WO2021035518A1 - Switching circuits - Google Patents

Switching circuits Download PDF

Info

Publication number
WO2021035518A1
WO2021035518A1 PCT/CN2019/102767 CN2019102767W WO2021035518A1 WO 2021035518 A1 WO2021035518 A1 WO 2021035518A1 CN 2019102767 W CN2019102767 W CN 2019102767W WO 2021035518 A1 WO2021035518 A1 WO 2021035518A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic device
signal
mode
activation device
switch
Prior art date
Application number
PCT/CN2019/102767
Other languages
French (fr)
Inventor
Wen Zhang
Webb ZHAO
Original Assignee
Hewlett-Packard Development Company, L.P.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett-Packard Development Company, L.P. filed Critical Hewlett-Packard Development Company, L.P.
Priority to PCT/CN2019/102767 priority Critical patent/WO2021035518A1/en
Publication of WO2021035518A1 publication Critical patent/WO2021035518A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/965Switches controlled by moving an element forming part of the switch
    • H03K17/97Switches controlled by moving an element forming part of the switch using a magnetic movable element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/24Resetting means

Definitions

  • Switching circuits may be used in electronic devices to control one or more functions of the electronic device.
  • the switching circuit may include multiple switches that may be independently activated to control the functions. Further, each switch may be individually designed and positioned in accordance to the functionality being controlled by the switch and to enhance aesthetic appeal of the electronic device.
  • Figure 1 illustrates an electronic device assembly comprising an electronic device having a switching circuit, according to an example of the present subject matter
  • Figure 2 illustrates an electronic device assembly comprising the switching circuit, according to another example of the present subject matter
  • Figure 3 illustrates an electronic device comprising the switching circuit and a processing unit, according to an example of the present subject matter
  • Figure 4 illustrates an electronic device assembly comprising the electronic device and an activation device, according to an example of the present subject matter
  • Figure 5 illustrates an activation device for activating the switching circuit, according to an example of the present subject matter
  • Figure 6 illustrates a cross-sectional view of the electronic device illustrating the activation device and the electronic device at different stages of operation for activating the switching circuit, according to an example of the present subject matter
  • Figure 7 illustrates an activation device for activating the switching circuit, according to another example of the present subject matter
  • Figure 8 illustrates a circuit diagram comprising the switching circuit and the processing unit, according to an example of the present subject matter.
  • Switches may be used to control one or more functions in an electronic device.
  • the switches may be designed and positioned in accordance to the functionality being controlled by the switch and to enhance aesthetic appeal of the electronic device.
  • a front panel of an electronic device may include switches that may be easily accessible, such as a power on/off switch and volume up/down switch, while less frequently used switches, such as brightness control switches may be provided on a back panel of the electronic device.
  • system configuration switches used to operate configuration modes, such as a reset mode and a recovery mode of the electronic device, are provided at locations that may not be easily accessible to users.
  • Such system configuration switches may be hidden behind a device housing and may be accessible by a pin or a similar thin object, through a pinhole provided in the device housing.
  • Such type of switches may also be referred to as pinhole switches.
  • a pinhole switch may be used to operate the device in a particular configuration mode.
  • designers may either provide external switches or additional pinhole switches. Adding additional external or pinhole switches may, however, affect the aesthetics of the electronic device. Further, external switches may be easily accessible and may also get accidently activated, thus resulting in unintended activation of the corresponding configuration mode. In some cases, the user may even lose saved data on entering the configuration mode. Further, adding additional pinhole switches may affect the aesthetics of the electronic device as an additional pinhole may have to be provided on the device housings to provide access to each additional pinhole switch. Alternatively, designers may provide system configuration switches inside the housing of the electronic devices that may be accessed after removing the device housing. This may, however, require more time and render the process tedious.
  • An electronic device assembly comprises an activation device and an electronic device having a switching circuit.
  • the switching circuit may include a switch and a magnetic field sensor to operate the electronic device in one of a first mode and a second mode.
  • the first mode and the second mode may be system configuration modes, such as a reset mode, a recovery mode, a debug mode, a diagnosis mode, a download mode, or a BIOS mode.
  • the electronic device may be operated in either of the first mode or the second mode for performing predefined operations, such as troubleshooting of the electronic device.
  • the electronic device may not be operated in either of the first mode or the second mode during a regular operation of the electronic device.
  • the electronic device further comprises a device housing to house components of the electronic device, such as the switching circuit.
  • the device housing may comprise a pinhole to allow the activation device to access and mechanically activate the switch.
  • the switch may be mechanically actuated by the activation device in a non-magnetic state.
  • the activation device When used in a non-magnetic state, the activation device may be referred to as a non-magnetic activation device.
  • the switch On mechanical actuation of the switch by the non-magnetic activation device, the switch may generate a first signal.
  • a processing unit On receiving the first signal, a processing unit may initiate a first action to operate the electronic device in the first mode.
  • the electronic device On mechanical actuation of the switch by the activation device in a magnetic state, the electronic device may operate in the second mode.
  • the activation device may be referred to as a magnetic activation device, when used in a magnetic state.
  • the switch On mechanical actuation of the switch by the magnetic activation device, the switch may generate the first signal and the magnetic sensor may generate a second signal.
  • the processing unit In response to receiving the first signal and the second signal, the processing unit may perform a second action, to operate the electronic device in the second mode, such as a debug mode, a diagnosis mode, a download mode, or a BIOS mode.
  • the present subject matter thus facilitates use of a single pinhole to initiate two different actions for operating the electronic device.
  • Using the magnetic field sensor along with the switch to operate the electronic device in two different modes helps in reducing the number of switches in the switching circuit and corresponding pinholes in the device housing. Having a lesser number of switches or the pinholes to be provided on the device housing may allow a designer to design the electronic device with better aesthetic appeal. Further, during troubleshooting, the user may access the switch to operate the electronic device in either the first mode or the second mode, without opening the electronic device housing, thereby allowing faster servicing. Further, using a magnetic sensor for activating the second action allows a single pinhole and a mechanical switch to be used.
  • the mechanical switch may be activated with a single mechanical activation using the activation device, the user may easily operate the electronic device without having to involve a skilled service engineer, thereby, reducing maintenance cost for the user.
  • the second action may be performed upon simultaneous mechanical actuation of the device and the sensing of the magnetic field by the magnetic sensor, accidental initiation of the second action is avoided. Thus, even if the magnetic sensor senses a magnetic field accidentally generated by a device other than the activation device, the second action may not get initiated.
  • FIG. 1 illustrates an electronic device assembly 102, according to an example of the present subject matter.
  • the electronic device assembly 102 includes an electronic device 104 and an activation device (not shown in the figure) to operate the electronic device 104.
  • Examples of the electronic device 104 include, but are not limited to, computing devices, such as a laptop, a notebook, a modem, a tablet, a desktop, and a personal digital assistant; communication devices, such as a phablet and a mobile communication device; print devices, such as, a printer, a scanning device, an all-in-one print device, and a 3D printer; network peripherals, such as a modem and a router; and other electronic devices, such as display devices and televisions.
