WO2021033663A1 - Method for manufacturing radiation detector - Google Patents

Method for manufacturing radiation detector Download PDF

Info

Publication number
WO2021033663A1
WO2021033663A1 PCT/JP2020/030992 JP2020030992W WO2021033663A1 WO 2021033663 A1 WO2021033663 A1 WO 2021033663A1 JP 2020030992 W JP2020030992 W JP 2020030992W WO 2021033663 A1 WO2021033663 A1 WO 2021033663A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
radiation detector
manufacturing
substrate
reinforcing member
Prior art date
Application number
PCT/JP2020/030992
Other languages
French (fr)
Japanese (ja)
Inventor
宗貴 加藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021540936A priority Critical patent/JPWO2021033663A1/ja
Publication of WO2021033663A1 publication Critical patent/WO2021033663A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Definitions

  • the present invention relates to a method for manufacturing a radiation detector.
  • a radiographic imaging device that performs radiographic imaging for the purpose of medical diagnosis.
  • a radiation image capturing apparatus a radiation detector for detecting radiation transmitted through a subject and generating a radiation image is used.
  • the radiation detector includes a conversion layer such as a scintillator that converts radiation into light, and a substrate provided with a plurality of pixels that accumulate charges generated in response to the light converted by the conversion layer. is there.
  • a so-called narrow frame radiation detector in which the distance from the pixel region provided with pixels to the edge of the radiation detector is short is known.
  • a radiation detector having a narrow frame is manufactured by cutting a sensor substrate along a side of a pixel region.
  • a radiation detector using a flexible base material is known.
  • the radiation imaging device radiation detector
  • the subject may be easily photographed.
  • the sensor substrate is easily bent, so that unlike the technique described in Japanese Patent Application Laid-Open No. 2014-13193, it is difficult to cut the sensor substrate and the sensor. Pixels may be damaged by cutting the substrate.
  • the present disclosure provides a method for manufacturing a radiation detector that can easily increase the proportion of pixel regions in which pixels are formed on a substrate.
  • a flexible base material is provided on a support, and a plurality of pixels accumulating charges according to the irradiated radiation are provided in a pixel region of the base material.
  • the cut surfaces of the reinforcing member and the base material are flush with each other in the method for manufacturing the radiation detector according to the first aspect.
  • the substrate in the method for manufacturing a radiation detector according to the third aspect of the present disclosure, is a cable on a surface provided with a plurality of pixels. Has a terminal region provided with a terminal portion for electrically connecting the two, and in the step of cutting the base material, the region other than the terminal region is cut.
  • the cable is electrically connected to the terminal portion before the step of peeling the substrate from the support. Further provided with a process of connecting the elements.
  • the base material of the substrate is formed.
  • a step of providing a terminal portion for electrically connecting a cable to a surface provided with a plurality of pixels along the side on the cut side is further provided.
  • the reinforcing member is more rigid than the base material. Is high.
  • the method for manufacturing the radiation detector according to the seventh aspect of the present disclosure is the method for manufacturing the radiation detector according to any one of the first to sixth aspects, wherein the reinforcing member has a flexural modulus of 500 MPa. It is 3000 MPa or less.
  • the reinforcing member is made of polycarbonate and polyethylene terephthalate. It is a member made of at least one material.
  • the method for manufacturing the radiation detector according to the ninth aspect of the present disclosure is the method for manufacturing the radiation detector according to any one of the first to seventh aspects, wherein the base material is provided with a plurality of pixels. In the step of cutting the laminated body having a mark on the marked surface, the position corresponding to the mark is cut.
  • the method for manufacturing the radiation detector according to the tenth aspect of the present disclosure is the step of forming the substrate and the method for manufacturing the substrate in any one of the first to ninth aspects of the method for manufacturing the radiation detector.
  • a step of forming a conversion layer for converting radiation into light is further provided on the surface of the base material provided with the plurality of pixels, and each of the plurality of pixels is converted by the conversion layer. Accumulates the charge according to the light.
  • each of the plurality of pixels emits radiation. It includes a sensor unit that receives and generates an electric charge, and accumulates the electric charge generated by the sensor unit.
  • FIG. 2 is a cross-sectional view taken along the line AA of the radiation detector shown in FIG. It is sectional drawing BB of the radiation detector shown in FIG. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment.
  • FIG. 5 is a plan view of an example of the radiation detector of the second embodiment as viewed from the first surface side of the base material.
  • FIG. 5 is a cross-sectional view taken along the line AA of the radiation detector shown in FIG.
  • FIG. 5 is a sectional view taken along line BB of the radiation detector shown in FIG. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment.
  • FIG. 5 is a cross-sectional view taken along the line AA of another example radiation detector. It is sectional drawing of an example of the radiation imaging apparatus of embodiment which is housed in a housing. It is sectional drawing of another example of the radiation imaging apparatus of embodiment which is housed in a housing. It is sectional drawing of another example of the radiation imaging apparatus of embodiment which is housed in a housing.
  • the radiation detector of the present embodiment has a function of detecting radiation transmitted through a subject and outputting image information representing a radiation image of the subject.
  • the radiation detector of the present embodiment includes a sensor substrate and a conversion layer that converts radiation into light (see FIG. 2, sensor substrate 12 and conversion layer 14 of the radiation detector 10).
  • the sensor substrate 12 of this embodiment is an example of the substrate of the present disclosure.
  • FIG. 1 is a block diagram showing an example of a configuration of a main part of an electrical system in the radiation imaging apparatus of the present embodiment.
  • the radiation imaging device 1 of the present embodiment includes a radiation detector 10, a control unit 100, a drive unit 102, a signal processing unit 104, an image memory 106, and a power supply unit 108.
  • the radiation detector 10 includes a sensor substrate 12 and a conversion layer (see FIG. 2) that converts radiation into light.
  • the sensor substrate 12 includes a flexible base material 11 and a plurality of pixels 30 provided on the first surface 11A of the base material 11. In the following, the plurality of pixels 30 may be simply referred to as “pixel 30”.
  • each pixel 30 of the present embodiment has a sensor unit 34 that generates and accumulates electric charges according to the light converted by the conversion layer, and a switching element 32 that reads out the electric charges accumulated by the sensor unit 34.
  • a thin film transistor TFT: Thin Film Transistor
  • the switching element 32 will be referred to as "TFT32".
  • the sensor unit 34 and the TFT 32 are formed, and a layer in which the pixels 30 are formed on the first surface 11A of the base material 11 is provided as a flattened layer.
  • the pixel 30 corresponds to the pixel region 35 of the sensor substrate 12 in one direction (scanning wiring direction corresponding to the horizontal direction in FIG. 1, hereinafter also referred to as “row direction”) and an intersecting direction with respect to the row direction (corresponding to the vertical direction in FIG. It is arranged in a two-dimensional manner along the signal wiring direction (hereinafter also referred to as "row direction").
  • row direction the arrangement of the pixels 30 is shown in a simplified manner. For example, 1024 pixels ⁇ 1024 pixels 30 are arranged in the row direction and the column direction.
  • the radiation detector 10 is provided with a plurality of scanning wires 38 for controlling the switching state (on and off) of the TFT 32, which are provided for each row of the pixel 30, and for each column of the pixel 30.
  • a plurality of signal wirings 36 from which the electric charge accumulated in the sensor unit 34 is read out are provided so as to intersect each other.
  • Each of the plurality of scanning wires 38 is connected to the drive unit 102 via the cable 112A (see FIG. 2) to drive the TFT 32 output from the drive unit 102 to control the switching state.
  • a signal flows through each of the plurality of scanning wires 38.
  • each of the plurality of signal wirings 36 is connected to the signal processing unit 104 via the cable 112B (see FIG. 2), so that the electric charge read from each pixel 30 is signal-processed as an electric signal. It is output to unit 104.
  • the signal processing unit 104 generates and outputs image data corresponding to the input electric signal.
  • a control unit 100 which will be described later, is connected to the signal processing unit 104, and the image data output from the signal processing unit 104 is sequentially output to the control unit 100.
  • An image memory 106 is connected to the control unit 100, and image data sequentially output from the signal processing unit 104 is sequentially stored in the image memory 106 under the control of the control unit 100.
  • the image memory 106 has a storage capacity capable of storing a predetermined number of image data, and each time a radiographic image is taken, the image data obtained by the taking is sequentially stored in the image memory 106.
  • the control unit 100 includes a CPU (Central Processing Unit) 100A, a memory 100B including a ROM (Read Only Memory) and a RAM (Random Access Memory), and a non-volatile storage unit 100C such as a flash memory.
  • a CPU Central Processing Unit
  • a memory 100B including a ROM (Read Only Memory) and a RAM (Random Access Memory)
  • a non-volatile storage unit 100C such as a flash memory.
  • An example of the control unit 100 is a microcomputer or the like.
  • the control unit 100 controls the overall operation of the radiographic imaging apparatus 1.
  • the image memory 106, the control unit 100, and the like are formed on the control board 110.
  • a common wiring 39 is provided in the wiring direction of the signal wiring 36 in order to apply a bias voltage to each pixel 30.
  • the power supply unit 108 supplies electric power to various elements and circuits such as the control unit 100, the drive unit 102, the signal processing unit 104, the image memory 106, and the power supply unit 108.
  • various elements and circuits such as the control unit 100, the drive unit 102, the signal processing unit 104, the image memory 106, and the power supply unit 108.
  • the wiring connecting the power supply unit 108 with various elements and various circuits is omitted.
  • FIG. 2 is an example of a plan view of the radiation detector 10 of the present embodiment as viewed from the first surface 11A side of the base material 11.
  • FIG. 3A is an example of a cross-sectional view taken along the line AA of the radiation detector 10 in FIG. 2
  • FIG. 3B is an example of a cross-sectional view taken along the line BB of the radiation detector 10 in FIG.
  • the first surface 11A of the base material 11 is divided into a terminal region 60A in which the terminal portion 60 is provided and a terminal region outside 60B in which the terminal portion 60 is not provided.
  • the pixel region 35 provided with the above-mentioned pixel 30 is provided in the terminal region outer 60B.
  • the base material 11 is a resin sheet that is flexible and contains, for example, a plastic such as PI (PolyImide: polyimide).
  • the thickness of the base material 11 is such that the desired flexibility can be obtained according to the hardness of the material, the size of the sensor substrate 12 (the area of the first surface 11A or the second surface 11B), and the like. Good.
  • the gravity of the base material 11 is 2 mm at a position 10 cm away from the fixed side.
  • the base material 11 hangs down (becomes lower than the height of the fixed side).
  • a thickness of 5 ⁇ m to 125 ⁇ m may be used, and a thickness of 20 ⁇ m to 50 ⁇ m is more preferable.
  • the base material 11 has a property that can withstand the production of the pixel 30, and in the present embodiment, it has a property that can withstand the production of an amorphous silicon TFT (a-Si TFT).
  • a-Si TFT amorphous silicon TFT
  • the coefficient of thermal expansion (CTE: Coefficient of Thermal Expansion) at 300 ° C. to 400 ° C. is about the same as that of an amorphous silicon (Si) wafer (for example, ⁇ 5 ppm / K). Specifically, it is preferably 20 ppm / K or less.
  • the heat shrinkage rate of the base material 11 it is preferable that the heat shrinkage rate at 400 ° C. is 0.5% or less when the thickness is 25 ⁇ m.
  • the elastic modulus of the base material 11 preferably does not have a transition point possessed by a general PI in the temperature range between 300 ° C. and 400 ° C., and the elastic modulus at 500 ° C. is 1 GPa or more.
  • the base material 11 of the present embodiment has a fine particle layer containing inorganic fine particles having an average particle diameter of 0.05 ⁇ m or more and 2.5 ⁇ m or less and absorbing backscattered rays in order to suppress backscattered rays by itself. It is preferable to have.
  • inorganic fine particles in the case of the resinous base material 11, it is preferable to use an inorganic material having an atomic number larger than the atoms constituting the organic material which is the base material 11 and 30 or less.
  • Specific examples of such fine particles include SiO2, which is an oxide of Si having an atomic number of 14, MgO, which is an oxide of Mg having an atomic number of 12, Al2O3, which is an oxide of Al having an atomic number of 13.
  • examples thereof include TiO2, which is an oxide of Ti having an atomic number of 22.
  • Specific examples of the resin sheet having such characteristics include XENOMAX (registered trademark).
  • the above thickness in this embodiment was measured using a micrometer.
  • the coefficient of thermal expansion was measured according to JIS K7197: 1991. In the measurement, test pieces were cut out from the main surface of the base material 11 at different angles of 15 degrees, the coefficient of thermal expansion was measured for each of the cut out test pieces, and the highest value was taken as the coefficient of thermal expansion of the base material 11. ..
  • the coefficient of thermal expansion is measured at intervals of 10 ° C. from -50 ° C to 450 ° C in each of the MD (Machine Direction) direction and the TD (Transverse Direction) direction, and (ppm / ° C) is converted to (ppm / K). did.
  • a TMA4000S device manufactured by MAC Science Co., Ltd. was used, the sample length was 10 mm, the sample width was 2 mm, the initial load was 34.5 g / mm2, the heating rate was 5 ° C / min, and the atmosphere was argon. And said.
  • the base material 11 having the desired flexibility is not limited to a resin sheet or the like.
  • the base material 11 may be a glass substrate or the like having a relatively thin thickness.
  • the plurality of pixels 30 are provided in a part of the inside of 60B outside the terminal region on the first surface 11A of the base material 11. Further, in the sensor substrate 12 of the present embodiment, the pixel 30 is not provided in the terminal region 60A on the first surface 11A of the substrate 11. In the present embodiment, the region where the pixel 30 is provided on the first surface 11A of the base material 11 is defined as the pixel region 35.
  • the conversion layer 14 of the present embodiment covers the pixel region 35.
  • a scintillator containing CsI (cesium iodide) is used as an example of the conversion layer 14.
  • scintillators include CsI: Tl (cesium iodide added with thallium) and CsI: Na (cesium iodide added with sodium) having an emission spectrum of 400 nm to 700 nm during X-ray irradiation. It is preferable to include it.
  • the emission peak wavelength of CsI: Tl in the visible light region is 565 nm.
  • an adhesive layer 40, a reflective layer 42, an adhesive layer 44, and a protective layer 46 are provided on the conversion layer 14 of the present embodiment.
  • the adhesive layer 40 covers the entire surface of the conversion layer 14.
  • the adhesive layer 40 has a function of fixing the reflective layer 42 on the conversion layer 14.
  • the adhesive layer 40 preferably has light transmission.
  • an acrylic adhesive, a hot melt adhesive, and a silicone adhesive can be used as the material of the adhesive layer 40.
