WO2021006584A1 - Filter for water treatment device - Google Patents
Filter for water treatment device Download PDFInfo
- Publication number
- WO2021006584A1 WO2021006584A1 PCT/KR2020/008810 KR2020008810W WO2021006584A1 WO 2021006584 A1 WO2021006584 A1 WO 2021006584A1 KR 2020008810 W KR2020008810 W KR 2020008810W WO 2021006584 A1 WO2021006584 A1 WO 2021006584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- activated carbon
- water
- filter
- water treatment
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4691—Capacitive deionisation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
Definitions
- the present invention relates to a filter for a water treatment device.
- a water treatment device for generating purified water by treating raw water such as a water purifier
- deionization methods such as EDI (Electro Deionization), CEDI (Continuous Electro Deionization), and CDI (Capacitive Deionization) have recently been in the spotlight.
- EDI Electro Deionization
- CEDI Continuous Electro Deionization
- CDI Capacitive Deionization
- the CDI method refers to a method of removing ions (contaminants) in water using the principle that ions are adsorbed and desorbed from the surface of an electrode by electric force.
- the deionization performance is affected by the spacing between electrodes. That is, if the distance between electrodes in the CDI method increases, the deionization performance decreases. The reason for this is that, first, as the distance between the electrodes increases, the capacitance of the capacitor decreases. In general, the capacitance of a capacitor is inversely proportional to the spacing between the electrodes. Second, this is because the treated water quickly passes through the electrodes when the distance between the electrodes increases. When the treated water passes quickly, ions in the treated water are difficult to be adsorbed to the electrode. Therefore, even if a large number of electrodes are stacked, it is very important to keep the distance between the electrodes constant.
- the present invention solves the above-described problem and proposes a filter for a water treatment device in which a voltage applied to an activated carbon electrode can be uniformly formed.
- a filter for a water treatment device capable of reducing a difference between a voltage supplied from a power source and a voltage applied to an activated carbon electrode is proposed.
- a filter for a water treatment device in which filtration power can be ensured in all areas, regardless of the stacking position of the electrodes.
- a filter for a water treatment device that can be freely stacked and thus the stacking height can be variously set according to a required processing capacity and processing speed.
- a filter for a water treatment device that can easily remove ions adsorbed on an activated carbon electrode and maintain a constant ion removal capability of the electrode portion.
- a filter for a water treatment apparatus includes a chamber forming an outer shape and an electrode portion accommodated inside the chamber.
- the electrode unit includes a current collector and activated carbon formed on the surface of the current collector, a plurality of activated carbon electrodes formed in a plate shape, an outer member that is inserted to prevent a short between the activated carbon electrodes and forms an outer periphery, and the outer side
- a spacer including an inner member provided in the center of the member, and connected to one side or the other side of the stacked plurality of activated carbon electrodes, and at least a portion thereof is disposed in parallel with the activated carbon electrode, and a plurality of It is provided by stacking at least one electrode unit including an electrode means and a power supply means for supplying current to the activated carbon electrode through the electrode means so that adjacent activated carbon electrodes alternately form an anode and a cathode.
- the chamber may include an inlet through which water is introduced, a discharge port through which water is discharged, and a filtering space communicating with the inlet and the discharge port.
- a water outlet communicating with the discharge port may be perforated in parallel with a stacking direction.
- the chamber may include a body portion that forms the staying space and the filtering space and has one side open, and a cover portion that opens and closes the open side of the body portion.
- the chamber may have a rectangular parallelepiped shape, and the inlet and the outlet may be formed in a direction perpendicular to each other.
- the chamber may have inlets formed on the front, rear, left and right sides, respectively, and the discharge ports may be formed in the cover portion.
- the electrode means includes a first electrode means and a second electrode means that are spaced apart from each other, and the activated carbon electrode may be connected to an adjacent activated carbon electrode and an electrode means different from each other.
- a portion connected to the electrode means may protrude outward to form an electrode connection.
- the electrode means may include a vertical portion formed parallel to the stacking direction of the activated carbon electrode, and a plurality of horizontal portions formed parallel to the activated carbon electrode and connected to the vertical portion.
- the outer member may be made of a water-permeable material.
- the outer member may be provided with a nylon material.
- the inner member may be provided with a polymer material in the form of particles.
- the inner member may be provided with an ion exchange resin.
- the power supply means may supply current in one direction and adsorb ions to the activated carbon electrode to remove ions in water.
- the power supply means may supply current in two directions opposite to the one direction, and discharge ions adsorbed on the activated carbon electrode into water, thereby regenerating the activated carbon electrode.
- the activated carbon electrode may be formed by applying a mixture of activated carbon particles, conductive polymer particles, and a binder on the surface of the current collector.
- water can be softened by lowering the hardness in water.
- the voltage applied to the activated carbon electrode can be uniformly formed.
- a difference between a voltage supplied from a power source and a voltage applied to the activated carbon electrode can be reduced.
- the filtering force can be ensured in all regions, regardless of the stacking position of the electrodes.
- the present invention it is possible to prevent partial deterioration of the electrode or partial damage to the electrode due to the application of an even voltage.
- the voltage can be stably and evenly distributed to each electrode.
- ion removal performance can be improved.
- the stacking height can be variously set according to the required processing capacity and processing speed because stacking is free.
- ions adsorbed on the activated carbon electrode can be easily removed to maintain a constant ion removal capability of the electrode portion.
- water can be introduced from all sides of the chamber.
- water introduced into the chamber may flow around the electrode part while passing through a space provided between the inner surface of the chamber and the electrode part, and may flow into the electrode part from all directions through the outer member of the water permeable material. .
- the water introduced into the electrode unit is, while passing between the activated carbon electrodes, firstly removing the hardness material, passing through the ion exchange resin layer, and secondarily removing the hardness material, then the electrode unit You can get out.
- the hardness of the introduced water can be removed more quickly and evenly in the entire region of the electrode unit, so that desalination efficiency can be secured and water of a target concentration (ppm) can be generated and supplied more quickly.
- FIG. 1 is a perspective view of a filter for a water treatment apparatus according to an embodiment of the present invention
- FIG. 2 is a conceptual diagram of a filter for a water treatment apparatus according to an embodiment of the present invention
- FIG. 3 is a conceptual diagram showing a state in which water is purified in the filter for the water treatment apparatus shown in FIG. 2;
- FIG. 4 is a conceptual diagram showing a state in which the filter for the water treatment apparatus shown in FIG. 2 is regenerated;
- FIG. 5 is a plan view of an electrode part constituting a filter for a water treatment apparatus according to an embodiment of the present invention
- FIG. 6 is a longitudinal sectional view of area'A' of FIG.
- FIG. 7 is a 5-5 cross-sectional view of FIG. 1;
- FIG. 8 is an exploded perspective view of a filter for a water treatment apparatus according to another embodiment of the present invention.
- FIG. 9 is a diagram conceptually showing a state in which raw water is treated in an electrode unit.
- the water treatment device may correspond to various purification devices such as a water purifier and a water softener.
- purification means installed in a washing machine, dishwasher, refrigerator, or the like may be applicable.
- various embodiments may occur in a range in which ions and hardness substances contained in raw water introduced from the outside are electro-adsorbed and then discharged.
- the filter for a water treatment apparatus may refer to one filter and may refer to several filters.
- FIG. 1 is a perspective view of a filter for a water treatment apparatus according to an embodiment of the present invention
- FIG. 2 is a conceptual diagram of a filter for a water treatment apparatus according to an embodiment of the present invention.
- the filter for the water treatment device has an inlet 101 through which water is introduced, and a discharge port 102 through which water is discharged, and communicates with the inlet 101 and the discharge port 102. It includes a chamber 100 having an internal space.
- the electrode part 200 may be accommodated inside the chamber 100.
- a water outlet 201 communicating with the discharge port 102 may be perforated in the electrode part 200 in parallel with the stacking direction.
- the electrode part 200 is accommodated in the inner space of the chamber 100, and water is introduced into the inner space of the chamber 100 from the outside through the inlet 101. At this time, the introduced water passes through the electrode part 200 and then exits the chamber 100 through the discharge port 102. In this process, ions contained in water may be adsorbed and removed by the electrode part 200 while passing through the electrode part 200.
- the length of the flow path has to be increased.
- the size of the electrode unit 200 and the chamber 100 has to be increased, and this has a disadvantage of causing an increase in manufacturing cost and a decrease in space utilization.
- the size of the filter-equipped water treatment device is also inevitably increased.
- raw water is introduced through various points of the chamber 100, and as a result, various electrodes 200 accommodated in the filtering space 105 inside the chamber 100 (see FIG. 7).
- the enemy can fight Yui by location.
- the chamber 100 may have a rectangular parallelepiped shape, and the inlet 101 and the discharge port 102 may be formed in a direction perpendicular to each other.
- the discharge port 102 is formed parallel to the stacking direction of the electrode part 200. It is formed in a direction perpendicular to the stacking direction. That is, it is formed to face the side surface of the electrode part 200.
- water supplied to the inlet 101 is supplied to the side of the electrode unit 200, and as a result, it can be evenly supplied to the entire thickness of the electrode unit 200.
- water when water is supplied through the side surface of the electrode part 200, water may be evenly supplied to the entire thickness of the electrode part 200.
- the chamber 100 forms a filtering space 105 (refer to FIG. 7) and has a body portion 110 with one side open, and a cover portion for opening and closing an open side of the body portion 110 It may include 120.
- the body portion 110 and the cover 120 may be fixed and separated through separate fastening means (not shown) such as bolts.
- a discharge port 102 may be formed in the cover part 120.
- the filtering space 105 (see FIG. 7) of the chamber 100 is exposed to the outside and the filtering space 105, FIG. 7 Reference), the operation of laminating the electrode unit 200 may be easily performed.
- the cover unit 120 may be separated to facilitate inspection and maintenance.
- the chamber 100 can be used semi-permanently.
- the assembly properties of the product are improved, thereby increasing productivity and securing mass production.
- the chamber 100 may have an inlet 101 formed on each of four side surfaces.
- the supply of water to the filtering space 105 (see FIG. 7) can be uniformly performed in all directions.
- the filter for a water treatment device includes an electrode part 200.
- the electrode unit 200 may be composed of one electrode unit 200a, or may be configured by stacking a plurality of electrode units 200a.
- the electrode unit 200a includes a current collector 211, a plurality of activated carbon electrodes 210 made of an activated carbon coating layer 212 formed by coating activated carbon on one or both sides of the current collector 211, and the stacked A plurality of electrode means 220 connected to one end or the other end of the plurality of activated carbon electrodes 210, an insulating spacer 230 inserted to prevent a short between the activated carbon electrodes 210, and the neighboring And a power supply means 240 for supplying current to the activated carbon electrode 210 through the electrode means 220 so that the activated carbon electrode 210 alternately forms a positive electrode (+ electrode) and a negative electrode (-pole). And, by adsorbing ions of the introduced water, ions in the water are removed and then discharged.
- the activated carbon electrode 210 includes a current collector 211 and an activated carbon coating layer 212.
- the activated carbon electrode 210 may be provided with activated carbon and various known embodiments may be applied within a range in which an electrode is formed.
- the current collector 211 is in the form of a thin film and may be provided as an electric conductor.
- the current collector 211 may be provided with a graphite foil, and in addition, various types of conductors may be adopted as the current collector 211.
- the activated carbon coating layer 212 is formed on one or both surfaces of the current collector 211.
- the activated carbon coating layer 212 includes activated carbon. Therefore, when impurities of raw water are adsorbed to the activated carbon coating layer 212 by electrostatic attraction, the adsorbed impurities move through diffusion into the pores called macro pores on the surface of the activated carbon, and then the mesopores ( Meso pores) or micro pores can be finally adsorbed and removed.
- the number of stacked activated carbon electrodes 210 as described above may be variously adjusted according to the degree of hardness adjustment required.
- the activated carbon coating layer 212 may be formed only on one surface of the current collector 211.
- the activated carbon electrode 210 in which the activated carbon coating layer 212 is formed only on one surface of the current collector 211 may be disposed at the top and bottom ends of the electrode unit 200a.
- the activated carbon electrode 210 disposed at the top is disposed so that the activated carbon coating layer 212 faces downward, and the activated carbon electrode 210 disposed at the lowest end is disposed so that the activated carbon coating layer 212 faces upward.
- the activated carbon coating layer 212 may be formed on both sides of the current collector 211.
- the activated carbon electrode 210 having the activated carbon coating layer 212 formed on both sides of the current collector 211 may be disposed in the center of the electrode unit 200a except for the uppermost and lowermost ends.
- the activated carbon coating layer 212 is formed on both sides of the current collector 211 as described above, impurities contained in raw water can be adsorbed on both sides of the current collector 211, thereby improving the adsorption rate and adsorption performance of impurities. have.
- the activated carbon coating layers 212 are formed on both sides of one current collector 211, the number of current collectors 211 can be reduced. As a result, the thickness of the electrode unit 200a is reduced, and the electrode unit 200a ) Can be reduced in weight, and the manufacturing cost of the electrode unit 200a can be saved. In addition, the amount of stacked activated carbon electrodes 210 may be increased.
- the spacer 230 is disposed between the activated carbon electrodes 210.
- the spacers 230 form a gap between the activated carbon electrodes 210 and prevent a short between the activated carbon electrodes 210.
- the raw water may be purified while passing between the activated carbon electrodes 210 through the spacer 230.
- the spacer 230 is made of a non-conductor and a water-permeable material, thereby preventing a short between the activated carbon electrodes 210 and providing a flow path through which raw water through which purified water proceeds passes.
- the spacer 230 may be formed of a nylon material in which a plurality of passages are formed.
- the electrode means 220 may be provided in a pair, connected to one or the other end portions of the stacked activated carbon electrodes 210, and may be provided as an electric conductor.
- the electrode means 220 may be formed of a copper (Cu) material.
- the electrode means 220 may be provided in two or more.
- contact between the electrode means 220 and the activated carbon electrode 210 may be made stably.
- at least a portion of the electrode means 220 may be arranged side by side with the activated carbon electrode 210 to make surface contact with the activated carbon electrode 210.
- the activated carbon electrodes 210 are stacked in parallel with each other, and a part of the electrode means 220 between the activated carbon electrodes 210 is inserted in parallel with the activated carbon electrode 210, and the electrode means 220 and the activated carbon electrode 210 ) Makes an interview.
- the contact area between the activated carbon electrode 210 and the electrode means 220 is increased, so that current supply can be made more reliably and stably.
- the conductivity between the activated carbon electrodes 210 may be improved. Accordingly, the voltage supplied from the power source can be applied to the activated carbon electrode 210 without loss. In addition, a voltage supplied from a power source may be uniformly applied to each of the activated carbon electrodes 210.
- the power supply means 240 and 250 may include a power supply 240 and an electric wire 250.
