WO2021035633A1 - 一种资源共享的方法和装置 - Google Patents

一种资源共享的方法和装置 Download PDF

Info

Publication number
WO2021035633A1
WO2021035633A1 PCT/CN2019/103385 CN2019103385W WO2021035633A1 WO 2021035633 A1 WO2021035633 A1 WO 2021035633A1 CN 2019103385 W CN2019103385 W CN 2019103385W WO 2021035633 A1 WO2021035633 A1 WO 2021035633A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
indication information
frequency domain
initial bwp
resources
Prior art date
Application number
PCT/CN2019/103385
Other languages
English (en)
French (fr)
Inventor
于海凤
蔺波
杨坤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/103385 priority Critical patent/WO2021035633A1/zh
Priority to EP19943638.7A priority patent/EP4021108A4/en
Priority to CN201980099103.9A priority patent/CN114208323A/zh
Publication of WO2021035633A1 publication Critical patent/WO2021035633A1/zh
Priority to US17/680,696 priority patent/US20220183009A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points

Definitions

  • This application relates to the field of wireless communication, and in particular to a method and device for resource sharing.
  • next-generation cellular technologies for example, 5G networks.
  • 5G networks Next-generation cellular technologies
  • 5G networks For example, some areas of the operator (such as industrial parks, office buildings) simultaneously establish a shared network (public network) and a private network (private network) to support different services.
  • public network public network
  • private network private network
  • URLLC Ultra-Reliable and Low Latency Communications
  • the embodiments of the present application provide a method and device for resource sharing.
  • Network devices in a wireless network share resources through information exchange or coordination through a centralized control unit, so that multiple network devices can efficiently share spectrum.
  • embodiments of the present application provide a method for resource sharing, which may be applied to a network device or a chip in a network device, and the method may include:
  • the first device sends first indication information to the second device, where the first indication information is used to indicate the frequency domain resource of the first initial partial bandwidth BWP, and the frequency domain resource of the first initial BWP is the frequency domain resource of the first device.
  • the resource shared with the second device, and the frequency domain resource of the first initial BWP is a part of the first candidate shared resource of the first device and the second device.
  • the frequency domain resources of the first initial BWP are resources reserved by the first device.
  • the first device receives second indication information from the second device, where the second indication information is used to indicate the frequency domain resource of the second initial BWP, and the frequency domain resource of the second initial BWP is that the second device is not in contact with the frequency domain resource of the second initial BWP.
  • the frequency domain resource of the second initial BWP is a part of the first candidate shared resource.
  • the frequency domain resources of the second initial BWP are resources reserved by the second device.
  • the first device sends third indication information to the second device, where the third indication information is used to indicate the time-frequency resource that the first device expects to be used for data transmission among the first candidate shared resources.
  • the time-frequency resource expected by the first device to be used for data transmission does not overlap with the reserved resource indicated by the first indication information.
  • the first device receives fourth indication information from the second device, where the fourth indication information is used to indicate the time-frequency resource that the second device expects to be used for data transmission in the first candidate shared resource.
  • the time-frequency resource expected by the second device to be used for data transmission does not overlap with the reserved resource indicated by the second indication information.
  • the first device uses the first indication information
  • the second device uses the second indication information to indicate the frequency domain resource of the initial BWP. Since the initial BWP frequency domain resource includes at least one reserved resource, The first device and the second device uniformly indicate the reserved resources by indicating the initial BWP, and this unified indicating method is simpler and easier to implement than indicating the location and size of each reserved resource, and it also saves signaling Overhead.
  • the first device uses the third instruction information
  • the second device uses the fourth instruction information to respectively indicate the resources each expected to be used for data transmission, so that the first device and the second device learn each other about the resources expected to be used by the opposite end.
  • the rational allocation of shared resources between the first device and the second device provides a basis, which further realizes the efficient sharing of spectrum resources between the devices at both ends.
  • the resources used by the first device include public network and private network resources
  • the resources used by the second device also include public network and private network resources. Therefore, the method in this embodiment adopts Efficient sharing of spectrum resources between the first device and the second device, so as to achieve efficient sharing of public and private network resources between the two devices.
  • the first indication information is used to indicate the frequency domain resources of the first initial partial bandwidth BWP, including:
  • the first indication information is used to indicate at least one of the frequency domain start position of the first initial BWP, the frequency domain end position of the first initial BWP, and the frequency domain width of the first initial BWP;
  • the second indication information is used to indicate the frequency domain resources of the second initial BWP, including:
  • the second indication information is used to indicate at least one of the frequency domain start position of the second initial BWP, the frequency domain end position of the second initial BWP, and the frequency domain width of the second initial BWP.
  • the frequency domain start position of the first initial BWP is determined according to the following manner one or two, specifically:
  • Manner 1 According to the frequency domain start position of the first downlink bandwidth, and the offset between the frequency domain start position of the first downlink bandwidth and the frequency domain start position of the first initial BWP determine;
  • Manner 2 According to the frequency domain start position of the synchronous broadcast block SSB, the offset between the frequency domain start position of the SSB and the frequency domain start position of the first downlink bandwidth, and, the first Determine the offset between the frequency domain start position of a downlink bandwidth and the frequency domain start position of the first initial BWP;
  • the frequency domain start position of the second initial BWP is determined according to the following manner 3 or manner 4. Specifically,
  • Manner 3 Determine according to the frequency domain start position of the second downlink bandwidth and the offset between the frequency domain start position of the second downlink bandwidth and the frequency domain start position of the second initial BWP;
  • the first downlink bandwidth is the system bandwidth corresponding to the first device
  • the second downlink bandwidth is the system bandwidth corresponding to the second device.
  • the frequency domain width of the first initial BWP satisfies the formula:
  • L RBs1 is the number of consecutive RBs occupied by the frequency domain width of the first initial BWP
  • RIV1 is the first resource indicator value parameter
  • RB start1 is the start resource block position of the first initial BWP, Represents the first number of RBs; where the first number of RBs is the number of RBs included in the first downlink bandwidth.
  • the frequency domain width of the second initial BWP satisfies the formula:
  • L RBs2 is the number of consecutive RBs occupied by the frequency domain width of the second initial BWP
  • RIV2 is the second resource indicator value parameter
  • RB start2 is the start resource block position of the second initial BWP, Indicates the second number of RBs.
  • the second number of RBs is the number of RBs included in the second downlink bandwidth.
  • the time-frequency resources expected by the first device to be used for data transmission indicated by the third indication information do not include the frequency domain resources of the first initial BWP and the frequency domain resources of the second initial BWP, that is, the first device is expected to be used for data transmission. There is no overlap between the resources and the first initial BWP resources, and there is no overlap between the resources that the first device expects to be used for data transmission and the second initial BWP resources.
  • the third indication information includes a first field and a second field.
  • the first field is used to indicate the resource type of the time-frequency resource that the first device expects to use for data transmission, and the resource type includes at least one of an uplink UL, an auxiliary uplink SUL, and a downlink DL resource type;
  • the second field is used to indicate the time-frequency resource location corresponding to each resource type.
  • the first device implements the indication of the type of the time-frequency resource expected to be used for data transmission.
  • the third indication information further includes a third field.
  • the third field is used to indicate the effective moment of the time-frequency resource expected to be used for data transmission in the second field.
  • the second field further includes a fourth field
  • the fourth field is used to indicate whether the location of the time-frequency resource corresponding to each resource type has changed.
  • the second field further includes a fifth field, and the fifth field is used to indicate the expected change.
  • the location of the time-frequency resource used for data transmission if the location of the time-frequency resource changes, the fifth field is sent.
  • the fifth field does not need to be included, and the most recent time-frequency resource indicated by the third field is still used for data transmission, thereby avoiding repeated sending of the same time-frequency resource Instructions for the location.
  • the fifth field is sent only when the position of the time-frequency resource that the first device expects to be used for data transmission changes. Compared with the indication method that does not distinguish the position of the time-frequency resource, repeated transmission is avoided. Indication information of the same time-frequency resource location, thereby saving signaling overhead.
  • the first device sends the first instruction information and the third instruction information to the second device through a first request message.
  • the first indication information and the third indication information are sent through one request message, which saves signaling overhead compared to the manner in which the first device sends the first indication information and the third indication information separately.
  • the method further includes: the first device determines, according to the first initial BWP and the second initial BWP, in the first candidate shared resource A device expects time-frequency resources for data transmission.
  • the first device determines, from the first candidate shared resources, the time-frequency resource that the first device expects to use for data transmission, including: the first device according to the first initial BWP, the second initial BWP, and the second The second device expects the time-frequency resource for data transmission, and determines the time-frequency resource that the first device expects to be used for data transmission among the first candidate shared resources.
  • the resources expected by the first device for data transmission are: Frequency domain resources of an initial BWP and a second initial BWP, and some or all of the resources remaining after the resources that the second device expects to be used for data transmission.
  • the resources expected to be used for data transmission by the first device and the second device may be determined according to business requirements or a certain principle. This embodiment does not specifically limit the specific requirements and principles of the business.
  • the first device determines the shared resource of the first device in the first candidate shared resource based on the first initial BWP, the second initial BWP, and the time-frequency resource that the second device expects to use for data transmission .
  • the first device determines according to the first initial BWP, the second initial BWP, the time-frequency resources expected by the first device to be used for data transmission, and the time-frequency resources expected by the second device to be used for data transmission
  • the shared resource of the first device among the first candidate shared resources.
  • the shared resource of the first device in the first candidate shared resource may be the same or different from the resource that the first device is expected to use for data transmission indicated by the third indication information.
  • an embodiment of the present application also provides a resource sharing method, the method including:
  • the third device receives first indication information from the first device, where the first indication information is used to indicate resources reserved by the first device;
  • the third device receives second indication information from the second device, where the second indication information is used to indicate resources reserved by the second device;
  • the third device receives third indication information from the first device, where the third indication information is used to indicate the time-frequency resource that the first device expects to be used for data transmission among the first candidate shared resources;
  • the third device receives fourth indication information from the second device, where the fourth indication information is used to indicate the time-frequency resource that the second device expects to be used for data transmission among the first candidate shared resources;
  • the third device sends fifth indication information to the first device, where the fifth indication information is used to indicate the shared resource of the first device among the first candidate shared resources, and further, the fifth indication information indicates The shared resource of may be determined from the first candidate shared resource according to one or more of the first indication information, the second indication information, the third indication information, and the fourth indication information.
  • the first indication information may be specifically used to indicate the frequency domain resource of the first initial BWP, and the frequency domain resource of the first initial BWP It is a resource that the first device does not share with the second device, and further, the frequency domain resource of the first initial BWP is a part of the first candidate shared resource.
  • the second indication information may be specifically used to indicate the frequency domain resource of the second initial BWP, and the frequency domain resource of the second initial BWP It is a resource that the second device does not share with the first device, and further, the frequency domain resource of the second initial BWP is a part of the first candidate shared resource.
  • the third device uses the indication information reported by the first device and the second device to manage the spectrum resources between the first device and the second device. On the one hand, it can share spectrum resources more fairly, on the other hand, It is convenient for operators to centrally manage, charge and increase profits.
  • the shared resource of the first device in the first candidate shared resource may be determined based on the following indication information, including:
  • the above method further includes:
  • the third device sends sixth indication information to the second device, where the sixth indication information is used to indicate the shared resource of the second device in the first candidate shared resource;
  • the shared resource indicated by the sixth indication information is that the third device according to one or more of the first indication information, the second indication information, the third indication information, and the fourth indication information, Determined from the first candidate shared resource.
  • the third device receiving the first indication information from the first device includes: the third device periodically receives the first indication information from the first device.
  • the third device receiving the second instruction information from the second device includes: the third device periodically receives the second instruction information from the second device.
  • the first device and the second device periodically report the reserved resource information used to indicate the first device and the second device, so that the third device can periodically obtain the information of the first device and the second device. Reserve resources to prepare for subsequent dynamic instructions.
  • the first indication information or the second indication information can also be used to indicate the change of the corresponding reserved resource, thereby improving the flexibility of the indication.
  • the third device receiving the third instruction information from the first device includes: the third device periodically receives the third instruction information from the first device.
  • the third device receiving the fourth instruction information from the second device includes: the third device periodically receives the fourth instruction information from the second device.
  • the first device and the second device periodically report the time-frequency resources expected to be used for data transmission, so that the third device can periodically obtain the resource requirements of the first device and the second device. Therefore, resources are allocated to the first device and the second device periodically.
  • the method further includes: the third device sends a message to the second device, where the message is used to instruct the second device to report that the second device shares the information on the first candidate.
  • the message is a query message.
  • the query message includes at least one of the identifier of the second device and the type of the query resource.
  • the method provided in this aspect centrally manages and allocates spectrum resources between the first device and the second device through the third device, which facilitates centralized management and charging of operators, thereby guiding operators to increase profits through spectrum sharing.
  • an embodiment of the present application also provides a resource sharing device, which is used to implement the foregoing first aspect and the resource sharing method in various implementation manners of the first aspect.
  • the device is the first device or the second device.
  • the first device or the second device is a kind of network equipment.
  • the device includes at least one functional unit or module, and further, the at least one functional unit is a receiving unit, a processing unit, or a sending unit.
  • an embodiment of the present application also provides another resource sharing device, which is used to implement the foregoing second aspect and the resource sharing method in various implementation manners of the second aspect.
  • the device is a third device, and further, the third device is a network device, such as a centralized controller, a centralized control unit, or a server.
  • the third device is a network device, such as a centralized controller, a centralized control unit, or a server.
  • an embodiment of the present application also provides a communication device, including a processor and a memory, where the processor is coupled with the memory,
  • the memory is used to store instructions
  • the processor is configured to invoke the instruction to cause the communication device to execute the methods in the foregoing first aspect and various implementation manners of the first aspect, or the processor is configured to invoke the instruction to cause the communication device to execute The foregoing second aspect and methods in various embodiments of the second aspect.
  • the communication device further includes a transceiver, and the transceiver is used to receive or send messages and data from the peer device.
  • the communication device is the device according to the third aspect or the fourth aspect,
  • the communication device when used as the device of the third aspect, it may be a network device, such as a first base station or a second base station.
  • the communication device when used as the device in the fourth aspect, it may be a network device, such as a server or a centralized controller.
  • the embodiments of the present application also provide a computer-readable storage medium.
  • the storage medium stores instructions. When the instructions are run on a computer or a processor, they are used to execute the aforementioned first aspect and the first aspect.
  • methods in various implementation manners, or used to execute the foregoing second aspect and methods in various implementation manners of the second aspect are used to execute the foregoing second aspect and methods in various implementation manners of the second aspect.
  • embodiments of the present application also provide a computer program product.
  • the computer program product includes computer instructions. When the instructions are executed by a computer or a processor, the foregoing first aspect and various aspects of the first aspect can be implemented. The method in the implementation manner, or the method in the foregoing second aspect and various implementation manners of the second aspect.
  • an embodiment of the present application also provides a chip system, the chip system includes a processor and an interface circuit, the interface circuit is coupled with the processor, and the processor is used to execute a computer program or instruction to Implement the foregoing first aspect and the methods in the various implementation manners of the first aspect, or implement the foregoing second aspect and the methods in the various implementation manners of the second aspect.
  • the interface circuit is used to communicate with modules other than the chip system.
  • an embodiment of the present application also provides a communication system, including at least two communication devices, the at least two communication devices including at least one first communication device and at least one second communication device, the first communication device
  • the device or the second communication device may be the device described in the third aspect described above, and used to implement the first aspect and the methods in various implementation manners of the first aspect.
  • the communication system further includes a third communication device.
  • the third communication device may be the device described in the fourth aspect above, and is used to implement the second aspect and the methods in various implementation manners of the second aspect.
  • the first communication device is a first device, such as a first base station; the second communication device is a second device, such as a second base station.
  • the third communication device is a third device, such as a server or a centralized controller.
  • FIG. 1 is a schematic diagram of a downlink physical channel and signal time-frequency domain distribution provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of an SSB resource provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of a definition of an SSB pattern and position distribution in a time slot provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of a radio frame structure provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of a BWP frequency domain position provided by an embodiment of this application.
  • FIG. 6a is a schematic diagram of completely overlapping coverage of LTE and NR cells provided by an embodiment of this application;
  • FIG. 6b is a schematic diagram of a partially overlapping coverage of LTE and NR cells according to an embodiment of this application;
  • FIG. 7 is a flowchart of a method for resource sharing provided by an embodiment of the application.
  • FIG. 8 is a schematic diagram of using an initial BWP to indicate frequency domain resources according to an embodiment of this application.
  • FIG. 9a is a schematic diagram of determining a first candidate shared resource according to an embodiment of the application.
  • FIG. 9b is a schematic diagram of determining third indication information according to an embodiment of this application.
  • FIG. 9c is a schematic diagram of determining fourth indication information according to an embodiment of this application.
  • FIG. 9d is another schematic diagram of determining fourth indication information provided by an embodiment of this application.
  • FIG. 9e is another schematic diagram of determining third indication information provided by an embodiment of this application.
  • FIG. 10a is a schematic diagram of determining a shared frequency domain resource of a first device according to an embodiment of this application.
  • FIG. 10b is another schematic diagram of determining the shared frequency domain resource of the first device according to an embodiment of this application.
  • FIG. 11a is a schematic diagram of indicating the starting position of an initial BWP frequency domain resource according to an embodiment of this application.
  • FIG. 11b is another schematic diagram of indicating the starting position of the initial BWP frequency domain resource according to an embodiment of the application.
  • FIG. 11c is a schematic diagram of a first initial BWP frequency domain range provided by an embodiment of this application.
  • FIG. 11d is a schematic diagram of another first initial BWP frequency domain range provided by an embodiment of this application.
  • FIG. 12a is a schematic diagram of indicating a resource expected by a first device for data transmission through a second field according to an embodiment of the application
  • FIG. 12b is a schematic diagram of using a bitmap to indicate that the first device expects to use data transmission resources according to an embodiment of the application;
  • FIG. 13 is a schematic diagram of using PRB pattern to indicate resources that a first device expects to use for data transmission according to an embodiment of the application;
  • FIG. 14 is a flowchart of another resource sharing method provided by an embodiment of this application.
  • FIG. 16 is a schematic diagram of indicating reserved resources through a time-frequency pattern list according to an embodiment of the application.
  • FIG. 17 is a schematic structural diagram of a first device provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of a third device provided by an embodiment of this application.
  • FIG. 19a is a schematic diagram of a scenario of an application environment provided by an embodiment of this application.
  • FIG. 19b is a schematic diagram of another application environment provided by an embodiment of the application.
  • FIG. 20 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • the technical solution of the present application is mainly applied to the scenario of resource sharing between private and public networks in the industry in the future.
  • the private networks in the industry can be referred to as "private networks” for short, including but not limited to industrial manufacturing plants, industrial parks, production parks, etc.
  • the public network may be referred to as a "public network” for short, such as a long term evolution (LTE) system, a fifth generation (5G) mobile communication system, or a new radio (NR) communication system, and Future mobile communication systems, etc.
  • LTE long term evolution
  • 5G fifth generation
  • NR new radio
  • Future mobile communication systems etc.
  • the new radio may also be referred to as a new air interface.
  • the private network is also called a private network, or simply called a "private network”.
  • the technical solution of the present application is mainly to coordinate the spectrum resources of the public network and the private network allocated to different network devices, so as to achieve reasonable utilization of the spectrum resources by each device.
  • the spectrum resources include spectrum resources occupied by channels and signals in a 5G NR communication system.
  • BWP bandwidth Part
  • Table 1 is the corresponding table of downlink physical channels/signals and functions of the 5G network
  • Table 2 is the corresponding table of uplink physical channels/signals and functions of the 5G network.
  • the physical channel can be divided into a common channel and a dedicated channel according to the object of use, and can be divided into a control channel and a data channel according to the purpose. Further, a common channel and a control channel can be used to transmit and receive the data channel, where the common channel includes: synchronization signal (Synchronization Signal, SS), physical broadcast channel (Physical broadcast channel, PBCH), and physical random access Channel (Physical Random Access Channel, PRACH).
  • SS Synchronization Signal
  • PBCH Physical broadcast channel
  • PRACH Physical Random Access Channel
  • the control channel includes a physical downlink control channel (Physical Downlink Control Channel, PDCCH) and a physical uplink control channel (Physical Uplink Control Channel, PUCCH).
  • the data channel includes a physical downlink shared channel (Physical Downlink Shared Channel, PDSCH) and a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH). Specifically, as shown in Table 1 and Table 2 below.
  • Fig. 1 is a schematic diagram of the time-frequency domain distribution of downlink physical channels and signals.
  • the downlink physical channel is divided into multiple blocks of resources.
  • the divided resources include PDCCH, PDSCH, SS/PBCH, CSI-RS, and so on.
  • the PDSCH can be used to carry DMRS or PT-RS.
  • the PDCCH resource is configured to occupy the first 3 symbols of slot 0 in the time domain, that is, from 0 to For the second symbol, the resources used in the frequency domain are configurable. And support PDCCH and PDSCH resources on the same symbol frequency division multiplexing (Frequency-division multiplexing, FDM).
  • FDM Frequency-division multiplexing
  • the time domain, frequency domain position and size of the time-frequency resource can be configured when dividing the PDSCH resource; and it supports frequency division of DMRS and PDSCH resources on the same symbol Reuse.
  • the time domain position is generally fixed, and the frequency domain position is configurable. For example, configure the starting position of the SSB in the frequency domain to be a certain RE, but the SSB occupies 20 resource blocks (resource blocks, RB) in the frequency domain; and supports frequency division multiplexing of SSB and PDSCH resources on the same symbol use.
  • resource blocks resource blocks, RB
  • the time domain, frequency domain position and bandwidth size can be configured, and it supports frequency division multiplexing on the same symbol of CSI-RS and PDSCH.
  • a resource is also divided into the downlink physical channel for transmission of PT-RS.
  • the resource for transmission of PT-RS is not shown in FIG. 1.
  • the time domain and frequency of the PT-RS resource are The domain location and bandwidth can be configured.
  • the PT-RS resource is configured in the PDSCH resource.
  • the location and size of these resources will be notified to the receiving device at the opposite end through indication information.
  • the process of configuring the indication information by the sending end and the content carried in the indication information will be described in detail in subsequent embodiments.
  • these divided resources such as SSB resources, their time-frequency positions and sizes can be set uniformly.
  • Fig. 2 is a schematic diagram of an SSB resource.
  • the SSB can be called a synchronous broadcast block (SS PBCH Block).
  • SS PBCH Block synchronous broadcast block
  • One SSB occupies 20 RB in the frequency domain and 4 consecutive symbols in the time domain.
  • one SSB includes: Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS), and PBCH.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH a synchronous broadcast block
  • the frequency domain position of each SSB can be flexibly configured.
  • User equipment can obtain the frequency domain position of the SSB through blind channel detection; and the time domain position of the SSB can also be configured, for example,
  • the agreement specifies the correspondence between different subcarrier carrier spaces (SCS) and SSB time-domain patterns (patterns), and the time-domain position of the SSB can be determined through the SSB time-domain patterns.
  • Table 3 shows a correspondence between SCS and SSB time-domain patterns.
  • the SSB time-domain pattern reflects the distribution of the time-domain symbols of all SSBs on the downlink physical channel, and each time-domain pattern can be represented by different cases.
  • Fig. 3 shows schematic diagrams of five different time-domain patterns from Scheme A to Scheme E.
  • the UE determines its own SSB subcarrier spacing and the SSB time domain pattern corresponding to the SSB subcarrier spacing according to its own NR operating frequency band and the corresponding relationship shown in Table 3.
  • the SSB time domain patterns are scheme A to scheme E One of them, and then get the time domain position of each SSB according to the determined plan.
  • n5 working frequency band 800M
  • two SCSs of 15KHz and 30KHz can be supported.
  • two SCSs of 15KHz and 30KHz need to be used for blind detection of the SSB channel, and according to the SSB channel
  • the blind inspection result determines the target SCS. For example, if the SSB is detected using 15kHz, the target SCS is determined to be 15kHz. Then, according to the correspondence shown in Table 3, the UE determines that the SSB time domain pattern corresponding to the 15kHz SCS is scheme A, and finally, the UE determines the time domain position of each SSB according to scheme A.
  • Fig. 3 is a schematic diagram of SSB pattern definition and position distribution in the time slot corresponding to scheme A to scheme E.
  • each SSB pattern occupies 4 consecutive OFDM symbols in the time domain, and the SSB patterns corresponding to different schemes have different distribution positions in the time domain.
  • the first SSB pattern is located in the 2nd to 5th OFDM symbols of the first slot, and the second SSB pattern is located in the 8th to 11th OFDM symbols of the first slot.
  • the SSB pattern includes scheme B and scheme C.
  • the configuration scheme C is the main SSB pattern.
  • the period of the SSB can be configured through a System Information Block (SIB), for example, a network device configures the broadcast period of the SSB through SIB1.
  • SIB System Information Block
  • the broadcast period of the SSB may be 5ms, 10ms, 20ms, 40ms, 80ms, 160ms, etc.
  • the protocol specifies the maximum number of blocks supported by the SSB. For example, for Sub 3G, a maximum of 4 SSBs are defined; for Sub 3G to Sub 6G, a maximum of 8 SSBs are defined; for Sub 6G and above, a maximum of 64 SSBs are defined.
  • SI system information
  • RRC Radio Resource Control
  • the time-domain pattern of the SSB can be determined by the NR operating frequency band and the value of the SCS, and further, the value of the SCS can be determined by the UE blind detection channel.
  • the devices interacting at both ends are peer-to-peer devices, such as the interaction between the base station and the base station. Therefore, the base stations at each end do not know the NR working frequency band and the value of the SCS of the opposite base station.
  • a specific implementation of the resource location indication is that the base stations at both ends interact with each other on their respective NR operating frequency bands, SCS values, SSB cycles, and so on. Furthermore, the process of mutual indication and determination of SSB resources by the devices at both ends will be described in detail in subsequent embodiments.
  • the above process of indicating the SSB time domain pattern involves the 5G NR radio frame structure and the number of subframes, the number of slots (slots), and the symbols (symbol) contained in the radio frame (radio frame).
  • Table 4 shows the correspondence between an NR subcarrier configuration, the number of symbols per slot, and the number of slots per subframe, which is different from the number of slots included in each subframe of LTE.
  • Each subframe of 5G NR The number of time slots included is variable, and the number of time slots included in each subframe is related to the value of the subcarrier interval.
  • Figure 4 shows a schematic diagram of the radio frame structure of a 5G NR network when the subcarrier spacing is 30KHz.
  • a radio frame length T f 10ms
  • T f represents the length of a radio frame
  • BWP Bandwidth Part
  • the initial BWP is the BWP used by the UE during the initial access phase, that is, the signals and channels in the initial access phase are transmitted in the initial BWP.
  • the dedicated BWP is the BWP used by the UE in the RRC connected state.
  • a UE can be configured with 4 dedicated BWPs at most.
  • the activated BWP is a BWP activated by the UE at a certain moment in the RRC connected state, and the activated BWP may be one or more of multiple dedicated BWPs. In the existing standard R15 protocol version, when the UE is in the RRC connected state, only one active BWP is configured at a certain moment.
  • the default BWP is that when the UE is in the RRC connected state, when the BWP inactivity timer of the UE expires, the UE will return to the default BWP from the active BWP; the default BWP can be one of multiple dedicated BWPs One. Specifically, the UE may be instructed to select a certain dedicated BWP as the default BWP through RRC signaling.
  • one possible implementation manner is to indicate through a resource block (RB) index.
  • point A point A
  • the point A is a basic reference point of all RBs in a resource group (RG), and the point A can be obtained by calculation of a reference location (Reference Location) and an offset (Offset).
  • the reference position is the starting position of the first SSB. Further, the starting position of the SSB may be obtained by the first device and the second device during SSB interaction. Further, for RB and RG, refer to section 4.4 in TS 38.211.
  • the value of the offset may be a positive value or a negative value.
  • a common resource block (Common RB, CRB) can be used for the index of the RB in the RG, and the 0th subcarrier of the CRB is aligned with the point A.
  • Physical resource blocks (Physical RB, PRB) can be used to index the RBs in the BWP, and count from 0 in each BWP.
  • PRB and CRB have the same resource configuration parameters (numerology).
  • the resource configuration parameter may include at least one of the following: subcarrier interval, time slot length, and cyclic prefix (CP).
  • the position of point A is generally fixed, and the position of subcarrier 0 of the CRB of different resource configuration parameters is also the same, and the position is the same as that of point A, but each is independently numbered.
  • the existing LTE and NR spectrum sharing schemes are mainly aimed at LTE cells and NR cells where the cell coverage completely overlaps or partially overlaps.
  • the base station (eNB) of the LTE cell and the base station (gNB) of the NR cell send messages to notify each other of the resources they expect to use, for example, the eNB sends
  • the gNB sends a resource request message
  • the resource request message includes the resource expected to be used by the eNB
  • the resource response message is used to feed back to the eNB that the gNB receives the resource situation that the eNB expects to use.
  • the resource response message is also used to indicate the resource situation that the gNB expects to use.
  • the resource request message is E-UTRA-NR CELL RESOURCE COORDINATION REQUEST (E-UTRA-NR CELL RESOURCE COORDINATION REQUEST); the resource response message is E-UTRA-NR CELL RESOURCE COORDINATION REQUEST; the resource response message is E-UTRA-NR CELL RESOURCE COORDINATION REQUEST; the resource response message is E-UTRA-NR CELL RESOURCE COORDINATION REQUEST; Cell resource coordination response (E-UTRA-NR CELL RESOURCE COORDINATION RESPONSE).
  • E-UTRA is LTE, Evolved Universal Terrestrial Radio Access (E-UTRA).
  • Table 5 shows the differences between LTE and NR resource sharing and public network and private network resource sharing.
  • the sharing of LTE and NR resources limits the usage scenarios, and does not consider private networks (such as private network identification) and some characteristics of NR (such as initial BWP and SSB resources), so the existing LTE and NR spectrum sharing schemes cannot It is directly used to share resources between the public and private networks, and a new spectrum sharing scheme needs to be designed to realize spectrum sharing between the public and private networks.
  • an embodiment of the present application proposes a method for resource sharing, through signaling interaction between a first device and a second device, or through a centralized controller to coordinate the spectrum resources between the two devices uniformly, so as to achieve the first Efficient sharing of spectrum resources between a device and a second device.
  • This embodiment provides a resource sharing method, which can be applied to a communication system composed of at least two devices.
  • the system includes a first device and a second device.
  • the first device may be a network device
  • the network device includes a base station (BS).
  • BS base station
  • the base station may be a global system for mobile communication (GSM) or a code division A base transceiver station (BTS) in code division multiple access (CDMA), a base station (NodeB) in wideband-CDMA (WCDMA), or an evolution in LTE -Type base station (evolutional NodeB, eNB/e-NodeB), or the next generation eNB (ng-eNB) in the next generation of LTE, or the base station (gNB) in the NR, or the base station in the future mobile communication system Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • GSM global system for mobile communication
  • BTS code division A base transceiver station
  • CDMA code division multiple access
  • NodeB base station
  • WCDMA wideband-CDMA
  • LTE -Type base station evolution in LTE -Type base station
  • ng-eNB next generation eNB
  • gNB next generation eNB
  • gNB wireless fidelity
  • the second device and the first device are peer-to-peer devices, and may be the same network device as the first device.
  • the first device and the second device are equivalent, that is, the same processing is performed.
  • the first device may be a public network base station or a private network base station.
  • the second device may be a public network base station or a private network base station.
  • the first device is a public network base station and the second device is a private network base station; in another scenario, the second device is a public network base station, and the first device is a private network base station.
  • the embodiment of the present application provides a method and device for resource sharing, and the method may at least include the following steps:
  • Step 101 The first device sends first indication information to the second device.
  • the first indication information is used to indicate resources reserved by the first device.
  • the reserved resources are used to transmit important signals such as PSS, SSS, PBCH, Common PDCCH, and PRACH. Since the resources used to transmit the above-mentioned important signals are not shared with the second device, the first device needs to reserve the reserved resources in advance and notify the second device of the reserved resources.
  • the first indication information is used to indicate the frequency domain resource of the first initial partial bandwidth BWP, and the frequency domain resource of the first initial BWP is not shared by the first device and the second device Resource, the frequency domain resource of the first initial BWP is a part of the first candidate shared resource of the first device and the second device.
  • the first candidate shared resource is a common resource or common bandwidth that can be used by the first device and the second device.
  • the first initial BWP resource includes resources reserved by the first device.
  • the resources reserved by the first device contained therein are also reserved. Therefore, the purpose of indicating the reserved resources of the first device is achieved by indicating the resources of the first initial BWP.
  • the time domain position of the initial BWP can be flexibly configured, for example, the entire time domain resource. Therefore, in this embodiment, the first indication information is used to indicate the first initial BWP. The frequency domain position of the BWP is sufficient.
  • the initial BWP resources include reserved resources such as PSS, SSS, PBCH (ie SSB), and common (Common) PDCCH, PRACH, etc., so the initial BWP can be used to uniformly indicate the frequency domain positions of these reserved resources.
