WO2021033918A1 - Filter for water treatment device - Google Patents

Filter for water treatment device Download PDF

Info

Publication number
WO2021033918A1
WO2021033918A1 PCT/KR2020/008849 KR2020008849W WO2021033918A1 WO 2021033918 A1 WO2021033918 A1 WO 2021033918A1 KR 2020008849 W KR2020008849 W KR 2020008849W WO 2021033918 A1 WO2021033918 A1 WO 2021033918A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
activated carbon
water
filter
water treatment
Prior art date
Application number
PCT/KR2020/008849
Other languages
French (fr)
Korean (ko)
Inventor
이진현
유기원
홍형기
이상덕
이재근
조수창
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2021033918A1 publication Critical patent/WO2021033918A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
    • C02F1/4691Capacitive deionisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/469Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis

Definitions

  • the present invention relates to a filter for a water treatment device.
  • a water treatment device for generating purified water by treating raw water such as a water purifier
  • deionization methods such as EDI (Electro Deionization), CEDI (Continuous Electro Deionization), and CDI (Capacitive Deionization) have recently been in the spotlight.
  • EDI Electro Deionization
  • CEDI Continuous Electro Deionization
  • CDI Capacitive Deionization
  • the CDI method refers to a method of removing ions (contaminants) in water using the principle that ions are adsorbed and desorbed from the surface of an electrode by electric force.
  • the deionization performance is affected by the spacing between electrodes. That is, if the distance between electrodes in the CDI method increases, the deionization performance decreases. The reason for this is that, first, as the distance between the electrodes increases, the capacitance of the capacitor decreases. In general, the capacitance of a capacitor is inversely proportional to the spacing between the electrodes. Second, this is because the treated water quickly passes through the electrodes when the distance between the electrodes increases. When the treated water passes quickly, ions in the treated water are difficult to be adsorbed to the electrode. Therefore, even if a large number of electrodes are stacked, it is very important to keep the distance between the electrodes constant.
  • Prior Document 1 a filter for a water treatment device in which a voltage applied to an activated carbon electrode can be uniformly formed is disclosed.
  • the electrode made of carbon has a thin structure of 500 ⁇ m per sheet, and the more the reaction is repeatedly performed, the performance decreases due to the formation of scale and deterioration of carbon. Particularly, deterioration reaction due to carbon oxidation occurs in the (+) electrode due to repetitive operation, and scale is formed in the (-) electrode due to the reduction of dissolved oxygen, causing continuous performance degradation.
  • An object of the present invention is to provide a filter for a water treatment device capable of preventing metal components from being eluted from electrode means, including a shaft member made of a metal material included in the electrode portion.
  • a plurality of electrode units are combined to form one module, but an object thereof is to provide a filter for a water treatment device capable of maintaining a required operating current to a minimum.
  • an object of the present invention is to provide a filter for a water treatment device capable of maintaining the durability of an electrode even when used repeatedly.
  • a filter for a water treatment apparatus includes a chamber forming an outer shape, an electrode unit including an electrode portion accommodated inside the chamber, and a power supply means for supplying power to the electrode portion of the electrode unit.
  • the electrode unit includes a current collector and activated carbon formed on the surface of the current collector, a plurality of activated carbon electrodes formed in a plate shape, an insulating material spacer inserted between the activated carbon electrodes to prevent a short, and the stacked plurality of It includes a plurality of electrode means connected to one side or the other side of the activated carbon electrode, at least partly arranged in parallel with the activated carbon electrode, and making surface contact with the activated carbon electrode.
  • the power supply means supplies current to the activated carbon electrode through the electrode means so that adjacent activated carbon electrodes alternately form an anode and a cathode.
  • the plurality of activated carbon electrodes may be connected in parallel.
  • a plurality of electrode units may be provided, and the plurality of electrode units may be connected in series.
  • the electrode means includes a first electrode means and a second electrode means that are spaced apart from each other, and the activated carbon electrode may be connected to an adjacent activated carbon electrode and an electrode means different from each other.
  • a portion connected to the electrode means may protrude outward to form an electrode connection.
  • the electrode means may include a vertical portion formed parallel to the stacking direction of the activated carbon electrode, and a plurality of horizontal portions formed parallel to the activated carbon electrode and connected to the vertical portion.
  • the horizontal portion and the activated carbon electrode may have connection holes formed at positions corresponding to each other, and a shaft member made of a conductor may be inserted into the connection hole.
  • the shaft member may have a coating layer of an insulating material formed on a side exposed to the outside.
  • the coating layer may be formed by inserting a tube made of an insulating material to the outside of the shaft member and contracting the tube while applying heat to the tube.
  • the tube may be in close contact with the outside of the shaft member.
  • the coating layer may be formed by coating an epoxy on the outside of the shaft member.
  • the power supply means may supply current in one direction and adsorb ions to the activated carbon electrode to remove ions from water.
  • the power supply means may supply current in a direction opposite to the one direction, and adsorb ions to the activated carbon electrode to remove ions in water.
  • the power supply means may supply current in two directions opposite to the one direction, and discharge ions adsorbed on the activated carbon electrode into water, thereby regenerating the activated carbon electrode.
  • the activated carbon electrode may be formed by applying a mixture of activated carbon particles, conductive polymer particles, and a binder on the surface of the current collector.
  • the chamber may include an inlet through which water is introduced, a discharge port through which water is discharged, and an internal space communicating with the inlet and the discharge port.
  • a water outlet communicating with the discharge port may be perforated in parallel with a stacking direction.
  • the chamber may include a body portion forming the inner space and having one side open, and a cover portion opening and closing the open side of the body portion.
  • the metal component from eluting from the electrode means, including a shaft member made of a metal material included in the electrode part.
  • a plurality of electrode units are combined to form one module, but the required operating current can be kept to a minimum.
  • water can be softened by lowering the hardness in water.
  • the voltage applied to the activated carbon electrode can be uniformly formed.
  • a difference between a voltage supplied from a power source and a voltage applied to the activated carbon electrode can be reduced.
  • the filtering force can be ensured in all regions, regardless of the stacking position of the electrodes.
  • the present invention it is possible to prevent partial deterioration of the electrode or partial damage to the electrode due to the application of an even voltage.
  • the voltage can be stably and evenly distributed to each electrode.
  • ion removal performance can be improved.
  • the stacking height can be variously set according to the required processing capacity and processing speed.
  • ions adsorbed on the activated carbon electrode can be easily removed to maintain a constant ion removal capability of the electrode portion.
  • the hardness of the introduced water can be removed more quickly and evenly in the entire region of the electrode unit, so that desalination efficiency can be secured and water of a target concentration (ppm) can be generated and supplied more quickly.
  • FIG. 1 is a perspective view of a filter for a water treatment apparatus according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram of a filter for a water treatment apparatus according to an embodiment of the present invention
  • FIG. 3 is a conceptual diagram showing a state in which water is purified in the filter for the water treatment apparatus shown in FIG. 2;
  • FIG. 4 is a conceptual diagram showing a state in which the filter for the water treatment device shown in FIG. 2 is regenerated
  • FIG. 5 is a plan view of an electrode part constituting a filter for a water treatment apparatus according to an embodiment of the present invention
  • FIG. 6 is a longitudinal sectional view of area'A' of FIG. 5;
  • FIG. 7 is a cross-sectional view illustrating a state in which a coating layer is formed on a shaft member in FIG. 6.
  • FIG. 8 is a conceptual diagram showing a connection state of an electrode unit, which is a main configuration of the present invention.
  • FIG. 9 is a graph showing a change in a voltage value supplied to an electrode unit over time.
  • FIG. 10 is a table comparing the hardness removal rate of the alternate driving method as in the present invention and the hardness removal rate of the conventional driving method.
  • the water treatment device may correspond to various purification devices such as a water purifier and a water softener.
  • purification means installed in a washing machine, dishwasher, refrigerator, or the like may be applicable.
  • various embodiments may occur in a range in which ions and hardness substances contained in raw water introduced from the outside are electro-adsorbed and then discharged.
  • the filter for a water treatment apparatus may refer to one filter and may refer to several filters.
  • FIG. 1 is a perspective view of a filter for a water treatment apparatus according to an embodiment of the present invention
  • FIG. 2 is a conceptual diagram of a filter for a water treatment apparatus according to an embodiment of the present invention.
  • the filter for the water treatment device has an inlet 101 through which water is introduced, and a discharge port 102 through which water is discharged, and communicates with the inlet 101 and the discharge port 102. It includes a chamber 100 having an internal space.
  • the electrode part 200 may be accommodated inside the chamber 100.
  • a water outlet 201 communicating with the discharge port 102 may be perforated in the electrode part 200 in parallel with the stacking direction.
  • the electrode part 200 is accommodated in the inner space of the chamber 100, and water is introduced into the inner space of the chamber 100 from the outside through the inlet 101. At this time, the introduced water passes through the electrode part 200 and then exits the chamber 100 through the discharge port 102. In this process, ions contained in water may be adsorbed and removed by the electrode part 200 while passing through the electrode part 200.
  • the chamber 100 may have a rectangular parallelepiped shape, and the inlet 101 and the discharge port 102 may be formed in a direction perpendicular to each other.
  • the discharge port 102 is formed parallel to the stacking direction of the electrode part 200. It is formed in a direction perpendicular to the stacking direction. That is, it is formed to face the side surface of the electrode part 200.
  • water supplied to the inlet 101 is supplied to the side of the electrode unit 200, and as a result, it can be evenly supplied to the entire thickness of the electrode unit 200.
  • water when water is supplied through the side surface of the electrode part 200, water may be evenly supplied to the entire thickness of the electrode part 200.
  • the chamber 100 may include a body portion 110 forming an inner space and an open side of the body portion 110, and a cover portion 120 for opening and closing the open side of the body portion 110. have.
  • the body portion 110 and the cover 120 may be fixed and separated through separate fastening means (not shown) such as bolts.
  • a discharge port 102 may be formed in the cover part 120.
  • the inner space of the chamber 100 is exposed to the outside, so that it is easier to stack the electrode portion 200 in the inner space. Can be done.
  • the cover unit 120 may be separated to facilitate inspection and maintenance.
  • the chamber 100 can be used semi-permanently.
  • the assembly properties of the product are improved, thereby increasing productivity and securing mass production.
  • the filter for a water treatment device includes an electrode part 200.
  • the electrode unit 200 may be composed of one electrode unit 200a, or may be configured by stacking a plurality of electrode units 200a.
  • the electrode unit 200a includes a current collector 211, a plurality of activated carbon electrodes 210 made of an activated carbon coating layer 212 formed by coating activated carbon on one or both sides of the current collector 211, and the stacked A plurality of electrode means 220 connected to one end or the other end of the plurality of activated carbon electrodes 210 and a spacer 230 made of an insulating material inserted to prevent a short between the activated carbon electrodes 210, and , Adsorption of the ions of the introduced water to remove the ions in the water and then discharge.
  • the activated carbon electrode 210 may be formed by applying a mixture of activated carbon particles, conductive polymer particles, and a binder on the surface of the current collector 211.
  • the electrode unit 200a supplies current to the activated carbon electrode 210 through the electrode means 220 so that the adjacent activated carbon electrodes 210 alternately form a positive electrode (+ electrode) and a negative electrode (-pole). It is connected to the power supply means 240.
  • the activated carbon electrode 210 includes a current collector 211 and an activated carbon coating layer 212.
  • the activated carbon electrode 210 may be provided with activated carbon and various known embodiments may be applied within a range in which an electrode is formed.
  • the current collector 211 is in the form of a thin film and may be provided as an electric conductor.
  • the current collector 211 may be provided with a graphite foil, and in addition, various types of conductors may be adopted as the current collector 211.
  • the activated carbon coating layer 212 is formed on one or both surfaces of the current collector 211.
  • the activated carbon coating layer 212 includes activated carbon. Therefore, when impurities of raw water are adsorbed to the activated carbon coating layer 212 by electrostatic attraction, the adsorbed impurities move through diffusion into the pores called macro pores on the surface of the activated carbon, and then the mesopores ( Meso pores) or micro pores can be finally adsorbed and removed.
  • the number of stacked activated carbon electrodes 210 as described above may be variously adjusted according to the degree of hardness adjustment required.
  • the activated carbon coating layer 212 may be formed only on one surface of the current collector 211.
  • the activated carbon electrode 210 in which the activated carbon coating layer 212 is formed only on one surface of the current collector 211 may be disposed at the top and bottom ends of the electrode unit 200a.
  • the activated carbon electrode 210 disposed at the top is disposed so that the activated carbon coating layer 212 faces downward, and the activated carbon electrode 210 disposed at the lowest end is disposed so that the activated carbon coating layer 212 faces upward.
  • the activated carbon coating layer 212 may be formed on both sides of the current collector 211.
  • the activated carbon electrode 210 having the activated carbon coating layer 212 formed on both sides of the current collector 211 may be disposed in the center of the electrode unit 200a except for the uppermost and lowermost ends.
  • the activated carbon coating layer 212 is formed on both sides of the current collector 211 as described above, impurities contained in raw water can be adsorbed on both sides of the current collector 211, thereby improving the adsorption rate and adsorption performance of impurities. have.
  • the activated carbon coating layers 212 are formed on both sides of one current collector 211, the number of current collectors 211 can be reduced. As a result, the thickness of the electrode unit 200a is reduced, and the electrode unit 200a ) Can be reduced in weight, and the manufacturing cost of the electrode unit 200a can be saved. In addition, the amount of stacked activated carbon electrodes 210 may be increased.
  • the spacer 230 is disposed between the activated carbon electrodes 210.
  • the spacers 230 form a gap between the activated carbon electrodes 210 and prevent a short between the activated carbon electrodes 210.
  • the raw water may be purified while passing between the activated carbon electrodes 210 through the spacer 230.
  • the spacer 230 is made of a non-conductor and a water-permeable material, thereby preventing a short between the activated carbon electrodes 210 and providing a flow path through which raw water through which purified water proceeds passes.
  • the spacer 230 may be formed of a nylon material in which a plurality of passages are formed.
  • the electrode means 220 may be provided in a pair, connected to one or the other end portions of the stacked activated carbon electrodes 210, and may be provided as an electric conductor.
  • the electrode means 220 may be formed of a copper (Cu) material.
  • the electrode means 220 may be provided in two or more.
  • contact between the electrode means 220 and the activated carbon electrode 210 may be made stably.
  • at least a portion of the electrode means 220 may be arranged side by side with the activated carbon electrode 210 to make surface contact with the activated carbon electrode 210.
  • the activated carbon electrodes 210 are stacked in parallel with each other, and a part of the electrode means 220 between the activated carbon electrodes 210 is inserted in parallel with the activated carbon electrode 210, and the electrode means 220 and the activated carbon electrode 210 ) Makes an interview.
  • the contact area between the activated carbon electrode 210 and the electrode means 220 is increased, so that current supply can be made more reliably and stably.
  • the conductivity between the activated carbon electrodes 210 may also be improved. Accordingly, the voltage supplied from the power source can be applied to the activated carbon electrode 210 without loss. In addition, a voltage supplied from a power source may be uniformly applied to each of the activated carbon electrodes 210.
  • the power supply means 240 and 250 may include a power supply 240 and an electric wire 250.
  • a voltage may be applied within a range in which water decomposition of raw water is not performed and ion adsorption is possible.
  • the power supply 240 may apply a voltage of 1.5V or less.
  • the electrode unit 220 has a positive or negative electrode depending on the direction of the current flowing through the power supply means (240, 250).
  • the electrode means 220 may include a first electrode means 221 and a second electrode means 222 disposed spaced apart from each other.
  • the second electrode means 222 disposed on the left side of the drawing may be a negative electrode (-). have.
  • the second electrode means 222 disposed on the left side of the drawing may be a positive electrode (+).
  • the first electrode means 221 and the second electrode means 222 disposed on both sides of the activated carbon electrode 210 have an anode and a cathode according to the direction in which the current flows.
  • the electrode means 220 on which the anode is formed is referred to as an anode
  • the electrode means 220 on which the cathode is formed is referred to as a cathode.
  • the plurality of stacked activated carbon electrodes 210 should be formed alternately between adjacent activated carbon electrodes 210 and anodes and cathodes.
  • the meaning of neighboring means that the spacer 230 is placed therebetween and is adjacent. That is, the activated carbon electrode 210 disposed at the top of the drawing may be considered to be adjacent to the second activated carbon electrode 210 disposed immediately below the spacer 230 therebetween.
  • an anode and a cathode are formed on the electrode means 220 disposed on both sides of the activated carbon electrode 210, respectively.
  • the plurality of stacked activated carbon electrodes 210 should be alternately connected to adjacent activated carbon electrodes 210 and an anode and a cathode, respectively.
  • the first activated carbon electrode 210 disposed at the top of the drawing is connected to the anode at the right side, and the second activated carbon disposed below it
  • the electrode 210 may be connected to the cathode on the left.
  • the third activated carbon electrode 210 disposed below the second activated carbon electrode 210 may be connected to the positive electrode on the right side
  • the fourth activated carbon electrode 210 disposed below the third activated carbon electrode 210 may be connected to the left negative electrode.
  • the activated carbon electrode 210 connected to the positive electrode is electrically separated from the negative electrode
  • the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode
  • the activated carbon electrode 210 disposed at the top of the drawing is connected to the cathode at the left, and the activated carbon electrode 210 disposed below it is It can also be connected to the anode.
  • the activated carbon electrode 210 disposed at the top of the drawing is connected to the anode at the left, and the activated carbon electrode 210 disposed below it is the cathode at the right side. Can be connected with.
  • the activated carbon electrode 210 disposed at the top of the drawing is connected to the cathode at the right side, and the activated carbon electrode 210 disposed below it is It can also be connected to the anode.
  • the activated carbon electrode 210 connected to the positive electrode is electrically separated from the negative electrode
  • the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode
  • the negative electrode is disposed apart from the activated carbon electrode 210 connected to the positive electrode, and the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode.
  • the anode may be spaced apart from the activated carbon electrode 210 connected to the cathode.
  • FIG. 3 is a conceptual diagram showing a state in which water is purified in the filter for a water treatment apparatus shown in FIG. 2
  • FIG. 4 is a conceptual diagram illustrating a state in which the filter for a water treatment apparatus shown in FIG. 2 is regenerated.
  • the raw water can be purified.
  • the activated carbon electrode 210 disposed on the right side of the drawing is charged as a positive electrode
  • the activated carbon electrode 210 disposed on the left side of the drawing is charged as a negative electrode
  • the raw water is The included negative ions (-) may be adsorbed to the activated carbon electrode 210 on the right side charged with the positive electrode
  • the positive ions (+) contained in the raw water may be adsorbed on the activated carbon electrode 210 on the left side charged with the negative electrode.
  • the raw water can easily pass between the activated carbon electrodes 210 through the permeable spacers 230 disposed between the activated carbon electrodes 210 to prevent short circuits and secure a flow path.
  • a method for regenerating the activated carbon electrode 210 there is a method of blocking the supply of current, and a method of flowing an electric current opposite to the case of adsorbing ions.
  • the power supply means 240 and 250 supply current in one direction and adsorb ions to the activated carbon electrode 210 to absorb ions in water. Remove.
  • an anion (-) contained in raw water is adsorbed on the left activated carbon electrode 210 charged with the positive electrode, and the activated carbon electrode on the right in which positive ions (+) contained in the raw water are charged as a negative electrode.
  • the activated carbon electrode 210 on the left side of the drawing is charged to the cathode by changing the flow of current, and the activated carbon electrode 210 on the right side of the drawing is charged to the anode. Let it.
  • the negative ions (-) adsorbed on the left activated carbon electrode 210 during the water purification process are separated from the left activated carbon electrode 210 charged with the negative electrode, and the positive ions that were adsorbed on the right activated carbon electrode 210 during the water purification process ( +) is separated from the positively charged activated carbon electrode 210 on the right.
  • the positive ions (+) and negative ions (-) separated by the activated carbon electrodes 210 on both sides are discharged to the outside together with the washing water.
  • the ion removing ability of the electrode unit 200a is regenerated, so that the ion removing ability can be kept constant. .
  • the electrode unit 200a configured as described above may constitute the electrode unit 200 as a single body, and may be provided in plural and then stacked in several layers to configure the electrode unit 200.
  • an ion exchange membrane may be provided to further increase the ion removal rate of the electrode part 200.
  • the ion exchange membrane may be disposed between the spacer 230 and the activated carbon electrode 210.
  • FIG. 5 is a plan view of an electrode part constituting a filter for a water treatment apparatus according to an embodiment of the present invention
  • FIG. 6 is a longitudinal cross-sectional view of a region'A' of FIG. 5.
  • the activated carbon electrode 210 may protrude outside a portion connected to the electrode means 220 to form electrode connection portions 213 and 213'.
  • the first activated carbon electrode 210 disposed at the top has an electrode connection 213 protruding to one side at one end
  • the second activated carbon electrode 210 may have an electrode connection part 213 ′ protruding to the other side at the other end.
  • the odd-numbered activated carbon electrode 210 forms an electrode connection part 213 protruding to one side at one end
  • the even-numbered activated carbon electrode 210 has an electrode connection part 213 ′ protruding to the other side at the other end. Can be formed.
  • the electrode formed on one side is connected to the electrode connection part 213 of the odd-numbered activated carbon electrode 210 protruding to one side, and the electrode formed on the other side is the electrode connection part of the even-numbered activated carbon electrode 210 protruding to the other side ( 213') can be connected.
  • one side and the other side may mean opposite directions that face each other, and may mean directions that are perpendicular to each other. In addition, it may mean the front-rear direction.
  • the first activated carbon electrode 210 disposed at the top of the drawing forms an electrode connection part 213 protruding to one side in front of one side
  • the second activated carbon electrode 210 disposed below it may form an electrode connection part 213 ′ protruding toward one side at the rear of one side.
  • the odd-numbered activated carbon electrode 210 forms an electrode connection part 213 protruding to one side in front of one side
  • the even-numbered activated carbon electrode 210 has an electrode connection part 213 ′ protruding to one side at the rear of one side. Can be formed.
  • the electrode formed in front of one side is connected to all of the electrode connection portions 213 of the odd-numbered activated carbon electrode 210 protruding from one front to one side, and the electrode formed on one rear side is an even-numbered electrode protruding from one rear to one side. It may be connected to all of the electrode connection portions 213 ′ of the activated carbon electrode 210.
  • a structure in which the plurality of stacked activated carbon electrodes 210 are alternately connected to adjacent activated carbon electrodes 210 and an anode and a cathode may occur in various embodiments.
  • the activated carbon electrode 210 adjacent to the activated carbon electrode 210 and the anode and the cathode are formed alternately, heavy metals contained in raw water passing between the activated carbon electrodes 210 spaced apart by the spacer 230, etc.
  • the ions of can be adsorbed and removed.
  • the electrode means 220 includes a first electrode means 221 and a second electrode means 222 disposed spaced apart from each other, and the activated carbon electrode 210 is different from the neighboring activated carbon electrodes 210 It is connected to the electrode means (221,222).
  • the electrode connector 213 of the odd-numbered activated carbon electrode 210 protruding from one front side to one side is connected to the first electrode means 221, and the even-numbered activated carbon electrode 210 protruding from one rear side to one side.
  • the electrode connection part 213 ′ may be connected to the second electrode means 222.
  • the electrode means 220 includes a vertical portion 223 formed parallel to the stacking direction of the activated carbon electrode 210 and parallel to the activated carbon electrode 210, and connected to the vertical portion 223. It may include a plurality of horizontal portions 224.
  • Both the vertical portion 223 and the horizontal portion 224 are formed of a conductor.
  • the vertical portion 223 serves to connect each of the horizontal portions 224.
  • the horizontal portion 224 is inserted between the activated carbon electrodes 210, and conducts electricity while making surface contact with the activated carbon electrode 210.
  • the horizontal portion 224 may be inserted between the odd-numbered activated carbon electrodes 210 to make surface contact.
  • the horizontal portion 224 may be inserted between the even-numbered activated carbon electrodes 210 to make surface contact.
  • connection holes 213a and 224a are formed at positions corresponding to each other in the horizontal part 224 and the electrode connection part 213 of the activated carbon electrode 210, and the connection holes 213a and 224a are formed of conductors.
  • the shaft member 225 is inserted.
  • energization may proceed to each of the horizontal portion 224 and the activated carbon electrode 210 through the shaft member 225 as a conductor.
  • the shaft member 225 may be provided with a bolt.
  • both ends of the shaft member 225 may be fastened with nuts 226. Accordingly, a fastening force between the horizontal portion 224 and the electrode connection portion 213 can be secured.
  • FIG. 7 is a cross-sectional view illustrating a state in which a coating layer is formed on a shaft member in FIG. 6.
  • the shaft member 225 may have an insulating material coating layer 260 formed on the side exposed to the outside.
  • the coating layer 260 may be formed on the entire outer surface of the shaft member 225.
  • the coating layer 260 is the outer side of the shaft member 225 except for a portion connected to the shaft member 225 and the horizontal portion 224 and a portion connected to the shaft member 225 and the electrode connection portions 213 and 213'. It can be formed on the surface.
  • the shaft member 225 and the horizontal portion 224 are connected to each other and the shaft member 225 and the electrode connection portions 213 and 213' are connected to each other in the horizontal direction. It may mean a portion overlapped in the (left-right direction as referenced in FIG. 7) and a portion in which the shaft member 225 and the electrode connection portions 213 and 213' overlap in the horizontal direction (left-right direction as in FIG. 7).
  • the coating layer 260 may be formed on the outside of the shaft member 225 by various known methods.
  • a tube made of an insulating material is inserted outside the shaft member 225, and the tube is contracted while applying heat to the tube, and the tube is in close contact with the outer side of the shaft member 225 to form a coating layer ( 260) can be formed.
  • the tube forming the coating layer 260 may be made of a material that shrinks when heat is applied.
  • the coating layer 260 may be formed by coating an epoxy on the outside of the shaft member 225.
  • the coating layer 260 may be formed of a waterproof material.
  • the coating layer 260 is formed on the outside of the shaft member 225 made of a metal material, particularly copper, brass, etc., the elution of the metal component from the shaft member 225, especially the elution of copper and zinc components. Can be prevented.
  • the coating layer 260 may be formed on at least a portion of the vertical portion 223 and the horizontal portion 224 as well as the shaft member 225.
  • the coating layer 260 may be formed of a metal material and may be formed on the entire or partial surface of a component that may be in contact with water introduced into the chamber 100.
  • FIG. 8 is a conceptual diagram showing a connection state of an electrode unit, which is a main configuration of the present invention.
  • the plurality of activated carbon electrodes 210 are connected in parallel to each other.
  • the activated carbon electrodes 210 constituting one electrode unit 200a are connected in parallel to each other, and the same current may flow through the activated carbon electrode 210 in one electrode unit 200a.
  • a plurality of electrode units 200a are provided, and the plurality of electrode units 200a are connected in series with each other.
  • a plurality of activated carbon electrodes 210 constituting one electrode unit 200a are connected in parallel to each other, so that a uniform current is applied to each activated carbon electrode 210, and filtering performance in the entire area Can be secured.
  • the required current value can be lowered than when the plurality of electrode units 200a are connected in parallel.
  • 240 activated carbon electrodes when 240 activated carbon electrodes are included in one filter, in the conventional case, 240 activated carbon electrodes have a structure connected to each other in parallel.
  • a driving current of 20A or more is required based on 1 m 2 of the activated carbon electrode.
  • the unit cost of the PCB power supply unit SMPS (Swiched-Mode Power Supply) and output control parts such as current sensors, Power FETs (Field Effect Transistors), and relays increases.
  • 60 activated carbon electrodes are connected in parallel to each other in order to increase voltage and reduce current at the same time to form an electrode unit 200a, and each electrode unit 200a is connected in series.
  • the required power is maintained as it is, so that the voltage can be increased by 4 times and the current can be reduced to 1/4.
  • the operating current can be reduced and the current can be reduced to 8A or less as the voltage increases, and accordingly, the PCB requirement specification of the household product With less than 8A, it can be confirmed that the required operating current can be maintained.
  • FIG. 9 is a graph showing a change in a voltage value supplied to an electrode unit over time.
  • FIG. 9A is a graph showing a change in a voltage value supplied to an electrode unit in the related art
  • Fig. 9B is a graph showing a change in a voltage value supplied to an electrode unit according to the present invention.
  • a cycle of applying a voltage of 2.0V, applying a voltage of 0V, applying a voltage of 2.0V again, and applying a voltage of 0V is repeated.
  • the (+) pole continues to maintain the (+) pole
  • the (-) pole continues to maintain the (-) pole.
  • the activated carbon electrode 210 has a thin structure of 500 ⁇ m per sheet, and as the reaction is repeatedly performed, the performance decreases due to the formation of scale and deterioration of carbon.
  • the power supply means 240 and 250 supply current in one direction and adsorb ions to the activated carbon electrode 210 to absorb ions in water. Remove.
  • a cycle of applying a voltage of 2.0V, applying a voltage of 0V, applying a voltage of -2.0V, and applying a voltage of 0V is repeated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

