WO2021036077A1 - 自动割草机 - Google Patents

自动割草机 Download PDF

Info

Publication number
WO2021036077A1
WO2021036077A1 PCT/CN2019/122883 CN2019122883W WO2021036077A1 WO 2021036077 A1 WO2021036077 A1 WO 2021036077A1 CN 2019122883 W CN2019122883 W CN 2019122883W WO 2021036077 A1 WO2021036077 A1 WO 2021036077A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
lawn mower
telescopic mechanism
boundary
mowing
Prior art date
Application number
PCT/CN2019/122883
Other languages
English (en)
French (fr)
Inventor
赵凤丽
查霞红
周晓青
谭一云
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Publication of WO2021036077A1 publication Critical patent/WO2021036077A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/02Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having reciprocating cutters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/01Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus
    • A01D34/412Mowers; Mowing apparatus of harvesters characterised by features relating to the type of cutting apparatus having rotating cutters
    • A01D34/416Flexible line cutters
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device

Definitions

  • the invention relates to an automatic lawn mower.
  • the automatic lawn mower can be used to manage the lawn.
  • the intersection of the two walls forms a corner. And the angle between the two walls is the angle of the corner.
  • the corners have various angles.
  • the angle of the corner may be an acute angle, an obtuse angle, or a right angle; it may also be a convex angle. Therefore, affected by the angle of the corner, when the automatic lawn mower cuts the lawn that grows in the corner, especially when the corner is a concave corner, more grass is left and the cutting is not thorough.
  • the embodiment of the present application provides an automatic lawn mower that can reduce grass retention.
  • an automatic lawn mower that moves and works in a working area, comprising: a frame; a mobile module, the mobile module is arranged on the frame to Drive the automatic lawn mower to move; a telescopic mechanism, the telescopic mechanism is arranged on the frame; a cutting module, the cutting module is arranged on the telescopic mechanism; a control module; a detection module, which detects the automatic cutting A complex area that the grass machine cannot cover; during the working process of the cutting module, if the detection module detects the complex area, the control module controls the moving module and/or the telescopic mechanism so that the cutting module Move to the boundary of the complex area.
  • the detection module detects that the steering angle of the boundary of the working area is less than the preset angle. If the detection module detects that the steering angle of the boundary of the working area is less than the preset angle, the detection module detects the complex area.
  • the detection module includes at least one of a map acquisition module, an inertial navigation module, a distance detection module, and a collision detection module.
  • the movement of the cutting module to the boundary of the complex region includes the contact of the cutting module with the boundary of the complex region.
  • one end of the telescopic mechanism is movably connected with the frame, and the cutting module is provided on the other end of the telescopic mechanism.
  • the telescopic mechanism is a longitudinally extending connecting arm, and the connecting arm telescopically extends along the longitudinally extending direction.
  • the telescopic mechanism is an elastic element.
  • the elastic element is provided with a limiting member for limiting the cutting module.
  • the beneficial effect of the automatic lawn mower provided in this application is that the automatic lawn mower described in the implementation of this application has a telescopic mechanism, a moving module, a cutting module, a detection module, and a control module on the frame, so that the cutting module works
  • the control module controls the moving module and/or the telescopic mechanism to move the cutting module to the boundary of the complex area, thereby cutting the lawn on the boundary of the complex area.
  • the automatic lawn mower described in the embodiments of the present application can extend the cutting module into the complex area through the telescopic mechanism and/or the moving module, so that the lawn at the boundary of the complex area can be cut. Therefore, when the automatic lawn mower described in the embodiment of the present application cuts the lawn on the boundary of a complex area, it can reduce grass retention and cut more thoroughly. Therefore, the embodiment of the present application provides an automatic lawn mower that can reduce grass retention.
  • Figure 1 is a schematic diagram of various corners in the prior art
  • Figure 2 is a top view of an automatic lawn mower provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the actions of an automatic lawn mower control method provided by the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of actions of an automatic lawn mower control method provided by an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the action of an automatic lawn mower control method provided by the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of actions of an automatic lawn mower control method provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of actions of an automatic lawn mower control method provided by an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the action of an automatic lawn mower control method provided by the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of actions of another control method of an automatic lawn mower provided by an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a mowing rope in a method for controlling an automatic lawn mower provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the cutting height of the automatic lawn mower control method provided by the embodiment of the present invention.
  • FIG. 13 is a flowchart of a control method of an automatic lawn mower provided by an embodiment of the present invention.
  • the automatic lawn mower 43 described in the embodiment of the present application is provided with a telescopic mechanism 17, a moving module 16, a cutting module 14, a detection module and a control module on the frame 19, so that the cutting module 14 In the working process, if the detection module detects a complex area, the control module controls the moving module 16 and/or the telescopic mechanism 17 to move the cutting module 14 to the boundary of the complex area, thereby cutting the lawn on the boundary of the complex area.
  • the steering angle of the boundary of the working area may be smaller than the first preset angle.
  • the first preset angle may be 180°.
  • the first preset angle is not limited to 180°, and may also be an angle less than 180°, which is not specified in this application. That is, the steering angle of the boundary of the working area is a concave angle. Therefore, when the automatic lawn mower 43 moves in a simple area where the steering angle is a concave angle, the cutting module 14 can be moved toward the boundary of the complex area to clean the lawn in the complex area.
  • the telescopic mechanism 17 is a longitudinally extending connecting arm.
  • the connecting arm is rod-shaped as a whole.
  • the length direction of the rod-shaped connecting arm is the lengthwise extending direction.
  • the connecting arm can extend and contract in a longitudinally extending direction. That is, the connecting arm can extend and contract along its length.
  • the connecting arm includes a longitudinally extending cylinder and a piston penetrating the cylinder.
  • the cylinder is connected to the hydraulic system.
  • the hydraulic system is used to provide hydraulic pressure to the cylinder. Therefore, the piston can move along the longitudinal extension direction under the action of hydraulic pressure, so that the connecting arm can expand and contract along the longitudinal extension direction.
  • the frame 19 When the telescopic mechanism 17 is rotatably arranged on the frame 19, the frame 19 can be moved to a complex area through the moving module 16; then the frame 19 is stopped, and then the telescopic mechanism 17 is rotated relative to the frame 19 to The telescopic mechanism 17 can move in the left and right directions on the boundary of the complex area, so that the cutting module 14 on the telescopic mechanism 17 can clean the lawn on the boundary of the complex area.
  • the map acquisition module may include an input device.
  • the input device is used to input a map (for example, in the form of a photo or a database) into the automatic lawn mower 43, so that the automatic lawn mower 43 can position itself, so that the automatic lawn mower 43 can confirm whether it is in a complicated area s position.
  • the input device can be a keyboard, scanner, digital camera, etc., which is not specified in this application.
  • step S11 the control mechanism controls the telescopic mechanism 17 so that the mowing rope can contact the boundary of the complex area, which specifically includes:
  • Step S7 Identify the complex area through the detection module. That is to identify the complex area.
  • the steering angle and position of the complex area can be known. For example, as shown in FIG. 4, by identifying the steering angle included angle, it can be known that the steering angle included in the complex area is 90 degrees and the position of the complex area. Therefore, the automatic lawn mower 43 can be placed in the complex area through the known steering angle and position of the complex area.
  • the detection module recognizes the complex area in the following ways:
  • the encoder or the rotary potentiometer detects the steering and speed of the mobile module 16 to identify the position and the steering angle of the complex area; And then get the map of the complex area.
  • the new map is implemented by lidar to locate in real time, so that the automatic lawn mower 43 can confirm whether it is in a complicated area.
  • inertial elements such as accelerometers
  • inertial navigation module uses inertial elements, such as accelerometers, through the inertial navigation module.
  • the predetermined height range is divided into a plurality of sections arranged in the up and down direction, wherein each section is used for cutting grass by the cutting head 15. That is, multiple height gear positions are set within a predetermined height range, so that the cutting head 15 can cut grass in each gear position.
  • step S111 the control mechanism controls the expansion of the telescopic mechanism 17 so that the cutting head 15 can offset the boundary of the complex area, and then the control mechanism in step S113 controls the expansion mechanism 17 to shorten the expansion and contraction.
  • Mechanism 17 so that the mowing head 15 can move away from the boundary of the complex area until the mowing rope can contact the boundary of the complex area, including:
  • Step S1121 The control mechanism controls the telescopic mechanism to rotate the telescopic mechanism 17 in the first direction, so that the mowing head 15 can move on a wall away from the vertex of the corner 25; and make the telescopic mechanism 17 is stretched so that the cutting head 15 can offset the boundary of the complex area when it moves.
  • the movement of the mowing head 15 on a wall simulates the process of mowing the mowing head 15 on a wall with its back to the top corner.
  • the top corner of the corner 25 is the intersection of the first wall 11 and the second wall 13 of the corner 25.
  • one end of the telescopic mechanism 17 is hinged to the frame 19, and the other end of the telescopic mechanism 17 is rotatably provided with a mowing head 15. Therefore, by making the telescopic mechanism 17 rotate in the first direction relative to the frame 19, when the frame 19 stops rotating, the mowing head 15 can move in the first direction on the boundary of the complex area for mowing. .
  • step S1121 the telescopic mechanism 17 is rotated in the first direction, so that the mowing head 15 can move on a wall away from the top corner of the corner 25; and the telescopic mechanism 17 is stretched so that the mowing head 15 can move with
  • the top corner of the mowing head 15 and the corner 25 are offset. Even if the grass head 15 and the intersection of the two walls of the corner 25 conflict.
  • the mowing head 15 is offset with point A. That is, before step S1121, the telescopic mechanism 17 is extended or shortened so that the mowing head 15 can collide with the vertex angle of the corner 25.
  • the telescopic mechanism 17 extends along the extension direction of the center line of the corner 25 so that the mowing head 15 abuts the point A.
  • step S112 the control mechanism controls the telescopic mechanism to rotate the telescopic mechanism 17, so that the mowing head 15 can move in the left and right directions on the boundary of the complex area; and on the mowing head 15 During the movement, the telescopic mechanism 17 is stretched so that the mowing head 15 can offset the boundary of the complex area, which specifically includes:
  • the extension direction of the telescopic mechanism 17 is perpendicular to a wall of the corner 25. That is, as shown in FIG. 5, after the telescopic mechanism 17 is rotated by m° counterclockwise, the extension direction of the telescopic mechanism 17 is perpendicular to a wall of the corner 25.
  • step S112 the control mechanism controls the telescopic mechanism to rotate the telescopic mechanism 17, so that the mowing head 15 can move in the left and right directions on the boundary of the complex area; and on the mowing head 15 During the movement, the telescopic mechanism 17 is stretched so that the mowing head 15 can offset the boundary of the complex area, which specifically includes:
  • Step S1125 The control mechanism controls the telescopic mechanism to rotate the telescopic mechanism 17 in a direction opposite to the first direction, so that the mowing head 15 can move away from the top corner of the corner 25 on another wall And retract the telescopic mechanism 17 so that the cutting head 15 can move against the boundary of the complex area. That is, when the mowing head 15 is against the top corner of the corner 25, the telescopic mechanism 17 is rotated in a direction opposite to the first direction, so that the mowing head 15 can move away from one wall on another wall. The telescopic mechanism 17 is extended and retracted so that the mowing head 15 can offset the boundary of the complex area when it moves.
  • the retractable The mechanism 17 is retracted along its extending direction, so that the retractable grass trimmer 15 can resist the boundary of the complex area during the movement of the trimmer head 15. Therefore, it is ensured that when the mowing head 15 moves away from the top corner of the corner 25 on another wall, the force between the mowing head 15 and the boundary of the complex area remains unchanged.
  • step S1125 it further includes: when the telescopic mechanism 17 is rotated by a second predetermined angle in a direction opposite to the first direction, the control mechanism controls the telescopic mechanism to rotate the telescopic mechanism 17 in the first direction to The mowing head 15 is moved toward one side wall on the other side wall, wherein the sum of the second predetermined angle and the first predetermined angle is a right angle.
  • the method further includes: the control mechanism controls the telescopic mechanism to rotate the telescopic mechanism 17 in a counterclockwise direction, so that the mowing head 15 moves on the second wall 13 toward the first wall 11 , So that the telescopic mechanism 17 returns to the initial position (the telescopic mechanism 17 returns to a position collinear with the center line of the corner 25).
  • step S112 after the control mechanism controls the telescopic mechanism to rotate the telescopic mechanism 17 so that the cutting head 15 can move in the left and right directions on the boundary of the complex area, the method further includes:
  • the control mechanism obtains the first trajectory of the movement of the mowing head 15; and calculates the second trajectory according to the first trajectory and the length of the mowing rope, wherein the distance from any point on the second trajectory to the boundary of the complex area is equal to the length of the mowing rope.
  • the first track is the position of the mowing head 15 recorded during the cutting of the lawn by the simulated mowing rope. Further, the first track may be the recorded position of the center of the cutting head 15. Furthermore, the second trajectory is the position of the center of the mowing head 15 during mowing.
  • the first track is not limited to recording the position of the center of the trimming head 15, but can also be the recorded position of other places of the trimming head 15, such as the position of a certain point on the side wall, which is not specified in this application.
  • the second trajectory is the position of the cutting head 15 when cutting grass, so that the cutting rope can touch the boundary of the complex area when cutting grass.
  • the distance from any point on the second trajectory to the boundary of the complex area is equal to the length of the mowing rope, when the mowing head 15 is located on the second track, the distance between the mowing head 15 and the boundary of the complex region is the mowing line
  • the length of the rope so that when the mowing rope rotates, on the one hand, the lawn in the area where the mowing rope turns can be cut by the mowing rope, and on the other hand, the mowing rope can contact with the boundary of the complex area when mowing. , So the lawn outside the wall of corner 25 is within the range of the mowing rope's rotation, so it can be cut.
  • the first trajectory includes rotating the telescopic mechanism 17 in a counterclockwise direction, so that the mowing head 15 is generated after the mowing head 15 moves away from the second wall 13 on the first wall 11
  • the second trajectory includes a third trajectory and a fourth trajectory, where each point on the third trajectory is calculated from each point on the first trajectory; each point on the fourth trajectory The point is calculated from each point on the second trajectory.
  • the hinge point between the telescopic mechanism 17 and the frame 19 is the coordinate origin 0, the right direction is the X axis, and the upward direction is the Y axis.
  • the first trajectory is (X i , Y i ); the second trajectory is (X i -R, Y j -R);
  • X i is the abscissa of the center of the mowing head 15 at the i-th moment
  • Y i is the ordinate of the center of the mowing head 15 at the i-th moment
  • i 1, 2,...n.
  • the abscissa and ordinate of each point on the third trajectory are respectively the abscissa of a point on the first trajectory minus the length of the mowing rope and the ordinate of the point minus the length of the mowing rope. obtain.
  • the abscissa and ordinate of each point on the fourth trajectory are obtained by subtracting the length of the mowing rope from the abscissa of a certain point on the second trajectory and the ordinate of the point minus the length of the mowing rope.
  • step S11 the control mechanism controls the telescopic mechanism 17 so that the mowing rope can contact the boundary of the complex area, which specifically further includes:
  • Step S113 The control mechanism controls the telescopic mechanism 17 to shorten the telescopic mechanism 17; so that the mowing head 15 can move away from the boundary of the complex area until the mowing rope can contact the boundary of the complex area.
  • step S113 the control mechanism controls the telescopic mechanism 17 to shorten the telescopic mechanism 17; so that the mowing head 15 can move away from the boundary of the complex area until the mowing rope can contact the boundary of the complex area; specifically including :
  • the control mechanism controls the telescopic mechanism 17 to shorten the telescopic mechanism 17; so that the mowing head 15 can be located on the second track.
  • the retractable mechanism 17 is shortened so that the mowing head 15 can move away from the boundary of the complex area until the mowing head 15 is located on the second track. Since the distance from any point on the second trajectory to the boundary of the complex area is equal to the length of the mowing rope, when the mowing head 15 is located on the second track, the distance between the mowing head 15 and the boundary of the complex region is the mowing line. The length of the rope, so that when the mowing rope rotates, on the one hand, the lawn in the area where the mowing rope turns can be cut by the mowing rope, and on the other hand, the mowing rope can contact with the boundary of the complex area when mowing. , So the lawn outside the wall of corner 25 is within the range of the mowing rope's rotation, so it can be cut.
  • the telescopic length of the telescopic mechanism 17 is controlled so that the center of the mowing head 15 is located on the side of the second track close to the top corner of the corner 25. Specifically, the center of the mowing head 15 is positioned at the intersection of the center line of the corner 25 and the second trajectory. Then, the telescopic mechanism 17 is rotated in a counterclockwise direction, so that the center of the mowing head 15 can move along the third track. After the telescopic mechanism 17 is rotated by the first predetermined angle in the counterclockwise direction, the telescopic mechanism 17 is rotated in the clockwise direction. After the telescopic mechanism 17 has rotated the first predetermined angle in the clockwise direction, the telescopic mechanism 17 will continue to be rotated in the clockwise direction so that the center of the mowing head 15 can move along the fourth track.
  • step S13 the control mechanism controls the mowing head, so that the mowing head 15 drives the mowing rope to rotate for mowing.
  • the telescopic mechanism 17 when the telescopic mechanism 17 is rotated in the counterclockwise direction, the mowing head 15 is rotated so that the mowing rope can move on the first wall 11 away from the second wall 13 for mowing. After the telescopic mechanism 17 has rotated the first predetermined angle in the counterclockwise direction, the telescopic mechanism 17 is rotated in the clockwise direction; in this process, the mowing rope does not rotate, that is, during this process, the mowing rope does not hit grass.
  • the elastic element is provided with a limiting member, and the limiting member is used to limit the mowing head 15 so that in step S113, the mowing head 15
  • the distance between the center and the corresponding wall is equal to the length of the mowing rope, so that the center of the mowing head 15 can be located on the second track.
  • Fig. 10 shows an action schematic diagram of another method for controlling an automatic lawn mower provided by an embodiment of the present application.
  • the control mechanism controls the telescopic mechanism 17 so that the mowing rope can contact the boundary of the complex area, which specifically includes:
  • Step S121 the detection module obtains the distance between the cutting head 15 and the boundary of the complex area.
  • Step S123 the control module controls the telescopic length of the telescopic mechanism 17 so that the distance can be equal to the length of the mowing rope.
  • step S121 the detection module obtains the distance between the cutting head 15 and the boundary of the complex area.
  • the first ranging sensor 21 is provided on the rack 19. Therefore, the first distance measuring sensor 21 can measure the distance between the cutting head 15 and the boundary of the complex area.
  • the method further includes:
  • Step S1221 Rotate the automatic lawn mower 43 from one side of the corner 25 to the other side of the corner 25. Specifically, for example, as shown in FIG. 10, the automatic lawn mower 43 is rotated from the left side of the corner 25 toward the right side of the corner 25 through the moving module 16. Therefore, the automatic lawn mower 43 is rotated from one side of the corner 25 to the other side of the corner 25, so that the automatic lawn mower 43 can enter the corner 25.
  • step S1221 makes the automatic lawn mower 43 rotate from one side of the corner 25 to the other side of the corner 25, the method further includes:
  • the detection module recognizes the corner 25. Specifically, the automatic lawn mower 43 is moved, and the first ranging sensor 21 detects whether there is an obstacle around the automatic lawn mower 43; to identify the corner 25, when the first ranging sensor 21 detects an obstacle It is indicated that there is a corner 25 around the automatic lawn mower 43 when the object is in the object.
  • the method further includes:
  • Step S1223 The control mechanism expands and contracts the telescopic mechanism 17 so that the mowing head 15 can extend toward the boundary of the complex area.
  • control mechanism makes the telescopic mechanism 17 extend toward the boundary of the complex area so that the trimmer 15 can extend toward the boundary of the complex area.
  • step S123 the control mechanism controls the telescopic length of the telescopic mechanism 17 so that the distance can be equal to the length of the mowing rope.
  • the telescopic mechanism 17 when the acquired distance is less than the length of the mowing rope, the telescopic mechanism 17 is retracted back to the boundary of the complex area to increase the distance until it is equal to the length of the mowing rope. When the obtained distance is greater than the length of the mowing rope, the telescopic mechanism 17 is extended toward the boundary of the complex area to make the distance smaller until it is equal to the length of the mowing rope.
  • step S13 the control mechanism controls the mowing head, so that the mowing head 15 drives the mowing rope to rotate for mowing.
  • the automatic lawn mower 43 when the automatic lawn mower 43 is rotated from one side of the corner 25 to the other side of the corner 25, for example, as shown in FIG. 10, the automatic lawn mower 43 moves from the left side of the corner 25 toward the corner 25 of the corner 25.
  • the mowing head 15 In the process of turning on the right side, when the distance is equal to the length of the mowing rope, the mowing head 15 is rotated and the mowing rope is rotated for mowing. That is, when the automatic lawn mower 43 rotates from one side of the corner 25 to the other side of the corner 25, the mowing rope cuts the lawn of the corner 25. Since the mowing rope cuts the lawn, the distance is equal to the length of the mowing rope, so the mowing rope can touch the boundary of the complex area, and the mowing rope can cut the grass more thoroughly and leave less grass.
  • the method before turning the automatic lawn mower 43 from one side of the corner 25 toward the other side of the corner 25 in step S1221, the method further includes: control by a control mechanism
  • the cutting head 15 moves the cutting head 15 up and down so that the height of the center of the cutting head 15 is within a predetermined height range.
  • the predetermined height range may be a range lower than the height of the lawn. That is, by moving the mowing head 15 up and down, the mowing rope can be lower than the height of the lawn, so that the lawn can be mowed.
  • the real-time height between the cutting head 15 and the ground is measured by the second distance measuring sensor 23.
  • the camera 37 detects the lawn. Therefore, when the camera 37 cannot detect the lawn, the mowing head 15 can no longer rise. It also shows that the height of the lawn is the real-time height between the mowing head 15 and the ground at this moment.
  • the predetermined height range includes a plurality of sections arranged in the up and down direction, and the cutting head 15 can cut grass in each of the sections. That is, multiple height gear positions are set within a predetermined height range, so that the cutting head 15 can cut grass in each gear position.