  • the resources reserved by the first device further include: resources used by the first device to send system messages SI and paging messages, and these resources may be on Common PDCCH resources.
  • Step 102 The first device receives second indication information from the second device.
  • the second indication information is used to indicate resources reserved by the second device. For a description of reserved resources, see step 101.
  • the second device shall reserve the resources reserved by the second device in advance, and notify the first device of the reserved resources.
  • the second indication information is used to indicate a frequency domain resource of a second initial BWP
  • the frequency domain resource of the second initial BWP is a resource that the second device does not share with the first device
  • the frequency domain resource of the second initial BWP is a part of the first candidate shared resource.
  • the second initial BWP resource includes resources reserved by the second device.
  • a possible situation is that the frequency domain resources of the first initial BWP and the frequency domain resources of the second initial BWP do not overlap, That is, there is no overlapping spectrum resource in the first candidate shared resource between the frequency domain resource of the first initial BWP indicated by the first device and the frequency domain resource of the second initial BWP indicated by the second device.
  • the first indication information and the second indication information are also called resource reservation indication information.
  • Step 103 The first device sends third indication information to the second device, where the third indication information is used to indicate the time-frequency resources that the first device expects to be used for data transmission among the first candidate shared resources.
  • the first candidate shared resource is the intersection of the available resources of the first device and the available resources of the second device.
  • the first candidate shared resource may be the full bandwidth of the first device or the second device. Full bandwidth, or the common bandwidth of the first device and the second device.
  • the available resources of the first device are 0-100 MHz
  • the available resources of the second device are 20-120 MHz
  • the first candidate shared resources of the first device and the second device are 20-100 MHz. .
  • the frequency domain resource of the first initial BWP indicated by the first indication information is 20-30 MHz, and the frequency domain of the first initial BWP The resource is a part of the first candidate shared resource.
  • the frequency domain resource of the second initial BWP indicated by the second indication information is 80-90 MHz, which also belongs to a part of the first candidate shared resource.
  • the time-frequency resource indicated by the third indication information may be part or all of the remaining resources in the first candidate shared resource after removing the frequency domain resource of the first initial BWP; or, the time-frequency resource indicated by the third indication information It may also be a part or all of the remaining resources after removing the frequency domain resources of the first initial BWP and the frequency domain resources of the second initial BWP from the first candidate shared resource.
  • the time-frequency resource expected by the first device to be used for data transmission indicated by the third indication information does not include the frequency domain resource of the first initial BWP and the frequency domain resource of the second initial BWP.
  • the second device After receiving the third indication information, the second device calculates the resource allocation of the first device according to the time-frequency resource expected by the first device for data transmission indicated by the third indication information and the first reserved resource of the first device happensing.
  • the second device When there is a conflict between the content indicated by the last received third indication information and the last received first reserved resource, the second device will give priority to the first reserved resource.
  • the conflict between the content indicated by the third indication information and the first reserved resource received last time means that there is an overlap between the time-frequency resource expected to be used for data transmission indicated by the third indication information and the first reserved resource.
  • that the second device prioritizes the first reserved resource means that when calculating the resource allocation of the first device, the second device will take the most recent indication of the reserved resource received as the criterion.
  • the second device is in When calculating the resource allocation of the first device, it is considered that the reserved resource of the first device is 20-30 MHz, and the time-frequency resource expected by the first device for data transmission is 30-60 MHz.
  • Step 103 specifically includes the following implementation manners:
  • the first implementation manner is that the third indication information indicates that the frequency domain resources that the first device expects to use for data transmission are: the frequency domain resources indicated by the first initial BWP are excluded from the first candidate shared resources. ⁇ 30MHz, and the remaining resources after the frequency domain resource indicated by the second initial BWP 80-90MHz, the remaining resources include 30-80MHz, and 90-100MHz, as shown in FIG. 9b.
  • the frequency domain resources that the first apparatus expects to be used for data transmission may also be a part of the remaining resources. For example, 30-50MHz or 90-100MHz.
  • the second implementation manner is that the frequency domain resource expected by the first device to be used for data transmission may also be the resource remaining after the frequency domain resource indicated by the first initial BWP is removed from the first candidate shared resource
  • the resource after excluding the frequency domain resource 20-30 MHz indicated by the first indication information from 20-100 MHz is 30-100 MHz, or may also be a part of the remaining resources, such as 30-50 MHz.
  • the third implementation manner is that the frequency domain resources that the first device expects to be used for data transmission may also be all or part of the resources in the first candidate shared resource, for example, resources in 20-100 MHz, Or it may be a part of 20-100 MHz, for example, 30-60 MHz.
  • the frequency domain resource expected by the first device to be used for data transmission may be continuous in the frequency domain or discontinuous in the frequency domain, which is not limited here.
  • the method further includes:
  • Step 104 The first device receives fourth indication information from the second device, where the fourth indication information is used to indicate the time-frequency resource that the second device expects to be used for data transmission in the first candidate shared resource.
  • the time-frequency resource indicated by the fourth indication information may be: part or all of the remaining resources in the first candidate shared resource after excluding the frequency domain resources of the second initial BWP; or, it may also be all the remaining resources.
  • the frequency domain resources of the first initial BWP are removed, and part or all of the remaining resources after the frequency domain resources of the second initial BWP are removed; or, it may also be the first candidate After removing the frequency domain resources of the first initial BWP, the second initial BWP, and the resources indicated by the third indication information from the shared resources, part or all of the remaining resources.
  • the second device determines that the frequency domain resources it expects to be used for data transmission are: the frequency domain resources 20-30 MHz from the first candidate shared resource 20-100 MHz excluding the first initial BWP, and the second initial BWP
  • the remaining resources after the indicated frequency domain resource 80-90 MHz, the remaining resources include 30-80 MHz, and 90-100 MHz.
  • the second device determines that the frequency domain resource it expects to be used for data transmission is: the first candidate shared resource is 20-100 MHz for resource indication.
  • the second device determines the value of the fourth indication information.
  • the frequency domain resource of the first initial BWP is 20-30 MHz
  • the frequency domain resource of the second initial BWP is 80-90 MHz
  • the frequency domain resource expected by the first device for data transmission is 30-80 MHz
  • the second device determines that the frequency domain resource expected to be used for data transmission is 90-100 MHz. That is, the resources remaining after 20-30 MHz, 80-90 MHz, and 30-80 MHz are removed from the first candidate shared resource 20-100 MHz.
  • the second device determines the fourth indication
  • the information process is shown in Figure 9d.
  • the frequency domain resource of the first initial BWP is 20-30 MHz
  • the frequency domain resource of the second initial BWP is 80-90 MHz
  • the frequency domain resource expected by the first device for data transmission is 30.
  • the second device finds that there is an overlap between the resources that it expects to use for data transmission and the resources that the first device expects to use for data transmission.
  • the overlapped resources are 40-80MHz.
  • the second device You can indicate that you want to occupy a part of the overlapping resources, such as 50%.
  • the second device assume that the second device expects to occupy 60-80 MHz of the overlapping resources 40-80 MHz, and then add those that do not overlap with the first device.
  • the resource is 90-100 MHz, and the frequency domain resources expected to be used for data transmission by the second resource in the fourth indication information are 60-80 MHz and 90-100 MHz.
  • the second device may determine the size of the overlapping resource expected to be occupied according to the current business requirements, or it may also be determined by other conditions. The example does not make specific restrictions on this.
  • step 101 the first device first receives the second instruction information sent by the second device, and then configures the first instruction information, and the first instruction information indicated by the first instruction information
  • the frequency domain resource of an initial BWP does not overlap with the frequency domain resource of the second initial BWP indicated by the second indication information, and finally the first indication information is sent to the second device.
  • the first device may first perform step 104, and then perform step 103.
  • the first device may perform the frequency domain resources of the first initial BWP and the second initial BWP indicated by the second indication information.
  • the frequency domain resource of the BWP and the fourth indication information determine the resource expected by the first device to be used for data transmission, and send the resource to the second device through the third indication information.
  • the frequency domain resource of the first initial BWP is 20-30 MHz
  • the frequency domain resource of the second initial BWP indicated by the second indication information is 80-90 MHz
  • the frequency domain resource of the second initial BWP indicated by the fourth indication information is 80-90 MHz.
  • the frequency domain resources expected by the two devices for data transmission are 55-80 MHz and 90-100 MHz.
  • the first device determines that the frequency domain resource it expects to be used for data transmission is 30-55 MHz.
  • the 30-55 MHz is the remaining resources after excluding 20-30 MHz, 80-90 MHz, and some resources 55-80 MHz and 90-100 MHz in the fourth indication information from the first candidate shared resource 20-100 MHz.
  • 55-80 MHz in the partial resources can be determined according to the service requirements of the first device or the second device, which is not limited in this example.
  • the resource indicated by the third indication information is determined by the first device according to its own service demand for shared resources.
  • the resource indicated by the fourth indication information is determined by the second device according to its own service requirements for shared resources.
  • the embodiment of this application determines the specific process of the third indication information for the first device, and the second device determines the fourth The specific process of indicating information is not limited.
  • the first device and the second device use the first indication information and the second indication information to uniformly indicate the resource location of the initial BWP. Since the initial BWP frequency domain resources include at least one reserved resource, Therefore, the way of uniformly indicating the reserved resources through the initial BWP is simpler and easier to implement than the way of carrying the specific location and size of each resource in the indication information, and it saves the overhead of signaling interaction.
  • the third instruction information and the fourth instruction information are used to indicate the time-frequency resources expected by the first device and the second device for data transmission, so that the two devices learn about the resources that each other expects to use, so as to allocate the resources reasonably.
  • the actual shared resources of the two devices provide a basis. The method realizes the efficient sharing of spectrum resources between the first device and the second device by real-time interaction of indication signaling by the devices at both ends.
  • the method further includes:
  • Step 105 The first device determines the shared resource among the first candidate shared resources.
  • the shared resource is the resource actually shared by the first device.
  • the shared resource is at least one of the resources that the first device expects to use for data transmission based on the first initial BWP and its own, and the second initial BWP and the resources that the second device expects to use for data transmission. A part or all of the determined first candidate shared resources are actually available for transmission.
  • a possible implementation is that the first device determines that the first device shares the first candidate in the first candidate based on the first initial BWP, the second initial BWP, and the time-frequency resources that the second device expects to use for data transmission. Shared resources in resources.
  • the frequency domain resources of the first initial BWP are 20-30 MHz
  • the frequency domain resources of the second initial BWP are 80-90 MHz.
  • the fourth indication information indicates the frequency that the second device is expected to use for data transmission.
  • the domain resources are 60-80 MHz and 90-100 MHz
  • the shared frequency domain resource of the first device is determined to be 30-60 MHz in the first candidate shared resource. That is, among the first candidate shared resources 20-100 MHz, the remaining frequency domain resources after 20-30 MHz, 80-90 MHz, 60-80 MHz and 90-100 MHz are removed.
  • a possible implementation is that the first device determines the first device according to the first initial BWP, the second initial BWP, the resources that the first device expects to use for data transmission, and the resources that the second device expects to use for data transmission.
  • the frequency domain resource of the first initial BWP is 20-30 MHz
  • the frequency domain resource of the second initial BWP is 80-90 MHz
  • the frequency domain resource expected by the first device for data transmission is 30-80 MHz
  • the first The frequency domain resources that the second device indicated by the fourth indication information expects to be used for data transmission are 55-80 MHz and 90-100 MHz.
  • the overlapping resource is 55-80MHz.
  • the first device can occupy a part of it according to service requirements. , Such as occupying 55-70 MHz, and then adding non-overlapping 30-55 MHz, and finally determining that the shared frequency domain resource of the first device in the first candidate shared resource is 30-70 MHz.
  • the method further includes: the second device according to the first instruction information, the third instruction information sent by the first device, and the second initial BWP and the time when the second device expects to be used for data transmission. At least one of the frequency resources, determining the shared resource of the second device in the first candidate shared resource. The determined shared resource is the resource actually shared by the second device. For the specific determination process, refer to the description of the first device determining the shared resource among the first candidate shared resources in step 105, which is not repeated here.
  • a method for sharing spectrum resources is proposed for the shared resources of the first device and the second device.
  • the interaction process and interaction information between the first device and the second device are designed, for example, the initial BWP is included in the indication information.
  • SSB resource location information or include the resources that the first device and the second device each expect to use for data transmission, so that the first device and the second device learn about the resources that each other expects to use, so as to realize the frequency spectrum between the two devices. Share efficiently.
  • the content carried in the first indication information, the second indication information, the third indication information, and the fourth indication information in the embodiments of the present application, and the specific indication manner will be described in detail below.
  • the first indication information when used to indicate the frequency domain resource of the first initial BWP, it specifically includes: the first indication information is used to indicate the frequency domain start position of the first initial BWP, and the first initial BWP. At least one of the frequency domain end position of the BWP and the frequency domain width of the first initial BWP.
  • the second indication information when used to indicate the frequency domain resources of the second initial BWP, it specifically includes: the second indication information is used to indicate the frequency domain start position of the second initial BWP, and the second initial BWP. At least one of the frequency domain end position of the BWP and the frequency domain width of the second initial BWP.
  • the process for the second device to determine the frequency domain resource of the first initial BWP according to the first indication information sent by the first device is specifically include:
  • An implementation manner is that when the first indication information contains only one of the above three parameters, the second device obtains according to one of the parameters carried in the current first indication information and through other means. In addition, at least one parameter is used to determine the frequency domain resource of the first initial BWP. Specifically, the second device obtains the frequency domain start position of the first initial BWP through the first indication information, and then calculates and determines the frequency domain end position of the first initial BWP according to the transmission of the first device or other auxiliary parameters. At least one of the frequency domain widths, the frequency domain resource of the first initial BWP is finally determined.
  • the first indication information indicates that the frequency domain starting position of the first initial BWP is 2600MHz, and then the second device finally determines the frequency domain resource of the first initial BWP according to the frequency domain width agreed with the first device, such as 400MHz It is 2600 ⁇ 3000MHz.
  • the second device determines the first initial BWP according to any two parameters carried in the first indication information Frequency domain resources. Specifically, when the first indication information includes two parameters, the frequency domain start position and the frequency domain width of the first initial BWP, it is determined that the frequency domain end position of the first initial BWP is equal to the frequency domain start of the first initial BWP. The start position plus the frequency domain width can then determine that the frequency domain resource of the first initial BWP is a range from the frequency domain start position of the first initial BWP to the frequency domain end position.
  • the second device may determine the first device indicated by the first device.
  • the frequency domain resources of the initial BWP range from 2600 to 3000 MHz.
  • the frequency domain start position of the first initial BWP, or the frequency domain start position of the second initial BWP may be indicated by an absolute frequency point, for example, an absolute frequency point It is 2600MHz.
  • it may also be indicated by means of an index (index), for example, a protocol predetermined identifier, such as a subcarrier index (subcarrier index), a resource block index (RB index), and so on.
  • index for example, a protocol predetermined identifier, such as a subcarrier index (subcarrier index), a resource block index (RB index), and so on.
  • the first indication information is configured to carry the RB index identifier.
  • the first indication information carries the indication information that the RB index is 10
  • the second device corresponds to the RB index 10 and the correspondence between the pre-stored RB index identifier and the initial BWP starting position, and the RB index 10 corresponds to The frequency point of is 2700MHz, so it is determined that the first initial BWP start position is 2700MHz.
  • the frequency domain termination positions of the first and second initial BWPs can also be indicated by absolute frequency points, for example, the absolute frequency point is 2620 MHz.
  • the frequency domain end position is determined by adding the frequency domain bandwidth to the frequency domain start position of the initial BWP.
  • the frequency domain bandwidth may be determined by the number of RBs and the absolute value of the occupied frequency domain resources.
  • the frequency domain resource of the first initial BWP is indicated by carrying at least one of the frequency domain start position, the frequency domain end position, and the frequency domain width of the first initial BWP in the first indication information, so as to achieve It indicates the beneficial effects of high efficiency and low cost.
  • the frequency domain position of the first initial BWP may also be indirectly indicated through an auxiliary parameter.
  • the frequency domain start position of the first initial BWP is determined according to the following manner one or two.
  • Manner 1 Determine according to the start position of the first downlink bandwidth and the offset between the start position of the frequency domain of the first downlink bandwidth and the start position of the frequency domain of the first initial BWP. For example, as shown in FIG. 11a, suppose the start position of the first downlink bandwidth is point A, and the start position of the frequency domain of the first downlink bandwidth is equal to the start position of the frequency domain of the initial BWP. The offset between the positions is the offset (offset) from the frequency domain starting position of the first initial BWP from the point A, and then the frequency domain starting position of the first initial BWP is point A The position after adding the offset.
  • the frequency domain starting position of the first initial BWP point A+offset.
  • Manner 2 According to the frequency domain start position of the synchronous broadcast block SSB, the offset between the frequency domain start position of the SSB and the frequency domain start position of the first downlink bandwidth, and the first downlink The offset between the frequency domain start position of the bandwidth and the frequency domain start position of the first initial BWP is determined.
  • the frequency domain start position of the SSB is a reference location (Reference Location)
  • the frequency domain start position of the SSB is between the frequency domain start position of the first downlink bandwidth
  • the offset is offset 1
  • the offset between the frequency domain start position of the first downlink bandwidth and the frequency domain start position of the first initial BWP is offset 2
  • the first initial BWP The starting position of the frequency domain is the position of point A plus offset 1 and offset 2.
  • the frequency domain starting position of the first initial BWP reference position-offset 1+offset 2.
  • the value of each of offset, offset 1, and offset 2 can be positive or negative.
  • the reference point location point A or Reference Location may be specified in the protocol or notified to the other party through signaling between the two devices.
  • the first downlink bandwidth is a system bandwidth corresponding to the first device.
  • the frequency domain start position of the second initial BWP is determined according to the following manner 3 or manner 4.
  • Manner 3 Determine according to the frequency domain start position of the second downlink bandwidth and the offset between the frequency domain start position of the second downlink bandwidth and the frequency domain start position of the second initial BWP;
  • the second downlink bandwidth is the system bandwidth corresponding to the second device.
  • step 102 the method for the second device to determine the frequency domain starting position of the second initial BWP is similar to the aforementioned method for determining the frequency domain starting position of the first initial BWP, which will not be repeated in this embodiment.
  • the frequency domain bandwidth of the initial BWP may be determined by a resource indication value (RIV) corresponding to location and bandwidth (location And Bandwidth), and the following formula:
  • L RBs represents the number of consecutive RBs occupied by the frequency domain width of the initial BWP
  • RB start2 is the starting resource block position of the initial BWP
  • the number of RBs Is the number of all RBs included in the downlink bandwidth, and this number Configurable.
  • the RIV is defined as follows:
  • the frequency domain width of the first initial BWP satisfies the formula 1:
  • L RBs1 is the number of consecutive RBs occupied by the frequency domain width of the first initial BWP
  • RIV1 is the first resource indicator value parameter
  • RB start1 is the start resource block position of the first initial BWP, Indicates the number of the first RB.
  • the frequency domain width of the second initial BWP satisfies the formula 1:
  • L RBs2 is the number of consecutive RBs occupied by the frequency domain width of the second initial BWP
  • RIV2 is the second resource indicator value parameter
  • RB start2 is the start resource block position of the second initial BWP, Indicates the second number of RBs.
  • RIV1 and RIV2 may be the same or different.
  • the first number of RBs indicated is the number of all RBs included in the first downlink bandwidth
  • the indicated second number of RBs is the number of all RBs included in the second downlink bandwidth.
  • the first downlink bandwidth may be the system bandwidth of the first device
  • the second downlink bandwidth may be the system bandwidth of the second device.
  • the values of the first downlink bandwidth and the second downlink bandwidth may be the same or different. and so It can be the same or different.
  • the second device sets the first resource indicator value parameter RIV1 and the first RB number
  • the second device can obtain the number of consecutive RBs L RBs1 occupied by the frequency domain width of the first initial BWP and the start resource block position RB start1 of the first initial BWP through the RIV formula.
  • the first device indicates the second resource indicator value parameter RIV2 and the second RB quantity
  • the first device can obtain the number of consecutive RBs L RBs2 occupied by the frequency domain width of the second initial BWP and the start resource block position RB start2 of the second initial BWP through the RIV relational expression.
  • the values of RIV1 and RIV2 may be acquired by the first device and the second device through signaling interaction; with It may be pre-defined by the protocol, or acquired by the first device and the second device through signaling interaction.
  • the first device and the second device can also obtain the aforementioned parameter values by looking up a table. For example, change The correspondence between L RBs1 , RIV1 and RB start1 is defined in a table.
  • the second device When known In the case of RIV1, the second device (or the first device) obtains L RBs1 and RB start1 by looking up the table; when the first device (or the second device) is known When L RBs1 and RB start1 , RIV1 is obtained by looking up the table. Similarly, for L RBs2 , RIV2, RB start2 , The first device (or the second device) can also be obtained by looking up the table.
  • sending the second indication information by the second device includes: sending a first response message by the second device, and the first response message includes the second indication information.
  • the first response message may also include an attribute identifier of the second device, and the attribute identifier of the second device is used to indicate that the second device is a public network device or a private network device.
  • the above description uses the first indication information and the second indication information to indicate the frequency domain resources of the initial BWP of the first device and the second device.
  • the time domain resource of the initial BWP is also included.
  • the time domain location of the initial BWP of each device can be indicated by an independent message, or can also be pre-defined by the devices at both ends.
  • the time domain position of the initial BWP is the time domain resource of the entire first candidate shared resource, which can also be flexibly configured according to business requirements.
  • the embodiment of the application does not limit the time domain position of the initial BWP and the configuration process. .
  • the third indication information includes a first field and a second field, which are indicated by two levels of information.
  • the first field is used to indicate the resource type of the time-frequency resource that the first device expects to use for data transmission, and the resource type includes uplink (Uplink, UL), supplementary uplink (Supplementary Uplink, SUL), and At least one of Downlink (DL) resource types;
  • the second field is used to indicate the time-frequency resource location corresponding to each resource type.
  • SUL resources are low-frequency resources, less than 6GHz; UL resources are high-frequency resources, greater than or equal to 6GHz.
  • the first device indicates through the first field that the resource it expects to use for data transmission includes one of UL shared, SUL shared, UL and SUL shared, and DL shared resources; and then indicates each resource through the second field.
  • the specific location of the shared resource is a high-frequency or low-frequency resource.
  • the second device determines, according to the first field in the third indication information, what the first device expects to be used for data transmission
  • the resource for example, includes a UL shared resource, and then the second field indicates the frequency range of the UL shared resource, whether it is a low-frequency resource of SUL or a high-frequency resource of UL.
  • using the first field to indicate the resource expected to be used for data transmission may be referred to as a primary indication, and the resource indicated by the second field may be referred to as a secondary indication.
  • the third indication information further includes a third field, and the third field is used to indicate the effective moment of the time-frequency resource expected to be used for data transmission in the second field.
  • the effective time of the time-frequency resource expected to be used for data transmission refers to that when the second device receives the effective time indication, it considers that starting from the time indicated by the effective time, the expectation indicated by the first device is used for data
  • the time-frequency resources of the transmission are effective.
  • the effective time indication accuracy may be a system frame number (System Frame Number, SFN), a subframe number subframe, a time slot number slot, and a symbol symbol. If the indication accuracy of the effective time is the system frame number, it is equivalent to that the time-frequency resource expected to be used for data transmission indicated by the first device is valid at the time indicated by the system frame number. Similarly, if the effective time indication accuracy is a subframe number, the effective time indication includes a system frame number indication and a subframe number indication, and the subframe number is used to indicate which subframe in the system frame the effective time is.
  • the effective time indication when the second device receives the effective time indication, it is considered that the time-frequency resource expected to be used for data transmission indicated by the first device is valid starting at the time corresponding to the system frame number indication and the subframe number indication .
  • the accuracy of the effective time indication is the time slot number
  • the effective time indication includes: a system frame number indicator, a subframe number indicator, and a time slot number indicator, and the subframe number is used to indicate that the effective time is the system frame Which subframe in the first subframe, such as the first subframe; the slot number is used to indicate which time slot in the first subframe the effective moment is, such as the first time slot.
  • the above method further includes the step of the first device instructing the changed transmission resource. Specifically, the method includes: the first device adds a fourth field to the second field, where the fourth field is used to indicate whether the location of the time-frequency resource corresponding to each resource type has changed.
  • the first device adds a fourth field to the second field sent.
  • the fourth field indicates that the resource type of this transmission is different from the previous one
  • the second field further includes a fifth field
  • the fifth field is used to indicate the location of the time-frequency resource expected to be used for data transmission after the change.
  • the fifth field is used to indicate the specific time-frequency resource location after the transmission resource becomes DL.
  • the first device may also directly add a fifth field to the second field, and send the fifth field, the fifth field directly indicates the change Then the first device expects the location of the time-frequency resource for transmitting data.
  • the third indication information may be indicated in any of the following ways:
  • the third indication information includes a second field, and the second field is composed of a binary character string, wherein each character occupies 1 bit (bit) space and corresponds to a time-frequency block.
  • the time-frequency block is One PRB can be represented in the frequency domain, and one subframe, or one time slot (slot), or one symbol (symbol) can be represented in the time domain.
  • the resource corresponding to the character position with a bit value of "1" is the resource expected by the first device for data transmission, and the resource corresponding to the character position with the bit value of "0" is not expected to be used by the first device for data The transmitted resources.
  • the second field is "00111100111100" indicating the time-frequency resource of a slot (14 symbols), corresponding to time-frequency block 1 to time-frequency block 14, of which time-frequency blocks 3 to 6, and time-frequency blocks
  • the bit values corresponding to blocks 9 to 12 are "1", which indicates that these time-frequency blocks are resources that the first device expects to use for data transmission. All remaining time-frequency blocks with a bit value of "0", including time-frequency blocks 1, 2, 7, 8, 13, and 14 are resources that the first device does not expect to use for data transmission.
  • the third indication information may be indicated by two bitmaps, one bitmap is used to indicate frequency domain resources, and the other bitmap is used to indicate time domain resources.
  • an RB-level bitmap is used to indicate frequency domain resources, where each RB is represented by a bit, and a bit value of "1" indicates that the RB is used for data transmission, and the bit value is " 0" indicates that the RB is not used for data transmission.
  • Symbol-level bitmaps are used to indicate time-domain resources, where each symbol (such as an OFDM symbol) is represented by a bit, a bit value of "1" indicates that the symbol is used for data transmission, and a bit value of "0" indicates that the symbol is not used for data transmission. data transmission.
  • the RB level bitmap is "0011100", which means that only the middle 3 RBs are used for data transmission.
  • a symbol-level bitmap of "00111100111100” means that only the 2nd to 5th, and 8th to 11th OFDM symbols are used for data transmission, and the remaining symbols are not used for data transmission.
  • the first device sends the third indication information to the second device in the form of a request message.
  • the request message may be an inter-base station interface Xn message, such as Xn Setup Request or Xn Configuration Update ( Xn Configuration Update) message, which Xn message is specific, there is no restriction here.
  • the multi-level indication is to indicate the resource expected to be used for data transmission through two or more levels of indication information.
  • the first-level indication is used to indicate the frequency domain position of a resource that the first device expects to use for data transmission, and the frequency domain position of the resource forms a frequency domain pattern, such as a PRB pattern;
  • the level indicator is used to indicate whether each time unit in a time period adopts the frequency domain pattern in the first level indicator.
  • the first level indication is indicated by means of a first field
  • the second level indication is indicated by means of a second field.
  • the first field and the second field are both binary character strings.
  • the first field is used to indicate a PRB pattern.
  • the PRB pattern includes n PRBs from PRB1 to PRB n, corresponding to n bits, where the bit value is "1" It means that the PRB is used for data transmission; the bit value "0" means that the PRB is not used for data transmission.
  • the character string "0110" indicates that PRB2 and PRB3 are PRBs used for data transmission, and PRB1 and PRB4 are not used for data transmission.
  • the second field is used to indicate whether to use the PRB pattern indicated by the first field; specifically, for example, when the bit value corresponding to the time domain symbol (symbol) 11 is "1", it indicates that the above PRB pattern is used on the 11th symbol , That is, PRB2 and PRB3 are used for data transmission on the 11th symbol. When the bit value corresponding to symbol 11 is "0", it indicates that the above PRB pattern is not used on the 11th symbol, that is, on the 11th symbol The above PRB2 and PRB3 are not used for data transmission.
  • time length in the one time period includes but is not limited to one subframe, and the time period can be configured.
  • each time unit in the time period can also be other time granularities, such as time slots or OFDM symbols. This embodiment does not limit this.
  • the percentage indication may be understood as the resource expected to be used for data transmission of the first device or the second device to indicate the percentage of the expected resource to the allocatable resource in a percentage manner.
  • the allocatable resource is a resource remaining after frequency domain resources of the first initial BWP and the second initial BWP are removed from the first candidate shared resources.
  • the frequency domain resources of the first initial BWP and the second initial BWP do not overlap with each other.
  • a percentage is used to indicate the percentage of the frequency domain resource range that the first device expects to use for data transmission to the allocatable resource, for example, 50%, which means that the first device expects to occupy 50% of the allocatable resource.
  • the frequency domain resource is used to transmit data, and then other indication information is used to indicate the start position or end position of the desired 50% frequency domain range, etc.
  • the third indication information also includes indication information of the time domain position.
  • the first device may indicate a percentage in the allocatable resource, indicating the expected usage within the 50% frequency domain.
  • the range of time domain resources such as 80%, and also includes the specific time domain start position, end position, and the number of symbols. For example, in the 14 OFDM symbols in a slot, indicate that the second to tenth OFDM symbols are the time domain resources that the first device expects to use for data transmission, and then according to the percentage (50%) indicated by the frequency domain and the frequency domain
  • the information such as the start position and the end position can uniquely determine the resources that the first device expects to use for data transmission.
  • the method provided in this embodiment utilizes various methods, including the above-mentioned method one to the third method, to flexibly indicate the resources that the first device expects to use for data transmission, so that different requirements can be met. For example, using mode 1 or mode 2 to indicate can accurately indicate the specific resource location; using the percentage indication of mode 3 can save signaling overhead, because only the percentage of the expected use of resources is carried, and other information can be obtained through pre-configuration or agreement, so Compared with the precise indication mode of multi-level transmission, the signaling overhead is saved.
  • the first device sending the first instruction information (step 101) and sending the third instruction (step 103) can be implemented in the following two ways.
  • the first device sends the first indication information and the third indication information respectively.
  • the first device first sends the first instruction information to the second device through a first request message (step 101), and then sends the third instruction information to the second device through a second request message (step 103).
  • the first device carries the first indication information and the third indication information in a message and sends it to the second device.
  • the method flow shown in FIG. 7 can be evolved into the method shown in FIG. 14 The process includes:
  • Step 201 The first device sends a first request message to the second device, where the first request message includes the first indication information and the third indication information.
  • the content and configuration mode of the first indication information and the third indication information are the same as the method steps 101 and 103 of the foregoing embodiment, and will not be repeated here.
  • the method further includes: the second device sends the second indication information to the first device, where the second indication information is used to instruct the second device to reserve Further, the resources reserved by the second device are indicated by the frequency domain resources of the second initial BWP, and the frequency domain resources of the second initial BWP are not shared by the second device with the first device The frequency domain resource of the second initial BWP is a part of the first candidate shared resource. Further, the second indication information may be sent through a first response message, that is, the first response message includes the second indication information.
  • Step 202 The second device receives the first request message from the first device, and determines fourth indication information according to the first indication information and the third indication information in the first request message.
  • the fourth indication information is used to indicate the resource that the second device expects to use for data transmission, and the resource is between the frequency domain resource of the first initial BWP and the frequency domain resource of the second initial BWP. There is no overlap between them.
  • Step 203 The second device sends a second response message to the first device, where the second response message includes the fourth indication information.
  • the contents and functions of the first instruction information to the fourth instruction information are the same as steps 101 to 104 of the foregoing embodiment. Refer to the above detailed description of each instruction information, and the first device determines that it is expected to be used for data transmission. The process of resource sharing and resource sharing will not be repeated here.