- a voltage may be applied within a range in which water decomposition of raw water is not performed and ion adsorption is possible.
- the power supply 240 may apply a voltage of 1.5V or less.
- the electrode unit 220 has a positive or negative electrode depending on the direction of the current flowing through the power supply means (240, 250).
- the electrode means 220 may include a first electrode means 221 and a second electrode means 222 disposed to be spaced apart from each other.
- the second electrode means 222 disposed on the left side of the drawing may be a negative electrode (-). have.
- the second electrode means 222 disposed on the left side of the drawing may be a positive electrode (+).
- the first electrode means 221 and the second electrode means 222 disposed on both sides of the activated carbon electrode 210 have an anode and a cathode according to the direction in which the current flows.
- the electrode means 220 on which the anode is formed is called an anode
- the electrode means 220 on which the cathode is formed is called a cathode
- the plurality of stacked activated carbon electrodes 210 should be formed alternately between adjacent activated carbon electrodes 210 and anodes and cathodes.
- the meaning of neighboring means that the spacer 230 is placed therebetween and is adjacent. That is, the activated carbon electrode 210 disposed at the top of the drawing may be considered to be adjacent to the second activated carbon electrode 210 disposed immediately below the spacer 230 therebetween.
- an anode and a cathode are formed on the electrode means 220 disposed on both sides of the activated carbon electrode 210, respectively.
- the plurality of stacked activated carbon electrodes 210 should be alternately connected to adjacent activated carbon electrodes 210 and an anode and a cathode, respectively.
- the first activated carbon electrode 210 disposed at the top of the drawing is connected to the anode at the right side, and the second activated carbon disposed below it
- the electrode 210 may be connected to the cathode on the left.
- the third activated carbon electrode 210 disposed below the second activated carbon electrode 210 may be connected to the positive electrode on the right side
- the fourth activated carbon electrode 210 disposed below the third activated carbon electrode 210 may be connected to the left negative electrode.
- the activated carbon electrode 210 connected to the positive electrode is electrically separated from the negative electrode
- the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode
- the activated carbon electrode 210 disposed at the top of the drawing is connected to the cathode at the left, and the activated carbon electrode 210 disposed below it is It can also be connected to the anode.
- the activated carbon electrode 210 disposed at the top of the drawing is connected to the anode at the left, and the activated carbon electrode 210 disposed below it is the cathode at the right side. Can be connected with.
- the activated carbon electrode 210 disposed at the top of the drawing is connected to the cathode at the right side, and the activated carbon electrode 210 disposed below it is It can also be connected to the anode.
- the activated carbon electrode 210 connected to the positive electrode is electrically separated from the negative electrode
- the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode
- the negative electrode is disposed apart from the activated carbon electrode 210 connected to the positive electrode, and the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode.
- the anode may be spaced apart from the activated carbon electrode 210 connected to the cathode.
- FIG. 3 is a conceptual diagram showing a state in which water is purified in the filter for a water treatment apparatus shown in FIG. 2
- FIG. 4 is a conceptual diagram illustrating a state in which the filter for a water treatment apparatus shown in FIG. 2 is regenerated.
- the raw water can be purified.
- the activated carbon electrode 210 disposed on the right side of the drawing is charged as a positive electrode
- the activated carbon electrode 210 disposed on the left side of the drawing is charged as a negative electrode
- the raw water is The included negative ions (-) may be adsorbed to the activated carbon electrode 210 on the right side charged with the positive electrode
- the positive ions (+) contained in the raw water may be adsorbed on the activated carbon electrode 210 on the left side charged with the negative electrode.
- the raw water can easily pass between the activated carbon electrodes 210 through the permeable spacers 230 disposed between the activated carbon electrodes 210 to prevent short circuits and secure a flow path.
- a method for regenerating the activated carbon electrode 210 there is a method of blocking the supply of current, and a method of flowing an electric current opposite to the case of adsorbing ions.
- an anion (-) contained in raw water is adsorbed on the left activated carbon electrode 210 charged with the positive electrode, and the activated carbon electrode on the right in which positive ions (+) contained in the raw water are charged as a negative electrode.
- the activated carbon electrode 210 on the left side of the drawing is charged to the cathode by changing the flow of current, and the activated carbon electrode 210 on the right side of the drawing is charged to the anode. Let it.
- the negative ions (-) adsorbed on the left activated carbon electrode 210 during the water purification process are separated from the left activated carbon electrode 210 charged with the negative electrode, and the positive ions ( +) is separated from the positively charged activated carbon electrode 210 on the right.
- the positive ions (+) and negative ions (-) separated by the activated carbon electrodes 210 on both sides are discharged to the outside together with the washing water.
- the ion removing ability of the electrode unit 200a is regenerated, so that the ion removing ability can be kept constant. .
- the electrode unit 200a configured as described above may constitute the electrode unit 200 as a single body, and may be provided in plural and then stacked in several layers to configure the electrode unit 200.
- an ion exchange membrane may be provided to further increase the ion removal rate of the electrode part 200.
- the ion exchange membrane may be disposed between the spacer 230 and the activated carbon electrode 210.
- FIG. 5 is a plan view of an electrode part constituting a filter for a water treatment apparatus according to an embodiment of the present invention
- FIG. 6 is a longitudinal cross-sectional view of a region'A' of FIG. 5.
- the activated carbon electrode 210 may protrude outside a portion connected to the electrode means 220 to form electrode connection portions 213 and 213'.
- the first activated carbon electrode 210 disposed at the top has an electrode connection 213 protruding to one side at one end
- the second activated carbon electrode 210 may have an electrode connection part 213 ′ protruding to the other side at the other end.
- the odd-numbered activated carbon electrode 210 forms an electrode connection part 213 protruding to one side at one end
- the even-numbered activated carbon electrode 210 has an electrode connection part 213 ′ protruding to the other side at the other end. Can be formed.
- the electrode formed on one side is connected to the electrode connection part 213 of the odd-numbered activated carbon electrode 210 protruding to one side, and the electrode formed on the other side is the electrode connection part of the even-numbered activated carbon electrode 210 protruding to the other side ( 213') can be connected.
- one side and the other side may mean opposite directions opposite to each other, and may mean directions perpendicular to each other. In addition, it may mean the front-rear direction.
- the first activated carbon electrode 210 disposed at the top of the drawing forms an electrode connection part 213 protruding to one side in front of one side
- the second activated carbon electrode 210 disposed below it may form an electrode connection part 213 ′ protruding toward one side at one rear side.
- the odd-numbered activated carbon electrode 210 forms an electrode connection part 213 protruding to one side in front of one side
- the even-numbered activated carbon electrode 210 has an electrode connection part 213 ′ protruding to one side at the rear of one side. Can be formed.
- the electrode formed in front of one side is connected to all of the electrode connection portions 213 of the odd-numbered activated carbon electrode 210 protruding from one front to one side, and the electrode formed on one rear side is an even-numbered electrode protruding from one rear to one side. It may be connected to all of the electrode connection portions 213 ′ of the activated carbon electrode 210.
- a structure in which the plurality of stacked activated carbon electrodes 210 are alternately connected to adjacent activated carbon electrodes 210 and an anode and a cathode may occur in various embodiments.
- the activated carbon electrode 210 adjacent to the activated carbon electrode 210 and the anode and the cathode are formed alternately, heavy metals contained in raw water passing between the activated carbon electrodes 210 spaced apart by the spacer 230, etc.
- the ions of can be adsorbed and removed.
- the electrode means 220 includes a first electrode means 221 and a second electrode means 222 disposed spaced apart from each other, and the activated carbon electrode 210 is different from the neighboring activated carbon electrodes 210 It is connected to the electrode means (221,222).
- the electrode connector 213 of the odd-numbered activated carbon electrode 210 protruding from one front side to one side is connected to the first electrode means 221, and the even-numbered activated carbon electrode 210 protruding from one rear side to one side.
- the electrode connection part 213 ′ may be connected to the second electrode means 222.
- the electrode means 220 includes a vertical portion 223 formed parallel to the stacking direction of the activated carbon electrode 210 and parallel to the activated carbon electrode 210, and connected to the vertical portion 223. It may include a plurality of horizontal portions 224.
- Both the vertical portion 223 and the horizontal portion 224 are formed of a conductor.
- the vertical portion 223 serves to connect each of the horizontal portions 224.
- the horizontal portion 224 is inserted between the activated carbon electrodes 210, and conducts electricity while making surface contact with the activated carbon electrode 210.
- the horizontal portion 224 may be inserted between the odd-numbered activated carbon electrodes 210 to make surface contact.
- the horizontal portion 224 may be inserted between the even-numbered activated carbon electrodes 210 to make surface contact.
- connection holes 213a and 224a are formed at positions corresponding to each other in the horizontal part 224 and the electrode connection part 213 of the activated carbon electrode 210, and the connection holes 213a and 224a are formed of conductors.
- the shaft member 225 is inserted,
- energization may proceed to each of the horizontal portion 224 and the activated carbon electrode 210 through the shaft member 225 as a conductor.
- the shaft member 225 may be provided with a bolt.
- both ends of the shaft member 225 may be fastened with nuts 226. Accordingly, a fastening force between the horizontal portion 224 and the electrode connection portion 213 can be secured.
- FIG. 7 is a 5-5 cross-sectional view of FIG. 1.
- 8 is an exploded perspective view of a filter for a water treatment apparatus according to another embodiment of the present invention.
- 9 is a diagram conceptually showing a state in which raw water is treated in an electrode unit.
- the interior of the chamber 100 may include fixing plates 131 and 132 disposed above and below the electrode part 200.
- the fixing plates 131 and 132 may include an upper fixing plate 131 disposed above the electrode part 200 and a lower fixing plate 132 disposed below the electrode part 200.
- the electrode part 200 is disposed and fixed between the upper fixing plate 131 and the lower fixing plate 132.
- Fastening holes 131a and 132a are formed in portions facing the upper and lower fixing plates 131 and 132.
- the fastening holes 131a and 132a may be formed at portions adjacent to the edges of the upper fixing plate 131 and the lower fixing plate 132.
- the fastening holes 131a and 132a may be fastened with bolts or the like.
- the spacer 230 includes an outer member 231 forming an outer edge of the spacer 230 and an inner member 232 accommodated inside the outer member.
- the outer member 231 may be formed of a nylon material.
- the outer member 231 may be provided in multiple layers.
- the outer member 230 may be formed of a water-permeable material. Accordingly, water flowing into the chamber 100 may be introduced into the electrode part 200 through the outer member 230.
- the outer member 231 forms a space portion such that the inner member 232 is disposed on the center side.
- the inner member 232 is accommodated in the space defined by the outer member 231.
- the inner member 232 may be formed of a polymer material.
- the inner member 232 may be provided with an ion exchange resin.
- the inner member 232 may be provided with a cation exchange resin.
- the inner member 232 may be provided with an anion exchange resin.
- the inner member 232 may be provided by mixing a cation exchange resin and an anion exchange resin in a predetermined ratio.
- the cation exchange resin may mean an ion exchange resin, and forms a reversible reaction.
- the spacer 230 composed of the outer member 231 and the inner member 232 as described above may increase the ion removal rate as the thickness increases.
- the inner member 232 in the form of particles is not separated, and the state disposed between the activated carbon electrodes 210 can be maintained.
- the spacer 230 composed of the outer member 231 and the inner member 232 between the activated carbon electrodes 210 Can also be stacked.
- water can flow in from all directions of the chamber 100.
- the water introduced into the chamber 100 flows around the electrode unit 200 while passing through the space 106 provided between the inner surface of the chamber 100 and the electrode unit 200, and It may flow into the electrode part 200 from all directions through the outer member 231 made of a water-permeable material.
- the hardness material is primarily removed, and passes through the inner member 232 While, after the hardness material is secondaryly removed, after exiting the electrode part 200, it may be discharged to the outside of the chamber 100.
- the hardness of the introduced water can be removed more quickly and evenly, securing desalination efficiency, and generating and supplying water of a target concentration (ppm) more quickly.
- ppm target concentration
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Electrochemistry (AREA)
- Analytical Chemistry (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Water Treatment By Sorption (AREA)
Abstract
A filter for a water treatment device according to the present invention comprises an electrode part comprising: a plurality of activated carbon electrodes, each of which includes a current collector and activated carbon formed on the surface of the current collector and has a plate shape; a spacer which is inserted between each of the activated carbon electrodes so as to prevent short-circuiting and includes an outer member forming the outer boundary thereof and an inner member provided at the center of the outer member; a plurality of electrode means which are connected to one side or the other side of the plurality of activated carbon electrodes stacked on each other, and at least some of which are arranged side by side to the activated carbon electrodes and come in surface contact therewith; and a power supply means for supplying electric current to the activated carbon electrodes through the electrode means such that the activated carbon electrodes neighboring each other alternately form a positive electrode and a negative electrode.
Description
본 발명은 수처리 장치용 필터에 관한 것이다.The present invention relates to a filter for a water treatment device.
일반적으로, 정수기와 같이 원수를 처리하여 정수를 생성하는 수처리 장치는 현대 다양한 형태로 개시되고 있다. 그런데 수처리 장치에 적용되는 방식 중 최근 각광을 받고 있는 방식은 EDI(Electro Deionization), CEDI(Continuous Electro Deionization), CDI(Capacitive Deionization)와 같은 탈이온 방식이다. 이 중에서도 최근 가장 각광을 받고 있는 것은 바로 CDI 방식의 수처리 장치이다.In general, a water treatment device for generating purified water by treating raw water, such as a water purifier, has been disclosed in a variety of modern forms. However, among the methods applied to water treatment devices, deionization methods such as EDI (Electro Deionization), CEDI (Continuous Electro Deionization), and CDI (Capacitive Deionization) have recently been in the spotlight. Among them, the CDI type water treatment system is receiving the most attention recently.
CDI 방식은 전기적인 힘에 의해 전극의 표면에서 이온이 흡착되고 탈착되는 원리를 이용하여 수중의 이온(오염물질)을 제거하는 방식을 의미한다. The CDI method refers to a method of removing ions (contaminants) in water using the principle that ions are adsorbed and desorbed from the surface of an electrode by electric force.
이에 대해서, 도 9를 참조하여 설명하면, 전극에 전압을 인가시킨 채로 이온을 포함한 처리수를 전극(양극과 음극)의 사이로 통과시키면, 음이온은 양극으로 이동하고, 양이온은 음극으로 이동한다. 즉, 흡착이 일어난다. 이와 같은 흡착으로 처리수 내의 이온들이 제거될 수 있다.Regarding this, referring to FIG. 9, when the treated water containing ions is passed through the electrodes (positive and negative electrodes) while voltage is applied to the electrodes, negative ions move to the positive electrode and positive ions move to the negative electrode. That is, adsorption takes place. Ions in the treated water can be removed by such adsorption.
