
所述连接块与所述固定块之间设置有第二滑轨组件;所述背板与所述连接块之间设置有第二定位/复位感应组件。
进一步,所述第二滑轨组件包括设置于所述固定块上的第二滑轨和与所述第二滑轨滑动配合的第二滑块,所述第二滑块与所述连接块固定;所述第二滑轨两端的所述固定块上均设置有用于防止所述第二滑块脱轨的第二限位块,所述第二限位块上安装有弹性缓冲件;
所述第二定位/复位感应组件包括设置于所述连接块上的第二定位片和多个设置于所述背板上且均与所述第二定位片相适配的第二光电感应器。
进一步,所述固定块两端均设置有端板,两个所述端板之间设置有挡板,所述挡板与所述第二限位块的前侧连接,所述连接块位于所述挡板的后方且与所述挡板滑动配合。
进一步,所述位移检测组件包括设置于一所述固定块底部的光栅尺或磁栅尺,所述连接块上设有与所述光栅尺相适配的光栅读数头或与所述磁栅尺相适配的磁栅读数头。
本发明是这样实现的,一种直线电机推力与推力波动测试系统,包括上位机,与所述上位机电连接的伺服驱动器,以及直流电源,还包括权利要求1-9任一项所述的直线电机推力与推力波动测试装置;
所述直线运动驱动机构和所述位移检测组件均与所述伺服驱动器电连接,所述测力计与所述上位机电连接,所述被测直线电机与所述直流电源电连接。
由于采用了上述技术方案,取得的有益效果如下:
本发明的直线电机推力与推力波动测试装置,包括机架、被测直线电机、测力计、直线运动驱动机构和位移检测组件。机架上滑动安装有测试平台;被测直线电机的定子固定在机架上,与定子相适配的被测直线电机的动子固定在测试平台的底部,定子与动子之间留有气隙;测力计固定在测试平台的顶部, 用于测量被测直线电机的推力;直线运动驱动机构安装在机架上且与测力计连接,用于间接驱动动子做往复直线运动;位移检测组件安装在机架上,用于直接或间接获取测试平台的位移量。测试系统,包括上位机,与上位机电连接的伺服驱动器以及直流电源,还包括上述的直线电机推力与推力波动测试装置;直线运动驱动机构和位移检测组件均与伺服驱动器电连接,测力计与上位机电连接,被测直线电机与直流电源电连接。
测试过程中,被测直线电机连接直流电源,并且逐渐增加直流电源,控制被测直线电机的通电电流;同时利用伺服控制器控制直线运动驱动机构驱动被测直线电机的动子做均速运动。通过位移检测组件采集测试平台(既被测直线电机的动子)运行的速度/时间曲线与测力计采集到的推力/时间曲线进行数据匹配分析,即可测出被测直线电机在不同电流、不同速度上能输出的推力值以及推力波动。
综上所述,本发明的直线电机推力与推力波动测试装置及测试系统,其结构简单,兼容性高,且可进行双向测试,测试精度高,测试数据稳定可靠。
附图说明
图1是本发明直线电机推力与推力波动测试装置的结构示意图;
图2是测试平台、被测直线电机、测力计和底座的安装结构示意图;
图3是图2另一视角下的结构示意图;
图4是图3中A处的放大示意图;
图5是图1中直线运动驱动机构和支架组的安装结构示意图;
图6是图5中B处的放大示意图;
图7是图5隐藏挡板后的结构示意图;
图8是图7隐藏直线运动驱动机构后的部分结构示意图;
图9是背板、固定块和连接块的安装结构示意图;
图10是支架单体的结构示意图;
图11是本发明直线电机推力与推力波动测试系统的原理框图;
图中,1-机架,11-底座,12-支架单体,121-立板,122-底板,123-三角 筋板,124-连接筋板,13-第一滑轨组件,131-第一滑轨,132-第一滑块,133-第一限位块,134-弹性缓冲件,141-第一定位片,142-第一光电感应器,15-背板,151-安装架,16-固定块,161-端板,162-挡板,163-挡板固定块,17-第二滑轨组件,171-第二滑轨,172-第二滑块,173-第二限位块,174-弹性缓冲件,18-第二定位/复位感应组件,181-第二定位片,182-第二光电感应器,2-测试平台,3-被测直线电机,31-定子,32-动子,4-固定板,5-测力计,51-接口,6-直线运动驱动机构,61-双动子直线电机,62-定子,63-动子,64-连接块,641-第一竖板,642-第一横板,643-连接部,65-连接架,651-第二竖板,652-第二横板,653-加强筋板,654-耳部,655-螺纹孔,656-螺栓,66-浮动接头,71-磁栅尺,72-磁栅读数头,73-光栅尺,74-光栅读数头,75-磁栅尺,76-磁栅读数头。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一:
由图1所示,本实施例的直线电机推力与推力波动测试装置主要包括机架1、测试平台2、被测直线电机3、测力计5、直线运动驱动机构6和位移检测组件。
其中,机架1包括呈U型结构的底座11(一体成型,或者由横板和两个竖板固定形成)和与底座11间隔设置的支架组;直线运动驱动机构6安装在支架组的前侧,测试平台2滑动安装在底座11的顶部;支架组包括至少2个沿测试平台2滑动方向并排设置的支架单体12。
由图2至图4共同所示,被测直线电机3的定子31固定在底座11的底面上,与定子31相适配的被测直线电机3的动子32固定在测试平台2(测试平台2的底部设有容纳动子32的凹槽)的底部且与直流电源电连接,定子31与动子32之间留有气隙,满足测试过程中的气隙要求,达到定子31与动子32 不接触的目的,保证测试过程中的安全、稳定、可靠性。
测试平台2的顶部固定安装有固定板4,测力计5安装在固定板4上,用于测量被测直线电机3的推力。直线运动驱动机构6(施力源)与测力计5连接,用于在测试过程中间接驱动动子32(直接驱动测力计5,带动测试平台2,进而带动动子32)做往复直线运动。
位移检测组件安装在机架1上,用于直接或间接获取测试平台2的位移量。
本实施例中,为了保证测试平台2顺利滑动的同时不对其推力产生影响;
底座1的U型敞口两侧的顶部与测试平台2的底部之间分别设置有第一滑轨组件13;该第一滑轨组件13包括设置于底座1顶部上的第一滑轨131和与第一滑轨131滑动配合的第一滑块132,第一滑块132与测试平台2的底部固定(容纳动子32的凹槽的两侧的测试平台2用于固定第一滑块132);第一滑轨131两端的底座1上均设置有用于防止第一滑块132脱轨的第一限位块133,第一限位块133上安装有弹性缓冲件134;本实施例中的弹性缓冲件134为锥形的橡胶块。
位移检测组件(用于直接获取测试平台2的位移量)包括设置于底座11前侧面的磁栅尺71或/和设置于底座11后侧面的光栅尺73;测试平台2上设置有与磁栅尺71相适配的磁栅读数头72或/和与光栅尺73相适配的光栅读数头74。同样也可以将磁栅尺71和光栅尺73设置的位置进行互换。光栅尺73和磁栅尺71同时设置,一方面可以对位移量进行二次验证,确保数据的可靠性;另一面可以拓宽其适用场合,磁栅尺71某些特定场合无法应用时,可以采用光栅尺73。通过位移检测组件采集测试平台2运行的速度/时间曲线(既被测直线电机3的动子32运行的速度/时间曲线),为推力及推力波动的获得奠定基础。
为了进一步确保测试过程中的运动位置,初始位置的确定,防止运动过大发生碰撞;检测平台2和底座1之间设置有第一定位/复位感应组件;第一定位/复位感应组件包括设置于检测平台2前侧的第一定位片141和多个间隔设置于底座1前侧且均与第一定位片141相适配的第一光电感应器142。第一光电感应器142不等间距设置有三个;两个间隔距离较大的用于定位,防止运动量过 大发生碰撞;另一个用于初始位置点的复位,与一个定位用的光电感应器142临近且位于其内侧。
由图5至图10共同所示,本实施例中,直线运动驱动机构6包括双动子直线电机61(包括两个动子63,可以增加其适用性,可对不同负载的被测直线电机3提供驱动力)、两个连接块64、连接架65和浮动接头66。连接块64包括由第一竖板641和两个竖向间隔排布的第一横板642,第一竖板641和两个第一横板642连接形成的U型本体,U型本体的底部中间设置有连接部643;连接架65包括第二竖板651和第二横板652,第二竖板651和第二横板652之间设置有加强筋板653;第二横板652的前端延伸出两个间隔排布的耳部654。耳部654上开始有贯通的螺纹孔655,螺纹孔655的延伸方向与连接架65的运动方向相同。连接部643与双动子直线电机61的动子63连接,其中一连接块64的两个第一横板642的前侧与连接架65的第二竖板651连接;连接架65的一个耳部654借助螺栓656和螺纹孔655与浮动接头66的一端连接,浮动接头66的另一端与测力计5的接口51(图2中所示)螺纹连接。通过双动子直线电机61作为动力源,推力大,寿命长且速度平稳。浮动接头66传递运动和力的同时,还可以起到消除误差、减震和缓冲的作用。
支架单体12包括立板121和底板122,立板121前侧与底板122之间设置有连接筋板124,立板121的后侧与底板122之间设置有三角筋板123。