  • the first device sends the first indication information and the third indication information to the second device through the same request message. Compared with sending the two indication information separately, the signaling overhead is saved. In addition, it can be more It truly reflects the demand for shared resources by the business of each end device.
  • the method further includes: the first device sends an attribute identifier of the first device, the attribute identifier is used to indicate whether the device is a public network device or a private network device (device attribute).
  • the attribute identifier of the first device may be a cell ID (cell ID).
  • the cell identifier is a public network cell ID (cell ID) list of the first device, and the public network cell ID list includes at least one public network cell ID, and each cell ID is a public network cell ID.
  • the public network cell ID may be E-UTRAN cell Identity (LTE cell ID) or NR Cell Identity (NR cell ID). Among them, the length of E-UTRAN Cell Identity is 28 bits (bit); the length of NR Cell Identity is 36 bits.
  • the cell ID is the private network cell ID list of the first device, and the private network cell ID list includes at least one private network cell ID, for example, the private network cell ID is closed access A group (Closed Access Group, CAG) ID, or a non-public network (Non Public Network, NPN) ID, or a number of bits or a design method of the private network cell identification, etc.
  • the NPN ID may be represented by a public land mobile network (Public Land Mobile Network, PLMN) and a non-public network indicator (NID), and the PLMN is represented by a mobile country code (Mobile Country Code, MCC). ) And mobile network code (Mobile Network Code, MNC). Further, when identifying the private network cell ID, the value of MCC is 999.
  • the first request message sent by the first device further includes the attribute identifier of the first device, so that the first device combines the first indication information with the attribute identifier of the first device.
  • the second request message may also include the attribute identifier of the first device.
  • the first response message sent by the second device to the first device further includes the attribute identifier of the second device, and when the second device is a public network device or a private network device, the corresponding The cell ID of is the same as the attribute of the cell ID of the aforementioned first device, which is not described in detail in this embodiment.
  • each indication information or request message may be an Xn message, where Xn is an interface between NR base stations, and the first request
  • the message may be an Xn message, such as an Xn Setup Request, or an Xn Configuration Update message;
  • the first response message may be an Xn Setup Response (Xn Setup Response) message, or an Xn Configuration Update Acknowledge (Xn Configuration Update Acknowledge) message, etc.
  • This embodiment adds a device on the basis of the first embodiment, such as a third device, which is used to obtain the indication information reported by the first device and the second device, and to control and coordinate the two devices based on the information In order to achieve efficient sharing of public and private network resources.
  • a third device which is used to obtain the indication information reported by the first device and the second device, and to control and coordinate the two devices based on the information In order to achieve efficient sharing of public and private network resources.
  • the third device is a network device that has a processing function, such as a centralized control unit or a centralized controller. Further, the third device may be located in a core network, such as a 5G network Mobility management function (access management function, AMF) in 4G network, mobility management entity (MME) in 4G network, session management function (Session Management Function, SMF), etc., or it can be a new
  • AMF access management function
  • MME mobility management entity
  • SMF Session Management Function
  • the method includes:
  • Step 301 The first device sends a first request message, the first request message includes first indication information, and correspondingly, the third device receives the first request message from the first device.
  • the first indication information is used to indicate the resources reserved by the first device, and the resources reserved by the first device are the same as the resources reserved by the first device in step 101 of the foregoing embodiment 1. For details, refer to the foregoing embodiment 1. The description of this will not be repeated in this implementation.
  • the first request message also includes the attribute identifier of the first device itself, such as the cell ID.
  • the cell identifier is the same as the description of the cell ID in the foregoing embodiment. For details, refer to the description of the foregoing embodiment 1, which will not be repeated in this implementation.
  • step 301 specifically includes: the first device periodically sends a first request message to a third device, and the first request message carries the first indication information.
  • the third device periodically receives the first request message or the first indication information.
  • the sending period may be a pre-configured period, or it may be obtained by the third device interacting with the first device in advance.
  • Step 302 The second device sends a second request message, the second request message includes the second indication information, and correspondingly, the third device receives the second request message from the second device.
  • the second indication information is used to indicate the resources reserved by the second device, the resources reserved by the second device are similar to the resources reserved by the first device, and the resources reserved by the second device can be used for sending synchronization, At least one of broadcast and initial access channel.
  • the second request message also includes the attribute identifier of the second device itself.
  • step 302 specifically includes: the second device periodically sends the second request message or the second indication information to the third device, and correspondingly, the third device periodically receives the second request message from the second device. Request message or second indication information.
  • the method further includes: the third device sends a first response message to the first device, and the first response message includes the second indication information.
  • the method further includes: after the third device obtains the first indication information and the second indication information, saving the first indication information and the second indication information, and storing the first indication information in the first candidate shared resource Reserve the reserved resources of the first device and the second device.
  • the first initial partial bandwidth BWP resource includes the resource reserved by the first device
  • the second initial BWP resource includes the resource reserved by the second device
  • the frequency domain resources of the first initial BWP and the frequency domain resources of the second initial BWP are respectively indicated through the first indication information and the second indication information; further, the first indication information is specifically used to indicate the frequency of the first initial BWP. Domain resource, the second indication information is specifically used to indicate the frequency domain resource of the second initial BWP.
  • the frequency domain resource of the first initial BWP is a resource that the first device does not share with the second device, and the frequency domain resource of the first initial BWP is the first device and the first device of the second device.
  • Part of the candidate shared resource the frequency domain resource of the second initial BWP is the resource that the second device does not share with the first device, and the frequency domain resource of the second initial BWP is the resource of the first candidate shared resource Part.
  • Step 303 The first device sends a third request message, the third request message includes third indication information, and correspondingly, the third device receives the third request message from the first device.
  • the third indication information is used to indicate the time-frequency resource that the first device expects to be used for data transmission in the first candidate shared resource. Further, the third indication information is the same as the third indication information of step 103 in the foregoing embodiment 1. For details, please refer to the description of the foregoing embodiment 1, and details are not described in this embodiment.
  • a possible implementation manner is that the third device sends a first message to the first device, where the first message is used to instruct the first device to report that the first device expects to be in the first candidate shared resource Time-frequency resources used for data transmission. After receiving the first message, the first device sends the third indication information or the third request message to the third device.
  • the first message is a query message.
  • the query message includes at least one of the identification of the first device and the query resource type.
  • Step 304 The second device sends a fourth request message, the fourth request message includes the fourth indication information, and correspondingly, the third device receives the fourth indication information from the second device.
  • the fourth indication information is used to indicate the time-frequency resource that the second device expects to be used for data transmission in the first candidate shared resource. Further, the fourth indication information is the same as the fourth indication information of step 104 in the foregoing embodiment 1. For details, please refer to the description of the foregoing embodiment 1, and this embodiment will not be repeated.
  • the method further includes: according to one or more of the first indication information, the second indication information, the third indication information, and the fourth indication information, the third device In the first candidate shared resources, the shared resources of the first device and the shared resources of the second device are respectively determined.
  • the shared resource of the first device is a time-frequency resource actually used by the first device for data transmission
  • the shared resource of the second device is a time-frequency resource actually used by the second device for data transmission.
  • the third device separately determines the shared resources of the first device and the second device according to the first indication information, the second indication information, and the third indication information, including: the first initial BWP The frequency domain resource is 20 ⁇ 30MHz, the frequency domain resource of the second initial BWP is 80 ⁇ 90MHz, and the first device of the third indication information expects the frequency domain resource for data transmission to be 30 ⁇ 80MHz, then the third device determines the first The shared resource of the device in the first candidate shared resource 20-100 MHz is 30-80 MHz, and the shared resource of the second device in the first candidate shared resource 20-100 MHz is 90-100 MHz.
  • the third device separately determining the shared resources of the first device and the second device according to the first indication information, the second indication information, the third indication information, and the fourth indication information includes: As shown in Figure 10b, the frequency domain resource of the first initial BWP is 20-30 MHz, the frequency domain resource of the second initial BWP is 80-90 MHz, and the frequency domain resource expected by the first device of the third indication information for data transmission is 30 to 80 MHz, and the frequency domain resources expected by the second device indicated by the fourth indication information to be used for data transmission are 55 to 80 MHz and 90 to 100 MHz. Then the third device determines that the shared resource of the first device in the first candidate shared resource is 30-70 MHz, and the shared resource of the second device in the first candidate shared resource is 70-80 MHz and 90. ⁇ 100MHz.
  • Step 305 The third device sends a second response message, the second response message includes the shared resource of the first device, and correspondingly, the first device receives the second response sent by the third device news.
  • the shared resource of the first device is indicated by fifth indication information
  • the second response message includes the fifth indication information
  • Step 306 The third device sends a third response message, the third response message includes the shared resource of the second device, and correspondingly, the second device receives the third response from the third device news.
  • the shared resource of the second device is indicated by sixth indication information
  • the third response message includes the sixth indication information
  • sending the fourth request message by the second device specifically includes:
  • Step 3041 The third device sends a second message to the second device, where the second message is used to instruct the second device to report the time-frequency resource expected to be used for data transmission among the first candidate shared resources.
  • the query message includes at least one of the identifier of the second device and the query resource type.
  • Step 3042 After receiving the second message sent by the third device, the second device determines fourth indication information according to at least one of the second device identifier and the query resource type in the second message , Sending the fourth instruction information to the third device.
  • a possible sending manner is that the second device sends a query response message to the third device, and the query response message includes the fourth indication information.
  • the third device is used to centrally manage and allocate spectrum resources between the first device and the second device, which is convenient for operators to centrally manage and charge, thereby guiding operators to increase profits through spectrum sharing.
  • the first indication information and the second indication information in the foregoing embodiment 1 and embodiment 2 taking the first indication information in the foregoing embodiment as an example, in the When the first indication information is used to indicate resources reserved by the first device, such as SSB resources, this can be implemented in the following manner.
  • a specific implementation manner is to use the first indication information to respectively indicate the time domain position and the frequency domain position of the SSB resource.
  • an indication method is to use a pattern index (pattern index) to indicate, for example, the first indication information includes the pattern index A to pattern index E.
  • pattern index corresponds to a type of SSB pattern
  • a type of SSB pattern can be determined by the pattern index carried in the first indication information, and then the time domain position of each SSB in the SSB pattern can be obtained.
  • the first device periodically sends the first indication information, and the indication field carried in the first indication information may be ssb-PeriodicityServingCell.
  • the pattern index indicated by the first indication information sent in each period may be the same or different.
  • Another way to indicate is to use SCS to indicate. Since the 5G NR system protocol has specified the position of the SSB in the time domain, and also specified the maximum number of SSBs that can be supported by different subcarrier intervals (SCS), as shown in FIG. 3, the SSB patterns corresponding to different SCSs are shown. Therefore, when the first indication information includes the first SCS, the time domain position of the first SSB is determined according to the first SCS and the corresponding relationship between the first SCS and the SSB pattern. For example, the first SCS indicated in the first indication information is equal to 30kHz. According to the correspondence shown in Figure 3, it corresponds to the two SSB patterns of case B or case C at 30 kHz.
  • SCS subcarrier intervals
  • the first indication information also includes case C indication information.
  • the second device After the second device receives the first indication information sent by the first device, it can uniquely determine the time domain position of the SSB according to the first SCS equal to 30 kHz and case C carried in the first indication information.
  • the first device can use the existing SIB field of 5G NR to indicate the time domain position of the SSB, such as the SSB-PositionsInBurst field, which is used to indicate The time domain position used to transmit the SSB in the half frame of the SSB.
  • the existing SIB field of 5G NR to indicate the time domain position of the SSB, such as the SSB-PositionsInBurst field, which is used to indicate The time domain position used to transmit the SSB in the half frame of the SSB.
  • the first device also sends indication information that is not used to transmit SSB resources in a certain period, and after receiving the indication information, the second device can use the unused SSB resources to transmit other resources, such as PDSCH resources Wait. Further, the position indication information that is not used for transmitting SSB resources may be indicated by the ssb-PositionsInBurst field.
  • the first indication information When the first indication information is used to indicate the frequency domain position of the SSB, it may be indicated by at least one of the SSB frequency domain start position, frequency domain end position, and frequency domain width in the first embodiment, or The frequency domain start position of the SSB is determined through other parameters, such as the reference position and the offset of the lower boundary of the working bandwidth. For the specific process, please refer to the description in the first embodiment, which is not described in detail in this embodiment. Wherein, when indicating the frequency domain width of the SSB, the frequency domain width of the SSB can be set to a fixed value, such as 20 RB.
  • the method provided in this embodiment allows for more refined time-frequency resource position indication, that is, the specific time-domain position of the SSB is indicated through the pattern index or SCS, so that each end device can add the first candidate shared resource to the first candidate shared resource.
  • the resources of the indicated SSB are shared on other resources, which improves the utilization rate of the resources.
  • first indication information and the second indication information are information indicating resource reservations that are exchanged between the first device and the second device
  • the configuration and generation process of the first indication information in this embodiment is the same. It is applicable to the second indication information, so the process of generating and sending the second indication information by the second device is the same as the process of the first indication information, and this embodiment will not describe the second indication information in detail.
  • One possible implementation manner is to indicate in a bitmap manner.
  • the first candidate shared resource is divided into multiple time-frequency blocks, and each time-frequency block is composed of time domain and frequency. The area of the rectangle enclosed by the domain. And the size of each time-frequency block can be flexibly configured.
  • the bit values "1" and "0" of the binary string to indicate the resources reserved by the first device, for example, defining the resource block corresponding to the bit value "1" as the reserved resource , The resource block corresponding to the bit value "0" is not a reserved resource.
  • the time-frequency pattern list is composed of at least one time-frequency pattern ID, and each time-frequency pattern ID can be represented by a binary string and corresponds to a resource.
  • the corresponding resource may be SSB, PDCCH, PRACH, etc.
  • the time-frequency pattern list includes time-frequency pattern 1 to time-frequency pattern m, where time-frequency pattern 1 can be composed of n binary characters in binary, and each binary character represents a time-frequency block, starting from 1.
  • a character string composed of n characters to n represents a total of n time-frequency resources from time-frequency block 1 to time-frequency block n. And it is defined: the time-frequency block corresponding to the character bit value "1" is the reserved resource, and the time-frequency block corresponding to the bit value "0" is not the reserved resource.
  • the resource type and/or the value range of the ID indicated by each time-frequency pattern ID can be specified by the protocol, for example, the maximum value of the ID specified in the protocol is 4 or 8.
  • a bitmap or a time-frequency pattern list is used to indicate the reserved resources, so as to achieve a more refined resource indication.
  • FIG. 17 is a schematic structural diagram of a resource sharing device provided by an embodiment of this application.
  • the device may be the first device or the second device in the foregoing method embodiment, or may also be a network device, or may also be a component located in the network device, such as a chip.
  • the device can realize all the functions of the first device or the second device in the foregoing embodiments, and execute all the method steps of the first device or the second device.
  • the device 170 may include a receiving unit 171 and a sending unit 172.
  • the device may also include a processing unit, a storage unit, and other units or modules.
  • the sending unit 172 is configured to send first indication information to a second device, where the first indication information is used to indicate a frequency domain resource of a first initial BWP, and the frequency domain resource of the first initial BWP is the first device A resource not shared with the second device, and the frequency domain resource of the first initial BWP is a part of the first candidate shared resource of the first device and the second device.
  • the receiving unit 171 is configured to receive second indication information from the second device, where the second indication information is used to indicate a frequency domain resource of a second initial BWP, and the frequency domain resource of the second initial BWP is the first A resource that the two devices do not share with the first device, and the frequency domain resource of the second initial BWP is a part of the first candidate shared resource.
  • the sending unit 172 is further configured to send third indication information to the second device, where the third indication information is used to indicate the time and frequency that the first device expects to be used for data transmission in the first candidate shared resource Resources.
  • the receiving unit 171 is further configured to receive fourth indication information from the second device, where the fourth indication information is used to indicate the time and frequency that the second device expects to be used for data transmission in the first candidate shared resource Resources.
  • the frequency domain resources of the first initial BWP and the frequency domain resources of the second initial BWP do not overlap.
  • the first indication information is specifically used to indicate the frequency domain start position of the first initial BWP, the frequency domain end position of the first initial BWP, and the first initial BWP. At least one of the frequency domain widths.
  • the second indication information is specifically used to indicate at least one of the frequency domain start position of the second initial BWP, the frequency domain end position of the second initial BWP, and the frequency domain width of the second initial BWP.
  • it further includes a processing unit configured to determine the frequency domain starting position or the frequency domain of the first initial BWP according to the manner described in relation to FIG. 7 in the foregoing embodiment.
  • the frequency domain start position of the second initial BWP will not be described again.
  • the sending unit 172 is further configured to send a fifth field through the second field when indicating that the location has changed, where the fifth field is used to indicate the changed time-frequency resource expected to be used for data transmission position.
  • the sending unit 172 is specifically configured to send the first indication information and the third indication information to the second device through a first request message.
  • the processing unit is further configured to determine that the first initial BWP and the second initial BWP indicated by the second indication information are in the The time-frequency resource expected to be used for data transmission in the first candidate shared resource.
  • the specific determination process refer to the description of FIG. 7 in the foregoing embodiment, and details are not described herein again.
  • the processing unit is specifically further configured to perform according to the first initial BWP, the second initial BWP, and the first initial BWP indicated by the fourth indication information.
  • the time-frequency resource expected by the second device to be used for data transmission, and the time-frequency resource expected by the first device to be used for data transmission in the first candidate shared resource is determined.
  • the processing unit is specifically further configured to be configured according to the first initial BWP, the second initial BWP, and the second indicated by the fourth indication information.
  • the time-frequency resource that the device expects to be used for data transmission determines the shared resource of the first device in the first candidate shared resource; or, according to the first initial BWP, the second initial BWP, and the first candidate shared resource;
  • the time-frequency resource expected by a device for data transmission and the time-frequency resource expected by the second device for data transmission are determined by the shared resource of the first device among the first candidate shared resources.
  • the first indication information the second indication information, the third indication information, the fourth indication information, the frequency domain resources of the first initial BWP, the frequency domain resources of the second initial BWP, and
  • the first device determines the shared resource in the first candidate shared resource refer to the description of FIG. 7 in the foregoing embodiment, and details are not described herein again.
  • an embodiment of the present application also provides a schematic structural diagram of a resource sharing device.
  • the device may be the third device in the foregoing method embodiment, or may also be a network device, or may also be a component located in the network device, such as a chip.
  • the device can realize all the functions of the third device in the foregoing embodiment, and execute all the method steps of the third device.
  • the device 180 may include a receiving unit 181, a processing unit 182, and a sending unit 183.
  • the device may also include a storage unit and other units or modules.
  • the receiving unit 181 is configured to receive the first instruction information from the first device and the second instruction information from the second device.
  • the first indication information is used to indicate resources reserved by the first device; the second indication information is used to indicate resources reserved by the second device.
  • the receiving unit 181 is further configured to receive third instruction information from the first device and fourth instruction information from the second device.
  • the third indication information is used to indicate the time-frequency resources that the first device expects to be used for data transmission in the first candidate shared resource; the fourth indication information is used to indicate that the second device is The time-frequency resource expected to be used for data transmission among the first candidate shared resources.
  • the processing unit 182 is configured to, according to one or more of the first indication information, the second indication information, the third indication information, and the fourth indication information, in the first candidate shared resource Determine the shared resource of the first device, and generate fifth indication information.
  • the sending unit 183 is configured to send the fifth indication information to the first device, where the fifth indication information is used to indicate the shared resource of the first device among the first candidate shared resources.
  • the first initial partial bandwidth BWP resources include resources reserved by the first device, and the second initial BWP resources include resources reserved by the second device. .
  • the first indication information is specifically used to indicate the frequency domain resources of the first initial BWP, and the frequency domain resources of the first initial BWP are resources that the first device does not share with the second device, and the The frequency domain resource of the first initial BWP is a part of the first candidate shared resource of the first device and the second device;
  • the second indication information is specifically used to indicate the frequency domain resources of the second initial BWP, and the frequency domain resources of the second initial BWP are resources that the second device does not share with the first device, and the The frequency domain resource of the second initial BWP is a part of the first candidate shared resource.
  • the processing unit 182 is further configured to determine the sharing of the second device in the first candidate shared resource according to the description manner of FIG. 15 in the foregoing embodiment. Resources, as well as generating and sending the sixth instruction information, will not be repeated here.
  • the receiving unit 181 is specifically configured to periodically receive the first indication information sent by the first device; and periodically receive the second indication information sent by the second device.
  • the sending unit 183 is further configured to send a second message to the second device before receiving the fourth indication information from the second device.
  • the sending unit 183 is further configured to send a second message to the second device before receiving the fourth indication information from the second device.
  • the technical solutions of the foregoing embodiments of the present application can be applied to 5G mobile communication systems or NR communication systems, as well as future mobile communication systems, and so on.
  • the system includes at least one network device and at least one terminal device, for example, a first base station 10 and a second base station 20, and the first base station 10 is associated with the first terminal device 11.
  • the second base station 20 is associated with the second terminal device 21.
  • the first base station (base station, BS) 10 or the second base station 20 may be a global system for mobile communication (GSM) or code division multiple access (CDMA).
  • the base station (transceiver station, BTS) can also be the base station (NodeB) in wideband-CDMA (WCDMA), or the evolved base station (evolutional NodeB, eNB/e-NodeB) in LTE , Or the next generation eNB (ng-eNB) in the next generation of LTE, or the base station (gNB) in the NR, or the base station in the future mobile communication system or the wireless fidelity (WiFi) system
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network equipment.
  • the network device may be a wireless access network device.
  • the terminal device in the embodiment of the present application may be a device that provides services and/or data connectivity to users, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem, such as a wireless terminal.
  • the wireless terminal may communicate with one or more nodes via a radio access network (RAN), and the wireless terminal may be a mobile terminal, such as a mobile phone (or called a "cellular" phone)
  • a computer with a mobile terminal for example, may be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device, which exchanges language and/or data with the wireless access network.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • the wireless terminal may also be a subscriber unit (subscriber unit), subscriber station (subscriber station), mobile station (mobile station), mobile station (mobile), remote station (remote station), access point (access point), remote Terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), user equipment (user device) or user equipment (user equipment, UE), etc., embodiments of this application
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access point access point
  • remote Terminal remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user agent user agent
  • user equipment user device
  • user equipment user equipment
  • first base station 10 and the second base station 20 in this embodiment can be used as the first device and the second device in the foregoing embodiment, and are used to implement all method steps of the first device and the second device.
  • the system of the application scenario also includes a third network device, such as a centralized controller 30, which is used to implement All the method steps of the third device in the foregoing embodiment.
  • a third network device such as a centralized controller 30, which is used to implement All the method steps of the third device in the foregoing embodiment.
  • the centralized controller 30, or centralized control unit may be located in the core network, such as AMF in 5G network, MME in 4G network, or a session management entity, such as SMF in 5G, or also It may be other new physical entities, and may also be integrated in the first base station 10 or the second base station 20. This embodiment does not limit the specific form and structure of the centralized controller 30.
  • the present application also provides a communication device, which may be a network device, or the aforementioned first device, second device, or third device. Any kind of.
  • the communication device includes: a processor 210, a transceiver 220, a memory 230, a communication bus 240, and an input and output interface 250.
  • the processor 210 may include one or more processors, and the memory 230 may include one or more memories.
  • the memory 230 stores instructions (or stores computer programs).
  • the processor 210 is connected to the transceiver 220 through the input and output interface 250.
  • the processor controls the transceiver 220 to send or receive data, and the processor 210 processes the data to be sent and the data received.
  • the data received by the control transceiver 220 reaches the processor 210 through the input and output interface 250.
  • the processor 210 sends the data to be sent to the transceiver 220 through the input and output interface 250, and then the transceiver 220 sends the data to be sent.
  • the communication device may also include other more or less components, or a combination of some components, or different components, which is not limited in the embodiment of the present application.
  • the transceiver 220 is used to establish a communication channel, so that the communication device can connect to the network through the communication channel, so as to realize communication transmission between the communication device and other devices.
  • the transceiver 220 may be a module that completes the transceiver function.
  • it may include communication modules such as a wireless local area network (WLAN) module, a Bluetooth module, a baseband (baseband) module, and a radio frequency (RF) circuit corresponding to the communication device for performing wireless local area network Network communication, Bluetooth communication, infrared communication and/or cellular communication system communication, such as wideband code division multiple access (WCDMA) and/or high speed downlink packet access (HSDPA) .
  • WCDMA wideband code division multiple access
  • HSDPA high speed downlink packet access
  • the transceiver is used to control the communication of each component in the communication device, and can support direct memory access (direct memory access).
  • the various transceiver modules in the transceiver 220 generally appear in the form of integrated circuit chips, and can be selectively combined without including all transceiver modules and corresponding antenna groups.
  • the transceiver may only include a baseband chip, a radio frequency chip, and a corresponding antenna to provide communication functions in a cellular communication system.
  • the communication device can be connected to a cellular network or the Internet.
  • the communication bus 240 may include a path to transfer information between the above-mentioned components.
  • the processor 210 is the control center of the communication device, which uses various interfaces and lines to connect the various parts of the entire equipment device, runs or executes software programs and/or units stored in the memory 903, and calls data stored in the memory 230 , To perform various functions and various functions of the communication device and/or process data.
  • the processor 210 may be composed of an integrated circuit (IC), for example, may be composed of a single packaged IC, or may be composed of connecting multiple packaged ICs with the same function or different functions.
  • the processor may only include a combination of a central processing unit (CPU), a digital signal processor (Digital Signal Processor, DSP), and a control chip (such as a baseband chip) in the transceiver.
  • CPU central processing unit
  • DSP Digital Signal Processor
  • control chip such as a baseband chip
  • the memory 230 may include volatile memory (volatile memory), such as random access memory (Random Access Memory, RAM), and may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory), Hard disk (Hard Sisk Drive, HDD) or solid-state hard disk (Solid-State Drive, SSD); the memory may also include a combination of the above types of memory.
  • volatile memory volatile memory
  • non-volatile memory such as flash memory (flash memory), Hard disk (Hard Sisk Drive, HDD) or solid-state hard disk (Solid-State Drive, SSD); the memory may also include a combination of the above types of memory.
  • a program or code may be stored in the memory, and the processor 901 may implement the function of the communication device by executing the program or code.
  • the memory 230 may exist independently and be connected to the processor 210 through the communication bus 240; or the memory 903 may also be integrated with the processor 901.
  • the function/implementation process of the input/output interface 250 can also be realized by pins or circuits
  • the memory 903 is a storage unit in the chip, such as registers, caches, etc.
  • the storage unit may also be a storage unit located outside the chip.
  • the method of the first device or the second device shown in FIG. 7, FIG. 14, FIG. 15 in the foregoing embodiment can be implemented Steps, and the functions of the receiving unit 171 and the sending unit 172 in the device embodiment shown in FIG. 17 can be implemented by the transceiver 220 and the input/output interface 250, or implemented by the processor 210; what is to be implemented by the processing unit
  • the function can be realized by the processor 210; the function of the storage unit can be realized by the memory 230.
  • the transceiver 220 is configured to send first indication information to a second device, receive second indication information from the second device, and send to the second device
  • the third indication information, the fourth indication information received from the second device, etc., further, the content and configuration process of the first to fourth indication information are the same as those in the foregoing method embodiment, and will not be repeated.
  • the processor 210 is further configured to determine the frequency domain start position of the first initial BWP according to the method 1 and the method 2 in the foregoing method embodiment, and according to the method 3 and The fourth manner is to determine the frequency domain start position of the second initial BWP.
  • the processor 210 is further configured to determine the frequency domain start position of the first initial BWP according to the method 1 and the method 2 in the foregoing method embodiment, and according to the method 3 and The fourth manner is to determine the frequency domain start position of the second initial BWP.
  • the transceiver 220 is further configured to send the first indication information and the third indication information to the second device through a first request message.
  • the processor 210 is further configured to perform data transmission according to the first initial BWP, the second initial BWP, and the second device indicated by the fourth indication information.
  • the time-frequency resource determines the time-frequency resource that the communication device expects to be used for data transmission among the first candidate shared resources.
  • the processor 210 is further configured to determine the first initial BWP, the second initial BWP, and the time-frequency resources that the second device expects to be used for data transmission.
  • the shared resource of the device in the first candidate shared resource or, the first device according to the first initial BWP, the second initial BWP, and the time-frequency resource expected by the first device to be used for data transmission And the time-frequency resource expected by the second device to be used for data transmission, and determine the shared resource of the first device in the first candidate shared resource.
  • the method steps of the third device shown in FIG. 18 in the foregoing embodiment can be implemented, and the functions of the receiving unit 181 and the sending unit 183 in the foregoing device embodiment shown in FIG. 18 It may be implemented by the transceiver 220 and the input/output interface 250, or controlled and implemented by the processor 210; the function to be implemented by the processing unit 182 may be implemented by the processor 210; the function of the storage unit may be implemented by the memory 230.
  • the transceiver 220 is configured to receive the first indication information from the first device and the second indication information from the second device; and to receive the first indication information from the first device.
  • the processor 901 is configured to share information on the first candidate according to one or more of the first indication information, the second indication information, the third indication information, and the fourth indication information.
  • the shared resource of the first device is determined in the resource, and fifth indication information is generated.
  • the transceiver 220 is further configured to send the fifth indication information to the first device, and the fifth indication information is used to indicate The shared resource of the first device among the first candidate shared resources.
  • the transceiver 220 is further configured to send sixth indication information to the second device
  • the processor 210 is further configured to send sixth indication information according to the first indication information, the second indication information, and the One or more of the third indication information and the fourth indication information determines the shared resource of the second device in the first candidate shared resource.
  • the transceiver 220 is specifically configured to periodically receive the first indication information from the first device; and periodically receive the second indication information from the second device.
  • the transceiver 220 before receiving the fourth instruction information from the second device, is further configured to send a message to the second device, and the message is used to instruct the second device to report the The second device expects a time-frequency resource for data transmission in the first candidate shared resource.
  • the structure of the terminal device may be the same as the structure of the communication device shown in FIG. 20, for example, including a communication interface, a communication bus, a transceiver, a processor, and a memory, etc., and may also include other For component parts or unit modules, this embodiment does not limit the specific structure and component parts of each communication device.
  • an embodiment of the present application further provides a computer storage medium, wherein the computer storage medium may store a program, and the program may include some or all of the steps in each embodiment of the resource sharing method provided in the present application when the program is executed.
  • the storage medium can be a magnetic disk, an optical disc, a read-only storage memory ROM, or a random storage memory RAM, etc.
  • all or part of it may be implemented by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions, such as switching instructions.
  • the computer program When the computer program is loaded and executed by the computer, the processes or functions described in the foregoing embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a network node, computer, server, or data center. Transmission to another site, computer or server via wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, a magnetic tape, an optical medium (such as a DVD), or a semiconductor medium, such as a solid state hard disk, SSD, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

