WO2021036418A1 - 分布式射频或微波解冻设备 - Google Patents

分布式射频或微波解冻设备 Download PDF

Info

Publication number
WO2021036418A1
WO2021036418A1 PCT/CN2020/096070 CN2020096070W WO2021036418A1 WO 2021036418 A1 WO2021036418 A1 WO 2021036418A1 CN 2020096070 W CN2020096070 W CN 2020096070W WO 2021036418 A1 WO2021036418 A1 WO 2021036418A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radio frequency
thawing
microwave
unit
Prior art date
Application number
PCT/CN2020/096070
Other languages
English (en)
French (fr)
Inventor
殷为民
虢超
史旭
Original Assignee
上海点为智能科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海点为智能科技有限责任公司 filed Critical 上海点为智能科技有限责任公司
Priority to US17/639,185 priority Critical patent/US20220330395A1/en
Priority to EP20857677.7A priority patent/EP4007452B1/en
Publication of WO2021036418A1 publication Critical patent/WO2021036418A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/688Circuits for monitoring or control for thawing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/70Feed lines
    • H05B6/707Feed lines using waveguides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/72Radiators or antennas
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/78Arrangements for continuous movement of material
    • H05B6/782Arrangements for continuous movement of material wherein the material moved is food
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/80Apparatus for specific applications

