WO2021036376A1 - 一种船舶真风测量装置的标定方法 - Google Patents

一种船舶真风测量装置的标定方法 Download PDF

Info

Publication number
WO2021036376A1
WO2021036376A1 PCT/CN2020/092928 CN2020092928W WO2021036376A1 WO 2021036376 A1 WO2021036376 A1 WO 2021036376A1 CN 2020092928 W CN2020092928 W CN 2020092928W WO 2021036376 A1 WO2021036376 A1 WO 2021036376A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind
swing
calibration
ship
true
Prior art date
Application number
PCT/CN2020/092928
Other languages
English (en)
French (fr)
Inventor
王大志
郭晓艳
慈元达
蔡烽
王骁
左少燕
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/057,019 priority Critical patent/US20210247419A1/en
Publication of WO2021036376A1 publication Critical patent/WO2021036376A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • G01M9/04Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/10Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers
    • B63B79/15Monitoring properties or operating parameters of vessels in operation using sensors, e.g. pressure sensors, strain gauges or accelerometers for monitoring environmental variables, e.g. wave height or weather data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/30Monitoring properties or operating parameters of vessels in operation for diagnosing, testing or predicting the integrity or performance of vessels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/02Wind tunnels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M9/00Aerodynamic testing; Arrangements in or on wind tunnels
    • G01M9/08Aerodynamic models
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P13/00Indicating or recording presence, absence, or direction, of movement
    • G01P13/02Indicating direction only, e.g. by weather vane
    • G01P13/04Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement
    • G01P13/045Indicating positive or negative direction of a linear movement or clockwise or anti-clockwise direction of a rotational movement with speed indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P21/00Testing or calibrating of apparatus or devices covered by the preceding groups
    • G01P21/02Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers
    • G01P21/025Testing or calibrating of apparatus or devices covered by the preceding groups of speedometers for measuring speed of fluids; for measuring speed of bodies relative to fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/24Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting acoustical wave
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/086Learning methods using evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B17/00Vessels parts, details, or accessories, not otherwise provided for
    • B63B2017/0072Seaway compensators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B49/00Arrangements of nautical instruments or navigational aids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B79/00Monitoring properties or operating parameters of vessels in operation
    • B63B79/40Monitoring properties or operating parameters of vessels in operation for controlling the operation of vessels, e.g. monitoring their speed, routing or maintenance schedules