公开了一种资源共享的方法和装置,所述方法包括:第一装置通知第二装置在候选共享资源中第一初始部分带宽BWP的频域资源,该第一初始BWP的频域资源为第一装置不与第二装置共享的资源。第二装置通知第一装置在该候选共享资源中的第二初始BWP的频域资源,该第二初始BWP的频域资源为第二装置不与第一装置共享的资源。第一装置通知第二装置第一装置在该候选共享资源中期望用于数据传输的资源,第二装置通知第一装置第二装置在候选共享资源中期望用于数据传输的资源。本申请提供的方法,实现了第一装置和第二装置之间频谱资源的高效共享。

Description

一种资源共享的方法和装置 技术领域
本申请涉及无线通信领域,尤其涉及一种资源共享的方法和装置。
背景技术
未来,在运营商建设第五代移动通信系统(The 5th Generation,5G)的同时,企业和工业等行业也希望建设属于他们的私有网络。私有网络的部署是未来一个巨大的潜在市场,运营商对此有很大的兴趣,部分运营商已经为此专门成立了移动私有网络(mobile private Network,MPN)项目,为进军私有网络而做准备。
通过下一代蜂窝技术(比如,5G网络)来实现私有网络的业务已成为趋势。例如,运营商某些区域(如工业园区、办公楼时)同时建立共用网络(公网)和私有网络(私网)以支持不同的业务。从频率使用角度来看,现有频谱资源有限,运营商的频率需要在公网和私网之间共享。对于一些突发性的业务,需要在频率上预留一定的带宽以便为这些业务的运行提供保障。比如低时延高可靠连接(Ultra-Reliable and Low Latency Communications,URLLC)业务、定位业务等。综上所述,需要提供一种机制来协调私网和公网间的频谱资源,从而提高共享频谱资源的利用率。
发明内容
本申请实施例提供了一种资源共享的方法和装置,无线网络的网络装置之间通过信息交互或者通过集中控制单元协调来对资源进行共享,从而实现多个网络设备高效地共享频谱。
本申请实施例至少提供了如下技术方案:
第一方面,本申请实施例提供一种资源共享的方法,该方法可以应用于网络装置,或者网络装置中的芯片,该方法可以包括:
第一装置向第二装置发送第一指示信息,所述第一指示信息用于指示第一初始部分带宽BWP的频域资源,所述第一初始BWP的频域资源为所述第一装置不与所述第二装置共享的资源,所述第一初始BWP的频域资源为所述第一装置和所述第二装置的第一候选共享资源的一部分。所述第一初始BWP的频域资源是第一装置保留的资源。
第一装置从第二装置接收第二指示信息,所述第二指示信息用于指示第二初始BWP的频域资源,所述第二初始BWP的频域资源为所述第二装置不与所述第一装置共享的资源,所述第二初始BWP的频域资源为所述第一候选共享资源的一部分。所述第二初始BWP的频域资源是第二装置保留的资源。
第一装置向第二装置发送第三指示信息,所述第三指示信息用于指示所述第一装置在所述第一候选共享资源中期望用于数据传输的时频资源。其中,所述第一装置期望用于数据传输的时频资源与所述第一指示信息所指示的保留的资源不重叠。
第一装置从第二装置接收第四指示信息,所述第四指示信息用于指示所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源。其中,所述第二装置期望用于数 据传输的时频资源与所述第二指示信息所指示的保留的资源不重叠。
本方面提供的方法,第一装置利用第一指示信息,第二装置利用第二指示信息来指示初始BWP的频域资源,由于在该初始BWP频域资源中包括至少一种保留的资源,所以第一装置和第二装置通过指示初始BWP来统一地指示保留的资源,并且,这种统一指示的方法相较于指示每种保留资源的位置和大小,简单、易于实现,而且还节省信令开销。
另外,第一装置通过第三指示信息,第二装置通过第四指示信息来分别指示各自期望用于数据传输的资源,使得第一装置和第二装置互相获知对端期望使用的资源,从而为合理分配第一装置和第二装置的共享资源提供依据,进一步实现了两端装置之间频谱资源的高效共享。
需要说明的是,本申请实施例中,第一装置所使用的资源包括公网和私网资源,第二装置所使用的资源也包括公网和私网资源,因此本实施例的方法,通过第一装置和第二装置之间频谱资源的高效共享,从而达到两个装置间公网和私网资源的高效共享。
在一种可能的实施方式中,
第一初始BWP的频域资源与第二初始BWP的频域资源之间不重叠。
在一种可能的实施方式中,所述第一指示信息用于指示第一初始部分带宽BWP的频域资源,包括:
所述第一指示信息用于指示第一初始BWP的频域起始位置、第一初始BWP的频域终止位置和第一初始BWP的频域宽度中的至少一种;
所述第二指示信息用于指示第二初始BWP的频域资源,包括:
所述第二指示信息用于指示第二初始BWP的频域起始位置、第二初始BWP的频域终止位置和第二初始BWP的频域宽度中的至少一种。
在一种可能的实施方式中,
所述第一初始BWP的频域起始位置根据如下方式一或者方式二确定,具体地,
方式一:根据第一下行带宽的频域起始位置,和,所述第一下行带宽的频域起始位置与所述第一初始BWP的频域起始位置之间的偏移量确定;
方式二:根据同步广播块SSB的频域起始位置、所述SSB的频域起始位置与所述第一下行带宽的频域起始位置之间的偏移量、以及,所述第一下行带宽的频域起始位置与所述第一初始BWP的频域起始位置之间的偏移量确定;
所述第二初始BWP的频域起始位置根据如下方式三或者方式四确定,具体地,
方式三:根据第二下行带宽的频域起始位置,和所述第二下行带宽的频域起始位置与所述第二初始BWP的频域起始位置之间的偏移量确定;
方式四:根据SSB的频域起始位置、所述SSB的频域起始位置与所述第二下行带宽的频域起始位置之间的偏移量、以及所述第二下行带宽的频域起始位置与所述第二初始BWP的频域起始位置之间的偏移量确定。
其中,所述第一下行带宽为第一装置对应的系统带宽,所述第二下行带宽为第二装置对应的系统带宽。
在一种可能实施方式中,
所述第一初始BWP的频域宽度满足公式:
Figure PCTCN2019103385-appb-000001
其中,L RBs1为所述第一初始BWP的频域宽度占用的连续RB数量,RIV1为第一资 源指示值参数,RB start1为所述第一初始BWP的起始资源块位置,
Figure PCTCN2019103385-appb-000002
表示第一RB数量;其中,所述第一RB数量为所述第一下行带宽所包含的RB个数。
进一步地,
Figure PCTCN2019103385-appb-000003
可以理解为表示可用于所述第一下行带宽的带宽,或者表示所述第一初始BWP的候选频域范围。
所述第二初始BWP的频域宽度满足公式:
Figure PCTCN2019103385-appb-000004
其中,L RBs2为所述第二初始BWP的频域宽度占用的连续RB数量,RIV2为第二资源指示值参数,RB start2为所述第二初始BWP的起始资源块位置,
Figure PCTCN2019103385-appb-000005
表示第二RB数量。其中,所述第二RB数量为所述第二下行带宽所包含的RB个数。
进一步地,
Figure PCTCN2019103385-appb-000006
可以理解为表示可用于所述第二下行带宽的带宽,或者表示所述第二初始BWP的候选频域范围。
在一种可能的实施方式中,
所述第三指示信息指示的第一装置期望用于数据传输的时频资源不包括第一初始BWP的频域资源和第二初始BWP的频域资源,即第一装置期望用于数据传输的资源与第一初始BWP资源之间不重叠,并且第一装置期望用于数据传输的资源与第二初始BWP资源之间也不重叠。
在一种可能实施方式中,所述第三指示信息包括第一字段和第二字段。
进一步地,所述第一字段,用于指示第一装置期望用于数据传输的时频资源的资源类型,所述资源类型包括上行UL、辅助上行SUL和下行DL资源类型中的至少一种;
所述第二字段,用于指示每种所述资源类型对应的时频资源位置。
本实施例方式通过在第三指示信息中配置第一字段和第二字段,实现了第一装置对期望用于数据传输的时频资源的类型指示。
在一种可能的实施方式中,所述第三指示信息还包括第三字段。所述第三字段用于指示所述第二字段中的期望用于数据传输的时频资源的生效时刻。
在一种可能的实施方式中,所述第二字段还包括第四字段,
所述第四字段,用于指示每种所述资源类型对应的时频资源位置是否发生改变。
在一个具体示例中,在所述期望用于数据传输的时频资源的位置发生改变的情况下,在所述第二字段还包括第五字段,所述第五字段用于指示改变后的期望用于传输数据的时频资源位置,如果所述时频资源的位置发生改变,则发送所述第五字段。
如果所述期望用于数据传输的时频资源的位置未发生改变,则不需要包括第五字段,依然采用最近一次第三字段指示的时频资源进行数据传输,从而避免重复发送相同时频资源位置的指示信息。
本实施方式中,只有在第一装置期望用于数据传输的时频资源的位置发生变化时,才发送第五字段,相比于不区分时频资源位置发生变化的指示方法,避免了重复发送相同时频资源位置的指示信息,从而节省了信令开销。
在一种可能实施方式中,
第一装置通过第一请求消息向所述第二装置发送第一指示信息和第三指示信息。本实施方式通过一个请求消息发送第一指示信息和第三指示信息,相比于第一装置分别发送所述第一指示信息和所述第三指示信息的方式,节约了信令开销。
在一种可能的实施方式中,
在第一装置向第二装置发送第三指示信息之前,方法还包括:第一装置根据所述第一初始BWP和所述第二初始BWP,确定在所述第一候选共享资源中所述第一装置期望用于数据传输的时频资源。
在一种可能的实施方式中,
第一装置在所述第一候选共享资源中确定第一装置期望用于数据传输的时频资源,包括:第一装置根据所述第一初始BWP,所述第二初始BWP,和所述第二装置期望用于数据传输的时频资源,确定第一装置在第一候选共享资源中期望用于数据传输的时频资源。
在一个示例中,在第一装置和第二装置各自期望用于数据传输的资源之间不重叠的情况下,第一装置期望用于数据传输的资源为,在第一候选共享资源中除去第一初始BWP和第二初始BWP的频域资源,以及第二装置期望用于数据传输的资源之后剩余的资源中的一部分或全部。
在另一个示例中,在第一装置和第二装置期望用于数据传输的资源之间重叠的情况下,第一装置期望用于数据传输的资源可根据业务需求或者一定原则来确定。本实施例对业务的具体需求和原则不做具体限定。
在一种可能的实施方式中,
第一装置根据所述第一初始BWP,所述第二初始BWP,和所述第二装置期望用于数据传输的时频资源,确定第一装置在所述第一候选共享资源中的共享资源。
在另一种可能的实施方式中,
第一装置根据所述第一初始BWP,所述第二初始BWP,所述第一装置期望用于数据传输的时频资源,和所述第二装置期望用于数据传输的时频资源,确定第一装置在第一候选共享资源中的共享资源。
其中,第一装置在所述第一候选共享资源中的共享资源,与所述第三指示信息指示的第一装置期望用于数据传输的资源可能相同,也可能不相同。
第二方面,本申请实施例还提供一种资源共享的方法,该方法包括:
第三装置接收来自第一装置的第一指示信息,所述第一指示信息用于指示所述第一装置保留的资源;
第三装置接收来自第二装置的第二指示信息,所述第二指示信息用于指示所述第二装置保留的资源;
第三装置接收来自所述第一装置的第三指示信息,所述第三指示信息用于指示所述第一装置在第一候选共享资源中期望用于数据传输的时频资源;
第三装置接收来自所述第二装置的第四指示信息,所述第四指示信息用于指示所述第二装置在第一候选共享资源中期望用于数据传输的时频资源;
第三装置向所述第一装置发送第五指示信息,所述第五指示信息用于指示所述第一装置在第一候选共享资源中的共享资源,进一步地,所述第五指示信息指示的共享资源,可以根据所述第一指示信息、第二指示信息、第三指示信息和第四指示信息中的一种或多种,在所述第一候选共享资源中确定。
在一种可能的实施方式中,
在第一初始BWP资源中包括所述第一装置保留的资源的情况下,第一指示信息可以具 体用于指示所述第一初始BWP的频域资源,所述第一初始BWP的频域资源为第一装置不与第二装置共享的资源,进一步地,所述第一初始BWP的频域资源为所述第一候选共享资源的一部分。
在第二初始BWP资源中包括所述第二装置保留的资源的情况下,第二指示信息可以具体用于指示所述第二初始BWP的频域资源,所述第二初始BWP的频域资源为第二装置不与第一装置共享的资源,进一步地,所述第二初始BWP的频域资源为所述第一候选共享资源的一部分。
本实施方式,第三装置利用第一装置和第二装置各自上报的指示信息,来管理第一装置和第二装置之间的频谱资源,一方面可更加公平地进行频谱资源共享,另一方面便于运营商集中管理、收费和增加盈利。
在一个具体的示例中,
第一装置在所述第一候选共享资源中的共享资源可以基于以下指示信息确定,包括:
根据所述第一指示信息、所述第二指示信息确定;或者,
根据所述第一指示信息、所述第二指示信息和所述第三指示信息确定;或者,
根据所述第一指示信息、所述第二指示信息和所述第四指示信息确定;或者,
根据所述第一指示信息、所述第二指示信息、所述第三指示信息、和所述第四指示信息中确定。
在一种可能的实施方式中,上述方法还包括:
第三装置向第二装置发送第六指示信息,所述第六指示信息用于指示第二装置在所述第一候选共享资源中的共享资源;
进一步地,所述第六指示信息指示的共享资源是,第三装置根据所述第一指示信息、第二指示信息、第三指示信息、和第四指示信息中的一种或多种,在所述第一候选共享资源中确定的。
在一种可能的实施方式中,
第三装置接收来自第一装置的第一指示信息,包括:第三装置周期性接收来自所述第一装置的第一指示信息。
第三装置接收来自第二装置的第二指示信息,包括:第三装置周期性接收来自所述第二装置的第二指示信息。
本实施方式中,第一装置和第二装置通过周期性地上报用于指示第一装置和第二装置的保留资源信息,从而使得第三装置能够周期性的获取第一装置和第二装置的保留资源,从而为后续的动态指示做准备。
并且,如果第一装置或第二装置配置的保留资源发生变化时,还可以通过第一指示信息或第二指示信息来指示对应的保留资源的变化,进而提高了指示的灵活性。
在一种可能的实施方式中,
第三装置接收来自第一装置的第三指示信息,包括:第三装置周期性接收来自所述第一装置的第三指示信息。
第三装置接收来自第二装置的第四指示信息,包括:第三装置周期性接收来自所述第二装置的第四指示信息。
本实施方式中,第一装置和第二装置通过周期性地上报用于指示期望用于数据传输的 时频资源,使得第三装置能够周期性的获取第一装置和第二装置的资源需求,从而周期性地为第一装置和第二装置做资源分配。
在一种可能的实施方式中,
在第三装置接收来自第二装置的第四指示信息之前,方法还包括:第三装置向第二装置发送消息,所述消息用于指示第二装置上报所述第二装置在第一候选共享资源中期望用于数据传输的时频资源。
可选的,所述消息为查询消息。进一步地,所述查询消息中包括第二装置的标识和查询资源的类型中的至少一种。
本方面提供的方法,通过第三装置来集中管理和分配第一装置和第二装置之间的频谱资源,便于运营商集中管理、收费,从而可引导运营商通过频谱共享,增加盈利。
第三方面,本申请实施例还提供了一种资源共享的装置,该装置用于实现前述第一方面以及第一方面各种实施方式中的资源共享的方法。
其中,所述装置为第一装置或第二装置。
进一步地,所述第一装置或第二装置为一种网络设备。
可选的,所述装置中包括至少一个功能单元或模块,进一步地,所述至少一个功能单元为接收单元、处理单元或发送单元等。
第四方面,本申请实施例还提供了另一种资源共享的装置,所述装置用于实现前述第二方面以及第二方面各种实施方式中的资源共享方法。
其中,所述装置为第三装置,进一步地,所述第三装置为一种网络设备,比如集中控制器、集中控制单元、或服务器等。
第五方面,本申请实施例还提供了一种通信装置,包括处理器和存储器,所述处理器与所述存储器耦合,
所述存储器,用于存储指令;
所述处理器,用于调用所述指令使得所述通信装置执行前述第一方面以及第一方面各种实施方式中的方法,或者,所述处理器用于调用所述指令使得所述通信设备执行前述第二方面以及第二方面各种实施方式中的方法。
在一种可能的实施方式中,所述通信装置还包括收发器,所述收发器用于接收或发送对端设备的消息和数据等。
进一步地,所述通信装置为第三方面或第四方面所述的装置,
一种可能的实施方式中,当所述通信装置作为上述第三方面的装置时,可以是一种网络设备,比如第一基站或第二基站。
另一种可能的实施方式中,当所述通信装置作为上述第四方面的装置时,可以是一种网络设备,比如服务器或集中控制器等。
第六方面,本申请实施例还提供了一种计算机可读存储介质,所述存储介质中存储有指令,当所述指令在计算机或处理器上运行时,用于执行前述第一方面以及第一方面各种实现方式中的方法,或者用于执行前述第二方面以及第二方面各种实现方式中的方法。
第七方面,本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机指令,当所述指令被计算机或处理器执行时,可实现前述第一方面以及第一方面各种实现方式中的方法,或者实现前述第二方面以及第二方面各种实现方式中的方法。
第八方面,本申请实施例还提供了一种芯片系统,所述芯片系统包括处理器和接口电路,所述接口电路与所述处理器耦合,所述处理器用于执行计算机程序或指令,以实现前述第一方面以及第一方面各种实现方式中的方法,或者实现前述第二方面以及第二方面各种实现方式中的方法。
其中,所述接口电路用于与所述芯片系统之外的其它模块进行通信。
第九方面,本申请实施例还提供了一种通信系统,包括至少两个通信装置,所述至少两个通信装置包括至少一个第一通信装置和至少一个第二通信装置,所述第一通信装置或所述第二通信装置可以为上述第三方面所述的装置,用于实现上述第一方面以及第一方面各种实施方式中的方法。
在一种可能的实施方式中,所述通信系统中还包括第三通信装置。
所述第三通信装置可以是上述第四方面所述的装置,用于实现第二方面以及第二方面各种实施方式中的方法。
在一示例中,所述第一通信装置为第一装置,比如第一基站;所述第二通信装置为第二装置,比如第二基站。
在一示例中,所述第三通信装置为第三装置,比如服务器或集中控制器。
附图说明
图1为本申请实施例提供的一种下行物理信道和信号时频域分布的示意图;
图2为本申请实施例提供的一种SSB资源的示意图;
图3为本申请实施例提供的一种SSB图案定义以及在时隙内位置分布的示意图;
图4为本申请实施例提供的一种无线帧结构的示意图;
图5为本申请实施例提供的一种BWP频域位置的示意图;
图6a为本申请实施例提供的一种LTE和NR小区覆盖范围完全重叠的示意图;
图6b为本申请实施例提供的一种LTE和NR小区覆盖范围部分重叠的示意图;
图7为本申请实施例提供的一种资源共享的方法的流程图;
图8为本申请实施例提供的一种利用初始BWP来指示频域资源的示意图;
图9a为本申请实施例提供的一种确定第一候选共享资源的示意图;
图9b为本申请实施例提供的一种确定第三指示信息的示意图;
图9c为本申请实施例提供的一种确定第四指示信息的示意图;
图9d为本申请实施例提供的另一种确定第四指示信息的示意图;
图9e为本申请实施例提供的另一种确定第三指示信息的示意图;
图10a为本申请实施例提供的一种确定第一装置的共享频域资源的示意图;
图10b为本申请实施例提供的另一种确定第一装置的共享频域资源的示意图;
图11a为本申请实施例提供的一种指示初始BWP频域资源起始位置的示意图;
图11b为本申请实施例提供的另一种指示初始BWP频域资源起始位置的示意图;
图11c为本申请实施例提供的一种第一初始BWP频域范围的示意图;
图11d为本申请实施例提供的另一种第一初始BWP频域范围的示意图;
图12a为本申请实施例提供的一种通过第二字段来指示第一装置期望用于数据传输的资源的示意图;
图12b为本申请实施例提供的一种通过位图来指示第一装置期望用于数据传输资源的示意图;
图13为本申请实施例提供的一种通过PRB pattern来指示第一装置期望用于数据传输的资源的示意图;
图14为本申请实施例提供的另一种资源共享的方法的流程图;
图15为本申请实施例提供的又一种资源共享的方法的流程图;
图16为本申请实施例提供的一种通过时频pattern list指示保留资源的示意图;
图17为本申请实施例提供的一种第一装置的结构示意图;
图18为本申请实施例提供的一种第三装置的结构示意图;
图19a为本申请实施例提供的一种应用环境的场景示意图;
图19b为本申请实施例提供的另一种应用环境的场景示意图;
图20为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。在对本申请实施例的技术方案说明之前,首先结合附图对本申请实施例的应用场景进行说明。
本申请技术方案主要应用于未来行业私有网络与公共网络之间资源共享的场景,其中所述行业私有网络可以简称为“私网”,包括但不限于工业制造工厂、工业园区、生产园区等。所述公共网络可以简称为“公网”,例如长期演进(long term evolution,LTE)系统、第五代(5th generation,5G)移动通信系统,或新无线(new radio,NR)通信系统,以及未来的移动通信系统等。其中,所述新无线也可称为新空口。
可选的,所述私网又称为专用网络,或简称为“专网”。
本申请的技术方案主要为协调分配给不同网络设备的公网与私网的频谱资源,从而达到各个设备对频谱资源的合理利用。其中,所述频谱资源包括5G NR通信系统中,信道和信号占用的频谱资源。为了便于后续方案理解,首先介绍相关背景技术,包括:5G NR物理信道和信号的名称、功能,以及5G NR的物理信道所在的时频资源位置和大小,部分带宽(Bandwidth Part,BWP)等。
表1为5G网络的下行物理信道/信号和功能对应表,表2为5G网络的上行物理信道/信号和功能对应表。所述物理信道按使用对象可分为公共信道和专用信道;按用途可分为控制信道和数据信道。进一步地,公共信道和控制信道可用于传输和接收所述数据信道,其中,所述公共信道包括:同步信号(Synchronization Signal,SS)、物理广播信道(Physical broadcast channel,PBCH)和物理随机接入信道(Physical Random Access Channel,PRACH)。所述控制信道包括物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理上行控制信道(Physical Uplink Control Channel,PUCCH)。所述数据信道包括物理下行共享信道(Physical Downlink Shared Channel,PDSCH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。具体地,如下面的表1和表2所示。
表1,下行物理信道/信号和功能对应表
Figure PCTCN2019103385-appb-000007
Figure PCTCN2019103385-appb-000008
表2,上行物理信道/信号和功能对应表
Figure PCTCN2019103385-appb-000009
图1为一种下行物理信道和信号的时频域分布的示意图。下行物理信道被划分出多块资源,具体地,被划分的资源包括PDCCH、PDSCH、SS/PBCH和CSI-RS等。其中,所述PDSCH可用于承载DMRS或PT-RS。
如图1所示,以子帧(subframe)0的一个下行时隙(slot)0为例,对于PDCCH资源,被配置为在时域上占用时隙0的前3个符号,即第0至第2个符号,其频域上使用的资源可配置。并且支持PDCCH和PDSCH资源在相同符号上频分复用(Frequency-division multiplexing,FDM)。
对于承载有DMRS的PDSCH资源(英文:DMRS for PDSCH),在划分时该PDSCH资源的时域、频域位置,时频资源的大小均可配置;并且支持DMRS和PDSCH资源在相同符号上频分复用。
对于同步信号/物理广播信道(SS/PBCH,SSB)资源的划分,其时域位置一般是固定 的,频域位置可配置。例如,配置该SSB在频域上的起始位置为某个RE,但该SSB在频域上占用20个资源块(resource block,RB);并且支持SSB和PDSCH资源在相同符号上频分复用。
对于CSI-RS资源的划分,其时域、频域位置以及带宽大小均可配置,并且支持CSI-RS和PDSCH相同符号上频分复用。
另外,在下行物理信道中还被划分出一块资源用于传输PT-RS,该用于传输PT-RS的资源在图1中未示出,具体地,该PT-RS资源的时域、频域位置以及带宽大小均可配置。可选的,将所述PT-RS资源配置在PDSCH资源内。
在下面的实施例中,在图1中示出的PDCCH、PDSCH、SSB和CSI-RS等资源被划分之后,这些资源的位置和大小将通过指示信息的方式通知给对端的接收设备。具体地,发送端配置所述指示信息的过程,以及所述指示信息中所携带的内容在后续的实施例中会详细介绍。对于这些被划分的资源,例如SSB资源,其时频位置以及大小可以统一地设置。
举例说明,图2为一种SSB资源的示意图。SSB可称为同步广播块(SS PBCH Block),一个SSB在频域上占用20RB,时域上占用4个连续符号。具体地,一个SSB包括:主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS)和PBCH。其中,在时域上的4个连续符号中,PSS位于第1个符号,SSS位于第3个符号,PBCH位于第2和第4个符号。
在5G NR中,每个SSB的频域位置可以灵活配置,用户设备(User equipment,UE)可通过盲检信道来获得所述SSB的频域位置;而SSB的时域位置也可以配置,例如通过协议来规定,不同子载波间隔(subcarrier carrier space,SCS)和SSB时域图案(pattern)之间的对应关系,通过SSB时域图案可确定SSB的时域位置。表3示出了一种SCS和SSB时域图案之间的对应关系。所述SSB时域图案反映出下行物理信道上所有SSB的时域符号的分布情况,对于各个时域图案可以由不同的方案(case)来表示。具体地,图3给出了方案A到方案E 5种不同的时域图案示意图。
表3,SCS和SSB时域图案之间的对应关系
Figure PCTCN2019103385-appb-000010
Figure PCTCN2019103385-appb-000011
例如,UE根据自己的NR工作频段以及表3所示对应关系,确定自己的SSB子载波间隔,以及SSB子载波间隔所对应的SSB时域图案,所述SSB时域图案为方案A至方案E中的一个,然后根据确定的方案得到每个SSB的时域位置。
需要说明的是,在n5的工作频段上(800M)可支持15KHz和30KHz两种SCS,当UE工作在n5频段时,需要分别使用15KHz和30KHz两种SCS做SSB信道盲检,并根据SSB信道盲检结果确定目标SCS。例如使用15kHz检测到SSB,则确定目标SCS为15kHz。然后根据表3所示的对应关系,UE确定出15kHz的SCS所对应的SSB时域图案是方案A,最后,UE根据方案A确定每个SSB的时域位置。
图3为方案A至方案E所对应的SSB图案定义及在时隙内位置分布的示意图。如图3所示,每个SSB图案在时域上占用4个连续的OFDM符号,不同方案对应的SSB图案在时域上的分布位置不同。例如,当使用方案A时,第一个SSB图案位于第一个时隙的第2至5OFDM符号,第二个SSB图案位于第一个时隙的第8至11OFDM符号。
需要说明的是,在子载波间隔是30KHz时,SSB图案包括方案B和方案C,在这种情况下,配置方案C是主用的SSB图案。
可选的,对于SSB的周期,可以通过系统消息块(System Information Block,SIB)来配置,例如网络设备通过SIB1来配置SSB的广播周期。进一步地,所述SSB的广播周期可以为5ms、10ms、20ms、40ms、80ms和160ms等。