그러나, 이와 같은 흡착이 계속되며, 전극은 더 이상 이온을 흡착할 수 없는 상태에 이른다. 이와 같은 상태에 이르면, 도 10에 도시한 바와 같이 전극에 흡착된 이온들을 분리시켜 전극을 재생시킨다. 이때, 전극에서 분리된 이온들을 포함하는 세척수는 외부로 배출된다. 이와 같은 재생은 전극에 전압을 인가하지 않거나, 또는 흡착할 때와는 반대로 전압을 인가하는 것으로 달성될 수 있다. However, such adsorption continues, and the electrode reaches a state in which ions can no longer be adsorbed. Upon reaching such a state, as shown in FIG. 10, ions adsorbed on the electrode are separated to regenerate the electrode. At this time, the washing water containing ions separated from the electrode is discharged to the outside. Such regeneration can be achieved by applying no voltage to the electrode, or applying a voltage as opposed to when adsorbed.
이와 같은 CDI 방식을 상업적으로 이용하기 위해 전극(양극과 음극)을 매우 많이 적층하는 것이 일반적이다. 그러나 CDI 방식에서 탈이온 성능은 전극 사이의 간격의 영향을 받는다. 즉, CDI 방식에서의 전극 사이의 간격이 멀어지면 탈이온 성능은 저하된다. 그 이유는, 첫째로 전극 사이의 간격이 멀어지면 축전기의 전기용량이 작아지기 때문이다. 일반적으로, 축전기의 전기용량은 전극 사이 간격에 반비례한다. 둘째로, 전극 사이의 간격이 멀어지면 처리수가 전극 사이를 빠르게 통과하기 때문이다. 처리수가 빠르게 통과하면 처리수 중의 이온들이 전극에 흡착되기 어렵다. 따라서, 전극을 많이 적층하더라도 전극 사이의 간격을 일정하게 유지하는 것이 매우 중요하다.In order to use such a CDI method commercially, it is common to stack very many electrodes (anode and cathode). However, in the CDI method, the deionization performance is affected by the spacing between electrodes. That is, if the distance between electrodes in the CDI method increases, the deionization performance decreases. The reason for this is that, first, as the distance between the electrodes increases, the capacitance of the capacitor decreases. In general, the capacitance of a capacitor is inversely proportional to the spacing between the electrodes. Second, this is because the treated water quickly passes through the electrodes when the distance between the electrodes increases. When the treated water passes quickly, ions in the treated water are difficult to be adsorbed to the electrode. Therefore, even if a large number of electrodes are stacked, it is very important to keep the distance between the electrodes constant.
종래의 경우, 전원에서 인가된 전압 대비 각각의 전극에 공급되는 전압이 현저히 작은 문제가 있었다. 따라서, 이온 제거율이 낮아질 수 밖에 없는 문제가 발생한다. In the conventional case, there is a problem that the voltage supplied to each electrode is significantly smaller than the voltage applied from the power source. Therefore, there arises a problem that the ion removal rate is inevitably lowered.
또한, 전원과의 거리에 따라서, 각각의 전극에 전압이 골고루 인가되지 못하게 되고, 적층된 전극 간의 전압 차이가 커지면서, 이온 제거성능이 균일하게 확보되지 못하는 문제도 있었다. In addition, depending on the distance from the power source, the voltage cannot be evenly applied to each electrode, the voltage difference between the stacked electrodes increases, and there is a problem that the ion removal performance is not uniformly secured.
또한, 종래의 축전식 탈염기술의 경우, 전극 사이에 스페이서를 적층하였고, 그에 따라 전체 두께가 증가되는 문제가 있었다In addition, in the case of the conventional capacitive desalination technology, there was a problem that a spacer was stacked between the electrodes, and the overall thickness was increased accordingly.
또한, 종래의 축전식 탈염기술의 경우, 하나의 입구로 물이 유입되면서 전극을 기준으로 사영역(dead zone)이 형성되어, 탈염 성능이 저하되는 문제도 있었다. In addition, in the case of the conventional capacitive desalination technology, as water flows through one inlet, a dead zone is formed on the basis of the electrode, so that desalination performance is deteriorated.
또한, 종래의 축전식 탈염기술의 경우, 투수성 확보가 어려워 처리 용량이 제한되는 문제가 있었다.In addition, in the case of the conventional capacitive desalination technology, it is difficult to secure water permeability and there is a problem that the treatment capacity is limited.
본 발명은 상기되는 문제점을 해소하여, 활성탄 전극에 인가되는 전압이 고르게 형성될 수 있는 수처리 장치용 필터를 제안한다. The present invention solves the above-described problem and proposes a filter for a water treatment device in which a voltage applied to an activated carbon electrode can be uniformly formed.
또한, 전원에서 공급된 전압과 활성탄 전극에 인가되는 전압의 차이를 줄일 수 있는 수처리 장치용 필터를 제안한다. In addition, a filter for a water treatment device capable of reducing a difference between a voltage supplied from a power source and a voltage applied to an activated carbon electrode is proposed.
또한, 에너지의 손실 없이, 전극내 탈염효율을 증대 시킬 수 있는 수처리 장치용 필터를 제안한다. In addition, it proposes a filter for a water treatment device capable of increasing desalination efficiency in an electrode without loss of energy.
또한, 전극의 적층 위치에 관계없이, 모든 영역에서, 여과력이 확보될 수 있는 수처리 장치용 필터를 제안한다. In addition, a filter for a water treatment device is proposed in which filtration power can be ensured in all areas, regardless of the stacking position of the electrodes.
또한, 고른 전압인가로 인해 전극의 부분적인 열화 또는 부분적인 전극 손상을 방지할 수 있는 수처리 장치용 필터를 제안한다. In addition, a filter for a water treatment device capable of preventing partial deterioration or partial electrode damage due to application of a uniform voltage is proposed.
또한, 각각의 전극에 전압이 안정적이면서도 고르게 분배될 수 있는 수처리 장치용 필터를 제안한다. In addition, a filter for a water treatment device in which voltage is stably and evenly distributed to each electrode is proposed.
또한, 이온제거 성능을 향상시킬 수 있는 수처리 장치용 필터를 제안한다. In addition, a filter for a water treatment device capable of improving ion removal performance is proposed.
또한, 적층이 자유로워 요구되는 처리 용량 및 처리 속도에 따라 적층 높이를 다양하게 설정할 수 있는 수처리 장치용 필터를 제안한다. In addition, a filter for a water treatment device is proposed that can be freely stacked and thus the stacking height can be variously set according to a required processing capacity and processing speed.
또한, 활성탄전극에 흡착된 이온을 손쉽게 제거하여 전극부의 이온제거능력을 일정하게 유지할 수 있는 수처리 장치용 필터를 제안한다. In addition, a filter for a water treatment device is proposed that can easily remove ions adsorbed on an activated carbon electrode and maintain a constant ion removal capability of the electrode portion.
본 발명에 따른 수처리 장치용 필터는, 외형을 형성하는 챔버와, 상기 챔버의 내측에 수용되는 전극부를 포함한다.A filter for a water treatment apparatus according to the present invention includes a chamber forming an outer shape and an electrode portion accommodated inside the chamber.
상기 전극부는, 집전체 및 집전체의 표면에 형성된 활성탄을 포함하고, 판상으로 이루어진 복수의 활성탄전극과, 상기 활성탄전극 사이마다 쇼트 방지를 위해 삽입되고, 외측 둘레를 형성하는 외측부재와, 상기 외측부재의 중심부에 구비되는 내측부재를 포함하는 스페이서와, 상기 적층된 복수의 활성탄전극의 일측 또는 타측과 연결되고, 적어도 일부가 상기 활성탄전극과 나란하게 배치되어, 상기 활성탄전극과 면접촉하는 복수의 전극수단과, 이웃하는 활성탄전극이 양극과 음극을 번갈아 가며 형성하도록 상기 전극수단을 통해 상기 활성탄전극에 전류를 공급하는 전원공급수단을 포함하는 전극유닛을 적어도 하나 이상 적층하여 구비된다. The electrode unit includes a current collector and activated carbon formed on the surface of the current collector, a plurality of activated carbon electrodes formed in a plate shape, an outer member that is inserted to prevent a short between the activated carbon electrodes and forms an outer periphery, and the outer side A spacer including an inner member provided in the center of the member, and connected to one side or the other side of the stacked plurality of activated carbon electrodes, and at least a portion thereof is disposed in parallel with the activated carbon electrode, and a plurality of It is provided by stacking at least one electrode unit including an electrode means and a power supply means for supplying current to the activated carbon electrode through the electrode means so that adjacent activated carbon electrodes alternately form an anode and a cathode.
상기 챔버는, 물이 유입되는 유입구와, 물이 배출되는 토출구가 형성되고, 상기 유입구 및 토출구와 연통하는 여과공간을 구비할 수 있다. The chamber may include an inlet through which water is introduced, a discharge port through which water is discharged, and a filtering space communicating with the inlet and the discharge port.
상기 활성탄전극은, 상기 토출구와 연통하는 출수구가 적층방향과 나란하게 타공될 수 있다. In the activated carbon electrode, a water outlet communicating with the discharge port may be perforated in parallel with a stacking direction.
상기 챔버는, 상기 체류공간과 여과공간을 형성하고 일측이 개방된 몸체부와, 상기 몸체부의 개방된 일측을 개폐하는 커버부를 포함할 수 있다. The chamber may include a body portion that forms the staying space and the filtering space and has one side open, and a cover portion that opens and closes the open side of the body portion.
상기 챔버는, 직육면체 형상을 구비하고, 상기 유입구와 상기 토출구는 상호 수직된 방향으로 형성될 수 있다. The chamber may have a rectangular parallelepiped shape, and the inlet and the outlet may be formed in a direction perpendicular to each other.
상기 챔버는, 전후좌우 측면에 각각 유입구를 형성하고, 상기 커버부에는 상기 토출구가 형성될 수 있다. The chamber may have inlets formed on the front, rear, left and right sides, respectively, and the discharge ports may be formed in the cover portion.
상기 전극수단은, 상호 이격 배치된 제1전극수단과 제2전극수단을 포함하고, 상기 활성탄전극은 이웃하는 활성탄전극과 서로 다른 전극수단에 연결될 수 있다. The electrode means includes a first electrode means and a second electrode means that are spaced apart from each other, and the activated carbon electrode may be connected to an adjacent activated carbon electrode and an electrode means different from each other.
상기 활성탄전극은, 상기 전극수단과 연결되는 부분이 외측으로 돌출되어 전극연결부를 형성할 수 있다. In the activated carbon electrode, a portion connected to the electrode means may protrude outward to form an electrode connection.
상기 전극수단은, 상기 활성탄전극의 적층 방향과 나란하게 형성된 수직부와, 상기 활성탄전극과 나란하게 형성되고, 상기 수직부와 연결되는 복수의 수평부를 포함할 수 있다. The electrode means may include a vertical portion formed parallel to the stacking direction of the activated carbon electrode, and a plurality of horizontal portions formed parallel to the activated carbon electrode and connected to the vertical portion.
상기 외측부재는 투수성 재질로 구비될 수 있다. The outer member may be made of a water-permeable material.
상기 외측부재는, 나일론 재질로 구비될 수 있다. The outer member may be provided with a nylon material.
상기 내측부재는, 입자 형태의 고분자 물질로 구비될 수 있다. The inner member may be provided with a polymer material in the form of particles.
상기 내측부재는, 이온교환수지로 구비될 수 있다. The inner member may be provided with an ion exchange resin.
상기 전원공급수단은, 상기 전극부에 처리수가 공급되면, 일방향으로 전류를 공급하고, 상기 활성탄전극으로 이온을 흡착시켜 수중의 이온을 제거할 수 있다. When the treated water is supplied to the electrode unit, the power supply means may supply current in one direction and adsorb ions to the activated carbon electrode to remove ions in water.
상기 전원공급수단은, 상기 전극부에 세척수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극에 흡착된 이온을 수중으로 배출시켜, 상기 활성탄전극을 재생시킬 수 있다. When the washing water is supplied to the electrode unit, the power supply means may supply current in two directions opposite to the one direction, and discharge ions adsorbed on the activated carbon electrode into water, thereby regenerating the activated carbon electrode.
상기 활성탄전극은, 활성탄 입자, 전도성 고분자 입자, 바인더를 혼합한 혼합물을 상기 집전체의 표면에 도포하여 형성될 수 있다. The activated carbon electrode may be formed by applying a mixture of activated carbon particles, conductive polymer particles, and a binder on the surface of the current collector.
본 발명에 따르면, 수중의 경도가 낮춰 물을 연수화 시킬 수 있다.According to the present invention, water can be softened by lowering the hardness in water.
본 발명에 따르면, 활성탄 전극에 인가되는 전압이 고르게 형성될 수 있다.According to the present invention, the voltage applied to the activated carbon electrode can be uniformly formed.
본 발명에 따르면,전원에서 공급된 전압과 활성탄 전극에 인가되는 전압의 차이를 줄일 수 있다.According to the present invention, a difference between a voltage supplied from a power source and a voltage applied to the activated carbon electrode can be reduced.
본 발명에 따르면,에너지의 손실 없이, 전극내 탈염효율을 증대 시킬 수 있다.According to the present invention, it is possible to increase the desalination efficiency in the electrode without loss of energy.
본 발명에 따르면, 전극의 적층 위치에 관계없이, 모든 영역에서, 여과력이 확보될 수 있다.According to the present invention, the filtering force can be ensured in all regions, regardless of the stacking position of the electrodes.
본 발명에 따르면,고른 전압인가로 인해 전극의 부분적인 열화 또는 부분적인 전극 손상을 방지할 수 있다.According to the present invention, it is possible to prevent partial deterioration of the electrode or partial damage to the electrode due to the application of an even voltage.
본 발명에 따르면,각각의 전극에 전압이 안정적이면서도 고르게 분배될 수 있다.According to the present invention, the voltage can be stably and evenly distributed to each electrode.
본 발명에 따르면, 이온제거 성능을 향상시킬 수 있다.According to the present invention, ion removal performance can be improved.
본 발명에 따르면,적층이 자유로워 요구되는 처리 용량 및 처리 속도에 따라 적층 높이를 다양하게 설정할 수 있다.According to the present invention, the stacking height can be variously set according to the required processing capacity and processing speed because stacking is free.
본 발명에 따르면, 활성탄전극에 흡착된 이온을 손쉽게 제거하여 전극부의 이온제거능력을 일정하게 유지할 수 있다. According to the present invention, ions adsorbed on the activated carbon electrode can be easily removed to maintain a constant ion removal capability of the electrode portion.
본 발명에 따르면, 챔버의 사방에서 물이 유입될 수 있다.According to the present invention, water can be introduced from all sides of the chamber.