The present invention relates to a filter for a water treatment device, which adsorbs ions of inflowing water so as to discharge water after removing the ions in the water, the filter comprising: a chamber that forms the external appearance; an electrode unit including an electrode part accommodated inside the chamber; and a power supply means for supplying power to the electrode part of the electrode unit, wherein: the electrode part comprises a current collector, a plurality of activated carbon electrodes including activated carbon formed on the surface of the current collector and having a planar shape, spacers made of an insulating material and inserted between the activated carbon electrodes in order to prevent shorting, and a plurality of electrode means which are connected to one side or the other side of the plurality of stacked activated carbon electrodes and of which at least a part is arranged in parallel with the activated carbon electrodes so as to make surface contact with the activated carbon electrodes; and the power supply means supplies current to the activated carbon electrodes through the electrode means so that neighboring activated carbon electrodes are formed by alternating cathodes and anodes.

Description

수처리 장치용 필터Filter for water treatment equipment
본 발명은 수처리 장치용 필터에 관한 것이다.The present invention relates to a filter for a water treatment device.
일반적으로, 정수기와 같이 원수를 처리하여 정수를 생성하는 수처리 장치는 현대 다양한 형태로 개시되고 있다. 그런데 수처리 장치에 적용되는 방식 중 최근 각광을 받고 있는 방식은 EDI(Electro Deionization), CEDI(Continuous Electro Deionization), CDI(Capacitive Deionization)와 같은 탈이온 방식이다. 이 중에서도 최근 가장 각광을 받고 있는 것은 바로 CDI 방식의 수처리 장치이다.In general, a water treatment device for generating purified water by treating raw water, such as a water purifier, has been disclosed in a variety of modern forms. However, among the methods applied to water treatment devices, deionization methods such as EDI (Electro Deionization), CEDI (Continuous Electro Deionization), and CDI (Capacitive Deionization) have recently been in the spotlight. Among them, the CDI type water treatment system is receiving the most attention recently.
CDI 방식은 전기적인 힘에 의해 전극의 표면에서 이온이 흡착되고 탈착되는 원리를 이용하여 수중의 이온(오염물질)을 제거하는 방식을 의미한다. The CDI method refers to a method of removing ions (contaminants) in water using the principle that ions are adsorbed and desorbed from the surface of an electrode by electric force.
전극에 전압을 인가시킨 채로 이온을 포함한 처리수를 전극(양극과 음극)의 사이로 통과시키면, 음이온은 양극으로 이동하고, 양이온은 음극으로 이동한다. 즉, 흡착이 일어난다. 이와 같은 흡착으로 처리수 내의 이온들이 제거될 수 있다.When the treated water containing ions is passed between the electrodes (positive and negative electrodes) while voltage is applied to the electrodes, negative ions move to the positive electrode and positive ions move to the negative electrode. That is, adsorption takes place. Ions in the treated water can be removed by such adsorption.
그러나, 이와 같은 흡착이 계속되며, 전극은 더 이상 이온을 흡착할 수 없는 상태에 이른다. 이와 같은 상태에 이르면, 전극에 흡착된 이온들을 분리시켜 전극을 재생시킨다. 이때, 전극에서 분리된 이온들을 포함하는 세척수는 외부로 배출된다. 이와 같은 재생은 전극에 전압을 인가하지 않거나, 또는 흡착할 때와는 반대로 전압을 인가하는 것으로 달성될 수 있다. However, such adsorption continues, and the electrode reaches a state in which ions can no longer be adsorbed. When this state is reached, ions adsorbed on the electrode are separated to regenerate the electrode. At this time, the washing water containing ions separated from the electrode is discharged to the outside. Such regeneration can be achieved by applying no voltage to the electrode, or applying a voltage as opposed to when adsorbed.
이와 같은 CDI 방식을 상업적으로 이용하기 위해 전극(양극과 음극)을 매우 많이 적층하는 것이 일반적이다. 그러나 CDI 방식에서 탈이온 성능은 전극 사이의 간격의 영향을 받는다. 즉, CDI 방식에서의 전극 사이의 간격이 멀어지면 탈이온 성능은 저하된다. 그 이유는, 첫째로 전극 사이의 간격이 멀어지면 축전기의 전기용량이 작아지기 때문이다. 일반적으로, 축전기의 전기용량은 전극 사이 간격에 반비례한다. 둘째로, 전극 사이의 간격이 멀어지면 처리수가 전극 사이를 빠르게 통과하기 때문이다. 처리수가 빠르게 통과하면 처리수 중의 이온들이 전극에 흡착되기 어렵다. 따라서, 전극을 많이 적층하더라도 전극 사이의 간격을 일정하게 유지하는 것이 매우 중요하다.In order to use such a CDI method commercially, it is common to stack very many electrodes (anode and cathode). However, in the CDI method, the deionization performance is affected by the spacing between electrodes. That is, if the distance between electrodes in the CDI method increases, the deionization performance decreases. The reason for this is that, first, as the distance between the electrodes increases, the capacitance of the capacitor decreases. In general, the capacitance of a capacitor is inversely proportional to the spacing between the electrodes. Second, this is because the treated water quickly passes through the electrodes when the distance between the electrodes increases. When the treated water passes quickly, ions in the treated water are difficult to be adsorbed to the electrode. Therefore, even if a large number of electrodes are stacked, it is very important to keep the distance between the electrodes constant.
종래의 경우, 전원에서 인가된 전압 대비 각각의 전극에 공급되는 전압이 현저히 작은 문제가 있었다. 따라서, 이온 제거율이 낮아질 수 밖에 없는 문제가 발생한다. In the conventional case, there is a problem that the voltage supplied to each electrode is significantly smaller than the voltage applied from the power source. Therefore, there arises a problem that the ion removal rate is inevitably lowered.
또한, 전원과의 거리에 따라서, 각각의 전극에 전압이 골고루 인가되지 못하게 되고, 적층된 전극 간의 전압 차이가 커지면서, 이온 제거성능이 균일하게 확보되지 못하는 문제도 있었다. In addition, depending on the distance from the power source, the voltage cannot be evenly applied to each electrode, the voltage difference between the stacked electrodes increases, and there is a problem that the ion removal performance is not uniformly secured.
한국특허출원 제 10-2018-0009619호(이하, 선행문헌 1)에는, 활성탄 전극에 인가되는 전압이 고르게 형성될 수 있는 수처리 장치용 필터가 개시된다. In Korean Patent Application No. 10-2018-0009619 (hereinafter, Prior Document 1), a filter for a water treatment device in which a voltage applied to an activated carbon electrode can be uniformly formed is disclosed.
하지만, 선행문헌 1과 같은, 축전식 탈염 기술을 실제 가전제품에 적용할 때, 높은 전류가 문제가 된다. 특히, 축전식 탈염은 면적이 증대될수록 높은 전류가 나타나며, 이로 인해서 피씨비(PCB) 구성에 어려움이 발생한다. However, when the capacitive desalination technology, such as in Prior Document 1, is applied to an actual home appliance, a high current becomes a problem. In particular, in the capacitive desalination, the higher the area is, the higher the current appears, which causes difficulties in configuring a PCB (PCB).
상세히, 가정용 허용 전류 최대값을 초과하는 약 10A 이상의 높은 전류가 흐르게 되면, 피씨비 사이즈(PCB size)가 증가되고, 비용증가로 이어진다. 따라서 실제 가정에 적용하기 위해 10A 이하의 전류 형성 기술이 요구된다. In detail, when a high current of about 10A or more exceeding the maximum allowable household current flows, the PCB size increases, leading to an increase in cost. Therefore, a technology of forming a current of 10A or less is required to apply it to a real home.
또한, 선행문헌 1의 경우, 황동 재질의 전극봉이 물과 접촉하면서 용출 문제가 발생한다. 고른 전압 인가를 위하여 사용된 황동재질 전극봉에 의해서, 물 속에는 여러 물질이 용출된다. 황동재질의 전극봉 구성 물질은 아연, 구리, 주석, 철으로 이루어져 있으며 이 중 아연과 구리의 비율이 가장 많이 용출된다.In addition, in the case of Prior Document 1, an elution problem occurs when an electrode made of brass is in contact with water. Various substances are eluted into the water by the brass electrode used to apply the even voltage. The brass electrode material is composed of zinc, copper, tin, and iron, of which zinc and copper are the most eluted.
또한, 선행문헌 1과 같은, 축전식 탈염 기술에 있어서, 카본으로 이루어진 전극은 장당 500㎛의 얇은 구조를 띄며, 반응이 반복적으로 이루어질수록 스케일 형성, 카본의 열화 등의 원인으로 성능이 저하된다. 특히 반복적인 운전에 의해서 (+)극에는 탄소 산화로 인한 열화 반응이 발생하고, (-)극에는 용존산소 환원으로 스케일이 형성되어 지속적인 성능 저하를 일으킨다. In addition, in the capacitive desalination technology as in Prior Document 1, the electrode made of carbon has a thin structure of 500 µm per sheet, and the more the reaction is repeatedly performed, the performance decreases due to the formation of scale and deterioration of carbon. Particularly, deterioration reaction due to carbon oxidation occurs in the (+) electrode due to repetitive operation, and scale is formed in the (-) electrode due to the reduction of dissolved oxygen, causing continuous performance degradation.
즉, 선행문헌 1과 같은, 종래 축전식 탈염 기술의 경우, 외부로 노출된 황동 재질의 전극봉에서 아연, 구리 등이 용출되는 문제가 있었고, 가정용 전류 최대값을 초과하는 전류가 요구되어, 피씨비(PCB) 가격이 상승하는 문제가 있었으며, 전극 표면에 스케일이 쌓이거나, 열화 반응이 발생하여, 반복 사용 시 성능이 저하되는 문제가 있었다. That is, in the case of the conventional capacitive desalination technology as in Prior Document 1, there was a problem in that zinc, copper, etc., are eluted from an electrode made of brass material exposed to the outside, and a current exceeding the maximum household current is required. PCB), there was a problem of increasing the price, and there was a problem that scale was accumulated on the electrode surface or a deterioration reaction occurred, and the performance was deteriorated when repeatedly used.
본 발명은, 전극부에 포함된 금속 재질의 축부재를 비롯한, 전극수단에서 금속 성분이 용출되지 않도록 방지할 수 있는 수처리 장치용 필터를 제공하는 데 목적이 있다. An object of the present invention is to provide a filter for a water treatment device capable of preventing metal components from being eluted from electrode means, including a shaft member made of a metal material included in the electrode portion.
또한, 복수의 전극유닛을 조합하여, 하나의 모듈을 구성하되, 요구되는 운전전류를 최소한으로 유지할 수 있는 수처리 장치용 필터를 제공하는 데 목적이 있다.In addition, a plurality of electrode units are combined to form one module, but an object thereof is to provide a filter for a water treatment device capable of maintaining a required operating current to a minimum.
또한, 반복 사용 시에도, 전극의 신뢰도가 유지되어, 전극의 성능이 확보될 수 있는 수처리 장치용 필터를 제공하는 데 목적이 있다.In addition, it is an object of the present invention to provide a filter for a water treatment apparatus in which the reliability of the electrode is maintained even when used repeatedly, and the performance of the electrode is ensured.
또한, 반복 사용 시에도, 전극의 내구성이 유지될 수 있는 수처리 장치용 필터를 제공하는 데 목적이 있다.In addition, an object of the present invention is to provide a filter for a water treatment device capable of maintaining the durability of an electrode even when used repeatedly.
본 발명에 따른 수처리 장치용 필터는, 외형을 형성하는 챔버와, 상기 챔버의 내측에 수용되는 전극부를 포함하는 전극유닛, 및 상기 전극유닛의 전극부에 전원을 공급하는 전원공급수단을 포함한다. A filter for a water treatment apparatus according to the present invention includes a chamber forming an outer shape, an electrode unit including an electrode portion accommodated inside the chamber, and a power supply means for supplying power to the electrode portion of the electrode unit.
상기 전극부는, 집전체 및 상기 집전체의 표면에 형성된 활성탄을 포함하고, 판상으로 이루어진 복수의 활성탄전극과, 상기 활성탄전극 사이마다 쇼트 방지를 위해 삽입되는 절연성 재질의 스페이서와, 상기 적층된 복수의 활성탄전극의 일측 또는 타측과 연결되고, 적어도 일부가 상기 활성탄전극과 나란하게 배치되어, 상기 활성탄전극과 면접촉하는 복수의 전극수단을 포함한다. The electrode unit includes a current collector and activated carbon formed on the surface of the current collector, a plurality of activated carbon electrodes formed in a plate shape, an insulating material spacer inserted between the activated carbon electrodes to prevent a short, and the stacked plurality of It includes a plurality of electrode means connected to one side or the other side of the activated carbon electrode, at least partly arranged in parallel with the activated carbon electrode, and making surface contact with the activated carbon electrode.
상기 전원공급수단은, 이웃하는 활성탄전극이 양극과 음극을 번갈아 가며 형성하도록 상기 전극수단을 통해 상기 활성탄전극에 전류를 공급한다. The power supply means supplies current to the activated carbon electrode through the electrode means so that adjacent activated carbon electrodes alternately form an anode and a cathode.
상기 복수의 활성탄 전극은 병렬로 연결될 수 있다. The plurality of activated carbon electrodes may be connected in parallel.
상기 전극유닛은 복수 구비되고, 상기 복수의 전극유닛은 직렬로 연결될 수 있다. A plurality of electrode units may be provided, and the plurality of electrode units may be connected in series.
상기 전극수단은, 상호 이격 배치된 제1전극수단과 제2전극수단을 포함하고, 상기 활성탄전극은 이웃하는 활성탄전극과 서로 다른 전극수단에 연결될 수 있다. The electrode means includes a first electrode means and a second electrode means that are spaced apart from each other, and the activated carbon electrode may be connected to an adjacent activated carbon electrode and an electrode means different from each other.
상기 활성탄전극은, 상기 전극수단과 연결되는 부분이 외측으로 돌출되어 전극연결부를 형성할 수 있다. In the activated carbon electrode, a portion connected to the electrode means may protrude outward to form an electrode connection.
상기 전극수단은, 상기 활성탄전극의 적층 방향과 나란하게 형성된 수직부와, 상기 활성탄전극과 나란하게 형성되고, 상기 수직부와 연결되는 복수의 수평부를 포함할 수 있다. The electrode means may include a vertical portion formed parallel to the stacking direction of the activated carbon electrode, and a plurality of horizontal portions formed parallel to the activated carbon electrode and connected to the vertical portion.
상기 수평부와 상기 활성탄전극은 상호 대응하는 위치에 접속홀이 형성되고, 상기 접속홀에는 도체로 이루어진 축부재가 삽입될 수 있다. The horizontal portion and the activated carbon electrode may have connection holes formed at positions corresponding to each other, and a shaft member made of a conductor may be inserted into the connection hole.
상기 축부재는, 외측으로 노출되는 측면에 절연성 재질의 코팅층이 형성될 수 있다. The shaft member may have a coating layer of an insulating material formed on a side exposed to the outside.
상기 코팅층은, 상기 축부재의 외측에 절연성 재질의 튜브를 끼우고, 상기 튜브에 열을 가하면서 상기 튜브를 수축시키는 방식으로, 상기 축부재의 외측에 튜브를 밀착시켜 형성될 수 있다. The coating layer may be formed by inserting a tube made of an insulating material to the outside of the shaft member and contracting the tube while applying heat to the tube. The tube may be in close contact with the outside of the shaft member.
상기 코팅층은, 상기 축부재의 외측에 에폭시를 코팅시켜 형성될 수 있다. The coating layer may be formed by coating an epoxy on the outside of the shaft member.
상기 전원공급수단은, 상기 전극부에 N번째 처리수가 공급되면, 일방향으로 전류를 공급하고, 상기 활성탄전극으로 이온을 흡착시켜 수중의 이온을 제거할 수 있다. When the N-th treated water is supplied to the electrode unit, the power supply means may supply current in one direction and adsorb ions to the activated carbon electrode to remove ions from water.
상기 전원공급수단은, 상기 전극부에 N+1번째 처리수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극으로 이온을 흡착시켜 수중의 이온을 제거할 수 있다. When the N+1 th treated water is supplied to the electrode unit, the power supply means may supply current in a direction opposite to the one direction, and adsorb ions to the activated carbon electrode to remove ions in water.
상기 전원공급수단은, 상기 전극부에 세척수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극에 흡착된 이온을 수중으로 배출시켜, 상기 활성탄전극을 재생시킬 수 있다. When the washing water is supplied to the electrode unit, the power supply means may supply current in two directions opposite to the one direction, and discharge ions adsorbed on the activated carbon electrode into water, thereby regenerating the activated carbon electrode.
상기 활성탄전극은, 활성탄 입자, 전도성 고분자 입자, 바인더를 혼합한 혼합물을 상기 집전체의 표면에 도포하여 형성될 수 있다. The activated carbon electrode may be formed by applying a mixture of activated carbon particles, conductive polymer particles, and a binder on the surface of the current collector.
상기 챔버는, 물이 유입되는 유입구와, 물이 배출되는 토출구가 형성되고, 상기 유입구 및 토출구와 연통하는 내부공간을 구비할 수 있다. The chamber may include an inlet through which water is introduced, a discharge port through which water is discharged, and an internal space communicating with the inlet and the discharge port.