另外,协议规定了SSB支持的最大块(block)的个数。例如对于Sub 3G,定义最大4个SSB;对于Sub 3G至Sub 6G,定义最大8个SSB;对于Sub 6G以上,定义最大64个SSB。当小区中实际发送的SSB个数小于协议中定义的最大SSB个数时,会有剩余SSB资源未被使用,为了使资源充分利用,基站可以指示在这些剩余的SSB资源上发送PDSCH资源。一种实现方式是,利用系统消息(system Information,SI)或无线资源控制(Radio Resource Control,RRC)信令来指示未被使用的SSB资源位置。
可以理解地,所述SSB的时域图案可通过NR工作频段和SCS取值来确定,进一步地,所述SCS取值可通过UE盲检信道确定。但对于本实施例,两端交互的设备是对等设备,例如基站与基站之间的交互,所以,各端基站彼此是不知道对端基站的NR工作频段和SCS 取值,为了实现对SSB资源的位置指示,一种具体的实现方式是,两端基站彼此交互各自的NR工作频段、SCS取值、SSB周期等。更进一步地,两端设备互相指示和确定SSB资源的过程将在后续的实施例中详细说明。
其中,在上述对SSB时域图案指示的过程中,涉及5G NR无线帧结构以及该无线帧(radio frame)所包含的子帧(subframe)数、时隙(slot)数、符号(symbol)之间的对应关系。表4给出了一种NR子载波配置、每时隙符号数、每子帧时隙数之间的对应关系,与LTE每个子帧包含的时隙个数固定不同,5G NR的每个子帧包含的时隙个数可变,且所述每个子帧包含的时隙个数与子载波间隔取值有关。
为了便于理解,图4给出当子载波间隔为30KHz时,5G NR网络无线帧结构示意图。如图4所示,一个无线帧长度T f=10ms,T f表示一个无线帧的长度;每个无线帧由10个子帧组成,每个子帧长度T sf=1ms,T sf表示一个子帧的长度;每个子帧包含两个时隙,即1subframe=2slot;每个时隙由14个OFDM符号组成,即1slot=14OFDM。
表4,NR子载波配置、每时隙符号数、每子帧时隙数之间的对应关系
Figure PCTCN2019103385-appb-000012
根据表4的对应关系,当子载波间隔为60kHz,循环前缀为标准时,每子帧时隙数
Figure PCTCN2019103385-appb-000013
为4,每时隙的符号数
Figure PCTCN2019103385-appb-000014
为14,每个无线帧时隙数
Figure PCTCN2019103385-appb-000015
为40。
由于5G NR业务种类多样,不同的业务对频谱资源的需要也不同,所以引入部分带宽(Bandwidth part,BWP)概念。系统可以根据不同业务的需要来配置BWP。具体地,BWP按照种类可以划分为:初始(Initial)BWP、专用(Dedicated)BWP,激活(Active)BWP和默认(Default)BWP。
所述初始BWP是UE初始接入阶段使用的BWP,即初始接入阶段的信号和信道在该初始BWP内传输。所述专用BWP是UE在RRC连接态时使用的BWP。一般地,一个UE最多可以被配置4个专用BWP。所述激活BWP是UE在RRC连接态的某一时刻被激活的BWP,该激活BWP可以是多个专用BWP中的一个或多个。在现有标准R15协议版本中,UE在RRC连接态时,在某一时刻只配置一个激活BWP。所述默认BWP是UE在RRC连接态时,当UE的BWP不活跃定时器(inactivity timer)超时后该UE会从激活BWP回到默认的BWP上;该默认BWP可以是多个专用BWP中的一个。具体地,可以通过RRC信令指示UE选择某一个专用BWP来作为所述默认BWP。
对于BWP的频域位置指示,一种可能的实现方式是通过资源块(resource block,RB)索引指示。具体地,设置点A(point A)作为基本参考点。所述点A为资源组(Resource group,RG)所有RB的基本参考点,所述点A可以通过参考位置(Reference Location) 和偏移量(Offset)计算来获得。如图5所示,在频域上点A位置等于参考位置与偏移量之和,即表达式为:point A=Reference Location+Offset。其中,所述参考位置是第一个SSB的起始位置,进一步地,所述SSB的起始位置可以是第一装置和第二装置在进行SSB交互时获得。进一步地,关于RB,RG参见TS 38.211中4.4章节。
可选的,所述offset的取值可以为正值,也可以为负值。
公共资源块(Common RB,CRB)可用于RG内RB的索引,且CRB的第0号子载波与点A对齐。物理资源块(Physical RB,PRB)可用于BWP内RB的索引,且在每个BWP内从0开始计数。一般地,PRB与CRB的资源配置参数(numerology)相同。其中,所述资源配置参数可包括以下至少一种:子载波间隔、时隙长度、循环前缀(Cyclic prefix,CP)。另外,对于不同资源配置参数,点A的位置一般都是固定的,不同资源配置参数的CRB的0号子载波位置也都相同,且与点A位置相同,但各自独立编号。
现有的LTE和NR频谱共享的方案,主要针对小区覆盖范围完全重叠或部分重叠的LTE小区和NR小区。如图6a和图6b所示,在LTE和NR频谱共享流程中,LTE小区的基站(eNB)和NR小区的基站(gNB)之间通过互发消息来通知各自期望使用的资源,例如eNB向gNB发送资源请求消息,该资源请求消息中包括eNB期望使用的资源,gNB接收后向eNB回复资源响应消息。该资源响应消息用于向所述eNB反馈,所述gNB收到所述eNB期望使用的资源情况。可选的,该资源响应消息还用于指示所述gNB期望使用的资源情况。
例如,所述资源请求消息为演进的通用陆地无线接入-新无线小区资源协调请求(E-UTRA-NR CELL RESOURCE COORDINATION REQUEST);所述资源响应消息为演进的通用陆地无线接入-新无线小区资源协调响应(E-UTRA-NR CELL RESOURCE COORDINATION RESPONSE)。其中E-UTRA即为LTE,演进的通用陆地无线接入(Evolved Universal Terrestrial Radio Access,E-UTRA)。
表5示出LTE和NR资源共享与公网和私网的资源共享这两种资源共享的不同点。比如LTE和NR资源共享限制了使用场景,且未考虑私网(比如私网标识)、以及NR的一些特性(比如初始BWP和SSB资源),所以现有的LTE和NR频谱共享的方案,不能直接用于公网和私网共享资源,需要设计新的频谱共享方案,从而实现公网和私网的频谱共享。
表5,公网和私网共享资源与LTE-NR资源共享的区别
Figure PCTCN2019103385-appb-000016
Figure PCTCN2019103385-appb-000017
综上所述,当需要私网和公网业务共享频谱资源时,考虑未来频谱稀缺以及不同业务对频谱资源的需求不同,需要高效共享频谱资源,但现有频谱共享技术不适用于公网和私网的共享场景。鉴于此,本申请实施例提出一种资源共享的方法,通过第一装置和第二装置之间的信令交互、或者通过集中控制器来统一协调两个装置之间的频谱资源,从而实现第一装置和第二装置之间的高效地频谱资源共享。
下面对本实施例提供的资源共享方法做详细的说明。
实施例一
本实施例提供一种资源共享的方法,该方法可应用于至少两个装置组成的通信系统,比如,系统包括第一装置和第二装置。进一步地,所述第一装置可以是一种网络设备,该网络设备包括基站(base station,BS)进一步地,所述基站可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband-CDMA,WCDMA)中的基站(NodeB),还可以是LTE中的演进型基站(evolutional NodeB,eNB/e-NodeB),或者下一代LTE中的演进型基站(next generation eNB,ng-eNB),或者NR中的基站(gNB),或者,未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
本申请实施例中,所述第二装置与所述第一装置是对等的设备,可以是与第一装置相同的网络设备。另外,在实现本发明方式的所涉及的步骤和工作原理上,所述第一装置和所述第二装置是对等的,即都要进行相同的处理。
本申请实施例中,所述第一装置可以是公网基站,也可以是私网基站。对应地,所述第二装置可以是公网基站或私网基站。例如,在一个场景下,第一装置是公网基站,第二装置是私网基站;在另一个场景下,第二装置是公网基站,第一装置是私网基站。
如图7所示,本申请实施例提供了一种资源共享的方法和装置,所述方法至少可以包括以下步骤:
步骤101:第一装置向第二装置发送第一指示信息。
所述第一指示信息用于指示所述第一装置保留的资源。例如,保留的资源用于传输PSS、SSS、PBCH、Common PDCCH和PRACH等重要信号。由于用于传输上述重要信号的资源不与第二装置共享,所以第一装置要预先预留该保留的资源,并将该保留的资源通知第二装置。
在一个示例中,所述第一指示信息用于指示第一初始部分带宽BWP的频域资源,所述第一初始BWP的频域资源为所述第一装置不与所述第二装置共享的资源,所述第一初始BWP的频域资源为所述第一装置和所述第二装置的第一候选共享资源的一部分。所述第一候选共享资源为第一装置和第二装置所能够使用的公共资源或公共带宽。
在一种可能的设计中,所述第一初始BWP资源中包含所述第一装置保留的资源。当第一初始BWP资源被保留时,其包含的所述第一装置保留的资源也被保留,因此通过指示第一初始BWP的资源来达到指示保留所述第一装置的保留资源的目的。进一步地,在指示第 一初始BWP的资源过程中,一般地,对于初始BWP的时域位置可灵活配置,例如为整个时域资源,所以本实施例中通过第一指示信息来指示第一初始BWP的频域位置即可。
比如,在NR系统中,初始BWP资源中包括:PSS、SSS、PBCH(即SSB)以及公共(Common)PDCCH、PRACH等保留资源,所以可以利用初始BWP来统一指示这些保留资源的频域位置。参见图8,所述第一装置保留的资源还包括:第一装置用于发送系统消息SI和寻呼(paging)消息的资源,且这些资源可以在Common PDCCH资源上。
步骤102:第一装置从第二装置接收第二指示信息。
所述第二指示信息用于指示所述第二装置保留的资源。对于保留的资源的描述,参见步骤101。第二装置要预先预留第二装置保留的资源,并将该保留的资源通知第一装置。
在一个示例中,所述第二指示信息用于指示第二初始BWP的频域资源,所述第二初始BWP的频域资源为所述第二装置不与所述第一装置共享的资源,所述第二初始BWP的频域资源为所述第一候选共享资源的一部分。在一种可能的设计中,所述第二初始BWP资源中包含所述第二装置保留的资源。
可选的,在第二指示信息来指示第二初始BWP的频域资源时,一种可能的情况是,第一初始BWP的频域资源与第二初始BWP的频域资源之间不重叠,即第一装置指示的第一初始BWP的频域资源和第二装置指示的第二初始BWP的频域资源之间在所述第一候选共享资源中没有重叠的频谱资源。
在一个示例中,所述第一指示信息和所述第二指示信息又称为保留资源的指示信息。
步骤103:第一装置向第二装置发送第三指示信息,所述第三指示信息用于指示所述第一装置在所述第一候选共享资源中期望用于数据传输的时频资源。
例如,所述第一候选共享资源为第一装置的可用资源和第二装置的可用资源的交集,可选的,第一候选共享资源可以是第一装置的全带宽、或者是第二装置的全带宽、或者第一装置和第二装置的公共带宽。如图9a所示,第一装置的可用资源是0~100兆赫兹(MHz),第二装置的可用资源是20~120MHz,第一装置和第二装置的第一候选共享资源为20~100MHz。并且,如图9b所示,在该第一候选共享资源20~100MHz中,所述第一指示信息所指示的第一初始BWP的频域资源是20~30MHz,该第一初始BWP的频域资源为所述第一候选共享资源的一部分。所述第二指示信息所指示的第二初始BWP的频域资源是80~90MHz,也属于所述第一候选共享资源的一部分。
所述第三指示信息指示的时频资源可以是该第一候选共享资源中除去第一初始BWP的频域资源后的剩余资源中的一部分或全部;或者,第三指示信息指示的时频资源还可以是该第一候选共享资源中除去所述第一初始BWP的频域资源以及所述第二初始BWP的频域资源之后,剩余资源中的一部分或全部。
可选的,所述第三指示信息指示的第一装置期望用于数据传输的时频资源,不包括所述第一初始BWP的频域资源和所述第二初始BWP的频域资源。
第二装置接收到第三指示信息后,根据所述第三指示信息指示的第一装置期望用于数据传输的时频资源,以及第一装置的第一保留资源来计算第一装置的资源分配情况。当最近一次收到的第三指示信息指示的内容和最近一次收到的第一保留资源存在冲突时,第二装置会优先考虑第一保留资源。第三指示信息指示的内容和最近一次收到的第一保留资源存在冲突意味着,第三指示信息指示的期望用于数据传输的时频资 源和所述第一保留资源之间存在重叠。在这种情况下,第二装置优先考虑第一保留资源是指,在计算第一装置的资源分配时,第二装置会以最近一次收到保留资源指示为准。
例如,如果第二装置最近一次收到的第一装置期望用于数据传输的时频资源为20~60MHz,而最近一次收到的第一装置的保留资源为20~30MHz,那么第二装置在计算第一装置的资源分配时,会认为第一装置的保留资源为20~30MHz,而第一装置期望用于数据传输的时频资源为30~60MHz。
步骤103具体包括以下实现方式:
第一种实现方式是,所述第三指示信息指示第一装置期望用于数据传输的频域资源为:所述第一候选共享资源中除去所述第一初始BWP所指示的频域资源20~30MHz,和第二初始BWP所指示的频域资源80~90MHz之后的剩余资源,所述剩余资源包括30~80MHz,以及90~100MHz,如图9b所示。可选的,所述第一装置期望用于数据传输的频域资源还可以是所述剩余资源中的一部分。例如30~50MHz或者90~100MHz。
第二种实现方式是,所述第一装置期望用于数据传输的频域资源还可以是,所述第一候选共享资源中除去所述第一初始BWP所指示的频域资源后剩余的资源,例如,在20~100MHz中除去所述第一指示信息所指示的频域资源20~30MHz之后的资源,即为30~100MHz,或者还可以是该剩余资源中的一部分,例如30~50MHz。
第三种实现方式是,所述第一装置期望用于数据传输的频域资源还可以是在所述第一候选共享资源中的资源的全部或一部分,例如,在20~100MHz中的资源,或者还可以是20~100MHz中的一部分,例如,30~60MHz。
在上述实施方式中,所述第一装置期望用于数据传输的频域资源可以是频域连续的、或者是频域不连续的,这里不做限制。
此外,在上述步骤101至步骤103之后方法还包括:
步骤104:第一装置从第二装置接收第四指示信息,所述第四指示信息用于指示所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源。
其中,所述第二装置期望用于数据传输的时频资源,与,所述第一装置期望用于数据传输的时频资源之间,可以存在重叠资源,也可以不存在重叠资源。
所述第四指示信息所指示的时频资源可以是:所述第一候选共享资源中除去所述第二初始BWP的频域资源后的剩余资源中的一部分或全部;或者,还可以是所述第一候选共享资源中除去所述第一初始BWP的频域资源,以及除去所述第二初始BWP的频域资源之后剩余资源中的一部分或全部;或者,还可以是所述第一候选共享资源中除去第一初始BWP、第二初始BWP的频域资源,以及所述第三指示信息指示的资源之后,剩余资源中的一部分或全部。
在一个示例中,第二装置确定其期望用于数据传输的频域资源为:第一候选共享资源20~100MHz中除去所述第一初始BWP的频域资源20~30MHz,和第二初始BWP所指示的频域资源80~90MHz之后的剩余资源,所述剩余资源包括30~80MHz,以及90~100MHz。
在一个示例中,第二装置确定其期望用于数据传输的频域资源为:第一候选共享资源20~100MHz中进行资源指示。
在一个示例中,在第一装置期望用于数据传输的频域资源与第二装置期望用于数据传 输的频域资源之间不重叠的情况下,第二装置确定所述第四指示信息的过程,如图9c所示,第一初始BWP的频域资源为20~30MHz,第二初始BWP的频域资源为80~90MHz,第一装置期望用于数据传输的频域资源为30~80MHz,则第二装置确定其期望用于数据传输的频域资源为90~100MHz。即在所述第一候选共享资源20~100MHz中除去20~30MHz、80~90MHz以及30~80MHz之后剩余的资源。
在一个示例中,在第一装置期望用于数据传输的频域资源与第二装置期望用于数据传输的频域资源之间,存在重叠资源的情况下,第二装置确定所述第四指示信息的过程,如图9d所示,第一初始BWP的频域资源为20~30MHz,第二初始BWP的频域资源为80~90MHz,第一装置期望用于数据传输的频域资源为30~80MHz,第二装置发现自己期望用于数据传输的资源与第一装置期望用于数据传输的资源之间存在重叠,比如所述重叠的资源为40~80MHz,则为了避免冲突,第二装置可以指示自己期望占用该重叠资源的一部分,比如50%,本示例中,假设第二装置期望占用所述重叠资源40~80MHz中的60~80MHz,然后再加上未与第一装置有重叠的资源90~100MHz,得到第四指示信息中第二资源期望用于数据传输的频域资源为60~80MHz以及90~100MHz。
需要说明的是,在本示例中,对于期望资源中重叠部分的占用情况,第二装置可以根据当前业务需求来确定期望占用所述重叠资源的大小,或者还可以通过其他条件来确定,本实施例对此不做具体限制。
另外,需要说明的是,本实施例中,不对上述步骤101和102之间的执行顺序进行限定,并且也不对步骤103和104之间的执行顺序进行限定。
例如,在首先执行上述步骤102,然后执行步骤101的情况下,即第一装置先接收第二装置发送的第二指示信息,然后再配置第一指示信息,该第一指示信息所指示的第一初始BWP的频域资源与第二指示信息所指示的第二初始BWP的频域资源不重叠,最后将所述第一指示信息发送给第二装置。
应理解,第一装置在执行完上述步骤101和102后,可以先执行步骤104,然后再执行步骤103,第一装置可以第一初始BWP的频域资源和第二指示信息指示的第二初始BWP的频域资源,以及所述第四指示信息,确定第一装置期望用于数据传输的资源,并将该资源通过第三指示信息发送给第二装置。
在一示例中,如图9e所示,第一初始BWP的频域资源为20~30MHz,第二指示信息指示的第二初始BWP的频域资源为80~90MHz,第四指示信息指示的第二装置期望用于数据传输的频域资源为55~80MHz和90~100MHz。第一装置确定其期望用于数据传输的频域资源为30~55MHz。具体地,所述30~55MHz为在第一候选共享资源20~100MHz中除去20~30MHz,80~90MHz,以及所述第四指示信息中的部分资源55~80MHz和90~100MHz之后的剩余资源。其中,所述部分资源中的55~80MHz可以根据第一装置或第二装置的业务需求确定,本示例对此不予限定。
本申请实施例中,所述第三指示信息所指示的资源,是第一装置根据自身业务对共享资源的需求来确定。所述第四指示信息所指示的资源,是第二装置根据自身业务对共享资源的需求来确定,本申请实施例对第一装置确定第三指示信息的具体过程,以及第二装置确定第四指示信息的具体过程不予限定。
在本申请实施例方式中,第一装置和第二装置利用第一指示信息和第二指示信息来统 一指示初始BWP的资源位置,由于该初始BWP频域资源中包括至少一种保留的资源,所以通过初始BWP来统一指示保留资源的方式,相比于在指示信息中携带每种资源的具体位置和大小的方式,简单、易于实现,并且节省信令交互的开销。
另外,通过第三指示信息和第四指示信息来分别指示第一装置和第二装置期望用于数据传输的时频资源,使得这两个装置互相获知对方期望使用的资源,从而为合理分配这两个装置的实际共享资源提供依据,本方法通过两端装置实时地交互指示信令,实现了第一装置和第二装置之间频谱资源的高效共享。
可选的,在上述步骤101至步骤104之后,方法还包括:
步骤105:第一装置确定在所述第一候选共享资源中的共享资源。该共享资源是第一装置实际共享的资源。
所述共享资源为第一装置基于所述第一初始BWP和自己期望用于数据传输的资源,以及所述第二初始BWP和第二装置期望用于数据传输的资源中的至少一种,在所述第一候选共享资源中确定的一部分或者全部实际可用于传输的资源。
一种可能的实现方式是,第一装置根据所述第一初始BWP,第二初始BWP和所述第二装置期望用于数据传输的时频资源,确定第一装置在所述第一候选共享资源中的共享资源。
如图10a所示,第一初始BWP的频域资源为20~30MHz,第二初始BWP的频域资源为80~90MHz,所述第四指示信息指示的第二装置期望用于数据传输的频域资源为60~80MHz和90~100MHz,则在第一候选共享资源中确定第一装置的共享频域资源为30~60MHz。即所述第一候选共享资源20~100MHz中,除去20~30MHz、80~90MHz,以及60~80MHz和90~100MHz之后的剩余频域资源。
一种可能的实现方式是,第一装置根据所述第一初始BWP、第二初始BWP、第一装置期望用于数据传输的资源,和第二装置期望用于数据传输的资源,确定第一装置在所述第一候选共享资源中的共享资源。
如图10b所示,第一初始BWP的频域资源为20~30MHz,第二初始BWP的频域资源为80~90MHz,第一装置期望用于数据传输的频域资源为30~80MHz,第四指示信息指示的第二装置期望用于数据传输的频域资源为55~80MHz和90~100MHz。此时,第一装置和第二装置各自期望用于数据传输的资源之间存在重叠资源,该重叠资源为55~80MHz,对于这部分重叠资源,第一装置可根据业务需求,占用其中的一部分,比如占用55~70MHz,然后再加上未重叠的30~55MHz,最后确定第一装置在第一候选共享资源中的共享频域资源为30~70MHz。
对应地,所述方法还包括:第二装置根据第一装置发送的所述第一指示信息、所述第三指示信息,以及所述第二初始BWP和第二装置期望用于数据传输的时频资源中的至少一种,确定第二装置在所述第一候选共享资源中的共享资源。该确定的共享资源为第二装置实际共享的资源。具体的确定过程参见步骤105中第一装置确定所述第一候选共享资源中的共享资源的描述,此处不再赘述。
本实施例,针对第一装置和第二装置的共享资源提出一种频谱资源共享的方法,通过设计第一装置和第二装置之间的交互流程和交互信息,例如在指示信息中包括初始BWP或SSB资源位置信息,或者包括第一装置和第二装置各自期望用于数据传输的资源,使得第 一装置和第二装置互相获知对方期望使用的资源,从而实现这两个装置之间频谱的高效共享。
下面对本申请实施例中的第一指示信息、第二指示信息、第三指示信息和第四指示信息中所携带的内容,以及具体的指示方式进行详细说明。
在上述步骤101中,所述第一指示信息在用于指示第一初始BWP的频域资源时,具体包括:第一指示信息用于指示第一初始BWP的频域起始位置、第一初始BWP的频域终止位置和第一初始BWP的频域宽度中的至少一种。
在上述步骤102中,所述第二指示信息在用于指示第二初始BWP的频域资源时,具体包括:第二指示信息用于指示第二初始BWP的频域起始位置、第二初始BWP的频域终止位置和第二初始BWP的频域宽度中的至少一种。
以步骤101中第一装置发送的所述第一指示信息为例,第二装置根据所述第一装置发送的所述第一指示信息确定所述第一初始BWP的频域资源的过程,具体包括:
一种实现方式是,在所述第一指示信息中只包含上述三种参数中的一种时,所述第二装置根据当前第一指示信息中携带的一种参数,以及通过其他方式获取的另外至少一种参数来确定所述第一初始BWP的频域资源。具体地,第二装置通过第一指示信息获取所述第一初始BWP的频域起始位置,然后根据所述第一装置发送或者其他辅助参数计算确定出第一初始BWP的频域终止位置和频域宽度中的至少一种,最后确定出第一初始BWP的频域资源。例如,第一指示信息中指示第一初始BWP的频域起始位置为2600MHz,然后第二装置根据与第一装置约定的频域宽度,比如400MHz,最后确定出第一初始BWP的频域资源为2600~3000MHz。
另一种实现方式是,所述第一指示信息中包含上述两种或三种参数时,所述第二装置根据该第一指示信息所携带的任意两种参数来确定所述第一初始BWP的频域资源。具体地,所述第一指示信息包括第一初始BWP的频域起始位置和频域宽度两种参数时,确定第一初始BWP的频域终止位置等于所述第一初始BWP的频域起始位置加上所述频域宽度,进而可以确定所述第一初始BWP的频域资源为从第一初始BWP的频域起始位置到频域终止位置之间的范围。例如,第二装置接收的所述第一指示信息中指示第一初始BWP的频域起始位置为2600MHz,频域终止位置为3000MHz,则第二装置可以确定所述第一装置指示的第一初始BWP的频域资源范围为2600~3000MHz。
在上述第一指示信息所包含的内容中,所述第一初始BWP的频域起始位置,或,第二初始BWP的频域起始位置可以通过绝对频点来指示,例如,绝对频点为2600MHz。或者,还可以通过索引(index)标识的方式指示,例如,采用协议预定标识,如子载波索引(subcarrier index),资源块索引(RB index)等。
举例说明,在第一初始BWP的频域起始位置与一RB索引标识所对应的位置相同时,配置所述第一指示信息中携带该RB索引标识。例如当所述第一指示信息中携带RB索引为10的指示信息时,第二装置根据该RB索引10,以及预存的RB索引标识与初始BWP起始位置之间的对应关系,RB索引10对应的频点为2700MHz,因此确定所述第一初始BWP起始位置为2700MHz。
可以理解地,对于第一、第二初始BWP的频域终止位置也可以通过绝对频点来指示,例如所述绝对频点为2620MHz。或者通过初始BWP的频域起始位置加上所述频域带宽来确 定所述频域终止位置。进一步地,所述频域带宽可以通过RB个数和占用频域资源的绝对数值来确定,例如第一指示信息指示所述频域带宽共占用5个RB,每个RB占用的频域资源为固定值,如180KHz,则确定频域宽度为5×180KHz=900kHz。
本实施例中,通过在第一指示信息中携带第一初始BWP的频域起始位置、频域终止位置和频域宽度中的至少一种来指示第一初始BWP的频域资源,从而达到指示效率高、开销小的有益效果。
进一步地,在指示所述第一初始BWP的频域位置时,还可以通过辅助参数来间接指示出第一初始BWP的频域位置。具体地,所述第一初始BWP的频域起始位置根据如下方式一或者方式二确定。
方式一:根据第一下行带宽起始位置,和所述第一下行带宽的频域起始位置与所述第一初始BWP的频域起始位置之间的偏移量确定。例如,如图11a所示,设所述第一下行带宽起始位置为A点(point A),所述第一下行带宽的频域起始位置与所述初始BWP的频域起始位置之间的偏移量为,所述A点到第一初始BWP的频域起始位置之间的偏移量(offset),则所述第一初始BWP的频域起始位置为A点位置加上所述offset后的位置。
即,第一初始BWP的频域起始位置=A点+offset。
方式二:根据同步广播块SSB的频域起始位置、所述SSB的频域起始位置与第一下行带宽的频域起始位置之间的偏移量、以及所述第一下行带宽的频域起始位置与所述第一初始BWP的频域起始位置之间的偏移量确定。例如,如图11b所示,设所述SSB的频域起始位置为参考位置(Reference Location)且所述SSB的频域起始位置与第一下行带宽的频域起始位置之间的偏移量为offset 1,所述第一下行带宽的频域起始位置与所述第一初始BWP的频域起始位置之间的偏移量为offset 2,则所述第一初始BWP的频域起始位置为A点位置加上offset 1和offset 2后的位置。