  • the acrylic pressure-sensitive adhesive include urethane acrylate, acrylic resin acrylate, and epoxy acrylate.
  • the hot melt adhesive include EVA (ethylene / vinyl acetate copolymer resin), EAA (ethylene / acrylic acid copolymer resin), EEA (ethylene-ethylacrylate copolymer resin), and EMMA (ethylene-methacryl).
  • Thermoplastics such as methyl acid copolymer) can be mentioned.
  • the thickness of the adhesive layer 40 is preferably 2 ⁇ m or more and 7 ⁇ m or less.
  • the thickness of the adhesive layer 40 is preferably 2 ⁇ m or more and 7 ⁇ m or less.
  • the reflective layer 42 covers the entire surface of the adhesive layer 40.
  • the reflective layer 42 has a function of reflecting the light converted by the conversion layer 14.
  • the reflective layer 42 is preferably made of an organic material.
  • white PET Polyethylene terephthalate
  • TiO 2 , Al 2 O 3 foamed white PET
  • polyester-based highly reflective sheet polyester-based highly reflective sheet
  • specular reflective aluminum and the like can be used as the material of the reflective layer 42.
  • White PET is obtained by adding a white pigment such as TiO 2 or barium sulfate to PET, and foamed white PET is white PET having a porous surface.
  • the polyester-based high-reflection sheet is a sheet (film) having a multilayer structure in which a plurality of thin polyester sheets are stacked.
  • the thickness of the reflective layer 42 is preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the adhesive layer 44 covers the entire surface of the reflective layer 42.
  • the end of the adhesive layer 44 extends to the surface of the sensor substrate 12. That is, the adhesive layer 44 is adhered to the sensor substrate 12 at its end.
  • the adhesive layer 44 has a function of fixing the reflective layer 42 and the protective layer 46 to the conversion layer 14.
  • the material of the adhesive layer 44 the same material as the material of the adhesive layer 40 can be used, but the adhesive force of the adhesive layer 44 is preferably larger than that of the adhesive layer 40.
  • the protective layer 46 is provided so as to cover the entire conversion layer 14 and its end portion to cover a part of the sensor substrate 12.
  • the protective layer 46 functions as a moisture-proof film that prevents moisture from entering the conversion layer 14.
  • PET PET
  • PPS PolyPhenylene Sulfide: polyphenylene sulfide
  • OPP Oriented PolyPropylene: biaxially stretched polypropylene film
  • PEN PolyEthylene Naphthalate: polyethylene naphthalate
  • PI polyEthylene Naphthalate
  • PI polyethylene naphthalate
  • Membranes and parylene registered trademark
  • a laminated film of a resin film and a metal film may be used as the protective layer 46. Examples of the laminated film of the resin film and the metal film include a sheet of Alpet (registered trademark).
  • the antistatic layer 54 and the adhesive 52 are interposed on the second surface 11B side of the substrate 11. ,
  • the reinforcing member 50 is provided.
  • the reinforcing member 50 has a function of reinforcing the strength of the base material 11.
  • the reinforcing member 50 of the present embodiment has higher flexural rigidity than the base material 11, and the dimensional change (deformation) with respect to the force applied in the direction perpendicular to the surface facing the conversion layer 14 is the second of the base material 11. It is smaller than the dimensional change with respect to the force applied in the direction perpendicular to the surface 11B of.
  • the bending rigidity of the reinforcing member 50 is preferably 100 times or more the bending rigidity of the base material 11.
  • the thickness of the reinforcing member 50 of the present embodiment is thicker than the thickness of the base material 11.
  • the thickness of the reinforcing member 50 is preferably about 0.2 mm to 0.25 mm.
  • the reinforcing member 50 preferably has a higher bending rigidity than the base material 11 from the viewpoint of suppressing the bending of the base material 11.
  • the flexural modulus is lowered, the flexural rigidity is also lowered, and in order to obtain the desired flexural rigidity, the thickness of the reinforcing member 50 must be increased, and the thickness of the entire radiation detector 10 is increased. ..
  • the thickness of the reinforcing member 50 tends to be relatively thick when trying to obtain a bending rigidity exceeding 140000 Pacm 4. Therefore, considering that appropriate rigidity can be obtained and the thickness of the entire radiation detector 10 is taken into consideration, the material used for the reinforcing member 50 is more preferably having a flexural modulus of 500 MPa or more and 3000 MPa or less. Further, the bending rigidity of the reinforcing member 50 is preferably 540 Pacm 4 or more and 140000 Pacm 4 or less.
  • the coefficient of thermal expansion of the reinforcing member 50 of the present embodiment is preferably close to the coefficient of thermal expansion of the material of the conversion layer 14, and more preferably the coefficient of thermal expansion of the reinforcing member 50 with respect to the coefficient of thermal expansion of the conversion layer 14.
  • the ratio (coefficient of thermal expansion of the reinforcing member 50 / coefficient of thermal expansion of the conversion layer 14) is preferably 0.5 or more and 2 or less.
  • the coefficient of thermal expansion of such a reinforcing member 50 is preferably 30 ppm / K or more and 80 ppm / K or less.
  • the coefficient of thermal expansion is 50 ppm / K.
  • the material of the reinforcing member 50 is more preferably a material containing at least one of PET and PC.
  • the reinforcing member 50 preferably contains a material having a yield point.
  • the “yield point” refers to a phenomenon in which the stress drops suddenly when the material is pulled, and the strain does not increase on the curve showing the relationship between the stress and the strain.
  • the point of increase which refers to the top of the stress-strain curve when a tensile strength test is performed on a material.
  • Resins having a yield point generally include resins that are hard and sticky, and resins that are soft and sticky and have moderate strength. Examples of the hard and sticky resin include PC and the like. Further, examples of the resin having a softness, a strong stickiness, and a medium strength include polypropylene and the like.
  • the reinforcing member 50 of this embodiment is a substrate made of plastic.
  • the plastic used as the material of the reinforcing member 50 is preferably a thermoplastic resin for the reasons described above, and is preferably PC, PET, styrene, acrylic, polyacetase, nylon, polypropylene, ABS (Acrylonitrile Butadinee Styrene), engineering plastic, and polyphenylene ether. At least one of.
  • the reinforcing member 50 is preferably at least one of polypropylene, ABS, engineering plastic, PET, and polyphenylene ether, and more preferably at least one of styrene, acrylic, polyacetase, and nylon. , PC and PET are more preferable.
  • a plurality of terminal portions 60 (16 in total in this embodiment) are provided in the terminal region 60A of the radiation detector 10 of the present embodiment.
  • the terminal region 60A is provided on each of a pair of sides and sides facing the pair of sides (total of three sides) of the rectangular sensor substrate 12 (base material 11).
  • the terminal region 60A refers to a region on the first surface 11A of the base material 11 where a plurality of terminal portions 60 are provided, and includes at least a region where the terminal portions 60 are in contact with the first surface 11A.
  • the terminal region includes at least the region where the terminal portion 60 is in contact with the first surface 11A over the entire side of the sensor substrate 12 (base material 11) where the terminal portion 60 is provided. It is called 60A.
  • a cable 112 is electrically connected to each of the terminal portions 60 provided in the terminal region 60A of the base material 11.
  • the cable 112A is thermocompression-bonded to each of a plurality of terminal portions 60 (8 each in FIG. 2) provided on each of the pair of opposite sides of the base material 11. ing.
  • the cable 112A is a so-called COF (Chip on Film), and the cable 112A is equipped with a drive IC (Integrated Circuit) 210.
  • the drive IC 210 is connected to a plurality of signal lines (not shown) included in the cable 112A.
  • the method of electrically connecting the terminal portion 60 and the cable 112A is not limited to this embodiment, and may be, for example, electrically connected by a connector.
  • a connector examples include a ZIF (Zero Insert Force) structure connector and a Non-ZIF structure connector.
  • ZIF Zero Insert Force
  • Non-ZIF structure connector examples of such a connector.
  • the cable 112A and the cable 112B described later are generically referred to without distinction, they are simply referred to as "cable 112".
  • the other end of the cable 112A which is electrically connected to the terminal portion 60 of the sensor board 12, and the other end on the opposite side, is electrically connected to the connection area 202 of the drive board 200.
  • a plurality of signal lines (not shown) included in the cable 112A are thermocompression-bonded to the drive board 200 to form circuits and elements mounted on the drive board 200 (not shown). Be connected.
  • the method of electrically connecting the drive board 200 and the cable 112A is not limited to this embodiment, and may be, for example, electrically connected by a connector. Examples of such a connector include a ZIF structure connector and a Non-ZIF structure connector.
  • the drive board 200 of this embodiment is a flexible PCB (Printed Circuit Board) board, which is a so-called flexible board.
  • the circuit components (not shown) mounted on the drive board 200 are components mainly used for processing digital signals (hereinafter, referred to as "digital components").
  • Digital components tend to have a relatively smaller area (size) than analog components, which will be described later.
  • Specific examples of digital components include digital buffers, bypass capacitors, pull-up / pull-down resistors, damping resistors, EMC (Electro Magnetic Compatibility) countermeasure chip components, power supply ICs, and the like.
  • the drive substrate 200 does not necessarily have to be a flexible substrate, may be a non-flexible rigid substrate, or may use a rigid flexible substrate.
  • the drive unit 102 is realized by the drive board 200 and the drive IC 210 mounted on the cable 112A.
  • the drive IC 210 includes various circuits and elements that realize the drive unit 102, which are different from the digital components mounted on the drive board 200.
  • the cable 112B is electrically connected to each of the plurality of (8 in FIG. 2) terminal portions 60 provided on the side where the cable 112A intersects one side of the electrically connected base material 11.
  • the cable 112B is a so-called COF (Chip on Film), and the cable 112B is equipped with a signal processing IC 310.
  • the signal processing IC 310 is connected to a plurality of signal lines (not shown) included in the cable 112B.
  • the method of electrically connecting the terminal portion 60 and the cable 112B is not limited to this embodiment, and may be, for example, electrically connected by a connector. Examples of such a connector include a ZIF structure connector and a Non-ZIF structure connector.
  • the other end of the cable 112B which is electrically connected to the terminal portion 60 of the sensor board 12, and the other end on the opposite side, is electrically connected to the connection area 302 of the signal processing board 300.
  • a plurality of signal lines (not shown) included in the cable 112B are thermocompression-bonded to the signal processing board 300, so that circuits and elements mounted on the signal processing board 300 (not shown) and the like (not shown). ) Is connected.
  • the method of electrically connecting the signal processing board 300 and the cable 112B is not limited to this embodiment, and may be, for example, electrically connected by a connector. Examples of such a connector include a ZIF structure connector and a Non-ZIF structure connector.
  • the method of electrically connecting the cable 112A and the drive board 200 and the method of electrically connecting the cable 112B and the signal processing board 300 may be the same or different.
  • the cable 112A and the drive board 200 may be electrically connected by thermocompression bonding
  • the cable 112B and the signal processing board 300 may be electrically connected by a connector.
  • the signal processing board 300 of the present embodiment is a flexible PCB board like the drive board 200 described above, and is a so-called flexible board.
  • the circuit components (not shown) mounted on the signal processing board 300 are components mainly used for processing analog signals (hereinafter, referred to as “analog components”). Specific examples of analog components include a charge amplifier, an analog-to-digital converter (ADC), a digital-to-analog converter (DAC), a power supply IC, and the like. Further, the circuit component of the present embodiment also includes a coil around a power supply having a relatively large component size and a large-capacity capacitor for smoothing.
  • the signal processing substrate 300 does not necessarily have to be a flexible substrate, may be a non-flexible rigid substrate, or may use a rigid flexible substrate.
  • the signal processing unit 104 is realized by the signal processing board 300 and the signal processing IC 310 mounted on the cable 112B.
  • the signal processing IC 310 includes various circuits and elements that realize the signal processing unit 104, which are different from the analog components mounted on the signal processing board 300.
  • the number of drive boards 200 and signal processing boards 300 is not limited to this embodiment.
  • either one of the drive board 200 and the signal processing board 300 provided on each side of the sensor board 12 may be used as one board.
  • the cable 112 is electrically connected to the terminal portion 60 by thermocompression bonding the cable 112 to the terminal portion 60 via the connection layer 62.
  • connection layer 62 has a function of electrically connecting the terminal portion 60 and the cable 112.
  • Examples of the connecting layer 62 include an anisotropic conductive film, and ACF (Anisotropic Conductive Film) in which conductive particles (not shown) are dispersed in an adhesive that is cured by heat can be used.
  • the first surface 11A side of the base material 11 in the laminated body 63 in which the terminal portion 60, the connecting layer 62, and the cable 112 are laminated is covered with the reinforcing member 64.
  • the side surface of the laminate in which the terminal portion 60, the connection layer 62, and the cable 112 are laminated and the side surface of the base material 11 are covered with the reinforcing member 65.
  • the reinforcing member 64 and the reinforcing member 65 have a function of strengthening the electrical connection between the terminal portion 60 and the cable 112. Further, the reinforcing member 64 and the reinforcing member 65 of the present embodiment have moisture resistance.
  • the reinforcing member 64 and the reinforcing member 65 for example, a moisture-proof insulating film can be used, and Tuffy (registered trademark) or the like, which is a moisture-proof insulating material for FPD (Flat Panel Display), can be used.
  • Tuffy registered trademark
  • FPD Flat Panel Display
  • Each of the reinforcing member 64 and the reinforcing member 65 may be a member made of the same material or a member made of a different material.
  • the substrate 11 is attached to a support 400 such as a glass substrate which is thicker than the substrate 11 via a release layer (not shown).
  • a support 400 such as a glass substrate which is thicker than the substrate 11 via a release layer (not shown).
  • a sheet to be the base material 11 is attached onto the support 400.
  • the second surface 11B of the base material 11 faces the support 400 side.
  • the method of forming the base material 11 is not limited to this embodiment, and may be, for example, a form in which the base material 11 is formed by a coating method.
  • an alignment mark 92 that serves as a mark of the cutting position in the step of cutting the laminate 19 shown in FIGS. 4F and 4G described later is formed.
  • the timing of providing the alignment mark 92 is not limited to this embodiment.
  • the first surface 11A of the base material 11 The alignment mark 92 may be provided on the.
  • the alignment mark 92 of the present embodiment is an example of the mark of the present disclosure.
  • the pixel 30 is formed in the pixel region 35 of 60B outside the terminal region of the first surface 11A of the base material 11.
  • the pixel 30 is formed on the first surface 11A of the base material 11 via an undercoat layer (not shown) using SiN or the like.
  • the sensor substrate 12 in which the pixels 30 are formed in the pixel region 35 is formed.
  • the conversion layer 14 is formed on the pixel 30 (pixel region 35).