상기 활성탄전극은, 상기 토출구와 연통하는 출수구가 적층방향과 나란하게 타공될 수 있다. In the activated carbon electrode, a water outlet communicating with the discharge port may be perforated in parallel with a stacking direction.
상기 챔버는, 상기 내부공간을 형성하고 일측이 개방된 몸체부, 상기 몸체부의 개방된 일측을 개폐하는 커버부를 포함할 수 있다. The chamber may include a body portion forming the inner space and having one side open, and a cover portion opening and closing the open side of the body portion.
본 발명에 따르면, 전극부에 포함된 금속 재질의 축부재를 비롯한, 전극수단에서 금속 성분이 용출되지 않도록 방지할 수 있다. According to the present invention, it is possible to prevent the metal component from eluting from the electrode means, including a shaft member made of a metal material included in the electrode part.
본 발명에 따르면, 복수의 전극유닛을 조합하여, 하나의 모듈을 구성하되, 요구되는 운전전류를 최소한으로 유지할 수 있다. According to the present invention, a plurality of electrode units are combined to form one module, but the required operating current can be kept to a minimum.
본 발명에 따르면, 반복 사용 시에도, 전극의 신뢰도가 유지되어, 전극의 성능이 확보될 수 있다. According to the present invention, even during repeated use, reliability of the electrode is maintained, so that the performance of the electrode can be secured.
본 발명에 따르면, 반복 사용 시에도, 전극의 내구성이 유지될 수 있다. According to the present invention, even when used repeatedly, durability of the electrode can be maintained.
본 발명에 따르면, 수중의 경도가 낮춰 물을 연수화 시킬 수 있다.According to the present invention, water can be softened by lowering the hardness in water.
본 발명에 따르면, 활성탄 전극에 인가되는 전압이 고르게 형성될 수 있다.According to the present invention, the voltage applied to the activated carbon electrode can be uniformly formed.
본 발명에 따르면,전원에서 공급된 전압과 활성탄 전극에 인가되는 전압의 차이를 줄일 수 있다.According to the present invention, a difference between a voltage supplied from a power source and a voltage applied to the activated carbon electrode can be reduced.
본 발명에 따르면, 너지의 손실 없이, 전극내 탈염효율을 증대 시킬 수 있다.According to the present invention, it is possible to increase the desalination efficiency in the electrode without loss of energy.
본 발명에 따르면, 전극의 적층 위치에 관계없이, 모든 영역에서, 여과력이 확보될 수 있다.According to the present invention, the filtering force can be ensured in all regions, regardless of the stacking position of the electrodes.
본 발명에 따르면,고른 전압인가로 인해 전극의 부분적인 열화 또는 부분적인 전극 손상을 방지할 수 있다.According to the present invention, it is possible to prevent partial deterioration of the electrode or partial damage to the electrode due to the application of an even voltage.
본 발명에 따르면,각각의 전극에 전압이 안정적이면서도 고르게 분배될 수 있다.According to the present invention, the voltage can be stably and evenly distributed to each electrode.
본 발명에 따르면, 이온제거 성능을 향상시킬 수 있다.According to the present invention, ion removal performance can be improved.
본 발명에 따르면, 적층이 자유로워 요구되는 처리 용량 및 처리 속도에 따라 적층 높이를 다양하게 설정할 수 있다.According to the present invention, since the stacking is free, the stacking height can be variously set according to the required processing capacity and processing speed.
본 발명에 따르면, 활성탄전극에 흡착된 이온을 손쉽게 제거하여 전극부의 이온제거능력을 일정하게 유지할 수 있다. According to the present invention, ions adsorbed on the activated carbon electrode can be easily removed to maintain a constant ion removal capability of the electrode portion.
본 발명에 따르면, 전극부의 전체 영역에서, 유입된 물의 경도 제거가 보다 빠르고, 고르게 이루어져, 탈염효율이 확보하면서, 목표 농도(ppm)의 물을 보다 신속하게 생성 및 공급할 수 있는 이점이 있다. According to the present invention, there is an advantage in that the hardness of the introduced water can be removed more quickly and evenly in the entire region of the electrode unit, so that desalination efficiency can be secured and water of a target concentration (ppm) can be generated and supplied more quickly.
본 발명에 따르면, 고농도 경도물질을 짧은 시간에 처리하여 즉각적인 음용 요구에 대응할 수 이점이 있다. According to the present invention, there is an advantage of being able to respond to immediate drinking demand by processing a high-concentration hardness material in a short time.
도 1은 본 발명의 일 실시예에 따른 수처리 장치용 필터의 사시도, 1 is a perspective view of a filter for a water treatment apparatus according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 수처리 장치용 필터의 개념도, 2 is a conceptual diagram of a filter for a water treatment apparatus according to an embodiment of the present invention,
도 3은 도 2에 도시된 수처리 장치용 필터에서 물이 정화되는 상태를 보인 개념도, 3 is a conceptual diagram showing a state in which water is purified in the filter for the water treatment apparatus shown in FIG. 2;
도 4는 도 2에 도시된 수처리 장치용 필터가 재생되는 상태를 보인 개념도, 4 is a conceptual diagram showing a state in which the filter for the water treatment device shown in FIG. 2 is regenerated;
도 5는 본 발명의 일 실시예에 따른 수처리 장치용 필터를 구성하는 전극부의 평면도, 5 is a plan view of an electrode part constituting a filter for a water treatment apparatus according to an embodiment of the present invention,
도 6은 도 5의 'A'영역의 종단면도, 6 is a longitudinal sectional view of area'A' of FIG. 5;
도 7은 도 6에서, 축부재에 코팅층이 형성된 상태를 보인 단면도이다. 7 is a cross-sectional view illustrating a state in which a coating layer is formed on a shaft member in FIG. 6.
도 8은 본 발명의 주요 구성인 전극유닛의 연결상태를 보인 개념도이다. 8 is a conceptual diagram showing a connection state of an electrode unit, which is a main configuration of the present invention.
도 9는 시간의 흐름에 따라 전극부에 공급되는 전압값의 변화를 도시한 그래프이다. 9 is a graph showing a change in a voltage value supplied to an electrode unit over time.
도 10은 본 발명과 같은 교번 운전방식의 경도 제거율과, 종래 운전방식의 경도 제거율을 비교한 표이다.10 is a table comparing the hardness removal rate of the alternate driving method as in the present invention and the hardness removal rate of the conventional driving method.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 그러나 본 발명의 사상은 이하에 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에 포함되는 다른 실시예를 구성요소의 부가, 변경, 삭제, 및 추가 등에 의해서 용이하게 구현할 수 있을 것이나, 이 또한 본 발명 사상의 범위 내에 포함된다고 할 것이다. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. However, the spirit of the present invention is not limited to the embodiments presented below, and those skilled in the art who understand the spirit of the present invention can use the addition, change, deletion, and addition of components to other embodiments included within the scope of the same idea. It will be possible to implement easily, but it will be said that this is also included within the scope of the inventive concept.
이하의 실시예에 첨부되는 도면은, 같은 발명 사상의 실시예이지만, 발명 사상이 훼손되지 않는 범위 내에서, 용이하게 이해될 수 있도록 하기 위하여, 미세한 부분의 표현에 있어서는 도면별로 서로 다르게 표현될 수 있고, 도면에 따라서 특정 부분이 표시되지 않거나, 도면에 따라서 과장되게 표현되어 있을 수 있다. The drawings attached to the following examples are examples of the same inventive idea, but in order to be easily understood, within the scope of the inventive idea not being damaged, the representation of fine parts may be differently expressed for each drawing. And, depending on the drawings, a specific part may not be displayed or may be exaggerated according to the drawings.
본 발명에 따른 수처리 장치는 정수기, 연수기 등과 같은 다양한 정화 장치가 해당될 수 있다. 또한, 세탁기, 식기세척기, 냉장고 등에 설치되는 정화 수단이 해당될 수도 있다. The water treatment device according to the present invention may correspond to various purification devices such as a water purifier and a water softener. In addition, purification means installed in a washing machine, dishwasher, refrigerator, or the like may be applicable.
본 발명에 따른 수처리 장치는 외부에서 유입된 원수에 포함된 이온, 경도물질을 전기 흡착시킨 뒤 배출하는 범위에서 다양한 실시예가 발생할 수 있다. In the water treatment apparatus according to the present invention, various embodiments may occur in a range in which ions and hardness substances contained in raw water introduced from the outside are electro-adsorbed and then discharged.
이하에서는, 본 발명의 일 실시예에 따른 수처리 장치용 필터에 대해서 설명한다.Hereinafter, a filter for a water treatment apparatus according to an embodiment of the present invention will be described.
본 발명에 따른 수처리 장치용 필터는 하나의 필터를 의미할 수 있고, 여러 개의 필터를 의미할 수 있다.The filter for a water treatment apparatus according to the present invention may refer to one filter and may refer to several filters.
도 1은 본 발명의 일 실시예에 따른 수처리 장치용 필터의 사시도이고, 도 2는 본 발명의 일 실시예에 따른 수처리 장치용 필터의 개념도이다.1 is a perspective view of a filter for a water treatment apparatus according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram of a filter for a water treatment apparatus according to an embodiment of the present invention.
도 1 내지 도 2를 참조하면, 상기 수처리 장치용 필터는, 물이 유입되는 유입구(101)와, 물이 배출되는 토출구(102)가 형성되고, 상기 유입구(101) 및 토출구(102)와 연통하는 내부공간을 구비하는 챔버(100)를 포함한다.1 to 2, the filter for the water treatment device has an inlet 101 through which water is introduced, and a discharge port 102 through which water is discharged, and communicates with the inlet 101 and the discharge port 102. It includes a chamber 100 having an internal space.
그리고, 상기 챔버(100)의 내측에는 전극부(200)가 수용될 수 있다. In addition, the electrode part 200 may be accommodated inside the chamber 100.
상기 전극부(200)에는 상기 토출구(102)와 연통하는 출수구(201)가 적층방향과 나란하게 타공될 수 있다. A water outlet 201 communicating with the discharge port 102 may be perforated in the electrode part 200 in parallel with the stacking direction.
즉, 상기 챔버(100)의 내부공간에는 전극부(200)를 수용하고, 유입구(101)를 통해 외부에서 챔버(100)의 내부공간으로 물이 유입된다. 이때, 유입된 물은 전극부(200)를 통과한 뒤, 토출구(102)를 통해 챔버(100) 외부로 빠져나간다. 이 과정에서 물에 포함된 이온은 전극부(200)를 통과하면서 전극부(200)에 흡착 및 제거될 수 있다.That is, the electrode part 200 is accommodated in the inner space of the chamber 100, and water is introduced into the inner space of the chamber 100 from the outside through the inlet 101. At this time, the introduced water passes through the electrode part 200 and then exits the chamber 100 through the discharge port 102. In this process, ions contained in water may be adsorbed and removed by the electrode part 200 while passing through the electrode part 200.
본 실시예에서, 상기 챔버(100)는, 직육면체 형상을 구비하고, 상기 유입구(101)와 상기 토출구(102)는 상호 수직된 방향으로 형성될 수 있다. In this embodiment, the chamber 100 may have a rectangular parallelepiped shape, and the inlet 101 and the discharge port 102 may be formed in a direction perpendicular to each other.
상기와 같이 유입구(101)와 토출구(102)가 수직 방향으로 형성되면, 토출구(102)는 전극부(200)의 적층방향과 나란하게 형성되므로 결론적으로 유입구(101)는 전극부(200)의 적층방향과 수직된 방향으로 형성된다. 즉 전극부(200)의 측면을 향하도록 형성된다.When the inlet 101 and the discharge port 102 are formed in the vertical direction as described above, the discharge port 102 is formed parallel to the stacking direction of the electrode part 200. It is formed in a direction perpendicular to the stacking direction. That is, it is formed to face the side surface of the electrode part 200.
따라서, 유입구(101)로 공급된 물은 상기 전극부(200)의 측면으로 공급되고, 결과적으로 전극부(200)의 전체 두께에 골고루 공급될 수 있다.Accordingly, water supplied to the inlet 101 is supplied to the side of the electrode unit 200, and as a result, it can be evenly supplied to the entire thickness of the electrode unit 200.
만약, 전극부(200)의 최상단 또는 최하단과 인접한 방향으로 물이 공급되면, 전극부(200)의 적층 방향을 따라 순차적으로 물이 이동하게 된다. 그러면 물이 최초로 공급되는 최상단 또는 최하단에 위치된 전극부에서만 이온 흡착이 집중적으로 진행되면서, 전극부(200)의 각 층별로 이온 흡착 정도의 차이가 발생할 수밖에 없다. If water is supplied in a direction adjacent to the uppermost or lowermost end of the electrode unit 200, water is sequentially moved along the stacking direction of the electrode unit 200. Then, ion adsorption proceeds intensively only at the electrode portion located at the top or the bottom where water is first supplied, and thus a difference in the degree of ion adsorption occurs for each layer of the electrode portion 200.
반면, 본 발명에서와 같이, 전극부(200)의 측면을 통해 물이 공급되면, 전극부(200)의 전체 두께에 골고루 물이 공급될 수 있다.On the other hand, as in the present invention, when water is supplied through the side surface of the electrode part 200, water may be evenly supplied to the entire thickness of the electrode part 200.
또한, 상기와 같이 전극부(200)의 측면 방향으로 물이 골고루 공급된 후, 전극부(200)의 측면 방향에서 중심부 측으로 유동하면서 이온 교환이 이루어진 물은 전극부(200)의 중심부에 형성된 출수구(201)를 통해 외부로 빠져나갈 수 있다.In addition, after water is evenly supplied in the lateral direction of the electrode part 200 as described above, water flowing from the lateral direction of the electrode part 200 to the center side and ion exchanged water is a water outlet formed in the center of the electrode part 200 You can escape to the outside through (201).
본 실시예에서, 상기 챔버(100)는, 내부공간을 형성하고 일측이 개방된 몸체부(110)와, 상기 몸체부(110)의 개방된 일측을 개폐하는 커버부(120)를 포함할 수 있다. In this embodiment, the chamber 100 may include a body portion 110 forming an inner space and an open side of the body portion 110, and a cover portion 120 for opening and closing the open side of the body portion 110. have.
상기 몸체부(110) 및 커버(120)는 볼트 등과 같은 별도의 체결수단(미도시)을 통해 고정 및 분리될 수 있다.The body portion 110 and the cover 120 may be fixed and separated through separate fastening means (not shown) such as bolts.
이때, 커버부(120)에 토출구(102)가 형성될 수 있다.In this case, a discharge port 102 may be formed in the cover part 120.
상기와 같이 챔버(100)가 몸체부(110)와 커버부(120)로 분리될 경우, 챔버(100)의 내부공간이 외부로 노출되어 내부공간에 전극부(200)를 적층하는 작업이 수월하게 진행될 수 있다. When the chamber 100 is separated into the body portion 110 and the cover portion 120 as described above, the inner space of the chamber 100 is exposed to the outside, so that it is easier to stack the electrode portion 200 in the inner space. Can be done.
또한, 챔버(100) 내에 문제 발생 시, 커버부(120)를 분리하여 점검 및 보수가 손쉽게 진행될 수 있다.In addition, when a problem occurs in the chamber 100, the cover unit 120 may be separated to facilitate inspection and maintenance.
또한, 전극부(200)를 교체하더라도 챔버(100)는 반영구적으로 사용할 수 있다. In addition, even if the electrode unit 200 is replaced, the chamber 100 can be used semi-permanently.
또한, 챔버(100)가 몸체부(110)와 커버부(120)로 분리되면, 제품의 조립성이 개선되어 생산성이 높아지고, 양산성이 확보될 수 있는 효과도 있다.In addition, when the chamber 100 is separated into the body portion 110 and the cover portion 120, the assembly properties of the product are improved, thereby increasing productivity and securing mass production.
본 발명에 따른 수처리 장치용 필터는 전극부(200)를 포함한다. The filter for a water treatment device according to the present invention includes an electrode part 200.
이때, 전극부(200)는 하나의 전극유닛(200a)으로 구성되거나, 복수의 전극유닛(200a)을 적층하여 구성될 수 있다.In this case, the electrode unit 200 may be composed of one electrode unit 200a, or may be configured by stacking a plurality of electrode units 200a.
일 예로, 전극유닛(200a)은 집전체(211)와, 상기 집전체(211)의 일측 또는 양측에 활성탄을 도포하여 형성된 활성탄코팅층(212)으로 이루어진 복수의 활성탄전극(210)과, 상기 적층된 복수의 활성탄전극(210)의 일측 단부 또는 타측 단부에 연결되는 복수의 전극수단(220)과, 상기 활성탄전극(210) 사이마다 쇼트 방지를 위해 삽입되는 절연성 재질의 스페이서(230)를 포함하고, 유입된 물의 이온을 흡착하여 수중의 이온을 제거한 뒤 배출한다. For example, the electrode unit 200a includes a current collector 211, a plurality of activated carbon electrodes 210 made of an activated carbon coating layer 212 formed by coating activated carbon on one or both sides of the current collector 211, and the stacked A plurality of electrode means 220 connected to one end or the other end of the plurality of activated carbon electrodes 210 and a spacer 230 made of an insulating material inserted to prevent a short between the activated carbon electrodes 210, and , Adsorption of the ions of the introduced water to remove the ions in the water and then discharge.
상기 활성탄전극(210)은 활성탄 입자, 전도성 고분자 입자, 바인더를 혼합한 혼합물을 상기 집전체(211)의 표면에 도포하여 형성될 수 있다. The activated carbon electrode 210 may be formed by applying a mixture of activated carbon particles, conductive polymer particles, and a binder on the surface of the current collector 211.