  • computing devices such as a laptop, a notebook, a modem, a tablet, a desktop, and a personal digital assistant
  • communication devices such as a phablet and a mobile communication device
  • print devices such as, a printer, a scanning device, an all-in
  • the electronic device 104 may include a switching circuit 106 to operate the electronic device 104 in one of a first mode and a second mode.
  • the first mode and the second mode may be system configuration modes. Examples of the first mode and the second mode include, but are not limited to, a reset mode, a recovery mode, a debug mode, a diagnosis mode, and a BIOS mode.
  • the switching circuit 106 may further include a magnetic field sensor 108 and a switch 110 to switch the electronic device 104 between the first mode and the second mode.
  • the switch 110 may be mechanically activated by the activation device to generate a first signal.
  • the magnetic field sensor 108 may be provided adjacent to the switch 110 and may generate a second signal in response to sensing a magnetic field, for example, on the activation device.
  • a user of the electronic device 104 may insert the activation device through a pinhole provided in a device housing of the electronic device.
  • the electronic device 104 may operate in the second mode.
  • the switch 110 is activated by the activation device in a non-magnetic state
  • the magnetic field sensor 108 may not detect any magnetic field and may thus not generate the second signal.
  • the electronic device 104 may thus operate in the first mode in response to receiving the first signal in absence of the second signal.
  • the electronic device 104 may thus be operated in either of two different modes by selectively activating the magnetic field sensor 108.
  • Figure 2 illustrates an electronic device assembly 202 comprising the switching circuit 106, according to another example of the present subject matter.
  • the electronic device assembly 202 may include an activation device (not shown in this figure) and an electronic device (not shown in this figure) , such as the electronic device 104 having the switching circuit 106.
  • the switching circuit 106 may include the switch 110 and the magnetic field sensor 108 placed adjacent to the switch 110.
  • the switch 110 may be mechanically activated, for example, by the activation device to generate the first signal.
  • the switch 110 may be mechanically actuated by the activation device either in a magnetic state or a non-magnetic state. When used in the non-magnetic state, the activation device may be referred to as a non-magnetic activation device. When used in the magnetic state, the activation device may be referred to as a magnetic activation device.
  • the switch 110 may generate a first signal to initiate a first action.
  • the first action may include operating an electronic device, such as the electronic device 104 in a first mode, such as the reset mode.
  • the switch 110 On mechanical actuation of the switch 110 by the magnetic activation device, the switch 110 may generate the first signal and the magnetic field sensor 108 may generate the second signal to initiate a second action.
  • the second action may include operating an electronic device, such as the electronic device 104 in a second mode, such as the diagnosis mode. A user of the electronic device 104 may thus selectively use the non- magnetic activation device and the magnetic activation device to perform either of the first action or the second action.
  • Figure 3 illustrates the electronic device 104 according to another example of the present subject matter.
  • the electronic device 104 includes the switching circuit 106 and a processing unit 302.
  • the switching circuit 106 may include the switch 110 and the magnetic field sensor 108.
  • the switch 110 may be mechanically activated to generate a first signal.
  • the magnetic field sensor 108 may be placed adjacent to the switch 110 to generate a second signal in response to sensing a magnetic field.
  • the processing unit 302 may be electrically coupled to the switching circuit 106 to receive the first signal and the second signal generated by the switch 110 and the magnetic field sensor 108, respectively.
  • the processing unit 302 may operate the electronic device 104 in a predetermined mode in response to receiving the first signal and the second signal.
  • the predetermined modes include, but are not limited to, a debug mode, a diagnosis mode, a download mode, and a BIOS mode.
  • the magnetic field sensor 108 may generate the second signal in response to sensing a magnetic field on an activation device (not shown in this figure) used to mechanically activate the switch 110.
  • the processing unit 302 may allow the electronic device 104 to continue to operate in a current mode of operation.
  • the magnetic field sensor 108 may generate the second signal in response to sensing a magnetic field on another component in vicinity of the magnetic field sensor 108.
  • the switch 110 may not generate the first signal.
  • the processing unit 302 may determine that the magnetic field sensor 108 has not been activated by the user and the second signal has been accidently generated by the magnetic field sensor 108 upon sensing the magnetic field generated by a component other than the activation device. The processing unit 302 may thus not take any action and allow the electronic device 104 to operate.
  • accidental initiation of the predetermined mode may be prevented.
  • Figure 4 illustrates the electronic device assembly 102 comprising an activation device 402 and the electronic device 104 according to an example of the present subject matter.
  • examples of the electronic device 104 include, but are not limited to, computing devices, communication devices, print devices, network peripherals, and other similar electronic devices.
  • the electronic device 104 further includes the switching circuit 106 and the processing unit 302 to operate the electronic device 104 in one of the first mode and the second mode.
  • the switching circuit 106 may further include the magnetic field sensor 108 and the switch 110 to switch the electronic device 104 between the first mode and the second mode.
  • the first mode and the second mode may be system configuration modes. Examples of the first mode and the second mode include, but are not limited to, a reset mode, a recovery mode, a debug mode, a diagnosis mode, and a BIOS mode.
  • the electronic device 104 further includes a device housing 404 to house the different components of the electronic device 104, such as the switching circuit 106 and the processing unit 302.
  • the device housing 404 may further be provided with a pinhole 406 to allow the activation device 402 to pass through the device housing 404 to mechanically activate the switch 110.
  • the switching circuit 106 may be mounted on the device housing 404 such that the switch 110 is parallel to a longitudinal axis of the pinhole 406 and is visible through the pinhole 406 to allow a user of the electronic device 104 to actuate the switch 110 with ease.
  • the processing unit 302 may be electrically coupled to the switching circuit 106 to receive a first signal and a second signal generated by the switch 110 and the magnetic field sensor 108, respectively.
  • the processing unit 302 may operate the electronic device 104 in a first mode in response to receiving the first signal in absence of the second signal.
  • the processing unit 302 may operate the electronic device 104 in a second mode in response to receiving the first signal and the second signal.
  • the processing unit 302 may allow the electronic device 104 to continue to operate in a current mode in response to receiving the second signal in absence of the first signal. Different modes of operations of the electronic device 104 have been further described in Table 1 below.
  • the Table 1 illustrates the section to be taken by the processing unit 302 in response to receiving the first signal in either absence or presence of the second signal.
  • the activation device 402 may include a non-magnetic activation component and a magnetic activation component.
  • the non-magnetic activation component and the magnetic activation component may be provided as separate activation devices.
  • the non-magnetic activation component may be provided as a non-magnetic activation device like a pin or a thin rod made up of a non-magnetic material, such as wood, rubber, and plastic.
  • the magnetic activation component may be provided as a magnetic activation device like a pin or a thin rod made up of a magnetic material.
  • the non-magnetic activation component and the magnetic activation component may be provided as a part of a single activation device 402.
  • the non-magnetic component may be provided at a first end of the activation device 402 and the magnetic component may be provided at a second end of the activation device 402, as illustrated in Figure 5.
  • the first end of the activation device 402 may be inserted through the pinhole 406 to mechanically activate the switch 110 to operate the activation device 402 as the non-magnetic activation device.