  • the CsI conversion layer 14 is formed as columnar crystals directly on the sensor substrate 12 by a vapor deposition method such as a vacuum deposition method, a sputtering method, and a CVD (Chemical Vapor Deposition) method.
  • the side of the conversion layer 14 in contact with the pixel 30 is the growth direction base point side of the columnar crystal.
  • the conversion layer 14 can be formed on the sensor substrate 12 by a method different from that of the present embodiment. For example, prepare an aluminum plate or the like on which CsI is vapor-deposited by a vapor phase deposition method, and attach the side of the CsI that is not in contact with the aluminum plate and the pixel 30 of the sensor substrate 12 with an adhesive sheet or the like. As a result, the conversion layer 14 may be formed on the sensor substrate 12. In this case, it is preferable that the entire conversion layer 14 including the aluminum plate is covered with the protective layer 46 and bonded to the pixels 30 of the sensor substrate 12. In this case, the side of the conversion layer 14 in contact with the pixel 30 is the tip side in the growth direction of the columnar crystal.
  • GOS Ga 2 O 2 S: Tb
  • the conversion layer 14 may be used as the conversion layer 14 instead of CsI.
  • a sheet in which GOS is dispersed in a binder such as resin is prepared by bonding a support formed of white PET or the like with an adhesive layer or the like, and the GOS support is not bonded.
  • the conversion layer 14 can be formed on the sensor substrate 12 by sticking the side and the pixels 30 of the sensor substrate 12 with an adhesive sheet or the like.
  • CsI is used for the conversion layer 14 the conversion efficiency from radiation to visible light is higher than when GOS is used.
  • a reflective layer 42 is provided via the adhesive layer 40 on the conversion layer 14 formed on the sensor substrate 12, and a protective layer 46 is provided via the adhesive layer 44.
  • the terminal portion 60 is formed in the terminal region 60A on the first surface 11A of the base material 11.
  • the timing of forming the terminal portion 60 in the terminal region 60A on the base material 11 is not limited to this embodiment.
  • the terminal portion 60 may also be formed during either the step of forming the sensor substrate 12 (FIG. 4A) or the step of forming the conversion layer 14 (FIG. 4B), or the sensor substrate 12 may be formed.
  • the terminal portion 60 may be formed at a timing between the step of forming the conversion layer 14 (FIG. 4A) and the step of forming the conversion layer 14 (FIG. 4B).
  • the cable 112 is thermocompression bonded to the terminal portion 60 via the connection layer 62 to electrically connect the terminal portion 60 and the connection layer 62.
  • the reinforcing member 64 covers the laminated body 63.
  • each of the cable 112A to which the drive board 200 is electrically connected and the cable 112B to which the signal processing board 300 is electrically connected are electrically connected to the terminal portion 60 of the base material 11.
  • the form of connection has been described, the state of the cable 112 electrically connected to the terminal portion 60 of the base material 11 is not limited to this form.
  • the timing of electrically connecting the drive board 200 to the cable 112A and the timing of electrically connecting the cable 112B to the signal processing board 300 are not limited to this embodiment.
  • the drive board 200 may be electrically connected to the cable 112A, and the cable 112B may be electrically connected to the signal processing board 300.
  • the timing of electrically connecting the drive board 200 to the cable 112A and the timing of electrically connecting the cable 112B to the signal processing board 300 may be different.
  • a conversion layer 14 is provided to support the sensor substrate 12 in a state where the cable 112 is electrically connected to the terminal portion 60. Peel off from body 400.
  • any of the four sides of the sensor substrate 12 (base material 11) is set as the starting point of peeling, and the sensor substrate 12 is gradually peeled off from the support 400 from the starting point toward the opposite side. , Perform mechanical peeling.
  • the reinforcing member 50 is attached to the second surface 11B of the base material 11 via the antistatic layer 54 and the adhesive 52 (see FIGS. 3A and 3B).
  • the reinforcing member 50 is formed by attaching or the like.
  • the sensor substrate 12 in which the cable 112 is electrically connected to the terminal portion 60 is placed in a state where the second surface 11B of the substrate 11 is on the upper side, and the bonding device has an alignment function. set.
  • the bonding device identifies the corners of the reinforcing member 50 provided with the adhesive 52 and the antistatic layer 54 and the corners of the second surface 11B of the base material 11 by an alignment function using an image pickup device or the like.
  • the reinforcing member 50 and the sensor substrate 12 (base material 11) are aligned so that both corners overlap.
  • the laminating device moves the roller 410 in the direction of the arrow P in a state where the reinforcing member 50 and the sensor substrate 12 (base material 11) are aligned to move the reinforcing member 50. It is attached to the second surface 11B of the base material 11.
  • the terminals corresponding to the outside of the pixel region 35 in the base material 11 of the laminated body 19 The portion of 60B outside the region is cut.
  • the portion of the laminated body 19 outside the pixel region 35 on the side opposite to the side to which the cable 112B of the base material 11 is electrically connected is cut.
  • the position represented by the cutting line 90 is cut, the end portion of the laminated body 19 is cut off, and the radiation detector 10 is brought into the state shown in FIG. 4H.
  • the cutting line 90 is shown to indicate the cutting position, and is not actually provided on the first surface 11A of the base material 11.
  • the laminated body 19 in which the sensor substrate 12 and the reinforcing member 50 are laminated is set in a cutting device having an alignment function with the first surface 11A of the base material 11 facing up. ..
  • the cutting device detects two alignment marks 92 provided on the first surface 11A of the base material 11 by an alignment function using an imaging device or the like, and determines the cutting line 90 based on the detected alignment marks 92. To do. Then, the cutting device cuts the laminated body 19 along the cutting line 90.
  • the laminated body 19 in which the base material 11 and the reinforcing member 50 are laminated is cut.
  • the cut surface 11C of the base material 11 and the cut surface 50C of the reinforcing member 50 are in a flush state as shown in FIG. 3B.
  • the state in which the cut surface 11C of the base material 11 and the cut surface 50C of the reinforcing member 50 are "parallel” is not limited to the case where the cut surface 11C and the cut surface 50C are completely on the same plane. It refers to a state in which the reinforcing member 50 can be regarded as "facial” by allowing shrinkage, manufacturing error, and the like.
  • the state in which the cut surface 11C of the base material 11 and the cut surface 50C of the reinforcing member 50 are "parallel” means that the cut surface 11C of the base material 11 and the cut surface 11C of the reinforcing member 50 are positioned. It is preferable that the difference is smaller than the difference in position between the side surface 11D of the base material 11 and the side surface 50D of the reinforcing member 50 that occurs when the reinforcing member 50 is attached to the base material 11 as shown in FIG. 3A. Refers to a state of ⁇ 10 ⁇ m.
  • the radiation detectors 10 shown in FIGS. 2 to 3B and 4H are manufactured by the steps shown in FIGS. 4A to 4G.
  • the pixel region 60B outside the pixel region 35 of the laminate 19 in which the base material 11 and the laminate 19 are laminated is cut.
  • the laminated body 19 (base material 11) can be cut up to the vicinity of 35. Therefore, the pixels 30 can be provided near the end of the base material 11 (sensor substrate 12).
  • the pixel area 35 can be set to a position closer to the chest wall of the subject, so that the radiation including the vicinity of the chest wall of the subject is included. It becomes possible to take an image.
  • FIG. 5 is an example of a plan view of the radiation detector 10 of the present embodiment as viewed from the first surface 11A side of the base material 11.
  • 6A is an example of a sectional view taken along line AA of the radiation detector 10 in FIG. 5
  • FIG. 6B is an example of a sectional view taken along line BB of the radiation detector 10 in FIG.
  • the cable 112A is electrically connected to each of the plurality of terminal portions 60 provided on each of the pair of opposite sides of the base material 11 .
  • a plurality of terminal portions 60 are provided only on one side of the base material 11, and a cable 112A is electrically connected to each of them. The point is different.
  • the cut surface 11C of the base material 11 and the cut surface 11C of the reinforcing member 50 are end faces on the terminal region 60A side of the laminated body 19.
  • the side surface 11D of the base material 11 and the side surface 11D of the reinforcing member 50 are end faces on the 60B side outside the terminal region in the laminated body 19.
  • the release layer (not shown) is formed on the support 400 in the same manner as in the step of forming the sensor substrate 12 described in the first embodiment (see FIG. 4A).
  • the base material 11 is formed through the substrate 11.
  • the alignment mark 92 which serves as a mark of the cutting position, is 3 on the first surface 11A of the base material 11.
  • One (alignment marks 92A, 92B, 92C) is provided.
  • the pixel 30 is formed in the pixel region 35 of the terminal region 60B outside the terminal region of the first surface 11A of the base material 11.
  • the conversion layer 14 is formed. Further, on the conversion layer 14 formed on the sensor substrate 12, the reflective layer 42 is provided via the adhesive layer 40, and the protective layer 46 is further provided via the adhesive layer 44.
  • the step of peeling the sensor substrate 12 from the support 400 the same as the step of peeling the sensor substrate 12 from the support 400 described in the first embodiment (see FIG. 4D).
  • the sensor substrate 12 provided with the conversion layer 14 is peeled off from the support 400.
  • the second surface 11B of the base material 11 is charged in the same manner as in the step of providing the reinforcing member 50 of the first embodiment (see FIG. 4E).
  • the reinforcing member 50 is formed by sticking or the like via the prevention layer 54 and the adhesive 52 (see FIGS. 6A and 6B).
  • the terminals corresponding to the outside of the pixel region 35 in the base material 11 of the laminated body 19 A portion of region 60A is cut.
  • the cutting method of the laminated body 19 may be performed in the same manner as the step of cutting the laminated body 19 (see FIGS. 4F and 4G) in the first embodiment.
  • the cutting device cuts the laminated body 19 along the cutting line 90A determined by the alignment mark 92A and the alignment mark 92B, and the cutting line determined by the alignment mark 92B and the alignment mark 92C.
  • the laminate 19 is cut along 90B.
  • the step of electrically connecting the cable 112 to the terminal portion 60 in the step of electrically connecting the cable 112 to the terminal portion 60, the step of electrically connecting the cable 112 described in the first embodiment to the terminal portion 60 (see FIG. 4C).
  • the terminal portion 60 is formed in the terminal region 60A on the first surface 11A of the base material 11.
  • the cable 112 is thermocompression bonded to the terminal portion 60 via the connection layer 62 to electrically connect the terminal portion 60 and the connection layer 62.
  • the reinforcing member 64 covers the laminated body 63.
  • the radiation detector 10 shown in FIGS. 5 to 6B is manufactured by the steps shown in FIGS. 7A to 7G.
  • the terminal portion is cut from the terminal region outside 60B outside the pixel region 35 of the laminate 19 in which the base material 11 and the laminate 19 are laminated.
  • the reinforcing member 50 is provided up to the end of the 60. Therefore, in the process of electrically connecting the cable 112 to the terminal portion 60, the strength of the base material 11 is reinforced by the reinforcing member 50, so that the terminal portion 60 portion is less likely to be damaged.
  • the flexible base material 11 is provided on the support 400, and the pixel region 35 of the base material 11 is subjected to the irradiation of radiation.
  • a step of forming a sensor substrate 12 provided with a plurality of pixels 30 for accumulating charges and a step of peeling the sensor substrate 12 provided with the plurality of pixels 30 from the support 400 are provided.
  • the method of manufacturing the radiation detector 10 includes a step of providing a reinforcing member 50 for reinforcing the strength of the base material 11 on the second surface 11B peeled from the support 400 in the sensor substrate 12, and the reinforcing member 50 and the base material.
  • a step of cutting a portion of the laminated body 19 in which 11 is laminated and corresponding to the outside of the pixel region 35 in the base material 11 is provided.
  • the sensor substrate 12 bends in the step of peeling the sensor substrate 12 from the support 400 in the manufacturing process of the radiation detector 10. Therefore, there is a concern that the pixels 30 near the end of the sensor substrate 12 may be damaged.
  • the laminate 19 of the base material 11 and the reinforcing member 50 is cut.
  • the laminated body 19 can be cut in the vicinity of the pixel region 35 after the sensor substrate 12 is peeled off, so that the pixels 30 are damaged up to the vicinity of the end portion of the sensor substrate 12.
  • the suppressed pixel region 35 can be set.
  • the base material 11 of the sensor substrate 12 has flexibility, it is difficult to cut the base material 11 as it is.
  • the method for manufacturing the radiation detector 10 of each of the above embodiments after the reinforcing member 50 is provided on the base material 11, the laminated body 19 of the base material 11 and the reinforcing member 50 is cut. Since the laminate 19 is thicker and more rigid than the base material 11, the laminate 19 is easier to cut than the base material 11. Therefore, according to the radiation detector 10 of each of the above embodiments, the desired range of the base material 11 (laminated body 19) can be cut without damaging the pixels 30.
  • the method for manufacturing the radiation detector 10 of each of the above embodiments may further include a step of providing a reinforcing layer 48 on the conversion layer 14. That is, the radiation detector 10 may include a reinforcing layer 48.
  • FIG. 8 shows an example of a cross-sectional view of the radiation detector 10 of this modified example, which corresponds to the cross-sectional view taken along the line AA of the radiation detector 10 shown in FIG. 3A.
  • a reinforcing layer 48 is further provided on the conversion layer 14 covered with the protective layer 46.
  • the reinforcing layer 48 has a higher flexural rigidity than the base material 11, and the dimensional change (deformation) with respect to the force applied in the direction perpendicular to the surface facing the conversion layer 14 is caused to the first surface 11A of the base material 11. On the other hand, it is smaller than the dimensional change with respect to the force applied in the vertical direction. Further, the thickness of the reinforcing layer 48 is thicker than that of the base material 11.
  • the reinforcing layer 48 is preferably made of a material having a flexural modulus of 150 MPa or more and 3000 MPa or less.
  • the reinforcing layer 48 preferably has a higher bending rigidity than the base material 11 from the viewpoint of suppressing the bending of the base material 11.
  • the flexural modulus decreases, the flexural rigidity also decreases, and in order to obtain the desired flexural rigidity, the thickness of the reinforcing layer 48 must be increased, and the thickness of the entire radiation detector 10 increases. ..
  • the thickness of the reinforcing layer 48 tends to be relatively thick.
  • the material used for the reinforcing layer 48 preferably has a flexural modulus of 150 MPa or more and 3000 MPa or less. Further, the flexural rigidity of the reinforcing layer 48 is preferably 540 Pacm 4 or more and 140000 Pacm 4 or less.
  • the coefficient of thermal expansion of the reinforcing layer 48 is preferably close to the coefficient of thermal expansion of the material of the conversion layer 14, and more preferably the ratio of the coefficient of thermal expansion of the reinforcing layer 48 to the coefficient of thermal expansion of the conversion layer 14 (reinforcing layer).