Abstract

公开了一种自动割草机,在工作区域内移动和工作,包括机架(19);移动模块(16),该移动模块(16)设置于该机架(19)上,以带动该自动割草机(43)移动;伸缩机构(17),该伸缩机构(17)设置于该机架(19)上;切割模块(14),该切割模块(14)设置于该伸缩机构(17)上;控制模块;检测模块,其用于检测该自动割草机无法覆盖的复杂区域;在该切割模块(14)工作过程中,若该检测模块检测到该复杂区域,该控制模块控制该移动模块(16)和/或伸缩机构(17),以使该切割模块(14)向该复杂区域边界移动,能够实现减少角落留草。

Description

自动割草机
本申请要求了申请日为2019年8月27日,申请号为201910795202.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种自动割草机。
背景技术
自动割草机可以用于对草坪进行打理。
两个墙壁相交处形成角落。且两个墙壁之间的夹角为角落的角度。而角落具有各种不同的角度。例如如图1所示,角落的角度可以为锐角、也可以为钝角、也可以为直角;还可以为凸角。因此受角落角度的影响,自动割草机对生长于角落处的草坪进行切割时,尤其是角落为凹角时,留草较多,切割不彻底。
因此,有必要提出一种自动割草机,以克服上述缺陷。
发明内容
有鉴于此,本申请实施方式提供了一种能减少留草的自动割草机。
本发明的上述目的可采用下列技术方案来实现:一种自动割草机,在工作区域内移动和工作,其包括:机架;移动模块,所述移动模块设置于所述机架上,以带动所述自动割草机移动;伸缩机构,所述伸缩机构设置于所述机架上;切割模块,所述切割模块设置于所述伸缩机构上;控制模块;检测模块,检测所述自动割草机无法覆盖的复杂区域;在所述切割模块工作过程中,若所述检测模块检测到所述复杂区域,所述控制模块控制所述移动模块和/或伸缩机构,以使所述切割模块向所述复杂区域边界移动。
作为一种优选的实施方式,所述切割模块包括打草头,所述打草头设置有打草绳。
作为一种优选的实施方式,若所述检测模块检测到宽度小于预设宽度的区域或高度小于预设高度的区域,则所述检测模块检测到所述复杂区域。
作为一种优选的实施方式,若所述检测模块检测到工作区域边界的转向角度夹角 小于预设角度,则所述检测模块检测到所述复杂区域。
作为一种优选的实施方式,所述检测模块包括地图获取模块,惯性导航模块,距离检测模块,碰撞检测模块中的至少一个。
作为一种优选的实施方式,所述切割模块向所述复杂区域边界移动包括所述切割模块与所述复杂区域边界的距离小于等于预设距离。
作为一种优选的实施方式,所述切割模块向所述复杂区域边界移动包括所述切割模块与所述复杂区域边界相接触。
作为一种优选的实施方式,所述伸缩机构的一端与所述机架活动连接,所述伸缩机构的另一端上设置有所述切割模块。
作为一种优选的实施方式,所述伸缩机构为纵长延伸的连接臂,所述连接臂沿所述纵长延伸的方向伸缩。
作为一种优选的实施方式,所述伸缩机构为弹性元件。
作为一种优选的实施方式,所述弹性元件上设置有用于对所述切割模块进行限位的限位件。
本申请提供的自动割草机的有益效果是:本申请实施方式所述的自动割草机通过在机架上设置伸缩机构、移动模块、切割模块、检测模块和控制模块,使得在切割模块工作过程中,若检测模块检测到复杂区域,控制模块控制移动模块和/或伸缩机构,以使切割模块向复杂区域边界移动,进而对复杂区域边界上的草坪进行切割。如此本申请实施方式所述的自动割草机能通过伸缩机构和/或移动模块使切割模块伸入复杂区域中,进而使复杂区域的边界的草坪均能被切割。因此本申请实施方式所述的自动割草机在对复杂区域边界上的草坪进行切割时,能减少留草,切割更彻底。因此,本申请实施方式提供了一种能减少留草的自动割草机。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中各种角落的示意图;
图2是本发明实施方式所提供的一种自动割草机的俯视图;
图3是本发明实施方式所提供的一种自动割草机的侧视图;
图4是本发明实施方式所提供的一种自动割草机的控制方法的动作示意图;
图5是本发明实施方式所提供的一种自动割草机的控制方法的动作示意图;
图6是本发明实施方式所提供的一种自动割草机的控制方法的动作示意图;
图7是本发明实施方式所提供的一种自动割草机的控制方法的动作示意图;
图8是本发明实施方式所提供的一种自动割草机的控制方法的动作示意图;
图9是本发明实施方式所提供的一种自动割草机的控制方法的动作示意图;
图10是本发明实施方式所提供的另一种自动割草机的控制方法的动作示意图;
图11是本发明实施方式所提供的一种自动割草机的控制方法中的打草绳打草的示意图;
图12是本发明实施方式所提供的自动割草机的控制方法的割草高度示意图;
图13是本发明实施方式所提供的自动割草机的控制方法的流程图;
附图标记说明:
11、第一墙壁;13、第二墙壁;14、切割模块;15、打草头;16、移动模块;17、伸缩机构;19、机架;21、第一测距传感器;23、第二测距传感器;25、角落;31、边界线;33、第一区域;35、第二区域;37、摄像头;39、最小高度;41、草坪的高度;43、自动割草机。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图2、图3。本申请一种实施方式提供的自动割草机,其包括:机架19;移动模块16,所述移动模块16设置于所述机架19上,以带动所述自动割草机43移动;伸缩机构17,所述伸缩机构17设置于所述机架19上;切割模块14,所述切割模块14设置于所述伸缩机构17上;控制模块;检测模块,检测所述自动割草机无法覆盖的复杂区域;在所述切割模块14工作过程中,若所述检测模块检测到所述复杂 区域,所述控制模块控制所述移动模块16和/或伸缩机构17,以使所述切割模块14向所述复杂区域边界移动。
从以上技术方案可以看出:本申请实施方式所述的自动割草机43通过在机架19上设置伸缩机构17、移动模块16、切割模块14、检测模块和控制模块,使得在切割模块14工作过程中,若检测模块检测到复杂区域,控制模块控制移动模块16和/或伸缩机构17,以使切割模块14向复杂区域边界移动,进而对复杂区域边界上的草坪进行切割。如此本申请实施方式所述的自动割草机43首先能通过检测设备在工作区域中识别出复杂区域;然后通过伸缩机构17和/或移动模块16使切割模块14伸入复杂区域中,进而使复杂区域的边界的草坪均能被切割。因此本申请实施方式所述的自动割草机43能减少留草,切割更彻底。
如图4至图11所示,在申请实施方式所述的自动割草机43在工作区域内移动和工作。工作区域为允许自动割草机43移动和工作的区域。本实施例中,复杂区域包自动割草机43无法覆盖的区域,主要是自动割草机43正常移动状态下切割模块14无法到达的区域,包括工作区域边界的拐角、宽度小的狭窄通道、高度低的区域等。通过移动模块16和伸缩机构17的协同配合,切割模块14能够到达复杂区域边界进行切割。
具体地,该复杂区域可以是宽度小于第一预设宽度的区域或高度小于第一预设高度的区域。若局部区域包括的至少两侧包括障碍物或不可通行边界,且两侧的距离小于等于第一预设宽度,即宽度小于第一区域宽度的复杂区域。若局部区域的上方包括障碍物,使得该区域的高度小于第一区域高度,即为复杂区域。示例性的,躺椅下方的区域可能成为高度小于第一预设高度的复杂区域。
在一个实施例中,第一预设宽度为自动割草机43的宽度,第一预设高度为自动割草机43的高度。即,复杂区域为自动割草机43无法通行的区域。
进一步地,该复杂区域还可以是工作区域边界的转向角度夹角小于第一预设角度。该第一预设角度可以是180°。当然该第一预设角度不限于为180°,还可以是小于180°的角度,对此本申请不作规定。也即该工作区域边界的转向角度夹角为凹角。从而当自动割草机43在转向角度夹角为凹角的简单区域内移动时能够通过使得切割模块14朝向复杂区域的边界移动,以能将该复杂区域内的草坪清理干净。
如图2、图3所示,在本实施方式中,机架19整体上呈扁平结构。当然该机架 19不限于呈扁平结构,还可以是其他的形状,例如柱状等,对此本申请不作规定。该机架19用于作为自动割草机43的其他部件的支撑载体。例如如图3所示,机架19上设置有切割模块14、伸缩机构17。