본 발명에 따르면, 챔버로 유입된 물은 챔버의 내측면과 전극부 사이에 마련된 이격공간을 경유하면서, 전극부의 주변으로 유동하고, 투수성 재질의 외측부재를 통해 사방에서 전극부로 유입될 수 있다.According to the present invention, water introduced into the chamber may flow around the electrode part while passing through a space provided between the inner surface of the chamber and the electrode part, and may flow into the electrode part from all directions through the outer member of the water permeable material. .
본 발명에 따르면, 전극부의 내측으로 유입된 물은, 활성탄전극 사이를 통과하면서, 1차적으로 경도물질이 제거되고, 이온교환수지 층을 통과하면서, 2차적으로 경도물질이 제거된 후, 전극부를 빠져나갈 수 있다. According to the present invention, the water introduced into the electrode unit is, while passing between the activated carbon electrodes, firstly removing the hardness material, passing through the ion exchange resin layer, and secondarily removing the hardness material, then the electrode unit You can get out.
본 발명에 따르면, 전극부의 전체 영역에서, 유입된 물의 경도 제거가 보다 빠르고, 고르게 이루어져, 탈염효율이 확보하면서, 목표 농도(ppm)의 물을 보다 신속하게 생성 및 공급할 수 있는 이점이 있다. According to the present invention, there is an advantage in that the hardness of the introduced water can be removed more quickly and evenly in the entire region of the electrode unit, so that desalination efficiency can be secured and water of a target concentration (ppm) can be generated and supplied more quickly.
본 발명에 따르면, 고농도 경도물질을 짧은 시간에 처리하여 즉각적인 음용 요구에 대응할 수 이점이 있다. According to the present invention, there is an advantage of being able to respond to immediate drinking demand by processing a high-concentration hardness material in a short time.
도 1은 본 발명의 일 실시예에 따른 수처리 장치용 필터의 사시도, 1 is a perspective view of a filter for a water treatment apparatus according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 수처리 장치용 필터의 개념도, 2 is a conceptual diagram of a filter for a water treatment apparatus according to an embodiment of the present invention,
도 3은 도 2에 도시된 수처리 장치용 필터에서 물이 정화되는 상태를 보인 개념도, 3 is a conceptual diagram showing a state in which water is purified in the filter for the water treatment apparatus shown in FIG. 2;
도 4는 도 2에 도시된 수처리 장치용 필터가 재생되는 상태를 보인 개념도, FIG. 4 is a conceptual diagram showing a state in which the filter for the water treatment apparatus shown in FIG. 2 is regenerated;
도 5는 본 발명의 일 실시예에 따른 수처리 장치용 필터를 구성하는 전극부의 평면도, 5 is a plan view of an electrode part constituting a filter for a water treatment apparatus according to an embodiment of the present invention,
도 6은 도 5의 'A'영역의 종단면도, 6 is a longitudinal sectional view of area'A' of FIG.
도 7은 도 1의 5-5 단면도, 7 is a 5-5 cross-sectional view of FIG. 1;
도 8은 본 발명의 다른 실시 예에 따른수처리 장치용 필터의 분해 사시도, 8 is an exploded perspective view of a filter for a water treatment apparatus according to another embodiment of the present invention,
도 9는 전극부에서 원수가 처리되는 상태를 개념적으로 보인 도면이다. 9 is a diagram conceptually showing a state in which raw water is treated in an electrode unit.
이하에서는 도면을 참조하여 본 발명의 구체적인 실시예를 상세하게 설명한다. 그러나 본 발명의 사상은 이하에 제시되는 실시예에 제한되지 아니하고, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에 포함되는 다른 실시예를 구성요소의 부가, 변경, 삭제, 및 추가 등에 의해서 용이하게 구현할 수 있을 것이나, 이 또한 본 발명 사상의 범위 내에 포함된다고 할 것이다. Hereinafter, specific embodiments of the present invention will be described in detail with reference to the drawings. However, the spirit of the present invention is not limited to the embodiments presented below, and those skilled in the art who understand the spirit of the present invention can use the addition, change, deletion, and addition of components to other embodiments included within the scope of the same idea. It will be possible to implement easily, but it will be said that this is also included within the scope of the inventive concept.
이하의 실시예에 첨부되는 도면은, 같은 발명 사상의 실시예이지만, 발명 사상이 훼손되지 않는 범위 내에서, 용이하게 이해될 수 있도록 하기 위하여, 미세한 부분의 표현에 있어서는 도면별로 서로 다르게 표현될 수 있고, 도면에 따라서 특정 부분이 표시되지 않거나, 도면에 따라서 과장되게 표현되어 있을 수 있다. The drawings attached to the following examples are examples of the same inventive idea, but in order to be easily understood, within the scope of the inventive idea not being damaged, the representation of fine parts may be differently expressed for each drawing. And, depending on the drawings, a specific part may not be displayed or may be exaggerated according to the drawings.
본 발명에 따른 수처리 장치는 정수기, 연수기 등과 같은 다양한 정화 장치가 해당될 수 있다. 또한, 세탁기, 식기세척기, 냉장고 등에 설치되는 정화 수단이 해당될 수도 있다. The water treatment device according to the present invention may correspond to various purification devices such as a water purifier and a water softener. In addition, purification means installed in a washing machine, dishwasher, refrigerator, or the like may be applicable.
본 발명에 따른 수처리 장치는 외부에서 유입된 원수에 포함된 이온, 경도물질을 전기 흡착시킨 뒤 배출하는 범위에서 다양한 실시예가 발생할 수 있다. In the water treatment apparatus according to the present invention, various embodiments may occur in a range in which ions and hardness substances contained in raw water introduced from the outside are electro-adsorbed and then discharged.
이하에서는, 본 발명의 일 실시예에 따른 수처리 장치용 필터에 대해서 설명한다.Hereinafter, a filter for a water treatment apparatus according to an embodiment of the present invention will be described.
본 발명에 따른 수처리 장치용 필터는 하나의 필터를 의미할 수 있고, 여러 개의 필터를 의미할 수 있다.The filter for a water treatment apparatus according to the present invention may refer to one filter and may refer to several filters.
도 1은 본 발명의 일 실시예에 따른 수처리 장치용 필터의 사시도이고, 도 2는 본 발명의 일 실시예에 따른 수처리 장치용 필터의 개념도이다.1 is a perspective view of a filter for a water treatment apparatus according to an embodiment of the present invention, and FIG. 2 is a conceptual diagram of a filter for a water treatment apparatus according to an embodiment of the present invention.
도 1 내지 도 2를 참조하면, 상기 수처리 장치용 필터는, 물이 유입되는 유입구(101)와, 물이 배출되는 토출구(102)가 형성되고, 상기 유입구(101) 및 토출구(102)와 연통하는 내부공간을 구비하는 챔버(100)를 포함한다.1 to 2, the filter for the water treatment device has an inlet 101 through which water is introduced, and a discharge port 102 through which water is discharged, and communicates with the inlet 101 and the discharge port 102. It includes a chamber 100 having an internal space.
그리고, 상기 챔버(100)의 내측에는 전극부(200)가 수용될 수 있다. In addition, the electrode part 200 may be accommodated inside the chamber 100.
상기 전극부(200)에는 상기 토출구(102)와 연통하는 출수구(201)가 적층방향과 나란하게 타공될 수 있다. A water outlet 201 communicating with the discharge port 102 may be perforated in the electrode part 200 in parallel with the stacking direction.
즉, 상기 챔버(100)의 내부공간에는 전극부(200)를 수용하고, 유입구(101)를 통해 외부에서 챔버(100)의 내부공간으로 물이 유입된다. 이때, 유입된 물은 전극부(200)를 통과한 뒤, 토출구(102)를 통해 챔버(100) 외부로 빠져나간다. 이 과정에서 물에 포함된 이온은 전극부(200)를 통과하면서 전극부(200)에 흡착 및 제거될 수 있다.That is, the electrode part 200 is accommodated in the inner space of the chamber 100, and water is introduced into the inner space of the chamber 100 from the outside through the inlet 101. At this time, the introduced water passes through the electrode part 200 and then exits the chamber 100 through the discharge port 102. In this process, ions contained in water may be adsorbed and removed by the electrode part 200 while passing through the electrode part 200.
하지만, 상기와 같은 필터 구조의 경우, 유입구(101)를 통해 유입된 물이 챔버(100)에 수용된 전극부(200)에 골고루 공급되기 어려웠다. 따라서, 전극부(200)의 일부 영역에는 물이 과도하게 공급되어 물에 포함된 이온의 흡착이 무리하게 진행되는 반면, 전극부(200) 일부 영역(dead zone)에서는 통과되는 물의 양이 적어 전극부(200)의 이온 흡착 능력을 100% 활용하지 못하게 되는 문제점이 있었다. However, in the case of the filter structure as described above, it was difficult to evenly supply the water introduced through the inlet 101 to the electrode portion 200 accommodated in the chamber 100. Therefore, water is excessively supplied to some areas of the electrode unit 200 to force adsorption of ions contained in the water, whereas in some areas of the electrode unit 200 (dead zones), the amount of water passing through is small. There was a problem in that 100% of the ion adsorption ability of the part 200 could not be utilized.
또한, 전극부(200)의 일부 영역에서는 유속이 느려지는 반면, 전극부(200)의 일부 영역에서는 유속이 지나치게 빨라지면서 물과 전극부(200)의 접촉 시간이 줄어들어 이온 흡착이 제대로 진행되지 못한 단점이 있다.In addition, while the flow velocity in some areas of the electrode unit 200 is slowed down, in some areas of the electrode unit 200, the flow rate becomes too fast, and the contact time between water and the electrode unit 200 is reduced, so that ion adsorption cannot proceed properly. There are drawbacks.
또, 전극부(200)와 물의 접촉시간을 늘리고자, 유로의 길이를 늘릴 수 밖에 없었다. 하지만, 상기와 같이 유로의 길이를 늘리기 위해서는 전극부(200) 및 챔버(100)의 크기를 키울 수 밖에 없었고, 이는 제작비용 상승 및 공간 활용도 저하를 초래하는 단점이 있다. 또, 필터가 장착된 수처리 장치의 크기 또한 커질 수 밖에 없는 단점도 있었다. In addition, in order to increase the contact time between the electrode unit 200 and water, the length of the flow path has to be increased. However, in order to increase the length of the flow path as described above, the size of the electrode unit 200 and the chamber 100 has to be increased, and this has a disadvantage of causing an increase in manufacturing cost and a decrease in space utilization. In addition, there is a disadvantage that the size of the filter-equipped water treatment device is also inevitably increased.
본 발명의 일 실시예에 따르면, 챔버(100)의 다양한 지점을 통해서, 원수가 유입되고, 결과적으로 챔버(100) 내측의 여과공간(105, 도 7참조)에 수용된 전극부(200)의 다양한 위치로 원수가 유이보딜 수 있다. According to an embodiment of the present invention, raw water is introduced through various points of the chamber 100, and as a result, various electrodes 200 accommodated in the filtering space 105 inside the chamber 100 (see FIG. 7). The enemy can fight Yui by location.
본 실시예에서, 상기 챔버(100)는, 직육면체 형상을 구비하고, 상기 유입구(101)와 상기 토출구(102)는 상호 수직된 방향으로 형성될 수 있다. In this embodiment, the chamber 100 may have a rectangular parallelepiped shape, and the inlet 101 and the discharge port 102 may be formed in a direction perpendicular to each other.
상기와 같이 유입구(101)와 토출구(102)가 수직 방향으로 형성되면, 토출구(102)는 전극부(200)의 적층방향과 나란하게 형성되므로 결론적으로 유입구(101)는 전극부(200)의 적층방향과 수직된 방향으로 형성된다. 즉 전극부(200)의 측면을 향하도록 형성된다.When the inlet 101 and the discharge port 102 are formed in the vertical direction as described above, the discharge port 102 is formed parallel to the stacking direction of the electrode part 200. It is formed in a direction perpendicular to the stacking direction. That is, it is formed to face the side surface of the electrode part 200.
따라서, 유입구(101)로 공급된 물은 상기 전극부(200)의 측면으로 공급되고, 결과적으로 전극부(200)의 전체 두께에 골고루 공급될 수 있다.Accordingly, water supplied to the inlet 101 is supplied to the side of the electrode unit 200, and as a result, it can be evenly supplied to the entire thickness of the electrode unit 200.
만약, 전극부(200)의 최상단 또는 최하단과 인접한 방향으로 물이 공급되면, 전극부(200)의 적층 방향을 따라 순차적으로 물이 이동하게 된다. 그러면 물이 최초로 공급되는 최상단 또는 최하단에 위치된 전극부에서만 이온 흡착이 집중적으로 진행되면서, 전극부(200)의 각 층별로 이온 흡착 정도의 차이가 발생할 수밖에 없다. If water is supplied in a direction adjacent to the uppermost or lowermost end of the electrode unit 200, water is sequentially moved along the stacking direction of the electrode unit 200. Then, ion adsorption proceeds intensively only at the electrode portion located at the top or the bottom where water is first supplied, and thus a difference in the degree of ion adsorption occurs for each layer of the electrode portion 200.
반면, 본 발명에서와 같이, 전극부(200)의 측면을 통해 물이 공급되면, 전극부(200)의 전체 두께에 골고루 물이 공급될 수 있다.On the other hand, as in the present invention, when water is supplied through the side surface of the electrode part 200, water may be evenly supplied to the entire thickness of the electrode part 200.
또한, 상기와 같이 전극부(200)의 측면 방향으로 물이 골고루 공급된 후, 전극부(200)의 측면 방향에서 중심부 측으로 유동하면서 이온 교환이 이루어진 물은 전극부(200)의 중심부에 형성된 출수구(201)를 통해 외부로 빠져나갈 수 있다.In addition, after water is evenly supplied in the lateral direction of the electrode part 200 as described above, water flowing from the lateral direction of the electrode part 200 to the center side and ion exchanged water is a water outlet formed in the center of the electrode part 200 You can escape to the outside through (201).
본 실시예에서, 상기 챔버(100)는, 여과공간(105, 도 7참조)을 형성하고 일측이 개방된 몸체부(110)와, 상기 몸체부(110)의 개방된 일측을 개폐하는 커버부(120)를 포함할 수 있다. In this embodiment, the chamber 100 forms a filtering space 105 (refer to FIG. 7) and has a body portion 110 with one side open, and a cover portion for opening and closing an open side of the body portion 110 It may include 120.
상기 몸체부(110) 및 커버(120)는 볼트 등과 같은 별도의 체결수단(미도시)을 통해 고정 및 분리될 수 있다.The body portion 110 and the cover 120 may be fixed and separated through separate fastening means (not shown) such as bolts.
이때, 커버부(120)에 토출구(102)가 형성될 수 있다.In this case, a discharge port 102 may be formed in the cover part 120.