即,第一初始BWP的频域起始位置=参考位置-offset 1+offset 2。
需要说明的是,offset,offset 1,offset 2中每个的取值可以是正数,也可以是负数。参考点位置point A或Reference Location可以是协议规定的、或者是通过两个装置间的信令通知对方。所述第一下行带宽为所述第一装置对应的系统带宽。
另外,所述第二初始BWP的频域起始位置根据如下方式三或者方式四确定,
方式三:根据第二下行带宽的频域起始位置,和所述第二下行带宽的频域起始位置与所述第二初始BWP的频域起始位置之间的偏移量确定;
方式四:根据SSB的频域起始位置、所述SSB的频域起始位置与第二下行带宽的频域起始位置之间的偏移量、以及所述第二下行带宽的频域起始位置与所述第二初始BWP的频域起始位置之间的偏移量确定。
具体地,方式三和方式四的确定过程与前述方式一和方式二相同,本实施例此处不再赘述。所述第二下行带宽为所述第二装置对应的系统带宽。
应理解,在步骤102中,第二装置确定第二初始BWP的频域起始位置的方法,与前述第一初始BWP的频域起始位置确定方法类似,本实施例对此不再赘述。
在一个示例中,所述初始BWP的频域宽带可以通过与位置和带宽(location And Bandwidth)对应的资源指示值(Resource indication value,RIV),以及如下公式来确定,
公式1:
Figure PCTCN2019103385-appb-000018
其中,L RBs表示初始BWP的频域宽度占用的连续RB数量,RB start2为初始BWP的起始资源块位置,
Figure PCTCN2019103385-appb-000019
表示RB数量,进一步地,所述RB数量
Figure PCTCN2019103385-appb-000020
为下行带宽内包括的所有RB个数,且该RB数量
Figure PCTCN2019103385-appb-000021
可配置。
在一种可能的实现方式中,对RIV定义如下:
如果
Figure PCTCN2019103385-appb-000022
Figure PCTCN2019103385-appb-000023
否则:
Figure PCTCN2019103385-appb-000024
其中,RB start≥1,且不超过
Figure PCTCN2019103385-appb-000025
以第一初始BWP为例,如图11c所示,在带宽为20M,对应的RB数量为100,即
Figure PCTCN2019103385-appb-000026
的情况下,第一初始BWP的起始资源块位置RB start1=30,第一初始BWP的频域宽度占用的连续RB数量L RBs1=20,通过上述数值可知,
Figure PCTCN2019103385-appb-000027
故RIV计算时,可以采用公式1计算即:
Figure PCTCN2019103385-appb-000028
在另一示例中,如图11d所示,在带宽为20M,对应的RB数量为100,即
Figure PCTCN2019103385-appb-000029
的情况下,第一初始BWP的起始资源块位置RB start1=20,第一初始BWP的频域宽度占用的连续RB数量L RBs1=60,通过上述数值可知,
Figure PCTCN2019103385-appb-000030
故RIV计算时,可以采用
Figure PCTCN2019103385-appb-000031
公式2计算,即:
Figure PCTCN2019103385-appb-000032
进一步地,通过上述公式1可推导出L RBs与RB start的表达式为:
如果
Figure PCTCN2019103385-appb-000033
则分配的连续RB数量L RBs和分配的RB的起始资源块位置RB start为:
Figure PCTCN2019103385-appb-000034
Figure PCTCN2019103385-appb-000035
如果
Figure PCTCN2019103385-appb-000036
则分配的连续RB数量L RBs和分配的RB的起始资源块位置RB start为:
Figure PCTCN2019103385-appb-000037
Figure PCTCN2019103385-appb-000038
本申请实施例中,
所述第一初始BWP的频域宽度满足所述公式1:
Figure PCTCN2019103385-appb-000039
其中,L RBs1为所述第一初始BWP的频域宽度占用的连续RB数量,RIV1为第一资源指示值参数,RB start1为所述第一初始BWP的起始资源块位置,
Figure PCTCN2019103385-appb-000040
表示所述第一RB数量。
所述第二初始BWP的频域宽度满足所述公式1:
Figure PCTCN2019103385-appb-000041
其中,L RBs2为所述第二初始BWP的频域宽度占用的连续RB数量,RIV2为第二资源指示值参数,RB start2为所述第二初始BWP的起始资源块位置,
Figure PCTCN2019103385-appb-000042
表示第二RB数量。
本申请实施例中,RIV1和RIV2的值可以相同,也可以不相同。
Figure PCTCN2019103385-appb-000043
表示的第一RB数量为第一下行带宽包括的所有RB个数,
Figure PCTCN2019103385-appb-000044
表示的第二RB个数为第二下行带宽包括的所有RB个数。其中,第一下行带宽可为第一装置的系统带宽,第二下行带宽可为第二装置的系统带宽。另外,应理解,第一下行带宽和第二下行带宽取值可以相同,也可以不相同。所以
Figure PCTCN2019103385-appb-000045
可以相同,也可以不相同。
可以理解,第二装置在第一资源指示值参数RIV1和第一RB数量
Figure PCTCN2019103385-appb-000046
已知的情况下,第二装置可以通过RIV公式获得第一初始BWP的频域宽度占用的连续RB数量L RBs1和第一初始BWP的起始资源块位置RB start1。第一装置在第二资源指示值参数RIV2和第二RB数量
Figure PCTCN2019103385-appb-000047
已知的情况下,第一装置可以通过RIV关系式获得第二初始BWP的频域宽度占用的连续RB数量L RBs2和第二初始BWP的起始资源块位置RB start2
需要说明的是,RIV1和RIV2的值可以是第一装置和第二装置通过信令交互获取;
Figure PCTCN2019103385-appb-000048
Figure PCTCN2019103385-appb-000049
可以是协议预定义,或者是第一装置和第二装置通过信令交互获取。除了通过公式计算得到上述的参数值,例如,上述的参数中RIV1和RIV2,第一装置和第二装置还可以通过查表获取上述参数值。例如,将
Figure PCTCN2019103385-appb-000050
L RBs1,RIV1和RB start1的对应关系定义在一个表中。当已知
Figure PCTCN2019103385-appb-000051
RIV1时,第二装置(或第一装置)通过查表得到L RBs1和RB start1;当第一装置(或第二装置)已知
Figure PCTCN2019103385-appb-000052
L RBs1和RB start1时,通过查表得到RIV1。同理,对于L RBs2,RIV2,RB start2
Figure PCTCN2019103385-appb-000053
第一装置(或第二装置)同样可以通过查表获得。
在本实施例的步骤102中,第二装置发送所述第二指示信息包括:第二装置发送第一响应消息,所述第一响应消息中包括所述第二指示信息。另外,该第一响应消息中还可以包括第二装置的属性标识,所述第二装置的属性标识用于指示第二装置是公网设备或私网设备。
需要说明的是,本实施例中上述描述了通过第一指示信息和第二指示信息来指示第一装置和第二装置的初始BWP的频域资源。此外,还包括初始BWP的时域资源,对于各方装置的初始BWP的时域位置可通过独立的消息来指示,或者还可以两端装置预先定义。例如,所述初始BWP的时域位置为整个所述第一候选共享资源的时域资源,还可以根据业务需求灵活配置,本申请实施例对初始BWP的时域位置,以及配置过程不予限制。
下面对上述步骤103中的第三指示信息和步骤104中的第四指示信息的配置过程进行说明。
在上述步骤103中,所述第三指示信息包括第一字段和第二字段,通过两级信息来指示。具体地,所述第一字段用于指示所述第一装置期望用于数据传输的时频资源的资源类型,所述资源类型包括上行(Uplink,UL)、辅助上行(Supplementary Uplink,SUL)和下行(Downlink,DL)资源类型中的至少一种;所述第二字段用于指示每种所述资源类型对应的时频资源位置。其中,SUL资源为低频资源,小于6GHz;UL资源为高频资源,大于 等于6GHz。
在一种实现方式中,第一装置通过第一字段指示其期望用于数据传输的资源包括UL共享、SUL共享、UL和SUL共享、DL共享资源中的一个;然后再通过第二字段指示每种共享资源的具体位置,是高频还是低频资源,比如第二装置在接收到所述第三指示信息后,根据该第三指示信息中的第一字段确定第一装置期望用于数据传输的资源,比如包括UL共享资源,然后通过第二字段指示该UL共享资源的频率范围,是SUL的低频资源还是UL的高频资源。
可选的,以第一字段来指示期望用于数据传输的资源可以称为一级指示,以第二字段来指示的资源可以称为二级指示。
在另一种实现方式中,所述第三指示信息还包括第三字段,所述第三字段用于指示所述第二字段中的期望用于数据传输的时频资源的生效时刻。所述期望用于数据传输的时频资源的生效时刻是指,第二装置在接收到所述生效时刻指示时,认为从所述生效时刻指示的时刻开始,第一装置指示的期望用于数据传输的时频资源有效。
可选的,所述生效时刻指示精度可以是系统帧号(System Frame Number,SFN)、子帧号subframe、时隙号slot、符号symbol。如果所述生效时刻指示精度是系统帧号,则相当于在所述系统帧号指示的时刻开始,第一装置指示的期望用于数据传输的时频资源有效。同样的,如果所述生效时刻指示精度是子帧号,则所述生效时刻指示包括系统帧号指示和子帧号指示,所述子帧号用于指示生效时刻是所述系统帧中的哪个子帧,当第二装置接收到所述生效时刻指示时,认为在所述系统帧号指示和所述子帧号指示对应的时刻开始,第一装置指示的期望用于数据传输的时频资源有效。如果所述生效时刻指示精度是时隙号,则所述生效时刻指示包括:系统帧号指示、子帧号指示和时隙号指示,所述子帧号用于指示生效时刻是所述系统帧中的哪个子帧,比如第一子帧;所述时隙号用于指示生效时刻是所述第一子帧中的哪个时隙,比如第一时隙。
需要说明的是,在某一时刻,如果第一装置期望使用的传输资源发生变化时,则上述方法还包括:第一装置指示其发生变化的传输资源的步骤。具体地,包括:第一装置在所述第二字段中添加第四字段,所述第四字段用于指示每种所述资源类型对应的时频资源位置是否发生改变。
例如,用于数据传输的资源类型由UL变为DL,则第一装置在发送的第二字段中新增加第四字段,该第四字段指示本次传输的资源类型与前一次不同,并且在指示所述位置发生改变的情况下,所述第二字段还包括第五字段,所述第五字段用于指示改变后的期望用于传输数据的时频资源位置。例如,所述第五字段用于指示传输资源变为DL后具体的时频资源位置。
在所述第一装置指示其发生变化的传输资源时,所述第一装置还可以直接在所述第二字段中添加第五字段,并发送该第五字段,所述第五字段直接指示改变后第一装置期望用于传输数据的时频资源位置。
进一步地,所述第三指示信息可以通过以下任意一种方式指示:
方式一:位图(bitmap)指示
一种实现方式中,第三指示信息包括第二字段,该第二字段由二进制的字符串组成,其中每个字符占1比特(bit)空间,对应一个时频块,所述时频块在频域上可以表示一 个PRB,在时域上可以表示一个子帧(subframe)、或一个时隙(slot)、或一个符号(symbol)。具体地,比特值为“1”的字符位置所对应的资源为第一装置期望用于数据传输的资源,比特值为“0”的字符位置所对应的资源为第一装置不期望用于数据传输的资源。
例如图12a所示,第二字段为“00111100111100”表示一个时隙(14个符号)的时频资源,对应从时频块1到时频块14,其中时频块3到6,以及时频块9到12上所对应的比特值为“1”,表示这些时频块为第一装置期望用于数据传输的资源。剩余所有比特值为“0”的时频块,包括时频块1,2,7,8,13和14为第一装置不期望用于数据传输的资源。
另一种实现方式中,第三指示信息可以通过两种位图来指示,一种位图用于指示频域资源,另一种位图用于指示时域资源。具体地,在一种示例中,用RB级位图来指示频域资源,其中每个RB用一个比特表示,比特值为“1”表示该RB是用于数据传输的RB,比特值为“0”表示该RB不是用于数据传输的RB。用符号级位图来指示时域资源,其中每个符号(比如OFDM符号)用一个比特表示,比特值为“1”表示该符号用于数据传输,比特值为“0”表示该符号不用于数据传输。
例如图12b所示,在频域上,RB级位图为“0011100”表示只有中间的3个RB用于数据传输。在时域上,符号级位图为“00111100111100”表示只有第2至5,和第8至11个OFDM符号用于数据传输,其余的符号不用于数据传输。
可选的,第一装置将所述第三指示信息通过请求消息方式发送给第二装置,所述请求消息可以是基站间接口Xn消息,例如Xn建立请求(Xn Setup Resquest)或Xn配置更新(Xn Configuration Update)消息,具体是哪条Xn消息,这里不做限制。
方式二:多级指示
多级指示为通过两级或两级以上的指示信息来指示所述期望用于数据传输的资源。具体地,以两级指示为例,第一级指示用于指示第一装置期望用于数据传输的资源的频域位置,所述资源的频域位置组成频域图案,例如PRB pattern;第二级指示用于指示在一个时间周期内的每个时间单位是否采用第一级指示中的频域图案。可选的,所述第一级指示通过第一字段的方式指示,所述第二级指示通过第二字段的方式指示。其中,所述第一字段和所述第二字段均为二进制的字符串。
例如图13所示,在一个时间周期中,第一字段用于指示一种PRB pattern,该PRB pattern中包括PRB1至PRB n共n个PRB,对应n个比特,其中,比特值为“1”表示该PRB用于进行数据传输;比特值为“0”表示该PRB不用于进行数据传输。比如字符串“0110”表示PRB2和PRB3为用于数据传输的PRB,在PRB1和PRB4不用于数据传输。第二字段用于指示是否采用第一字段指示的PRB pattern;具体地,比如在时域符号(symbol)11所对应的比特值为“1”时,指示在第11个符号上使用上述PRB pattern,即在第11个符号上PRB2和PRB3用来进行数据传输,当symbol 11所对应的比特值为“0”时,指示在第11个符号上不使用上述PRB pattern,即在第11个符号上PRB2和PRB3不用来进行数据传输。
需要说明的是,所述一个时间周期内的时长包括但不限于一个子帧,时间周期可以配置,此外,时间周期内的每个时间单位还可以是其它时间粒度,比如时隙或OFDM符号,本实施例对此不予限制。
方式三:百分比指示。
所述百分比指示,可以理解为第一装置或第二装置的期望用于数据传输的资源通过百分数方式表示该期望的资源占可分配资源的百分比。其中,所述可分配资源为第一候选共享资源中除去所述第一初始BWP和所述第二初始BWP的频域资源之后剩余的资源。可选的,所述第一初始BWP和所述第二初始BWP的频域资源互相不重叠。
例如在频域上,通过百分比来指示第一装置期望用于数据传输的频域资源范围占所述可分配资源的百分比,例如50%,表示第一装置期望占用所述可分配资源的50%频域资源用于传输数据,然后再通过其他指示信息来指示期望的50%频域范围的起始位置或终止位置等。
另外,所述第三指示信息中还包括时域位置的指示信息,具体地,第一装置可以在所述可分配的资源中指示一个百分比,表示在所述50%频域范围内期望的使用的时域资源范围,例如80%,并且还包括具体的时域起始位置、终止位置和符号个数等。比如在一个时隙的14个OFDM符号中,指示从第2至10个OFDM符号为第一装置期望用于数据传输的时域资源,然后再根据频域指示的百分比(50%)以及频域起始位置、终止位置等信息可以唯一确定出所述第一装置期望用于数据传输的资源。
本实施提供的方法,利用各种方式,包括上述方式一至方式三,灵活地指示第一装置期望用于数据传输的资源,从而可以满足不同的需求。比如采用方式一或方式二来指示可以精确指示具体的资源位置;采用方式三的百分比指示则可以节约信令开销,因为只携带期望使用资源的百分比,其他信息可以通过预先配置或约定获得,所以相比于多级传输的精确指示方式,节约了信令的开销。
在上述实施例中,第一装置发送所述第一指示信息(步骤101)和发送所述第三指示(步骤103)可以通过以下两种方式实现。
一种实现方式,第一装置分别发送所述第一指示信息和所述第三指示信息。所述第一装置先将第一指示信息通过第一请求消息发送给第二装置(步骤101),然后再将所述第三指示信息通过第二请求消息发送给第二装置(步骤103)。
另一种实现方式,第一装置将第一指示信息和第三指示信息通过一个消息来携带并发送给第二装置,具体地,图7所示的方法流程可以演变为图14所示的方法流程,具体包括:
步骤201:第一装置向第二装置发送第一请求消息,所述第一请求消息中包括所述第一指示信息和所述第三指示信息。
具体地,所述第一指示信息和所述第三指示信息的内容和配置方式与前述实施例的方法步骤101和步骤103相同,此处不再赘述。
在一种可选的实现中,在步骤201之前或之后,方法还包括:第二装置向第一装置发送所述第二指示信息,所述第二指示信息用于指示所述第二装置保留的资源,进一步地,所述第二装置保留的资源用第二初始BWP的频域资源来指示,所述第二初始BWP的频域资源为所述第二装置不与所述第一装置共享的资源,所述第二初始BWP的频域资源为所述第一候选共享资源的一部分。进一步地,所述第二指示信息可以通过第一响应消息发送,即所述第一响应消息中包括所述第二指示信息。
步骤202:第二装置接收来自所述第一装置的所述第一请求消息,根据所述第一请求消息中的第一指示信息和第三指示信息确定第四指示信息。其中,所述第四指示信息用于 指示所述第二装置期望用于数据传输的资源,且该资源与所述第一初始BWP的频域资源和所述第二初始BWP的频域资源之间不重叠。
步骤203:第二装置向所述第一装置发送第二响应消息,所述第二响应消息中包括所述第四指示信息。
具体地,所述第一指示信息至第四指示信息的内容和作用与前述实施例的步骤101至步骤104相同,参见上述关于各个指示信息的详细介绍,以及第一装置确定期望用于数据传输的资源和共享资源的过程,此处不再赘述。
本实现方式中,第一装置将第一指示信息和第三指示信息通过同一请求消息发送给第二装置,相比于分别发送这两个指示信息,节省了信令开销,另外,还能更真实地反应各端装置的业务对共享资源的需求。
此外,上述实施例中,所述方法还包括:第一装置发送第一装置的属性标识,所述属性标识用于指示该装置是公网设备还是私网设备(设备属性)。具体地,所述第一装置的属性标识可以为小区标识(cell ID)。
进一步地,如果第一装置是公网设备,则所述小区标识为第一装置的公网小区标识(cell ID)列表,该公网cell ID列表中包括至少一个公网cell ID,每个所述公网cell ID可以是E-UTRAN cell Identity(LTE小区的ID),或者是NR Cell Identity(NR小区的ID)。其中,E-UTRAN Cell Identiy长度为28比特(bit);NR Cell Identity的长度为36bit。
如果第一装置为私网设备,则所述小区标识为第一装置的私网小区标识列表,该私网cell ID列表中包括至少一个私网cell ID,例如该私网cell ID为闭合接入组(Closed Access Group,CAG)ID,或者为非公共网络(Non Public Network,NPN)ID,或者还可以是私网cell标识的比特数或设计方式等。其中,所述NPN ID可以由公用陆地移动网(Public Land Mobile Network,PLMN)和非公共网络指示(non-public network indicator,NID)来表示,所述PLMN由移动国家代码(Mobile Country Code,MCC)和移动网络代码(Mobile Network Code,MNC)组成。进一步地,在标识私网cell ID时,MCC取值为999。
进一步地,在步骤201中,第一装置发送的所述第一请求消息中还包括所述第一装置的属性标识,使得第一装置将所述第一指示信息和第一装置的属性标识一同发送给第二装置。可以理解地,所述第二请求消息中也可以包括所述第一装置的属性标识。
可选的,所述第二装置发送给所述第一装置的第一响应消息中还包括第二装置的属性标识,并且所述第二设备是公网设备或者私网设备的情况下,对应的cell ID与前述第一装置的cell ID属性情况相同,本实施例对此不详细介绍。
另外,本申请实施例中,图7或图14所示的消息交互流程中,各个指示信息或请求消息(包括响应消息)可以是Xn消息,其中Xn为NR基站间接口,所述第一请求消息可以是Xn消息,如Xn Setup Request,或Xn Configuration Update消息;所述第一响应消息可以是Xn建立响应(Xn Setup Response)消息,或Xn配置更新确认(Xn Configuration Update Acknowledge)消息等。
实施例二
本实施例在实施例一的基础上增加一个装置,比如第三装置,该装置用于获取所述第一装置和所述第二装置上报的指示信息,以及根据这些信息控制和协调两个装置的频谱资 源,从而实现公网和私网资源的高效共享。
在本实施例方式中,所述第三装置为一种网络设备,该网络设备具有处理功能,比如集中控制单元或集中控制器,进一步地,该第三装置可以位于核心网中,比如5G网络中的移动性管理功能(access management function,AMF),4G网络中的移动管理实体(Mobility Management Entity,MME),也可以是会话管理功能(Session Management Function,SMF)等,或者也可以是一个新的物理实体,还可以是集成在前述的第一装置或第二装置中,本实施例对第三装置的具体形态和结构不做限制。
在一个更为具体的示例中,如图15所示,所述方法包括:
步骤301:第一装置发送第一请求消息,所述第一请求消息中包括第一指示信息,对应的,所述第三装置接收来自第一装置的所述第一请求消息。
其中,所述第一指示信息用于指示第一装置保留的资源,所述第一装置保留的资源与前述实施例一的步骤101中的第一装置保留的资源相同,详见上述实施例一的描述,本实施对此不再赘述。
此外,所述第一请求消息中还包括第一装置自身的属性标识,比如cell ID。Cell标识与前述实施例一种的Cell ID描述相同,详见上述实施例一的描述,本实施对此不再赘述。
在一示例中,步骤301具体包括:所述第一装置周期性地向第三装置发送第一请求消息,所述第一请求消息中携带所述第一指示信息。对应的,第三装置周期性地接收所述第一请求消息或所述第一指示信息。其中,发送周期可以是预先配置的周期,还可以是预先第三装置与第一装置交互获得所述周期。
步骤302:第二装置发送第二请求消息,所述第二请求消息中包括所述第二指示信息,对应的,所述第三装置接收来自第二装置的第二请求消息。
其中,所述第二指示信息用于指示第二装置保留的资源,所述第二装置保留的资源与所述第一装置保留的资源相似,所述第二装置保留的资源可用于发送同步、广播、初始接入信道中的至少一种。
可选的,所述第二请求消息中还包括第二装置自身的属性标识。
在一示例中,步骤302具体包括:第二装置周期性地向第三装置发送第二请求消息或第二指示信息,对应的,所述第三装置周期性地接收来自第二装置的第二请求消息或第二指示信息。
另外,该方法还包括:第三装置向第一装置发送第一响应消息,所述第一响应消息中包括所述第二指示信息。
所述方法还包括:所述第三装置获得所述第一指示信息和所述第二指示信息之后,保存所述第一指示信息和所述第二指示信息,以及在第一候选共享资源中预留所述第一装置和第二装置的保留资源。
在上述步骤301和302的一种具体实施方式中,第一初始部分带宽BWP资源中包括所述第一装置保留的资源,第二初始BWP资源中包括所述第二装置保留的资源,因此可以通过第一指示信息和第二指示信息来分别指示第一初始BWP的频域资源和第二初始BWP的频域资源;进一步地,所述第一指示信息具体用于指示第一初始BWP的频域资源,所述第二指示信息具体用于指示第二初始BWP的频域资源。
例如,所述第一初始BWP的频域资源为第一装置不与所述第二装置共享的资源,所述第一初始BWP的频域资源为第一装置和所述第二装置的第一候选共享资源的一部分;所述第二初始BWP的频域资源为第二装置不与所述第一装置共享的资源,所述第二初始BWP的频域资源为所述第一候选共享资源的一部分。
步骤303:第一装置发送第三请求消息,所述第三请求消息中包括第三指示信息,对应的,第三装置接收来自所述第一装置的第三请求消息。
其中,所述第三指示信息用于指示所述第一装置在所述第一候选共享资源中期望用于数据传输的时频资源。进一步地,所述第三指示信息与前述实施例一中步骤103的第三指示信息相同,详见上述实施例一的描述,本实施例不再赘述。
可选的,一种可能的实施方式是,第三装置向所述第一装置发送第一消息,该第一消息用于指示第一装置上报第一装置在所述第一候选共享资源中期望用于数据传输的时频资源。第一装置在接收到该第一消息后,向第三装置发送所述第三指示信息或第三请求消息。
例如,所述第一消息为查询消息。进一步地,所述查询消息中包括第一装置的标识和查询资源类型中的至少一种。
步骤304:第二装置发送第四请求消息,所述第四请求消息中包括所述第四指示信息,对应的,所述第三装置接收来自所述第二装置的第四指示信息。
其中,所述第四指示信息用于指示所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源。进一步地,所述第四指示信息与前述实施例一中步骤104的第四指示信息相同,详见上述实施例一的描述,本实施例不再赘述。
可选的,所述方法还包括:第三装置根据所述第一指示信息、所述第二指示信息、所述第三指示信息和所述第四指示信息中的一种或多种,在所述第一候选共享资源中分别确定所述第一装置的共享资源和所述第二装置的共享资源。所述第一装置的共享资源为第一装置实际用于数据传输的时频资源,所述第二装置的共享资源为第二装置实际用于数据传输的时频资源。
一种可能的实施方式中,第三装置根据所述第一指示信息、第二指示信息、第三指示信息分别确定所述第一装置和第二装置的共享资源,包括:第一初始BWP的频域资源为20~30MHz,第二初始BWP的频域资源为80~90MHz,第三指示信息的第一装置期望用于数据传输的频域资源为30~80MHz,则第三装置确定第一装置在第一候选共享资源20~100MHz的共享资源为30~80MHz,第二装置在所述第一候选共享资源20~100MHz的共享资源为90~100MHz。