  • the coefficient of thermal expansion of 48 / the coefficient of thermal expansion of the conversion layer 14) is preferably 0.5 or more and 2 or less.
  • the coefficient of thermal expansion of such a reinforcing layer 48 is preferably 30 ppm / K or more and 80 ppm / K or less.
  • the coefficient of thermal expansion is 50 ppm / K.
  • examples of the material relatively close to the conversion layer 14 include PVC, acrylic, PET, PC, Teflon (registered trademark) and the like.
  • the material of the reinforcing layer 48 is more preferably a material containing at least one of PET and PC. Further, from the viewpoint of elasticity, the reinforcing layer 48 preferably contains a material having a yield point.
  • the reinforcing layer 48 is a substrate made of plastic.
  • the plastic used as the material of the reinforcing layer 48 is preferably a thermoplastic resin for the reasons described above, and at least one of PC, PET, styrene, acrylic, polyacetase, nylon, polypropylene, ABS, engineering plastic, and polyphenylene ether can be mentioned. Be done.
  • the reinforcing layer 48 is preferably at least one of polypropylene, ABS, engineering plastic, PET, and polyphenylene ether, and more preferably at least one of styrene, acrylic, polyacetase, and nylon. , PC and PET are more preferable.
  • the specific characteristics, materials, and the like of the reinforcing layer 48 and the reinforcing member 50 may be the same or different.
  • the conversion layer 14 When the conversion layer 14 is formed by the vapor phase deposition method, the conversion layer 14 is formed with an inclination that gradually decreases in thickness toward the outer edge thereof, as shown in FIGS. 8 and 3A. Will be done.
  • the central region of the conversion layer 14 in which the thickness can be regarded as substantially constant when manufacturing errors and measurement errors are ignored is referred to as a central portion.
  • an outer peripheral region of the conversion layer 14 having a thickness of, for example, 90% or less of the average thickness of the central portion of the conversion layer 14 is referred to as a peripheral edge portion. That is, the conversion layer 14 has an inclined surface inclined with respect to the sensor substrate 12 at the peripheral edge portion.
  • the reinforcing layer 48 shown in FIG. 8 covers the entire central portion and a part of the peripheral portion of the conversion layer 14. In other words, the outer edge of the reinforcing layer 48 is located on the inclined surface of the peripheral edge of the conversion layer 14.
  • the reinforcing layer 48 may cover the entire conversion layer 14. Further, for example, in FIG. 8, the reinforcing layer 48 is provided in a bent state along the inclined portion of the conversion layer 14, but is formed in a plate shape without bending between the inclined portion of the conversion layer 14 and the reinforcing layer 48. A space may be provided.
  • the step of providing the reinforcing layer 48 on the conversion layer 14 is performed before the sensor substrate 12 is peeled off from the support 400.
  • the strength of the base material 11 is further reinforced.
  • the radiation detector 10 is an indirect conversion type in which the radiation is once converted into light by the conversion layer 14 and the converted light is converted into electric charges. Not limited.
  • the radiation detector 10 may be a direct conversion type that directly converts radiation into electric charges.
  • the direct conversion type radiation detector 10 has a function in which the sensor unit 34 receives radiation and generates an electric charge instead of the conversion layer 14 described above. Examples of the direct conversion type sensor unit 34 include a-Se (amorphous selenium) and crystal CdTe (crystal cadmium telluride).
  • the step of forming the conversion layer 14 shown in FIG. 4B is omitted from the steps described with reference to FIGS. 4A to 4H described above. That is, after the step of forming the sensor substrate 12 shown in FIG. 4A, the step of electrically connecting the cable 112 to the terminal portion 60 shown in FIG. 4C is performed.
  • the protective layer 46 or the like is provided on the pixel 30 (pixel region 35), it is carried out in the step of forming the sensor substrate 12 shown in FIG. 4A.
  • FIGS. 9 to 11 show a radiation imaging apparatus 1 using the radiation detector 10 of the first embodiment.
  • FIG. 9 shows a cross-sectional view of an example of an ISS (Irradiation Side Sampling) type radiation imaging apparatus 1 in which radiation is irradiated from the second surface 11B side of the base material 11.
  • the radiation detector 10, the power supply unit 108, and the control board 110 are provided side by side in the housing 120 in a direction intersecting the incident direction of the radiation.
  • the radiation detector 10 is arranged in a state in which the first surface 11A side of the base material 11 on the sensor substrate 12 faces the irradiation surface 120A side of the housing 120 in which the radiation transmitted through the subject is irradiated.
  • FIG. 10 shows a cross-sectional view of an example of a PSS (Penetration Side Sampling) type radiation imaging apparatus 1 in which radiation is irradiated from the conversion layer 14 side.
  • a radiation detector 10 As shown in FIG. 10, a radiation detector 10, a power supply unit 108, and a control board 110 are provided side by side in the housing 120 in a direction intersecting the incident direction of radiation.
  • the radiation detector 10 is arranged in a state in which the second surface 11B side of the base material 11 on the sensor substrate 12 faces the irradiation surface 120A side of the housing 120 in which the radiation transmitted through the subject is irradiated.
  • control board 110 and the drive board 200 are electrically connected by a cable 220. Further, although the description is omitted in FIGS. 9 and 10, the control board 110 and the signal processing board 300 are electrically connected by a cable.
  • control board 110 is connected by a power supply line 115 to a power supply unit 108 that supplies power to the image memory 106 and the control unit 100 formed on the control board 110.
  • a sheet 116 is further provided in the housing 120 of the radiation imaging apparatus 1 shown in FIGS. 9 and 10 on the side where the radiation transmitted through the radiation detector 10 is emitted.
  • Examples of the sheet 116 include a copper sheet.
  • the copper sheet is less likely to generate secondary radiation due to incident radiation, and therefore has a function of preventing scattering to the rear, that is, to the conversion layer 14 side. It is preferable that the sheet 116 covers at least the entire surface of the conversion layer 14 on the side where the radiation is emitted, and also covers the entire conversion layer 14.
  • a protective layer 117 is further provided on the side where radiation is incident (the irradiation surface 120A side).
  • a moisture-proof film such as an Alpet (registered trademark) sheet, a parylene (registered trademark) film, and an insulating sheet such as polyethylene terephthalate can be applied to the insulating sheet (film).
  • the protective layer 117 has a moisture-proof function and an antistatic function for the pixel region 35. Therefore, the protective layer 117 preferably covers at least the entire surface of the pixel region 35 on the side where the radiation is incident, and preferably covers the entire surface of the sensor substrate 12 on the side where the radiation is incident.
  • the material of the housing 120 is a portion of the housing 120 in which each of the power supply unit 108 and the control board 110 is provided and a portion of the housing 120 in which the radiation detector 10 is provided. It may be different. Further, for example, even if the portion of the housing 120 in which each of the power supply unit 108 and the control board 110 is provided and the portion of the housing 120 in which the radiation detector 10 is provided are configured as separate bodies. Good.
  • the housing 120 is preferably made of a material having a low absorption rate of radiation, particularly X-rays, high rigidity, and a sufficiently high elastic modulus.
  • the portion of the 120 corresponding to the irradiation surface 120A is made of a material having a low radiation absorption rate, high rigidity, and a sufficiently high elastic modulus, and the other parts are different from the portion corresponding to the irradiation surface 120A. It may be composed of a material, for example, a material having a lower elastic modulus than the portion of the irradiation surface 120A.
  • the present invention is not limited to this, and for example, a one-dimensional arrangement may be used or a honeycomb. It may be an array.
  • the shape of the pixel is not limited, and it may be a rectangle or a polygon such as a hexagon. Further, it goes without saying that the shape of the pixel region 35 is not limited.
  • the configuration, manufacturing method, etc. of the radiation imaging device 1 and the radiation detector 10 described in each of the above embodiments are examples, and can be changed according to the situation within a range not deviating from the gist of the present invention. Needless to say.
  • the disclosure of Japanese Patent Application No. 2019-149303 filed August 16, 2019 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.
  • Radiation imaging device 10 Radiation detector 11 Base material, 11A 1st surface, 11B 2nd surface, 11C Cut surface, 11D Side surface 12 Sensor substrate 14 Conversion layer 19 Laminated body 30 Pixels 32 TFT (switching element) 34 Sensor part 35 Pixel area 36 Signal wiring 38 Scanning wiring 39 Common wiring 40 Adhesive layer 42 Reflective layer 44 Adhesive layer 46 Protective layer 48 Reinforcing layer 50 Reinforcing member, 50C Cut surface, 50D Side surface 52 Adhesive 54 Antistatic layer 60 Terminal part , 60A terminal area, 60B terminal area outside 62 Connection layer 63 Laminated body 64, 65 Reinforcing member 90, 90A, 90B Cutting line 92, 92A to 92C Alignment mark 100 Control unit, 100A CPU, 100B memory, 100C storage unit 102 Drive unit 104 Signal processing unit 106 Image memory 108 Power supply unit 110 Control board 112, 112A, 112B, 220 Cable 115 Power supply line 116 Sheet 117 Protective layer 120 Housing, 120A irradi

Abstract

This method for manufacturing a radiation detector comprises: a step for forming a sensor substrate, in which a flexible substrate is provided on a support body, and a plurality of pixels for storing a charge based on emitted radiation are provided in a pixel region of the substrate; a step for peeling off the sensor substrate provided with the plurality of pixels from the support body; a step for providing, on a second surface of the sensor substrate, a reinforcing member for reinforcing the substrate, the second surface being the surface peeled off from the support body; and a step for cutting off a portion of a layered body obtained by layering the reinforcing member and the substrate, said portion corresponding to an area outside of the pixel region of the substrate. This method for manufacturing a radiation detector makes it is possible to easily increase the proportion of the pixel region where the pixels are formed on the substrate.

Description

放射線検出器の製造方法Radiation detector manufacturing method
 本発明は、放射線検出器の製造方法に関する。 The present invention relates to a method for manufacturing a radiation detector.
 従来、医療診断を目的とした放射線撮影を行う放射線画像撮影装置が知られている。このような放射線画像撮影装置には、被写体を透過した放射線を検出し放射線画像を生成するための放射線検出器が用いられている。 Conventionally, a radiographic imaging device that performs radiographic imaging for the purpose of medical diagnosis is known. In such a radiation image capturing apparatus, a radiation detector for detecting radiation transmitted through a subject and generating a radiation image is used.
 放射線検出器としては、放射線を光に変換するシンチレータ等の変換層と、変換層で変換された光に応じて発生した電荷を蓄積する複数の画素が設けられた基板と、を備えたものがある。このような放射線検出器として、画素が設けられた画素領域から放射線検出器の縁までの距離が短い、いわゆる狭額縁の放射線検出器が知られている。例えば、特開2014-13193号公報に記載の技術では、画素領域の辺に沿ってセンサ基板を切断することで、狭額縁の放射線検出器を製造している。 The radiation detector includes a conversion layer such as a scintillator that converts radiation into light, and a substrate provided with a plurality of pixels that accumulate charges generated in response to the light converted by the conversion layer. is there. As such a radiation detector, a so-called narrow frame radiation detector in which the distance from the pixel region provided with pixels to the edge of the radiation detector is short is known. For example, in the technique described in Japanese Patent Application Laid-Open No. 2014-13193, a radiation detector having a narrow frame is manufactured by cutting a sensor substrate along a side of a pixel region.
 ところで、放射線検出器として、基板に可撓性の基材を用いたものが知られている。可撓性の基材を用いることにより、例えば、放射線画像撮影装置(放射線検出器)を軽量化でき、また、被写体の撮影が容易となる場合がある。 By the way, as a radiation detector, a radiation detector using a flexible base material is known. By using a flexible base material, for example, the radiation imaging device (radiation detector) can be made lighter, and the subject may be easily photographed.
 このような、可撓性の基材を用いた放射線検出器では、センサ基板が撓み易いため、特開2014-13193号公報に記載の技術と異なり、センサ基板の切断を行い難く、また、センサ基板を切断することにより画素が破損する場合があった。 In such a radiation detector using a flexible base material, the sensor substrate is easily bent, so that unlike the technique described in Japanese Patent Application Laid-Open No. 2014-13193, it is difficult to cut the sensor substrate and the sensor. Pixels may be damaged by cutting the substrate.
 本開示は、基板における、画素が形成された画素領域の割合を高くすることが簡便にできる放射線検出器の製造方法を提供する。 The present disclosure provides a method for manufacturing a radiation detector that can easily increase the proportion of pixel regions in which pixels are formed on a substrate.
 本開示の第1の態様の放射線検出器の製造方法は、支持体に可撓性の基材を設け、基材の画素領域に、照射された放射線に応じた電荷を蓄積する複数の画素が設けられた基板を形成する工程と、複数の画素が設けられた基板を、支持体から剥離する工程と、基板における支持体から剥離した面に、基材の強度を補強する補強部材を設ける工程と、補強部材と基材とを積層した積層体の、基材における画素領域外に対応する部分を切断する工程と、を備える。 In the method for manufacturing a radiation detector according to the first aspect of the present disclosure, a flexible base material is provided on a support, and a plurality of pixels accumulating charges according to the irradiated radiation are provided in a pixel region of the base material. A step of forming the provided substrate, a step of peeling the substrate provided with a plurality of pixels from the support, and a step of providing a reinforcing member for reinforcing the strength of the base material on the surface of the substrate peeled from the support. A step of cutting a portion of the base material corresponding to the outside of the pixel region of the laminated body in which the reinforcing member and the base material are laminated.
 また、本開示の第2の態様の放射線検出器の製造方法は、第1の態様の放射線検出器の製造方法において、補強部材及び基材の切断面が面一である。 Further, in the method for manufacturing the radiation detector according to the second aspect of the present disclosure, the cut surfaces of the reinforcing member and the base material are flush with each other in the method for manufacturing the radiation detector according to the first aspect.
 また、本開示の第3の態様の放射線検出器の製造方法は、第1の態様または第2の態様の放射線検出器の製造方法において、基板は、複数の画素が設けられた面に、ケーブルを電気的に接続するための端子部が設けられた端子領域を有し、基材を切断する工程では、端子領域以外を切断する。 Further, in the method for manufacturing a radiation detector according to the third aspect of the present disclosure, in the method for manufacturing a radiation detector according to the first aspect or the second aspect, the substrate is a cable on a surface provided with a plurality of pixels. Has a terminal region provided with a terminal portion for electrically connecting the two, and in the step of cutting the base material, the region other than the terminal region is cut.