또한, 전극유닛(200a)은 이웃하는 활성탄전극(210)이 양극(+극)과 음극(-극)을 번갈아 가며 형성하도록 상기 전극수단(220)을 통해 상기 활성탄전극(210)에 전류를 공급하는 전원공급수단(240)과 연결된다. In addition, the electrode unit 200a supplies current to the activated carbon electrode 210 through the electrode means 220 so that the adjacent activated carbon electrodes 210 alternately form a positive electrode (+ electrode) and a negative electrode (-pole). It is connected to the power supply means 240.
한편, 전술한 바와 같이, 상기 활성탄전극(210)은 집전체(211)와 활성탄코팅층(212)으로 이루어진다. Meanwhile, as described above, the activated carbon electrode 210 includes a current collector 211 and an activated carbon coating layer 212.
참고로, 상기 활성탄전극(210)은 활성탄을 구비하고 전극을 형성하는 범위에서, 공지의 다양한 실시예가 적용될 수 있다. For reference, the activated carbon electrode 210 may be provided with activated carbon and various known embodiments may be applied within a range in which an electrode is formed.
상기 집전체(211)는 박막의 형태로서, 전도체(electric conductor)로 구비될 수 있다. 일례로, 상기 집전체(211)는 흑연포일(graphite foil)로 구비될 수 있으며, 이 밖에도 다양한 종류의 전도체가 집전체(211)로 채택될 수 있다. The current collector 211 is in the form of a thin film and may be provided as an electric conductor. For example, the current collector 211 may be provided with a graphite foil, and in addition, various types of conductors may be adopted as the current collector 211.
활성탄코팅층(212)은 상기 집전체(211)의 일면 또는 양면에 형성된다. The activated carbon coating layer 212 is formed on one or both surfaces of the current collector 211.
상기 활성탄코팅층(212)은 활성탄을 포함한다. 따라서, 정전기적인 인력에 의해 활성탄코팅층(212)에 원수의 불순물이 흡착되면, 흡착된 불순물은 활성탄 표면의 마크로 포어(Macro pore)라고 하는 구멍 속으로 확산을 통해 이동한 후, 내부의 메조포어(Meso pore) 또는 마이크로포어(Micro pore)에서 최종 흡착 및 제거될 수 있다. The activated carbon coating layer 212 includes activated carbon. Therefore, when impurities of raw water are adsorbed to the activated carbon coating layer 212 by electrostatic attraction, the adsorbed impurities move through diffusion into the pores called macro pores on the surface of the activated carbon, and then the mesopores ( Meso pores) or micro pores can be finally adsorbed and removed.
상기와 같은 활성탄전극(210)은 요구되는 경도 조절 정도에 따라 그 적층 개수가 다양하게 조절될 수 있다.The number of stacked activated carbon electrodes 210 as described above may be variously adjusted according to the degree of hardness adjustment required.
본 실시예에서, 상기 활성탄코팅층(212)은 집전체(211)의 일면에만 형성될 수 있다. 이와 같이 집전체(211)의 일면에만 활성탄코팅층(212)이 형성된 활성탄전극(210)은 전극유닛(200a)의 최상단 및 최하단에 배치될 수 있다.In this embodiment, the activated carbon coating layer 212 may be formed only on one surface of the current collector 211. As such, the activated carbon electrode 210 in which the activated carbon coating layer 212 is formed only on one surface of the current collector 211 may be disposed at the top and bottom ends of the electrode unit 200a.
이때, 최상단에 배치된 활성탄전극(210)은 활성탄코팅층(212)이 하측을 향하도록 배치되고, 최하단에 배치된 활성탄전극(210)은 활성탄코팅층(212)이 상측을 향하도록 배치된다.At this time, the activated carbon electrode 210 disposed at the top is disposed so that the activated carbon coating layer 212 faces downward, and the activated carbon electrode 210 disposed at the lowest end is disposed so that the activated carbon coating layer 212 faces upward.
또한, 상기 활성탄코팅층(212)은 집전체(211)의 양면 모두에 형성될 수 있다. 이와 같이 집전체(211)의 양면에 활성탄코팅층(212)이 형성된 활성탄전극(210)은 전극유닛(200a)의 최상단 및 최하단을 제외한 중심부에 배치될 수 있다.In addition, the activated carbon coating layer 212 may be formed on both sides of the current collector 211. In this way, the activated carbon electrode 210 having the activated carbon coating layer 212 formed on both sides of the current collector 211 may be disposed in the center of the electrode unit 200a except for the uppermost and lowermost ends.
상기와 같이 집전체(211)의 양면에 활성탄코팅층(212)이 형성되면, 집전체(211)의 양측에서 원수에 포함된 불순물을 흡착할 수 있어, 불순물의 흡착속도 및 흡착성능을 향상시킬 수 있다. When the activated carbon coating layer 212 is formed on both sides of the current collector 211 as described above, impurities contained in raw water can be adsorbed on both sides of the current collector 211, thereby improving the adsorption rate and adsorption performance of impurities. have.
또한, 하나의 집전체(211)의 양측에 활성탄코팅층(212)이 형성되기 때문에 집전체(211)의 개수를 줄일 수 있어, 결과적으로는 전극유닛(200a)의 두께를 줄이고, 전극유닛(200a)의 경량화를 실현할 수 있으며, 전극유닛(200a)의 제작비용을 절약할 수 있다. 또한, 활성탄전극(210)의 적층량을 늘릴 수도 있다.In addition, since the activated carbon coating layers 212 are formed on both sides of one current collector 211, the number of current collectors 211 can be reduced. As a result, the thickness of the electrode unit 200a is reduced, and the electrode unit 200a ) Can be reduced in weight, and the manufacturing cost of the electrode unit 200a can be saved. In addition, the amount of stacked activated carbon electrodes 210 may be increased.
상기 스페이서(230)는 활성탄전극(210) 사이에 배치된다. 상기 스페이서(230)는 활성탄전극(210) 사이에서 간격을 형성하면서, 활성탄전극(210) 간의 쇼트를 방지한다. 또한, 원수는 스페이서(230)를 통해서 활성탄전극(210) 사이를 통과하면서 정수될 수 있다.The spacer 230 is disposed between the activated carbon electrodes 210. The spacers 230 form a gap between the activated carbon electrodes 210 and prevent a short between the activated carbon electrodes 210. In addition, the raw water may be purified while passing between the activated carbon electrodes 210 through the spacer 230.
따라서, 스페이서(230)는 부도체(insulator)이면서, 통수성 재질로 이루어져, 활성탄전극(210) 사이에서 쇼트를 방지하고, 정수가 진행되는 원수가 통과하는 유로를 제공할 수 있다. 일례로, 스페이서(230)는 복수의 통수로가 형성된 나일론(nylon) 재질로 형성될 수 있다. Accordingly, the spacer 230 is made of a non-conductor and a water-permeable material, thereby preventing a short between the activated carbon electrodes 210 and providing a flow path through which raw water through which purified water proceeds passes. As an example, the spacer 230 may be formed of a nylon material in which a plurality of passages are formed.
한편, 상기 전극수단(220)은 한 쌍으로 구비되어, 상기 적층된 복수의 활성탄전극(210)의 일측 또는 타측 단부와 연결되며, 전도체(electric conductor)로 구비될 수 있다. 일 예로, 상기 전극수단(220)은 구리(Cu)재질로 형성될 수 있다. Meanwhile, the electrode means 220 may be provided in a pair, connected to one or the other end portions of the stacked activated carbon electrodes 210, and may be provided as an electric conductor. For example, the electrode means 220 may be formed of a copper (Cu) material.
또한, 상기 전극수단(220)은 두 개 이상으로 구비될 수도 있다. In addition, the electrode means 220 may be provided in two or more.
본 발명에 따르면, 상기 전극수단(220)과 활성탄전극(210)의 접촉이 안정적으로 이루어질 수 있다. 이를 위해 상기 전극수단(220)의 적어도 일부는 상기 활성탄전극(210)과 나란히 배치되어, 활성탄전극(210)과 면접촉 할 수 있다.According to the present invention, contact between the electrode means 220 and the activated carbon electrode 210 may be made stably. To this end, at least a portion of the electrode means 220 may be arranged side by side with the activated carbon electrode 210 to make surface contact with the activated carbon electrode 210.
즉, 상기 활성탄전극(210)이 상호 나란히 적층되고, 활성탄전극(210) 사이에 전극수단(220)의 일부가 활성탄전극(210)과 나란하게 삽입되면서, 전극수단(220)과 활성탄전극(210)은 면접촉한다. That is, the activated carbon electrodes 210 are stacked in parallel with each other, and a part of the electrode means 220 between the activated carbon electrodes 210 is inserted in parallel with the activated carbon electrode 210, and the electrode means 220 and the activated carbon electrode 210 ) Makes an interview.
이에 따르면, 활성탄전극(210)과 전극수단(220)의 접촉 면적이 증가되어, 전류 공급이 보다 확실하고 안정적으로 이루어질 수 있다. 또한, 활성탄전극(210)과 면접촉하는 전극수단(220)에 의해, 활성탄전극(210) 끼리의 전도율도 향상될 수 있다. 따라서, 활성탄전극(210)에 전원에서 공급된 전압이 손실없이 인가될 수 있다. 또한, 활성탄전극(210) 각각에 전원에서 공급된 전압이 균일하게 인가될 수 있다.Accordingly, the contact area between the activated carbon electrode 210 and the electrode means 220 is increased, so that current supply can be made more reliably and stably. In addition, by the electrode means 220 in surface contact with the activated carbon electrode 210, the conductivity between the activated carbon electrodes 210 may also be improved. Accordingly, the voltage supplied from the power source can be applied to the activated carbon electrode 210 without loss. In addition, a voltage supplied from a power source may be uniformly applied to each of the activated carbon electrodes 210.
상기 전극수단(220)과 활성탄전극(210)의 연결에 대한 구체적인 설명은 후술되는 전원공급수단(240,250)과 함께 설명하기로 한다.A detailed description of the connection between the electrode means 220 and the activated carbon electrode 210 will be described together with the power supply means 240 and 250 to be described later.
전원공급수단(240,250)은 전원(240)과 전선(250)을 포함할 수 있다. The power supply means 240 and 250 may include a power supply 240 and an electric wire 250.
상기 전원(240)에서는, 원수의 물분해는 이루어지지 않으면서, 이온 흡착은 가능한 범위에서 전압이 인가될 수 있다. 일례로, 상기 전원(240)은 1.5V 이하의 전압을 인가할 수 있다. In the power supply 240, a voltage may be applied within a range in which water decomposition of raw water is not performed and ion adsorption is possible. For example, the power supply 240 may apply a voltage of 1.5V or less.
한편, 상기 전원공급수단(240,250)에 흐르는 전류의 방향에 따라 상기 전극부(220)는 양극 또는 음극을 띈다. On the other hand, depending on the direction of the current flowing through the power supply means (240, 250), the electrode unit 220 has a positive or negative electrode.
본 실시예에서, 상기 전극수단(220)은, 상호 이격 배치된 제1전극수단(221)과 제2전극수단(222)을 포함할 수 있다.In the present embodiment, the electrode means 220 may include a first electrode means 221 and a second electrode means 222 disposed spaced apart from each other.
일례로, 도 2에서와 같이, 도면의 우측에 배치된 제1전극수단(221)이 양극(+)일 경우, 도면의 좌측에 배치된 제2전극수단(222)은 음극(-)일 수 있다.For example, as shown in FIG. 2, when the first electrode means 221 disposed on the right side of the drawing is a positive electrode (+), the second electrode means 222 disposed on the left side of the drawing may be a negative electrode (-). have.
반대로, 도면의 우측에 배치된 제1전극수단(221)이 음극(-)이라면, 도면의 좌측에 배치된 제2전극수단(222)은 양극(+)일 수 있다.Conversely, if the first electrode means 221 disposed on the right side of the drawing is a cathode (-), the second electrode means 222 disposed on the left side of the drawing may be a positive electrode (+).
전술한 바와 같이, 전류가 흐르는 방향에 따라, 활성탄전극(210)의 양측에 배치된 제1전극수단(221) 및 제2전극수단(222)은 양극과 음극을 띄게 된다. As described above, the first electrode means 221 and the second electrode means 222 disposed on both sides of the activated carbon electrode 210 have an anode and a cathode according to the direction in which the current flows.
이하, 양극이 형성된 전극수단(220)은 양극이라 칭하고, 음극이 형성된 전극수단(220)은 음극이라 칭한다.Hereinafter, the electrode means 220 on which the anode is formed is referred to as an anode, and the electrode means 220 on which the cathode is formed is referred to as a cathode.
상기 적층된 복수의 활성탄전극(210)은 이웃하는 활성탄전극(210)과 양극과 음극에 번갈아 가며 형성되어야 한다. 여기서 이웃한다는 의미는 그 사이에 스페이서(230)를 두고 근접한다는 것을 의미한다. 즉, 도면상의 최상단에 배치된 활성탄전극(210)은 그 바로 아래 스페이서(230)를 사이에 두고 배치된 두번째 활성탄전극(210)과 이웃한다고 볼 수 있다. The plurality of stacked activated carbon electrodes 210 should be formed alternately between adjacent activated carbon electrodes 210 and anodes and cathodes. Here, the meaning of neighboring means that the spacer 230 is placed therebetween and is adjacent. That is, the activated carbon electrode 210 disposed at the top of the drawing may be considered to be adjacent to the second activated carbon electrode 210 disposed immediately below the spacer 230 therebetween.
상기와 같이 활성탄전극(210)이 이웃하는 활성탄전극(210)과 양극과 음극을 번갈아 가며 형성하기 위해서는 활성탄전극(210)의 양측에 배치된 전극수단(220)에 양극과 음극이 각각 형성되고, 상기 적층된 복수의 활성탄전극(210)은 이웃하는 활성탄전극(210)과 양극과 음극에 각각 번갈아가며 연결되어야 한다. As described above, in order to alternately form the activated carbon electrode 210 adjacent to the activated carbon electrode 210 and an anode and a cathode, an anode and a cathode are formed on the electrode means 220 disposed on both sides of the activated carbon electrode 210, respectively, The plurality of stacked activated carbon electrodes 210 should be alternately connected to adjacent activated carbon electrodes 210 and an anode and a cathode, respectively.
일례로, 도 2에서와 같이, 도면의 우측이 양극이고, 도면의 좌측이 음극인 경우, 도면상의 최상단에 배치된 첫번째 활성탄전극(210)은 우측의 양극과 연결되고, 그 아래 배치된 두번째 활성탄전극(210)은 좌측의 음극과 연결될 수 있다. 또한, 두번째 활성탄전극(210)의 아래 배치된 세번째 활성탄전극(210)은 우측의 양극과 연결되고, 세번째 활성탄전극(210)의 아래 배치된 네번째 활성탄전극(210)은 좌측의 음극과 연결될 수 있다. For example, as shown in FIG. 2, when the right side of the drawing is the anode and the left side of the drawing is the cathode, the first activated carbon electrode 210 disposed at the top of the drawing is connected to the anode at the right side, and the second activated carbon disposed below it The electrode 210 may be connected to the cathode on the left. In addition, the third activated carbon electrode 210 disposed below the second activated carbon electrode 210 may be connected to the positive electrode on the right side, and the fourth activated carbon electrode 210 disposed below the third activated carbon electrode 210 may be connected to the left negative electrode. .
이때, 양극과 연결된 활성탄전극(210)은 음극과 전기적으로 분리된 상태이고, 음극과 연결된 활성탄전극(210)은 양극과 전기적으로 분리된 상태이다.At this time, the activated carbon electrode 210 connected to the positive electrode is electrically separated from the negative electrode, and the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode.
또한, 도면의 우측이 양극이고, 도면의 좌측이 음극인 경우라 하더라도, 도면상의 최상단에 배치된 활성탄전극(210)이 좌측의 음극과 연결되고, 그 아래 배치된 활성탄전극(210)은 우측의 양극과 연결될 수도 있다.In addition, even if the right side of the drawing is the anode and the left side of the drawing is the cathode, the activated carbon electrode 210 disposed at the top of the drawing is connected to the cathode at the left, and the activated carbon electrode 210 disposed below it is It can also be connected to the anode.
다른 예로, 도면의 우측이 음극이고, 도면의 좌측이 양극인 경우, 도면상의 최상단에 배치된 활성탄전극(210)은 좌측의 양극과 연결되고, 그 아래 배치된 활성탄전극(210)은 우측의 음극과 연결될 수 있다.As another example, when the right side of the drawing is the cathode and the left side of the drawing is the anode, the activated carbon electrode 210 disposed at the top of the drawing is connected to the anode at the left, and the activated carbon electrode 210 disposed below it is the cathode at the right side. Can be connected with.
또한, 도면의 우측이 음극이고, 도면의 좌측이 양극인 경우라 하더라도, 도면상의 최상단에 배치된 활성탄전극(210)은 우측의 음극과 연결되고, 그 아래 배치된 활성탄전극(210)이 좌측의 양극과 연결될 수도 있다.In addition, even if the right side of the drawing is the cathode and the left side of the drawing is the anode, the activated carbon electrode 210 disposed at the top of the drawing is connected to the cathode at the right side, and the activated carbon electrode 210 disposed below it is It can also be connected to the anode.
이때도 마찬가지로, 양극과 연결된 활성탄전극(210)은 음극과 전기적으로 분리된 상태이고, 음극과 연결된 활성탄전극(210)은 양극과 전기적으로 분리된 상태이다.In this case, similarly, the activated carbon electrode 210 connected to the positive electrode is electrically separated from the negative electrode, and the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode.
일례로, 양극에 연결된 활성탄전극(210)이 음극과 전기적으로 분리될 수 있도록, 음극은 양극에 연결된 활성탄전극(210)으로부터 이격 배치되고, 음극에 연결된 활성탄전극(210)이 양극과 전기적으로 분리될 수 있도록, 양극은 음극과 연결된 활성탄전극(210)으로부터 이격 배치될 수 있다. As an example, so that the activated carbon electrode 210 connected to the positive electrode 210 can be electrically separated from the negative electrode, the negative electrode is disposed apart from the activated carbon electrode 210 connected to the positive electrode, and the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode. Thus, the anode may be spaced apart from the activated carbon electrode 210 connected to the cathode.