상기와 같이 챔버(100)가 몸체부(110)와 커버부(120)로 분리될 경우, 챔버(100)의 여과공간(105, 도 7참조)이 외부로 노출되어 여과공간(105, 도 7참조)에 전극부(200)를 적층하는 작업이 수월하게 진행될 수 있다. When the chamber 100 is separated into the body portion 110 and the cover portion 120 as described above, the filtering space 105 (see FIG. 7) of the chamber 100 is exposed to the outside and the filtering space 105, FIG. 7 Reference), the operation of laminating the electrode unit 200 may be easily performed.
또한, 챔버(100) 내에 문제 발생 시, 커버부(120)를 분리하여 점검 및 보수가 손쉽게 진행될 수 있다.In addition, when a problem occurs in the chamber 100, the cover unit 120 may be separated to facilitate inspection and maintenance.
또한, 전극부(200)를 교체하더라도 챔버(100)는 반영구적으로 사용할 수 있다. In addition, even if the electrode unit 200 is replaced, the chamber 100 can be used semi-permanently.
또한, 챔버(100)가 몸체부(110)와 커버부(120)로 분리되면, 제품의 조립성이 개선되어 생산성이 높아지고, 양산성이 확보될 수 있는 효과도 있다.In addition, when the chamber 100 is separated into the body portion 110 and the cover portion 120, the assembly properties of the product are improved, thereby increasing productivity and securing mass production.
한, 상기 챔버(100)는, 4개의 측면 각각에 유입구(101)를 형성할 수 있다. One, the chamber 100 may have an inlet 101 formed on each of four side surfaces.
따라서, 여과공간(105, 도 7참조)으로의 물의 공급이 모든 방향에서 균일하게 진행될 수 있다. Accordingly, the supply of water to the filtering space 105 (see FIG. 7) can be uniformly performed in all directions.
본 발명에 따른 수처리 장치용 필터는 전극부(200)를 포함한다. The filter for a water treatment device according to the present invention includes an electrode part 200.
이때, 전극부(200)는 하나의 전극유닛(200a)으로 구성되거나, 복수의 전극유닛(200a)을 적층하여 구성될 수 있다.In this case, the electrode unit 200 may be composed of one electrode unit 200a, or may be configured by stacking a plurality of electrode units 200a.
일 예로, 전극유닛(200a)은 집전체(211)와, 상기 집전체(211)의 일측 또는 양측에 활성탄을 도포하여 형성된 활성탄코팅층(212)으로 이루어진 복수의 활성탄전극(210)과, 상기 적층된 복수의 활성탄전극(210)의 일측 단부 또는 타측 단부에 연결되는 복수의 전극수단(220)과, 상기 활성탄전극(210) 사이마다 쇼트 방지를 위해 삽입되는 절연성 재질의 스페이서(230)와, 이웃하는 활성탄전극(210)이 양극(+극)과 음극(-극)을 번갈아 가며 형성하도록 상기 전극수단(220)을 통해 상기 활성탄전극(210)에 전류를 공급하는 전원공급수단(240)을 포함하고, 유입된 물의 이온을 흡착하여 수중의 이온을 제거한 뒤 배출한다. For example, the electrode unit 200a includes a current collector 211, a plurality of activated carbon electrodes 210 made of an activated carbon coating layer 212 formed by coating activated carbon on one or both sides of the current collector 211, and the stacked A plurality of electrode means 220 connected to one end or the other end of the plurality of activated carbon electrodes 210, an insulating spacer 230 inserted to prevent a short between the activated carbon electrodes 210, and the neighboring And a power supply means 240 for supplying current to the activated carbon electrode 210 through the electrode means 220 so that the activated carbon electrode 210 alternately forms a positive electrode (+ electrode) and a negative electrode (-pole). And, by adsorbing ions of the introduced water, ions in the water are removed and then discharged.
전술한 바와 같이, 상기 활성탄전극(210)은 집전체(211)와 활성탄코팅층(212)으로 이루어진다. As described above, the activated carbon electrode 210 includes a current collector 211 and an activated carbon coating layer 212.
참고로, 상기 활성탄전극(210)은 활성탄을 구비하고 전극을 형성하는 범위에서, 공지의 다양한 실시예가 적용될 수 있다. For reference, the activated carbon electrode 210 may be provided with activated carbon and various known embodiments may be applied within a range in which an electrode is formed.
상기 집전체(211)는 박막의 형태로서, 전도체(electric conductor)로 구비될 수 있다. 일례로, 상기 집전체(211)는 흑연포일(graphite foil)로 구비될 수 있으며, 이 밖에도 다양한 종류의 전도체가 집전체(211)로 채택될 수 있다. The current collector 211 is in the form of a thin film and may be provided as an electric conductor. For example, the current collector 211 may be provided with a graphite foil, and in addition, various types of conductors may be adopted as the current collector 211.
활성탄코팅층(212)은 상기 집전체(211)의 일면 또는 양면에 형성된다. The activated carbon coating layer 212 is formed on one or both surfaces of the current collector 211.
상기 활성탄코팅층(212)은 활성탄을 포함한다. 따라서, 정전기적인 인력에 의해 활성탄코팅층(212)에 원수의 불순물이 흡착되면, 흡착된 불순물은 활성탄 표면의 마크로 포어(Macro pore)라고 하는 구멍 속으로 확산을 통해 이동한 후, 내부의 메조포어(Meso pore) 또는 마이크로포어(Micro pore)에서 최종 흡착 및 제거될 수 있다. The activated carbon coating layer 212 includes activated carbon. Therefore, when impurities of raw water are adsorbed to the activated carbon coating layer 212 by electrostatic attraction, the adsorbed impurities move through diffusion into the pores called macro pores on the surface of the activated carbon, and then the mesopores ( Meso pores) or micro pores can be finally adsorbed and removed.
상기와 같은 활성탄전극(210)은 요구되는 경도 조절 정도에 따라 그 적층 개수가 다양하게 조절될 수 있다.The number of stacked activated carbon electrodes 210 as described above may be variously adjusted according to the degree of hardness adjustment required.
본 실시예에서, 상기 활성탄코팅층(212)은 집전체(211)의 일면에만 형성될 수 있다. 이와 같이 집전체(211)의 일면에만 활성탄코팅층(212)이 형성된 활성탄전극(210)은 전극유닛(200a)의 최상단 및 최하단에 배치될 수 있다.In this embodiment, the activated carbon coating layer 212 may be formed only on one surface of the current collector 211. As such, the activated carbon electrode 210 in which the activated carbon coating layer 212 is formed only on one surface of the current collector 211 may be disposed at the top and bottom ends of the electrode unit 200a.
이때, 최상단에 배치된 활성탄전극(210)은 활성탄코팅층(212)이 하측을 향하도록 배치되고, 최하단에 배치된 활성탄전극(210)은 활성탄코팅층(212)이 상측을 향하도록 배치된다.At this time, the activated carbon electrode 210 disposed at the top is disposed so that the activated carbon coating layer 212 faces downward, and the activated carbon electrode 210 disposed at the lowest end is disposed so that the activated carbon coating layer 212 faces upward.
또한, 상기 활성탄코팅층(212)은 집전체(211)의 양면 모두에 형성될 수 있다. 이와 같이 집전체(211)의 양면에 활성탄코팅층(212)이 형성된 활성탄전극(210)은 전극유닛(200a)의 최상단 및 최하단을 제외한 중심부에 배치될 수 있다.In addition, the activated carbon coating layer 212 may be formed on both sides of the current collector 211. In this way, the activated carbon electrode 210 having the activated carbon coating layer 212 formed on both sides of the current collector 211 may be disposed in the center of the electrode unit 200a except for the uppermost and lowermost ends.
상기와 같이 집전체(211)의 양면에 활성탄코팅층(212)이 형성되면, 집전체(211)의 양측에서 원수에 포함된 불순물을 흡착할 수 있어, 불순물의 흡착속도 및 흡착성능을 향상시킬 수 있다. When the activated carbon coating layer 212 is formed on both sides of the current collector 211 as described above, impurities contained in raw water can be adsorbed on both sides of the current collector 211, thereby improving the adsorption rate and adsorption performance of impurities. have.
또한, 하나의 집전체(211)의 양측에 활성탄코팅층(212)이 형성되기 때문에 집전체(211)의 개수를 줄일 수 있어, 결과적으로는 전극유닛(200a)의 두께를 줄이고, 전극유닛(200a)의 경량화를 실현할 수 있으며, 전극유닛(200a)의 제작비용을 절약할 수 있다. 또한, 활성탄전극(210)의 적층량을 늘릴 수도 있다.In addition, since the activated carbon coating layers 212 are formed on both sides of one current collector 211, the number of current collectors 211 can be reduced. As a result, the thickness of the electrode unit 200a is reduced, and the electrode unit 200a ) Can be reduced in weight, and the manufacturing cost of the electrode unit 200a can be saved. In addition, the amount of stacked activated carbon electrodes 210 may be increased.
상기 스페이서(230)는 활성탄전극(210) 사이에 배치된다. 상기 스페이서(230)는 활성탄전극(210) 사이에서 간격을 형성하면서, 활성탄전극(210) 간의 쇼트를 방지한다. 또한, 원수는 스페이서(230)를 통해서 활성탄전극(210) 사이를 통과하면서 정수될 수 있다.The spacer 230 is disposed between the activated carbon electrodes 210. The spacers 230 form a gap between the activated carbon electrodes 210 and prevent a short between the activated carbon electrodes 210. In addition, the raw water may be purified while passing between the activated carbon electrodes 210 through the spacer 230.
따라서, 스페이서(230)는 부도체(insulator)이면서, 통수성 재질로 이루어져, 활성탄전극(210) 사이에서 쇼트를 방지하고, 정수가 진행되는 원수가 통과하는 유로를 제공할 수 있다. 일례로, 스페이서(230)는 복수의 통수로가 형성된 나일론(nylon) 재질로 형성될 수 있다. Accordingly, the spacer 230 is made of a non-conductor and a water-permeable material, thereby preventing a short between the activated carbon electrodes 210 and providing a flow path through which raw water through which purified water proceeds passes. As an example, the spacer 230 may be formed of a nylon material in which a plurality of passages are formed.
한편, 상기 전극수단(220)은 한 쌍으로 구비되어, 상기 적층된 복수의 활성탄전극(210)의 일측 또는 타측 단부와 연결되며, 전도체(electric conductor)로 구비될 수 있다. 일 예로, 상기 전극수단(220)은 구리(Cu)재질로 형성될 수 있다. Meanwhile, the electrode means 220 may be provided in a pair, connected to one or the other end portions of the stacked activated carbon electrodes 210, and may be provided as an electric conductor. For example, the electrode means 220 may be formed of a copper (Cu) material.
또한, 상기 전극수단(220)은 두 개 이상으로 구비될 수도 있다. In addition, the electrode means 220 may be provided in two or more.
본 발명에 따르면, 상기 전극수단(220)과 활성탄전극(210)의 접촉이 안정적으로 이루어질 수 있다. 이를 위해 상기 전극수단(220)의 적어도 일부는 상기 활성탄전극(210)과 나란히 배치되어, 활성탄전극(210)과 면접촉 할 수 있다.According to the present invention, contact between the electrode means 220 and the activated carbon electrode 210 may be made stably. To this end, at least a portion of the electrode means 220 may be arranged side by side with the activated carbon electrode 210 to make surface contact with the activated carbon electrode 210.
즉, 상기 활성탄전극(210)이 상호 나란히 적층되고, 활성탄전극(210) 사이에 전극수단(220)의 일부가 활성탄전극(210)과 나란하게 삽입되면서, 전극수단(220)과 활성탄전극(210)은 면접촉한다. That is, the activated carbon electrodes 210 are stacked in parallel with each other, and a part of the electrode means 220 between the activated carbon electrodes 210 is inserted in parallel with the activated carbon electrode 210, and the electrode means 220 and the activated carbon electrode 210 ) Makes an interview.
이에 따르면, 활성탄전극(210)과 전극수단(220)의 접촉 면적이 증가되어, 전류 공급이 보다 확실하고 안정적으로 이루어질 수 있다. 또한, 활성탄전극(210)과 면접촉하는 전극수단(220)에 의해, 활성탄전극(210) 끼리의 전도율도 향상될 수 있다. 따라서, 활성탄전극(210)에 전원에서 공급된 전압이 손실없이 인가될 수 있다. 또한, 활성탄전극(210) 각각에 전원에서 공급된 전압이 균일하게 인가될 수 있다.Accordingly, the contact area between the activated carbon electrode 210 and the electrode means 220 is increased, so that current supply can be made more reliably and stably. Further, by the electrode means 220 in surface contact with the activated carbon electrode 210, the conductivity between the activated carbon electrodes 210 may be improved. Accordingly, the voltage supplied from the power source can be applied to the activated carbon electrode 210 without loss. In addition, a voltage supplied from a power source may be uniformly applied to each of the activated carbon electrodes 210.
상기 전극수단(220)과 활성탄전극(210)의 연결에 대한 구체적인 설명은 후술되는 전원공급수단(240,250)과 함께 설명하기로 한다.A detailed description of the connection between the electrode means 220 and the activated carbon electrode 210 will be described together with the power supply means 240 and 250 to be described later.
전원공급수단(240,250)은 전원(240)과 전선(250)을 포함할 수 있다. The power supply means 240 and 250 may include a power supply 240 and an electric wire 250.
상기 전원(240)에서는, 원수의 물분해는 이루어지지 않으면서, 이온 흡착은 가능한 범위에서 전압이 인가될 수 있다. 일례로, 상기 전원(240)은 1.5V 이하의 전압을 인가할 수 있다. In the power supply 240, a voltage may be applied within a range in which water decomposition of raw water is not performed and ion adsorption is possible. For example, the power supply 240 may apply a voltage of 1.5V or less.
한편, 상기 전원공급수단(240,250)에 흐르는 전류의 방향에 따라 상기 전극부(220)는 양극 또는 음극을 띈다. On the other hand, depending on the direction of the current flowing through the power supply means (240, 250), the electrode unit 220 has a positive or negative electrode.
본 실시예에서, 상기 전극수단(220)은, 상호 이격 배치된 제1전극수단(221)과 제2전극수단(222)을 포함할 수 있다.In the present embodiment, the electrode means 220 may include a first electrode means 221 and a second electrode means 222 disposed to be spaced apart from each other.
일례로, 도 2에서와 같이, 도면의 우측에 배치된 제1전극수단(221)이 양극(+)일 경우, 도면의 좌측에 배치된 제2전극수단(222)은 음극(-)일 수 있다.For example, as shown in FIG. 2, when the first electrode means 221 disposed on the right side of the drawing is a positive electrode (+), the second electrode means 222 disposed on the left side of the drawing may be a negative electrode (-). have.
반대로, 도면의 우측에 배치된 제1전극수단(221)이 음극(-)이라면, 도면의 좌측에 배치된 제2전극수단(222)은 양극(+)일 수 있다.Conversely, if the first electrode means 221 disposed on the right side of the drawing is a cathode (-), the second electrode means 222 disposed on the left side of the drawing may be a positive electrode (+).