  • the second end of the activation device 402 may be inserted through the pinhole 406 to mechanically activate the switch 110 to operate the activation device 402 as the magnetic activation device.
  • the activation device 402 having the non-magnetic component at the first end and the magnetic component at the second end is described in detail with the description of Figure 5.
  • the activation device 402 may operate as either the non-magnetic activation device or the magnetic activation device in different modes of operation, as explained in description of Figure 7.
  • the activation device 402 may comprise a magnetic field generator to magnetize the activation device 402 in an operational state.
  • the activation device 402 may operate as the magnetic activation device.
  • the activation device 402 may operate as the non-magnetic activation device.
  • the user may use the activation device 402 to mechanically activate the switch 110 through the pinhole 406.
  • the user may use the non-magnetic activation device.
  • the activation device 402 may operate as the non-magnetic activation device in a non-magnetic state, for example, when first end of the activation device 402 having non-magnetic component is used or when the magnetic field generator is in a non-operational state.
  • the current explanation is provided with respect to example implementation having the magnetic activation device and the non-magnetic activation device as a separate activation device 402.
  • the user may also use either the activation device 402 having the magnetic field generator or the activation device 402 having the magnetic component and the non-magnetic component at the second end and the first end, respectively.
  • the switch 110 may generate the first signal to initiate the first action.
  • the processing unit 302 may initiate the first action to operate the electronic device 104 in the first mode.
  • the user may use the magnetic activation device.
  • the magnetic activation device As the user may insert the magnetic activation device through the pinhole 406 to mechanically actuate the switch 110, the magnetic field sensor 108 may sense the magnetic field and get activated to generate the second signal.
  • the processing unit 302 may initiate the second action. In one example, the processing unit 302 may initiate the second action to operate the electronic device 104 in the second mode.
  • the magnetic field sensor 108 may generate the second signal.
  • the switch 110 is not mechanically actuated, the switch 110 remains in its original position and does not generate the first signal.
  • the processing unit 302 may receive the second signal in absence of the first signal, the processing unit 302 may infer the second signal to have been accidentally initiated and may thus not take any action. The processing unit 302 may thus allow the electronic device 104 to continue to operate in a current mode of operation.
  • the present subject matter facilitates in avoiding inadvertent operation of the switching circuit 106 when the magnetic field sensor 108 senses a stray magnetic field, thereby providing safety against accidental initiation.
  • Figure 5 illustrates the activation device 402 for activating the switching circuit 106, according to an example of the present subject matter.
  • the activation device 402 may include a first end 502 and a second end 504.
  • the first end 502 of the activation device 402 may be made using a non-magnetic material, such as wood, rubber and plastic to function as the non-magnetic component.
  • the first end 502 of activation device 402 may thus be inserted through the pinhole 406 to mechanically activate the switch 110 to operate the activation device 402 as the non-magnetic activation device.
  • the second end 504 of the activation device 402 may be made using a magnetic material to function as the magnetic component.
  • the second end 504 of the activation device 402 may thus be inserted through the pinhole 406 to operate the activation device 402 as the magnetic activation device 402.
  • the second end 504 may thus mechanically activate the switch 110 and cause the magnetic field sensor 108 to generate the second signal due to the magnetic field of the magnetic material. Operational details of the activation device 402 having the magnetic component at the first end 502 and the non-magnetic component at the second end 504 will be explained with reference to Figure 6.
  • Figure 6 illustrates a cross-sectional view of the electronic device 104 illustrating the activation device 402 and the electronic device 104 at different stages of operation for activating the switching circuit 106, according to the example of the present subject matter.
  • Figure 6 illustrates the cross section as viewed from a front end of the electronic device 104.
  • Arrow 602 indicates the activation device 402 when used to operate the electronic device 104 in the first mode.
  • the first end 502 of the activation device 402 may be inserted through the pinhole 406 to mechanically activate the switch 110. Once activated, the switch 110 may generate the first signal. Further, in absence of any magnetic field around the activation device 402, the magnetic field sensor 108 may not generate the second signal.
  • the processing unit 302 may initiate the first action to operate the electronic device 104 in the first mode.
  • Arrow 604 indicates the activation device 402 when used to operate the electronic device 104 in the second mode.
  • the second end 504 of the activation device 402 may be inserted through the pinhole 406 to mechanically activate the switch 110.
  • the switch 110 may generate the first signal.
  • the magnetic field sensor 108 may sense the magnetic field, as illustrated by arrows 606-1 and 606-2, on the second end 504 of the activation device 402 and generate the second signal.
  • the processing unit 302 may initiate the second action. In one example, the processing unit 302 may initiate the second action to operate the electronic device 104 in the second mode.
  • Figure 7 illustrates the activation device 402 for activating the switching circuit 106, according to another example of the present subject matter.
  • the activation device 402 may include a magnetic field generator 702 to magnetize the activation device 402 in an operational state.
  • the activation device 402 may be made up of a metallic material.
  • the activation device 402 may be magnetized using the magnetic field generator 702 to behave as a magnet.
  • the activation device 402 may include an activation switch 704 to activate the magnetic field generator 702 to behave as a magnet to operate the activation device 402 as the magnetic activation device.
  • the activation device may operate as the non-magnetic activation device.
  • the user may insert the activation device 402 through the pinhole 406, with the magnetic field generator 702 in a non-operational state. Once activated, the switch 110 may generate the first signal. Further, in absence of a magnetic field around the activation device 402, the magnetic field sensor 108 may not generate the first signal. On receiving the first signal in absence of the second signal, the processing unit 302 may initiate the first action to operate the electronic device 104 in the first mode.
  • the user may switch ON the activation switch 704 to activate the magnetic field generator 702.
  • the activation device 402 may get magnetized to operate as the magnetic activation device.
  • the user may then insert the activation device 402 through the pinhole 406 to mechanically activate the switch 110.
  • the activation switch 704 may be activated after the activation device 402 is inserted into the pinhole 406.
  • the switch 110 may generate the first signal.
  • the magnetic field sensor 108 may sense the magnetic field on the activation device 402 and generate the second signal.
  • the processing unit 302 may initiate the second action. In one example, the processing unit 302 may initiate the second action to operate the electronic device 104 in the second mode.
  • Figure 8 illustrates a circuit diagram 800 comprising the switching circuit 106 and the processing unit 302, according to an example of the present subject matter.
  • the switching circuit 106 may include the switch 110 to be mechanically activated to generate the first signal and the magnetic field sensor 108 provided adjacent to the switch 110.
  • the magnetic field sensor 108 may be a Hall effect sensor.
  • current may start flowing from a source 802-1 through the load 804-1 to ground 806-1, thereby generating the first signal as a low voltage signal for the processing unit 302.
  • the magnetic field sensor 108 may sense the magnetic field and initiate flow of current from a source 802-2 through load 804-2 to ground 806-2, thereby generating the second signal as a low voltage signal for the processing unit 302. Therefore, on mechanical actuation of the switch 110 by the magnetic activation device, flow of current may initiate from both the sources 802-1 and 802-2.
  • the processing unit 302 in turn may receive the low voltage signal from both the sources and initiate the second action.