도 3은 도 2에 도시된 수처리 장치용 필터에서 물이 정화되는 상태를 보인 개념도이고, 도 4는 도 2에 도시된 수처리 장치용 필터가 재생되는 상태를 보인 개념도이다.3 is a conceptual diagram showing a state in which water is purified in the filter for a water treatment apparatus shown in FIG. 2, and FIG. 4 is a conceptual diagram illustrating a state in which the filter for a water treatment apparatus shown in FIG. 2 is regenerated.
먼저, 도 3을 참조하면, 도면의 좌측 배치된 활성탄전극(210)이 양극으로 대전되고, 도면의 우측에 배치된 활성탄전극(210)이 음극으로 대전된 상태에서, 활성탄전극(210) 사이로 원수를 통과시키면, 원수에 포함된 음이온(-)은 양극으로 대전된 좌측의 활성탄전극(210)에 흡착되고, 원수에 포함된 양이온(+)은 음극으로 대전된 우측의 활성탄전극(210)에 흡착된다.First, referring to FIG. 3, in a state in which the activated carbon electrode 210 disposed on the left side of the drawing is charged as an anode, and the activated carbon electrode 210 disposed on the right side of the drawing is charged as a negative electrode, raw water between the activated carbon electrodes 210 When passing through, negative ions (-) contained in raw water are adsorbed to the activated carbon electrode 210 on the left side charged with the positive electrode, and positive ions (+) contained in raw water are adsorbed on the activated carbon electrode 210 on the right side charged with the negative electrode. do.
상기와 같은 과정에 의해 원수에 포함된 음이온(-)과 양이온(+)이 흡착 및 제거되면서, 원수의 정화가 이루어질 수 있다.While the anions (-) and cations (+) contained in the raw water are adsorbed and removed by the above process, the raw water can be purified.
반대로, 도면의 우측 배치된 활성탄전극(210)이 양극으로 대전되고, 도면의 좌측에 배치된 활성탄전극(210)이 음극으로 대전된 상태에서, 활성탄전극(210) 사이로 원수를 통과시키면, 원수에 포함된 음이온(-)은 양극으로 대전된 우측의 활성탄전극(210)에 흡착되고, 원수에 포함된 양이온(+)은 음극으로 대전된 좌측의 활성탄전극(210)에 흡착될 수 있다.On the contrary, when the activated carbon electrode 210 disposed on the right side of the drawing is charged as a positive electrode, and the activated carbon electrode 210 disposed on the left side of the drawing is charged as a negative electrode, when raw water is passed through the activated carbon electrodes 210, the raw water is The included negative ions (-) may be adsorbed to the activated carbon electrode 210 on the right side charged with the positive electrode, and the positive ions (+) contained in the raw water may be adsorbed on the activated carbon electrode 210 on the left side charged with the negative electrode.
이때, 원수는 활성탄전극(210) 사이에 쇼트방지 및 유로 확보를 위해 배치된 투수성 스페이서(230)를 통해 활성탄전극(210) 사이를 용이하게 통과할 수 있다. In this case, the raw water can easily pass between the activated carbon electrodes 210 through the permeable spacers 230 disposed between the activated carbon electrodes 210 to prevent short circuits and secure a flow path.
그러나, 상기와 같은 흡착이 계속되면서, 활성탄전극(210)에 흡착된 이온이 많아지면, 활성탄전극(210)은 더 이상 이온을 흡착할 수 없거나, 이온 흡착력이 현저히 저하되는 상태에 이른다. However, as the above-described adsorption continues, when the number of ions adsorbed on the activated carbon electrode 210 is increased, the activated carbon electrode 210 cannot adsorb ions any more, or the ion adsorption power is significantly lowered.
이 같은 상태에 이르면, 도 4에 도시한 바와 같이 활성탄전극(210)에 흡착된 이온들을 분리시켜 활성탄전극(210)을 재생시킬 필요가 있다.When this state is reached, it is necessary to regenerate the activated carbon electrode 210 by separating ions adsorbed on the activated carbon electrode 210 as shown in FIG. 4.
상기와 같이, 활성탄전극(210)의 재생을 위한 방법으로는, 전류공급을 차단하는 방법이 있고, 이온을 흡착할 때와는 반대로 전류를 흐르게 하는 방법이 있다. As described above, as a method for regenerating the activated carbon electrode 210, there is a method of blocking the supply of current, and a method of flowing an electric current opposite to the case of adsorbing ions.
본 발명의 경우, 상기 전원공급수단(240,250)은, 상기 전극부(200)에 N번째 처리수가 공급되면, 일방향으로 전류를 공급하고, 상기 활성탄전극(210)으로 이온을 흡착시켜 수중의 이온을 제거한다. In the case of the present invention, when the N-th treated water is supplied to the electrode part 200, the power supply means 240 and 250 supply current in one direction and adsorb ions to the activated carbon electrode 210 to absorb ions in water. Remove.
그리고, 상기 전원공급수단(240,250)은, 상기 전극부(200)에 세척수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극에 흡착된 이온을 수중으로 배출시켜, 상기 활성탄전극을 재생시킬 수도 있다. And, the power supply means (240, 250), when the washing water is supplied to the electrode unit 200, supply current in two directions opposite to the one direction, and discharge the ions adsorbed on the activated carbon electrode into the water, the The activated carbon electrode can also be regenerated.
일례로, 도 3에서와 같이, 원수에 포함된 음이온(-)이 양극으로 대전된 좌측의 활성탄전극(210)에 흡착되고, 원수에 포함된 양이온(+)이 음극으로 대전된 우측의 활성탄전극(210)에 흡착된 상태에서, 활성탄전극(210)을 재생시키기 위해서는, 전류의 흐름을 바꾸어 도면 좌측의 활성탄전극(210)을 음극으로 대전시키고, 도면 우측의 활성탄전극(210)을 양극으로 대전시킨다. As an example, as shown in FIG. 3, an anion (-) contained in raw water is adsorbed on the left activated carbon electrode 210 charged with the positive electrode, and the activated carbon electrode on the right in which positive ions (+) contained in the raw water are charged as a negative electrode. In order to regenerate the activated carbon electrode 210 in the state of being adsorbed on 210, the activated carbon electrode 210 on the left side of the drawing is charged to the cathode by changing the flow of current, and the activated carbon electrode 210 on the right side of the drawing is charged to the anode. Let it.
그러면, 정수과정에서 좌측의 활성탄전극(210)에 흡착되었던 음이온(-)은 음극으로 대전된 좌측의 활성탄전극(210)에서 분리되고, 정수과정에서 우측의 활성탄전극(210)에 흡착되었던 양이온(+)은 양극으로 대전된 우측의 활성탄전극(210)에서 분리된다.Then, the negative ions (-) adsorbed on the left activated carbon electrode 210 during the water purification process are separated from the left activated carbon electrode 210 charged with the negative electrode, and the positive ions that were adsorbed on the right activated carbon electrode 210 during the water purification process ( +) is separated from the positively charged activated carbon electrode 210 on the right.
상기와 같이 양측의 활성탄전극(210)에서 분리된 양이온(+) 및 음이온(-)은 세척수와 함께 외부로 배출된다.As described above, the positive ions (+) and negative ions (-) separated by the activated carbon electrodes 210 on both sides are discharged to the outside together with the washing water.
상기와 같은 활성탄전극(210)의 세척 과정을 통해, 활성탄전극(210)에 흡착된 이온이 제거되면, 전극유닛(200a)의 이온제거능력이 재생되어, 이온제거능력이 일정하게 유지될 수 있다.When the ions adsorbed on the activated carbon electrode 210 are removed through the cleaning process of the activated carbon electrode 210 as described above, the ion removing ability of the electrode unit 200a is regenerated, so that the ion removing ability can be kept constant. .
상기와 같이 구성된, 전극유닛(200a)은 단일체로 전극부(200)를 구성할 수 있고, 복수 구비된 후 여러 층으로 적층되어 전극부(200)를 구성할 수도 있다. The electrode unit 200a configured as described above may constitute the electrode unit 200 as a single body, and may be provided in plural and then stacked in several layers to configure the electrode unit 200.
상기와 같은 전극부(200)를 사용하면, 수중의 이온이 신속하게 제거되기 때문에 물의 경도가 낮아져 물의 연수화가 이루어질 수 있다. When the electrode part 200 as described above is used, since ions in water are rapidly removed, the hardness of water is lowered, so that water can be softened.
또한, 도시하고 있지 않지만, 필요에 따라서는 전극부(200)의 이온 제거율을 더욱 높이기 위해 이온교환막이 구비될 수도 있다. 상기와 같이 이온교환막이 사용될 경우, 이온교환막은 스페이서(230)와 활성탄전극(210) 사이에 배치될 수 있다.Further, although not shown, if necessary, an ion exchange membrane may be provided to further increase the ion removal rate of the electrode part 200. When the ion exchange membrane is used as described above, the ion exchange membrane may be disposed between the spacer 230 and the activated carbon electrode 210.
이하, 본 발명의 일부 구성요소인 전극부의 구조 및 전극부와 활성탄전극의 연결구조에 대해 보다 상세히 설명한다. Hereinafter, a structure of an electrode part, which is a part of the present invention, and a connection structure between the electrode part and the activated carbon electrode will be described in more detail.
도 5는 본 발명의 일 실시예에 따른 수처리 장치용 필터를 구성하는 전극부의 평면도이고, 도 6은 도 5의 'A'영역의 종단면도이다.5 is a plan view of an electrode part constituting a filter for a water treatment apparatus according to an embodiment of the present invention, and FIG. 6 is a longitudinal cross-sectional view of a region'A' of FIG. 5.
먼저, 도 5내지 도 6을 참조하여, 상기 적층된 복수의 활성탄전극(210)이 이웃하는 활성탄전극(210)과 양극과 음극에 번갈아가며 연결되는 구조에 대해 설명한다.First, a structure in which the stacked activated carbon electrodes 210 are alternately connected to adjacent activated carbon electrodes 210 and an anode and a cathode will be described with reference to FIGS. 5 to 6.
상기 활성탄전극(210)은, 상기 전극수단(220)과 연결되는 일부분 외측으로 돌출되어 전극연결부(213,213')를 형성할 수 있다. The activated carbon electrode 210 may protrude outside a portion connected to the electrode means 220 to form electrode connection portions 213 and 213'.
일 예로, 활성탄전극(210)의 일측과 타측에 각각 전극이 형성된 경우, 최상단에 배치된 첫번째 활성탄전극(210)은 일측 단부에 일측으로 돌출된 전극연결부(213)를 형성하고, 그 아래 배치된 두번째 활성탄전극(210)은 타측 단부에 타측으로 돌출된 전극연결부(213')를 형성할 수 있다. 이하, 홀수번째의 활성탄전극(210)은 일측 단부에 일측으로 돌출된 전극연결부(213)를 형성하고, 짝수번째의 활성탄전극(210)은 타측 단부에 타측으로 돌출된 전극연결부(213')를 형성할 수 있다.For example, when electrodes are formed on one side and the other side of the activated carbon electrode 210, respectively, the first activated carbon electrode 210 disposed at the top has an electrode connection 213 protruding to one side at one end, and The second activated carbon electrode 210 may have an electrode connection part 213 ′ protruding to the other side at the other end. Hereinafter, the odd-numbered activated carbon electrode 210 forms an electrode connection part 213 protruding to one side at one end, and the even-numbered activated carbon electrode 210 has an electrode connection part 213 ′ protruding to the other side at the other end. Can be formed.
이러한 상태에서, 일측에 형성된 전극은 일측으로 돌출된 홀수번째 활성탄전극(210)의 전극연결부(213)와 연결되고, 타측에 형성된 전극은 타측으로 돌출된 짝수번째 활성탄전극(210)의 전극연결부(213')와 연결될 수 있다.In this state, the electrode formed on one side is connected to the electrode connection part 213 of the odd-numbered activated carbon electrode 210 protruding to one side, and the electrode formed on the other side is the electrode connection part of the even-numbered activated carbon electrode 210 protruding to the other side ( 213') can be connected.
여기서 일측과 타측은 서로 대향되는 반대 향을 의미할 수 있고, 서로 수직되는 방향을 의미할 수 있다. 또한, 전후방향을 의미할 수 도 있다. Here, one side and the other side may mean opposite directions that face each other, and may mean directions that are perpendicular to each other. In addition, it may mean the front-rear direction.
다른 예로, 활성탄전극(210)의 일측 전방과 일측 후방에 각각 전극이 형성된 경우, 도면상의 최상단에 배치된 첫번째 활성탄전극(210)은 일측 전방에 일측으로 돌출된 전극연결부(213)를 형성하고, 그 아래 배치된 두번째 활성탄전극(210)은 일측 후방에 일측으로 돌출된 전극연결부(213')를 형성할 수 있다. 이하, 홀수번째의 활성탄전극(210)은 일측 전방에 일측으로 돌출된 전극연결부(213)를 형성하고, 짝수번째의 활성탄전극(210)은 일측 후방에 일측으로 돌출된 전극연결부(213')를 형성할 수 있다.As another example, when electrodes are formed in front of one side and one rear side of the activated carbon electrode 210, respectively, the first activated carbon electrode 210 disposed at the top of the drawing forms an electrode connection part 213 protruding to one side in front of one side, The second activated carbon electrode 210 disposed below it may form an electrode connection part 213 ′ protruding toward one side at the rear of one side. Hereinafter, the odd-numbered activated carbon electrode 210 forms an electrode connection part 213 protruding to one side in front of one side, and the even-numbered activated carbon electrode 210 has an electrode connection part 213 ′ protruding to one side at the rear of one side. Can be formed.
이러한 상태에서, 일측 전방에 형성된 전극은 일측 전방에서 일측으로 돌출된 홀수번째 활성탄전극(210)의 전극연결부(213) 모두와 연결되고, 일측 후방에 형성된 전극은 일측 후방에서 일측으로 돌출된 짝수번째 활성탄전극(210)의 전극연결부(213') 모두와 연결될 수 있다.In this state, the electrode formed in front of one side is connected to all of the electrode connection portions 213 of the odd-numbered activated carbon electrode 210 protruding from one front to one side, and the electrode formed on one rear side is an even-numbered electrode protruding from one rear to one side. It may be connected to all of the electrode connection portions 213 ′ of the activated carbon electrode 210.
이 밖에도, 상기 적층된 복수의 활성탄전극(210)이 이웃하는 활성탄전극(210)과 양극과 음극에 번갈아가며 연결되는 구조는 다양한 실시예가 발생할 수 있다. In addition, a structure in which the plurality of stacked activated carbon electrodes 210 are alternately connected to adjacent activated carbon electrodes 210 and an anode and a cathode may occur in various embodiments.
상기와 같이 활성탄전극(210)이 이웃한 활성탄전극(210)과 양극과 음극이 번갈아가며 형성될 경우, 스페이서(230)에 의해 이격된 활성탄전극(210) 사이를 통과하는 원수에 포함된 중금속 등의 이온이 흡착 및 제거될 수 있다.As described above, when the activated carbon electrode 210 adjacent to the activated carbon electrode 210 and the anode and the cathode are formed alternately, heavy metals contained in raw water passing between the activated carbon electrodes 210 spaced apart by the spacer 230, etc. The ions of can be adsorbed and removed.
또한, 상기 전극수단(220)은, 상호 이격 배치된 제1전극수단(221)과 제2전극수단(222)을 포함하고, 상기 활성탄전극(210)은 이웃하는 활성탄전극(210)과 서로 다른 전극수단(221,222)에 연결된다. In addition, the electrode means 220 includes a first electrode means 221 and a second electrode means 222 disposed spaced apart from each other, and the activated carbon electrode 210 is different from the neighboring activated carbon electrodes 210 It is connected to the electrode means (221,222).
일 예로, 일측 전방에서 일측으로 돌출된 홀수번째 활성탄전극(210)의 전극연결부(213)는 제1전극수단(221)과 연결되고, 일측 후방에서 일측으로 돌출된 짝수번째 활성탄전극(210)의 전극연결부(213')는 제2전극수단(222)과 연결될 수 있다. For example, the electrode connector 213 of the odd-numbered activated carbon electrode 210 protruding from one front side to one side is connected to the first electrode means 221, and the even-numbered activated carbon electrode 210 protruding from one rear side to one side. The electrode connection part 213 ′ may be connected to the second electrode means 222.
한편, 상기 전극수단(220)은 상기 활성탄전극(210)의 적층 방향과 나란하게 형성된 수직부(223)와, 상기 활성탄전극(210)과 나란하게 형성되고, 상기 수직부(223)와 연결되는 복수의 수평부(224)를 포함할 수 있다. Meanwhile, the electrode means 220 includes a vertical portion 223 formed parallel to the stacking direction of the activated carbon electrode 210 and parallel to the activated carbon electrode 210, and connected to the vertical portion 223. It may include a plurality of horizontal portions 224.
상기 수직부(223)와 수평부(224)는 모두 전도체로 형성된다.Both the vertical portion 223 and the horizontal portion 224 are formed of a conductor.
그리고, 상기 수직부(223)는 각각의 수평부(224)를 연결하는 역할을 수행한다. And, the vertical portion 223 serves to connect each of the horizontal portions 224.
또한, 상기 수평부(224)는 활성탄전극(210) 사이에 삽입되고, 활성탄전극(210)과 면접촉하면서 통전한다. In addition, the horizontal portion 224 is inserted between the activated carbon electrodes 210, and conducts electricity while making surface contact with the activated carbon electrode 210.