전술한 바와 같이, 전류가 흐르는 방향에 따라, 활성탄전극(210)의 양측에 배치된 제1전극수단(221) 및 제2전극수단(222)은 양극과 음극을 띄게 된다. As described above, the first electrode means 221 and the second electrode means 222 disposed on both sides of the activated carbon electrode 210 have an anode and a cathode according to the direction in which the current flows.
이하, 양극이 형성된 전극수단(220)은 양극이라 칭하고, 음극이 형성된 전극수단(220)은 음극이라 칭한다.Hereinafter, the electrode means 220 on which the anode is formed is called an anode, and the electrode means 220 on which the cathode is formed is called a cathode.
상기 적층된 복수의 활성탄전극(210)은 이웃하는 활성탄전극(210)과 양극과 음극에 번갈아 가며 형성되어야 한다. 여기서 이웃한다는 의미는 그 사이에 스페이서(230)를 두고 근접한다는 것을 의미한다. 즉, 도면상의 최상단에 배치된 활성탄전극(210)은 그 바로 아래 스페이서(230)를 사이에 두고 배치된 두번째 활성탄전극(210)과 이웃한다고 볼 수 있다. The plurality of stacked activated carbon electrodes 210 should be formed alternately between adjacent activated carbon electrodes 210 and anodes and cathodes. Here, the meaning of neighboring means that the spacer 230 is placed therebetween and is adjacent. That is, the activated carbon electrode 210 disposed at the top of the drawing may be considered to be adjacent to the second activated carbon electrode 210 disposed immediately below the spacer 230 therebetween.
상기와 같이 활성탄전극(210)이 이웃하는 활성탄전극(210)과 양극과 음극을 번갈아 가며 형성하기 위해서는 활성탄전극(210)의 양측에 배치된 전극수단(220)에 양극과 음극이 각각 형성되고, 상기 적층된 복수의 활성탄전극(210)은 이웃하는 활성탄전극(210)과 양극과 음극에 각각 번갈아가며 연결되어야 한다. As described above, in order to alternately form the activated carbon electrode 210 adjacent to the activated carbon electrode 210 and an anode and a cathode, an anode and a cathode are formed on the electrode means 220 disposed on both sides of the activated carbon electrode 210, respectively, The plurality of stacked activated carbon electrodes 210 should be alternately connected to adjacent activated carbon electrodes 210 and an anode and a cathode, respectively.
일례로, 도 2에서와 같이, 도면의 우측이 양극이고, 도면의 좌측이 음극인 경우, 도면상의 최상단에 배치된 첫번째 활성탄전극(210)은 우측의 양극과 연결되고, 그 아래 배치된 두번째 활성탄전극(210)은 좌측의 음극과 연결될 수 있다. 또한, 두번째 활성탄전극(210)의 아래 배치된 세번째 활성탄전극(210)은 우측의 양극과 연결되고, 세번째 활성탄전극(210)의 아래 배치된 네번째 활성탄전극(210)은 좌측의 음극과 연결될 수 있다. For example, as shown in FIG. 2, when the right side of the drawing is the anode and the left side of the drawing is the cathode, the first activated carbon electrode 210 disposed at the top of the drawing is connected to the anode at the right side, and the second activated carbon disposed below it The electrode 210 may be connected to the cathode on the left. In addition, the third activated carbon electrode 210 disposed below the second activated carbon electrode 210 may be connected to the positive electrode on the right side, and the fourth activated carbon electrode 210 disposed below the third activated carbon electrode 210 may be connected to the left negative electrode. .
이때, 양극과 연결된 활성탄전극(210)은 음극과 전기적으로 분리된 상태이고, 음극과 연결된 활성탄전극(210)은 양극과 전기적으로 분리된 상태이다.At this time, the activated carbon electrode 210 connected to the positive electrode is electrically separated from the negative electrode, and the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode.
또한, 도면의 우측이 양극이고, 도면의 좌측이 음극인 경우라 하더라도, 도면상의 최상단에 배치된 활성탄전극(210)이 좌측의 음극과 연결되고, 그 아래 배치된 활성탄전극(210)은 우측의 양극과 연결될 수도 있다.In addition, even if the right side of the drawing is the anode and the left side of the drawing is the cathode, the activated carbon electrode 210 disposed at the top of the drawing is connected to the cathode at the left, and the activated carbon electrode 210 disposed below it is It can also be connected to the anode.
다른 예로, 도면의 우측이 음극이고, 도면의 좌측이 양극인 경우, 도면상의 최상단에 배치된 활성탄전극(210)은 좌측의 양극과 연결되고, 그 아래 배치된 활성탄전극(210)은 우측의 음극과 연결될 수 있다.As another example, when the right side of the drawing is the cathode and the left side of the drawing is the anode, the activated carbon electrode 210 disposed at the top of the drawing is connected to the anode at the left, and the activated carbon electrode 210 disposed below it is the cathode at the right side. Can be connected with.
또한, 도면의 우측이 음극이고, 도면의 좌측이 양극인 경우라 하더라도, 도면상의 최상단에 배치된 활성탄전극(210)은 우측의 음극과 연결되고, 그 아래 배치된 활성탄전극(210)이 좌측의 양극과 연결될 수도 있다.In addition, even if the right side of the drawing is the cathode and the left side of the drawing is the anode, the activated carbon electrode 210 disposed at the top of the drawing is connected to the cathode at the right side, and the activated carbon electrode 210 disposed below it is It can also be connected to the anode.
이때도 마찬가지로, 양극과 연결된 활성탄전극(210)은 음극과 전기적으로 분리된 상태이고, 음극과 연결된 활성탄전극(210)은 양극과 전기적으로 분리된 상태이다.In this case, similarly, the activated carbon electrode 210 connected to the positive electrode is electrically separated from the negative electrode, and the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode.
일례로, 양극에 연결된 활성탄전극(210)이 음극과 전기적으로 분리될 수 있도록, 음극은 양극에 연결된 활성탄전극(210)으로부터 이격 배치되고, 음극에 연결된 활성탄전극(210)이 양극과 전기적으로 분리될 수 있도록, 양극은 음극과 연결된 활성탄전극(210)으로부터 이격 배치될 수 있다. As an example, so that the activated carbon electrode 210 connected to the positive electrode 210 can be electrically separated from the negative electrode, the negative electrode is disposed apart from the activated carbon electrode 210 connected to the positive electrode, and the activated carbon electrode 210 connected to the negative electrode is electrically separated from the positive electrode. Thus, the anode may be spaced apart from the activated carbon electrode 210 connected to the cathode.
도 3은 도 2에 도시된 수처리 장치용 필터에서 물이 정화되는 상태를 보인 개념도이고, 도 4는 도 2에 도시된 수처리 장치용 필터가 재생되는 상태를 보인 개념도이다.3 is a conceptual diagram showing a state in which water is purified in the filter for a water treatment apparatus shown in FIG. 2, and FIG. 4 is a conceptual diagram illustrating a state in which the filter for a water treatment apparatus shown in FIG. 2 is regenerated.
먼저, 도 3을 참조하면, 도면의 좌측 배치된 활성탄전극(210)이 양극으로 대전되고, 도면의 우측에 배치된 활성탄전극(210)이 음극으로 대전된 상태에서, 활성탄전극(210) 사이로 원수를 통과시키면, 원수에 포함된 음이온(-)은 양극으로 대전된 좌측의 활성탄전극(210)에 흡착되고, 원수에 포함된 양이온(+)은 음극으로 대전된 우측의 활성탄전극(210)에 흡착된다.First, referring to FIG. 3, in a state in which the activated carbon electrode 210 disposed on the left side of the drawing is charged as an anode, and the activated carbon electrode 210 disposed on the right side of the drawing is charged as a negative electrode, raw water between the activated carbon electrodes 210 When passing through, negative ions (-) contained in raw water are adsorbed to the activated carbon electrode 210 on the left side charged with the positive electrode, and positive ions (+) contained in raw water are adsorbed on the activated carbon electrode 210 on the right side charged with the negative electrode. do.
상기와 같은 과정에 의해 원수에 포함된 음이온(-)과 양이온(+)이 흡착 및 제거되면서, 원수의 정화가 이루어질 수 있다.While the anions (-) and cations (+) contained in the raw water are adsorbed and removed by the above process, the raw water can be purified.
반대로, 도면의 우측 배치된 활성탄전극(210)이 양극으로 대전되고, 도면의 좌측에 배치된 활성탄전극(210)이 음극으로 대전된 상태에서, 활성탄전극(210) 사이로 원수를 통과시키면, 원수에 포함된 음이온(-)은 양극으로 대전된 우측의 활성탄전극(210)에 흡착되고, 원수에 포함된 양이온(+)은 음극으로 대전된 좌측의 활성탄전극(210)에 흡착될 수 있다.On the contrary, when the activated carbon electrode 210 disposed on the right side of the drawing is charged as a positive electrode, and the activated carbon electrode 210 disposed on the left side of the drawing is charged as a negative electrode, when raw water is passed through the activated carbon electrodes 210, the raw water is The included negative ions (-) may be adsorbed to the activated carbon electrode 210 on the right side charged with the positive electrode, and the positive ions (+) contained in the raw water may be adsorbed on the activated carbon electrode 210 on the left side charged with the negative electrode.
이때, 원수는 활성탄전극(210) 사이에 쇼트방지 및 유로 확보를 위해 배치된 투수성 스페이서(230)를 통해 활성탄전극(210) 사이를 용이하게 통과할 수 있다. In this case, the raw water can easily pass between the activated carbon electrodes 210 through the permeable spacers 230 disposed between the activated carbon electrodes 210 to prevent short circuits and secure a flow path.
그러나, 상기와 같은 흡착이 계속되면서, 활성탄전극(210)에 흡착된 이온이 많아지면, 활성탄전극(210)은 더 이상 이온을 흡착할 수 없거나, 이온 흡착력이 현저히 저하되는 상태에 이른다. However, as the above-described adsorption continues, when the number of ions adsorbed on the activated carbon electrode 210 is increased, the activated carbon electrode 210 cannot adsorb ions any more, or the ion adsorption power is significantly lowered.
이 같은 상태에 이르면, 도 4에 도시한 바와 같이 활성탄전극(210)에 흡착된 이온들을 분리시켜 활성탄전극(210)을 재생시킬 필요가 있다.When this state is reached, it is necessary to regenerate the activated carbon electrode 210 by separating ions adsorbed on the activated carbon electrode 210 as shown in FIG. 4.
상기와 같이, 활성탄전극(210)의 재생을 위한 방법으로는, 전류공급을 차단하는 방법이 있고, 이온을 흡착할 때와는 반대로 전류를 흐르게 하는 방법이 있다. As described above, as a method for regenerating the activated carbon electrode 210, there is a method of blocking the supply of current, and a method of flowing an electric current opposite to the case of adsorbing ions.
일례로, 도 3에서와 같이, 원수에 포함된 음이온(-)이 양극으로 대전된 좌측의 활성탄전극(210)에 흡착되고, 원수에 포함된 양이온(+)이 음극으로 대전된 우측의 활성탄전극(210)에 흡착된 상태에서, 활성탄전극(210)을 재생시키기 위해서는, 전류의 흐름을 바꾸어 도면 좌측의 활성탄전극(210)을 음극으로 대전시키고, 도면 우측의 활성탄전극(210)을 양극으로 대전시킨다. As an example, as shown in FIG. 3, an anion (-) contained in raw water is adsorbed on the left activated carbon electrode 210 charged with the positive electrode, and the activated carbon electrode on the right in which positive ions (+) contained in the raw water are charged as a negative electrode. In order to regenerate the activated carbon electrode 210 in the state of being adsorbed on 210, the activated carbon electrode 210 on the left side of the drawing is charged to the cathode by changing the flow of current, and the activated carbon electrode 210 on the right side of the drawing is charged to the anode. Let it.
그러면, 정수과정에서 좌측의 활성탄전극(210)에 흡착되었던 음이온(-)은 음극으로 대전된 좌측의 활성탄전극(210)에서 분리되고, 정수과정에서 우측의 활성탄전극(210)에 흡착되었던 양이온(+)은 양극으로 대전된 우측의 활성탄전극(210)에서 분리된다.Then, the negative ions (-) adsorbed on the left activated carbon electrode 210 during the water purification process are separated from the left activated carbon electrode 210 charged with the negative electrode, and the positive ions ( +) is separated from the positively charged activated carbon electrode 210 on the right.
상기와 같이 양측의 활성탄전극(210)에서 분리된 양이온(+) 및 음이온(-)은 세척수와 함께 외부로 배출된다.As described above, the positive ions (+) and negative ions (-) separated by the activated carbon electrodes 210 on both sides are discharged to the outside together with the washing water.
상기와 같은 활성탄전극(210)의 세척 과정을 통해, 활성탄전극(210)에 흡착된 이온이 제거되면, 전극유닛(200a)의 이온제거능력이 재생되어, 이온제거능력이 일정하게 유지될 수 있다.When the ions adsorbed on the activated carbon electrode 210 are removed through the cleaning process of the activated carbon electrode 210 as described above, the ion removing ability of the electrode unit 200a is regenerated, so that the ion removing ability can be kept constant. .
상기와 같이 구성된, 전극유닛(200a)은 단일체로 전극부(200)를 구성할 수 있고, 복수 구비된 후 여러 층으로 적층되어 전극부(200)를 구성할 수도 있다. The electrode unit 200a configured as described above may constitute the electrode unit 200 as a single body, and may be provided in plural and then stacked in several layers to configure the electrode unit 200.
상기와 같은 전극부(200)를 사용하면, 수중의 이온이 신속하게 제거되기 때문에 물의 경도가 낮아져 물의 연수화가 이루어질 수 있다. When the electrode part 200 as described above is used, since ions in water are rapidly removed, the hardness of water is lowered, so that water can be softened.
또한, 도시하고 있지 않지만, 필요에 따라서는 전극부(200)의 이온 제거율을 더욱 높이기 위해 이온교환막이 구비될 수도 있다. 상기와 같이 이온교환막이 사용될 경우, 이온교환막은 스페이서(230)와 활성탄전극(210) 사이에 배치될 수 있다.Further, although not shown, if necessary, an ion exchange membrane may be provided to further increase the ion removal rate of the electrode part 200. When the ion exchange membrane is used as described above, the ion exchange membrane may be disposed between the spacer 230 and the activated carbon electrode 210.
이하, 본 발명의 일부 구성요소인 전극부의 구조 및 전극부와 활성탄전극의 연결구조에 대해 보다 상세히 설명한다. Hereinafter, a structure of an electrode part, which is a part of the present invention, and a connection structure between the electrode part and the activated carbon electrode will be described in more detail.