在本实施方式中,移动模块16设置于机架19上。例如如图3所示,移动模块16设置于机架19的下部。该移动模块16用于带动自动割草机43移动。以使自动割草机43能在工作区域内移动。该移动模块16可以是能转动地设置于机架19上的车轮。从而当车轮转动时能使得机架19移动。当然该移动模块16不限于为车轮,还可以是其他的结构,例如移动模块16可以是设置于机架19上的滑块。该滑块能在工作区域内滑动,以能带动自动割草机43在工作区域内移动。
在本实施方式中,伸缩机构17能进行伸缩。该伸缩可以是伸长或者缩短。切割模块14设置于伸缩机构17上。从而通过伸缩机构17的伸缩能带动位于伸缩机构17上的切割模块14沿伸缩方向移动。从而使切割模块14能朝向复杂区域的边界移动。
在一个实施方式中,伸缩机构17为纵长延伸的连接臂。该连接臂整体上呈杆状。该呈杆状的连接臂的长度方向即为纵长延伸的方向。进一步地,连接臂能沿纵长延伸的方向伸缩。也即该连接臂能沿其长度方向伸缩。例如该连接臂包括纵长延伸的缸体和穿设于该缸体内的活塞。该缸体与液压系统相连。该液压系统用于为缸体内提供液压。从而该活塞能在液压的作用下沿纵长延伸的方向移动,从而使得该连接臂能沿其纵长延伸的方向进行伸缩。当然该连接臂的伸缩方式不限于此,还可以是其他的结构,例如连接臂包括多个内外套合的管体。相邻管体之间能沿轴向相对移动。从而使得连接臂能沿轴向伸长或缩短。
在另一个实施方式中,伸缩机构17为弹性元件。该弹性元件例如可以是弹簧。该弹簧能进行伸长或者缩短,从而使得该弹性元件能进行伸缩。当然该弹性元件不限于为弹簧,还可以是其他的结构,例如橡胶等,对此本申请不作规定。
在本实施方式中,该伸缩机构17设置于机架19上。从而伸缩机构17能随机架19在工作区域内移动。进一步地,该伸缩机构17设置于机架19上,可以是伸缩机构17能转动地设置于机架19上,也可以是伸缩机构17固定于机架19上。该能转动地设置的方式例如可以是铰接。该固定方式还可以是螺钉固定、螺栓固定、焊接、一体成型等。
当伸缩机构17能转动地设置于机架19上时,可以首先通过移动模块16将机架 19移动至复杂区域内;然后使得机架19停止,接着相对于机架19转动伸缩机构17,以使伸缩机构17能在复杂区域的边界上沿左右方向移动,从而使得伸缩机构17上的切割模块14能对复杂区域边界上的草坪进行清理。
当伸缩机构17固定于机架19上时,可以通过移动模块16在复杂区域内沿左右方向移动机架19,以使机架19上的伸缩机构17能随机架19在复杂区域的边界上沿左右方向移动,从而使得伸缩机构17上的切割模块14能对复杂区域边界上的草坪进行清理。
在本实施方式中,切割模块14包括打草头15。打草头15能转动地设置于伸缩机构17上。从而一方面使得打草头15能相对于伸缩机构17转动;另一方面使得打草头15能随伸缩机构17的伸缩而沿伸缩方向移动,进而使得打草头15能朝向复杂区域的边界移动,从而能对复杂区域边界上的草坪进行切割。该能转动地设置例如可以是枢轴设置。进一步地,机架19上设置有驱动机构,该驱动机构与该打草头15传动连接,从而通过该驱动机构能驱动打草头15的转动。该驱动机构例如可以是电机。在其他实施方式中,切割模块14包括刀片,通过旋转或往返运动时间割草或剪草如旋转式切割刀片或草剪等。
在本实施方式中,打草头15上设置有打草绳。从而打草头15转动时能带动打草绳转动。以使打草绳能进行打草。具体地,打草绳可以采用柔性材料进行制作。例如打草绳采用尼龙、棉织物,丝绸等进行制作,对此本申请不作规定。
进一步地,打草头15能转动地设置于伸缩机构17背对机架19的一端。从而当伸缩机构17朝向复杂区域的边界伸长时,打草头15能位于伸缩机构17的外端,如此方便打草头15上的打草绳对复杂区域边界上的草坪进行打草。当然打草头15不限于设置于伸缩机构17背对机架19的一端,还可以是设置于伸缩机构17的其他位置上,对此本申请不做规定。
进一步地,打草绳固定于打草头上。从而能避免打草绳转动时打草绳从打草头15上脱离。该固定方式可以是螺钉固定、螺栓固定、焊接固定等。进一步地,该打草头15的形状可以是球状、圆形板状、柱状等,对此本申请不作规定。该打草头15具有中心。该打草绳的一端固定于该打草头15的中心上。该打草绳的另一端为自由端。从而当打草绳转动时,该自由端能绕打草头15的中心转动,进而对打草头15周围的草坪进行切割。
在一个实施方式中,伸缩机构17的一端与机架19活动连接,伸缩机构17的另一端上能转动地设置有打草头15。从而一方面伸缩机构17能带动打草头15相对于机架19转动,以使得在机架19停止转动的情况下,打草头15能在复杂区域的边界上进行打草。另一方面打草头15能转动地设置于伸缩机构17的外端上。因此打草头15与复杂区域的边界的接触更方便,如此能保证打草头15能伸入复杂区域的边界上。
在本实施方式中,控制模块用于在切割模块14工作过程中,若检测模块检测到复杂区域,控制模块控制移动模块16和/或伸缩机构17,以使切割模块14向复杂区域边界移动。从而使得切割模块14能伸入复杂区域中,并触碰到复杂区域的边界。进而使复杂区域的边界的草坪均能被切割。如此减少复杂区域的留草,切割更彻底。
进一步地,在切割模块14工作过程中,若检测模块检测到复杂区域,控制模块控制移动模块16和/或伸缩机构17,以使切割模块14向复杂区域边界移动,也即在切割模块14工作过程中,若检测模块检测到复杂区域,切割模块14的工作模式即自动进入复杂区域切割模式中。也即,切割模块14的工作模式可以包括复杂区域切割模式和简单区域切割模式。在复杂区域切割模式中,控制模块控制移动模块16和/或伸缩机构17,以使切割模块14向复杂区域边界移动;从而使得切割模块14能对复杂区域边界上的草坪进行清理。在简单区域切割模式中,切割模块14对简单区域内的草坪进行清理。如此通过复杂区域切割模式和简单区域切割模式能保证切割模块14能将工作区域内的草坪清理干净,以减少留草。
在一个实施方式中,切割模块14向复杂区域边界移动包括切割模块14与复杂区域边界的距离小于等于预设距离。该预设距离可以是打草绳的长度。当然还预设距离不限于为打草绳的长度,还可以是预设距离小于打草绳的长度,对此本申请不作规定。该切割模块14与复杂区域边界的距离可以是打草头15的中心与复杂区域边界之间的距离,例如如图11所示,该打草头15的中心与复杂区域边界之间的距离为打草绳的长度。也即该切割模块14与复杂区域边界的距离为打草绳的长度。从而使得打草绳背对打草头15的一端能接触到复杂区域的边界,进而能对复杂区域边界上的草坪进行清理。
进一步地,切割模块14向复杂区域边界移动包括切割模块14与复杂区域边界相接触。以使切割模块14能对复杂区域边界上的草坪进行清理。具体地,当切割模块14与复杂区域边界的距离小于等于预设距离时,通过转动打草绳,以使打草绳能接 触到复杂区域的边界,以能对复杂区域边界上的草坪进行清理。
在本实施方式中,检测模块用于检测自动割草机无法覆盖的复杂区域。从而使得自动割草机43在工作区域内移动和工作时能识别到该复杂区域,进而使控制模块能控制移动模块16和/或伸缩机构17,以使切割模块14向复杂区域边界移动。如此通过检测模块能使得本申请所述的自动割草机43能自动进入复杂区域切割模式,进而对复杂区域内的草坪进行清理,如此实现了本申请实施方式所述的自动割草机43的智能化和自主化的复杂区域切割模式。
进一步地,检测模块包括地图获取模块,惯性导航模块,距离检测模块,碰撞检测模块中的至少一个。
具体地,地图获取模块用于获取复杂区域的地图。进一步地,地图获取模块可以包括磁场感应器。进一步地,该磁场感应器用于检测复杂区域的边界线31的信号,以获取复杂区域的地图。具体地,当自动割草机43行驶至复杂区域时,地图获取模块检测复杂区域边界线31的信号并根据该边界线31的信号控制自动割草机43进行转向,以获知复杂区域的转向角度夹角和位置;进而获取复杂区域的地图。
进一步地,地图获取模块可以包括编码器或者旋转电位计。通过在自动割草机43的移动模块16发生差速转向时,通过编码器或者旋转电位计检测移动模块16的转向以及转速,识别复杂区域的位置和转向角度夹角;进而获取复杂区域的地图。
进一步地,地图获取模块可以包括输入装置。该输入装置用于将地图(例如以照片或者数据库形式)输入至自动割草机43内,使得自动割草机43可以对自身进行定位,进而使得自动割草机43能够确认自己是否在复杂区域的位置。该输入装置可以是键盘、扫描仪、数码相机等,对此本申请不作规定。
进一步地,地图获取模块可以包括激光雷达。该激光雷达用于实施新建地图,实时定位,进而使得自动割草机43能够确认自己是否在复杂区域的位置。
具体地,惯性导航模块利用惯性元件,例如加速度计。来测量自动割草机43本身的加速度,经过积分和运算得到速度和位置,从而达到对自动割草机43导航定位的目的,以能识别出复杂区域。