沿测试平台2滑动方向延伸的背板15与支架单体12的立板121的前侧固定,且背板15的底部与连接筋板124的顶部顶靠。背板15上平行且竖向间隔设置有两个固定块16,固定块16也沿测试平台2滑动方向延伸;双动子直线电机61的定子62与背板15固定;连接部643两侧的连接块64与相应固定块16之间均设置有第二滑轨组件17;背板15的前侧部与连接块64的顶部之间设置有第二定位/复位感应组件18。
其中,第二滑轨组件17包括设置于固定块16前侧的第二滑轨171和与第二滑轨171滑动配合的第二滑块172,第二滑块172与连接块64的第一竖板641的后侧固定;第二滑轨171两端的固定块16上均设置有用于防止第二滑块172 脱轨的第二限位块173,第二限位块173上安装有弹性缓冲件174(橡胶块)。
第二定位/复位感应组件18包括设置于连接块64顶部的第二定位片181和多个借助安装架151设置于背板15的前侧且均与第二定位片181相适配的第二光电感应器182。考虑到双动子直线电机64的特殊性,第一光电感应器142需要不等间距设置四个;两个用于定位的光电感应器142间隔较大(临近背板15的两端),防止运动量过大;两个用于初始位置点的复位;一个复位用的光电感应器142与一个定位用的光电感应器142临近且位于其内侧。
另,固定块14两端均设置有端板161(一个端板161同时与两个固定块14的同侧端固定),两个端板161之间设置有挡板162,挡板162借助挡板固定块163与两个第二限位块173的前侧固定连接。连接块64的第一竖板641位于挡板162的后方,且两第一横板642与挡板16的竖向两端滑动配合,也可以理解成,两第一横板642与挡板16的竖向两端预留有间隙;再者,连接块64的两个第一横板642的前侧与连接架65的第二竖板651连接时,连接块64的第一竖板641和连接架65的第二竖板651之间形成供挡板16穿出的贯通槽;连接块64带动连接架65运动时,挡板162可起导向作用。
本实施例中,除了可以采用“可直接获取测试平台2的位移量”的位移检测组件外,也可采用另一种位移检测组件;该位移检测组件(用于间接获取测试平台2的位移量)包括设置于一固定块16底部的磁栅尺75(或者光栅尺),连接块64下方的第一横板642的底部设有与磁栅尺75相适配的磁栅读数头76(或者与光栅尺相适配的光栅读数头)。由于双动子直线电机61中动子63与被测直线电机3中动子的运动距离可以分析计算获取,因此可以采用上述的位移检测组件。
实施例二:
本实施例公开了一种直线电机推力与推力波动测试系统,包括上位机与上位机电连接的伺服驱动器(伺服驱动器具有驱动模块和编码器数据处理功能),还包括上述的直线电机推力与推力波动测试装置;直线运动驱动机构6中的双动子直线电机61、位移检测组件中的磁栅读数头72、76和光栅读数头74均与 伺服驱动器电连接,测力计5与上位机(电脑)电连接。通过上位机上安装的软件实时读取数据,并处理获得稳定可靠的推力和推力波动值。
下面对其工作原理进行简要叙述:
测试过程中,需要逐渐增加直流电源(由1A到2A到3A……逐渐增大,但是不能过大,否则会烧毁直流电源;直流电源不会使动子32发生运动的),控制被测直线电机3的通电电流;电流越大,被测直线电机3的动子32和定子31之间的吸力越大,相当于增加拖动过程中的摩擦阻力。同时利用伺服控制器控制双动子直线电机61驱动被测直线电机3的动子32做均速运动。通过位移检测组件7采集测试平台2(既被测直线电机3的动子32)运行的速度/时间曲线与测力计5采集到的推力/时间曲线进行数据匹配分析,即可测出被测直线电机3在不同电流、不同速度上能输出的推力值以及推力波动(测出来的推力是一个正弦波动的力,所以测出来的推力是有波动的)。
综上所述,本发明的直线电机推力与推力波动测试装置及测试系统,其结构简单,兼容性高,且可进行双向测试,测试精度高,测试数据稳定可靠。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种直线电机推力与推力波动测试装置,其特征在于,包括:
    机架,所述机架上滑动安装有测试平台;
    被测直线电机,所述被测直线电机的定子固定在所述机架上,与所述定子相适配的所述被测直线电机的动子固定在所述测试平台的底部,所述定子与所述动子之间留有气隙;