일 예로, 상기 수평부(224)는 홀수번째 활성탄전극(210) 사이에 삽입되어 면접촉할 수 있다. 다른 예로, 상기 수평부(224)는 짝수번째 활성탄전극(210) 사이에 삽입되어 면접촉할 수 있다. For example, the horizontal portion 224 may be inserted between the odd-numbered activated carbon electrodes 210 to make surface contact. As another example, the horizontal portion 224 may be inserted between the even-numbered activated carbon electrodes 210 to make surface contact.
또한, 상기 수평부(224)와 상기 활성탄전극(210)의 전극연결부(213)에는 상호 대응하는 위치에 접속홀(213a,224a)이 형성되고, 상기 접속홀(213a,224a)에는 전도체로 이루어진 축부재(225)가 삽입된다.In addition, connection holes 213a and 224a are formed at positions corresponding to each other in the horizontal part 224 and the electrode connection part 213 of the activated carbon electrode 210, and the connection holes 213a and 224a are formed of conductors. The shaft member 225 is inserted.
이에 따르면, 전도체인 축부재(225)를 통해 수평부(224)와 활성탄전극(210) 각각에 통전이 진행될 수 있다. According to this, energization may proceed to each of the horizontal portion 224 and the activated carbon electrode 210 through the shaft member 225 as a conductor.
일 예로, 상기 축부재(225)는 볼트로 구비될 수 있다.For example, the shaft member 225 may be provided with a bolt.
또한, 상기 축부재(225)의 양측 단부는 너트(226)로 체결될 수 있다. 따라서, 수평부(224)와 전극연결부(213)의 체결력이 확보될 수 있다. In addition, both ends of the shaft member 225 may be fastened with nuts 226. Accordingly, a fastening force between the horizontal portion 224 and the electrode connection portion 213 can be secured.
도 7은 도 6에서, 축부재에 코팅층이 형성된 상태를 보인 단면도이다. 7 is a cross-sectional view illustrating a state in which a coating layer is formed on a shaft member in FIG. 6.
도 7을 참조하면, 상기 축부재(225)는, 외측으로 노출되는 측면에 절연성 재질의 코팅층(260)이 형성될 수 있다. Referring to FIG. 7, the shaft member 225 may have an insulating material coating layer 260 formed on the side exposed to the outside.
일 예로, 상기 코팅층(260)은 상기 축부재(225)의 외측 표면 전체에 형성될 수 있다. For example, the coating layer 260 may be formed on the entire outer surface of the shaft member 225.
다른 예로, 상기 코팅층(260)은 상기 축부재(225)와 수평부(224)가 연결된 부분 및 상기 축부재(225)와 전극 연결부(213,213')가 연결된 부분을 제외한 축부재(225)의 외측 표면에 형성될 수 있다. As another example, the coating layer 260 is the outer side of the shaft member 225 except for a portion connected to the shaft member 225 and the horizontal portion 224 and a portion connected to the shaft member 225 and the electrode connection portions 213 and 213'. It can be formed on the surface.
여기서, 상기 축부재(225)와 수평부(224)가 연결된 부분 및 상기 축부재(225)와 전극 연결부(213,213')가 연결된 부분은, 축부재(225)와 수평부(224)가 수평방향(도 7 기준 좌우 방향)으로 중첩된 부분 및 상기 축부재(225)와 전극 연결부(213,213')가 수평방향(도 7 기준 좌우 방향)으로 중첩된 부분을 의미할 수 있다. Herein, the shaft member 225 and the horizontal portion 224 are connected to each other and the shaft member 225 and the electrode connection portions 213 and 213' are connected to each other in the horizontal direction. It may mean a portion overlapped in the (left-right direction as referenced in FIG. 7) and a portion in which the shaft member 225 and the electrode connection portions 213 and 213' overlap in the horizontal direction (left-right direction as in FIG. 7).
한편, 상기 코팅층(260)은 공지의 다양한 방법으로 상기 축부재(225)의 외측에 형성될 수 있다.Meanwhile, the coating layer 260 may be formed on the outside of the shaft member 225 by various known methods.
일 예로, 상기 축부재(225)의 외측에 절연성 재질의 튜브를 끼우고, 상기 튜브에 열을 가하면서 상기 튜브를 수축시키는 방식으로, 상기 축부재(225)의 외측에 튜브를 밀착시켜 코팅층(260)을 형성할 수 있다. As an example, a tube made of an insulating material is inserted outside the shaft member 225, and the tube is contracted while applying heat to the tube, and the tube is in close contact with the outer side of the shaft member 225 to form a coating layer ( 260) can be formed.
이때, 상기 코팅층(260)을 형성하는 튜브는 열을 가하면 수축되는 재질로 구비될 수 있다. In this case, the tube forming the coating layer 260 may be made of a material that shrinks when heat is applied.
다른 예로, 상기 코팅층(260)은, 상기 축부재(225)의 외측에 에폭시를 코팅시켜 형성될 수도 있다. As another example, the coating layer 260 may be formed by coating an epoxy on the outside of the shaft member 225.
또 다른 예로, 상기 코팅층(260)은 방수 재질로 형성될 수도 있다. As another example, the coating layer 260 may be formed of a waterproof material.
상기와 같이 금속 재질, 특히 구리, 황동 등의 재질로 이루어진 축부재(225)의 외측에 코팅층(260)이 형성되면, 축부재(225)에서 금속 성분의 용출, 특히 구리, 아연 성분의 용출이 방지될 수 있다. As described above, when the coating layer 260 is formed on the outside of the shaft member 225 made of a metal material, particularly copper, brass, etc., the elution of the metal component from the shaft member 225, especially the elution of copper and zinc components. Can be prevented.
상기 코팅층(260)은 상기 축부재(225) 뿐 아니라, 수직부(223) 및 수평부(224)의 적어도 일부에 형성될 수 있다. The coating layer 260 may be formed on at least a portion of the vertical portion 223 and the horizontal portion 224 as well as the shaft member 225.
상기 코팅층(260)은 금속 재질이면서, 상기 챔버(100)의 내측으로 유입된 물과 접촉할 가능성이 있는 부품의 전체 또는 일부 표면에 형성될 수 있다. The coating layer 260 may be formed of a metal material and may be formed on the entire or partial surface of a component that may be in contact with water introduced into the chamber 100.
따라서, 챔버(100)의 내부로 유입된 물과 금속 재질의 수직부(223), 수평부(224) 및 축부재(225)에 물이 접촉되는 현상을 최대한 방지할 수 있고, 또한, 금속 재질의 수직부(223), 수평부(224) 및 축부재(225)에서 금속성분이 용출되는 현상을 방지할 수 있다. Therefore, it is possible to prevent the water flowing into the chamber 100 and water from contacting the vertical portion 223, the horizontal portion 224, and the shaft member 225 made of a metal material as much as possible. It is possible to prevent the metal component from eluting from the vertical portion 223, the horizontal portion 224 and the shaft member 225 of the.
도 8은 본 발명의 주요 구성인 전극유닛의 연결상태를 보인 개념도이다. 8 is a conceptual diagram showing a connection state of an electrode unit, which is a main configuration of the present invention.
도 8을 참조하면, 상기 복수의 활성탄 전극(210)은 서로 병렬로 연결된다.8, the plurality of activated carbon electrodes 210 are connected in parallel to each other.
즉, 하나의 전극유닛(200a)을 구성하는 활성탄 전극(210)은 서로 병렬로 연결되고, 하나의 전극유닛(200a) 내, 활성탄 전극(210)에는 동일한, 전류가 흐를 수 있다. That is, the activated carbon electrodes 210 constituting one electrode unit 200a are connected in parallel to each other, and the same current may flow through the activated carbon electrode 210 in one electrode unit 200a.
한편, 상기 전극유닛(200a)은 복수 구비되고, 상기 복수의 전극유닛(200a)은 서로 직렬로 연결된다. Meanwhile, a plurality of electrode units 200a are provided, and the plurality of electrode units 200a are connected in series with each other.
본 발명과 같은, 축전식 탈염방식의 필터를 실제 가전제품에 적용할 때, 높은 전류의 문제가 발생한다. 특히, 축전식 탈염방식은, 활성탄 전극(210)의 면적이 증대될수록 높은 전류가 나타나며, 이로 인해서 피씨비(PCB) 구성에 어려움이 발생한다. When the filter of the capacitive desalination method as in the present invention is applied to an actual home appliance, a problem of high current occurs. In particular, in the capacitive desalination method, as the area of the activated carbon electrode 210 increases, a higher current appears, which causes difficulty in configuring a PCB.
하지만, 본 발명과 같이, 하나의 전극유닛(200a)을 구성하는 복수의 활성탄 전극(210)은 서로 병렬로 연결되어, 각 활성탄 전극(210)에 균일한 전류가 인가되고, 전체 영역에서 여과성능이 확보될 수 있다. However, as in the present invention, a plurality of activated carbon electrodes 210 constituting one electrode unit 200a are connected in parallel to each other, so that a uniform current is applied to each activated carbon electrode 210, and filtering performance in the entire area Can be secured.
반면, 복수의 전극유닛(200a)은 서로 직렬로 연결되어, 복수의 전극유닛(200a)을 병렬로 연결할 때보다 요구 전류값을 낮출 수 있다. On the other hand, since the plurality of electrode units 200a are connected in series with each other, the required current value can be lowered than when the plurality of electrode units 200a are connected in parallel.
일 예로, 하나의 필터에, 240장의 활성탄 전극이 포함될 때, 종래의 경우, 240장의 활성탄 전극은 서로 병렬로 연결된 구조를 갖는다. 이러한 종래 구조의 경우, 전극 면적이 넓기 때문에 활성탄 전극 1m 2 기준으로 20A이상의 운전전류가 요구 되었다. 그리고, 이러한 높은 요구 운전전류로 인해서, PCB 전원부 SMPS(Swiched-Mode Power Supply) 및 출력 제어부품인 전류센서, Power FET(Field Effect Transistor), Relay 등의 단가가 증가하게 된다. For example, when 240 activated carbon electrodes are included in one filter, in the conventional case, 240 activated carbon electrodes have a structure connected to each other in parallel. In the case of such a conventional structure, since the electrode area is large, a driving current of 20A or more is required based on 1 m 2 of the activated carbon electrode. In addition, due to such a high required operating current, the unit cost of the PCB power supply unit SMPS (Swiched-Mode Power Supply) and output control parts such as current sensors, Power FETs (Field Effect Transistors), and relays increases.
본 발명의 경우, 전압을 증대시키고 동시에 전류를 저감시키기 위하여 60장의 활성탄 전극을 서로 병렬로 연결하여, 전극유닛(200a)을 형성하고, 각 전극유닛(200a)을 직렬로 연결한다. In the case of the present invention, 60 activated carbon electrodes are connected in parallel to each other in order to increase voltage and reduce current at the same time to form an electrode unit 200a, and each electrode unit 200a is connected in series.
상기와 같이, 병렬구조와 직렬구조를 한 모듈 안에 배치시킬 경우, 필요 전력은 그대로 유지되어 전압은 4배 증대시키고, 전류를 1/4로 감소시킬 수 있다. As described above, when the parallel structure and the series structure are arranged in one module, the required power is maintained as it is, so that the voltage can be increased by 4 times and the current can be reduced to 1/4.
본 발명에서와 같이, 직렬구조와 병렬구조의 혼합구조로 인하여 얻어지는 전압 증가 및 전류 저감 효과는 아래의 표 1과 같다. As in the present invention, the voltage increase and current reduction effects obtained due to the mixed structure of the series structure and the parallel structure are shown in Table 1 below.
표 1을 참조하면, 병렬 구조 대비, 직렬 구조를 적용하면 운전 전류는 줄어들고, 전압이 증가 되면서 8A 이하로 전류를 저감시킬 수 있음을 확인할 수 있고, 이에 따라 가정용 제품의 PCB 요구 사양(spec)인 8A 이하로, 요구 운전전류를 유지할 수 있음을 확인할 수 있다. Referring to Table 1, it can be seen that when applying the series structure compared to the parallel structure, the operating current can be reduced and the current can be reduced to 8A or less as the voltage increases, and accordingly, the PCB requirement specification of the household product With less than 8A, it can be confirmed that the required operating current can be maintained.
모듈module 병렬형Parallel 3직렬3 serial 4직렬4 serial 8직렬8 serial
1장당 전극 면적(mm)Electrode area per sheet (mm) 130×130-Ф12130×130-Ф12 130×130-Ф12130×130-Ф12 80×80-Ф1080×80-Ф10 55×55-Ф855×55-Ф8
전극 유효 면적(m 2)Electrode effective area (m 2 ) 1.031.03 1.261.26 1.261.26 1.191.19
충전 전압Charging voltage 1.5V1.5V 4.5V4.5V 6V6V 12V12V
운전 전류Driving current 20A20A 8A8A 6A6A 4A4A
도 9는 시간의 흐름에 따라 전극부에 공급되는 전압값의 변화를 도시한 그래프이다. 도 9의 (a)는 종래의 전극부에 공급되는 전압값의 변화를 도시한 그래프이다고, 도 9의 (b)는 본 발명의 전극부에 공급되는 전압값의 변화를 도시한 그래프이다. 9 is a graph showing a change in a voltage value supplied to an electrode unit over time. FIG. 9A is a graph showing a change in a voltage value supplied to an electrode unit in the related art, and Fig. 9B is a graph showing a change in a voltage value supplied to an electrode unit according to the present invention.
도 9의 (a)를 참조하면, 종래 경우, 전극부에 일정한 값의 전압을 주기적으로 공급하였다. Referring to FIG. 9A, in the conventional case, a voltage of a constant value was periodically supplied to the electrode unit.
일 예로, 2.0V의 전압 인가 후, 0V전압을 인가하고, 다시 2.0V의 전압 인가 후, 0V전압을 인가하는 사이클(cycle)이 반복 진행된다. 이때, (+)극은 계속해서 (+)극을 유지하고, (-)극은 계속해서 (-)극을 유지한다. For example, a cycle of applying a voltage of 2.0V, applying a voltage of 0V, applying a voltage of 2.0V again, and applying a voltage of 0V is repeated. At this time, the (+) pole continues to maintain the (+) pole, and the (-) pole continues to maintain the (-) pole.
일반적으로, 활성탄 전극(210)은 장당 500㎛의 얇은 구조를 띄며, 반응이 반복적으로 이루어질수록 스케일 형성, 카본의 열화 등의 원인으로 성능이 저하된다. In general, the activated carbon electrode 210 has a thin structure of 500 μm per sheet, and as the reaction is repeatedly performed, the performance decreases due to the formation of scale and deterioration of carbon.
따라서, 반복적인 운전에 의해서 (+)극에는 탄소 산화로 인한 열화 반응이 점점 더 심하게 발생하고, (-)극에는 용존산소 환원으로 스케일이 형성되어 지속적으로 성능이 저하된다. Therefore, the deterioration reaction due to carbon oxidation occurs more and more severely in the (+) electrode due to repeated operation, and the scale is formed in the (-) electrode due to the reduction of dissolved oxygen, which continuously deteriorates the performance.
본 발명의 경우, 상기 전원공급수단(240,250)은, 상기 전극부(200)에 N번째 처리수가 공급되면, 일방향으로 전류를 공급하고, 상기 활성탄전극(210)으로 이온을 흡착시켜 수중의 이온을 제거한다. In the case of the present invention, when the N-th treated water is supplied to the electrode part 200, the power supply means 240 and 250 supply current in one direction and adsorb ions to the activated carbon electrode 210 to absorb ions in water. Remove.
그리고, 상기 전원공급수단(240,250)은, 상기 전극부(200)에 N+1번째 처리수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극(210)으로 이온을 흡착시켜 수중의 이온을 제거할 수 있다. And, the power supply means (240, 250), when the N+1 th treated water is supplied to the electrode part 200, supply current in a direction opposite to the one direction, and adsorb ions to the activated carbon electrode 210 So that ions in water can be removed.
즉, 본 발명의 경우, 도 9의 (b)에 도시한 바와 같이, (+)극과 (-)극을 번갈아 사용하는 교번 운전을 시행한다. That is, in the case of the present invention, as shown in (b) of FIG. 9, an alternating operation in which the (+) pole and the (-) pole are alternately used is performed.
일 예로, 2.0V의 전압 인가 후, 0V전압 인가 하고, -2.0V의 전압 인가 후, 0V전압을 인가하는 사이클(cycle)이 반복 진행된다. As an example, a cycle of applying a voltage of 2.0V, applying a voltage of 0V, applying a voltage of -2.0V, and applying a voltage of 0V is repeated.
이에 따라서, 하나의 극을 반복 사용할 때, 나타나는 열화 반응을 방지하고, 및 스케일(scale) 형성이 한쪽에만 나타나는 현상을 방지할 수 있다. 또한, 교번운전을 통해서 기존의 운전 방식보다 전극 재생이 신속히 이루어져, 성능 저하가 방지될 수 있다. Accordingly, it is possible to prevent a deterioration reaction that occurs when one pole is repeatedly used, and a phenomenon in which scale formation appears only on one side. In addition, through the alternating operation, electrode regeneration is made faster than the conventional operation method, so that performance degradation can be prevented.
도 10은 본 발명과 같은 교번운전과 기존운전의 경도 제거율을 비교한 표이다. 10 is a table comparing the hardness removal rate of the alternating operation and the existing operation as in the present invention.
상세히, 300ppm 경도를 갖는 조제수를 도 9의 (b)와 같이 교번운전이 이루어지는 필터에 통과시킨 뒤, 경도 제거율을 측정하였고, 그 결과를 '교번운전'으로 표시하였다. 그리고, 300ppm 경도를 갖는 조제수를 교번운전을 하지 않는 종래 필터에 통과시킨 뒤, 경도 제거율을 측정하였고, 그 결과를 '기존운전'으로 표시하였다.In detail, after passing the prepared water having a hardness of 300 ppm through a filter in which an alternating operation is performed as shown in (b) of FIG. 9, the hardness removal rate was measured, and the result was expressed as'alternating operation'. In addition, after passing the prepared water having a hardness of 300 ppm through a conventional filter that does not perform alternating operation, the hardness removal rate was measured, and the result was expressed as'existing operation'.
도 10은 참조하면, 본 발명과 같이,(+)극과 (-)극을 번갈아 사용하는 '교번 운전'을 시행하는 경우, (+)극과 (-)극을 바꾸지 않고, 반복사용하는 '기존운전'을 시행하는 경우보다, 경도 제거율이 향상되는 것을 확인할 수 있다.Referring to Figure 10, as in the present invention, in the case of performing'alternating operation' in which the (+) pole and the (-) pole are alternately used, the'(+) pole and the (-) pole' are not changed, and ' It can be seen that the hardness removal rate is improved compared to the case of performing the'existing operation'.