Abstract

Example switching circuits are described. An example electronic device includes a switching circuit comprising a switch to be mechanically activated by an activation device to generate a first signal. The switching circuit further includes a magnetic field sensor provided adjacent to the switch, to generate a second signal in response to sensing a magnetic field. The electronic device may operate in a first mode, in response to receiving the first signal in absence of the second signal. The electronic device may further operate in a second mode in response to receiving the first signal and the second signal.

Description

SWITCHING CIRCUITS BACKGROUND
Switching circuits may be used in electronic devices to control one or more functions of the electronic device. The switching circuit may include multiple switches that may be independently activated to control the functions. Further, each switch may be individually designed and positioned in accordance to the functionality being controlled by the switch and to enhance aesthetic appeal of the electronic device.
BRIEF DESCRIPTION OF DRAWINGS
The detailed description is provided with reference to the accompanying figures. In the figures, the left-most digit (s) of a reference number identifies the figure in which the reference number first appears. The same numbers are used throughout the drawings to reference like features and components.
Figure 1 illustrates an electronic device assembly comprising an electronic device having a switching circuit, according to an example of the present subject matter;
Figure 2 illustrates an electronic device assembly comprising the switching circuit, according to another example of the present subject matter;
Figure 3 illustrates an electronic device comprising the switching circuit and a processing unit, according to an example of the present subject matter;
Figure 4 illustrates an electronic device assembly comprising the electronic device and an activation device, according to an example of the present subject matter;
Figure 5 illustrates an activation device for activating the switching circuit, according to an example of the present subject matter;
Figure 6 illustrates a cross-sectional view of the electronic device illustrating the activation device and the electronic device at different stages of  operation for activating the switching circuit, according to an example of the present subject matter;
Figure 7 illustrates an activation device for activating the switching circuit, according to another example of the present subject matter;
Figure 8 illustrates a circuit diagram comprising the switching circuit and the processing unit, according to an example of the present subject matter.
DETAILED DESCRIPTION
Switches may be used to control one or more functions in an electronic device. In addition, the switches may be designed and positioned in accordance to the functionality being controlled by the switch and to enhance aesthetic appeal of the electronic device. For example, a front panel of an electronic device may include switches that may be easily accessible, such as a power on/off switch and volume up/down switch, while less frequently used switches, such as brightness control switches may be provided on a back panel of the electronic device. Further, system configuration switches, used to operate configuration modes, such as a reset mode and a recovery mode of the electronic device, are provided at locations that may not be easily accessible to users. Such system configuration switches may be hidden behind a device housing and may be accessible by a pin or a similar thin object, through a pinhole provided in the device housing. Such type of switches may also be referred to as pinhole switches.
A pinhole switch may be used to operate the device in a particular configuration mode. In case more than one configuration modes have to be provided, designers may either provide external switches or additional pinhole switches. Adding additional external or pinhole switches may, however, affect the aesthetics of the electronic device. Further, external switches may be easily accessible and may also get accidently activated, thus resulting in unintended activation of the corresponding configuration mode. In some cases, the user  may even lose saved data on entering the configuration mode. Further, adding additional pinhole switches may affect the aesthetics of the electronic device as an additional pinhole may have to be provided on the device housings to provide access to each additional pinhole switch. Alternatively, designers may provide system configuration switches inside the housing of the electronic devices that may be accessed after removing the device housing. This may, however, require more time and render the process tedious.
The present subject matter discloses example implementations of switching circuits of electronic device assemblies. An electronic device assembly comprises an activation device and an electronic device having a switching circuit. In one example, the switching circuit may include a switch and a magnetic field sensor to operate the electronic device in one of a first mode and a second mode. The first mode and the second mode may be system configuration modes, such as a reset mode, a recovery mode, a debug mode, a diagnosis mode, a download mode, or a BIOS mode. The electronic device may be operated in either of the first mode or the second mode for performing predefined operations, such as troubleshooting of the electronic device. The electronic device may not be operated in either of the first mode or the second mode during a regular operation of the electronic device. The electronic device further comprises a device housing to house components of the electronic device, such as the switching circuit. The device housing may comprise a pinhole to allow the activation device to access and mechanically activate the switch.
In one example, to operate the electronic device in the first mode, such as a reset mode or a recovery mode, the switch may be mechanically actuated by the activation device in a non-magnetic state. When used in a non-magnetic state, the activation device may be referred to as a non-magnetic activation device. On mechanical actuation of the switch by the non-magnetic activation device, the switch may generate a first signal. On receiving the first signal, a processing unit may initiate a first action to operate the electronic device in the first mode.
On mechanical actuation of the switch by the activation device in a magnetic state, the electronic device may operate in the second mode. In one example, the activation device may be referred to as a magnetic activation device, when used in a magnetic state. On mechanical actuation of the switch by the magnetic activation device, the switch may generate the first signal and the magnetic sensor may generate a second signal. In response to receiving the first signal and the second signal, the processing unit may perform a second action, to operate the electronic device in the second mode, such as a debug mode, a diagnosis mode, a download mode, or a BIOS mode.