Definitions

  • the invention belongs to the field of ship engineering, and in particular relates to a calibration method of a ship's true wind measuring device.
  • Wind speed and direction are important parameters for ship maneuvering and control. Improving the measurement accuracy of ship wind speed and direction is of great significance for the safe landing of carrier aircraft, rescue and disaster relief, and the departure of ships from docks.
  • ship-borne wind sensors generally measure relative wind, supplemented by ship’s heading and speed information to calculate true wind.
  • the true wind of a ship is not only related to the heading and speed of the ship, but also affected by the ship's rolling, pitching and other spatial motions of the ship. Especially in the environment of heavy wind and waves, the ship's swaying will cause the ship's spatial position to change greatly, leading to true wind There is a large error in the measurement.
  • the ship's spatial motion error can be eliminated.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of the above-mentioned technology and propose a calibration method for a ship's true wind measurement device.
  • a real wind measurement device composed of a wind direction and wind speed measurement module and a ship attitude measurement module is fixed on the ship sway simulation platform; the wind tunnel wind flow field is used to simulate natural wind, and the ship sway simulation platform is controlled to simulate the ship’s movement.
  • the calibration model forms the true wind direction and speed calibration algorithm, and the ship true wind measurement device is calibrated to reduce the dynamic measurement error of the wind direction and wind speed in the ship's space motion state, and realize the accurate measurement of the true wind speed in the ship motion state.
  • a calibration method for a ship's true wind measuring device the specific steps are as follows:
  • the ship sway simulation platform includes a lateral sway calibration module 14, a longitudinal sway calibration module 13, a sway control module 15, a true wind measuring device fixing module 12, and a host computer 16;
  • the said lateral rocking calibration module 14 and the longitudinal rocking calibration module 13 have the same structure, and both include a rocking calibration base guide rail 3, a rocking calibration table guide 5, a rocking calibration sliding table 8, a rocking fixed base 4, a drive motor 7, and a rack 9.
  • the screw 6; the swing fixed base 4, the upper surface of which is an arc-shaped concave surface, two swing calibration base guide rails 3 and two swing calibration table guide rails 5 are symmetrically fixed on the curved concave surface of the swing fixed base 4, two The two swing calibration table guide rails 5 are respectively located outside the two swing calibration floor guide rails 3 to form an arc-shaped guide rail member;
  • the swing calibration slide 8 has an arc convex surface on its lower surface, and both ends of the lower surface are symmetrically opened Two arc-shaped grooves, the arc-shaped grooves cooperate with the arc-shaped guide rail member of the swing fixed base 4, so that the swing calibration slide 8 swings on the swing fixed base 4;
  • the swing calibration slide 8 has its lower surface
  • a rack 9 is installed in the middle, and a plurality of mounting holes are provided on the upper surface;
  • the drive motor 7 is installed on the outside of the swing fixed base 4;
  • the screw 6 has one end connected to the drive motor 7 through a coupling Connected, the other
  • the horizontal swing calibration module 14 and the longitudinal swing calibration module 13 are installed and arranged at an angle of 90° from top to bottom.
  • the two are installed on the bottom surface of the rocking fixed base 4 located above and the top of the rocking calibration sliding table 8 located below.
  • the surface realizes a fixed connection;
  • the fixed module 12 of the true wind measuring device includes a supporting table 1 and a stud 2; there are multiple studs 2, the top ends of which are symmetrically installed at the bottom of the supporting table 1, and the bottom ends are installed on the upper swing Calibrate the mounting holes on the upper surface of the sliding table 8; the upper surface of the support table 1 is machined with multiple mounting holes to install the true wind measurement device according to the experimental requirements and adjust the installation direction;
  • the swing control module 15 is connected to the two driving motors 7 and the upper computer 16, and the true wind measuring device is fixed to the supporting table 1 through the mounting holes on the supporting table 1 and connected to the upper computer 16.
  • the ship swing simulation platform is placed vertically and statically, and the wind tunnel wind flow field is used to simulate natural wind.
  • the true wind measuring device is installed on the ship swing simulation platform to measure the wind direction and wind speed, and the collected data is transmitted to the host computer 16 as a true wind calibration.
  • the reference value then, through the host computer 16 to the swing control module 15, the swing control module 15 controls the lateral swing calibration module 14 and the longitudinal swing calibration module 13, respectively, to simulate the ship at different swing speeds and different swing angles
  • the host computer 16 sorts out the wind direction and wind speed and the posture data of the ship swing simulation platform collected by the true wind measurement device to form a wind direction and wind speed database with swing angle and swing speed as variables.
  • attitude, wind direction and wind speed data are used as model input Layer neurons
  • true wind calibration reference value is used as the model output layer neurons
  • genetic algorithm is used to obtain the optimal individual to assign initial weights and thresholds to the neural network.
  • the input layer neurons specifically include roll angle, roll angular velocity, and pitch Angle, pitch angular velocity, wind direction and wind speed measurement.
  • the output layer neuron includes the true wind direction and true wind speed measured by the ship's true wind measurement device placed vertically and statically on the ship sway simulation platform; training to obtain the best mapping ship
  • the BP neural network calibration model of the relationship between space motion and true wind measurement forms a calibration algorithm for the true wind direction and true wind speed of the ship to achieve the calibration of the ship true wind measurement device; finally, the wind direction and wind speed measured in the actual ship environment and the ship attitude data are input into BP