 また、本開示の第4の態様の放射線検出器の製造方法は、第3の態様の放射線検出器の製造方法において、基板を支持体から剥離する工程よりも前に、端子部にケーブルを電気的に接続する工程をさらに備える。 Further, in the method for manufacturing the radiation detector according to the fourth aspect of the present disclosure, in the method for manufacturing the radiation detector according to the third aspect, the cable is electrically connected to the terminal portion before the step of peeling the substrate from the support. Further provided with a process of connecting the elements.
 また、本開示の第5の態様の放射線検出器の製造方法は、第1の態様または第2の態様の放射線検出器の製造方法において、基材を切断する工程の後に、基板の基材が切断された側の辺に沿って、複数の画素が設けられた面にケーブルを電気的に接続するための端子部を設ける工程をさらに備える。 Further, in the method for manufacturing a radiation detector according to the fifth aspect of the present disclosure, in the method for manufacturing a radiation detector according to the first aspect or the second aspect, after the step of cutting the base material, the base material of the substrate is formed. A step of providing a terminal portion for electrically connecting a cable to a surface provided with a plurality of pixels along the side on the cut side is further provided.
 また、本開示の第6の態様の放射線検出器の製造方法は、第1の態様から第5の態様のいずれか1態様の放射線検出器の製造方法において、補強部材は、基材よりも剛性が高い。 Further, in the method for manufacturing a radiation detector according to the sixth aspect of the present disclosure, in the method for manufacturing a radiation detector according to any one of the first to fifth aspects, the reinforcing member is more rigid than the base material. Is high.
 また、本開示の第7の態様の放射線検出器の製造方法は、第1の態様から第6の態様のいずれか1態様の放射線検出器の製造方法において、補強部材は、曲げ弾性率が500MPa以上、3000MPa以下である。 Further, the method for manufacturing the radiation detector according to the seventh aspect of the present disclosure is the method for manufacturing the radiation detector according to any one of the first to sixth aspects, wherein the reinforcing member has a flexural modulus of 500 MPa. It is 3000 MPa or less.
 また、本開示の第8の態様の放射線検出器の製造方法は、第1の態様から第7の態様のいずれか1態様の放射線検出器の製造方法において、補強部材は、ポリカーボネート及びポリエチレンテレフタレートの少なくとも一つを材料とした部材である。 Further, in the method for manufacturing a radiation detector according to the eighth aspect of the present disclosure, in the method for manufacturing a radiation detector according to any one of the first to seventh aspects, the reinforcing member is made of polycarbonate and polyethylene terephthalate. It is a member made of at least one material.
 また、本開示の第9の態様の放射線検出器の製造方法は、第1の態様から第7の態様のいずれか1態様の放射線検出器の製造方法において、基材は、複数の画素が設けられた面にマークを有し、積層体を切断する工程では、マークに応じた位置を切断する。 Further, the method for manufacturing the radiation detector according to the ninth aspect of the present disclosure is the method for manufacturing the radiation detector according to any one of the first to seventh aspects, wherein the base material is provided with a plurality of pixels. In the step of cutting the laminated body having a mark on the marked surface, the position corresponding to the mark is cut.
 また、本開示の第10の態様の放射線検出器の製造方法は、第1の態様から第9の態様のいずれか1態様の放射線検出器の製造方法において、基板を形成する工程と、基板を支持体から剥離する工程の間に、複数の画素が設けられた基材の面に、放射線を光に変換する変換層を形成する工程をさらに備え、複数の画素の各々は、変換層が変換した光に応じた電荷を蓄積する。 Further, the method for manufacturing the radiation detector according to the tenth aspect of the present disclosure is the step of forming the substrate and the method for manufacturing the substrate in any one of the first to ninth aspects of the method for manufacturing the radiation detector. During the step of peeling from the support, a step of forming a conversion layer for converting radiation into light is further provided on the surface of the base material provided with the plurality of pixels, and each of the plurality of pixels is converted by the conversion layer. Accumulates the charge according to the light.
 また、本開示の第10の態様の放射線検出器の製造方法は、第1の態様から第9の態様のいずれか1態様の放射線検出器の製造方法において、複数の画素の各々は、放射線を受けて電荷を発生するセンサ部を含み、センサ部で発生した電荷を蓄積する。 Further, in the method for manufacturing a radiation detector according to the tenth aspect of the present disclosure, in the method for manufacturing a radiation detector according to any one of the first to ninth aspects, each of the plurality of pixels emits radiation. It includes a sensor unit that receives and generates an electric charge, and accumulates the electric charge generated by the sensor unit.
 本開示によれば、基板における、画素が形成された画素領域の割合を高くすることが簡便にできる。 According to the present disclosure, it is possible to easily increase the ratio of the pixel region in which the pixels are formed on the substrate.
第1実施形態の放射線画像撮影装置における電気系の要部構成の一例を示すブロック図である。It is a block diagram which shows an example of the main part structure of an electric system in the radiation image taking apparatus of 1st Embodiment. 第1実施形態の放射線検出器の一例を基材の第1の面側からみた平面図である。It is a top view from the 1st surface side of the base material as an example of the radiation detector of 1st Embodiment. 図2に示した放射線検出器のA-A線断面図である。FIG. 2 is a cross-sectional view taken along the line AA of the radiation detector shown in FIG. 図2に示した放射線検出器のB-B線断面図である。It is sectional drawing BB of the radiation detector shown in FIG. 第1実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. 第1実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. 第1実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. 第1実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. 第1実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. 第1実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. 第1実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. 第1実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 1st Embodiment. 第2実施形態の放射線検出器の一例を基材の第1の面側からみた平面図である。FIG. 5 is a plan view of an example of the radiation detector of the second embodiment as viewed from the first surface side of the base material. 図5に示した放射線検出器のA-A線断面図である。FIG. 5 is a cross-sectional view taken along the line AA of the radiation detector shown in FIG. 図5に示した放射線検出器のB-B線断面図である。FIG. 5 is a sectional view taken along line BB of the radiation detector shown in FIG. 第2実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. 第2実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. 第2実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. 第2実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. 第2実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. 第2実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. 第2実施形態の放射線検出器の製造方法の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing method of the radiation detector of 2nd Embodiment. 他の例の放射線検出器のA-A線断面図である。FIG. 5 is a cross-sectional view taken along the line AA of another example radiation detector. 筐体に収納された状態の実施形態の放射線画像撮影装置の一例の断面図である。It is sectional drawing of an example of the radiation imaging apparatus of embodiment which is housed in a housing. 筐体に収納された状態の実施形態の放射線画像撮影装置の他の例の断面図である。It is sectional drawing of another example of the radiation imaging apparatus of embodiment which is housed in a housing. 筐体に収納された状態の実施形態の放射線画像撮影装置の他の例の断面図である。It is sectional drawing of another example of the radiation imaging apparatus of embodiment which is housed in a housing.
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、本実施形態は本発明を限定するものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The present embodiment does not limit the present invention.
[第1実施形態]
 本実施形態の放射線検出器は、被写体を透過した放射線を検出して被写体の放射線画像を表す画像情報を出力する機能を有する。本実施形態の放射線検出器は、センサ基板と、放射線を光に変換する変換層と、を備えている(図2、放射線検出器10のセンサ基板12及び変換層14参照)。本実施形態のセンサ基板12が、本開示の基板の一例である。
[First Embodiment]
The radiation detector of the present embodiment has a function of detecting radiation transmitted through a subject and outputting image information representing a radiation image of the subject. The radiation detector of the present embodiment includes a sensor substrate and a conversion layer that converts radiation into light (see FIG. 2, sensor substrate 12 and conversion layer 14 of the radiation detector 10). The sensor substrate 12 of this embodiment is an example of the substrate of the present disclosure.
 まず、図1を参照して本実施形態の放射線画像撮影装置における電気系の構成の一例の概略を説明する。図1は、本実施形態の放射線画像撮影装置における電気系の要部構成の一例を示すブロック図である。 First, an outline of an example of the configuration of the electrical system in the radiation imaging apparatus of this embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing an example of a configuration of a main part of an electrical system in the radiation imaging apparatus of the present embodiment.
 図1に示すように、本実施形態の放射線画像撮影装置1は、放射線検出器10、制御部100、駆動部102、信号処理部104、画像メモリ106、及び電源部108を備える。 As shown in FIG. 1, the radiation imaging device 1 of the present embodiment includes a radiation detector 10, a control unit 100, a drive unit 102, a signal processing unit 104, an image memory 106, and a power supply unit 108.
 放射線検出器10は、センサ基板12と、放射線を光に変換する変換層(図2参照)と、を備える。センサ基板12は、可撓性の基材11と、基材11の第1の面11Aに設けられた複数の画素30と、を備えている。なお、以下では、複数の画素30について、単に「画素30」という場合がある。 The radiation detector 10 includes a sensor substrate 12 and a conversion layer (see FIG. 2) that converts radiation into light. The sensor substrate 12 includes a flexible base material 11 and a plurality of pixels 30 provided on the first surface 11A of the base material 11. In the following, the plurality of pixels 30 may be simply referred to as “pixel 30”.
 図1に示すように本実施形態の各画素30は、変換層が変換した光に応じて電荷を発生して蓄積するセンサ部34、及びセンサ部34にて蓄積された電荷を読み出すスイッチング素子32を備える。本実施形態では、一例として、薄膜トランジスタ(TFT:Thin Film Transistor)をスイッチング素子32として用いている。そのため、以下では、スイッチング素子32を「TFT32」という。本実施形態では、センサ部34及びTFT32が形成され、さらに平坦化された層として基材11の第1の面11Aに画素30が形成された層が設けられる。 As shown in FIG. 1, each pixel 30 of the present embodiment has a sensor unit 34 that generates and accumulates electric charges according to the light converted by the conversion layer, and a switching element 32 that reads out the electric charges accumulated by the sensor unit 34. To be equipped with. In this embodiment, as an example, a thin film transistor (TFT: Thin Film Transistor) is used as the switching element 32. Therefore, in the following, the switching element 32 will be referred to as "TFT32". In the present embodiment, the sensor unit 34 and the TFT 32 are formed, and a layer in which the pixels 30 are formed on the first surface 11A of the base material 11 is provided as a flattened layer.
 画素30は、センサ基板12の画素領域35に、一方向(図1の横方向に対応する走査配線方向、以下「行方向」ともいう)及び行方向に対する交差方向(図1の縦方向に対応する信号配線方向、以下「列方向」ともいう)に沿って二次元状に配置されている。図1では、画素30の配列を簡略化して示しているが、例えば、画素30は行方向及び列方向に1024個×1024個配置される。 The pixel 30 corresponds to the pixel region 35 of the sensor substrate 12 in one direction (scanning wiring direction corresponding to the horizontal direction in FIG. 1, hereinafter also referred to as “row direction”) and an intersecting direction with respect to the row direction (corresponding to the vertical direction in FIG. It is arranged in a two-dimensional manner along the signal wiring direction (hereinafter also referred to as "row direction"). In FIG. 1, the arrangement of the pixels 30 is shown in a simplified manner. For example, 1024 pixels × 1024 pixels 30 are arranged in the row direction and the column direction.
 また、放射線検出器10には、画素30の行毎に備えられた、TFT32のスイッチング状態(オン及びオフ)を制御するための複数の走査配線38と、画素30の列毎に備えられた、センサ部34に蓄積された電荷が読み出される複数の信号配線36と、が互いに交差して設けられている。複数の走査配線38の各々は、それぞれケーブル112A(図2参照)を介して、駆動部102に接続されることにより、駆動部102から出力される、TFT32を駆動してスイッチング状態を制御する駆動信号が、複数の走査配線38の各々に流れる。また、複数の信号配線36の各々が、それぞれケーブル112B(図2参照)を介して、信号処理部104に接続されることにより、各画素30から読み出された電荷が、電気信号として信号処理部104に出力される。信号処理部104は、入力された電気信号に応じた画像データを生成して出力する。 Further, the radiation detector 10 is provided with a plurality of scanning wires 38 for controlling the switching state (on and off) of the TFT 32, which are provided for each row of the pixel 30, and for each column of the pixel 30. A plurality of signal wirings 36 from which the electric charge accumulated in the sensor unit 34 is read out are provided so as to intersect each other. Each of the plurality of scanning wires 38 is connected to the drive unit 102 via the cable 112A (see FIG. 2) to drive the TFT 32 output from the drive unit 102 to control the switching state. A signal flows through each of the plurality of scanning wires 38. Further, each of the plurality of signal wirings 36 is connected to the signal processing unit 104 via the cable 112B (see FIG. 2), so that the electric charge read from each pixel 30 is signal-processed as an electric signal. It is output to unit 104. The signal processing unit 104 generates and outputs image data corresponding to the input electric signal.
 信号処理部104には後述する制御部100が接続されており、信号処理部104から出力された画像データは制御部100に順次出力される。制御部100には画像メモリ106が接続されており、信号処理部104から順次出力された画像データは、制御部100による制御によって画像メモリ106に順次記憶される。画像メモリ106は所定の枚数分の画像データを記憶可能な記憶容量を有しており、放射線画像の撮影が行われる毎に、撮影によって得られた画像データが画像メモリ106に順次記憶される。 A control unit 100, which will be described later, is connected to the signal processing unit 104, and the image data output from the signal processing unit 104 is sequentially output to the control unit 100. An image memory 106 is connected to the control unit 100, and image data sequentially output from the signal processing unit 104 is sequentially stored in the image memory 106 under the control of the control unit 100. The image memory 106 has a storage capacity capable of storing a predetermined number of image data, and each time a radiographic image is taken, the image data obtained by the taking is sequentially stored in the image memory 106.
 制御部100は、CPU(Central Processing Unit)100A、ROM(Read Only Memory)とRAM(Random Access Memory)等を含むメモリ100B、及びフラッシュメモリ等の不揮発性の記憶部100Cを備えている。制御部100の一例としては、マイクロコンピュータ等が挙げられる。制御部100は、放射線画像撮影装置1の全体の動作を制御する。 The control unit 100 includes a CPU (Central Processing Unit) 100A, a memory 100B including a ROM (Read Only Memory) and a RAM (Random Access Memory), and a non-volatile storage unit 100C such as a flash memory. An example of the control unit 100 is a microcomputer or the like. The control unit 100 controls the overall operation of the radiographic imaging apparatus 1.
 なお、本実施形態の放射線画像撮影装置1では、画像メモリ106及び制御部100等は、制御基板110に形成されている。 In the radiation imaging device 1 of the present embodiment, the image memory 106, the control unit 100, and the like are formed on the control board 110.