Claims (17)

  1. 유입된 물의 이온을 흡착하여 수중의 이온을 제거한 뒤 배출하는 수처리장치용 필터에 있어서, In the filter for water treatment equipment that adsorbs ions of the introduced water to remove ions in the water and then discharges
    외형을 형성하는 챔버와, 상기 챔버의 내측에 수용되는 전극부를 포함하는 전극유닛;An electrode unit including a chamber defining an outer shape and an electrode portion accommodated inside the chamber;
    상기 전극유닛의 전극부에 전원을 공급하는 전원공급수단을 포함하고, And a power supply means for supplying power to the electrode portion of the electrode unit,
    상기 전극부는:The electrode part:
    집전체 및 상기 집전체의 표면에 형성된 활성탄을 포함하고, 판상으로 이루어진 복수의 활성탄전극;A plurality of activated carbon electrodes including a current collector and activated carbon formed on the surface of the current collector and having a plate shape;
    상기 활성탄전극 사이마다 쇼트 방지를 위해 삽입되는 절연성 재질의 스페이서;An insulating material spacer inserted between the activated carbon electrodes to prevent a short circuit;
    상기 적층된 복수의 활성탄전극의 일측 또는 타측과 연결되고, 적어도 일부가 상기 활성탄전극과 나란하게 배치되어, 상기 활성탄전극과 면접촉하는 복수의 전극수단을 포함하고,A plurality of electrode means connected to one side or the other side of the stacked plurality of activated carbon electrodes, at least partially disposed in parallel with the activated carbon electrode, and in surface contact with the activated carbon electrode,
    상기 전원공급수단은, 이웃하는 활성탄전극이 양극과 음극을 번갈아 가며 형성하도록 상기 전극수단을 통해 상기 활성탄전극에 전류를 공급하는 수처리 장치용 필터. The power supply means is a filter for a water treatment device that supplies current to the activated carbon electrode through the electrode means so that adjacent activated carbon electrodes alternately form an anode and a cathode.
  2. 제 1항에 있어서, The method of claim 1,
    상기 복수의 활성탄 전극은 병렬로 연결되는 수처리 장치용 필터. A filter for a water treatment device in which the plurality of activated carbon electrodes are connected in parallel.
  3. 제 1항에 있어서,The method of claim 1,
    상기 전극유닛은 복수 구비되고,The electrode unit is provided with a plurality,
    상기 복수의 전극유닛은 직렬로 연결되는 수처리 장치용 필터.The plurality of electrode units is a filter for a water treatment device connected in series.
  4. 제 1항에 있어서,The method of claim 1,
    상기 전극수단은, 상호 이격 배치된 제1전극수단과 제2전극수단을 포함하고, The electrode means includes a first electrode means and a second electrode means disposed spaced apart from each other,
    상기 활성탄전극은 이웃하는 활성탄전극과 서로 다른 전극수단에 연결되는 수처리 장치용 필터.The activated carbon electrode is a filter for a water treatment device that is connected to an adjacent activated carbon electrode and to different electrode means.
  5. 제 4항에 있어서,The method of claim 4,
    상기 활성탄전극은, 상기 전극수단과 연결되는 부분이 외측으로 돌출되어 전극연결부를 형성하는 수처리 장치용 필터. In the activated carbon electrode, a portion connected to the electrode means protrudes outward to form an electrode connection.
  6. 제 1항에 있어서, The method of claim 1,
    상기 전극수단은, The electrode means,
    상기 활성탄전극의 적층 방향과 나란하게 형성된 수직부;A vertical portion formed parallel to the stacking direction of the activated carbon electrode;
    상기 활성탄전극과 나란하게 형성되고, 상기 수직부와 연결되는 복수의 수평부;를 포함하는 수처리 장치용 필터.A filter for a water treatment device comprising a; a plurality of horizontal portions formed parallel to the activated carbon electrode and connected to the vertical portion.
  7. 제 6항에 있어서, The method of claim 6,
    상기 수평부와 상기 활성탄전극은 상호 대응하는 위치에 접속홀이 형성되고, 상기 접속홀에는 도체로 이루어진 축부재가 삽입되는 수처리 장치용 필터.A filter for a water treatment device in which a connection hole is formed at a position corresponding to each other between the horizontal portion and the activated carbon electrode, and a shaft member made of a conductor is inserted into the connection hole.
  8. 제 7항에 있어서,The method of claim 7,
    상기 축부재는, 외측으로 노출되는 측면에 절연성 재질의 코팅층이 형성되는 수처리 장치용 필터.The shaft member is a filter for a water treatment device in which a coating layer of an insulating material is formed on a side exposed to the outside.
  9. 제 8항에 있어서,The method of claim 8,
    상기 코팅층은, 상기 축부재의 외측에 절연성 재질의 튜브를 끼우고, 상기 튜브에 열을 가하면서 상기 튜브를 수축시키는 방식으로, 상기 축부재의 외측에 튜브를 밀착시켜 형성되는 수처리 장치용 필터.The coating layer is a filter for a water treatment device formed by fitting a tube made of an insulating material to the outside of the shaft member and contracting the tube while applying heat to the tube, and in close contact with the tube to the outside of the shaft member.
  10. 제 8항에 있어서,The method of claim 8,
    상기 코팅층은, 상기 축부재의 외측에 에폭시를 코팅시켜 형성되는 수처리 장치용 필터.The coating layer is a filter for a water treatment device formed by coating an epoxy on the outside of the shaft member.
  11. 제1항에 있어서,The method of claim 1,
    상기 전원공급수단은, 상기 전극부에 N번째 처리수가 공급되면, 일방향으로 전류를 공급하고, 상기 활성탄전극으로 이온을 흡착시켜 수중의 이온을 제거하는 수처리 장치용 필터.The power supply means, when the N-th treated water is supplied to the electrode unit, supplies current in one direction and absorbs ions by the activated carbon electrode to remove ions from the water.
  12. 제 11항에 있어서,The method of claim 11,
    상기 전원공급수단은, 상기 전극부에 N+1번째 처리수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극으로 이온을 흡착시켜 수중의 이온을 제거하는 수처리 장치용 필터.The power supply means, when the N+1 th treated water is supplied to the electrode, supply current in a two direction opposite to the one direction, and a filter for a water treatment device for removing ions in water by adsorbing ions to the activated carbon electrode. .
  13. 제 11항에 있어서,The method of claim 11,
    상기 전원공급수단은, 상기 전극부에 세척수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극에 흡착된 이온을 수중으로 배출시켜, 상기 활성탄전극을 재생시키는 수처리 장치용 필터.The power supply means, when the washing water is supplied to the electrode unit, supplies current in two directions opposite to the one direction, and discharges ions adsorbed on the activated carbon electrode into water, thereby regenerating the activated carbon electrode. filter.
  14. 제 1항에 있어서,The method of claim 1,
    상기 활성탄전극은, The activated carbon electrode,
    활성탄 입자, 전도성 고분자 입자, 바인더를 혼합한 혼합물을 상기 집전체의 표면에 도포하여 형성된 수처리 장치용 필터.A filter for a water treatment device formed by applying a mixture of activated carbon particles, conductive polymer particles, and a binder to the surface of the current collector.
  15. 제 1항에 있어서,The method of claim 1,
    상기 챔버는, 물이 유입되는 유입구와, 물이 배출되는 토출구가 형성되고, 상기 유입구 및 토출구와 연통하는 내부공간을 구비하는 수처리 장치용 필터.The chamber is a filter for a water treatment apparatus having an inlet through which water is introduced, an outlet through which water is discharged, and an internal space communicating with the inlet and the discharge port.
  16. 제 1항에 있어서,The method of claim 1,
    상기 활성탄전극은, 상기 토출구와 연통하는 출수구가 적층방향과 나란하게 타공되는 수처리 장치용 필터.The activated carbon electrode is a filter for a water treatment device in which a water outlet communicating with the discharge port is perforated parallel to a stacking direction.
  17. 제 1항에 있어서,The method of claim 1,
    상기 챔버는:The chamber is:
    상기 내부공간을 형성하고 일측이 개방된 몸체부;A body portion forming the inner space and having one side open;
    상기 몸체부의 개방된 일측을 개폐하는 커버부;를 포함하는 수처리 장치용 필터. Filter for a water treatment device comprising a; a cover portion for opening and closing the open side of the body portion.
PCT/KR2020/008849 2019-08-19 2020-07-07 Filter for water treatment device WO2021033918A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0101294 2019-08-19
KR1020190101294A KR20210021836A (en) 2019-08-19 2019-08-19 filter for water treatment apparatus