具体地,距离检测模块包括用于检测水平距离的第一测距传感器21。该第一测距传感器21用于检测切割模块14与复杂区域的边界之间的距离。从而当第一测距传感器21识别到两个方向有障碍时,即识别出复杂区域的位置和复杂区域的边界的转 向角度。进而识别出复杂区域。
具体地,碰撞检测模块包括设置于伸缩机构17上的压力传感器。该压力传感器用于检测切割模块14与复杂区域的边界之间的作用力。从而当切割模块14与复杂区域的边界之间的作用力大于0时,即可以说明存在复杂区域。
进一步地,当伸缩机构17能转动地设置于机架19上时,例如伸缩机构17的一端与机架19相铰接。
进一步地,弹性元件上设置有用于对打草头15进行限位的限位件。从而当弹性元件进行伸缩时,该限位件能对打草头15进行限位,以使得打草头15与复杂区域的边界之间的距离大致与打草绳的长度相等。
请参阅图13。本申请实施方式提供了一种自动割草机的控制方法,其可以包括:步骤S11:控制机构控制所述伸缩机构17,以使所述打草绳能与所述复杂区域的边界相接触;步骤S13:控制机构控制所述打草头15,以使所述打草头15带动所述打草绳转动以进行打草。
从以上技术方案可以看出:本申请实施方式所述的自动割草机的控制方法首先通过控制机构控制所述伸缩机构17,以使所述打草绳能与所述复杂区域的边界相接触;然后使所述打草头15带动所述打草绳转动以进行打草。如此当转动打草头15进行打草时,打草绳能接触到复杂区域的边界。进而打草绳能对复杂区域的边界外的草坪进行切割。如此打草绳能伸入复杂区域中,并触碰到复杂区域的边界。由于打草绳触碰到复杂区域的边界,所以复杂区域的边界上的草坪均能被切割。
图4至图9示出了本申请实施方式提供的一种自动割草机的控制方法的动作示意图。在本实施方式中,步骤S11:控制机构控制所述伸缩机构17,以使所述打草绳能与所述复杂区域的边界相接触,具体包括:
步骤S111:控制机构控制所述伸缩机构17伸长,以使所述打草头15能与所述复杂区域的边界相抵。具体地,使得伸缩机构17伸长或者缩短,以使打草头15与复杂区域的边界相接触。且打草头15与复杂区域的边界之间具有预定的作用力。该预定的作用力可以根据实际使用情况进行设定,对此本申请不做规定。例如当伸缩机构17包括纵长延伸的缸体和穿设于该缸体内的活塞。该缸体与液压系统相连。该液压系统用于为缸体内提供液压。从而该活塞能在液压的作用下沿纵长延伸的方向移动, 从而使得该连接臂能沿其纵长延伸的方向进行伸缩时,通过控制液压系统开闭的程度,进而控制缸体内的液压,从而能控制活塞的伸缩长度。
进一步地,通过打草头15与复杂区域的边界相抵,能获取在打草头15的位置。也即步骤S11的目的在于:获取在打草头15的位置。
进一步地,步骤S11控制机构控制所述伸缩机构17,以使所述打草绳能与所述复杂区域的边界相接触之前,还包括:
步骤S7:通过检测模块识别所述复杂区域。即对复杂区域进行识别。从而通过对复杂区域进行识别,能获知复杂区域的转向角度夹角和位置。例如如图4所示,通过对转向角度夹角进行识别能获知该复杂区域的转向角度夹角为90度和该复杂区域的位置。从而通过所获知的复杂区域的转向角度夹角和位置能将自动割草机43置入复杂区域内。
进一步地,检测模块对复杂区域进行识别包括以下几种方式:
第一,通过地图获取模块检测边界线31信号的方式。具体地,当自动割草机43行驶至复杂区域时,通过地图获取模块检测边界线31信号的方式控制自动割草机43进行转向,同时使得自动割草机43获知复杂区域的转向角度夹角和位置。
第二,通过地图获取模块在自动割草机43的移动模块16发生差速转向时,通过编码器或者旋转电位计检测移动模块16的转向以及转速,识别复杂区域的位置和转向角度夹角;进而获取复杂区域的地图。
第三,通过布置在自动割草机43周围的第一测距传感器21识别到两个方向有障碍时,即识别复杂区域的转向角度夹角和位置。
第四,通过地图获取模块将地图(例如以照片或者数据库形式)输入至自动割草机43内,使得自动割草机43可以对自身进行定位,进而使得自动割草机43能够确认自己是否在复杂区域位置。
第五,通过激光雷达实施新建地图,实时定位,进而使得自动割草机43能够确认自己是否在复杂区域的位置。
第六,通过惯性导航模块利用惯性元件,例如加速度计。来测量自动割草机43本身的加速度,经过积分和运算得到速度和位置,从而达到对自动割草机43导航定位的目的,以能识别出复杂区域。
第七,通过碰撞检测模块检测切割模块14与复杂区域的边界之间的作用力。从 而当切割模块14与复杂区域的边界之间的作用力大于0时,即可以说明存在复杂区域。
进一步地,步骤S11控制机构控制所述伸缩机构17,以使所述打草绳能与所述复杂区域的边界相接触之前,还包括:
步骤S9:通过移动模块16使所述自动割草机43进入所述复杂区域内。即使自动割草机43置于复杂区域内。进一步地,该复杂区域例如为两个墙壁所围成的角落25。进一步地,该两个墙壁为形成复杂区域的障碍物所形成的两个墙壁。例如如图4所示,该两个墙壁为第一墙壁11和第二墙壁13。进一步地,如图4所示,将自动割草机43移动至角落25的中心线上。具体地,图4中角落25的角度为90度。将自动割草机43位于角落25的倾角为45度的斜线上。当然,自动割草机43不限于位于角落25的中心线上,还可以是角落25内的其他的位置,对此本申请不作规定。
进一步地,草坪的根位于地面内。草坪从地面向上生长。角落25的第一墙壁11和第二墙壁13之间的相交线为上下方向。也即如图4所示的垂直于纸面的方向。左右方向即垂直于上下方向。也即如图4所示的横向和纵向。
在一个实施方式中,步骤S9通过移动模块16使所述自动割草机43进入所述复杂区域内之前,还包括:控制机构控制打草头15,以使打草头15进行上下移动,以使打草头15的中心的高度位于预定的高度范围内。该预定的高度范围可以是草坪的高度41以下的范围。也即通过对打草头15进行上下移动,使得打草绳能低于草坪的高度41,从而能对草坪进行打草。进一步地,该预定的高度范围具有最小高度39。
具体地,在沿上下方向移动打草头15的过程中,通过第二测距传感器23测量打草头15与地面之间的实时高度。且在沿上下方向移动打草头15的过程中,通过摄像头35检测草坪。从而当摄像头35检测不到草坪时,打草头15不能再上升。且说明草坪的高度41即为此刻打草头15与地面之间的实时高度。
进一步地,预定的高度范围被划分成多个沿上下方向排布的区间,其中,每个区间用于供打草头15进行打草。也即在预定的高度范围内设定多个高度档位,以使打草头15能在各个档位进行打草。
在一个实施方式中,步骤S111控制机构控制所述伸缩机构17伸长,以使所述打草头15能与所述复杂区域的边界相抵之后,步骤S113控制机构控制伸缩机构17,以缩短伸缩机构17;以使打草头15能背离复杂区域的边界移动,直至打草绳能与复 杂区域的边界相接触之前,还包括:
步骤S112:控制机构控制伸缩机构,以使所述伸缩机构17转动,以使所述打草头15能在所述复杂区域的边界上沿左右方向移动;并在所述打草头15移动的过程中使所述伸缩机构17伸缩以使所述打草头15能与所述复杂区域的边界相抵。由于草坪从地面向上生长,且角落25的第一墙壁11和第二墙壁13之间的相交线为上下方向,所以打草头15在复杂区域的边界上沿左右方向运动时,能模拟打草绳沿左右方向(即水平方向)对草坪进行切割。
进一步地,通过打草头15在复杂区域的边界上沿左右方向移动,能获取在模拟打草绳对草坪进行切割的过程中打草头15的第一轨迹。也即步骤S122的目的在于:获取打草头15的第一轨迹。
通过在打草头15移动的过程中使伸缩机构17伸缩以使打草头15能与复杂区域的边界相抵,能保证在模拟打草绳沿左右方向(即水平方向)对草坪进行切割的过程中,打草头15与复杂区域的边界之间的距离相同,从而保证打草绳与打草头15之间的松紧程度相同。
进一步地,步骤S112控制机构控制伸缩机构,以使所述伸缩机构17转动,以使所述打草头15能在所述复杂区域的边界上沿左右方向移动;并在所述打草头15移动的过程中使所述伸缩机构17伸缩以使所述打草头15能与所述复杂区域的边界相抵,具体包括:
步骤S1121:控制机构控制伸缩机构,以沿第一方向转动所述伸缩机构17,以使所述打草头15能在一个墙壁上背离所述角落25的顶角移动;并使所述伸缩机构17伸缩以使所述打草头15移动时能与所述复杂区域的边界相抵。从而通过打草头15在一个墙壁上的移动模拟打草头15在一个墙壁上背向顶角打草的过程。该角落25的顶角即为角落25的第一墙壁11和第二墙壁13的相交处。