Definitions

  • the present invention relates to the technical field of thawing, in particular to a distributed radio frequency or microwave thawing equipment.
  • Radio frequency or microwave thawing is a new type of thawing method, which uses high-speed changing radio frequency or microwave oscillating electromagnetic field to make the crystal lattice, molecules, ions, etc. in the object to be thawed vibrate and rotate vigorously to heat up, so as to achieve the purpose of rapid thawing. .
  • the speed of radio frequency or microwave thawing is faster and the heating is even, and the quality of the thawed items is less affected.
  • the Chinese patent document with the publication number CN208768875U discloses a radio frequency thawing device, including a housing, the housing is divided from top to bottom by a partition into a radio frequency space and a containing space; the side walls of the containing space are arranged There is an air inlet, and the top of the radio frequency space is provided with an air outlet; it also includes a food raw material box, a radio frequency heating mechanism for heating and defrosting frozen food in the food raw material box, and a hot air system arranged in the containing space and communicating with the inside of the food raw material box
  • the radio frequency heating mechanism includes a radio frequency generator arranged in the containing space, an upper electrode plate and a lower electrode plate arranged in the radio frequency space from top to bottom; the radio frequency generator is respectively connected with the upper electrode plate and the lower electrode plate After being connected and energized, an alternating electric field is formed between the upper electrode plate and the lower electrode plate; the food material box is located between the upper electrode plate and the lower electrode plate.
  • the radio frequency thawing device provided by this solution only places a pair of antennas in the radio frequency space.
  • the power loss will increase correspondingly, and when a pair of antennas are used, the power density of different positions on the antenna board is different. , The power density far away from the power-on position is small, and there is a problem of uneven power density.
  • the purpose of the present invention is to provide a distributed radio frequency or microwave thawing equipment.
  • the distributed radio frequency or microwave thawing equipment provided according to the present invention includes one or more thawing units;
  • the thawing unit includes a power supply module, a control unit, a radio frequency or microwave generating module, a measurement unit, an antenna device, and a thawing cavity;
  • the power supply module, the radio frequency or microwave generating module, the measuring unit and the antenna device are connected in sequence;
  • the control unit is respectively connected with the power supply module and the measurement unit;
  • the antenna device is arranged in the thawing cavity, the antenna device includes a first antenna group and a second antenna group, the first antenna group includes one or more first antennas, and the second antenna group includes one or more first antennas.
  • Two antennas, the first antenna and the second antenna are arranged in pairs, the paired first antenna and the second antenna are placed parallel to and opposite to each other to form an antenna unit, a plurality of antenna units are placed side by side, and the thawing cavity includes a Row or multiple rows of antenna units; a working chamber is formed between the first antenna group and the second antenna group;
  • the number of the radio frequency or microwave generating module and the measuring unit is one or more; the radio frequency or microwave generating module and the measuring unit are respectively connected with the antenna unit in a one-to-one correspondence.
  • the first antenna group and the second antenna group include metal plate antennas and/or waveguide antennas, and there is a gap between adjacent antenna units;
  • the distance between the first antenna group and the second antenna group can be adjusted according to the shape and size of the object to be thawed.
  • the working warehouse includes a first supporting plate and a second supporting plate, the first supporting plate is arranged close to the first antenna group, the second supporting plate is arranged close to the second antenna group, and the first supporting plate and the second supporting plate are Form a storage space for the items to be thawed;
  • the first supporting plate and the second supporting plate are insulating supporting plates
  • the distance between the first support plate and the second support plate can be adjusted according to the shape and size of the object to be thawed
  • the thawing cavity is a metal cavity, and the thawing cavity is grounded.
  • the radio frequency or microwave generating module includes a radio frequency or microwave generating source and a solid-state power amplifier.
  • it also includes a conveying device, a material inlet, a material outlet and a main console;
  • the conveying device includes a conveying belt and a driving device, and the driving device drives the conveying belt to move;
  • the working bin of the thawing unit is provided with a window, a plurality of thawing units are placed side by side, connected to each other through the windows, and the windows are connected by a connecting channel to form a conveying channel for the articles to be thawed, and the conveyor belt is arranged in the conveying channel.
  • the antenna units are placed side by side along the transmission direction of the transmission channel;
  • the inlet and outlet are respectively arranged at both ends of the conveying channel
  • the inlet and outlet are respectively a metal inlet and a metal outlet;
  • the connecting channel is a metal connecting channel;
  • the main console is signally connected to the control units of a plurality of thawing units.
  • the thawing unit further includes a tuning module, the tuning module includes one or more passive components; the radio frequency or microwave power generated by the radio frequency or microwave generating module enters the tuning module through the measurement unit and then reaches the impedance matching module.
  • the first antenna group and the second antenna group form an alternating electric field between the first antenna group and the second antenna group.
  • the measuring unit can detect the forward power and the reverse power of the radio frequency or microwave generating module
  • the tuning module can be adjusted to an impedance matching state where the ratio of reverse power to forward power is the smallest.
  • control unit can calculate the ratio of the reverse power to the forward power and determine the state of the tuning module based on the forward power and the reverse power fed back by the measuring unit.
  • the tuning module has a manual mode and/or an automatic mode, and the tuning module in the manual mode adjusts the impedance matching state between the output terminal of the radio frequency or microwave generating module and the input terminal of the antenna unit through manual setting;
  • the automatic mode tuning module automatically controls the impedance matching state between the output end of the radio frequency or microwave generating module and the input end of the antenna unit through the control unit, and the control unit adjusts the tuning module according to the forward power and reverse power fed back by the measuring unit.
  • balanced feeding is used to ensure that the voltage amplitude difference between the feeding points of the first antenna in the first antenna group is less than 50%, and the phase difference is in the range of 0-90°; the second antenna in the second antenna group is fed The voltage amplitude difference between the input points is less than 50%, and the phase difference is within the range of 0-90°; the voltage amplitude difference between the first antenna and the second antenna of the antenna unit is less than 70%, and the phase difference is 80-280°. Within range.
  • the present invention has the following beneficial effects:
  • the present invention can set one or more antenna units in the thawing unit according to actual needs.
  • multiple antenna units are provided, and each antenna unit is provided by a separate radio frequency or microwave generating module. Or microwave energy, thereby avoiding the energy loss problem caused by power combining and feeding into a single antenna unit, and improving the power density and uniformity in the working chamber.
  • the distributed radio frequency or microwave thawing equipment provided by the present invention combines a thawing unit with a material conveying device, which can simultaneously thawed multiple items to be thawed, and can quickly complete the thawing of large quantities of items, and is suitable for assembly line work; at the same time; , The items to be thawed pass through each thawing unit on the conveyor belt, and the uniformity of thawing will be better.
  • each thawing unit is controlled by a separate control unit, and the main console is connected to the control unit of each thawing unit.
  • the user can independently select the number and placement of the thawing unit according to needs, and can pass
  • the master console controls the working status of each thawing unit individually, and can adjust the working status of the thawing unit according to the thawing power and time required by the items to be thawed.
  • the distributed radio frequency or microwave thawing equipment provided by the present invention adopts a combination of distributed building blocks to construct thawing equipment.
  • the location is flexible and the power options are diverse. If one of the thawing units fails, the equipment can still continue to operate , At the same time, the maintenance is simple and the cost is low.
  • Fig. 1 is a schematic structural diagram of a thawing cavity of a thawing unit according to a first embodiment of the present invention.
  • the first antenna group and the second antenna group are metal plate antennas.
  • Fig. 2 is a schematic structural diagram of a thawing cavity of a thawing unit according to a second embodiment of the present invention.
  • the first antenna group and the second antenna group are waveguide antennas.
  • Fig. 3 is a schematic diagram of the system module structure of the thawing unit of the present invention.
  • Fig. 4 is a schematic diagram of a distributed radio frequency or microwave thawing device according to a third embodiment of the present invention.