 また、各画素30のセンサ部34には、各画素30にバイアス電圧を印加するために、共通配線39が信号配線36の配線方向に設けられている。共通配線39が、センサ基板12の外部のバイアス電源(図示省略)に接続されることにより、バイアス電源から各画素30にバイアス電圧が印加される。 Further, in the sensor unit 34 of each pixel 30, a common wiring 39 is provided in the wiring direction of the signal wiring 36 in order to apply a bias voltage to each pixel 30. By connecting the common wiring 39 to an external bias power supply (not shown) of the sensor board 12, a bias voltage is applied to each pixel 30 from the bias power supply.
 電源部108は、制御部100、駆動部102、信号処理部104、画像メモリ106、及び電源部108等の各種素子や各種回路に電力を供給する。なお、図1では、錯綜を回避するために、電源部108と各種素子や各種回路を接続する配線の図示を省略している。 The power supply unit 108 supplies electric power to various elements and circuits such as the control unit 100, the drive unit 102, the signal processing unit 104, the image memory 106, and the power supply unit 108. In FIG. 1, in order to avoid complications, the wiring connecting the power supply unit 108 with various elements and various circuits is omitted.
 さらに、放射線画像撮影装置1について詳細に説明する。図2は、本実施形態の放射線検出器10を、基材11の第1の面11A側からみた平面図の一例である。また、図3Aは、図2における放射線検出器10のA-A線断面図の一例であり、図3Bは、図2における放射線検出器10のB-B線断面図の一例である。 Further, the radiation imaging apparatus 1 will be described in detail. FIG. 2 is an example of a plan view of the radiation detector 10 of the present embodiment as viewed from the first surface 11A side of the base material 11. Further, FIG. 3A is an example of a cross-sectional view taken along the line AA of the radiation detector 10 in FIG. 2, and FIG. 3B is an example of a cross-sectional view taken along the line BB of the radiation detector 10 in FIG.
 基材11の第1の面11Aは、端子部60が設けられた端子領域60Aと、端子部60が設けられていない端子領域外60Bとに分けられる。端子領域外60Bには、上述の画素30が設けられた画素領域35が設けられている。 The first surface 11A of the base material 11 is divided into a terminal region 60A in which the terminal portion 60 is provided and a terminal region outside 60B in which the terminal portion 60 is not provided. The pixel region 35 provided with the above-mentioned pixel 30 is provided in the terminal region outer 60B.
 基材11は、可撓性を有し、例えば、PI(PolyImide:ポリイミド)等のプラスチックを含む樹脂シートである。基材11の厚みは、材質の硬度、及びセンサ基板12の大きさ(第1の面11Aまたは第2の面11Bの面積)等に応じて、所望の可撓性が得られる厚みであればよい。可撓性を有する例としては、矩形状の基材11単体の場合に、基材11の1辺を固定した状態で、固定した辺より10cm離れた位置で基材11の自重による重力で2mm以上、基材11が垂れ下がる(固定した辺の高さよりも低くなる)ものを指す。基材11が樹脂シートの場合の具体例としては、厚みが5μm~125μmのものであればよく、厚みが20μm~50μmのものであればより好ましい。 The base material 11 is a resin sheet that is flexible and contains, for example, a plastic such as PI (PolyImide: polyimide). The thickness of the base material 11 is such that the desired flexibility can be obtained according to the hardness of the material, the size of the sensor substrate 12 (the area of the first surface 11A or the second surface 11B), and the like. Good. As an example of flexibility, in the case of a rectangular base material 11 alone, with one side of the base material 11 fixed, the gravity of the base material 11 is 2 mm at a position 10 cm away from the fixed side. As described above, the base material 11 hangs down (becomes lower than the height of the fixed side). As a specific example when the base material 11 is a resin sheet, a thickness of 5 μm to 125 μm may be used, and a thickness of 20 μm to 50 μm is more preferable.
 なお、基材11は、画素30の製造に耐え得る特性を有しており、本実施形態では、アモルファスシリコンTFT(a-Si TFT)の製造に耐え得る特性を有している。このような、基材11が有する特性としては、300℃~400℃における熱膨張率(CTE:Coefficient of Thermal Expansion)が、アモルファスシリコン(Si)ウェハと同程度(例えば、±5ppm/K)であることが好ましく、具体的には、20ppm/K以下であることが好ましい。また、基材11の熱収縮率としては、厚みが25μmの状態において400℃における熱収縮率が0.5%以下であることが好ましい。また、基材11の弾性率は、300℃~400℃間の温度領域において、一般的なPIが有する転移点を有さず、500℃における弾性率が1GPa以上であることが好ましい。 The base material 11 has a property that can withstand the production of the pixel 30, and in the present embodiment, it has a property that can withstand the production of an amorphous silicon TFT (a-Si TFT). As such a characteristic of the base material 11, the coefficient of thermal expansion (CTE: Coefficient of Thermal Expansion) at 300 ° C. to 400 ° C. is about the same as that of an amorphous silicon (Si) wafer (for example, ± 5 ppm / K). Specifically, it is preferably 20 ppm / K or less. Further, as the heat shrinkage rate of the base material 11, it is preferable that the heat shrinkage rate at 400 ° C. is 0.5% or less when the thickness is 25 μm. Further, the elastic modulus of the base material 11 preferably does not have a transition point possessed by a general PI in the temperature range between 300 ° C. and 400 ° C., and the elastic modulus at 500 ° C. is 1 GPa or more.
 また、本実施形態の基材11は、自身による後方散乱線を抑制するために、平均粒子径が0.05μm以上、2.5μm以下の、後方散乱線を吸収する無機の微粒子を含む微粒子層を有することが好ましい。なおこのような無機の微粒子としては、樹脂性の基材11の場合、原子番号が、基材11である有機物を構成する原子よりも大きく、かつ30以下である無機物を用いることが好ましい。このような微粒子の具体例としては、原子番号が14のSiの酸化物であるSiO2、原子番号が12のMgの酸化物であるMgO、原子番号が13のAlの酸化物であるAl2O3、及び原子番号が22のTiの酸化物であるTiO2等が挙げられる。このような特性を有する樹脂シートの具体例としては、XENOMAX(登録商標)が挙げられる。 Further, the base material 11 of the present embodiment has a fine particle layer containing inorganic fine particles having an average particle diameter of 0.05 μm or more and 2.5 μm or less and absorbing backscattered rays in order to suppress backscattered rays by itself. It is preferable to have. As such inorganic fine particles, in the case of the resinous base material 11, it is preferable to use an inorganic material having an atomic number larger than the atoms constituting the organic material which is the base material 11 and 30 or less. Specific examples of such fine particles include SiO2, which is an oxide of Si having an atomic number of 14, MgO, which is an oxide of Mg having an atomic number of 12, Al2O3, which is an oxide of Al having an atomic number of 13. Examples thereof include TiO2, which is an oxide of Ti having an atomic number of 22. Specific examples of the resin sheet having such characteristics include XENOMAX (registered trademark).
 なお、本実施形態における上記の厚みについては、マイクロメーターを用いて測定した。熱膨張率については、JIS K7197:1991に則して測定した。なお測定は、基材11の主面から、15度ずつ角度を変えて試験片を切り出し、切り出した各試験片について熱膨張率を測定し、最も高い値を基材11の熱膨張率とした。熱膨張率の測定は、MD(Machine Direction)方向およびTD(Transverse Direction)方向のそれぞれについて、-50℃~450℃において10℃間隔で行い、(ppm/℃)を(ppm/K)に換算した。熱膨張率の測定には、MACサイエンス社製 TMA4000S装置を用い、サンプル長さを10mm、サンプル幅を2mm、初荷重を34.5g/mm2、昇温速度を5℃/min、及び雰囲気をアルゴンとした。 The above thickness in this embodiment was measured using a micrometer. The coefficient of thermal expansion was measured according to JIS K7197: 1991. In the measurement, test pieces were cut out from the main surface of the base material 11 at different angles of 15 degrees, the coefficient of thermal expansion was measured for each of the cut out test pieces, and the highest value was taken as the coefficient of thermal expansion of the base material 11. .. The coefficient of thermal expansion is measured at intervals of 10 ° C. from -50 ° C to 450 ° C in each of the MD (Machine Direction) direction and the TD (Transverse Direction) direction, and (ppm / ° C) is converted to (ppm / K). did. To measure the coefficient of thermal expansion, a TMA4000S device manufactured by MAC Science Co., Ltd. was used, the sample length was 10 mm, the sample width was 2 mm, the initial load was 34.5 g / mm2, the heating rate was 5 ° C / min, and the atmosphere was argon. And said.
 所望の可撓性を有する基材11としては、樹脂シート等、樹脂製のものに限定されない。例えば、基材11は、厚みが比較的薄いガラス基板等であってもよい。 The base material 11 having the desired flexibility is not limited to a resin sheet or the like. For example, the base material 11 may be a glass substrate or the like having a relatively thin thickness.
 図2~図3Bに示すように、複数の画素30は、基材11の第1の面11Aにおける端子領域外60Bの内側の一部の領域に設けられている。また、本実施形態のセンサ基板12では、基材11の第1の面11Aにおける端子領域60Aには、画素30が設けられていない。本実施形態では、基材11の第1の面11Aにおける画素30が設けられた領域を画素領域35としている。 As shown in FIGS. 2 to 3B, the plurality of pixels 30 are provided in a part of the inside of 60B outside the terminal region on the first surface 11A of the base material 11. Further, in the sensor substrate 12 of the present embodiment, the pixel 30 is not provided in the terminal region 60A on the first surface 11A of the substrate 11. In the present embodiment, the region where the pixel 30 is provided on the first surface 11A of the base material 11 is defined as the pixel region 35.
 また、図2~図3Bに示すように、本実施形態の変換層14は、画素領域35を覆っている。本実施形態では、変換層14の一例としてCsI(ヨウ化セシウム)を含むシンチレータを用いている。このようなシンチレータとしては、例えば、X線照射時の発光スペクトルが400nm~700nmであるCsI:Tl(タリウムが添加されたヨウ化セシウム)やCsI:Na(ナトリウムが添加されたヨウ化セシウム)を含むことが好ましい。なお、CsI:Tlの可視光域における発光ピーク波長は565nmである。 Further, as shown in FIGS. 2 to 3B, the conversion layer 14 of the present embodiment covers the pixel region 35. In this embodiment, a scintillator containing CsI (cesium iodide) is used as an example of the conversion layer 14. Examples of such scintillators include CsI: Tl (cesium iodide added with thallium) and CsI: Na (cesium iodide added with sodium) having an emission spectrum of 400 nm to 700 nm during X-ray irradiation. It is preferable to include it. The emission peak wavelength of CsI: Tl in the visible light region is 565 nm.
 図3A及び図3Bに示すように、本実施形態の変換層14の上には、粘着層40、反射層42、接着層44、及び保護層46が設けられている。 As shown in FIGS. 3A and 3B, an adhesive layer 40, a reflective layer 42, an adhesive layer 44, and a protective layer 46 are provided on the conversion layer 14 of the present embodiment.
 粘着層40は、変換層14の表面全体を覆っている。粘着層40は、反射層42を変換層14上に固定する機能を有する。粘着層40は、光透過性を有していることが好ましい。粘着層40の材料として、例えば、アクリル系粘着剤、ホットメルト系粘着剤、及びシリコーン系接着剤を用いることが可能である。アクリル系粘着剤としては、例えば、ウレタンアクリレート、アクリル樹脂アクリレート、及びエポキシアクリレート等が挙げられる。ホットメルト系粘着剤としては、例えば、EVA(エチレン・酢酸ビニル共重合樹脂)、EAA(エチレンとアクリル酸の共重合樹脂)、EEA(エチレン-エチルアクリレート共重合樹脂)、及びEMMA(エチレン-メタクリル酸メチル共重合体)等の熱可塑性プラスチックが挙げられる。粘着層40の厚さは、2μm以上7μm以下であることが好ましい。粘着層40の厚さを2μm以上とすることで、反射層42を変換層14上に固定する効果を十分に発揮することができる。更に、変換層14と反射層42との間に空気層が形成されるリスクを抑制することができる。変換層14と反射層42との間に空気層が形成されると、変換層14から発せられた光が、空気層と変換層14との間、及び空気層と反射層42との間で反射を繰り返す多重反射を生じるおそれがある。また、粘着層40の厚さを7μm以下とすることで、MTF(Modulation Transfer Function)及びDQE(Detective Quantum Efficiency)の低下を抑制することが可能となる。 The adhesive layer 40 covers the entire surface of the conversion layer 14. The adhesive layer 40 has a function of fixing the reflective layer 42 on the conversion layer 14. The adhesive layer 40 preferably has light transmission. As the material of the adhesive layer 40, for example, an acrylic adhesive, a hot melt adhesive, and a silicone adhesive can be used. Examples of the acrylic pressure-sensitive adhesive include urethane acrylate, acrylic resin acrylate, and epoxy acrylate. Examples of the hot melt adhesive include EVA (ethylene / vinyl acetate copolymer resin), EAA (ethylene / acrylic acid copolymer resin), EEA (ethylene-ethylacrylate copolymer resin), and EMMA (ethylene-methacryl). Thermoplastics such as methyl acid copolymer) can be mentioned. The thickness of the adhesive layer 40 is preferably 2 μm or more and 7 μm or less. By setting the thickness of the adhesive layer 40 to 2 μm or more, the effect of fixing the reflective layer 42 on the conversion layer 14 can be sufficiently exhibited. Further, the risk of forming an air layer between the conversion layer 14 and the reflection layer 42 can be suppressed. When an air layer is formed between the conversion layer 14 and the reflection layer 42, the light emitted from the conversion layer 14 is emitted between the air layer and the conversion layer 14 and between the air layer and the reflection layer 42. Multiple reflections that repeat reflections may occur. Further, by setting the thickness of the adhesive layer 40 to 7 μm or less, it is possible to suppress a decrease in MTF (Modulation Transfer Function) and DQE (Detective Quantum Efficiency).
 反射層42は、粘着層40の表面全体を覆っている。反射層42は、変換層14で変換された光を反射する機能を有する。反射層42は有機系材料によって構成されていることが好ましい。反射層42の材料として、例えば、白PET(Polyethylene Terephthalate:ポリエチレンテレフタレート)、TiO、Al、発泡白PET、ポリエステル系高反射シート、及び鏡面反射アルミ等を用いることができる。白PETとは、PETに、TiOや硫酸バリウム等の白色顔料を添加したものであり、発泡白PETとは、表面が多孔質になっている白PETである。また、ポリエステル系高反射シートとは、薄いポリエステルのシートを複数重ねた多層構造を有するシート(フィルム)である。反射層42の厚さは、10μm以上、40μm以下であることが好ましい。 The reflective layer 42 covers the entire surface of the adhesive layer 40. The reflective layer 42 has a function of reflecting the light converted by the conversion layer 14. The reflective layer 42 is preferably made of an organic material. As the material of the reflective layer 42, for example, white PET (Polyethylene terephthalate), TiO 2 , Al 2 O 3 , foamed white PET, polyester-based highly reflective sheet, specular reflective aluminum and the like can be used. White PET is obtained by adding a white pigment such as TiO 2 or barium sulfate to PET, and foamed white PET is white PET having a porous surface. The polyester-based high-reflection sheet is a sheet (film) having a multilayer structure in which a plurality of thin polyester sheets are stacked. The thickness of the reflective layer 42 is preferably 10 μm or more and 40 μm or less.