进一步地,在一个实施方式中,在该步骤S1121中,伸缩机构17的一端与机架19相铰接,伸缩机构17的另一端上能转动地设置有打草头15。从而通过使伸缩机构17相对于机架19沿第一方向转动,以使得在机架19停止转动的情况下,打草头15能在复杂区域的边界上沿第一方向移动,以进行打草。
具体地,如图5所示,沿逆时针方向转动伸缩机构17,以使打草头15在第一墙壁11上背离第二墙壁13移动,即向左移动,从而在第一区域33内模拟打草绳打草。
进一步地,当打草头15在一个墙壁上背离角落25的顶角移动时,例如如图5所示,当打草头15在第一墙壁11上背离第二墙壁13移动时,使得伸缩机构17沿其延伸方向缩回,以在打草头15移动的过程中伸缩打草头15能与复杂区域的边界相抵。从而保证打草头15在一个墙壁上背离角落25的顶角移动的过程中,打草头15与复杂区域的边界之间的作用力维持不变。
进一步地,如图5所示,当沿逆时针方向转动伸缩机构17时,通过压力传感器检测打草头15与第一墙壁11之间的作用力,并通过调节伸缩机构17的长度以使作用力与预定的值相等,从而使得打草头15与第一墙壁11相抵。
进一步地,在步骤S1121沿第一方向转动伸缩机构17,以使打草头15能在一个墙壁上背离角落25的顶角移动;并使伸缩机构17伸缩以使打草头15移动时能与复杂区域的边界相抵之前,使打草头15与角落25的顶角相抵。也即使打草头15与角落25的两个墙壁的相交处相抵。例如如图5所示,打草头15与A点相抵。也即在步骤S1121之前伸长或缩短伸缩机构17以使打草头15能与角落25的顶角相抵。
在一个实施方式中,伸缩机构17沿角落25的中心线的延伸方向伸长,以使打草头15与A点相抵。
进一步地,当打草头15与角落25的顶角相抵时,通过压力传感器检测打草头15与顶角之间的作用力,并通过控制伸缩机构17的伸缩长度以使作用力与预定的作用力相等。
进一步地,步骤S112控制机构控制伸缩机构,以使所述伸缩机构17转动,以使所述打草头15能在所述复杂区域的边界上沿左右方向移动;并在所述打草头15移动的过程中使所述伸缩机构17伸缩以使所述打草头15能与所述复杂区域的边界相抵,具体还包括:
步骤S1123:控制机构控制伸缩机构,以沿与第一方向相反的方向转动所述伸缩机构17直至所述伸缩机构17与所述角落25的顶角相正对;并伸长所述伸缩机构17以使所述打草头15与所述角落25的顶角相抵。也即当伸缩机构17沿第一方向转动了第一预定角度后,沿与第一方向相反的方向转动伸缩机构17。且当伸缩机构17沿与第一方向相反的方向转动了第一预定角度后,伸长伸缩机构17以使打草头15与角落25的顶角相抵。
具体地,如图6所示,当伸缩机构17沿逆时针方向转动了第一预定角度后,沿 顺时针方向转动伸缩机构17。如图7、图8所示,当伸缩机构17沿顺时针方向转动了第一预定角度后,伸长伸缩机构17以使得打草头15与A点相抵,也即伸缩机构17在第一区域33内模拟打草绳打草后回到了初始位置A点。
优选地,当伸缩机构17沿第一方向转动了第一预定角度后,伸缩机构17的延伸方向与角落25的一个墙壁相垂直。也即如图5所示,伸缩机构17逆时针转动了m°后,伸缩机构17的延伸方向与角落25的一个墙壁相垂直。
进一步地,步骤S112控制机构控制伸缩机构,以使所述伸缩机构17转动,以使所述打草头15能在所述复杂区域的边界上沿左右方向移动;并在所述打草头15移动的过程中使所述伸缩机构17伸缩以使所述打草头15能与所述复杂区域的边界相抵,具体还包括:
步骤S1125:控制机构控制伸缩机构,以沿与所述第一方向相反的方向转动所述伸缩机构17,以使所述打草头15能在另一个墙壁上背离所述角落25的顶角移动;并伸缩所述伸缩机构17以使所述打草头15移动时能与所述复杂区域的边界相抵。也即当打草头15与角落25的顶角相抵后,沿与第一方向相反的方向转动伸缩机构17,以使打草头15能在另一个墙壁上背离一个墙壁移动。并伸缩所述伸缩机构17以使所述打草头15移动时能与所述复杂区域的边界相抵。
具体地,如图8所示,沿顺时针方向转动伸缩机构17,以使打草头15在第二墙壁13上背离第一墙壁11移动,从而在第二区域35内模拟打草绳打草。
进一步地,当打草头15在另一个墙壁上背离角落25的顶角移动时,例如如图5所示,当打草头15在第二墙壁13上背离第一墙壁11移动时,使得伸缩机构17沿其延伸方向缩回,以在打草头15移动的过程中伸缩打草头15能与复杂区域的边界相抵。从而保证打草头15在另一个墙壁上背离角落25的顶角移动的过程中,打草头15与复杂区域的边界之间的作用力维持不变。
进一步地,如图8所示,当沿顺时针方向转动伸缩机构17时,通过压力传感器检测打草头15与第二墙壁13之间的作用力,并通过调节伸缩机构17的长度以使作用力与预定的值相等,从而使得打草头15与第二墙壁13相抵。
在一个实施方式中,步骤S1125之后,还包括:当伸缩机构17沿与第一方向相反的方向转动了第二预定角度后,控制机构控制伸缩机构,以沿第一方向转动伸缩机构17,以使打草头15在另一个侧壁上朝向一个侧壁移动,其中,第二预定的角度与 第一预定角度的和为直角。
具体地,如图9所示,步骤S1125之后,还包括:控制机构控制伸缩机构,以沿逆时针方向转动伸缩机构17,以使打草头15在第二墙壁13上朝向第一墙壁11移动,从而使得伸缩机构17回到初始位置(伸缩机构17回到与角落25的中心线共线的位置)。
进一步地,步骤S112控制机构控制伸缩机构,以使所述伸缩机构17转动,以使打草头15能在复杂区域的边界上沿左右方向移动之后,还包括:
控制机构获取打草头15运动的第一轨迹;并根据第一轨迹和打草绳长度计算第二轨迹,其中,第二轨迹上任一点至复杂区域的边界的距离与打草绳的长度相等。该第一轨迹是在模拟打草绳对草坪进行切割的过程中记录的打草头15的位置。进一步地,该第一轨迹可以是记录的打草头15中心的位置。进而该第二轨迹即为打草时打草头15中心的位置。当然还第一轨迹不限于记录打草头15中心的位置,还可以是记录的打草头15其他地方的位置,例如侧壁上的某一点的位置,对此本申请不作规定。该第二轨迹为打草时打草头15的位置,以使打草时打草绳能接触到复杂区域的边界。由于第二轨迹上任一点至复杂区域的边界的距离与打草绳的长度相等,所以当打草头15位于第二轨迹上时,打草头15与复杂区域的边界之间的距离为打草绳的长度,从而当打草绳转动时,一方面打草绳转过的区域内的草坪均能被打草绳切割,另一方面打草绳在打草时能与复杂区域的边界进行接触,所以位于角落25墙壁外的草坪均位于打草绳转动的范围内,因此均能被切割。
具体地,如图5和图8所示,第一轨迹包括沿逆时针方向转动伸缩机构17,以使打草头15在第一墙壁11上背离第二墙壁13移动后生成的打草头15中心的第一段轨迹和沿顺时针方向转动伸缩机构17,以使打草头15在第二墙壁13上背离第一墙壁11移动后生成的打草头15中心的第二段轨迹。
进一步地,第二轨迹包括第三段轨迹和第四段轨迹,其中,第三段轨迹上的每个点的由第一段轨迹上的每个点计算得到;第四段轨迹上的每个点由第二段轨迹上的每个点计算得到。
具体地,如图11所示,以伸缩机构17与机架19的铰接点为坐标原点0,以向右的方向为X轴,以向上的方向为Y轴。第一轨迹为(X i,Y i);第二轨迹为(X i-R,Y j-R);
其中,X i为第i个时刻的打草头15的中心的横坐标;
Y i为第i个时刻的打草头15的中心的纵坐标;
R为打草绳长度;
i为1,2,…n。
也即,第三段轨迹上的每个点的横坐标和纵坐标分别由第一段轨迹上的某个点的横坐标减去打草绳长度和该点的纵坐标减去打草绳长度获得。
第四段轨迹上的每个点的横坐标和纵坐标分别由第二段轨迹上的某个点的横坐标减去打草绳长度和该点的纵坐标减去打草绳长度获得。
在一个实施方式中,步骤S11:控制机构控制所述伸缩机构17,以使所述打草绳能与所述复杂区域的边界相接触,具体还包括:
步骤S113:控制机构控制伸缩机构17,以缩短伸缩机构17;以使打草头15能背离复杂区域的边界移动,直至打草绳能与复杂区域的边界相接触。
在一个实施方式中,步骤S113控制机构控制伸缩机构17,以缩短伸缩机构17;以使打草头15能背离复杂区域的边界移动,直至打草绳能与复杂区域的边界相接触;具体包括:
控制机构控制伸缩机构17,以缩短伸缩机构17;以使所述打草头15能位于所述第二轨迹上。