  • the first antenna group and the second antenna group are metal plate antennas.
  • Fig. 5 is a schematic diagram of a distributed radio frequency or microwave thawing device according to a fourth embodiment of the present invention.
  • the first antenna group and the second antenna group are waveguide antennas.
  • Fig. 6 is a schematic diagram of the control connection of the distributed radio frequency or microwave thawing equipment of the present invention.
  • the figure shows:
  • the distributed radio frequency or microwave thawing equipment provided by the present invention can be equipped with multiple antenna units in the thawing cavity of each thawing unit, and each antenna unit radiates corresponding power without first combining to generate high power. Ensure that the power density remains unchanged.
  • the traditional thawing unit has a large size and power (at least 2KW), and the combined thawing equipment size and power design are not flexible, and the cost is high, and it cannot meet the needs of users well; the distributed radio frequency or microwave thawing equipment provided by the present invention , Each thawing unit is small in size, moderate in power, and diverse in options. If the traditional thawing equipment fails, it cannot be used, the construction period is delayed, and the maintenance cost is high; the distributed radio frequency or microwave thawing equipment provided by the present invention adopts the combination of distributed building blocks to construct the thawing equipment, and the location is flexible , There are various power options.
  • the distributed radio frequency or microwave thawing equipment provided by the present invention has flexible control and can flexibly select thawing units that need to work. At the same time, each thawing unit can flexibly set the power size to ensure that the items to be thawed are in the best thawing state.
  • the distributed radio frequency or microwave thawing equipment includes one or more thawing units; the thawing unit includes a power supply module, a control unit, a radio frequency or microwave generation module, a measurement unit, and an antenna Device and thawing cavity 105; the power module, radio frequency or microwave generating module, measurement unit, and antenna device are connected in sequence; the control unit is respectively connected with the power module and measurement unit; the antenna device is arranged in the thawing cavity 105
  • the antenna device includes a first antenna group 101 and a second antenna group 102, the first antenna group 101 includes one or more first antennas, and the second antenna group 102 includes one or more second antennas.
  • the antenna and the second antenna are arranged in a pair.
  • the first antenna and the second antenna of the pair are placed in parallel and opposite to each other to form an antenna unit.
  • a plurality of antenna units are placed side by side.
  • the defrosting cavity 105 includes one or more rows. Row of antenna units; the first antenna group 101 and the second antenna group 102 form a working chamber 106; the number of radio frequency or microwave generating modules and measuring units is one or more; radio frequency or microwave generating modules, measuring units They are respectively connected to the antenna units in a one-to-one correspondence.
  • the radio frequency or microwave power generated by the radio frequency or microwave generating module reaches the first antenna group 101 and the second antenna group 102, and an alternating electric field is formed between the first antenna group 101 and the second antenna group 102.
  • the first antenna group 101 and the second antenna group 102 include metal plate antennas and/or waveguide antennas, and there is a gap between adjacent antenna elements; when the first antenna group 101 and the second antenna group 102 are metal plate antennas At this time, the distance between the first antenna group 101 and the second antenna group 102 can be adjusted according to the shape and size of the article 308 to be thawed.
  • the first antenna group 101 and the second antenna group 102 are both waveguide antennas
  • the first antenna group 101 includes one or more first waveguide antennas 201
  • the second antenna group 102 includes one or more second waveguide antennas.
  • the working warehouse 106 includes a first supporting plate 104 and a second supporting plate 103.
  • the first supporting plate 104 is disposed close to the first antenna group 101
  • the second supporting plate 103 is disposed close to the second antenna group 102
  • the second support plate 103 forms a storage space for the items to be thawed 308
  • the first support plate 104 and the second support plate 103 are insulating support plates
  • the space between the first support plate 104 and the second support plate 103 The distance can be adjusted according to the shape and size of the object to be thawed 308
  • the thawing cavity 105 is a metal cavity
  • the thawing cavity 105 is grounded to prevent radio frequency or microwave power from leaking outside the cavity.
  • the radio frequency or microwave generating module includes a radio frequency or microwave generating source and a solid-state power amplifier.
  • Solid-state power amplifiers can amplify low-power radio frequency or microwave signals to produce radio frequency or microwave energy that can be quickly thawed, usually LDMOS or GaN devices are used; solid-state power amplifiers are used to generate radio frequency or microwave signals generated by radio frequency or microwave modules Amplify to the appropriate power, and transfer this part of the radio frequency or microwave power to the measurement unit.
  • the thawing unit further includes a tuning module, the tuning module includes one or more passive components; the radio frequency or microwave power generated by the radio frequency or microwave generating module enters the tuning module through the measurement unit and then reaches the first antenna after impedance matching.
  • the group 101 and the second antenna group 102 form an alternating electric field between the first antenna group 101 and the second antenna group 102.
  • the passive device is a capacitor with an adjustable capacitance.
  • the passive device is a resistor with an adjustable resistance value.
  • the passive device is an inductor with an adjustable inductance value.
  • the measurement unit can detect the forward power and reverse power of the radio frequency or microwave generating module; the tuning module can be adjusted to the impedance matching state with the smallest ratio of reverse power to forward power, so as to ensure the maximum radio frequency during the thawing process Or microwave energy enters the working chamber.
  • the control unit can calculate the ratio of the reverse power to the forward power and determine the state of the tuning module according to the forward power and the reverse power fed back by the measuring unit. If the ratio of reverse power to forward power is smaller, it means that more radio frequency or microwave power reaches the antenna and the defrosting time is shorter.
  • the tuning module has a manual mode and/or an automatic mode.
  • the tuning module of the manual mode adjusts the impedance matching state between the output terminal of the radio frequency or microwave generating module and the input terminal of the antenna unit through manual setting; the tuning module of the automatic mode controls
  • the unit automatically controls the impedance matching state between the output end of the radio frequency or microwave generating module and the input end of the antenna unit, and the control unit can adjust the tuning module according to the forward power and reverse power fed back by the measurement unit.
  • the control unit can be based on the state of the tuning module. Determine whether the thawing unit is in an empty box state. When it is detected that the thawing unit is in an empty box state, the control unit will automatically adjust the radio frequency or microwave power output by the radio frequency or microwave generating module, so that the output power is automatically reduced to the minimum in the empty box state .
  • the voltage amplitude and phase of the first antenna feed point in the first antenna group 101 are the same, the voltage amplitude and phase of the second antenna feed point in the second antenna group 102 are the same, and the first antenna of the antenna unit is the same as
  • the feeding point of the second antenna has the same voltage amplitude and opposite phase, and the same may be completely the same or approximately the same, as long as the two values are equivalent.
  • the control unit, the measurement unit and the tuning module work together to achieve a balanced feed.
  • the direction of the electric field is the direction in which the electric potential energy decreases the fastest.
  • the electric field between their edges is almost zero;
  • the electric field between the edges of the second antenna in the two antenna groups 102 is also almost zero;
  • the voltage on the first antenna group 101 and the voltage on the second electrical level group 102 are the same in amplitude and opposite in phase, so the energy between the two antenna groups is More electric fields are formed to facilitate quick defrosting of food.
  • the conveyor includes a conveyor belt 301, a driving device, and the driving device drives the conveyor belt 301 to move;
  • the working bin 106 of the thawing unit is provided with a window,
  • a plurality of thawing units are placed side by side, connected to each other through windows, and the windows are connected by a connecting channel 307 to form a conveying channel for the items to be thawed 308.
  • the conveyor belt 301 is arranged in the conveying channel, and the antenna unit is conveyed along the conveying channel.
  • the inlet 303 and the outlet 306 are respectively arranged at both ends of the conveying channel; the inlet 303 and the outlet 306 are respectively a metal inlet and a metal outlet; the connection The channel 307 is a metal connection channel; the master console signal is connected to the control units of a plurality of thawing units. Users can independently select the number and placement of thawing units according to their needs, and can control the working status of each thawing unit through the main console, and adjust the working status of the thawing unit according to the thawing power and time required for the items to be thawed .
  • n is a natural number