  • the real-time true wind direction and true wind speed calculated by the neural network calibration model can be used to correct the real-time wind direction and wind speed data measured by the actual ship.
  • the ship's true wind measurement calibration method effectively simulates the ship's lateral and longitudinal swaying motions, forms a true wind direction and true wind speed calibration algorithm, calibrates the ship true wind measurement device, and corrects the wind direction and wind speed measurement data , which reduces the dynamic measurement error of wind direction and speed in the ship's space motion state, and improves the accuracy and reliability of the ship's true wind data.
  • Fig. 1 is a three-dimensional assembly diagram of the ship swing simulation platform of the present invention.
  • Fig. 2 is a schematic diagram of a calibration method for measuring true wind of a ship according to the present invention.
  • the true wind measurement device composed of the ultrasonic wind direction and wind speed measurement module 10 and the ship attitude measurement module 11 to the true wind measurement device fixing module 12 of the ship swing simulation platform; then set the wind flow field in the wind tunnel to a constant value to measure the ship
  • the vertical static wind speed of the rocking simulation platform is used as the reference value for true wind calibration.
  • the rotation distance and speed parameters of the ship rocking simulation platform are changed by the host computer 16 to simulate the ship's rolling and vertical rolling at different rocking speeds and different rocking angles.
  • Swaying motion sorting out the wind direction and speed data collected by the ship's true wind measuring device to form a wind direction and wind speed database with sway angle and sway speed as variables; finally, analyze and process wind direction and wind speed data, posture data and wind flow field actual wind direction and wind speed database to construct BP Neural network calibration model, and genetic algorithm is used to optimize the model to form a calibration algorithm for true wind direction and speed, and to calibrate the ship's true wind measurement device.
  • Figure 1 is a three-dimensional assembly diagram of the ship swing simulation platform.
  • the horizontal swing calibration module 14 and the longitudinal swing calibration module 13 have the same internal structure, including the swing fixed base 4, the drive motor 7, the screw 6, the rack 9, and the swing calibration
  • the true wind measuring device fixing module 12 includes a rectangular supporting table 1, a hexagonal stud 2, and a hexagonal bolt.
  • the supporting table 1 is fastened to the upper surface of the swing calibration sliding table 8 of the longitudinal swing calibration module 13 through the studs 2, and a through hole with a diameter of 80mm is processed at the center of the front end of the supporting table 1, and the end is processed 3 M3 threaded holes, the true wind measuring device composed of the super wind wave wind speed measuring module 10 and the ship attitude measuring module 11 is fastened to the supporting table 1 by bolts; at the same time, 12 threaded holes with a diameter of 7mm are evenly distributed around the through hole to ensure
  • the real wind measuring device N direction (wind direction 0°) can be adjusted 360° according to the test requirements.
  • the horizontal swing calibration module 14 has the same structure as the longitudinal swing calibration module 13. Take the longitudinal swing calibration module 13 as an example: the upper surface of the middle of the swing fixed base 4 is a concave arc surface, and the swing calibration base plate is installed on the concave arc surface The guide rail 3 and the swing calibration table guide 5 are arc guides corresponding to the concave arc surface; the swing calibration slide 8 has a convex arc surface on the lower surface, and two arc grooves are symmetrically opened at both ends of the lower surface.
  • the arc-shaped groove is matched with the arc-shaped guide rail of the swing fixed base, so that the swing calibration slide 8 swings on the swing fixed base 4; the upper surface of the swing calibration slide 8 is machined with a number of evenly distributed threaded mounting holes; the drive motor 7 passes through the coupling
  • the shaft device drives the screw 6 in the swing calibration base 4 to rotate, and the meshing transmission of the rack 9 and the screw 6 in the middle of the two swing calibration base guide rails 3 realizes the longitudinal movement of the swing calibration slide 8 along the rail surface;
  • the horizontal swing calibration module 14 It is installed at an angle of 90° with the longitudinal swing calibration module 13.
  • the longitudinal swing calibration module 13 is located above, and its swing calibration base 4 is fastened to the upper surface of the swing calibration sliding table 8 of the lateral swing calibration module 14 through threads.
  • the swing calibration module 15 adopts Gear meshing, pulling transmission and other methods drive the swing calibration slide 8 to swing horizontally and longitudinally along the rail surface, and the linkage of the horizontal swing calibration module 14 and the longitudinal swing calibration module 13 is used to simulate the ship's swing motion.
  • the ship's true wind measurement device transmits the collected wind direction, wind speed and attitude data to the host computer 16, and finally stores and sorts them into a number of wind direction, wind speed and attitude measurement databases with swing angle and swing speed as variables.
  • BP neural network calibration model Before analyzing the wind direction, wind speed, and attitude measurement database, first normalize the collected data; then initially build a BP neural network calibration model with a topological structure of 6 ⁇ 10 ⁇ 10 ⁇ 2.
  • the input layer neurons roll angle, horizontal Roll angular velocity, pitch angle, pitch angular velocity, measure wind direction, measure wind speed, output layer neurons: reference true wind direction, reference true wind speed; write Matlab program, use genetic algorithm to get the optimal individual pair neural network initial weight and Threshold assignment, training to obtain the BP neural network calibration model that best maps the relationship between ship space motion and true wind measurement, forming a calibration algorithm for ship true wind direction and true wind speed, and obtaining true wind direction and true wind speed, which are used to calibrate the ship’s true wind measurement device. Real-time correction of the measured wind direction and speed data of the actual ship.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Atmospheric Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physiology (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