在使打草头15与复杂区域的边界相抵后,缩短伸缩机构17以使打草头15能背离复杂区域的边界移动直至打草头15位于第二轨迹上。由于第二轨迹上任一点至复杂区域的边界的距离与打草绳的长度相等,所以当打草头15位于第二轨迹上时,打草头15与复杂区域的边界之间的距离为打草绳的长度,从而当打草绳转动时,一方面打草绳转过的区域内的草坪均能被打草绳切割,另一方面打草绳在打草时能与复杂区域的边界进行接触,所以位于角落25墙壁外的草坪均位于打草绳转动的范围内,因此均能被切割。
具体地,首先控制所述伸缩机构17的伸缩长度,以使打草头15的中心位于第二轨迹靠近角落25的顶角的一侧。具体地,使打草头15的中心位于角落25的中心线与第二轨迹的交点上。然后沿逆时针方向转动伸缩机构17,以使打草头15的中心能沿第三段轨迹移动。当伸缩机构17沿逆时针方向转动了第一预定角度后,沿顺时针方向转动伸缩机构17。当伸缩机构17沿顺时针方向转动了第一预定角度后,沿顺时 针方向继续转动伸缩机构17,以使打草头15的中心能沿第四段轨迹移动。
如图4至图9所示,在本实施方式中,步骤S13:控制机构控制所述打草头,以使所述打草头15带动所述打草绳转动以进行打草。
具体地,当沿逆时针方向转动伸缩机构17时,转动打草头15以使打草绳能在第一墙壁11上背离第二墙壁13移动,以进行打草。当伸缩机构17沿逆时针方向转动了第一预定角度后,沿顺时针方向转动伸缩机构17;在这一个过程中,打草绳不转动,也即在这一个过程中,打草绳不打草。
当伸缩机构17沿顺时针方向转动了第一预定角度后,沿顺时针方向继续转动伸缩机构17并转动打草绳,以使打草绳能在第二墙壁13上背离第一墙壁11移动,以进行打草。
进一步地,在上述伸缩机构17为弹性元件的实施方式中,弹性元件上设置有限位件,限位件用于对打草头15进行限位,以使在步骤S113中,打草头15的中心与对应的墙壁之间的距离与打草绳的长度相等,从而打草头15的中心能位于第二轨迹上。
图10示出了本申请实施方式提供的另一种自动割草机的控制方法的动作示意图。在本实施方式中,步骤S11控制机构控制所述伸缩机构17,以使所述打草绳能与所述复杂区域的边界相接触,具体包括:
步骤S121:检测模块获取所述打草头15与所述复杂区域的边界之间的距离。
步骤S123:控制模块控制所述伸缩机构17的伸缩长度以使所述距离能与所述打草绳的长度相等。
在本实施方式中,步骤S121:检测模块获取所述打草头15与所述复杂区域的边界之间的距离。具体地,由于机架19上设置有第一测距传感器21。因此第一测距传感器21能测量打草头15与复杂区域的边界之间的距离。
进一步地,步骤S121检测模块获取所述打草头15与所述复杂区域的边界之间的距离之前,还包括:
步骤S1221:使所述自动割草机43从所述角落25的一侧朝向所述角落25的另一侧转动。具体地,例如如图10所示,通过移动模块16使得自动割草机43从角落25的左侧朝向角落25的右侧转动。从而通过自动割草机43从角落25的一侧朝向角 落25的另一侧转动,使得自动割草机43能进入到角落25内。
进一步地,在步骤S1221使所述自动割草机43从所述角落25的一侧朝向所述角落25的另一侧转动之前,还包括:
检测模块识别所述角落25。具体地,使自动割草机43移动,并通过第一测距传感器21检测自动割草机43的周围是否有障碍物;以对角落25进行识别,当第一测距传感器21检测到有障碍物时,说明自动割草机43周围存在角落25。
进一步地,步骤S121检测模块获取所述打草头15与所述复杂区域的边界之间的距离之前,还包括:
步骤S1223:控制机构使所述伸缩机构17伸缩以使所述打草头15能朝向所述复杂区域的边界伸出。
具体地,控制机构使伸缩机构17朝向复杂区域的边界伸长以使打草头15能朝向复杂区域的边界伸出。
在本实施方式中,步骤S123:控制机构控制伸缩机构17的伸缩长度以使距离能与打草绳的长度相等。
具体地,当获取到的距离小于打草绳的长度时,使伸缩机构17背向复杂区域的边界缩回以使距离变大直至与打草绳的长度相等。当获取到的距离大于打草绳的长度时,使伸缩机构17朝向复杂区域的边界伸长以使距离变小直至与打草绳的长度相等。
如图10所示,在本实施方式中,步骤S13:控制机构控制所述打草头,以使所述打草头15带动所述打草绳转动以进行打草。
具体地,在自动割草机43从角落25的一侧朝向角落25的另一侧转动的过程中,例如如图10所示,在自动割草机43从角落25的左侧朝向角落25的右侧转动的过程中,当距离与打草绳的长度相等时,使得打草头15转动进而打草绳转动以进行打草。也即通过自动割草机43从角落25的一侧朝向角落25的另一侧转动的过程中,使得打草绳对角落25的草坪进行切割。由于打草绳对草坪进行切割时,距离与打草绳的长度相等,所以打草绳能接触到复杂区域的边界,进而打草绳打草更彻底,留草更少。
如图12所示,在一个实施方式中,在步骤S1221使所述自动割草机43从所述角落25的一侧朝向所述角落25的另一侧转动之前,还包括::控制机构控制打草头15,以使打草头15进行上下移动,以使打草头15的中心的高度位于预定的高度范围内。该预定的高度范围可以是低于草坪的高度的范围。也即通过对打草头15进行上下移 动,使得打草绳能低于草坪的高度,从而能对草坪进行打草。
具体地,如图12所示,在沿上下方向移动打草头15的过程中,通过第二测距传感器23测量打草头15与地面之间的实时高度。且在沿上下方向移动打草头15的过程中,通过摄像头37检测草坪。从而当摄像头37检测不到草坪时,打草头15不能再上升。且说明草坪的高度即为此刻打草头15与地面之间的实时高度。
进一步地,所述预定的高度范围包括多个沿上下方向排布的区间,所述打草头15能在每个所述区间内进行打草。也即在预定的高度范围内设定多个高度档位,以使打草头15能在各个档位进行打草。
需要说明的是,在本发明的描述中,术语“第一”、“第二”等仅用于描述目的和区别类似的对象,两者之间并不存在先后顺序,也不能理解为指示或暗示相对重要性。此外,在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种自动割草机,在工作区域内移动和工作,其特征在于,其包括:
    机架;
    移动模块,所述移动模块设置于所述机架上,以带动所述自动割草机移动;
    伸缩机构,所述伸缩机构设置于所述机架上;
    切割模块,所述切割模块设置于所述伸缩机构上;
    控制模块;
    检测模块,其用于检测所述自动割草机无法覆盖的复杂区域;
    在所述切割模块工作过程中,若所述检测模块检测到所述复杂区域,所述控制模块控制所述移动模块和/或伸缩机构,以使所述切割模块向所述复杂区域边界移动。
  2. 根据权利要求1所述的自动割草机,其特征在于:所述切割模块包括打草头,所述打草头设置有打草绳。
  3. 根据权利要求1所述的自动割草机,其特征在于:若所述检测模块检测到宽度小于第一预设宽度的区域或高度小于第一预设高度的区域,则所述检测模块检测到所述复杂区域。
  4. 根据权利要求1所述的自动割草机,其特征在于:若所述检测模块检测到工作区域边界的转向角度夹角小于第一预设角度,则所述检测模块检测到所述复杂区域。
  5. 根据权利要求1所述的自动割草机,其特征在于:所述检测模块包括地图获取模块,惯性导航模块,距离检测模块,碰撞检测模块中的至少一个。
  6. 根据权利要求1所述的自动割草机,其特征在于:所述切割模块向所述复杂区域边界移动包括所述切割模块与所述复杂区域边界的距离小于等于预设距离。
  7. 根据权利要求6所述的自动割草机,其特征在于:所述切割模块向所述复杂区域边界移动包括所述切割模块与所述复杂区域边界相接触。
  8. 根据权利要求1所述的自动割草机,其特征在于:所述伸缩机构的一端与所述机架活动连接,所述伸缩机构的另一端上设置有所述切割模块。
  9. 根据权利要求8所述的自动割草机,其特征在于:所述伸缩机构为纵长延伸的连接臂,所述连接臂沿所述纵长延伸的方向伸缩。
  10. 根据权利要求1所述的自动割草机,其特征在于:所述伸缩机构为弹性元件。
  11. 根据权利要求10所述的自动割草机,其特征在于:所述弹性元件上设置有用于对所述切割模块进行限位的限位件。
PCT/CN2019/122883 2019-08-27 2019-12-04 自动割草机 WO2021036077A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910795202.2 2019-08-27
CN201910795202.2A CN112438109B (zh) 2019-08-27 2019-08-27 自动割草机