The present subject matter thus facilitates use of a single pinhole to initiate two different actions for operating the electronic device. Using the magnetic field sensor along with the switch to operate the electronic device in two different modes helps in reducing the number of switches in the switching circuit and corresponding pinholes in the device housing. Having a lesser number of switches or the pinholes to be provided on the device housing may allow a designer to design the electronic device with better aesthetic appeal. Further, during troubleshooting, the user may access the switch to operate the electronic device in either the first mode or the second mode, without opening the electronic device housing, thereby allowing faster servicing. Further, using a magnetic sensor for activating the second action allows a single pinhole and a mechanical switch to be used. Further, as the mechanical switch may be activated with a single mechanical activation using the activation device, the user may easily operate the electronic device without having to involve a skilled service engineer, thereby, reducing maintenance cost for the user. Further, as the second action may be performed upon simultaneous mechanical actuation of the device and the sensing of the magnetic field by the magnetic sensor, accidental initiation of the second action is avoided. Thus, even if the magnetic sensor senses a magnetic field accidentally generated by a device other than the activation device, the second action may not get initiated.
The present subject matter is further described with reference to Figures 1 to 8. It should be noted that the description and figures merely illustrate principles of the present subject matter. Various arrangements may be  devised that, although not explicitly described or shown herein, encompass the principles of the present subject matter. Moreover, all statements herein reciting principles, aspects, and examples of the present subject matter, as well as specific examples thereof, are intended to encompass equivalents thereof.
Figure 1 illustrates an electronic device assembly 102, according to an example of the present subject matter. The electronic device assembly 102 includes an electronic device 104 and an activation device (not shown in the figure) to operate the electronic device 104. Examples of the electronic device 104 include, but are not limited to, computing devices, such as a laptop, a notebook, a modem, a tablet, a desktop, and a personal digital assistant; communication devices, such as a phablet and a mobile communication device; print devices, such as, a printer, a scanning device, an all-in-one print device, and a 3D printer; network peripherals, such as a modem and a router; and other electronic devices, such as display devices and televisions.
The electronic device 104 may include a switching circuit 106 to operate the electronic device 104 in one of a first mode and a second mode. In one example, the first mode and the second mode may be system configuration modes. Examples of the first mode and the second mode include, but are not limited to, a reset mode, a recovery mode, a debug mode, a diagnosis mode, and a BIOS mode. The switching circuit 106 may further include a magnetic field sensor 108 and a switch 110 to switch the electronic device 104 between the first mode and the second mode.
In one example, the switch 110 may be mechanically activated by the activation device to generate a first signal. Further, the magnetic field sensor 108 may be provided adjacent to the switch 110 and may generate a second signal in response to sensing a magnetic field, for example, on the activation device. In one example, to activate the switch 110, a user of the electronic device 104 may insert the activation device through a pinhole provided in a device housing of the electronic device.
Further, in response to receiving the first signal and the second signal, the electronic device 104 may operate in the second mode. However, in  case the switch 110 is activated by the activation device in a non-magnetic state, the magnetic field sensor 108 may not detect any magnetic field and may thus not generate the second signal. The electronic device 104 may thus operate in the first mode in response to receiving the first signal in absence of the second signal. The electronic device 104 may thus be operated in either of two different modes by selectively activating the magnetic field sensor 108.
Figure 2 illustrates an electronic device assembly 202 comprising the switching circuit 106, according to another example of the present subject matter. In one example, the electronic device assembly 202 may include an activation device (not shown in this figure) and an electronic device (not shown in this figure) , such as the electronic device 104 having the switching circuit 106. The switching circuit 106 may include the switch 110 and the magnetic field sensor 108 placed adjacent to the switch 110. In one example, the switch 110 may be mechanically activated, for example, by the activation device to generate the first signal. In one example, the switch 110 may be mechanically actuated by the activation device either in a magnetic state or a non-magnetic state. When used in the non-magnetic state, the activation device may be referred to as a non-magnetic activation device. When used in the magnetic state, the activation device may be referred to as a magnetic activation device.
On mechanical actuation of the switch 110 by the non-magnetic activation device, the switch 110 may generate a first signal to initiate a first action. In one example, the first action may include operating an electronic device, such as the electronic device 104 in a first mode, such as the reset mode.
On mechanical actuation of the switch 110 by the magnetic activation device, the switch 110 may generate the first signal and the magnetic field sensor 108 may generate the second signal to initiate a second action. In one example, the second action may include operating an electronic device, such as the electronic device 104 in a second mode, such as the diagnosis mode. A user of the electronic device 104 may thus selectively use the non- magnetic activation device and the magnetic activation device to perform either of the first action or the second action.
Figure 3 illustrates the electronic device 104 according to another example of the present subject matter. In one example, the electronic device 104 includes the switching circuit 106 and a processing unit 302. The switching circuit 106 may include the switch 110 and the magnetic field sensor 108. In one example, the switch 110 may be mechanically activated to generate a first signal. Further, the magnetic field sensor 108 may be placed adjacent to the switch 110 to generate a second signal in response to sensing a magnetic field.
Further, the processing unit 302 may be electrically coupled to the switching circuit 106 to receive the first signal and the second signal generated by the switch 110 and the magnetic field sensor 108, respectively. In one example, the processing unit 302 may operate the electronic device 104 in a predetermined mode in response to receiving the first signal and the second signal. Example, of the predetermined modes include, but are not limited to, a debug mode, a diagnosis mode, a download mode, and a BIOS mode. In said example, the magnetic field sensor 108 may generate the second signal in response to sensing a magnetic field on an activation device (not shown in this figure) used to mechanically activate the switch 110.
Further, in response to receiving the second signal in absence of the first signal, the processing unit 302 may allow the electronic device 104 to continue to operate in a current mode of operation. In said example, the magnetic field sensor 108 may generate the second signal in response to sensing a magnetic field on another component in vicinity of the magnetic field sensor 108. In such a case, the switch 110 may not generate the first signal. In absence of the first signal, the processing unit 302 may determine that the magnetic field sensor 108 has not been activated by the user and the second signal has been accidently generated by the magnetic field sensor 108 upon sensing the magnetic field generated by a component other than the activation device. The processing unit 302 may thus not take any action and allow the electronic device 104 to operate. Thus, as the action taken by the processing  unit 302 is based upon receiving the second signal in presence of the first signal, accidental initiation of the predetermined mode may be prevented.