Publications (1)

Publication Number Publication Date
WO2021033918A1 true WO2021033918A1 (en) 2021-02-25

Family

ID=74660512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/008849 WO2021033918A1 (en) 2019-08-19 2020-07-07 Filter for water treatment device

Country Status (2)

Country Link
KR (1) KR20210021836A (en)
WO (1) WO2021033918A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102572460B1 (en) * 2021-04-29 2023-08-30 엘지전자 주식회사 Filter for water treatment apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130136406A (en) * 2012-06-04 2013-12-12 코웨이 주식회사 Deionization filter, water treatment apparatus having the deionization filter and method for regenerating the deionization filter
KR20140069581A (en) * 2012-11-29 2014-06-10 삼성전자주식회사 Capacitive deionization apparatus and methods of treating fluid using the same
KR20140098241A (en) * 2012-01-16 2014-08-07 구라레 케미칼 가부시키가이샤 Flow-through capacitor, deionized liquid manufacturing device, and deionized liquid manufacturing method
KR101818621B1 (en) * 2016-09-05 2018-02-21 한국과학기술원 Capacitive deionization device and method for operating thereof
KR20190090651A (en) * 2018-01-25 2019-08-02 엘지전자 주식회사 filter for water treatment apparatus and water treatment apparatus having thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140098241A (en) * 2012-01-16 2014-08-07 구라레 케미칼 가부시키가이샤 Flow-through capacitor, deionized liquid manufacturing device, and deionized liquid manufacturing method
KR20130136406A (en) * 2012-06-04 2013-12-12 코웨이 주식회사 Deionization filter, water treatment apparatus having the deionization filter and method for regenerating the deionization filter
KR20140069581A (en) * 2012-11-29 2014-06-10 삼성전자주식회사 Capacitive deionization apparatus and methods of treating fluid using the same
KR101818621B1 (en) * 2016-09-05 2018-02-21 한국과학기술원 Capacitive deionization device and method for operating thereof
KR20190090651A (en) * 2018-01-25 2019-08-02 엘지전자 주식회사 filter for water treatment apparatus and water treatment apparatus having thereof

Also Published As

Publication number Publication date
KR20210021836A (en) 2021-03-02

Similar Documents

Publication Publication Date Title
WO2018124752A1 (en) Water treatment apparatus filter and water treatment apparatus including same
WO2018106061A1 (en) Filter module for water treatment apparatus, and water treatment apparatus comprising said filter module
WO2012161534A2 (en) Apparatus and method for controlling total dissolved solids, and water treatment apparatus including the same
WO2021033918A1 (en) Filter for water treatment device
WO2012118329A2 (en) Humidifier apparatus using a photocatalyst having an air-cleaning function
WO2019146891A1 (en) Filter for water treating apparatus and water treating apparatus including the same
EP3551334A1 (en) Electronic dust collecting apparatus and method of manufacturing dust collector
WO2012091500A2 (en) Water treatment apparatus and water treatment method using the same
WO2020159235A1 (en) Cleaning apparatus and cleaning method for press rolls for electrodes
WO2021006584A1 (en) Filter for water treatment device
WO2017074144A2 (en) Electric dust-collecting device and method for manufacturing same
WO2018124643A1 (en) Hydrogen water manufacturing device
WO2020175743A1 (en) Continuous activated carbon regeneration apparatus using hydrothermal pressurization, having structure connected with filter, and continuous activated carbon regeneration method using same
WO2019088782A1 (en) Hybrid power generation apparatus and method capable of electricity production and deionization simultaneously
WO2013125832A1 (en) Capacitive deionization device
WO2014084632A1 (en) Electric dust collection device of electric dust collection system, and dust collection method using said electric dust collection device
WO2022225303A1 (en) Water treatment device
WO2015088278A1 (en) Water softening device and method for regenerating ion exchange resin
WO2022231196A1 (en) Filter for water treatment device
WO2019045410A1 (en) Precast gel, electricity transmissiom module, apparatus for electrophoresis and western blot, and control method therefor
WO2022216030A1 (en) Filter for water treatment device
WO2021235688A1 (en) Filter for water purifier and water purifier including same
WO2020111894A2 (en) Plasma sterilization module and air purifier having same
WO2017164508A1 (en) Linear plasma generating device having high degree of space selectivity
WO2014081130A1 (en) Apparatus for manufacturing hollow fiber membrane module and method for manufacuring hollow fiber membrane module using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854026

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854026

Country of ref document: EP

Kind code of ref document: A1