一种船舶真风测量装置的标定方法,通过搭建二轴联动船舶摇摆模拟台,采用风洞风流场模拟自然风,控制船舶摇摆模拟台模拟船舶在风浪流扰动下的船体空间运动,测量不同摇摆角度和不同摇摆速度下的风向风速数据,形成风向风速测量数据、姿态测量数据和风流场实际风向风速数据库,以此数据库构建BP神经网络的标定模型,形成船舶真风向真风速的标定算法,标定船舶真风测量装置。该标定方法降低了船舶空间运动状态下风向风速的动态测量误差,实现了船舶运动状态下真风的精确测量。

Description

一种船舶真风测量装置的标定方法 技术领域
本发明属于船舶工程领域,尤其涉及一种船舶真风测量装置的标定方法。
背景技术
风速风向是船舶操纵控制的重要参数,提高船舶风速风向的测量精度对舰载机安全着舰、抢险救灾、船舶离靠码头等具有重要意义。目前船载测风传感器普遍测量的是相对风,辅以船舶的航向和航速信息解算出真风。但是,船舶真风除与船舶的航向和航速相关外,还受船舶横摇、纵摇等船舶空间运动的影响,尤其是大风浪环境下船舶摇摆将引起船舶空间位置较大变化,导致真风测量存在较大误差。通过船姿传感器与风速风向测量传感器相结合组成真风测量装置,可以消除船舶空间运动误差。但是,真风测量装置的高精度实船测量,还需要建立随船摇摆的数据基值,对真风测量数据进行校正。仅单纯提高传感器精度还不能达到船舶真风的高精确测量。
技术问题
本发明要解决的技术难题是克服上述技术的不足,提出一种船舶真风测量装置的标定方法。通过建立二轴联动船舶摇摆模拟台,由风向风速测量模块和船姿测量模块组成真风测量装置固定在船舶摇摆模拟台上;采用风洞风流场模拟自然风,控制船舶摇摆模拟台模拟船舶在风浪流扰动下的船体空间运动,测量不同摇摆角度和不同摇摆速度下的风向风速数据;分析处理测量的风向风速数据、姿态数据和风流场实际风向风速数据库,构建遗传算法优化的BP神经网络的标定模型,形成真风向风速的标定算法,标定船舶真风测量装置,降低船舶空间运动状态下风向风速的动态测量误差,实现船舶运动状态下真风的精确测量。
技术解决方案
本发明采用的技术方案是:
一种船舶真风测量装置的标定方法,具体步骤如下:
1)船舶摇摆模拟台的建立
船舶摇摆模拟台包括横向摇摆标定模块14、纵向摇摆标定模块13、摇摆控制模块15、真风测量装置固定模块12和上位机16;
所述的横向摇摆标定模块14和纵向摇摆标定模块13的结构相同,均包括摇摆标定底板导轨3、摇摆标定台面导轨5、摇摆标定滑台8、摇摆固定底座4、驱动电机7、齿条9和丝杠6;所述的摇摆固定底座4,其上表面为弧形凹面,两个摇摆标定底板导轨3和两个摇摆标定台面导轨5对称固定在摇摆固定底座4的弧形凹面上,两个摇摆标定台面导轨5分别位于两个摇摆标定底板导轨3外侧,共同构成弧形导轨构件;所述的摇摆标定滑台8,其下表面为弧形凸面,其下表面两端各对称开有两个弧形凹槽,弧形凹槽与摇摆固定底座4的弧形导轨构件相配合,使摇摆标定滑台8在摇摆固定底座4上摇摆;所述的摇摆标定滑台8,其下表面中部安装有齿条9,其上表面上设有多个安装孔;所述的驱动电机7安装在摇摆固定底座4的外侧;所述的丝杠6,其一端通过联轴器与驱动电机7连接,另一端与齿条9相啮合,通过驱动电机7的驱动,使摇摆标定滑台8沿摇摆固定底座4上的弧形导轨构件移动,实现船舶摇摆姿态的模拟;
所述的横向摇摆标定模块14和纵向摇摆标定模块13,一上一下呈90°夹角安装布置,二者通过位于上方的摇摆固定底座4的下表面与位于下方的摇摆标定滑台8的上表面实现固定连接;
所述的真风测量装置固定模块12,包括支承台面1和螺柱2;所述的螺柱2有多根,其顶端对称安装在支承台面1的底部,其底端安装在位于上方的摇摆标定滑台8上表面的安装孔上;支承台面1的上表面加工有多个安装孔,以根据实验需求安装真风测量装置并能够进行安装方向的调整;
所述的摇摆控制模块15与两个驱动电机7以及上位机16连接,所述的真风测量装置通过支承台面1上的安装孔固定于支承台面1上,并与上位机16连接。
2)风向风速数据的获取
首先,将船舶摇摆模拟台竖直静态放置,采用风洞风流场模拟自然风,真风测量装置安装于船舶摇摆模拟台测量风向风速,将采集到的数据传送至上位机16,作为真风标定基准值;然后,通过上位机16向摇摆控制模块15发出指令,摇摆控制模块15控制横向摇摆标定模块14和纵向摇摆标定模块13的摇摆角度和速度,分别模拟船舶在不同摇摆速度、不同摇摆角度下的横摇、纵摇运动;最后,上位机16整理真风测量装置采集到的风向风速以及船舶摇摆模拟台姿态数据,形成以摇摆角度和摇摆速度为变量的风向风速数据库。
3)真风标定
首先,对步骤2)中上位机16采集的风向风速以及船姿数据进行归一化处理;然后,通过归一化的数据构建BP神经网络标定模型,具体如下:姿态、风向风速数据作为模型输入层神经元,真风标定基准值作为模型输出层神经元,采用遗传算法得到最优个体对神经网络初始权值和阈值赋值,其中输入层神经元具体包括横摇角、横摇角速度、纵摇角、纵摇角速度、测量风向和测量风速,输出层神经元包括船舶真风测量装置在船舶摇摆模拟台竖直静态放置所测得风洞真风风向和真风风速;训练获得最佳映射船舶空间运动与真风测量关系的BP神经网络标定模型,形成船舶真风向真风速的标定算法,实现对船舶真风测量装置标定;最后,将实船环境下测量的风向风速以及船姿数据输入BP神经网络标定模型计算得到的实时的真风向和真风速,从而对实船测量的风向风速数据进行实时校正。