一种可能的实施方式中,第三装置根据所述第一指示信息、第二指示信息、第三指示信息和第四指示信息分别确定所述第一装置和第二装置的共享资源,包括:如图10b所示,第一初始BWP的频域资源为20~30MHz,第二初始BWP的频域资源为80~90MHz,第三指示信息的第一装置期望用于数据传输的频域资源为30~80MHz,第四指示信息指示的第二装置期望用于数据传输的频域资源为55~80MHz和90~100MHz。则第三装置根据上述各指示信息,确定第一装置在第一候选共享资源中的共享资源为30~70MHz,第二装置在所述第一候选共享资源中的共享资源为70~80MHz和90~100MHz。
步骤305:所述第三装置发送第二响应消息,所述第二响应消息中包括所述第一装置 的共享资源,对应的,所述第一装置接收所述第三装置发送的第二响应消息。
可选的,所述第一装置的共享资源通过第五指示信息来指示,所述第二响应消息中包括所述第五指示信息。
步骤306:所述第三装置发送第三响应消息,所述第三响应消息中包括所述第二装置的共享资源,对应的,所述第二装置接收来自所述第三装置的第三响应消息。
可选的,所述第二装置的共享资源通过第六指示信息来指示,所述第三响应消息中包括所述第六指示信息。
在一具体示例中,在上述步骤304中,所述第二装置发送所述第四请求消息具体包括:
步骤3041:第三装置向所述第二装置发送第二消息,所述第二消息用于指示第二装置上报其在所述第一候选共享资源中期望用于数据传输的时频资源。
其中,所述查询消息中包括第二装置的标识和查询资源类型中的至少一种。
步骤3042:所述第二装置接收到所述第三装置发送的所述第二消息之后,根据所述第二消息中的第二装置标识和查询资源类型中的至少一种确定第四指示信息,将所述第四指示信息发送给所述第三装置。
具体地,一种可能的发送方式是,第二装置向所述第三装置发送查询响应消息,该查询响应消息中包括所述第四指示信息。
需要说明的是,本实施例中的第一指示信息至第四指示信息的配置过程,以及各个指示信息的内容与前述实施例一中的第一至第四指示信息相同或相似,参见上述实施例一的具体描述,本实施例对此不再赘述。
本实施例提供的方法,通过第三装置来集中管理和分配第一装置和第二装置之间的频谱资源,便于运营商集中管理、收费,从而可引导运营商通过频谱共享,增加盈利。
在本申请的一种可能的实现中,针对上述实施例一和实施例二中的所述第一指示信息和第二指示信息,以上述实施例中的第一指示信息为例,在所述第一指示信息用于指示所述第一装置保留的资源,例如SSB资源时,可以通过以下方式实现。
一种具体的实现方式是,利用第一指示信息分别指示SSB资源的时域位置和频域位置。其中,在用于指示SSB资源的时域位置时,一种指示方式是,利用图案索引(pattern index)的方式指示,比如,所述第一指示信息中包括pattern index A至pattern index E中的任意一个,每个pattern index对应一种SSB pattern,通过第一指示信息中携带的pattern index可以确定一种SSB pattern,进而获得该SSB pattern中每个SSB的时域位置。
进一步地,所述第一装置周期性地发送所述第一指示信息,所述第一指示信息中所携带的指示字段可以是ssb-PeriodicityServingCell。其中,在各个周期发送的第一指示信息所指示的pattern index可以相同,也可以不相同。
另一种指示方式是,利用SCS指示。由于在5G NR系统协议已经规定了SSB在时域上的位置,并且还规定了不同子载波间隔(SCS)可以支持的最大SSB个数,如图3示出的不同SCS对应的SSB图案。所以当所述第一指示信息中包括第一SCS时,根据该第一SCS以及第一SCS与SSB pattern之间的对应关系确定第一SSB的时域位置。例如,第一指示信息中指示的第一SCS等于30kHz,根据图3所示的对应关系,在30kHz时对应case B还是case C两种SSB的pattern,此时还需要进一步指示是case B还是case C,一般地在30kHz时设置方案C是主用的图案,则所述第一指示信息中还包括case C的指示信息。 所述第二装置在接收到第一装置发送的第一指示信息后,根据第一指示信息中携带的第一SCS等于30kHz和case C可以唯一地确定SSB的时域位置。
可选的,对于上述两种指示方式,在具体实现时,第一装置可利用5G NR已有的SIB字段来指示SSB所在的时域位置,如SSB-PositionsInBurst字段,该字段用于指示在包括SSB的半帧中用来传输SSB的时域位置。
另外,第一装置还发送在某个周期内未用于传输SSB资源的指示信息,进而第二装置在接收到该指示信息后,对于未被利用的SSB资源可用于传输其他资源,比如PDSCH资源等。进一步地,所述未用于传输SSB资源的位置指示信息可通过ssb-PositionsInBurst字段指示。
在利用第一指示信息来指示所述SSB的频域位置时,可以通过前述实施例一中的SSB频域起始位置、频域终止位置和频域宽度中的至少一种参数来指示,或者通过其他参数,例如参考位置和工作带宽下边界的偏移量,确定所述SSB的频域起始位置。具体地过程,可以参见实施例一中的描述,本实施例对此不再详细介绍。其中,在指示SSB的频域宽度时,可以设置该SSB的频域宽度为一固定值,比如20RB。
本实施例提供的方法,允许更精细的时频资源位置指示,即通过图案索引或SCS来指示具体地SSB的时域位置,从而使得各端装置可以在所述第一候选共享资源上除了该指示的SSB的资源之外的其他资源上进行共享,提高了资源的利用率。
需要说明的是,由于第一指示信息和第二指示信息是第一装置和第二装置交互的指示保留资源的信息,所以本实施例中对所述第一指示信息的配置和生成过程,同样适用于第二指示信息,所以第二装置生成和发送所述第二指示信息的过程与所述第一指示信息的过程相同,本实施例不再对该第二指示信息进行详细描述。
在本申请上述实施例一和实例二中,利用第一指示信息来指示第一装置保留的资源时,可以采用以下具体的实施方式:
一种可能的实施方式是,以位图方式指示。具体地,与前述实施例一中第三指示信息的“方式一”位图指示相似,将所述第一候选共享资源划分为多个时频块,每个时频块是由时域和频域围成的矩形面积。并且每个时频块的大小可以灵活配置。进一步地,通过定义二进制的字符串的比特值“1”和“0”来指示所述第一装置保留的资源,例如,定义比特值为“1”所对应的资源块为所述保留的资源,比特值为“0”所对应的资源块不是保留的资源。
另一种可能的实施方式是,通过时频图案清单(pattern list)方式来指示。其中所述时频pattern list由至少一个时频pattern ID组成,每个时频pattern ID可由一个二进制的字符串表示,并且对应一种资源。所述对应一种资源可以是SSB、PDCCH、PRACH等,具体是哪一个这里不做限制。例如pattern ID=1对应SSB的时频块信息指示、pattern ID=2对应Common PDCCH的时频块信息指示、pattern ID=3对应PRACH的时频块信息指示等。如图16所示,时频pattern list中包括时频pattern 1至时频pattern m,其中,时频pattern 1可由二进制的n个二进制字符组成,每个二进制字符表示一个时频块,则从1至n的n个字符组成的字符串表示从时频块1至时频块n的总共n个时频资源。并且定义:字符比特值为“1”所对应的时频块是所述保留的资源,比特值为“0”所对应的时频块不是保留的资源。
举例说明,时频pattern ID=1用于指示SSB资源时,例如通过二进制比特值表示时频块1至14为“00111100111100”时,表示在一个时间周期(比如14个OFDM符号)的时频块3~6和时频块9~12为用于传输SSB资源,其余的时频块1~2,7~8,13~14为不用于传输SSB的资源。其中,每个时频pattern ID所指示的资源类型和/或ID的取值范围均可以由协议规定,例如协议中规定ID的最大值是4或8。
本实施例中,通过位图或者时频pattern list的方式来指示保留的资源,从而达到更精细化的资源指示。
下面介绍与上述各方法实施例对应的装置实施例。
图17为本申请实施例提供的一种资源共享装置的结构示意图。所述装置可以是前述方法实施例中的第一装置或第二装置,或者也可以是一种网络设备,或者还可以是位于所述网络设备中的部件,例如芯片。并且,该装置可以实现前述实施例中的第一装置或第二装置的所有功能,并执行所述第一装置或第二装置的所有方法步骤。
进一步地,如图17所示,该装置170可以包括:接收单元171和发送单元172,此外,所述装置还可以包括处理单元、存储单元和其他的单元或模块。
发送单元172,用于向第二装置发送第一指示信息,所述第一指示信息用于指示第一初始BWP的频域资源,所述第一初始BWP的频域资源为所述第一装置不与所述第二装置共享的资源,所述第一初始BWP的频域资源为所述第一装置和所述第二装置的第一候选共享资源的一部分。
接收单元171,用于从所述第二装置接收第二指示信息,所述第二指示信息用于指示第二初始BWP的频域资源,所述第二初始BWP的频域资源为所述第二装置不与所述第一装置共享的资源,所述第二初始BWP的频域资源为所述第一候选共享资源的一部分。
发送单元172,还用于向所述第二装置发送第三指示信息,所述第三指示信息用于指示所述第一装置在所述第一候选共享资源中期望用于数据传输的时频资源。
接收单元171,还用于从所述第二装置接收第四指示信息,所述第四指示信息用于指示所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源。
可选的,所述第一初始BWP的频域资源与所述第二初始BWP的频域资源之间不重叠。
另外,在本实施例的一种具体的实现方式中,所述第一指示信息具体用于指示第一初始BWP的频域起始位置、第一初始BWP的频域终止位置和第一初始BWP的频域宽度中的至少一种。所述第二指示信息具体用于指示第二初始BWP的频域起始位置、第二初始BWP的频域终止位置和第二初始BWP的频域宽度中的至少一种。
在本实施例的另一种具体的实现方式中,还包括处理单元,所述处理单元用于根据上述实施例中关于图7描述的方式确定所述第一初始BWP的频域起始位置或所述第二初始BWP的频域起始位置,不再赘述。
所述发送单元172还用于在指示所述位置发生改变的情况下,通过所述第二字段发送第五字段,所述第五字段用于指示改变后的期望用于传输数据的时频资源位置。具体参见上述实施例中关于图7中的描述,不再赘述。
在本实施例的又一种具体的实现方式中,所述发送单元172具体用于通过第一请 求消息向所述第二装置发送所述第一指示信息和所述第三指示信息。
在本实施例的又一种具体的实现方式中,所述处理单元,还用于根据所述第一初始BWP和所述第二指示信息所指示的所述第二初始BWP,确定在所述第一候选共享资源中所述期望用于数据传输的时频资源。具体地确定过程可参见上述实施例中关于图7中的描述,不再赘述。
在本实施例的又一种具体的实现方式中,所述处理单元,具体还用于根据所述第一初始BWP,所述第二初始BWP,和所述第四指示信息指示的所述第二装置期望用于数据传输的时频资源,确定所述第一装置在所述第一候选共享资源中期望用于数据传输的时频资源。具体地确定过程可参见上述实施例中关于图7中的描述,不再赘述。
在本实施例的又一种具体的实现方式中,所述处理单元,具体还用于根据所述第一初始BWP,所述第二初始BWP和所述第四指示信息指示的所述第二装置期望用于数据传输的时频资源,确定所述第一装置在所述第一候选共享资源中的共享资源;或者,根据所述第一初始BWP,所述第二初始BWP,所述第一装置期望用于数据传输的时频资源和所述第二装置期望用于数据传输的时频资源,确定所述第一装置在所述第一候选共享资源中的共享资源。具体地确定过程可参见上述实施例中关于图7中的描述,不再赘述。
关于所述第一指示信息,所述第二指示信息,所述第三指示信息所述第四指示信息,所述第一初始BWP的频域资源,所述第二初始BWP的频域资源以及第一装置如何确定在所述第一候选共享资源中的共享资源等具体过程,参见上述实施例中关于图7中的描述,不再赘述。
如图18所示,本申请实施例还提供了一种资源共享装置的结构示意图。所述装置可以是前述方法实施例中的第三装置,或者也可以是一种网络设备,或者还可以是位于所述网络设备中的部件,例如芯片。并且,该装置可以实现前述实施例中的第三装置的所有功能,并执行所述第三装置的所有方法步骤。
另外,如图18所示,该装置180可以包括:接收单元181、处理单元182和发送单元183,此外,所述装置还可以包括存储单元和其他的单元或模块等。
具体地,接收单元181用于接收来自第一装置的第一指示信息,和来自第二装置的第二指示信息。其中,所述第一指示信息用于指示第一装置保留的资源;所述第二指示信息用于指示第二装置保留的资源。
接收单元181还用于接收来自所述第一装置的第三指示信息,和来自所述第二装置的第四指示信息。其中,所述第三指示信息用于指示所述第一装置在所述第一候选共享资源中期望用于数据传输的时频资源;所述第四指示信息用于指示所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源。
处理单元182用于根据所述第一指示信息、所述第二指示信息、所述第三指示信息和所述第四指示信息中的一种或多种,在所述第一候选共享资源中确定第一装置的共享资源,并生成第五指示信息。
发送单元183用于向所述第一装置发送所述第五指示信息,所述第五指示信息用于指示所述第一装置在所述第一候选共享资源中的共享资源。
在本实施例的一种具体的实现方式中,所述第一初始部分带宽BWP资源中包括所 述第一装置保留的资源,所述第二初始BWP资源中包括所述第二装置保留的资源。
所述第一指示信息具体用于指示所述第一初始BWP的频域资源,所述第一初始BWP的频域资源为所述第一装置不与所述第二装置共享的资源,所述第一初始BWP的频域资源为所述第一装置和所述第二装置的第一候选共享资源的一部分;
所述第二指示信息具体用于指示所述第二初始BWP的频域资源,所述第二初始BWP的频域资源为所述第二装置不与所述第一装置共享的资源,所述第二初始BWP的频域资源为所述第一候选共享资源的一部分。
另外,在本实施例的一种具体的实现方式中,处理单元182还用于根据上述实施例中关于图15的描述方式,在所述第一候选共享资源中确定所述第二装置的共享资源,以及生成并发送第六指示信息,不再赘述。
在本实施例的一种具体的实现方式中,接收单元181具体用于周期性接收第一装置发送的第一指示信息;以及,周期性接收所述第二装置发送的第二指示信息。
在本实施例的一种具体的实现方式中,发送单元183还用于在接收来自所述第二装置的第四指示信息之前,向所述第二装置发送第二消息,具体过程可参见上述实施例中关于图15中的描述,不再赘述。
在具体的硬件实现层面,本申请上述各个实施例的技术方案可以应用于5G移动通信系统或NR通信系统,以及未来的移动通信系统等。以5G NR系统为例,如图19a所示,该系统包括至少一个网络设备和至少一个终端设备,例如包括第一基站10和第二基站20,且第一基站10关联第一终端设备11,第二基站20关联第二终端设备21。
进一步地,所述第一基站(base station,BS)10或第二基站20可以是全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband-CDMA,WCDMA)中的基站(NodeB),还可以是LTE中的演进型基站(evolutional NodeB,eNB/e-NodeB),或者下一代LTE中的演进型基站(next generation eNB,ng-eNB),或者NR中的基站(gNB),或者,未来移动通信系统中的基站或无线保真(wireless fidelity,WiFi)系统中的接入节点等,本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。在本申请中,所述网络设备可以是一种无线接入网设备。
本申请实施例中的终端设备,可以是指向用户提供服务和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备,例如无线终端。
进一步地,所述无线终端可以经无线接入网(radio access network,RAN)与一个或多个节点进行通信,所述无线终端可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。所述无线终端也可以为订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile  station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、用户设备(user device)或用户设备(user equipment,UE)等,本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
其中,本实施例中的第一基站10和第二基站20可作为前述实施例中的第一装置和第二装置,用于实现所述第一装置和所述第二装置的全部方法步骤。
此外,本申请上述实施例二的技术方案还可以应用于附图19b所示的应用场景,该应用场景的系统中还包括第三网络设备,例如集中控制器30,该集中控制30用于实现前述实施例中的第三装置的全部方法步骤。
进一步地,所述集中控制器30,或称集中控制单元可以位于核心网中,比如5G网络中的AMF,4G网络中的MME,也可以是会话管理实体,比如5G中的SMF等,或者也可以是其他新的物理实体,还可以集成在所述第一基站10或第二基站20中,本实施例对集中控制器30的具体形态和结构不做限制。
具体地,在一种硬件实现中,如图20所示,本申请还提供了一种通信装置,该装置可以是一种网络设备,或者是前述第一装置、第二装置或第三装置中的任意一种。进一步地,该通信装置包括:处理器210、收发器220、存储器230、通信总线240和输入输出接口250。
其中,处理器210可以包括一个或多个处理器,存储器230可以包括一个或多个存储器。存储器230存储指令(或存储计算机程序)。处理器210通过输入输出接口250与收发器220连接。当存储器230存储的指令被处理器210执行时,处理器控制收发器220发送或接收数据,处理器210处理待发送的数据以及接收的数据。控制收发器220接收的数据通过输入输出接口250到达处理器210。处理器210将待发送数据通过输入输出接口250发送到收发器220,然后收发器220发送所述待发送数据。
此外,该通信装置还可以包括其他更多或更少的部件,或者组合某些部件,或者不同的部件,本申请实施例对此不进行限定。
收发器220用于建立通信信道,使通信设备通过所述通信信道以连接至网络,从而实现通信装置与其他设备之间的通信传输。其中,收发器220可以是完成收发功能的模块。例如,可以包括无线局域网(wireless local area network,WLAN)模块、蓝牙模块、基带(base band)模块等通信模块,以及所述通信装置对应的射频(radio frequency,RF)电路,用于进行无线局域网络通信、蓝牙通信、红外线通信及/或蜂窝式通信系统通信,例如宽带码分多重接入(wideband code division multiple access,WCDMA)及/或高速下行封包存取(high speed downlink packet access,HSDPA)。所述收发器用于控制通信设备中的各组件的通信,并且可以支持直接内存存取(direct memory access)。
在本申请的不同实施方式中,收发器220中的各种收发模块一般以集成电路芯片(integrated circuit chip)的形式出现,并可进行选择性组合,而不必包括所有收发模块及对应的天线组。例如,收发器可以仅包括基带芯片、射频芯片以及相应的天线以在一个蜂窝通信系统中提供通信功能。经由收发器建立的通信连接,例如无线局 域网接入或WCDMA接入,所述通信装置可以连接至蜂窝网(cellular network)或因特网(Internet)。
通信总线240可以包括一通路,在上述组件之间传递信息。
处理器210为通信装置的控制中心,利用各种接口和线路连接整个设备装置的各个部分,通过运行或执行存储在存储器903内的软件程序和/或单元,以及调用存储在存储器230内的数据,以执行通信装置的各种功能和各种功能和/或处理数据。进一步地,处理器210可以由集成电路(Integrated Circuit,IC)组成,例如可以由单颗封装的IC所组成,也可以由连接多颗相同功能或不同功能的封装IC而组成。举例来说,处理器可以仅包括中央处理器(Central Processing Unit,CPU)、数字信号处理器(Digital Signal Processor,DSP)、及收发器中的控制芯片(例如基带芯片)的组合。
存储器230可以包括易失性存储器(volatile memory),例如随机存取内存(Random Access Memory,RAM);还可以包括非易失性存储器(non-volatile memory),例如快闪存储器(flash memory),硬盘(Hard Sisk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);存储器还可以包括上述种类的存储器的组合。所述存储器中可以存储有程序或代码,处理器901通过执行所述程序或代码可以实现所述通信装置的功能。另外,存储器230可以是独立存在,通过通信总线240与处理器210相连接;或者存储器903也可以和处理器901集成在一起。
当图20所示的通信装置为芯片时,输入输出接口250的功能/实现过程还可以通过管脚或电路等来实现,所述存储器903为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是位于所述芯片外部的存储单元。
在本实施例中,当所述通信装置作为第一基站10或第二基站20时,可以实现前述实施例中图7、图14、图15中所示的第一装置或第二装置的方法步骤,并且前述图17所示装置实施例中的接收单元171和发送单元172的功能可以由收发器220和输入输出接口250来实现,或者由处理器210控制实现;所述处理单元所要实现的功能则可以由处理器210实现;所述存储单元的功能可以由存储器230实现。
具体地,当所述通信装置为第一装置时,所述收发器220用于向第二装置发送第一指示信息,从所述第二装置接收第二指示信息,向所述第二装置发送第三指示信息,以及从所述第二装置接收第四指示信息等,进一步地,所述第一至第四指示信息的内容和配置过程与前述方法实施例相同,不再赘述。
此外,在一种实现方式中,所述处理器210还用于根据上述方法实施例中的方式一和方式二确定所述第一初始BWP的频域起始位置,以及根据所述方式三和方式四确定所述第二初始BWP的频域起始位置,具体过程参见上述方法实施例,不再赘述。
在一种实现方式中,所述收发器220还用于通过第一请求消息向所述第二装置发送所述第一指示信息和所述第三指示信息。
在一种实现方式中,所述处理器210还用于根据所述第一初始BWP,所述第二初始BWP,和所述第四指示信息指示的所述第二装置期望用于数据传输的时频资源,确定所述通信装置在所述第一候选共享资源中期望用于数据传输的时频资源。
在一种实现方式中,所述处理器210还用于根据所述第一初始BWP,所述第二初始BWP 和所述第二装置期望用于数据传输的时频资源,确定所述第一装置在所述第一候选共享资源中的共享资源;或者,所述第一装置根据所述第一初始BWP,所述第二初始BWP,所述第一装置期望用于数据传输的时频资源和所述第二装置期望用于数据传输的时频资源,确定所述第一装置在所述第一候选共享资源中的共享资源。
上述处理器210的各种实现方式中具体的确定过程,可以参见上述实施例一以及说明书附图7中的各种实现方式,本实施例此处不再赘述。
当所述通信装置作为集中控制器30时,可以实现前述实施例中图18中所示第三装置的方法步骤,并且前述图18所示装置实施例中的接收单元181和发送单元183的功能可以由收发器220和输入输出接口250实现,或者由处理器210控制实现;所述处理单元182所要实现的功能则可以由处理器210实现;所述存储单元的功能可以由存储器230实现。
具体地,当所述通信装置为第三装置时,所述收发器220用于接收来自第一装置的第一指示信息,和来自第二装置的第二指示信息;以及接收来自所述第一装置的第三指示信息;来自所述第二装置的第四指示信息。所述处理器901用于根据所述第一指示信息、所述第二指示信息、所述第三指示信息和所述第四指示信息中的一种或多种,在所述第一候选共享资源中确定所述第一装置的共享资源,并生成第五指示信息,所述收发器220还用于向所述第一装置发送所述第五指示信息,所述第五指示信息用于指示所述第一装置在所述第一候选共享资源中的共享资源。
此外,在一种实现方式中,收发器220还用于向所述第二装置发送第六指示信息,处理器210还用于根据所述第一指示信息、所述第二指示信息、所述第三指示信息和所述第四指示信息中的一种或多种在所述第一候选共享资源中确定所述第二装置的共享资源。
在一种实现方式中,所述收发器220具体用于周期性地接收来自第一装置的第一指示信息;以及,周期性地接收来自所述第二装置的第二指示信息。
在一种实现方式中,所述收发器220在接收来自第二装置的第四指示信息之前,还用于向所述第二装置发送消息,所述消息用于指示所述第二装置上报所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源。
上述收发器220和处理器210的各种实现方式中具体的确定过程,可以参见上述实施例二以及说明书附图15中的各种实现方式,本实施例此处不再赘述。
需要说明的是,本实施例中,所述终端设备的结构可以与图20所示的通信装置的结构相同,例如包括通信接口、通信总线、收发器、处理器和存储器等,还可以包括其他组成部件或单元模块,本实施例对具体的各个通信设备的结构和组成部件不进行限定。
此外,本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质可存储有程序,该程序执行时可包括本申请提供的资源共享方法的各实施例中的部分或全部步骤。所述的存储介质可为磁碟、光盘、只读存储记忆体ROM或随机存储记忆体RAM等。
在上述实施例中,可以全部或部分通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令,例如切换指令,在计算机加载和执行所述计算机程序时,全部或部分地产生按照本申请上述各个实施例所述的流程 或功能。所述计算机可以是通用计算机、专用计算机、计算机网络或者其他可编程装置。
所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网络节点、计算机、服务器或数据中心通过有线或无线方式向另一个站点、计算机或服务器进行传输。
所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等存储设备。所述可用介质可以是磁性介质,例如软盘、硬盘、磁带、光介质(例如DVD)、或半导体介质,例如固态硬盘SSD等。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域的技术人员可以清楚地了解到本申请实施例中的技术可借助软件加必需的通用硬件平台的方式来实现。基于这样的理解,本申请实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
本说明书中各个实施例之间相同相似的部分互相参见即可。尤其,对于网络设备/节点或装置设备而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例中的说明即可。
以上所述的本申请实施方式并不构成对本申请保护范围的限定。