Figure 4 illustrates the electronic device assembly 102 comprising an activation device 402 and the electronic device 104 according to an example of the present subject matter. As previously described, examples of the electronic device 104 include, but are not limited to, computing devices, communication devices, print devices, network peripherals, and other similar electronic devices. The electronic device 104 further includes the switching circuit 106 and the processing unit 302 to operate the electronic device 104 in one of the first mode and the second mode.
The switching circuit 106 may further include the magnetic field sensor 108 and the switch 110 to switch the electronic device 104 between the first mode and the second mode. In one example, the first mode and the second mode may be system configuration modes. Examples of the first mode and the second mode include, but are not limited to, a reset mode, a recovery mode, a debug mode, a diagnosis mode, and a BIOS mode.
The electronic device 104 further includes a device housing 404 to house the different components of the electronic device 104, such as the switching circuit 106 and the processing unit 302. The device housing 404 may further be provided with a pinhole 406 to allow the activation device 402 to pass through the device housing 404 to mechanically activate the switch 110. In one example, the switching circuit 106 may be mounted on the device housing 404 such that the switch 110 is parallel to a longitudinal axis of the pinhole 406 and is visible through the pinhole 406 to allow a user of the electronic device 104 to actuate the switch 110 with ease.
Further, the processing unit 302 may be electrically coupled to the switching circuit 106 to receive a first signal and a second signal generated by the switch 110 and the magnetic field sensor 108, respectively. In one example, the processing unit 302 may operate the electronic device 104 in a first mode in response to receiving the first signal in absence of the second signal. In another example, the processing unit 302 may operate the electronic device 104 in a  second mode in response to receiving the first signal and the second signal. In yet another example, the processing unit 302 may allow the electronic device 104 to continue to operate in a current mode in response to receiving the second signal in absence of the first signal. Different modes of operations of the electronic device 104 have been further described in Table 1 below.
Table 1
Figure PCTCN2019102767-appb-000001
The Table 1 illustrates the section to be taken by the processing unit 302 in response to receiving the first signal in either absence or presence of the second signal.
In one example, the activation device 402 may include a non-magnetic activation component and a magnetic activation component. In one example, the non-magnetic activation component and the magnetic activation component may be provided as separate activation devices. For example, the non-magnetic activation component may be provided as a non-magnetic  activation device like a pin or a thin rod made up of a non-magnetic material, such as wood, rubber, and plastic. Further, the magnetic activation component may be provided as a magnetic activation device like a pin or a thin rod made up of a magnetic material.
In another example, the non-magnetic activation component and the magnetic activation component may be provided as a part of a single activation device 402. In said example, the non-magnetic component may be provided at a first end of the activation device 402 and the magnetic component may be provided at a second end of the activation device 402, as illustrated in Figure 5. In one example, the first end of the activation device 402 may be inserted through the pinhole 406 to mechanically activate the switch 110 to operate the activation device 402 as the non-magnetic activation device. Further, the second end of the activation device 402 may be inserted through the pinhole 406 to mechanically activate the switch 110 to operate the activation device 402 as the magnetic activation device. The activation device 402 having the non-magnetic component at the first end and the magnetic component at the second end is described in detail with the description of Figure 5.
In yet another example, the activation device 402 may operate as either the non-magnetic activation device or the magnetic activation device in different modes of operation, as explained in description of Figure 7. In said example, the activation device 402 may comprise a magnetic field generator to magnetize the activation device 402 in an operational state. When the activation device 402 is used in the operational state of the magnetic field generator, the activation device 402 may operate as the magnetic activation device. When the activation device 402 is used in a non-operational state, the activation device 402 may operate as the non-magnetic activation device.
In operation, to operate the electronic device 104 in either of the first mode or the second mode, the user may use the activation device 402 to mechanically activate the switch 110 through the pinhole 406. In one example, to operate the electronic device 104 in the first mode, such as reset mode, the user may use the non-magnetic activation device. As previously described, the  activation device 402 may operate as the non-magnetic activation device in a non-magnetic state, for example, when first end of the activation device 402 having non-magnetic component is used or when the magnetic field generator is in a non-operational state.
For the sake of brevity, and not as a limitation, the current explanation is provided with respect to example implementation having the magnetic activation device and the non-magnetic activation device as a separate activation device 402. However, the user may also use either the activation device 402 having the magnetic field generator or the activation device 402 having the magnetic component and the non-magnetic component at the second end and the first end, respectively.
On mechanical actuation of the switch 110 by the non-magnetic activation device, the switch 110 may generate the first signal to initiate the first action. Upon receiving the first signal, the processing unit 302 may initiate the first action to operate the electronic device 104 in the first mode.
To operate the electronic device 104 in the second mode, such as the download mode, the user may use the magnetic activation device. As the user may insert the magnetic activation device through the pinhole 406 to mechanically actuate the switch 110, the magnetic field sensor 108 may sense the magnetic field and get activated to generate the second signal. Upon receiving the first signal and the second signal, the processing unit 302 may initiate the second action. In one example, the processing unit 302 may initiate the second action to operate the electronic device 104 in the second mode.