有益效果
本发明的有益效果是:利用该船舶真风测量的标定方法有效模拟了船舶的横向、纵向摇摆运动,形成真风向真风速的标定算法,标定了船舶真风测量装置,校正了风向风速测量数据,降低了船舶空间运动状态下风向风速的动态测量误差,提高了船舶真风数据的准确性和可靠性。
附图说明
图1是本发明船舶摇摆模拟台的三维装配图。
图2是本发明船舶真风测量标定方法示意图。
图中:1支承台面;2螺柱;3摇摆标定底板导轨;4摇摆固定底座;5摇摆标定台面导轨;6丝杆;7驱动电机;8摇摆标定滑台;9齿条;10超声波风向风速测量模块;11船姿测量模块;12真风测量装置固定模块;13纵向摇摆标定模块;14横向摇摆标定模块;15摇摆控制模块;16上位机。
本发明的实施方式
以下结合技术方案和附图详细说明本发明的具体实施方式。
首先将超声波风向风速测量模块10和船姿测量模块11组成的真风测量装置紧固在船舶摇摆模拟台的真风测量装置固定模块12上;然后设定风洞风流场为恒定值,测量船舶摇摆模拟台竖直静态的风向风速,作为真风标定的基准值,通过上位机16改变船舶摇摆模拟台旋转距离和速度参数,分别模拟船舶在不同摇摆速度、不同摇摆角度下的横摇、纵摇运动;整理船舶真风测量装置采集到的风向风速数据,形成以摇摆角度和摇摆速度为变量的风向风速数据库;最后,分析处理风向风速数据、姿态数据和风流场实际风向风速数据库,构建BP神经网络的标定模型,并利用遗传算法进行模型优化,形成真风向真风速的标定算法,标定船舶真风测量装置。
实施例的具体实施步骤如下(如图1和图2所示):
1)船舶摇摆模拟台的建立
图1为船舶摇摆模拟台的三维装配图,其中,横向摇摆标定模块14与纵向摇摆标定模块13的内部结构相同,包括摇摆固定底座4、驱动电机7、丝杆6、齿条9、摇摆标定底板导轨3、摇摆标定台面导轨5、摇摆标定滑台8;真风测量装置固定模块12包括矩形的支承台面1、六角的螺柱2、六角螺栓。在真风测量装置固定模块12中,支承台面1通过螺柱2紧固于纵向摇摆标定模块13的摇摆标定滑台8上表面,支承台面1前端中间位置加工一直径为80mm通孔,末端加工3个M3螺纹孔,由超风波风向风速测量模块10和船姿测量模块11组成的真风测量装置通过螺栓紧固于支承台面1上;同时通孔四周均匀分布12个直径7mm螺纹孔,保证真风测量装置N向(风向0°)可以根据试验需求而360°调整。
横向摇摆标定模块14与纵向摇摆标定模块13结构相同,以纵向摇摆标定模块13为例说明:其摇摆固定底座4中部的上表面为凹弧形表面,安装在凹弧形表面上的摇摆标定底板导轨3和摇摆标定台面导轨5是与凹弧形表面相对应的弧形导轨;摇摆标定滑台8,其下表面为凸弧形表面,下表面两端各对称开有两个弧形凹槽,弧形凹槽与摇摆固定底座的弧形导轨配合,使摇摆标定滑台8在摇摆固定底座4上摇摆;摇摆标定滑台8上表面加工有若干均匀分布螺纹安装孔;驱动电机7通过联轴器带动摇摆标定底座4中的丝杆6转动,两摇摆标定底板导轨3中间的齿条9与丝杆6的啮合传动实现摇摆标定滑台8沿导轨面的纵向运动;横向摇摆标定模块14与纵向摇摆标定模块13呈90°夹角安装,纵向摇摆标定模块13位于上方,其摇摆标定底座4通过螺纹紧固于横向摇摆标定模块14的摇摆标定滑台8上表面,摇摆标定模块15采用齿轮啮合、牵拉传动等方式带动摇摆标定滑台8沿导轨面进行横向、纵向摇摆,利用横向摇摆标定模块14和纵向摇摆标定模块13的联动,实现模拟船舶摇摆运动。
2)风向风速数据的获取
设定风洞风流场为7级风速范围,测量船舶摇摆模拟台0°倾角风向风速,作为真风标定基准值;通过上位机16、摇摆控制模块15改变船舶摇摆模拟台的旋转距离和速度参数控制船舶摇摆模拟台的运动,首先横摇旋转距离输入5°,测量横摇速度分别在2°/s、5°/s、10°/s、15°/s的风向风速和姿态数据,然后依次改变横摇旋转距离为10°、15°重复上述过程;由于实船航行中纵摇的摇摆幅度相对偏小,所以船舶摇摆模拟台仅以1°/s、3°/s、5°/s、7°/s的纵摇速度运动,测量纵摇角度分别为2°、4°、8°时的风向风速和姿态数据,此标定方法的旋转距离和速度参数可以根据实际的船舶模拟情况修改。船舶真风测量装置将采集到的风向风速数据、姿态数据传输给上位机16,最后存储、整理成若干以摇摆角度和摇摆速度为变量的风向风速和姿态测量数据库。
3)真风标定
分析风向风速、姿态测量数据库前,先对采集的数据进行归一化处理;然后初步构建拓扑结构是6×10×10×2的BP神经网络标定模型,输入层神经元:横摇角、横摇角速度、纵摇角、纵摇角速度、测量风向、测量风速,输出层神经元:基准真风风向、基准真风风速;编写Matlab程序,采用遗传算法得到最优个体对神经网络初始权值和阈值赋值,训练获得最佳映射船舶空间运动与真风测量关系的BP神经网络标定模型,形成船舶真风向真风速的标定算法,得到真风向和真风速,用于对船舶真风测量装置标定,对实船测量风向风速数据进行实时校正。