  • the driving device drives the conveyor belt 301 to move, and the conveyor belt 301 transports the articles to be thawed 308 from the inlet 303 , Flows through the first thawing unit 303, the second thawing unit 304, until it flows through the last thawing unit, that is, the nth thawing unit 305, and reaches the outlet 306 to complete the thawing of the food.
  • roller shafts 205 are arranged inside the thawing cavity 105, the roller shaft 205 is connected to the conveyor belt 301, and the conveyor belt 301 moves through the roller shaft 205.
  • the roller shaft 205 can reduce the frictional resistance when the conveyor belt moves.
  • the distributed radio frequency or microwave thawing equipment includes one or more thawing units; the thawing unit includes a power supply module, a radio frequency or microwave generating module, a measurement unit, a tuning module, a control unit, an antenna device, and a thawing cavity 105;
  • the power supply module, the radio frequency or microwave generation module, the measurement unit, the tuning module, and the antenna device are sequentially connected; the control unit is connected to the power supply module, the measurement unit, and the tuning module, respectively.
  • the power supply module is used to provide a stable and reliable power output for each system module of the thawing unit; the radio frequency or microwave generating module is used to generate a radio frequency or microwave high-power oscillating electromagnetic field to make the crystal lattice, molecules, and ions in the food The temperature is raised by vigorous oscillation and rotation, so as to achieve the purpose of thawing; the measurement unit is used to detect the forward power and reverse power of the radio frequency or microwave generating module, so as to calculate the ratio of the reverse power to the forward power, If the ratio is smaller, it means that more radio frequency or microwave power reaches the antenna and the defrosting time is shorter; there are one or more passive components with adjustable inductance or variable capacitance on the tuning module, which can compensate for food The type, size, position, shape, temperature, etc.
  • control unit is responsible for monitoring the working status of the entire system, collecting the forward power and reverse power feedback from the measuring unit, and adjusting the tuning module to ensure defrosting During the process, the largest radio frequency or microwave energy enters the thawing cavity 105.
  • the defrosting cavity 105 includes an antenna device and a working chamber 106; the antenna device includes a first antenna group 101 and a second antenna group 102, the first antenna group 101 includes one or more first antennas, and the first antenna group 101 includes one or more first antennas.
  • the second antenna group 102 includes one or more second antennas.
  • the first antenna and the second antenna are arranged in pairs, and the paired first antenna and the second antenna are placed in parallel and opposite to each other to form an antenna unit, and multiple antenna units Placed side by side, it is easy to achieve a more uniform electric field distribution between the first antenna and the second antenna placed in parallel.
  • a working chamber 106 is formed between the first antenna group 101 and the second antenna group 102.
  • the working chamber 106 includes a first supporting plate 104 and a second supporting plate 103, and the first supporting plate 104 is arranged close to the first antenna group 101 ,
  • the second support plate 103 is arranged close to the second antenna group 102, the first support plate 104 and the second support plate 103 form a space for the items to be thawed 308, and the first support plate 104 and the second support plate 103 are insulating supports board.
  • the thawing cavity 105 is a metal cavity, thereby forming a shielding cavity. Further, the thawing cavity 105 is connected to the ground to prevent radio frequency or microwave power from leaking outside the cavity.
  • the traditional radio frequency or microwave thawing device only places one antenna unit inside the thawing cavity.
  • the power of multiple radio frequency or microwave generating modules is combined outside the thawing cavity, and then Feeding into the antenna unit, which inevitably brings about the problems of large power loss and high cost.
  • too much power after the combination can easily lead to safety problems such as line fire. Therefore, the present invention independently chooses to set one or more antenna units in the thawing cavity 105 according to the size of the required power, and the number of radio frequency or microwave generation modules and measurement units is also one or more; radio frequency or microwave generation modules,
  • the measurement units are respectively connected with the antenna units in a one-to-one correspondence.
  • the same number of antenna units as the RF or microwave generating modules are placed in the thawing cavity 105, and each antenna unit receives one RF or microwave generating module.
  • the RF or microwave energy provided by the module does not need to be combined to generate high power, avoiding the loss caused by power combining, and can also increase the power density in the thawing cavity 105, making the thawing speed faster and safer Sex is also higher.
  • the radio frequency or microwave power generated by the radio frequency or microwave generating module enters the tuning module through the measurement unit for impedance matching, and then reaches the first antenna group 101 and the second antenna group 102 respectively, forming between the first antenna group 101 and the second antenna group 102 Alternating electric field.
  • a solid-state power amplifier is installed between the radio frequency or microwave generating module and the antenna device.
  • the solid-state power amplifier can amplify low-power radio frequency or microwave signals to produce radio frequency or microwave energy that can be quickly thawed.
  • LDMOS or GaN devices can be used;
  • the power amplifier is used to amplify the radio frequency or microwave signal generated by the radio frequency or microwave generating module to a suitable power, and transfer this part of the radio frequency or microwave power to the measurement unit.
  • the measuring unit can detect the forward power and reverse power of the radio frequency or microwave generating module, thereby calculating the ratio of reverse power to forward power. If the ratio is smaller, more radio frequency or microwave power reaches the antenna, and the defrosting time is also The shorter.
  • the control unit adjusts the tuning module according to the forward power and reverse power fed back by the measurement unit.
  • the tuning module includes one or more passive devices with adjustable inductance or variable capacitance. The tuning module can select reverse power and forward power. The impedance matching state with the smallest ratio of power to the power, so as to ensure that the maximum radio frequency or microwave energy enters the working chamber during the defrosting process.
  • the state of the tuning module in the empty box state (that is, no food is placed in the work bin 106) is unique and certain.
  • the thawing unit can detect whether it is in this state to determine whether it is in this state. Empty box status. When the thawing unit detects that it is in the empty box state, it will automatically adjust the power, that is, the output power can be automatically reduced to the minimum in the empty box state.
  • the direction of the electric field is the direction in which the electric potential energy decreases the fastest. If the voltage amplitudes on all the first antennas in the first antenna group 101 are approximately the same, and the phases are also approximately the same, the electric field between their edges is almost zero; The electric field between the edges of the second antenna in the two antenna groups 102 is also almost zero; the voltage on the first antenna group 101 and the voltage on the second electrical level group 102 are the same in amplitude and opposite in phase, so the energy between the two antenna groups is More electric fields are formed to facilitate quick defrosting of food.
  • a balanced feeding method is adopted to make the voltage amplitude and phase of the first antenna feed point in the first antenna group 101 the same, and the voltage amplitude and phase of the second antenna feed point in the second antenna group 102 are the same, and the antenna unit
  • the first antenna and the second antenna have the same voltage amplitude and opposite phase (that is, a 180° difference).
  • Each antenna is provided with a low-power radio frequency or microwave signal.
  • a distributed radio frequency or microwave thawing device is constructed by combining multiple thawing units with building blocks.
  • the working bin 106 of the thawing unit has windows left and right to facilitate the entry and exit of the items 308 to be thawed, and the conveyor belt 301 passes through the working bin 106 of each thawing unit. Place the items to be thawed 308 at the inlet 302.
  • the inlet 302 is the passage for food. At the same time, it can attenuate electromagnetic waves and prevent radio frequency or microwave energy from overflowing.
  • the conveyor belt transports the food through each thawing unit.
  • the discharge port 306 can also play a role in attenuating electromagnetic waves and prevent radio frequency or microwave energy from overflowing. Since each thawing unit has a small size and moderate power, the assembled thawing equipment has a flexible structure and low maintenance cost. Each thawing unit can be set separately to ensure that the food is in an optimal thawing state. At the same time, the items to be thawed 308 are placed on the conveyor belt and pass through each thawing unit in turn, so that the uniformity of thawing will be better.
  • the first thawing unit 303 needs to be equipped with a metal inlet, and the nth thawing unit 305 needs to be equipped with a metal outlet.
  • a metal connecting channel 307 between the thawing units Prevent the overflow of radio frequency or microwave energy.
  • the user can independently select the number of thawing units and place them independently; when thawing different items at the same time, they can also set the working status of each thawing unit, such as the power level.
  • the control unit of each thawing unit is connected through the electrical signal of the main console, and the user can individually control each thawing unit through the main console.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Electric Ovens (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