 接着層44は反射層42の表面全体を覆っている。接着層44の端部は、センサ基板12の表面にまで延在している。すなわち、接着層44は、その端部においてセンサ基板12に接着している。接着層44は、反射層42及び保護層46を変換層14に固定する機能を有する。接着層44の材料として、粘着層40の材料と同じ材料を用いることが可能であるが、接着層44が有する接着力は、粘着層40が有する接着力よりも大きいことが好ましい。 The adhesive layer 44 covers the entire surface of the reflective layer 42. The end of the adhesive layer 44 extends to the surface of the sensor substrate 12. That is, the adhesive layer 44 is adhered to the sensor substrate 12 at its end. The adhesive layer 44 has a function of fixing the reflective layer 42 and the protective layer 46 to the conversion layer 14. As the material of the adhesive layer 44, the same material as the material of the adhesive layer 40 can be used, but the adhesive force of the adhesive layer 44 is preferably larger than that of the adhesive layer 40.
 保護層46は、変換層14の全体を覆うとともに、その端部がセンサ基板12の一部を覆うように設けられている。保護層46は、変換層14への水分の浸入を防止する防湿膜として機能する。保護層46の材料として、例えば、PET、PPS(PolyPhenylene Sulfide:ポリフェニレンサルファイド)、OPP(Oriented PolyPropylene:二軸延伸ポリプロピレンフィルム)、PEN(PolyEthylene Naphthalate:ポリエチレンナフタレート)、PI等の有機材料を含む有機膜や、パリレン(登録商標)を用いることができる。また、保護層46として、樹脂フィルムと金属フィルムとの積層膜を用いてもよい。樹脂フィルムと金属フィルムとの積層膜としては、例えば、アルペット(登録商標)のシートが挙げられる。 The protective layer 46 is provided so as to cover the entire conversion layer 14 and its end portion to cover a part of the sensor substrate 12. The protective layer 46 functions as a moisture-proof film that prevents moisture from entering the conversion layer 14. As the material of the protective layer 46, for example, PET, PPS (PolyPhenylene Sulfide: polyphenylene sulfide), OPP (Oriented PolyPropylene: biaxially stretched polypropylene film), PEN (PolyEthylene Naphthalate: polyethylene naphthalate), PI and other organic materials are included. Membranes and parylene (registered trademark) can be used. Further, as the protective layer 46, a laminated film of a resin film and a metal film may be used. Examples of the laminated film of the resin film and the metal film include a sheet of Alpet (registered trademark).
 また、図3A及び図3Bに示すように、本実施形態の放射線検出器10のセンサ基板12における、基材11の第2の面11B側には、帯電防止層54及び粘着剤52を介して、補強部材50が設けられている。 Further, as shown in FIGS. 3A and 3B, in the sensor substrate 12 of the radiation detector 10 of the present embodiment, the antistatic layer 54 and the adhesive 52 are interposed on the second surface 11B side of the substrate 11. , The reinforcing member 50 is provided.
 補強部材50は、基材11の強度を補強する機能を有する。本実施形態の補強部材50は、基材11よりも曲げ剛性が高く、変換層14と対向する面に対して垂直方向に加えられる力に対する、寸法変化(変形)が、基材11の第2の面11Bに対して垂直方向に加えられる力に対する、寸法変化よりも小さい。具体的には、補強部材50の曲げ剛性は、基材11の曲げ剛性の100倍以上であることが好ましい。また、本実施形態の補強部材50の厚みは、基材11の厚みよりも厚い。例えば、基材11として、XENOMAX(登録商標)を用いる場合、補強部材50の厚みは0.2mm~0.25mm程度が好ましい。 The reinforcing member 50 has a function of reinforcing the strength of the base material 11. The reinforcing member 50 of the present embodiment has higher flexural rigidity than the base material 11, and the dimensional change (deformation) with respect to the force applied in the direction perpendicular to the surface facing the conversion layer 14 is the second of the base material 11. It is smaller than the dimensional change with respect to the force applied in the direction perpendicular to the surface 11B of. Specifically, the bending rigidity of the reinforcing member 50 is preferably 100 times or more the bending rigidity of the base material 11. Further, the thickness of the reinforcing member 50 of the present embodiment is thicker than the thickness of the base material 11. For example, when XENOMAX (registered trademark) is used as the base material 11, the thickness of the reinforcing member 50 is preferably about 0.2 mm to 0.25 mm.
 具体的には、本実施形態の補強部材50は、曲げ弾性率が500MPa以上、3000MPa以下の素材を用いることが好ましい。補強部材50は、基材11の撓みを抑制する観点からは、基材11よりも曲げ剛性が高いことが好ましい。なお、曲げ弾性率が低くなると曲げ剛性も低くなり、所望の曲げ剛性を得るためには、補強部材50の厚みを厚くしなくてはならず、放射線検出器10全体の厚みが増大してしまう。上述の補強部材50の材料を考慮すると、140000Pacmを越える曲げ剛性を得ようとする場合、補強部材50の厚みが、比較的厚くなってしまう傾向がある。そのため、適切な剛性が得られ、かつ放射線検出器10全体の厚みを考慮すると、補強部材50に用いる素材は、曲げ弾性率が500MPa以上、3000MPa以下であることがより好ましい。また、補強部材50の曲げ剛性は、540Pacm以上、140000Pacm以下であることが好ましい。 Specifically, it is preferable to use a material having a flexural modulus of 500 MPa or more and 3000 MPa or less for the reinforcing member 50 of the present embodiment. The reinforcing member 50 preferably has a higher bending rigidity than the base material 11 from the viewpoint of suppressing the bending of the base material 11. When the flexural modulus is lowered, the flexural rigidity is also lowered, and in order to obtain the desired flexural rigidity, the thickness of the reinforcing member 50 must be increased, and the thickness of the entire radiation detector 10 is increased. .. Considering the material of the reinforcing member 50 described above, the thickness of the reinforcing member 50 tends to be relatively thick when trying to obtain a bending rigidity exceeding 140000 Pacm 4. Therefore, considering that appropriate rigidity can be obtained and the thickness of the entire radiation detector 10 is taken into consideration, the material used for the reinforcing member 50 is more preferably having a flexural modulus of 500 MPa or more and 3000 MPa or less. Further, the bending rigidity of the reinforcing member 50 is preferably 540 Pacm 4 or more and 140000 Pacm 4 or less.
 また、本実施形態の補強部材50の熱膨張率は、変換層14の材料の熱膨張率に近い方が好ましく、より好ましくは、変換層14の熱膨張率に対する補強部材50の熱膨張率の比(補強部材50の熱膨張率/変換層14の熱膨張率)が、0.5以上、2以下であることが好ましい。このような補強部材50の熱膨張率としては、30ppm/K以上、80ppm/K以下であることが好ましい。例えば、変換層14がCsI:Tlを材料とする場合、熱膨張率は、50ppm/Kである。この場合、変換層14に比較的近い材料としては、熱膨張率が60ppm/K~80ppm/KであるPVC(Polyvinyl Chloride:ポリ塩化ビニル)、熱膨張率が70ppm/K~80ppm/Kであるアクリル、熱膨張率が65ppm/K~70ppm/KであるPET、熱膨張率が65ppm/KであるPC(Polycarbonate:ポリカーボネート)、及び熱膨張率が45ppm/K~70ppm/Kであるテフロン(登録商標)等が挙げられる。さらに、上述した曲げ弾性率を考慮すると、補強部材50の材料としては、PET、及びPCの少なくとも一方を含む材料であることがより好ましい。 Further, the coefficient of thermal expansion of the reinforcing member 50 of the present embodiment is preferably close to the coefficient of thermal expansion of the material of the conversion layer 14, and more preferably the coefficient of thermal expansion of the reinforcing member 50 with respect to the coefficient of thermal expansion of the conversion layer 14. The ratio (coefficient of thermal expansion of the reinforcing member 50 / coefficient of thermal expansion of the conversion layer 14) is preferably 0.5 or more and 2 or less. The coefficient of thermal expansion of such a reinforcing member 50 is preferably 30 ppm / K or more and 80 ppm / K or less. For example, when the conversion layer 14 is made of CsI: Tl, the coefficient of thermal expansion is 50 ppm / K. In this case, as a material relatively close to the conversion layer 14, PVC (Polyvinyl Chloride) having a coefficient of thermal expansion of 60 ppm / K to 80 ppm / K and a coefficient of thermal expansion of 70 ppm / K to 80 ppm / K are used. Acrylic, PET with a coefficient of thermal expansion of 65 ppm / K to 70 ppm / K, PC (Polycarbonate) with a coefficient of thermal expansion of 65 ppm / K, and Teflon with a coefficient of thermal expansion of 45 ppm / K to 70 ppm / K (registered). Trademark) and the like. Further, in consideration of the flexural modulus described above, the material of the reinforcing member 50 is more preferably a material containing at least one of PET and PC.
 補強部材50は、弾力性の観点からは、降伏点を有する材料を含むことが好ましい。なお、本実施形態において「降伏点」とは、材料を引っ張った場合に、応力が一旦、急激に下がる現象をいい、応力とひずみとの関係を表す曲線上で、応力が増えずにひずみが増える点のことをいい、材料について引っ張り強度試験を行った際の応力-ひずみ曲線における頂部を指す。降伏点を有する樹脂としては、一般的に、硬くて粘りが強い樹脂、及び柔らかくて粘りが強く、かつ中程度の強度の樹脂が挙げられる。硬くて粘りが強い樹脂としては、例えば、PC等が挙げられる。また、柔らかくて粘りが強く、かつ中程度の強度の樹脂としては、例えば、ポリプロピレン等が挙げられる。 From the viewpoint of elasticity, the reinforcing member 50 preferably contains a material having a yield point. In the present embodiment, the “yield point” refers to a phenomenon in which the stress drops suddenly when the material is pulled, and the strain does not increase on the curve showing the relationship between the stress and the strain. The point of increase, which refers to the top of the stress-strain curve when a tensile strength test is performed on a material. Resins having a yield point generally include resins that are hard and sticky, and resins that are soft and sticky and have moderate strength. Examples of the hard and sticky resin include PC and the like. Further, examples of the resin having a softness, a strong stickiness, and a medium strength include polypropylene and the like.
 本実施形態の補強部材50は、プラスチックを材料とした基板である。補強部材50の材料となるプラスチックは、上述した理由から熱可塑性の樹脂であることが好ましく、PC、PET、スチロール、アクリル、ポリアセターゼ、ナイロン、ポリプロピレン、ABS(Acrylonitrile Butadiene Styrene)、エンプラ、及びポリフェニレンエーテルの少なくとも一つが挙げられる。なお、補強部材50は、これらのうち、ポリプロピレン、ABS、エンプラ、PET、及びポリフェニレンエーテルの少なくとも一つであることが好ましく、スチロール、アクリル、ポリアセターゼ、及びナイロンの少なくとも一つであることがより好ましく、PC及びPETの少なくとも一つであることがさらに好ましい。 The reinforcing member 50 of this embodiment is a substrate made of plastic. The plastic used as the material of the reinforcing member 50 is preferably a thermoplastic resin for the reasons described above, and is preferably PC, PET, styrene, acrylic, polyacetase, nylon, polypropylene, ABS (Acrylonitrile Butadinee Styrene), engineering plastic, and polyphenylene ether. At least one of. The reinforcing member 50 is preferably at least one of polypropylene, ABS, engineering plastic, PET, and polyphenylene ether, and more preferably at least one of styrene, acrylic, polyacetase, and nylon. , PC and PET are more preferable.
 一方、本実施形態の放射線検出器10の端子領域60Aには、複数(本実施形態では合計16個)の端子部60が設けられている。図2に示すように、端子領域60Aは、矩形状のセンサ基板12(基材11)の、一対の辺、及び一対の辺に対向する辺(合計3辺)の各々に設けられている。なお、端子領域60Aとは、基材11の第1の面11Aにおける、複数の端子部60が設けられる領域をいい、少なくとも端子部60が第1の面11Aに接する領域を含む。一例として、本実施形態では、センサ基板12(基材11)における、端子部60が設けられた辺の全体に亘り、端子部60が第1の面11Aに接する領域を少なくとも含む領域を端子領域60Aという。 On the other hand, a plurality of terminal portions 60 (16 in total in this embodiment) are provided in the terminal region 60A of the radiation detector 10 of the present embodiment. As shown in FIG. 2, the terminal region 60A is provided on each of a pair of sides and sides facing the pair of sides (total of three sides) of the rectangular sensor substrate 12 (base material 11). The terminal region 60A refers to a region on the first surface 11A of the base material 11 where a plurality of terminal portions 60 are provided, and includes at least a region where the terminal portions 60 are in contact with the first surface 11A. As an example, in the present embodiment, the terminal region includes at least the region where the terminal portion 60 is in contact with the first surface 11A over the entire side of the sensor substrate 12 (base material 11) where the terminal portion 60 is provided. It is called 60A.
 図2に示すように、基材11の端子領域60Aに設けられた端子部60の各々には、ケーブル112が電気的に接続されている。具体的には、図2に示すように、基材11の対向する一対の辺の各々に設けられた複数(図2では8個ずつ)の端子部60の各々に、ケーブル112Aが熱圧着されている。ケーブル112Aは、いわゆるCOF(Chip on Film)であり、ケーブル112Aには、駆動IC(Integrated Circuit)210が搭載されている。駆動IC210は、ケーブル112Aに含まれる複数の信号線(図示省略)に接続されている。なお、端子部60とケーブル112Aとを電気的に接続する方法は、本実施形態に限定されず、例えば、コネクタにより、電気的に接続する形態としてもよい。このようなコネクタとしては、ZIF(Zero Insertion Force)構造のコネクタや、Non-ZIF構造のコネクタ等が挙げられる。本実施形態では、ケーブル112A及び後述するケーブル112Bについて、各々を区別せずに総称する場合、単に「ケーブル112」という。 As shown in FIG. 2, a cable 112 is electrically connected to each of the terminal portions 60 provided in the terminal region 60A of the base material 11. Specifically, as shown in FIG. 2, the cable 112A is thermocompression-bonded to each of a plurality of terminal portions 60 (8 each in FIG. 2) provided on each of the pair of opposite sides of the base material 11. ing. The cable 112A is a so-called COF (Chip on Film), and the cable 112A is equipped with a drive IC (Integrated Circuit) 210. The drive IC 210 is connected to a plurality of signal lines (not shown) included in the cable 112A. The method of electrically connecting the terminal portion 60 and the cable 112A is not limited to this embodiment, and may be, for example, electrically connected by a connector. Examples of such a connector include a ZIF (Zero Insert Force) structure connector and a Non-ZIF structure connector. In the present embodiment, when the cable 112A and the cable 112B described later are generically referred to without distinction, they are simply referred to as "cable 112".