도 5는 본 발명의 일 실시예에 따른 수처리 장치용 필터를 구성하는 전극부의 평면도이고, 도 6은 도 5의 'A'영역의 종단면도이다.5 is a plan view of an electrode part constituting a filter for a water treatment apparatus according to an embodiment of the present invention, and FIG. 6 is a longitudinal cross-sectional view of a region'A' of FIG. 5.
먼저, 도 5내지 도 6을 참조하여, 상기 적층된 복수의 활성탄전극(210)이 이웃하는 활성탄전극(210)과 양극과 음극에 번갈아가며 연결되는 구조에 대해 설명한다.First, a structure in which the stacked activated carbon electrodes 210 are alternately connected to adjacent activated carbon electrodes 210 and an anode and a cathode will be described with reference to FIGS. 5 to 6.
상기 활성탄전극(210)은, 상기 전극수단(220)과 연결되는 일부분 외측으로 돌출되어 전극연결부(213,213')를 형성할 수 있다. The activated carbon electrode 210 may protrude outside a portion connected to the electrode means 220 to form electrode connection portions 213 and 213'.
일 예로, 활성탄전극(210)의 일측과 타측에 각각 전극이 형성된 경우, 최상단에 배치된 첫번째 활성탄전극(210)은 일측 단부에 일측으로 돌출된 전극연결부(213)를 형성하고, 그 아래 배치된 두번째 활성탄전극(210)은 타측 단부에 타측으로 돌출된 전극연결부(213')를 형성할 수 있다. 이하, 홀수번째의 활성탄전극(210)은 일측 단부에 일측으로 돌출된 전극연결부(213)를 형성하고, 짝수번째의 활성탄전극(210)은 타측 단부에 타측으로 돌출된 전극연결부(213')를 형성할 수 있다.For example, when electrodes are formed on one side and the other side of the activated carbon electrode 210, respectively, the first activated carbon electrode 210 disposed at the top has an electrode connection 213 protruding to one side at one end, and The second activated carbon electrode 210 may have an electrode connection part 213 ′ protruding to the other side at the other end. Hereinafter, the odd-numbered activated carbon electrode 210 forms an electrode connection part 213 protruding to one side at one end, and the even-numbered activated carbon electrode 210 has an electrode connection part 213 ′ protruding to the other side at the other end. Can be formed.
이러한 상태에서, 일측에 형성된 전극은 일측으로 돌출된 홀수번째 활성탄전극(210)의 전극연결부(213)와 연결되고, 타측에 형성된 전극은 타측으로 돌출된 짝수번째 활성탄전극(210)의 전극연결부(213')와 연결될 수 있다.In this state, the electrode formed on one side is connected to the electrode connection part 213 of the odd-numbered activated carbon electrode 210 protruding to one side, and the electrode formed on the other side is the electrode connection part of the even-numbered activated carbon electrode 210 protruding to the other side ( 213') can be connected.
여기서 일측과 타측은 서로 대향되는 반대 방향을 의미할 수 있고, 서로 수직되는 방향을 의미할 수 있다. 또한, 전후방향을 의미할 수 도 있다. Here, one side and the other side may mean opposite directions opposite to each other, and may mean directions perpendicular to each other. In addition, it may mean the front-rear direction.
다른 예로, 활성탄전극(210)의 일측 전방과 일측 후방에 각각 전극이 형성된 경우, 도면상의 최상단에 배치된 첫번째 활성탄전극(210)은 일측 전방에 일측으로 돌출된 전극연결부(213)를 형성하고, 그 아래 배치된 두번째 활성탄전극(210)은 일측 후방에 일측으로 돌출된 전극연결부(213')를 형성할 수 있다. 이하, 홀수번째의 활성탄전극(210)은 일측 전방에 일측으로 돌출된 전극연결부(213)를 형성하고, 짝수번째의 활성탄전극(210)은 일측 후방에 일측으로 돌출된 전극연결부(213')를 형성할 수 있다.As another example, when electrodes are formed in front of one side and one rear side of the activated carbon electrode 210, respectively, the first activated carbon electrode 210 disposed at the top of the drawing forms an electrode connection part 213 protruding to one side in front of one side, The second activated carbon electrode 210 disposed below it may form an electrode connection part 213 ′ protruding toward one side at one rear side. Hereinafter, the odd-numbered activated carbon electrode 210 forms an electrode connection part 213 protruding to one side in front of one side, and the even-numbered activated carbon electrode 210 has an electrode connection part 213 ′ protruding to one side at the rear of one side. Can be formed.
이러한 상태에서, 일측 전방에 형성된 전극은 일측 전방에서 일측으로 돌출된 홀수번째 활성탄전극(210)의 전극연결부(213) 모두와 연결되고, 일측 후방에 형성된 전극은 일측 후방에서 일측으로 돌출된 짝수번째 활성탄전극(210)의 전극연결부(213') 모두와 연결될 수 있다.In this state, the electrode formed in front of one side is connected to all of the electrode connection portions 213 of the odd-numbered activated carbon electrode 210 protruding from one front to one side, and the electrode formed on one rear side is an even-numbered electrode protruding from one rear to one side. It may be connected to all of the electrode connection portions 213 ′ of the activated carbon electrode 210.
이 밖에도, 상기 적층된 복수의 활성탄전극(210)이 이웃하는 활성탄전극(210)과 양극과 음극에 번갈아가며 연결되는 구조는 다양한 실시예가 발생할 수 있다. In addition, a structure in which the plurality of stacked activated carbon electrodes 210 are alternately connected to adjacent activated carbon electrodes 210 and an anode and a cathode may occur in various embodiments.
상기와 같이 활성탄전극(210)이 이웃한 활성탄전극(210)과 양극과 음극이 번갈아가며 형성될 경우, 스페이서(230)에 의해 이격된 활성탄전극(210) 사이를 통과하는 원수에 포함된 중금속 등의 이온이 흡착 및 제거될 수 있다.As described above, when the activated carbon electrode 210 adjacent to the activated carbon electrode 210 and the anode and the cathode are formed alternately, heavy metals contained in raw water passing between the activated carbon electrodes 210 spaced apart by the spacer 230, etc. The ions of can be adsorbed and removed.
또한, 상기 전극수단(220)은, 상호 이격 배치된 제1전극수단(221)과 제2전극수단(222)을 포함하고, 상기 활성탄전극(210)은 이웃하는 활성탄전극(210)과 서로 다른 전극수단(221,222)에 연결된다. In addition, the electrode means 220 includes a first electrode means 221 and a second electrode means 222 disposed spaced apart from each other, and the activated carbon electrode 210 is different from the neighboring activated carbon electrodes 210 It is connected to the electrode means (221,222).
일 예로, 일측 전방에서 일측으로 돌출된 홀수번째 활성탄전극(210)의 전극연결부(213)는 제1전극수단(221)과 연결되고, 일측 후방에서 일측으로 돌출된 짝수번째 활성탄전극(210)의 전극연결부(213')는 제2전극수단(222)과 연결될 수 있다. For example, the electrode connector 213 of the odd-numbered activated carbon electrode 210 protruding from one front side to one side is connected to the first electrode means 221, and the even-numbered activated carbon electrode 210 protruding from one rear side to one side. The electrode connection part 213 ′ may be connected to the second electrode means 222.
한편, 상기 전극수단(220)은 상기 활성탄전극(210)의 적층 방향과 나란하게 형성된 수직부(223)와, 상기 활성탄전극(210)과 나란하게 형성되고, 상기 수직부(223)와 연결되는 복수의 수평부(224)를 포함할 수 있다. Meanwhile, the electrode means 220 includes a vertical portion 223 formed parallel to the stacking direction of the activated carbon electrode 210 and parallel to the activated carbon electrode 210, and connected to the vertical portion 223. It may include a plurality of horizontal portions 224.
상기 수직부(223)와 수평부(224)는 모두 전도체로 형성된다.Both the vertical portion 223 and the horizontal portion 224 are formed of a conductor.
그리고, 상기 수직부(223)는 각각의 수평부(224)를 연결하는 역할을 수행한다. And, the vertical portion 223 serves to connect each of the horizontal portions 224.
또한, 상기 수평부(224)는 활성탄전극(210) 사이에 삽입되고, 활성탄전극(210)과 면접촉하면서 통전한다. In addition, the horizontal portion 224 is inserted between the activated carbon electrodes 210, and conducts electricity while making surface contact with the activated carbon electrode 210.
일 예로, 상기 수평부(224)는 홀수번째 활성탄전극(210) 사이에 삽입되어 면접촉할 수 있다. 다른 예로, 상기 수평부(224)는 짝수번째 활성탄전극(210) 사이에 삽입되어 면접촉할 수 있다. For example, the horizontal portion 224 may be inserted between the odd-numbered activated carbon electrodes 210 to make surface contact. As another example, the horizontal portion 224 may be inserted between the even-numbered activated carbon electrodes 210 to make surface contact.
또한, 상기 수평부(224)와 상기 활성탄전극(210)의 전극연결부(213)에는 상호 대응하는 위치에 접속홀(213a,224a)이 형성되고, 상기 접속홀(213a,224a)에는 전도체로 이루어진 축부재(225)가 삽입된다, In addition, connection holes 213a and 224a are formed at positions corresponding to each other in the horizontal part 224 and the electrode connection part 213 of the activated carbon electrode 210, and the connection holes 213a and 224a are formed of conductors. The shaft member 225 is inserted,
이에 따르면, 전도체인 축부재(225)를 통해 수평부(224)와 활성탄전극(210) 각각에 통전이 진행될 수 있다. According to this, energization may proceed to each of the horizontal portion 224 and the activated carbon electrode 210 through the shaft member 225 as a conductor.
일 예로, 상기 축부재(225)는 볼트로 구비될 수 있다.For example, the shaft member 225 may be provided with a bolt.
또한, 상기 축부재(225)의 양측 단부는 너트(226)로 체결될 수 있다. 따라서, 수평부(224)와 전극연결부(213)의 체결력이 확보될 수 있다. In addition, both ends of the shaft member 225 may be fastened with nuts 226. Accordingly, a fastening force between the horizontal portion 224 and the electrode connection portion 213 can be secured.
도 7은 도 1의 5-5 단면도이다. 도 8은 본 발명의 다른 실시 예에 따른수처리 장치용 필터의 분해 사시도이다. 도 9는 전극부에서 원수가 처리되는 상태를 개념적으로 보인 도면이다. 7 is a 5-5 cross-sectional view of FIG. 1. 8 is an exploded perspective view of a filter for a water treatment apparatus according to another embodiment of the present invention. 9 is a diagram conceptually showing a state in which raw water is treated in an electrode unit.
도 7 내지 도 9를 참조하면, 상기 챔버(100)의 내부에는, 상기 전극부(200)의 상측과 하측에 배치되는 고정판(131,132)을 포함할 수 있다.7 to 9, the interior of the chamber 100 may include fixing plates 131 and 132 disposed above and below the electrode part 200.
상기 고정판(131,132)은 상기 전극부(200)의 상측에 배치되는 상부 고정판(131)과 상기 전극부(200)의 하측에 배치되는 하부 고정판(132)을 포함할 수 있다. The fixing plates 131 and 132 may include an upper fixing plate 131 disposed above the electrode part 200 and a lower fixing plate 132 disposed below the electrode part 200.
그리고, 상기 상부 고정판(131)과 하부 고정판(132) 사이에 전극부(200)가 배치 및 고정된다.In addition, the electrode part 200 is disposed and fixed between the upper fixing plate 131 and the lower fixing plate 132.
상기 상부 고정판(131)과 하부 고정판(132)에는 마주보는 부분에 체결홀(131a,132a)이 형성된다. 상기 체결홀(131a,132a)은 상부 고정판(131)과 하부 고정판(132)의 테두리와 인접한 부분에 형성될 수 있다. 상기 체결홀(131a,132a)은 볼트 등으로 체결될 수 있다. Fastening holes 131a and 132a are formed in portions facing the upper and lower fixing plates 131 and 132. The fastening holes 131a and 132a may be formed at portions adjacent to the edges of the upper fixing plate 131 and the lower fixing plate 132. The fastening holes 131a and 132a may be fastened with bolts or the like.
다시 도 7 내지 도 9를 참조하면, 상기 스페이서(230)는 스페이서(230)의 외측 테두리를 형성하는 외측부재(231)와, 상기 외측부재의 내측에 수용되는 내측부재(232)를 포함한다.Referring again to FIGS. 7 to 9, the spacer 230 includes an outer member 231 forming an outer edge of the spacer 230 and an inner member 232 accommodated inside the outer member.
일 예로, 상기 외측부재(231)는 나일론 재질로 형성될 수 있다.For example, the outer member 231 may be formed of a nylon material.
상기 외측부재(231)는 여러겹으로 구비될 수 있다.The outer member 231 may be provided in multiple layers.
다른 예로, 상기 외측부재(230)는 투수성 재질로 형성될 수 있다. 따라서, 챔버(100)의 내측으로 유입된 물은 상기 외측부재(230)를 통해 전극부(200)의 내측으로 유입될 수 있다. As another example, the outer member 230 may be formed of a water-permeable material. Accordingly, water flowing into the chamber 100 may be introduced into the electrode part 200 through the outer member 230.
상기 외측부재(231)는 중심측에 내측부재(232)가 배치되게 공간부를 형성한다.The outer member 231 forms a space portion such that the inner member 232 is disposed on the center side.
상기 외측부재(231)에 의해 정의된 공간부에는 내측부재(232)가 수용된다. The inner member 232 is accommodated in the space defined by the outer member 231.
일 예로, 상기 내측부재(232)는 고분자 물질로 구비될 수 있다.For example, the inner member 232 may be formed of a polymer material.
다른 예로, 상기 내측부재(232)는 이온교환레진으로 구비될 수 있다.As another example, the inner member 232 may be provided with an ion exchange resin.
상기 내측부재(232)는 양이온교환 레진으로 구비될 수 있다.The inner member 232 may be provided with a cation exchange resin.
상기 내측부재(232)는 음이온교환 레진으로 구비될 수 있다. The inner member 232 may be provided with an anion exchange resin.
상기 내측부재(232)는 양이온교환 레진과 음이온교환 레진을 소정의 비율로 혼합하여 구비될 수 있다. The inner member 232 may be provided by mixing a cation exchange resin and an anion exchange resin in a predetermined ratio.
참고로, 양이온교환 레진은 이온교환 수지를 의미할 수 있으며, 가역반응 (Reversible reaction)을 이룬다.For reference, the cation exchange resin may mean an ion exchange resin, and forms a reversible reaction.
한편, 상기와 같이 외측부재(231)와 내측부재(232)로 구성된 스페이서(230)는 그 두께가 두꺼워질 수록, 이온제거율이 증가될 수 있다. Meanwhile, the spacer 230 composed of the outer member 231 and the inner member 232 as described above may increase the ion removal rate as the thickness increases.