本发明提供了一种分布式射频或微波解冻设备,包括一个或多个解冻单元;解冻单元包括电源模块、控制单元、射频或微波发生模块、测量单元、天线装置以及解冻腔体;天线装置设置在解冻腔体内,包括第一天线组和第二天线组,第一天线组和第二天线组分别包括一个或多个第一天线和第二天线,第一天线与第二天线成对设置,成对的第一天线与第二天线相互平行且正对放置并形成一个天线单元,多个天线单元并排放置;射频或微波发生模块和测量单元的数量为一个或多个;射频或微波发生模块、测量单元分别与天线单元一一对应连接。本发明解冻单元的一个或多个天线单元分别由单独的射频或微波发生模块提供射频或微波能量,避免了功率合路所造成的能量损耗问题。

Description

分布式射频或微波解冻设备 技术领域
本发明涉及解冻技术领域,具体地,涉及一种分布式射频或微波解冻设备。
背景技术
射频或微波解冻是一种新型的解冻方式,其通过高速变化的射频或微波振荡电磁场使待解冻物品中的晶格、分子、离子等进行剧烈振动旋转等运动而升温,从而达到快速解冻的目的。与其他解冻方式相比,射频或微波解冻的速度块、加热均匀,对待解冻物品的品质影响较小。
公开号为CN208768875U的中国专利文献公开了一种射频解冻装置,包括壳体,所述壳体内部被一隔板从上到下分隔为射频空间和容纳空间;所述容纳空间的侧壁上设置有进风口,所述射频空间顶部设置有排风口;还包括食品原料盒、对食品原料盒内冷冻食品加热解冻的射频加热机构、设置在容纳空间内并与食品原料盒内部连通的热风系统;所述射频加热机构包括设置在容纳空间内的射频发生器、从上到下相对设置在射频空间内的上极板和下极板;所述射频发生器分别与上极板和下极板连接,且通电后在上极板和下极板之间形成交变电场;所述食品原料盒位于上极板和下极板之间。该方案提供的射频解冻装置仅在射频空间内放置一对天线,当设备需要使用较大功率时,功率损耗也会相应增大,且采用一对天线,天线板上不同位置的功率密度不一样,远离加电位置的功率密度小,存在功率密度不均匀的问题。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种分布式射频或微波解冻设备。
根据本发明提供的分布式射频或微波解冻设备,包括一个或多个解冻单元;
所述解冻单元包括电源模块、控制单元、射频或微波发生模块、测量单元、天线装置以及解冻腔体;
所述电源模块、射频或微波发生模块、测量单元以及天线装置依次连接;
所述控制单元分别与电源模块和测量单元连接;
所述天线装置设置在解冻腔体内,天线装置包括第一天线组和第二天线组,所述第一天线组包括一个或多个第一天线,所述第二天线组包括一个或多个第二天线,第一天线与第二天线成对设置,成对的第一天线与第二天线相互平行且正对放置并形成一个天线单元,多个天线单元并排放置,所述解冻腔体内包括一排或多排天线单元;所述第一天线组和第二天线组之间形成工作仓;
所述射频或微波发生模块和测量单元的数量为一个或多个;射频或微波发生模块、测量单元分别与天线单元一一对应连接。
优选地,所述第一天线组和第二天线组包括金属板天线和/或波导天线,相邻天线单元之间具有间隙;
当所述第一天线组和第二天线组为金属板天线时,第一天线组与第二天线组之间的距离能够根据待解冻物品的形状尺寸调节。
优选地,所述工作仓包括第一支撑板、第二支撑板,第一支撑板靠近第一天线组设置,第二支撑板靠近第二天线组设置,第一支撑板、第二支撑板之间形成待解冻物品的放置空间;
所述第一支撑板、第二支撑板为绝缘支撑板;
所述第一支撑板、第二支撑板之间的距离能够根据待解冻物品的形状尺寸调节;
所述解冻腔体为金属腔体,解冻腔体接地。
优选地,所述射频或微波发生模块包括射频或微波发生源和固态功率放大器。
优选地,还包括传送装置、入料口、出料口以及总控制台;
所述传送装置包括传送带、驱动装置,驱动装置驱动传送带运动;
所述解冻单元的工作仓上设置有窗口,多个解冻单元并排放置,通过窗口彼此连接,窗口之间通过连接通道连接,形成一个待解冻物品传送通道,所述传送带设置在传送通道内,所述天线单元沿着传送通道传送的方向并排放置;
所述入料口、出料口分别设置在传送通道的两端;
所述入料口、出料口分别为金属入料口、金属出料口;所述连接通道为金属连接通道;
所述总控制台信号连接多个解冻单元的控制单元。
优选地,所述解冻单元还包括调谐模块,所述调谐模块包括一个或多个无源器件;所述射频或微波发生模块产生的射频或微波功率经由测量单元进入调谐模块阻抗匹配后再分别到达第一天线组和第二天线组,在第一天线组和第二天线组之间形成交变电场。
优选地,所述测量单元能够检测射频或微波发生模块的前向功率及反向功率;
所述调谐模块能够调整至反向功率与前向功率比率最小的阻抗匹配状态。
优选地,所述控制单元能够根据测量单元反馈的前向功率及反向功率计算反向功率与前向功率的比率并判断调谐模块的状态。
优选地,所述调谐模块具有手动模式和/或自动模式,手动模式的调谐模块通过手动设定来调整射频或微波发生模块输出端与天线单元输入端之间的阻抗匹配状态;
自动模式的调谐模块通过控制单元来自动控制射频或微波发生模块输出端与天线单元输入端之间的阻抗匹配状态,所述控制单元根据测量单元反馈的前向功率及反向功率调节调谐模块。
优选地,采用平衡馈电,保证第一天线组中的第一天线馈入点间的电压幅度差小于50%,相位差在0-90°范围内;第二天线组中的第二天线馈入点间的电压幅度差小于50%,相位差在0-90°范围内;天线单元的第一天线与第二天线的馈入点电压幅度差小于70%,相位差在80-280°的范围内。
与现有技术相比,本发明具有如下的有益效果:
1、本发明可根据实际需要在解冻单元内设置一个或多个天线单元,当解冻单元需使用较大功率时,设置多个天线单元,每个天线单元由单独的射频或微波发生模块提供射频或微波能量,由此避免了功率合路再馈入到单个天线单元所造成的能量损耗问题,且提升了工作仓内的功率密度及均匀度。
2、本发明提供的分布式射频或微波解冻设备将解冻单元与物料传送装置结合,可以同时对多个待解冻物品进行解冻,能够较快完成大批量的物品解冻工作,适用于流水线工作;同时,待解冻物品在传送带上依次经过每一个解冻单元,解冻的均匀性会更好。
3、本发明中每个解冻单元的工作状态由单独的控制单元控制,总控制台又与各个解冻单元的控制单元连接,用户可根据需要,自主选择解冻单元的数量以及摆放,并可以通过总控制台对每一个解冻单元进行单独的工作状态控制,可根据待解冻物品需要的解冻功率及时间调整解冻单元的工作状态。
4、本发明提供的分布式射频或微波解冻设备通过采用分布式搭积木的组合方式来构造解冻设备,位置摆放灵活,功率选择多样,若其中某台解冻单元出现故障,设备仍能继续运行,同时维修简单,成本低。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明第一种实施例解冻单元解冻腔体的结构示意图,第一天线组和第二天线组为金属板天线。
图2为本发明第二种实施例解冻单元解冻腔体的结构示意图,第一天线组和第二天线组为波导天线。
图3为本发明解冻单元的系统模块构成示意图。
图4为本发明第三种实施例分布式射频或微波解冻设备的示意图,第一天线组和第二天线组为金属板天线。
图5为本发明第四种实施例分布式射频或微波解冻设备的示意图,第一天线组和第二天线组为波导天线。
图6为本发明分布式射频或微波解冻设备的控制连接示意图。
图中示出:
101-第一天线组         201-第一波导天线      304-第二个解冻单元
102-第二天线组         205-滚动轴            305-第n个解冻单元
103-第二支撑板         301-传送带            306-出料口
104-第一支撑板         302-入料口            307-连接通道
105-解冻腔体           303-第一个解冻单元    308-待解冻物品
106-工作仓
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装 置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
传统的解冻单元解冻腔体内仅放置一个天线单元,大功率是由多个射频或微波发生模块产生的射频或微波功率合路产生的,再馈入天线单元上,合路损耗较大,白白损失大量的能量;本发明提供的分布式射频或微波解冻设备可以在每个解冻单元的解冻腔体内设置多个天线单元,每个天线单元辐射相应的功率,不需要先合路产生大功率,同时保证功率密度不变。传统的解冻单元尺寸及功率较大(至少2KW),组合后的解冻设备尺寸及功率设计均不灵活,成本较高,不能较好的满足用户需求;本发明提供的分布式射频或微波解冻设备,每个解冻单元尺寸较小,功率适中,同时选择多样。传统的解冻设备若出现故障,则不能使用,耽误工期,同时维修成本很高;本发明提供的分布式射频或微波解冻设备通过采用分布式搭积木的组合方式来构造解冻设备,位置摆放灵活,功率选择多样,若其中某台解冻单元出现故障,设备仍能继续运行,同时维修简单,成本低。此外,本发明提供的分布式射频或微波解冻设备控制灵活,可灵活的选择需要工作的解冻单元,同时每个解冻单元可灵活的设置功率大小,保证待解冻物品处于最佳解冻状态。
根据本发明提供的分布式射频或微波解冻设备,如图1-6所示,包括一个或多个解冻单元;所述解冻单元包括电源模块、控制单元、射频或微波发生模块、测量单元、天线装置以及解冻腔体105;所述电源模块、射频或微波发生模块、测量单元以及天线装置依次连接;所述控制单元分别与电源模块和测量单元连接;所述天线装置设置在解冻腔体105内,天线装置包括第一天线组101和第二天线组102,所述第一天线组101包括一个或多个第一天线,所述第二天线组102包括一个或多个第二天线,第一天线与第二天线成对设置,成对的第一天线与第二天线相互平行且正对放置并形成一个天线单元,多个天线单元并排放置,所述解冻腔体105内包括一排或多排天线单元;所述第一天线组101和第二天线组102之间形成工作仓106;所述射频或微波发生模块和测量单元的数量为一个或多个;射频或微波发生模块、测量单元分别与天线单元一一对应连接。所述射频或微波发生模块产生的射频或微波功率到达第一天线组101和第二天线组102,在第一天线组101和第二天线组102之间形成交变电场。
所述第一天线组101和第二天线组102包括金属板天线和/或波导天线,相邻天线单元之间具有间隙;当所述第一天线组101和第二天线组102为金属板天线时,第一天线组101与第二天线组102之间的距离能够根据待解冻物品308的形状尺寸调节。当第 一天线组101和第二天线组102均为波导天线时,第一天线组101包括一个或多个第一波导天线201,第二天线组102包括一个或多个第二波导天线。