Claims (1)

  1. 一种船舶真风测量装置的标定方法,其特征在于,具体步骤如下:
    1)船舶摇摆模拟台的建立
    船舶摇摆模拟台包括横向摇摆标定模块(14)、纵向摇摆标定模块(13)、摇摆控制模块(15)、真风测量装置固定模块(12)和上位机(16);
    所述的横向摇摆标定模块(14)和纵向摇摆标定模块(13)的结构相同,均包括摇摆标定底板导轨(3)、摇摆标定台面导轨(5)、摇摆标定滑台(8)、摇摆固定底座(4)、驱动电机(7)、齿条(9)和丝杠(6);所述的摇摆固定底座(4),其上表面为弧形凹面,两个摇摆标定底板导轨(3)和两个摇摆标定台面导轨(5)对称固定在摇摆固定底座(4)的弧形凹面上,两个摇摆标定台面导轨(5)分别位于两个摇摆标定底板导轨(3)外侧,共同构成弧形导轨构件;所述的摇摆标定滑台(8),其下表面为弧形凸面,其下表面两端各对称开有两个弧形凹槽,弧形凹槽与摇摆固定底座(4)的弧形导轨构件相配合,使摇摆标定滑台(8)在摇摆固定底座(4)上摇摆;所述的摇摆标定滑台(8),其下表面中部安装有齿条(9),摇摆标定滑台(8)上表面上设有多个安装孔;所述的驱动电机(7)安装在摇摆固定底座(4)的外侧;所述的丝杠(6),其一端通过联轴器与驱动电机(7)连接,另一端与齿条(9)相啮合,通过驱动电机(7)的驱动,使摇摆标定滑台(8)沿摇摆固定底座(4)上的弧形导轨构件移动,实现船舶摇摆姿态的模拟;
    所述的横向摇摆标定模块(14)和纵向摇摆标定模块(13),一上一下呈90°夹角安装布置,二者通过位于上方的摇摆固定底座(4)的下表面与位于下方的摇摆标定滑台(8)的上表面实现固定连接;
    所述的真风测量装置固定模块(12),包括支承台面(1)和螺柱(2);所述的螺柱(2)有多根,其顶端对称安装在支承台面(1)的底部,其底端安装在位于上方的摇摆标定滑台(8)上表面的安装孔上;支承台面(1)的上表面加工有多个安装孔,以根据实验需求安装真风测量装置并能够进行安装方向的调整;
    所述的摇摆控制模块(15)与两个驱动电机(7)以及上位机(16)连接;所述的真风测量装置通过支承台面(1)上的安装孔固定于支承台面(1)上,并与上位机(16)连接;
    2)风向风速数据的获取
    首先,将船舶摇摆模拟台竖直静态放置,采用风洞风流场模拟自然风,真风测量装置安装于船舶摇摆模拟台测量风向风速,将采集到的数据传送至上位机(16),作为真风标定基准值;然后,通过上位机(16)向摇摆控制模块(15)发出指令,摇摆控制模块(15)控制横向摇摆标定模块(14)和纵向摇摆标定模块(13)的摇摆角度和速度,分别模拟船舶在不同摇摆速度、不同摇摆角度下的横摇、纵摇运动;最后,上位机(16)整理真风测量装置采集到的风向风速以及船舶摇摆模拟台姿态数据,形成以摇摆角度和摇摆速度为变量的风向风速数据库;
    3)真风标定
    首先,对步骤2)中上位机(16)采集的风向风速以及船姿数据进行归一化处理;然后,通过归一化的数据构建BP神经网络标定模型,具体如下:姿态、风向风速数据作为模型输入层神经元,真风标定基准值作为模型输出层神经元,采用遗传算法得到最优个体对神经网络初始权值和阈值赋值,其中,输入层神经元包括横摇角、横摇角速度、纵摇角、纵摇角速度、测量风向和测量风速,输出层神经元包括船舶真风测量装置在船舶摇摆模拟台竖直静态放置所测得风洞真风风向和真风风速;训练获得最佳映射船舶空间运动与真风测量关系的BP神经网络标定模型,形成船舶真风向真风速的标定算法,实现对船舶真风测量装置标定;最后,将实船环境下测量的风向风速以及船姿数据输入BP神经网络标定模型计算得到的实时的真风向和真风速,从而对实船测量的风向风速数据进行实时校正。
PCT/CN2020/092928 2019-08-24 2020-05-28 一种船舶真风测量装置的标定方法 WO2021036376A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/057,019 US20210247419A1 (en) 2019-08-24 2020-05-28 Ship Real Wind Measuring Device Calibration Method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910786239.9 2019-08-24
CN201910786239.9A CN110412313B (zh) 2019-08-24 2019-08-24 一种船舶真风测量装置的标定方法