In case the magnetic field sensor 108 is activated by any stray magnetic field, the magnetic field sensor 108 may generate the second signal. However, as the switch 110 is not mechanically actuated, the switch 110 remains in its original position and does not generate the first signal. As the processing unit 302 may receive the second signal in absence of the first signal, the processing unit 302 may infer the second signal to have been accidentally initiated and may thus not take any action. The processing unit 302 may thus allow the electronic device 104 to continue to operate in a current mode of  operation. Thus, as the processing unit 302 does not perform either of the first action or the second action without receiving the first signal, the present subject matter facilitates in avoiding inadvertent operation of the switching circuit 106 when the magnetic field sensor 108 senses a stray magnetic field, thereby providing safety against accidental initiation.
Figure 5 illustrates the activation device 402 for activating the switching circuit 106, according to an example of the present subject matter. As shown in Figure 5, the activation device 402 may include a first end 502 and a second end 504. In one example, the first end 502 of the activation device 402 may be made using a non-magnetic material, such as wood, rubber and plastic to function as the non-magnetic component. The first end 502 of activation device 402 may thus be inserted through the pinhole 406 to mechanically activate the switch 110 to operate the activation device 402 as the non-magnetic activation device.
Further, the second end 504 of the activation device 402 may be made using a magnetic material to function as the magnetic component. The second end 504 of the activation device 402 may thus be inserted through the pinhole 406 to operate the activation device 402 as the magnetic activation device 402. The second end 504 may thus mechanically activate the switch 110 and cause the magnetic field sensor 108 to generate the second signal due to the magnetic field of the magnetic material. Operational details of the activation device 402 having the magnetic component at the first end 502 and the non-magnetic component at the second end 504 will be explained with reference to Figure 6.
Figure 6 illustrates a cross-sectional view of the electronic device 104 illustrating the activation device 402 and the electronic device 104 at different stages of operation for activating the switching circuit 106, according to the example of the present subject matter. Figure 6 illustrates the cross section as viewed from a front end of the electronic device 104. Arrow 602 indicates the activation device 402 when used to operate the electronic device 104 in the first mode. As illustrated, the first end 502 of the activation device 402 may be  inserted through the pinhole 406 to mechanically activate the switch 110. Once activated, the switch 110 may generate the first signal. Further, in absence of any magnetic field around the activation device 402, the magnetic field sensor 108 may not generate the second signal. On receiving the first signal in absence of the second signal, the processing unit 302 may initiate the first action to operate the electronic device 104 in the first mode.
Arrow 604 indicates the activation device 402 when used to operate the electronic device 104 in the second mode. As illustrated, the second end 504 of the activation device 402 may be inserted through the pinhole 406 to mechanically activate the switch 110. Once activated, the switch 110 may generate the first signal. Further, the magnetic field sensor 108 may sense the magnetic field, as illustrated by arrows 606-1 and 606-2, on the second end 504 of the activation device 402 and generate the second signal. Upon receiving the first signal and the second signal, the processing unit 302 may initiate the second action. In one example, the processing unit 302 may initiate the second action to operate the electronic device 104 in the second mode.
Figure 7 illustrates the activation device 402 for activating the switching circuit 106, according to another example of the present subject matter. In one example, the activation device 402 may include a magnetic field generator 702 to magnetize the activation device 402 in an operational state. In an example, the activation device 402 may be made up of a metallic material. In an operational state, the activation device 402 may be magnetized using the magnetic field generator 702 to behave as a magnet. In one example, the activation device 402 may include an activation switch 704 to activate the magnetic field generator 702 to behave as a magnet to operate the activation device 402 as the magnetic activation device. When the activation device 402 is used in a non-operational state of the magnetic field generator 702, the activation device may operate as the non-magnetic activation device.
In operation, to actuate the switch 110 to perform the first action, the user may insert the activation device 402 through the pinhole 406, with the magnetic field generator 702 in a non-operational state. Once activated, the  switch 110 may generate the first signal. Further, in absence of a magnetic field around the activation device 402, the magnetic field sensor 108 may not generate the first signal. On receiving the first signal in absence of the second signal, the processing unit 302 may initiate the first action to operate the electronic device 104 in the first mode.
To perform the second action, the user may switch ON the activation switch 704 to activate the magnetic field generator 702. As the magnetic field generator 702 enters the operational state, the activation device 402 may get magnetized to operate as the magnetic activation device. The user may then insert the activation device 402 through the pinhole 406 to mechanically activate the switch 110. Alternately, the activation switch 704 may be activated after the activation device 402 is inserted into the pinhole 406. Once activated, the switch 110 may generate the first signal. Further, the magnetic field sensor 108 may sense the magnetic field on the activation device 402 and generate the second signal. Upon receiving the first signal and the second signal, the processing unit 302 may initiate the second action. In one example, the processing unit 302 may initiate the second action to operate the electronic device 104 in the second mode.
Figure 8 illustrates a circuit diagram 800 comprising the switching circuit 106 and the processing unit 302, according to an example of the present subject matter. As shown in Figure 8, the switching circuit 106 may include the switch 110 to be mechanically activated to generate the first signal and the magnetic field sensor 108 provided adjacent to the switch 110. In an example, the magnetic field sensor 108 may be a Hall effect sensor. On mechanical actuation of the switch 110 by the non-magnetic activation device, current may start flowing from a source 802-1 through the load 804-1 to ground 806-1, thereby generating the first signal as a low voltage signal for the processing unit 302.
On mechanical actuation of the switch 110 by the magnetic activation device, the magnetic field sensor 108 may sense the magnetic field and initiate flow of current from a source 802-2 through load 804-2 to ground  806-2, thereby generating the second signal as a low voltage signal for the processing unit 302. Therefore, on mechanical actuation of the switch 110 by the magnetic activation device, flow of current may initiate from both the sources 802-1 and 802-2. The processing unit 302 in turn may receive the low voltage signal from both the sources and initiate the second action.
Although examples and implementations of present subject matter have been described in language specific to structural features and/or methods, it is to be understood that the present subject matter is not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed and explained in the context of a few example implementations of the present subject matter.