所述工作仓106包括第一支撑板104、第二支撑板103,第一支撑板104靠近第一天线组101设置,第二支撑板103靠近第二天线组102设置,第一支撑板104、第二支撑板103之间形成待解冻物品308的放置空间;所述第一支撑板104、第二支撑板103为绝缘支撑板;所述第一支撑板104、第二支撑板103之间的距离能够根据待解冻物品308的形状尺寸调节;所述解冻腔体105为金属腔体,解冻腔体105接地,以此起到防止射频或微波功率泄露到腔体外面。
所述射频或微波发生模块包括射频或微波发生源和固态功率放大器。固态功率放大器能将功率很小的射频或微波信号放大产生能快速解冻的射频或微波能量,通常可采用LDMOS或者GaN等器件;固态功率放大器用于将射频或微波发生模块产生的射频或微波信号放大到合适的功率,并将这部分射频或微波功率传递到测量单元。
所述解冻单元还包括调谐模块,所述调谐模块包括一个或多个无源器件;所述射频或微波发生模块产生的射频或微波功率经由测量单元进入调谐模块阻抗匹配后再分别到达第一天线组101和第二天线组102,在第一天线组101和第二天线组102之间形成交变电场。优选地,所述无源器件为电容值可调的电容。在另一个实施例中,无源器件为电阻值可调的电阻。又一个实施例中,无源器件为电感值可调的电感。所述测量单元能够检测射频或微波发生模块的前向功率及反向功率;所述调谐模块能够调整至反向功率与前向功率比率最小的阻抗匹配状态,从而在解冻过程中确保最大的射频或微波能量进入工作仓。
所述控制单元能够根据测量单元反馈的前向功率及反向功率计算反向功率与前向功率的比率并判断调谐模块的状态。若反向功率与前向功率的比率越小说明有更多的射频或微波功率到达天线,解冻时间也就越短。所述调谐模块具有手动模式和/或自动模式,手动模式的调谐模块通过手动设定来调整射频或微波发生模块输出端与天线单元输入端之间的阻抗匹配状态;自动模式的调谐模块通过控制单元来自动控制射频或微波发生模块输出端与天线单元输入端之间的阻抗匹配状态,所述控制单元能够根据测量单元反馈的前向功率及反向功率调节调谐模块。在调谐模块处于自动模式下时,当解冻单元为空箱状态,比如工作仓106内未放置待解冻物品308时,调谐模块的状态是唯一且确定的,因此,控制单元能够根据调谐模块的状态判断解冻单元是否为空箱状态,当检测到解冻单元处于空箱状态时,控制单元将自动调整射频或微波发生模块输出的射频或微 波功率大小,使得空箱状态下,输出功率自动降到最小。
采用平衡馈电,保证第一天线组101中的第一天线馈入点间的电压幅度差小于50%,相位差在0-90°范围内;第二天线组102中的第二天线馈入点间的电压幅度差小于50%,相位差在0-90°范围内;天线单元的第一天线与第二天线的馈入点电压幅度差小于70%,相位差在80-280°的范围内。优选地,所述第一天线组101中的第一天线馈入点电压幅度、相位相同,第二天线组102中的第二天线馈入点电压幅度、相位相同,天线单元的第一天线与第二天线的馈入点电压幅度相同、相位相反,所述相同可以是完全相同或近似相同,只要两个数值相当即可。控制单元、测量单元和调谐模块配合工作实现平衡馈电。电场的方向是电势能降低最快的方向,若第一天线组101中所有第一天线上的电压幅度近似相同,相位也近似相同,则它们边缘之间的电场几乎为零;同理,第二天线组102中第二天线边缘之间的电场也几乎为零;第一天线组101上的电压和第二电级组102上的电压幅度相同,相位相反,则在两天线组之间能形成较多电场,便于快速解冻食物。
还包括传送装置、入料口302、出料口306以及总控制台;所述传送装置包括传送带301、驱动装置,驱动装置驱动传送带301运动;所述解冻单元的工作仓106上设置有窗口,多个解冻单元并排放置,通过窗口彼此连接,窗口之间通过连接通道307连接,形成一个待解冻物品308传送通道,所述传送带301设置在传送通道内,所述天线单元沿着传送通道传送的方向并排放置;所述入料口303、出料口306分别设置在传送通道的两端;所述入料口303、出料口306分别为金属入料口、金属出料口;所述连接通道307为金属连接通道;所述总控制台信号连接多个解冻单元的控制单元。用户可根据需要,自主选择解冻单元的数量以及摆放,并可以通过总控制台对每一个解冻单元进行单独的工作状态控制,可根据待解冻物品需要的解冻功率及时间调整解冻单元的工作状态。
例如,当解冻单元的数量为n个(n为自然数),解冻时,将待解冻物品308放置于传送带301上,驱动装置驱动传送带301运动,传送带301运送待解冻物品308从入料口303出发,流经第一个解冻单元303、第二个解冻单元304,直到流经最后一个解冻单元即第n个解冻单元305,到达出料口306完成食物的解冻。优选地,所述解冻腔体105内部设置有一个或多个滚轮轴205,滚轮轴205与传送带301连接,传送带301通过滚轮轴205运动,滚轮轴205能减少传送带运动时的摩擦阻力。
优选实施例:
根据本发明提供的分布式射频或微波解冻设备,包括一个或多个解冻单元;所述解冻单元包括电源模块、射频或微波发生模块、测量单元、调谐模块、控制单元、天线装 置以及解冻腔体105;所述电源模块、射频或微波发生模块、测量单元、调谐模块以及天线装置依次连接;所述控制单元分别与电源模块、测量单元以及调谐模块连接。
所述电源模块用于为解冻单元的每一个系统模块提供稳定可靠的电源输出;所述射频或微波发生模块用于产生射频或微波高功率振荡电磁场,以使食物中的晶格、分子、离子等进行剧烈振荡旋转等运动而升温,从而达到解冻的目的;所述测量单元用于检测射频或微波发生模块的前向功率及反向功率,从而计算出反向功率与前向功率的比率,若比率越小说明有更多的射频或微波功率到达天线,解冻时间也越短;所述调谐模块上有一个或多个电感值可调或者电容值可变的无源器件,可补偿因食物的种类、大小、位置、形状及温度等不同而产生地阻抗变化;所述控制单元负责监控整个系统的工作状态,收集测量单元反馈的前向功率及反向功率大小并调节调谐模块,确保解冻过程中最大的射频或微波能量进入解冻腔体105。
所述解冻腔体105包括天线装置和工作仓106;所述天线装置包括第一天线组101和第二天线组102,所述第一天线组101包括一个或多个第一天线,所述第二天线组102包括一个或多个第二天线,第一天线与第二天线成对设置,成对的第一天线与第二天线相互平行且正对放置并形成一个天线单元,多个天线单元并排放置,平行放置的第一天线和第二天线间容易实现较为均匀的电场分布。所述第一天线组101和第二天线组102之间形成工作仓106,所述工作仓106包括第一支撑板104、第二支撑板103,第一支撑板104靠近第一天线组101设置,第二支撑板103靠近第二天线组102设置,第一支撑板104、第二支撑板103之间形成待解冻物品308的放置空间,第一支撑板104、第二支撑板103为绝缘支撑板。
解冻腔体105为金属腔体,从而构成一个屏蔽腔体,进一步地,解冻腔体105与大地连接,以此起到防止射频或微波功率泄露到腔体外面的作用。
传统的射频或微波解冻装置在解冻腔体内部仅放置一个天线单元,当需要使用较大射频或微波功率时,在解冻腔体外将多个射频或微波发生模块的功率合路在一起,然后再馈入到该天线单元上,这不可避免的带来了功率合路损耗大、成本高的问题,同时,合路后的功率太大易导致线路打火等安全问题。因此,本发明根据所需功率的大小,自主选择在解冻腔体105内设置一个或多个天线单元,射频或微波发生模块和测量单元的数量也为一个或多个;射频或微波发生模块、测量单元分别与天线单元一一对应连接。例如,当需要使用多个射频或微波发生模块提供较大射频或微波功率时,在解冻腔体105内放置与射频或微波发生模块数量相同的天线单元,每一个天线单元接收一个射频或微 波发生模块提供的射频或微波能量,这样便不需要先合路产生大功率,避免了功率合路所带来的损失,同时还可以提升解冻腔体105内的功率密度,使得解冻速度更快,安全性也更高。
射频或微波发生模块产生的射频或微波功率经由测量单元进入调谐模块阻抗匹配后再分别到达第一天线组101和第二天线组102,在第一天线组101和第二天线组102之间形成交变电场。
射频或微波发生模块与天线装置之间设置有固态功率放大器,固态功率放大器能将功率很小的射频或微波信号放大产生能快速解冻的射频或微波能量,通常可采用LDMOS或者GaN等器件;固态功率放大器用于将射频或微波发生模块产生的射频或微波信号放大到合适的功率,并将这部分射频或微波功率传递到测量单元。
测量单元能够检测射频或微波发生模块的前向功率及反向功率,从而计算出反向功率与前向功率的比率,若比率越小说明有更多的射频或微波功率到达天线,解冻时间也就越短。控制单元根据测量单元反馈的前向功率及反向功率调节调谐模块,调谐模块包括一个或多个电感感值可调或者电容容值可变的无源器件,调谐模块能够选择反向功率与前向功率的比率最小的阻抗匹配状态,从而在解冻过程中确保最大的射频或微波能量进入工作仓。
值得说明是,在调谐模块处于自动模式下时,空箱状态下(即工作仓106未放置食物)的调谐模块的状态是唯一并且确定的,解冻单元可以检测是否处于该状态从而判定自身是否是空箱状态。当解冻单元检测出自身处于空箱状态,其将自动调整功率大小,即空箱状态下,输出功率可自动降到最小。
电场的方向是电势能降低最快的方向,若第一天线组101中所有第一天线上的电压幅度近似相同,相位也近似相同,则它们边缘之间的电场几乎为零;同理,第二天线组102中第二天线边缘之间的电场也几乎为零;第一天线组101上的电压和第二电级组102上的电压幅度相同,相位相反,则在两天线组之间能形成较多电场,便于快速解冻食物。因此,采用平衡馈电的方式,使第一天线组101中的第一天线馈入点电压幅度、相位相同,第二天线组102中的第二天线馈入点电压幅度、相位相同,天线单元的第一天线与第二天线的馈入点电压幅度相同、相位相反(即相差180°)。每个天线被提供一路功率较小的射频或微波信号。
将多个所述解冻单元通过搭积木的组合方式来构造分布式射频或微波解冻设备。解冻单元的工作仓106左右开窗,便于待解冻物品308的进出,将传送带301穿越每一个 解冻单元的工作仓106。将待解冻物品308放置于入料口302处,入料口302是食物的进入通道,同时其能启到衰减电磁波的作用,防止射频或微波能量溢出;传送带运送食物流过每一个解冻单元,直至到达出料口306完成食物的解冻,所述出料口306也能起到衰减电磁波的作用,防止射频或微波能量溢出。由于每个解冻单元尺寸较小,功率适中,因而组装的这种解冻设备构造灵活,维修成本低,每个解冻单元可单独设置,保证食物处于最佳解冻状态。同时将待解冻物品308放置在传送带上,依次经过每一个解冻单元,解冻的均匀性会更好。
组装时,第一个解冻单元303一侧需安装金属入料口,第n个解冻单元305一侧需安装金属出料口,同时解冻单元之间有金属的连接通道307,它们均能启到防止射频或微波能量溢出的作用。用户可自主的选择解冻单元的数量,自主摆放;同时解冻不同物品时,还可设定每一个解冻单元的工作状态,比如功率大小等。通过总控制台电信号连接每一个解冻单元的控制单元,用户可通过总控制台对每一个解冻单元进行单独控制。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