Publications (1)

Publication Number Publication Date
WO2021036376A1 true WO2021036376A1 (zh) 2021-03-04

Family

ID=68368848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092928 WO2021036376A1 (zh) 2019-08-24 2020-05-28 一种船舶真风测量装置的标定方法

Country Status (3)

Country Link
US (1) US20210247419A1 (zh)
CN (1) CN110412313B (zh)
WO (1) WO2021036376A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063966A (zh) * 2021-03-23 2021-07-02 杭州佐格通信设备有限公司 一种修正装置、修正方法及测量方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110412313B (zh) * 2019-08-24 2020-07-14 大连理工大学 一种船舶真风测量装置的标定方法
CN110987066A (zh) * 2019-11-26 2020-04-10 青岛科技大学 一种实现自动矫正的海洋风速风向测量方法及系统
CN112595484B (zh) * 2020-12-09 2022-07-29 河北航轮科技有限公司 一种自行车风洞实验台装置
CN113237670A (zh) * 2021-04-14 2021-08-10 宁波四维尔汽车智能科技有限公司 一种汽车空调出风口盖板检测工装和系统
CN113268812A (zh) * 2021-05-26 2021-08-17 山东省科学院海洋仪器仪表研究所 船舶转向过程真风求解方法、装置、设备和存储介质
CN114114897A (zh) * 2021-11-27 2022-03-01 中国南方电网有限责任公司超高压输电公司大理局 无人机抗风控制方法、装置、电子设备、存储介质
CN115107957B (zh) * 2022-07-21 2023-11-21 江苏科技大学 一种便于操控的船舶水弹性数据测量设备
CN115268302B (zh) * 2022-09-14 2023-03-28 哈尔滨理工大学 一种基于微元法的船用减摇旋柱实时升力仿真平台
CN115541175B (zh) * 2022-12-02 2023-02-03 中国空气动力研究与发展中心超高速空气动力研究所 一种小口径闭口风洞试验段变攻角模块的设计方法
CN116593237B (zh) * 2023-05-22 2023-12-19 国家海洋环境预报中心 船载大气成分走航观测的多管路进样方法、装置及设备
CN116907787B (zh) * 2023-06-30 2024-01-30 中国舰船研究设计中心 一种水面船舱面风测量精度评定试验方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038607A (en) * 1990-01-04 1991-08-13 Rainwise, Inc. Wind speed and wind direction signal generator
CN103303433A (zh) * 2013-05-21 2013-09-18 中国船舶工业集团公司第七〇八研究所 一种船舶性能虚拟测试系统及测试方法
CN103955234A (zh) * 2014-05-15 2014-07-30 上海海事大学 一种船舶三轴摇摆试验台的测控系统及测控方法
CN104002302A (zh) * 2014-05-07 2014-08-27 燕山大学 一种具有虚拟转轴的二、三自由度摇摆台
CN104483845A (zh) * 2014-11-21 2015-04-01 大连海事大学 一种船舶自动舵算法测试仿真系统
CN105206131A (zh) * 2015-09-23 2015-12-30 哈尔滨工程大学 一种三自由度船舶航行姿态仿真装置
CN106644353A (zh) * 2016-12-02 2017-05-10 中国船舶工业系统工程研究院 一种用于舰船空气流场测量的piv风洞试验方法
CN107145647A (zh) * 2017-04-19 2017-09-08 山东省科学院海洋仪器仪表研究所 一种船舶海面风速、风向测量数据偏差校正方法
CN110412313A (zh) * 2019-08-24 2019-11-05 大连理工大学 一种船舶真风测量装置的标定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639963A (en) * 1996-03-07 1997-06-17 Sustare, Jr.; George Allan Multi-directional wind direction and speed indicating apparatus
CN102360027B (zh) * 2011-08-02 2013-07-17 中国科学院自动化研究所 差压式空速传感器测试系统
CN103308722B (zh) * 2013-06-14 2016-04-20 大连天岛海洋科技有限公司 一种船舶风向风速测量仪误差修正方法
CN103592006A (zh) * 2013-11-13 2014-02-19 上海诸光机械有限公司 一种浪高仪和加速度计标定装置的控制方法
KR20160017314A (ko) * 2014-08-04 2016-02-16 현대중공업 주식회사 센싱 장치 및 이를 이용한 계측 시스템
CN107577647A (zh) * 2017-08-31 2018-01-12 上海绿孚科技有限公司 一种风速采集装置及其机舱传递函数的标定方法
CN107796488B (zh) * 2017-11-16 2019-12-24 西安交通大学 一种基于运动平台和超声液位传感器的液面晃动实验台
CN207946531U (zh) * 2018-01-26 2018-10-09 武汉理工大学 动力定位船舶模型试验装置
CN109115279A (zh) * 2018-10-19 2019-01-01 杨美兰 一种智能船舶用环境监测装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5038607A (en) * 1990-01-04 1991-08-13 Rainwise, Inc. Wind speed and wind direction signal generator
CN103303433A (zh) * 2013-05-21 2013-09-18 中国船舶工业集团公司第七〇八研究所 一种船舶性能虚拟测试系统及测试方法
CN104002302A (zh) * 2014-05-07 2014-08-27 燕山大学 一种具有虚拟转轴的二、三自由度摇摆台
CN103955234A (zh) * 2014-05-15 2014-07-30 上海海事大学 一种船舶三轴摇摆试验台的测控系统及测控方法
CN104483845A (zh) * 2014-11-21 2015-04-01 大连海事大学 一种船舶自动舵算法测试仿真系统
CN105206131A (zh) * 2015-09-23 2015-12-30 哈尔滨工程大学 一种三自由度船舶航行姿态仿真装置
CN106644353A (zh) * 2016-12-02 2017-05-10 中国船舶工业系统工程研究院 一种用于舰船空气流场测量的piv风洞试验方法
CN107145647A (zh) * 2017-04-19 2017-09-08 山东省科学院海洋仪器仪表研究所 一种船舶海面风速、风向测量数据偏差校正方法
CN110412313A (zh) * 2019-08-24 2019-11-05 大连理工大学 一种船舶真风测量装置的标定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063966A (zh) * 2021-03-23 2021-07-02 杭州佐格通信设备有限公司 一种修正装置、修正方法及测量方法