    测力计,所述测力计固定在所述测试平台的顶部,用于测量所述被测直线电机的推力;
    直线运动驱动机构,所述直线运动驱动机构安装在所述机架上且与所述测力计连接,用于间接驱动所述动子做往复直线运动;
    位移检测组件,所述位移检测组件安装在所述机架上,用于直接或间接获取所述测试平台的位移量。
  2. 根据权利要求1所述的直线电机推力与推力波动测试装置,其特征在于,所述机架包括底座和与所述底座间隔设置的支架组;所述直线运动驱动机构安装在所述支架组的前侧,所述测试平台滑动安装在所述底座的顶部;
    所述支架组包括至少2个沿所述测试平台滑动方向并排设置的支架单体。
  3. 根据权利要求2所述的直线电机推力与推力波动测试装置,其特征在于,所述底座呈U型结构,所述底座两侧的顶部与所述测试平台之间分别设置有第一滑轨组件;
    所述第一滑轨组件包括设置于所述底座上的第一滑轨和与所述第一滑轨滑动配合的第一滑块,所述第一滑块与所述测试平台的底部固定;所述第一滑轨两端的所述底座上均设置有用于防止所述第一滑块脱轨的第一限位块,所述第一限位块上安装有弹性缓冲件。
  4. 根据权利要求2所述的直线电机推力与推力波动测试装置,其特征在于,所述位移检测组件包括设置于所述底座前侧面的磁栅尺或/和设置于所述底座后侧面的光栅尺;
    所述测试平台上设置有与所述磁栅尺相适配的磁栅读数头或/和与所述光栅尺相适配的光栅读数头。
  5. 根据权利要求2所述的直线电机推力与推力波动测试装置,其特征在于,所述检测平台和所述底座之间设置有第一定位/复位感应组件;
    所述第一定位/复位感应组件包括设置于所述检测平台上的第一定位片和多个间隔设置于所述底座上且均与所述第一定位片相适配的第一光电感应器。
  6. 根据权利要求2所述的直线电机推力与推力波动测试装置,其特征在于,所述直线运动驱动机构包括双动子直线电机、两个连接块、连接架和浮动接头;所述连接块与所述双动子直线电机的动子连接,其中一所述连接块与所述连接架连接,所述连接架借助所述浮动接头与所述测力计连接。
  7. 根据权利要求6所述的直线电机推力与推力波动测试装置,其特征在于,所述支架组的前侧设置有背板,所述背板上平行且竖向间隔设置有两个固定块,所述固定块沿所述测试平台滑动方向延伸;所述双动子直线电机的定子与所述背板固定;
    所述连接块与所述固定块之间设置有第二滑轨组件;所述背板与所述连接块之间设置有第二定位/复位感应组件。
  8. 根据权利要求7所述的直线电机推力与推力波动测试装置,其特征在于,
    所述第二滑轨组件包括设置于所述固定块上的第二滑轨和与所述第二滑轨滑动配合的第二滑块,所述第二滑块与所述连接块固定;所述第二滑轨两端的所述固定块上均设置有用于防止所述第二滑块脱轨的第二限位块,所述第二限位块上安装有弹性缓冲件;
    所述第二定位/复位感应组件包括设置于所述连接块上的第二定位片和多个设置于所述背板上且均与所述第二定位片相适配的第二光电感应器。
  9. 根据权利要求6所述的直线电机推力与推力波动测试装置,其特征在于,所述固定块两端均设置有端板,两个所述端板之间设置有挡板,所述挡板与所述第二限位块的前侧连接,所述连接块位于所述挡板的后方且与所述挡板滑动配合。
  10. 根据权利要求6所述的直线电机推力与推力波动测试装置,其特征在于,所述位移检测组件包括设置于一所述固定块底部的光栅尺或磁栅尺,所述 连接块上设有与所述光栅尺相适配的光栅读数头或与所述磁栅尺相适配的磁栅读数头。
  11. 一种直线电机推力与推力波动测试系统,其特征在于,包括上位机,与所述上位机电连接的伺服驱动器,以及直流电源,还包括权利要求1-10任一项所述的直线电机推力与推力波动测试装置;
    所述直线运动驱动机构和所述位移检测组件均与所述伺服驱动器电连接,所述测力计与所述上位机电连接,所述被测直线电机与所述直流电源电连接。
PCT/CN2020/103673 2019-08-30 2020-07-23 一种直线电机推力与推力波动测试装置及测试系统 WO2021036598A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910815114.4 2019-08-30
CN201910815114.4A CN110631754B (zh) 2019-08-30 2019-08-30 一种直线电机推力与推力波动测试装置及测试系统