  1. 一种分布式射频或微波解冻设备,其特征在于,包括一个或多个解冻单元;
    所述解冻单元包括电源模块、控制单元、射频或微波发生模块、测量单元、天线装置以及解冻腔体(105);
    所述电源模块、射频或微波发生模块、测量单元以及天线装置依次连接;
    所述控制单元分别与电源模块和测量单元连接;
    所述天线装置设置在解冻腔体(105)内,天线装置包括第一天线组(101)和第二天线组(102),所述第一天线组(101)包括一个或多个第一天线,所述第二天线组(102)包括一个或多个第二天线,第一天线与第二天线成对设置,成对的第一天线与第二天线相互平行且正对放置并形成一个天线单元,多个天线单元并排放置,所述解冻腔体(105)内包括一排或多排天线单元;所述第一天线组(101)和第二天线组(102)之间形成工作仓(106);
    所述射频或微波发生模块和测量单元的数量为一个或多个;射频或微波发生模块、测量单元分别与天线单元一一对应连接。
  2. 根据权利要求1所述的分布式射频或微波解冻设备,其特征在于,所述第一天线组(101)和第二天线组(102)包括金属板天线和/或波导天线,相邻天线单元之间具有间隙;
    当所述第一天线组(101)和第二天线组(102)为金属板天线时,第一天线组(101)与第二天线组(102)之间的距离能够根据待解冻物品(308)的形状尺寸调节。
  3. 根据权利要求1所述的分布式射频或微波解冻设备,其特征在于,所述工作仓(106)包括第一支撑板(104)、第二支撑板(103),第一支撑板(104)靠近第一天线组(101)设置,第二支撑板(103)靠近第二天线组(102)设置,第一支撑板(104)、第二支撑板(103)之间形成待解冻物品(308)的放置空间;
    所述第一支撑板(104)、第二支撑板(103)为绝缘支撑板;
    所述第一支撑板(104)、第二支撑板(103)之间的距离能够根据待解冻物品(308)的形状尺寸调节;
    所述解冻腔体(105)为金属腔体,解冻腔体(105)接地。
  4. 根据权利要求1所述的分布式射频或微波解冻设备,其特征在于,所述射频或微波发生模块包括射频或微波发生源和固态功率放大器。
  5. 根据权利要求1所述的分布式射频或微波解冻设备,其特征在于,还包括传送装置、入料口(302)、出料口(306)以及总控制台;
    所述传送装置包括传送带(301)、驱动装置,驱动装置驱动传送带(301)运动;
    所述解冻单元的工作仓(106)上设置有窗口,多个解冻单元并排放置,通过窗口彼此连接,窗口之间通过连接通道(307)连接,形成一个待解冻物品(308)传送通道,所述传送带(301)设置在传送通道内,所述天线单元沿着传送通道传送的方向并排放置;
    所述入料口(303)、出料口(306)分别设置在传送通道的两端;
    所述入料口(303)、出料口(306)分别为金属入料口、金属出料口;所述连接通道(307)为金属连接通道;
    所述总控制台信号连接多个解冻单元的控制单元。
  6. 根据权利要求1所述的分布式射频或微波解冻设备,其特征在于,所述解冻单元还包括调谐模块,所述调谐模块包括一个或多个无源器件;所述射频或微波发生模块产生的射频或微波功率经由测量单元进入调谐模块阻抗匹配后再分别到达第一天线组(101)和第二天线组(102),在第一天线组(101)和第二天线组(102)之间形成交变电场。
  7. 根据权利要求6所述的分布式射频或微波解冻设备,其特征在于,所述测量单元能够检测射频或微波发生模块的前向功率及反向功率;
    所述调谐模块能够调整至反向功率与前向功率比率最小的阻抗匹配状态。
  8. 根据权利要求7所述的分布式射频或微波解冻设备,其特征在于,所述控制单元能够根据测量单元反馈的前向功率及反向功率计算反向功率与前向功率的比率并判断调谐模块的状态。
  9. 根据权利要求7所述的分布式射频或微波解冻设备,其特征在于,所述调谐模块具有手动模式和/或自动模式,手动模式的调谐模块通过手动设定来调整射频或微波发生模块输出端与天线单元输入端之间的阻抗匹配状态;
    自动模式的调谐模块通过控制单元来自动控制射频或微波发生模块输出端与天线单元输入端之间的阻抗匹配状态,所述控制单元根据测量单元反馈的前向功率及反向功率调节调谐模块。
  10. 根据权利要求1所述的分布式射频或微波解冻设备,其特征在于,采用平衡馈电,保证第一天线组(101)中第一天线馈入点间的电压幅度差小于50%,相位差在0-90° 范围内;第二天线组(102)中第二天线馈入点间的电压幅度差小于50%,相位差在0-90°范围内;天线单元的第一天线与第二天线的馈入点电压幅度差小于70%,相位差在80-280°的范围内。
PCT/CN2020/096070 2019-08-27 2020-06-15 分布式射频或微波解冻设备 WO2021036418A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/639,185 US20220330395A1 (en) 2019-08-27 2020-06-15 Distributed radio frequency or microwave thawing device
EP20857677.7A EP4007452B1 (en) 2019-08-27 2020-06-15 Distributed radio frequency or microwave thawing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910797181.8 2019-08-27
CN201910797181.8A CN110493909B (zh) 2019-08-27 2019-08-27 分布式射频或微波解冻设备