Claims (15)

  1. An electronic device assembly comprising:
    an electronic device comprising a switching circuit, the switching circuit comprising:
    a switch to be mechanically activated by an activation device to generate a first signal; and
    a magnetic field sensor provided adjacent to the switch, to generate a second signal in response to sensing a magnetic field on the activation device;
    wherein the electronic device is to:
    operate in a first mode in response to receiving the first signal in absence of the second signal; and
    operate in a second mode in response to receiving the first signal and the second signal.
  2. The electronic device assembly as claimed in claim 1, wherein the electronic device comprises a device housing to house components of the electronic device, the device housing comprising a pinhole to receive the activation device to mechanically activate the switch.
  3. The electronic device assembly as claimed in claim 2, further comprising the activation device, the activation device comprising:
    a non-magnetic component at a first end, wherein to operate the electronic device in the first mode, the first end of the activation device is to be used to mechanically activate the switch; and
    a magnetic component at a second end, wherein to operate the electronic device in the second mode, the second end of the activation device is to be used to mechanically activate the switch and activate the magnetic field sensor.
  4. The electronic device assembly as claimed in claim 2, further comprising the activation device, the activation device comprising:
    a magnetic field generator to magnetize the activation device in an operational state,
    wherein the electronic device is to operate in the second mode, when the activation device is used in the operational state of the magnetic field generator to mechanically activate the switch; and
    wherein the electronic device is to operate in the first mode, when the activation device is used in a non-operational state of the magnetic field generator.
  5. The electronic device assembly as claimed in claim 1, wherein the first mode and the second mode are selected from a group comprising a reset mode, arecovery mode, a debug mode, a diagnosis mode, a download mode, and a BIOS mode.
  6. The electronic device assembly as claimed in claim 1, wherein the electronic device comprises a processing unit to:
    operate the electronic device in the first mode in response to receiving the first signal in absence of the second signal;
    operate the electronic device in the second mode in response to receiving the first signal and the second signal; and
    allow the electronic device to continue to operate in a current mode, in response to receiving the second signal in absence of the first signal.
  7. An electronic device assembly comprising:
    a switching circuit, the switching circuit comprising:
    a switch to be mechanically activated to generate a first signal; and
    a magnetic field sensor provided adjacent to the switch;
    wherein, on mechanical actuation of the switch by a non-magnetic activation device, the switch is to generate the first signal to initiate a first action; and
    wherein, on mechanical actuation of the switch by a magnetic activation device, the switch is to generate the first signal and the magnetic field sensor is to generate a second signal to initiate a second action.
  8. The electronic device assembly as claimed in claim 7, further comprising an electronic device, the electronic device comprising a processing unit to:
    initiate the first action in response to receiving the first signal in absence of the second signal; and
    initiate the second action in response to receiving the first signal and the second signal.
  9. The electronic device assembly as claimed in claim 7, further comprising an electronic device comprising:
    the switching circuit; and
    a processing unit to:
    initiate the first action to operate the electronic device in a first mode;
    initiate the second action to operate the electronic device in a second mode; and
    allow the electronic device to continue to operate in a current mode, in response to receiving the second signal in absence of the first signal.
  10. The electronic device assembly as claimed in claim 9, wherein the electronic device further comprises a device housing to house the switching circuit and the processing unit, the device housing comprising a pinhole to receive one of the non-magnetic activation device and the magnetic activation device to mechanically activate the switch.
  11. The electronic device assembly as claimed in claim 7, further comprising an activation device, the activation device comprising:
    a magnetic field generator to magnetize the activation device in an operational state,
    wherein the activation device is to operate as the magnetic activation device, when the activation device is used in the operational state of the magnetic field generator; and
    wherein the activation device is to operate as the non-magnetic activation device, when the activation device is used in a non-operational state of the magnetic field generator.
  12. The electronic device assembly as claimed in claim 7, further comprising an activation device, the activation device comprising:
    a non-magnetic component at a first end, wherein the first end of the activation device is to be used to mechanically activate the switch to operate the activation device as the non-magnetic activation device; and
    a magnetic component at a second end, wherein the second end of the activation device is to be used to mechanically activate the switch to operate the activation device as the magnetic activation device.
  13. An electronic device comprising:
    a switching circuit, the switching circuit comprising:
    a switch to be mechanically activated to generate a first signal; and
    a magnetic field sensor provided adjacent to the switch to generate a second signal in response to sensing a magnetic field; and
    a processing unit to:
    operate the electronic device in a predetermined mode in response to receiving the first signal and the second signal; and
    allow the electronic device to continue to operate in a current mode, in response to receiving the second signal in absence of the first signal.
  14. The electronic device as claimed in claim 13, wherein the processing unit is to:
    initiate a first action in response to receiving the first signal in absence of the second signal to operate the electronic device in a first mode; and
    initiate a second action in response to receiving the first signal and the second signal to operate the electronic device in a second mode, wherein the predetermined mode is the second mode.
  15. The electronic device as claimed in claim 14, wherein the first mode and the second mode are selected from a group comprising a reset mode, a recovery mode, a debug mode, a diagnosis mode, a download mode, and a BIOS mode.
PCT/CN2019/102767 2019-08-27 2019-08-27 Switching circuits WO2021035518A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102767 WO2021035518A1 (en) 2019-08-27 2019-08-27 Switching circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/102767 WO2021035518A1 (en) 2019-08-27 2019-08-27 Switching circuits

Publications (1)

Publication Number Publication Date
WO2021035518A1 true WO2021035518A1 (en) 2021-03-04

Family

ID=74684901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102767 WO2021035518A1 (en) 2019-08-27 2019-08-27 Switching circuits

Country Status (1)

Country Link
WO (1) WO2021035518A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030237007A1 (en) * 2002-06-20 2003-12-25 Nick Ramirez Method and system for shutting down and restarting a computer system
CN101046702A (en) * 2006-03-31 2007-10-03 鸿富锦精密工业(深圳)有限公司 Start control device and method for micro-controller
CN102043933A (en) * 2009-10-21 2011-05-04 深圳Tcl新技术有限公司 SD (Secure Digital) card reader module with controllable operating state
US9207871B2 (en) * 2013-02-11 2015-12-08 Hewlett-Packard Development Company, L.P. Internal notebook microSD reader with read-only switch

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030237007A1 (en) * 2002-06-20 2003-12-25 Nick Ramirez Method and system for shutting down and restarting a computer system
CN101046702A (en) * 2006-03-31 2007-10-03 鸿富锦精密工业(深圳)有限公司 Start control device and method for micro-controller
CN102043933A (en) * 2009-10-21 2011-05-04 深圳Tcl新技术有限公司 SD (Secure Digital) card reader module with controllable operating state
US9207871B2 (en) * 2013-02-11 2015-12-08 Hewlett-Packard Development Company, L.P. Internal notebook microSD reader with read-only switch

Similar Documents

Publication Publication Date Title
US20130271395A1 (en) Touch display device and method for conditionally varying display area
CN105487804B (en) A kind of control method and electronic equipment
EP2820552A2 (en) Multi-stage power adapter
CN107390976B (en) Icon display processing method and electronic equipment
CN103716029B (en) Control method of display
KR100793306B1 (en) Apparatus and method for reset in mobile terminal
US8935451B2 (en) Network card detecting circuit
CN108512561A (en) A kind of Kato ejecting mechanism, Kato method of ejecting and mobile terminal
CN102903336A (en) Mobile terminal and screen highlight adjusting method thereof
CN110098826A (en) The detection method of chip circuit and its state of a control, electronic equipment and medium
CN103677551B (en) The method of information processing and electronic equipment
WO2021035518A1 (en) Switching circuits
CN107292279B (en) Display method, display device, terminal and computer-readable storage medium
CN104516648A (en) Information processing method and electronic device
US20050172039A1 (en) KVM switch
CN104615957A (en) Power mode switching method and device
JP6366737B2 (en) Monitoring circuit and electronic device
CN109348060A (en) A kind of control method and device, equipment
CN109522761A (en) Mobile terminal product tears machine testing and protection open
US8707069B2 (en) Server
CN108134871A (en) Electronic device, display control method and related product
CN104423672B (en) Electronic equipment and its input method
KR20060090467A (en) Dual mode display apparatus for mobile communication terminal and display method thereof
CN108073348A (en) For the hot key triggering System and method for of electronic device
CN105430139A (en) Electronic equipment and applied recording method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943548

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943548

Country of ref document: EP

Kind code of ref document: A1