Claims (38)

  1. 一种资源共享的方法,其特征在于,所述方法包括:
    第一装置向第二装置发送第一指示信息,所述第一指示信息用于指示第一初始部分带宽BWP的频域资源,所述第一初始BWP的频域资源为所述第一装置不与所述第二装置共享的资源,所述第一初始BWP的频域资源为所述第一装置和所述第二装置的第一候选共享资源的一部分;
    所述第一装置从所述第二装置接收第二指示信息,所述第二指示信息用于指示第二初始BWP的频域资源,所述第二初始BWP的频域资源为所述第二装置不与所述第一装置共享的资源,所述第二初始BWP的频域资源为所述第一候选共享资源的一部分;
    所述第一装置向所述第二装置发送第三指示信息,所述第三指示信息用于指示所述第一装置在所述第一候选共享资源中期望用于数据传输的时频资源;
    所述第一装置从所述第二装置接收第四指示信息,所述第四指示信息用于指示所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源。
  2. 根据权利要求1所述的方法,其特征在于,所述第一初始BWP的频域资源与所述第二初始BWP的频域资源之间不重叠。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一指示信息用于指示第一初始部分带宽BWP的频域资源,包括:
    所述第一指示信息用于指示第一初始BWP的频域起始位置、第一初始BWP的频域终止位置和第一初始BWP的频域宽度中的至少一种;
    所述第二指示信息用于指示第二初始BWP的频域资源,包括:
    所述第二指示信息用于指示第二初始BWP的频域起始位置、第二初始BWP的频域终止位置和第二初始BWP的频域宽度中的至少一种。
  4. 根据权利要求3所述的方法,其特征在于,所述第一初始BWP的频域起始位置根据如下方式一或者方式二确定,
    方式一:根据第一下行带宽的频域起始位置,和所述第一下行带宽的频域起始位置与所述第一初始BWP的频域起始位置之间的偏移量确定;
    方式二:根据同步广播块SSB的频域起始位置、所述SSB的频域起始位置与所述第一下行带宽的频域起始位置之间的偏移量、以及所述第一下行带宽的频域起始位置与所述第一初始BWP的频域起始位置之间的偏移量确定;
    所述第二初始BWP的频域起始位置根据如下方式三或者方式四确定,
    方式三:根据第二下行带宽的频域起始位置,和所述第二下行带宽的频域起始位置与所述第二初始BWP的频域起始位置之间的偏移量确定;
    方式四:根据SSB的频域起始位置、所述SSB的频域起始位置与所述第二下行带宽的频域起始位置之间的偏移量、以及所述第二下行带宽的频域起始位置与所述第二初始BWP的频域起始位置之间的偏移量确定。
  5. 根据权利要求3所述方法,其特征在于,
    所述第一初始BWP的频域宽度满足:
    Figure PCTCN2019103385-appb-100001
    其中,L RBs1为所述第一初始BWP的频域宽度占用的连续RB数量,RIV1为第一资 源指示值参数,RB start1为所述第一初始BWP的起始资源块位置,
    Figure PCTCN2019103385-appb-100002
    表示第一资源块RB数量;
    所述第二初始BWP的频域宽度满足:
    Figure PCTCN2019103385-appb-100003
    其中,L RBs2为所述第二初始BWP的频域宽度占用的连续RB数量,RIV2为第二资源指示值参数,RB start2为所述第二初始BWP的起始资源块位置,
    Figure PCTCN2019103385-appb-100004
    表示第二RB数量。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第三指示信息指示的所述第一装置期望用于数据传输的时频资源不包括所述第一初始BWP的频域资源和所述第二初始BWP的频域资源。
  7. 根据权利要求1-5任一项所述的方法,其特征在于,所述第三指示信息包括第一字段和第二字段;
    所述第一字段,用于指示所述第一装置期望用于数据传输的时频资源的资源类型,所述资源类型包括上行UL、辅助上行SUL和下行DL资源类型中的至少一种;
    所述第二字段,用于指示每种所述资源类型对应的时频资源位置。
  8. 根据权利要求7所述的方法,其特征在于,所述第三指示信息还包括第三字段,所述第三字段用于指示所述第二字段中的期望用于数据传输的时频资源的生效时刻。
  9. 根据权利要求7所述的方法,其特征在于,所述第二字段还包括第四字段,所述第四字段用于指示每种所述资源类型对应的时频资源位置是否发生改变;
    在指示所述位置发生改变的情况下,所述第二字段还包括第五字段,所述第五字段用于指示改变后的期望用于传输数据的时频资源位置。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一装置向第二装置发送第一指示信息,以及所述第一装置向所述第二装置发送第三指示信息,包括:
    所述第一装置通过第一请求消息向所述第二装置发送所述第一指示信息和所述第三指示信息。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一装置向所述第二装置发送第三指示信息之前,还包括:
    所述第一装置根据所述第一初始BWP和所述第二指示信息所指示的所述第二初始BWP,确定在所述第一候选共享资源中所述期望用于数据传输的时频资源。
  12. 根据权利要求11所述的方法,其特征在于,所述第一装置确定在所述第一候选共享资源中所述期望用于数据传输的时频资源,包括:
    所述第一装置根据所述第一初始BWP,所述第二初始BWP,和所述第四指示信息指示的所述第二装置期望用于数据传输的时频资源,确定所述第一装置在所述第一候选共享资源中期望用于数据传输的时频资源。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述方法还包括:
    所述第一装置根据所述第一初始BWP,所述第二初始BWP和所述第四指示信息指示的所述第二装置期望用于数据传输的时频资源,确定所述第一装置在所述第一候选共享资源中的共享资源;
    或者,所述第一装置根据所述第一初始BWP,所述第二初始BWP,所述第一装置期 望用于数据传输的时频资源和所述第二装置期望用于数据传输的时频资源,确定所述第一装置在所述第一候选共享资源中的共享资源。
  14. 一种资源共享的方法,其特征在于,所述方法包括:
    第三装置接收来自第一装置的第一指示信息,所述第一指示信息用于指示所述第一装置保留的资源;
    所述第三装置接收来自第二装置的第二指示信息,所述第二指示信息用于指示第二装置保留的资源;
    所述第三装置接收来自所述第一装置的第三指示信息,所述第三指示信息用于指示所述第一装置在第一候选共享资源中期望用于数据传输的时频资源;
    所述第三装置接收来自所述第二装置的第四指示信息,所述第四指示信息用于指示所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源;
    所述第三装置向所述第一装置发送第五指示信息,所述第五指示信息用于指示所述第一装置在所述第一候选共享资源中的共享资源,所述第一装置的共享资源根据所述第一指示信息、所述第二指示信息、所述第三指示信息和所述第四指示信息中的一种或多种在所述第一候选共享资源中确定。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    所述第三装置向所述第二装置发送第六指示信息,所述第六指示信息用于指示所述第二装置在所述第一候选共享资源中的共享资源;所述第二装置的共享资源根据所述第一指示信息、所述第二指示信息、所述第三指示信息和所述第四指示信息中的一种或多种在所述第一候选共享资源中确定。
  16. 根据权利要求14或15所述的方法,其特征在于,
    所述第三装置接收来自第一装置的第一指示信息,包括:所述第三装置周期性地接收来自第一装置的第一指示信息;
    所述第三装置接收来自第二装置的第二指示信息,包括:所述第三装置周期性地接收来自所述第二装置的第二指示信息。
  17. 根据权利要求14-16任一项所述的方法,其特征在于,所述第三装置接收来自所述第二装置的第四指示信息之前,还包括:
    所述第三装置向所述第二装置发送消息,所述消息用于指示所述第二装置上报所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源。
  18. 一种资源共享装置,其特征在于,该装置应用于第一装置中,所述装置包括:
    发送单元,用于向第二装置发送第一指示信息,所述第一指示信息用于指示第一初始部分带宽BWP的频域资源,所述第一初始BWP的频域资源为所述第一装置不与所述第二装置共享的资源,所述第一初始BWP的频域资源为所述第一装置和所述第二装置的第一候选共享资源的一部分;
    接收单元,用于从所述第二装置接收第二指示信息,所述第二指示信息用于指示第二初始BWP的频域资源,所述第二初始BWP的频域资源为所述第二装置不与所述第一装置共享的资源,所述第二初始BWP的频域资源为所述第一候选共享资源的一部分;
    所述发送单元,还用于向所述第二装置发送第三指示信息,所述第三指示信息用于指示所述第一装置在所述第一候选共享资源中期望用于数据传输的时频资源;
    所述接收单元,还用于从所述第二装置接收第四指示信息,所述第四指示信息用于指示所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源。
  19. 根据权利要求18所述的装置,其特征在于,所述第一初始BWP的频域资源与所述第二初始BWP的频域资源之间不重叠。
  20. 根据权利要求18或19所述的装置,其特征在于,所述第一指示信息用于指示第一初始部分带宽BWP的频域资源,包括:
    所述第一指示信息用于指示第一初始BWP的频域起始位置、第一初始BWP的频域终止位置和第一初始BWP的频域宽度中的至少一种;
    所述第二指示信息用于指示第二初始BWP的频域资源,包括:
    所述第二指示信息用于指示第二初始BWP的频域起始位置、第二初始BWP的频域终止位置和第二初始BWP的频域宽度中的至少一种。
  21. 根据权利要求20所述的装置,其特征在于,还包括处理单元,
    所述处理单元,用于根据如下方式一或者方式二确定所述第一初始BWP的频域起始位置,根据如下方式三或者方式四确定所述第二初始BWP的频域起始位置,
    方式一:根据第一下行带宽起始位置,和所述第一下行带宽的频域起始位置与所述第一初始BWP的频域起始位置之间的偏移量确定;
    方式二:根据同步广播块SSB的频域起始位置、所述SSB的频域起始位置与所述第一下行带宽的频域起始位置之间的偏移量、以及所述下行带宽的频域起始位置与所述第一初始BWP的频域起始位置之间的偏移量确定;
    方式三:根据第二下行带宽的频域起始位置,和所述第二下行带宽的频域起始位置与所述第二初始BWP的频域起始位置之间的偏移量确定;
    方式四:根据SSB的频域起始位置、所述SSB的频域起始位置与所述第二下行带宽的频域起始位置之间的偏移量、以及所述第二下行带宽的频域起始位置与所述第二初始BWP的频域起始位置之间的偏移量确定。
  22. 根据权利要求20所述的装置,其特征在于,
    所述第一初始BWP的频域宽度满足:
    Figure PCTCN2019103385-appb-100005
    其中,L RBs1为所述第一初始BWP的频域宽度占用的连续RB数量,RIV1为第一资源指示值参数,RB start1为所述第一初始BWP的起始资源块位置,
    Figure PCTCN2019103385-appb-100006
    表示第一资源块RB数量;
    所述第二初始BWP的频域宽度满足:
    Figure PCTCN2019103385-appb-100007
    其中,L RBs2为所述第二初始BWP的频域宽度占用的连续RB数量,RIV2为第二资源指示值参数,RB start2为所述第二初始BWP的起始资源块位置,
    Figure PCTCN2019103385-appb-100008
    表示第二RB数量。
  23. 根据权利要求18-22任一项所述的装置,其特征在于,所述第三指示信息指示的所述第一装置期望用于数据传输的时频资源不包括所述第一初始BWP的频域资源和所述第二初始BWP的频域资源。
  24. 根据权利要求18-22任一项所述的装置,其特征在于,所述第三指示信息包括第一字段和第二字段;
    所述第一字段,用于指示所述第一装置期望用于数据传输的时频资源的资源类型,所述资源类型包括上行UL、辅助上行SUL和下行DL资源类型中的至少一种;
    所述第二字段,用于指示每种所述资源类型对应的时频资源位置。
  25. 根据权利要求24所述的装置,其特征在于,所述第三指示信息还包括第三字段,所述第三字段用于指示所述第二字段中的期望用于数据传输的时频资源的生效时刻。
  26. 根据权利要求24所述的装置,其特征在于,所述第二字段还包括第四字段,所述第四字段用于指示每种所述资源类型对应的时频资源位置是否发生改变;
    所述发送单元,用于在指示所述位置发生改变的情况下,通过所述第二字段发送第五字段,所述第五字段用于指示改变后的期望用于传输数据的时频资源位置。
  27. 根据权利要求18-26任一项所述的装置,其特征在于,
    所述发送单元,具体用于通过第一请求消息向所述第二装置发送所述第一指示信息和所述第三指示信息。
  28. 根据权利要求18-27任一项所述的装置,其特征在于,还包括处理单元,
    所述处理单元,用于根据所述第一初始BWP和所述第二指示信息所指示的所述第二初始BWP,确定在所述第一候选共享资源中所述期望用于数据传输的时频资源。
  29. 根据权利要求28所述的装置,其特征在于,
    所述处理单元,具体用于根据所述第一初始BWP,所述第二初始BWP,和所述第四指示信息指示的所述第二装置期望用于数据传输的时频资源,确定所述第一装置在所述第一候选共享资源中期望用于数据传输的时频资源。
  30. 根据权利要求19-29任一项所述的装置,其特征在于,
    所述处理单元,还用于根据所述第一初始BWP,所述第二初始BWP和所述第四指示信息指示的所述第二装置期望用于数据传输的时频资源,确定所述第一装置在所述第一候选共享资源中的共享资源;
    或者,根据所述第一初始BWP,所述第二初始BWP,所述第一装置期望用于数据传输的时频资源和所述第二装置期望用于数据传输的时频资源,确定所述第一装置在所述第一候选共享资源中的共享资源。
  31. 一种资源共享的装置,其特征在于,应用于第三装置,所述装置包括:
    接收单元,用于接收来自第一装置的第一指示信息,以及接收来自第二装置的第二指示信息;所述第一指示信息用于指示第一装置保留的资源;所述第二指示信息用于指示第二装置保留的资源;
    所述接收单元,还用于接收来自所述第一装置的第三指示信息,以及来自所述第二装置的第四指示信息;所述第三指示信息用于指示所述第一装置在所述第一候选共享资源中期望用于数据传输的时频资源;所述第四指示信息用于指示所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源;
    发送单元,用于向所述第一装置发送第五指示信息,所述第五指示信息用于指示所述第一装置在所述第一候选共享资源中的共享资源,所述第一装置的共享资源由处理单元根据所述第一指示信息、所述第二指示信息、所述第三指示信息和所述第四指示信息中的一种或多种,在所述第一候选共享资源中确定。
  32. 根据权利要求31所述的装置,其特征在于,所述发送单元,还用于向所述第二装置发送第六指示信息;
    所述第六指示信息用于指示所述第二装置在所述第一候选共享资源中的共享资源;所述第二装置的共享资源由处理单元根据所述第一指示信息、所述第二指示信息、所述第三指示信息和所述第四指示信息中的一种或多种,在所述第一候选共享资源中确定。
  33. 根据权利要求31或32所述的装置,其特征在于,
    所述接收单元,具体用于周期性接收来自所述第一装置的第一指示信息;以及,周期性接收来自所述第二装置的第二指示信息。
  34. 根据权利要求31-33任一项所述的装置,其特征在于,
    所述发送单元,还用于在接收来自所述第二装置的第四指示信息之前,向所述第二装置发送消息,所述消息用于指示所述第二装置上报所述第二装置在所述第一候选共享资源中期望用于数据传输的时频资源。
  35. 一种通信装置,包括处理器,所述处理器与存储器相连,其特征在于,
    所述存储器用于存储计算机程序指令;
    所述处理器用于执行所述存储器中存储的所述指令,以使得所述通信装置执行如权利要求1至13中任一项所述的方法。
  36. 一种通信装置,包括处理器,所述处理器与存储器相连,其特征在于,
    所述存储器用于存储计算机程序指令;
    所述处理器用于执行所述存储器中存储的所述指令,以使得所述通信装置执行如权利要求14至17中任一项所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序指令,
    当所述计算机程序指令被运行时,实现如权利要求1至13中任一项所述的方法。
  38. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序指令,
    当所述计算机程序指令被运行时,实现如权利要求14至17中任一项所述的方法。
PCT/CN2019/103385 2019-08-29 2019-08-29 一种资源共享的方法和装置 WO2021035633A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/103385 WO2021035633A1 (zh) 2019-08-29 2019-08-29 一种资源共享的方法和装置
EP19943638.7A EP4021108A4 (en) 2019-08-29 2019-08-29 METHOD AND DEVICE FOR SHARING RESOURCES
CN201980099103.9A CN114208323A (zh) 2019-08-29 2019-08-29 一种资源共享的方法和装置
US17/680,696 US20220183009A1 (en) 2019-08-29 2022-02-25 Resource sharing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103385 WO2021035633A1 (zh) 2019-08-29 2019-08-29 一种资源共享的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/680,696 Continuation US20220183009A1 (en) 2019-08-29 2022-02-25 Resource sharing method and apparatus

Publications (1)

Publication Number Publication Date
WO2021035633A1 true WO2021035633A1 (zh) 2021-03-04

Family

ID=74683772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103385 WO2021035633A1 (zh) 2019-08-29 2019-08-29 一种资源共享的方法和装置

Country Status (4)

Country Link
US (1) US20220183009A1 (zh)
EP (1) EP4021108A4 (zh)
CN (1) CN114208323A (zh)
WO (1) WO2021035633A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102678A (zh) * 2022-08-24 2022-09-23 深圳国人无线通信有限公司 共建共享基站满足用户业务需求的bwp切换方法和系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230014069A1 (en) * 2021-07-14 2023-01-19 Qualcomm Incorporated Interference management for dynamic spectrum sharing
CN117715053A (zh) * 2022-09-05 2024-03-15 中兴通讯股份有限公司 数据处理方法、装置、网络设备和存储介质
CN115915429A (zh) * 2022-09-08 2023-04-04 中兴通讯股份有限公司 一种资源块集合的确定方法、通信节点及存储介质
CN116073977B (zh) * 2023-02-13 2024-04-09 中国联合网络通信集团有限公司 基于时分双工的数据传输方法、装置及服务器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391426A (zh) * 2017-08-11 2019-02-26 中兴通讯股份有限公司 资源位置的指示、接收方法及装置
CN109561471A (zh) * 2017-09-25 2019-04-02 展讯通信(上海)有限公司 指示及配置bwp参数的方法、基站、用户设备及可读介质
US20190261425A1 (en) * 2018-02-17 2019-08-22 Kyungmin Park Bandwidth Part Configuration Information

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6597946B2 (ja) * 2017-11-13 2019-10-30 日本電気株式会社 gNB−DU、gNB−CU、及びこれらの方法
US10952215B2 (en) * 2018-07-10 2021-03-16 Huawei Technologies Co., Ltd. Method and system for transmission over multiple carriers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109391426A (zh) * 2017-08-11 2019-02-26 中兴通讯股份有限公司 资源位置的指示、接收方法及装置
CN109561471A (zh) * 2017-09-25 2019-04-02 展讯通信(上海)有限公司 指示及配置bwp参数的方法、基站、用户设备及可读介质
US20190261425A1 (en) * 2018-02-17 2019-08-22 Kyungmin Park Bandwidth Part Configuration Information

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4021108A4 *
ZTE, SANECHIPS: "About dynamic resource sharing", 3GPP DRAFT; R1-1719495 ABOUT DYNAMIC RESOURCE SHARING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 17 November 2017 (2017-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051368803 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102678A (zh) * 2022-08-24 2022-09-23 深圳国人无线通信有限公司 共建共享基站满足用户业务需求的bwp切换方法和系统
CN115102678B (zh) * 2022-08-24 2023-03-24 深圳国人无线通信有限公司 共建共享基站满足用户业务需求的bwp切换方法和系统

Also Published As

Publication number Publication date
EP4021108A1 (en) 2022-06-29
US20220183009A1 (en) 2022-06-09
EP4021108A4 (en) 2022-08-03
CN114208323A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2021035633A1 (zh) 一种资源共享的方法和装置
JP7167250B2 (ja) 時間周波数リソースの伝送方向を構成するための方法、および装置
JP7078276B2 (ja) 通信装置、ユーザ機器、通信装置によって実行される方法、及びユーザ機器によって実行される方法
US10314089B2 (en) Method performed by a user equipment, method performed by an enodeb, user equipment and enodeb
US11924141B2 (en) Communication method, network device, and terminal device
KR20200058533A (ko) 통신 방법 및 통신 장치
TW202013996A (zh) 配置訊息的傳輸方法和終端設備
CN106162888B (zh) 载波聚合中的pucch资源配置方法及其设备
CN109152029B (zh) 一种通信方法、网络设备及用户设备
JP2020515095A (ja) データ伝送方法及び装置
KR102267182B1 (ko) 다운 링크 리소스 집합을 결정하기 위한 방법 및 장치, 및 리소스 위치 정보를 송신하기 위한 방법 및 장치
JP6691875B2 (ja) 端末装置、基地局装置、および、方法
JP2020115641A (ja) 高効率ワイヤレスネットワークにおける向上した通信効率のためのシステムおよび方法
TW202008828A (zh) 資源配置的方法和終端設備
TW201725920A (zh) 一種窄頻pbch傳輸方法及裝置
CN110769508A (zh) 信号传输方法、装置、终端设备、网络设备及系统
JP6697095B2 (ja) 通信方法と通信装置
WO2017193338A1 (zh) 传输系统信息的方法、基站和终端
JP2017531948A (ja) 帯域幅を減少させたマシン型通信(mtc)デバイスのためのサブバンド割り当て技術
TW201824841A (zh) 信息傳輸方法、網絡設備和終端設備
US11405899B2 (en) Resource request sending method, user equipment, and base station
WO2018201886A1 (zh) 一种资源指示的方法、设备及系统
WO2023065874A1 (zh) 一种调度方法及装置
WO2022205465A1 (zh) 无线通信方法、第一设备和第二设备
JP2020145694A (ja) 通信方法と通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943638

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019943638

Country of ref document: EP

Effective date: 20220322