Publications (1)

Publication Number Publication Date
WO2021036077A1 true WO2021036077A1 (zh) 2021-03-04

Family

ID=74684507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122883 WO2021036077A1 (zh) 2019-08-27 2019-12-04 自动割草机

Country Status (2)

Country Link
CN (1) CN112438109B (zh)
WO (1) WO2021036077A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104904407A (zh) * 2015-05-18 2015-09-16 高邮市北方动力机械有限公司 一种机头转动式打草机
US20160231749A1 (en) * 2015-02-10 2016-08-11 Honda Motor Co., Ltd. Control apparatus for autonomously navigating utility vehicle
CN108668608A (zh) * 2018-05-03 2018-10-19 朱彩玲 一种使用方便的农业割草机
CN108718662A (zh) * 2017-04-13 2018-11-02 南宁马瑞娜装饰工程有限公司 一种园林高效可调节割草机
CN208609414U (zh) * 2018-08-09 2019-03-19 淮安市福美好农业机械有限公司 一种割草机
EP3456164A1 (de) * 2017-09-13 2019-03-20 Deere & Company Verfahren zur querverschiebung eines mähwerks eines landwirtschaftlichen fahrzeugs
CN109526366A (zh) * 2017-09-22 2019-03-29 江苏华夏知识产权服务有限公司 一种基于物联网的适用范围广的多功能智能割草机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6474053B1 (en) * 2000-07-28 2002-11-05 David M. Lund Lawnmower equipped with a retractable edger and trimmer
JP2006026028A (ja) * 2004-07-14 2006-02-02 Sanyo Electric Co Ltd 掃除機
DE202005008910U1 (de) * 2005-04-25 2005-09-29 Kufner, Johann Randschneidevorrichtung für Rasenmäher
WO2011115536A1 (en) * 2010-03-18 2011-09-22 Husqvarna Ab Robotic lawn mower with edge cutting
US9510506B2 (en) * 2012-09-07 2016-12-06 Laurence J. Castelli Mower-mounted trimmer
US9872432B1 (en) * 2015-11-19 2018-01-23 Randy G. Millikan Lawnmower accessory assembly
US20180077861A1 (en) * 2016-09-21 2018-03-22 Jerry Lego Lawn Trimmer Assembly
EP3412129B1 (de) * 2017-06-09 2020-08-19 Andreas Stihl AG & Co. KG Autonomer mobiler grünflächenbearbeitungsroboter
CN206948918U (zh) * 2017-06-17 2018-02-02 平湖先行园艺工程有限公司 割草机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160231749A1 (en) * 2015-02-10 2016-08-11 Honda Motor Co., Ltd. Control apparatus for autonomously navigating utility vehicle
CN104904407A (zh) * 2015-05-18 2015-09-16 高邮市北方动力机械有限公司 一种机头转动式打草机
CN108718662A (zh) * 2017-04-13 2018-11-02 南宁马瑞娜装饰工程有限公司 一种园林高效可调节割草机
EP3456164A1 (de) * 2017-09-13 2019-03-20 Deere & Company Verfahren zur querverschiebung eines mähwerks eines landwirtschaftlichen fahrzeugs
CN109526366A (zh) * 2017-09-22 2019-03-29 江苏华夏知识产权服务有限公司 一种基于物联网的适用范围广的多功能智能割草机
CN108668608A (zh) * 2018-05-03 2018-10-19 朱彩玲 一种使用方便的农业割草机
CN208609414U (zh) * 2018-08-09 2019-03-19 淮安市福美好农业机械有限公司 一种割草机

Also Published As

Publication number Publication date
CN112438109B (zh) 2022-07-12
CN112438109A (zh) 2021-03-05

Similar Documents

Publication Publication Date Title
US11172609B2 (en) Autonomous lawn mower and a system for navigating thereof
US11172608B2 (en) Autonomous lawn mower and a system for navigating thereof
TWI439834B (zh) 移動平台之導航方法與系統
EP1522823B1 (en) Modular path planner
US20150163993A1 (en) Autonomous gardening vehicle with camera
US11172607B2 (en) Autonomous lawn mower and a system for navigating thereof
US9821847B2 (en) Method for guiding an off-road vehicle along a curved path
JPH0373004A (ja) 自走型作業ロボット
CA3110587A1 (en) An autonomous lawn mower and a system for navigating thereof
WO2021036077A1 (zh) 自动割草机
TWI601476B (zh) Automatic mowing robot
EP4066076B1 (en) Autonomous machine navigation in various lighting environments
CN113448327A (zh) 一种自动行走设备的运行控制方法及自动行走设备
CN114281088A (zh) 一种绕障作业方法及自动行走设备
AU2019200410B2 (en) An autonomous lawn mower and a system for navigating thereof
TWM541192U (zh) 自動割草結構
AU2021201061B2 (en) An autonomous lawn mower and a system for navigating thereof
AU2022209222B2 (en) An autonomous lawn mower and a system for navigating thereof
AU2019200406A1 (en) An autonomous lawn mower and a system for navigating thereof
AU2019200411A1 (en) An autonomous lawn mower and a system for navigating thereof
AU2019200408A1 (en) An autonomous lawn mower and a system for navigating thereof
CN115486765A (zh) 一种自移动机器人及其矫正方法
JP2000186901A (ja) 障害物の位置姿勢検出装置および検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943188

Country of ref document: EP

Kind code of ref document: A1