Also Published As

Publication number Publication date
US20210247419A1 (en) 2021-08-12
CN110412313A (zh) 2019-11-05
CN110412313B (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2021036376A1 (zh) 一种船舶真风测量装置的标定方法
CN105905320B (zh) 一种具有偏航随动的主动重力补偿系统
CN106005278A (zh) 具有六自由度波浪主动补偿功能的船用餐桌及补偿方法
CN103085992A (zh) 空间微重力模拟实验系统
CN107121256B (zh) 一种连续在轨运动的六自由度捕获轨迹试验方法
US10183399B2 (en) Six-axis motion mechanism
CN107796488B (zh) 一种基于运动平台和超声液位传感器的液面晃动实验台
JP2019015712A (ja) フローティングケーソン模型試験装置及び多自由度作業方法
CN109454472B (zh) 一种空间多自由度定位装置及其空间位置解算方法
CN103869834A (zh) 基于经验模态法的三轴气浮台质心智能调节方法
CN109883642B (zh) 一种低速飞行器车载测力系统
CN109029210B (zh) 浮式海洋平台气隙测量系统及其方法
CN107161360A (zh) 空间任务可置换的自由基座运动再现跨尺度验证装置
CN114563156A (zh) 一种用于全模颤振风洞试验的四索支撑系统
CN113479355A (zh) 地面变质心零重力模拟装置及模拟方法
CN211927231U (zh) 用于对称面内级间分离轨迹预估的试验装置
CN106043616A (zh) 船舶纵向动态减摇方法与装置
CN110554213B (zh) 一种用于船舶真风测量标定的装置
CN109823566A (zh) 一种垂直起降飞行器飞行控制系统测试平台
CN103984339A (zh) 用于旋翼飞行器的机械故障调试装置
CN107576479B (zh) 海洋核动力平台单点系泊系统试车设备及其调试方法
CN115639751A (zh) 混联平台迟滞响应的主动补偿方法
CN106569441B (zh) 一种分布式驱动的整体张拉式变形翼装置与控制方法
CN212501114U (zh) 一种无人机多自由度姿态测试系统
CN202033173U (zh) 单柱式风力流力测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859267

Country of ref document: EP

Kind code of ref document: A1