Publications (1)

Publication Number Publication Date
WO2021036598A1 true WO2021036598A1 (zh) 2021-03-04

Family

ID=68969628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103673 WO2021036598A1 (zh) 2019-08-30 2020-07-23 一种直线电机推力与推力波动测试装置及测试系统

Country Status (2)

Country Link
CN (1) CN110631754B (zh)
WO (1) WO2021036598A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692118A (zh) * 2009-10-19 2010-04-07 上海电机学院 直线电机的测试装置及测试方法
CN203025327U (zh) * 2013-01-11 2013-06-26 北京经纬恒润科技有限公司 一种直线步进电机测试设备
CN103926031A (zh) * 2014-04-24 2014-07-16 中南大学 直线电机的推力检测方法及检测系统
TW201825876A (zh) * 2017-01-15 2018-07-16 彭明燦 一種具應力量測裝置之電機系統及其扭力估算方法
CN108957321A (zh) * 2018-08-23 2018-12-07 广州市昊志机电股份有限公司 一种直线电机测试平台
CN109188279A (zh) * 2018-09-27 2019-01-11 珠海格力电器股份有限公司 直线电机性能测试装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6346052B2 (ja) * 2014-09-24 2018-06-20 大和製衡株式会社 ロードセル
CN205787023U (zh) * 2016-01-11 2016-12-07 北京信息科技大学 一种直驱电机变负载实验平台
CN108445390A (zh) * 2018-03-23 2018-08-24 哈尔滨工业大学 对拖式高精度直线电机测试平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101692118A (zh) * 2009-10-19 2010-04-07 上海电机学院 直线电机的测试装置及测试方法
CN203025327U (zh) * 2013-01-11 2013-06-26 北京经纬恒润科技有限公司 一种直线步进电机测试设备
CN103926031A (zh) * 2014-04-24 2014-07-16 中南大学 直线电机的推力检测方法及检测系统
TW201825876A (zh) * 2017-01-15 2018-07-16 彭明燦 一種具應力量測裝置之電機系統及其扭力估算方法
CN108957321A (zh) * 2018-08-23 2018-12-07 广州市昊志机电股份有限公司 一种直线电机测试平台
CN109188279A (zh) * 2018-09-27 2019-01-11 珠海格力电器股份有限公司 直线电机性能测试装置

Also Published As

Publication number Publication date
CN110631754A (zh) 2019-12-31
CN110631754B (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
CN202501835U (zh) 立式直线位移传感器标定/校准装置
CN103697819B (zh) 一种微位移传感器标定装置
CN104266837A (zh) 基于电机伺服加载的滚珠丝杠性能测试试验台
CN105698670B (zh) 一种机床导轨安装平面平行度的快速测量方法
CN103868453B (zh) 一种直驱光栅尺自动检测装置
CN106989712B (zh) 一种高精度自复位探针式位移测量装置及测量方法
CN110132307A (zh) 一种直线动态校准装置
CN102768021B (zh) 一种接触式圆柱体直径测量装置
CN104034522B (zh) 一种检测滚动直线导轨副静刚度的实验台
CN103630098B (zh) 直线位移台运动平行度的非接触检测方法
WO2021036598A1 (zh) 一种直线电机推力与推力波动测试装置及测试系统
CN201600115U (zh) 长轴跳动检测仪
CN208376787U (zh) 一种测速定位系统的试验台
CN102998043A (zh) 用于监测悬浮状态下直线电机动态推力的装置及方法
CN204202574U (zh) 滚动直线导轨副精度与摩擦力测量装置
CN107024307B (zh) 滚珠丝杠副力矩检测仪
CN207215017U (zh) 一种辊型梁三面冲孔精度检测装置
CN209560064U (zh) 多维表磁分布检测系统
CN102080967B (zh) 惯性导航系统升沉速度的测量方法及装置
CN205940512U (zh) 一种制动灯开关测试机构
CN112880900A (zh) 一种直线电机推力测量装置及测量方法
CN108407849A (zh) 一种测速定位系统的试验台
CN204007511U (zh) 万能螺纹测量装置
CN211978324U (zh) 直线导轨副预压阻尼力测试平台
CN210070852U (zh) 一种光栅尺寿命测试仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20858925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20858925

Country of ref document: EP

Kind code of ref document: A1