상기 외측부재(231)의 구성으로, 입자 형태의 내측부재(232)가 이탈되지 않고, 활성탄전극(210) 사이에 배치된 상태를 유지할 수 있다.With the configuration of the outer member 231, the inner member 232 in the form of particles is not separated, and the state disposed between the activated carbon electrodes 210 can be maintained.
그리고, 상기와 같이 외측부재(231)가 내측부재(232)를 가둬두는 역할을 하게 됨에 따라, 활성탄 전극(210) 사이마다, 외측부재(231)와 내측부재(232)로 구성된 스페이서(230)를 적층할 수도 있다. And, as the outer member 231 serves to confine the inner member 232 as described above, the spacer 230 composed of the outer member 231 and the inner member 232 between the activated carbon electrodes 210 Can also be stacked.
상기와 같은 본 발명에 따르면, 챔버(100)의 사방에서 물이 유입될 수 있다.According to the present invention as described above, water can flow in from all directions of the chamber 100.
그리고, 챔버(100)로 유입된 물은 챔버(100)의 내측면과 전극부(200) 사이에 마련된 이격공간(106)을 경유하면서, 전극부(200)의 주변으로 유동하고, 나일론 등과 같은 투수성 재질의 외측부재(231)를 통해 사방에서 전극부(200)로 유입될 수 있다.In addition, the water introduced into the chamber 100 flows around the electrode unit 200 while passing through the space 106 provided between the inner surface of the chamber 100 and the electrode unit 200, and It may flow into the electrode part 200 from all directions through the outer member 231 made of a water-permeable material.
그리고, 상기 외측부재(231)를 통해서, 전극부(200)의 내측으로 유입된 물은, 활성탄전극(210) 사이를 통과하면서, 1차적으로 경도물질이 제거되고, 내측부재(232)를 통과하면서, 2차적으로 경도물질이 제거된 후, 전극부(200)를 빠져나간 뒤, 챔버(100)의 외측으로 배출될 수 있다. And, through the outer member 231, the water introduced into the electrode part 200, while passing between the activated carbon electrodes 210, the hardness material is primarily removed, and passes through the inner member 232 While, after the hardness material is secondaryly removed, after exiting the electrode part 200, it may be discharged to the outside of the chamber 100.
따라서, 전극부(200)의 전체 영역에서, 유입된 물의 경도 제거가 보다 빠르고, 고르게 이루어져, 탈염효율이 확보하면서, 목표 농도(ppm)의 물을 보다 신속하게 생성 및 공급할 수 있는 이점이 있다. 즉, 고농도 경도물질을 짧은 시간에 처리하여 즉각적인 음용 요구에 대응할 수 이점이 있다.Therefore, in the entire area of the electrode unit 200, there is an advantage in that the hardness of the introduced water can be removed more quickly and evenly, securing desalination efficiency, and generating and supplying water of a target concentration (ppm) more quickly. In other words, there is an advantage of being able to respond to immediate drinking demand by processing a high-concentration hardness material in a short time.
Claims (16)
- 외형을 형성하는 챔버와, 상기 챔버의 내측에 수용되는 전극부를 포함하는 수처리장치용 필터에 있어서, A filter for a water treatment apparatus comprising a chamber forming an outer shape and an electrode portion accommodated inside the chamber,상기 전극부는, The electrode part,집전체 및 집전체의 표면에 형성된 활성탄을 포함하고, 판상으로 이루어진 복수의 활성탄전극;A plurality of activated carbon electrodes comprising a current collector and activated carbon formed on a surface of the current collector and having a plate shape;상기 활성탄전극 사이마다 쇼트 방지를 위해 삽입되고, 외측 둘레를 형성하는 외측부재와, 상기 외측부재의 중심부에 구비되는 내측부재를 포함하는 스페이서;A spacer that is inserted between the activated carbon electrodes to prevent shorts, and includes an outer member forming an outer periphery, and an inner member provided in a central portion of the outer member;상기 적층된 복수의 활성탄전극의 일측 또는 타측과 연결되고, 적어도 일부가 상기 활성탄전극과 나란하게 배치되어, 상기 활성탄전극과 면접촉하는 복수의 전극수단; 및A plurality of electrode means connected to one side or the other side of the plurality of stacked activated carbon electrodes, at least partly arranged in parallel with the activated carbon electrode, and making surface contact with the activated carbon electrode; And이웃하는 활성탄전극이 양극과 음극을 번갈아 가며 형성하도록 상기 전극수단을 통해 상기 활성탄전극에 전류를 공급하는 전원공급수단을 포함하는 수처리 장치용 필터.A filter for a water treatment apparatus comprising a power supply means for supplying current to the activated carbon electrode through the electrode means so that adjacent activated carbon electrodes alternately form an anode and a cathode.
- 제1항에 있어서,The method of claim 1,상기 챔버는, 물이 유입되는 유입구와, 물이 배출되는 토출구가 형성되고, 상기 유입구 및 토출구와 연통하는 여과공간을 구비하는 수처리 장치용 필터.The chamber is a filter for a water treatment apparatus having an inlet through which water is introduced, a discharge port through which water is discharged, and a filtering space communicating with the inlet and the discharge port.
- 제 2항에 있어서,The method of claim 2,상기 활성탄전극은, 상기 토출구와 연통하는 출수구가 적층방향과 나란하게 타공되는 수처리 장치용 필터.The activated carbon electrode is a filter for a water treatment device in which a water outlet communicating with the discharge port is perforated in parallel with a stacking direction.
- 제2항에 있어서,The method of claim 2,상기 챔버는:The chamber is:상기 체류공간과 여과공간을 형성하고 일측이 개방된 몸체부;A body portion forming the staying space and the filtering space and having one side open;상기 몸체부의 개방된 일측을 개폐하는 커버부;를 포함하는 수처리 장치용 필터. Filter for a water treatment device comprising a; cover portion for opening and closing the open side of the body portion.
- 제 4항에 있어서, The method of claim 4,상기 챔버는:The chamber is:직육면체 형상을 구비하고, 상기 유입구와 상기 토출구는 상호 수직된 방향으로 형성되는 수처리 장치용 필터. A filter for a water treatment device having a rectangular parallelepiped shape, and wherein the inlet and the outlet are formed in a direction perpendicular to each other.
- 제 5항에 있어서,The method of claim 5,상기 챔버는, 전후좌우 측면에 각각 유입구를 형성하고, 상기 커버부에는 상기 토출구가 형성되는 수처리 장치용 필터.The chamber is a filter for a water treatment device, wherein inlets are formed on the front, rear, left and right sides, and the discharge ports are formed in the cover part.
- 제1항에 있어서,The method of claim 1,상기 전극수단은, 상호 이격 배치된 제1전극수단과 제2전극수단을 포함하고, The electrode means includes a first electrode means and a second electrode means disposed spaced apart from each other,상기 활성탄전극은 이웃하는 활성탄전극과 서로 다른 전극수단에 연결되는 수처리 장치용 필터.The activated carbon electrode is a filter for a water treatment device connected to an adjacent activated carbon electrode and to different electrode means.
- 제 1항에 있어서, The method of claim 1,상기 활성탄전극은, 상기 전극수단과 연결되는 부분이 외측으로 돌출되어 전극연결부를 형성하는 수처리 장치용 필터. In the activated carbon electrode, a portion connected to the electrode means protrudes outward to form an electrode connection.
- 제 1항에 있어서,The method of claim 1,상기 전극수단은, The electrode means,상기 활성탄전극의 적층 방향과 나란하게 형성된 수직부;A vertical portion formed parallel to the stacking direction of the activated carbon electrode;상기 활성탄전극과 나란하게 형성되고, 상기 수직부와 연결되는 복수의 수평부;를 포함하는 수처리 장치용 필터.A filter for a water treatment device comprising a; a plurality of horizontal portions formed parallel to the activated carbon electrode and connected to the vertical portion.
- 제 1항에 있어서,The method of claim 1,상기 외측부재는 투수성 재질로 이루어진 수처리 장치용 필터.The outer member is a filter for a water treatment device made of a water-permeable material.
- 제 1항에 있어서, The method of claim 1,상기 외측부재는, 나일론 재질로 이루어진 수처리 장치용 필터.The outer member is a filter for a water treatment device made of a nylon material.
- 제 1항에 있어서,The method of claim 1,상기 내측부재는, 입자 형태의 고분자 물질로 구비되는 수처리 장치용 필터.The inner member is a filter for a water treatment device provided with a polymer material in the form of particles.
- 제 1항에 있어서,The method of claim 1,상기 내측부재는, 이온교환수지로 구비되는 수처리 장치용 필터.The inner member is a filter for a water treatment device provided with an ion exchange resin.
- 제1항에 있어서,The method of claim 1,상기 전원공급수단은, 상기 전극부에 처리수가 공급되면, 일방향으로 전류를 공급하고, 상기 활성탄전극으로 이온을 흡착시켜 수중의 이온을 제거하는 수처리 장치용 필터.The power supply means, when the treated water is supplied to the electrode, supplies electric current in one direction and absorbs ions by the activated carbon electrode to remove ions from the water.
- 제14항에 있어서,The method of claim 14,상기 전원공급수단은, 상기 전극부에 세척수가 공급되면, 상기 일방향과 반대되는 이방향으로 전류를 공급하고, 상기 활성탄전극에 흡착된 이온을 수중으로 배출시켜, 상기 활성탄전극을 재생시키는 수처리 장치용 필터.The power supply means, when the washing water is supplied to the electrode unit, supplies current in two directions opposite to the one direction, and discharges ions adsorbed on the activated carbon electrode into water, thereby regenerating the activated carbon electrode. filter.
- 제1항에 있어서,The method of claim 1,상기 활성탄전극은, The activated carbon electrode,활성탄 입자, 전도성 고분자 입자, 바인더를 혼합한 혼합물을 상기 집전체의 표면에 도포하여 형성된 수처리 장치용 필터.A filter for a water treatment device formed by applying a mixture of activated carbon particles, conductive polymer particles, and a binder to the surface of the current collector.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0081624 | 2019-07-05 | ||
KR1020190081624A KR102267917B1 (en) | 2019-07-05 | 2019-07-05 | filter for water treatment apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021006584A1 true WO2021006584A1 (en) | 2021-01-14 |
Family
ID=74114318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/008810 WO2021006584A1 (en) | 2019-07-05 | 2020-07-06 | Filter for water treatment device |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102267917B1 (en) |
WO (1) | WO2021006584A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102528672B1 (en) * | 2021-04-06 | 2023-05-04 | 엘지전자 주식회사 | filter for water treatment apparatus |
KR102711895B1 (en) * | 2023-12-26 | 2024-09-30 | 주식회사 가나엔텍 | High efficiency advanced treatment facilities using increased filtration time of sewage |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100036495A (en) * | 2008-09-30 | 2010-04-08 | 삼성전자주식회사 | Deionization apparatus and electrode module using thereof, and manufacturing method the same |
US20130092542A1 (en) * | 2010-04-29 | 2013-04-18 | Voltea B.V. | Apparatus and method for removal of ions |
KR20180076768A (en) * | 2016-12-28 | 2018-07-06 | 엘지전자 주식회사 | filter for water treatment apparatus and water treatment apparatus having the same |
KR20180082251A (en) * | 2017-01-10 | 2018-07-18 | 엘지전자 주식회사 | filter for water treatment apparatus and water treatment apparatus having the same |
-
2019
- 2019-07-05 KR KR1020190081624A patent/KR102267917B1/en active IP Right Grant
-
2020
- 2020-07-06 WO PCT/KR2020/008810 patent/WO2021006584A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20100036495A (en) * | 2008-09-30 | 2010-04-08 | 삼성전자주식회사 | Deionization apparatus and electrode module using thereof, and manufacturing method the same |
US20130092542A1 (en) * | 2010-04-29 | 2013-04-18 | Voltea B.V. | Apparatus and method for removal of ions |
KR20180076768A (en) * | 2016-12-28 | 2018-07-06 | 엘지전자 주식회사 | filter for water treatment apparatus and water treatment apparatus having the same |
KR20180082251A (en) * | 2017-01-10 | 2018-07-18 | 엘지전자 주식회사 | filter for water treatment apparatus and water treatment apparatus having the same |
Non-Patent Citations (1)
Title |
---|
LEE KI SOOK; CHO YOUNGHYUN; CHOO KO YEON; YANG SEUNGCHEOL; HAN MOON HEE; KIM DONG KOOK: "Membrane-spacer assembly for flow-electrode capacitive deionization", APPLIED SURFACE SCIENCE, vol. 433, 1 March 2018 (2018-03-01), pages 437 - 442, XP085321017, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2017.10.021 * |
Also Published As
Publication number | Publication date |
---|---|
KR20210005456A (en) | 2021-01-14 |
KR102267917B1 (en) | 2021-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018124752A1 (en) | Water treatment apparatus filter and water treatment apparatus including same | |
WO2021006584A1 (en) | Filter for water treatment device | |
WO2018106061A1 (en) | Filter module for water treatment apparatus, and water treatment apparatus comprising said filter module | |
WO2019146891A1 (en) | Filter for water treating apparatus and water treating apparatus including the same | |
WO2016013797A1 (en) | Filter system | |
WO2012161534A2 (en) | Apparatus and method for controlling total dissolved solids, and water treatment apparatus including the same | |
WO2020159235A1 (en) | Cleaning apparatus and cleaning method for press rolls for electrodes | |
WO2015053511A1 (en) | Wastewater reclamation apparatus and wastewater-recyling washing equipment including same | |
WO2021033918A1 (en) | Filter for water treatment device | |
WO2018124643A1 (en) | Hydrogen water manufacturing device | |
WO2013125832A1 (en) | Capacitive deionization device | |
WO2020032356A1 (en) | Salinity gradient power generation device | |
WO2019088782A1 (en) | Hybrid power generation apparatus and method capable of electricity production and deionization simultaneously | |
WO2012091500A2 (en) | Water treatment apparatus and water treatment method using the same | |
WO2018030725A1 (en) | Plate-type filter module for water treatment and filter assembly for water treatment comprising same | |
WO2014084442A1 (en) | Electric dust collector using electric displacement field | |
WO2014084632A1 (en) | Electric dust collection device of electric dust collection system, and dust collection method using said electric dust collection device | |
WO2015088278A1 (en) | Water softening device and method for regenerating ion exchange resin | |
WO2018080219A1 (en) | Filter module for gravity-type water purifier and gravity-type water purifier including same | |
WO2020036274A1 (en) | Method for purifying hydrogen peroxide | |
KR102709491B1 (en) | filter for water treatment apparatus and water treatment apparatus having the same | |
WO2022225303A1 (en) | Water treatment device | |
WO2022231196A1 (en) | Filter for water treatment device | |
WO2022216030A1 (en) | Filter for water treatment device | |
WO2021107584A1 (en) | Air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20837021 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20837021 Country of ref document: EP Kind code of ref document: A1 |