Publications (1)

Publication Number Publication Date
WO2021036418A1 true WO2021036418A1 (zh) 2021-03-04

Family

ID=68554551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096070 WO2021036418A1 (zh) 2019-08-27 2020-06-15 分布式射频或微波解冻设备

Country Status (4)

Country Link
US (1) US20220330395A1 (zh)
EP (1) EP4007452B1 (zh)
CN (1) CN110493909B (zh)
WO (1) WO2021036418A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493909B (zh) * 2019-08-27 2022-09-30 上海点为智能科技有限责任公司 分布式射频或微波解冻设备
CN112969248B (zh) * 2019-12-13 2022-12-16 青岛海尔电冰箱有限公司 用于加热装置的控制方法及加热装置
CN111023176B (zh) * 2019-12-31 2022-12-09 广东美的厨房电器制造有限公司 微波烹饪设备及其控制装置
CN114304753A (zh) * 2022-02-24 2022-04-12 湖北中烟工业有限责任公司 一种多极点射频加热烟具

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813498A (zh) * 2012-11-15 2014-05-21 上海明光电子科技有限公司 微波加热装置
US20180220497A1 (en) * 2014-06-30 2018-08-02 Goji Limited Heating of objects by microwave energy
CN108767439A (zh) * 2018-05-25 2018-11-06 上海点为智能科技有限责任公司 受限空间内的双天线补偿加热装置
CN108812854A (zh) * 2018-05-08 2018-11-16 上海点为智能科技有限责任公司 射频解冻系统
CN109413788A (zh) * 2018-10-29 2019-03-01 广东美的厨房电器制造有限公司 烹饪设备、烹饪设备的控制方法及计算机可读存储介质
CN208768875U (zh) 2018-05-29 2019-04-23 四川北牧南江黄羊集团有限公司 一种射频解冻装置
CN110100994A (zh) * 2019-04-26 2019-08-09 上海点为智能科技有限责任公司 通过射频来监测和控制食物解冻和加热时间的装置
CN110493909A (zh) * 2019-08-27 2019-11-22 上海点为智能科技有限责任公司 分布式射频或微波解冻设备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100694A (en) * 1979-01-26 1980-07-31 Hitachi Ltd Oscillator circuit for induction heater
JP4630189B2 (ja) * 2005-12-21 2011-02-09 山本ビニター株式会社 高周波解凍装置および解凍方法
JP5142364B2 (ja) * 2007-07-05 2013-02-13 パナソニック株式会社 マイクロ波処理装置
JP5286905B2 (ja) * 2008-04-15 2013-09-11 パナソニック株式会社 マイクロ波処理装置
CN102160458B (zh) * 2008-09-17 2014-03-12 松下电器产业株式会社 微波加热装置
JP5362836B2 (ja) * 2008-11-10 2013-12-11 ゴジ リミテッド Rfエネルギを使用して加熱する装置および方法
CN102933905B (zh) * 2010-05-26 2015-04-01 Lg电子株式会社 烹调装置
JP5128025B1 (ja) * 2011-04-19 2013-01-23 パナソニック株式会社 高周波加熱装置
ITVR20130131A1 (it) * 2013-05-29 2014-11-30 Stalam S P A Apparecchiatura a radio-frequenza per lo scongelamento di prodotti alimentari
JP6722486B2 (ja) * 2016-03-28 2020-07-15 シャープ株式会社 高周波加熱装置
CN205655646U (zh) * 2016-04-27 2016-10-19 贡享本草(永泰)生物科技有限公司 微波低温干燥设备
CN105881793B (zh) * 2016-05-18 2019-03-26 贵州大自然科技股份有限公司 一种硫化稳定的防跑偏节能型微波硫化装置及使用方法
US10602573B2 (en) * 2016-11-18 2020-03-24 Nxp Usa, Inc. Establishing RF excitation signal parameters in a solid-state heating apparatus
CN107373296A (zh) * 2017-09-11 2017-11-24 上海海洋大学 一种均匀解冻的射频加热装置
CN109452530B (zh) * 2018-11-01 2022-06-10 上海点为智能科技有限责任公司 开关匹配模块及具有两个辐射机构的解冻装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103813498A (zh) * 2012-11-15 2014-05-21 上海明光电子科技有限公司 微波加热装置
US20180220497A1 (en) * 2014-06-30 2018-08-02 Goji Limited Heating of objects by microwave energy
CN108812854A (zh) * 2018-05-08 2018-11-16 上海点为智能科技有限责任公司 射频解冻系统
CN108767439A (zh) * 2018-05-25 2018-11-06 上海点为智能科技有限责任公司 受限空间内的双天线补偿加热装置
CN208768875U (zh) 2018-05-29 2019-04-23 四川北牧南江黄羊集团有限公司 一种射频解冻装置
CN109413788A (zh) * 2018-10-29 2019-03-01 广东美的厨房电器制造有限公司 烹饪设备、烹饪设备的控制方法及计算机可读存储介质
CN110100994A (zh) * 2019-04-26 2019-08-09 上海点为智能科技有限责任公司 通过射频来监测和控制食物解冻和加热时间的装置
CN110493909A (zh) * 2019-08-27 2019-11-22 上海点为智能科技有限责任公司 分布式射频或微波解冻设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4007452A4

Also Published As

Publication number Publication date
US20220330395A1 (en) 2022-10-13
EP4007452A1 (en) 2022-06-01
CN110493909A (zh) 2019-11-22
CN110493909B (zh) 2022-09-30
EP4007452A4 (en) 2022-09-07
EP4007452B1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2021036418A1 (zh) 分布式射频或微波解冻设备
RU2483495C2 (ru) Устройство микроволнового нагрева
CN205919380U (zh) 一种固态微波功率源及采用该固态微波功率源的固态微波炉
US20130206752A1 (en) Cooking apparatus
US20080104857A1 (en) Multistage Continuous Microwave Dryer For Plate-Shaped Products, Especially Fiber Boards
WO2000051450A1 (fr) Dispositif de decongelation haute frequence
CN103227089A (zh) 微波放射机构和表面波等离子体处理装置
CN106211538B (zh) 一种回旋加速器谐振腔的自动调谐装置和方法
CN104805410A (zh) 磁控溅射镀膜机
CN103813498A (zh) 微波加热装置
US20200060290A1 (en) Conveyor oven apparatus and method
CN204268837U (zh) 一种真空绝热板芯材的干燥设备
CN201389899Y (zh) 具有微波加热干燥装置的流延机
CN108141929A (zh) 动态电容式射频食物加热通道
CN106123052A (zh) 一种便携式固态微波炉
CN202918530U (zh) 微波加热装置
CN202286157U (zh) 一种杂粮复合米微波烘干机
US3027442A (en) High-frequency furnaces
CN202308283U (zh) 一种磁控波束可变的等离子体天线阵列
CN105338676B (zh) 微波炉腔体及半导体微波炉
CN108662886A (zh) 一种射频微波烘箱及其烘制方法
RU95114165A (ru) Универсальная сверхвысокочастотная сушильная установка (варианты)
CN110868771A (zh) 一种微波馈入结构
CN111918432A (zh) 射频加热设备
CN109302763A (zh) 相干模块化微波加热设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020857677

Country of ref document: EP

Effective date: 20220228