 ケーブル112Aにおける、センサ基板12の端子部60と電気的に接続された一端と反対側の他端は、駆動基板200の接続領域202に、電気的に接続される。一例として、本実施形態では、ケーブル112Aに含まれる複数の信号線(図示省略)は、駆動基板200に熱圧着されることにより、駆動基板200に搭載された回路及び素子等(図示省略)と接続される。なお、駆動基板200とケーブル112Aとを電気的に接続する方法は、本実施形態に限定されず、例えば、コネクタにより、電気的に接続する形態としてもよい。このようなコネクタとしては、ZIF構造のコネクタや、Non-ZIF構造のコネクタ等が挙げられる。 The other end of the cable 112A, which is electrically connected to the terminal portion 60 of the sensor board 12, and the other end on the opposite side, is electrically connected to the connection area 202 of the drive board 200. As an example, in the present embodiment, a plurality of signal lines (not shown) included in the cable 112A are thermocompression-bonded to the drive board 200 to form circuits and elements mounted on the drive board 200 (not shown). Be connected. The method of electrically connecting the drive board 200 and the cable 112A is not limited to this embodiment, and may be, for example, electrically connected by a connector. Examples of such a connector include a ZIF structure connector and a Non-ZIF structure connector.
 本実施形態の駆動基板200は、可撓性のPCB(Printed Circuit Board)基板であり、いわゆるフレキシブル基板である。また、駆動基板200に搭載される回路部品(図示省略)は主にデジタル信号の処理に用いられる部品(以下、「デジタル系部品」という)である。デジタル系部品は、後述するアナログ系部品よりも、比較的面積(大きさ)が小さい傾向がある。デジタル系部品の具体例としては、デジタルバッファ、バイパスコンデンサ、プルアップ/プルダウン抵抗、ダンピング抵抗、及びEMC(Electro Magnetic Compatibility)対策チップ部品、及び電源IC等が挙げられる。なお、駆動基板200は、必ずしもフレキシブル基板でなくてもよく、非可撓性のリジッド基板であってもよいし、リジッドフレキ基板を用いてもよい。 The drive board 200 of this embodiment is a flexible PCB (Printed Circuit Board) board, which is a so-called flexible board. Further, the circuit components (not shown) mounted on the drive board 200 are components mainly used for processing digital signals (hereinafter, referred to as "digital components"). Digital components tend to have a relatively smaller area (size) than analog components, which will be described later. Specific examples of digital components include digital buffers, bypass capacitors, pull-up / pull-down resistors, damping resistors, EMC (Electro Magnetic Compatibility) countermeasure chip components, power supply ICs, and the like. The drive substrate 200 does not necessarily have to be a flexible substrate, may be a non-flexible rigid substrate, or may use a rigid flexible substrate.
 本実施形態では、駆動基板200と、ケーブル112Aに搭載された駆動IC210とにより、駆動部102が実現される。なお、駆動IC210には、駆動部102を実現する各種回路及び素子のうち、駆動基板200に搭載されているデジタル系部品と異なる回路が含まれる。 In the present embodiment, the drive unit 102 is realized by the drive board 200 and the drive IC 210 mounted on the cable 112A. The drive IC 210 includes various circuits and elements that realize the drive unit 102, which are different from the digital components mounted on the drive board 200.
 一方、ケーブル112Aが電気的に接続された基材11の一辺と交差する辺に設けられた複数(図2では8個)の端子部60の各々には、ケーブル112Bが電気的に接続されている。ケーブル112Bは、ケーブル112Aと同様に、いわゆるCOF(Chip on Film)であり、ケーブル112Bには、信号処理IC310が搭載されている。信号処理IC310は、ケーブル112Bに含まれる複数の信号線(図示省略)に接続されている。なお、端子部60とケーブル112Bとを電気的に接続する方法は、本実施形態に限定されず、例えば、コネクタにより、電気的に接続する形態としてもよい。このようなコネクタとしては、ZIF構造のコネクタや、Non-ZIF構造のコネクタ等が挙げられる。 On the other hand, the cable 112B is electrically connected to each of the plurality of (8 in FIG. 2) terminal portions 60 provided on the side where the cable 112A intersects one side of the electrically connected base material 11. There is. Like the cable 112A, the cable 112B is a so-called COF (Chip on Film), and the cable 112B is equipped with a signal processing IC 310. The signal processing IC 310 is connected to a plurality of signal lines (not shown) included in the cable 112B. The method of electrically connecting the terminal portion 60 and the cable 112B is not limited to this embodiment, and may be, for example, electrically connected by a connector. Examples of such a connector include a ZIF structure connector and a Non-ZIF structure connector.
 ケーブル112Bにおける、センサ基板12の端子部60と電気的に接続された一端と反対側の他端は、信号処理基板300の接続領域302に、電気的に接続される。一例として、本実施形態では、ケーブル112Bに含まれる複数の信号線(図示省略)は、信号処理基板300に熱圧着されることにより、信号処理基板300に搭載された回路及び素子等(図示省略)と接続される。なお、信号処理基板300とケーブル112Bとを電気的に接続する方法は、本実施形態に限定されず、例えば、コネクタにより、電気的に接続する形態としてもよい。このようなコネクタとしては、ZIF構造のコネクタや、Non-ZIF構造のコネクタ等が挙げられる。また、ケーブル112Aと駆動基板200とを電気的に接続する方法と、ケーブル112Bと信号処理基板300とを電気的に接続する方法は、同様であってもよいし、異なっていてもよい。例えば、ケーブル112Aと駆動基板200とは、熱圧着により電気的に接続し、ケーブル112Bと信号処理基板300とはコネクタにより電気的に接続する形態としてもよい。 The other end of the cable 112B, which is electrically connected to the terminal portion 60 of the sensor board 12, and the other end on the opposite side, is electrically connected to the connection area 302 of the signal processing board 300. As an example, in the present embodiment, a plurality of signal lines (not shown) included in the cable 112B are thermocompression-bonded to the signal processing board 300, so that circuits and elements mounted on the signal processing board 300 (not shown) and the like (not shown). ) Is connected. The method of electrically connecting the signal processing board 300 and the cable 112B is not limited to this embodiment, and may be, for example, electrically connected by a connector. Examples of such a connector include a ZIF structure connector and a Non-ZIF structure connector. Further, the method of electrically connecting the cable 112A and the drive board 200 and the method of electrically connecting the cable 112B and the signal processing board 300 may be the same or different. For example, the cable 112A and the drive board 200 may be electrically connected by thermocompression bonding, and the cable 112B and the signal processing board 300 may be electrically connected by a connector.
 本実施形態の信号処理基板300は、上述した駆動基板200と同様に、可撓性のPCB基板であり、いわゆるフレキシブル基板である。信号処理基板300に搭載される回路部品(図示省略)は主にアナログ信号の処理に用いられる部品(以下、「アナログ系部品」という)である。アナログ系部品の具体例としては、チャージアンプ、アナログデジタルコンバータ(ADC)、デジタルアナログコンバータ(DAC)、及び電源IC等が挙げられる。また、本実施形態の回路部品は、比較的部品サイズが大きい電源周りのコイル、及び平滑用大容量コンデンサも含む。なお、信号処理基板300は、必ずしもフレキシブル基板でなくてもよく、非可撓性のリジッド基板であってもよいし、リジッドフレキ基板を用いてもよい。 The signal processing board 300 of the present embodiment is a flexible PCB board like the drive board 200 described above, and is a so-called flexible board. The circuit components (not shown) mounted on the signal processing board 300 are components mainly used for processing analog signals (hereinafter, referred to as “analog components”). Specific examples of analog components include a charge amplifier, an analog-to-digital converter (ADC), a digital-to-analog converter (DAC), a power supply IC, and the like. Further, the circuit component of the present embodiment also includes a coil around a power supply having a relatively large component size and a large-capacity capacitor for smoothing. The signal processing substrate 300 does not necessarily have to be a flexible substrate, may be a non-flexible rigid substrate, or may use a rigid flexible substrate.
 本実施形態では、信号処理基板300と、ケーブル112Bに搭載された信号処理IC310とにより、信号処理部104が実現される。なお、信号処理IC310には、信号処理部104を実現する各種回路及び素子のうち、信号処理基板300に搭載されているアナログ系部品と異なる回路が含まれる。 In the present embodiment, the signal processing unit 104 is realized by the signal processing board 300 and the signal processing IC 310 mounted on the cable 112B. The signal processing IC 310 includes various circuits and elements that realize the signal processing unit 104, which are different from the analog components mounted on the signal processing board 300.
 なお、本実施形態では、駆動基板200及び信号処理基板300が各々、複数ずつ設けられている形態について説明したが、駆動基板200及び信号処理基板300の数は、本実施形態に限定されない。例えば、センサ基板12の各辺に設けられた駆動基板200及び信号処理基板300のいずれか一方を、1つの基板とした形態であってもよい。 Although a plurality of drive boards 200 and signal processing boards 300 are provided in each of the present embodiments, the number of drive boards 200 and signal processing boards 300 is not limited to this embodiment. For example, either one of the drive board 200 and the signal processing board 300 provided on each side of the sensor board 12 may be used as one board.
 一方、図3Aに示すように、本実施形態の放射線検出器10では、接続層62を介してケーブル112を端子部60に熱圧着することにより、ケーブル112が端子部60に電気的に接続される。 On the other hand, as shown in FIG. 3A, in the radiation detector 10 of the present embodiment, the cable 112 is electrically connected to the terminal portion 60 by thermocompression bonding the cable 112 to the terminal portion 60 via the connection layer 62. To.
 接続層62は、端子部60とケーブル112とを電気的に接続させる機能を有している。接続層62としては、例えば、異方性導電膜等が挙げられ、熱によって硬化する接着剤に導電性粒子(図示省略)を分散させたACF(Anisotropic Conductive Film)を用いることができる。 The connection layer 62 has a function of electrically connecting the terminal portion 60 and the cable 112. Examples of the connecting layer 62 include an anisotropic conductive film, and ACF (Anisotropic Conductive Film) in which conductive particles (not shown) are dispersed in an adhesive that is cured by heat can be used.
 図3Aに示すように、端子部60、接続層62、及びケーブル112が積層された積層体63における基材11の第1の面11A側は、強化部材64により覆われている。また、端子部60、接続層62、及びケーブル112が積層された積層体の側面及び基材11の側面は、強化部材65により覆われている。強化部材64及び強化部材65は、端子部60とケーブル112との電気的な接続を強化する機能を有する。また、本実施形態の強化部材64及び強化部材65は、防湿性を有している。強化部材64及び強化部材65としては、例えば、防湿絶縁膜を用いることができ、FPD(Flat Panel Display)用防湿絶縁材料であるタッフィー:Tuffy(登録商標)等が利用可能である。なお強化部材64及び強化部材65の各々は、同様の材料による部材であってもよいし、異なる材料による部材であってもよい。 As shown in FIG. 3A, the first surface 11A side of the base material 11 in the laminated body 63 in which the terminal portion 60, the connecting layer 62, and the cable 112 are laminated is covered with the reinforcing member 64. Further, the side surface of the laminate in which the terminal portion 60, the connection layer 62, and the cable 112 are laminated and the side surface of the base material 11 are covered with the reinforcing member 65. The reinforcing member 64 and the reinforcing member 65 have a function of strengthening the electrical connection between the terminal portion 60 and the cable 112. Further, the reinforcing member 64 and the reinforcing member 65 of the present embodiment have moisture resistance. As the reinforcing member 64 and the reinforcing member 65, for example, a moisture-proof insulating film can be used, and Tuffy (registered trademark) or the like, which is a moisture-proof insulating material for FPD (Flat Panel Display), can be used. Each of the reinforcing member 64 and the reinforcing member 65 may be a member made of the same material or a member made of a different material.
 本実施形態の放射線検出器10の製造方法の一例について図4A~図4Hを参照して説明する。 An example of the manufacturing method of the radiation detector 10 of the present embodiment will be described with reference to FIGS. 4A to 4H.
 図4Aに示すように、センサ基板12を形成する工程では、まず、基材11に比べて厚さの厚いガラス基板等の支持体400に、剥離層(図示省略)を介して、基材11を形成する。例えば、ラミネート法により基材11を形成する場合、支持体400上に、基材11となるシートを貼り合わせる。基材11の第2の面11Bが支持体400側と対向する。なお、基材11を形成する方法は、本実施形態に限定されず、例えば、塗布法で基材11を形成する形態であってもよい。 As shown in FIG. 4A, in the step of forming the sensor substrate 12, first, the substrate 11 is attached to a support 400 such as a glass substrate which is thicker than the substrate 11 via a release layer (not shown). To form. For example, when the base material 11 is formed by the laminating method, a sheet to be the base material 11 is attached onto the support 400. The second surface 11B of the base material 11 faces the support 400 side. The method of forming the base material 11 is not limited to this embodiment, and may be, for example, a form in which the base material 11 is formed by a coating method.
 図4Aに示すように、本実施形態の基材11の第1の面11Aには、後述する図4F及び図4Gに示す積層体19を切断する工程において切断位置の目印となるアライメントマーク92が設けられる。なお、アライメントマーク92を設けるタイミングは本形態に限定されず、例えば、後述する図4Cに示す、ケーブル112を端子部60に電気的に接続する工程の後に、基材11の第1の面11Aにアライメントマーク92を設けてもよい。本実施形態のアライメントマーク92が、本開示のマークの一例である。 As shown in FIG. 4A, on the first surface 11A of the base material 11 of the present embodiment, an alignment mark 92 that serves as a mark of the cutting position in the step of cutting the laminate 19 shown in FIGS. 4F and 4G described later is formed. Provided. The timing of providing the alignment mark 92 is not limited to this embodiment. For example, after the step of electrically connecting the cable 112 to the terminal portion 60 shown in FIG. 4C described later, the first surface 11A of the base material 11 The alignment mark 92 may be provided on the. The alignment mark 92 of the present embodiment is an example of the mark of the present disclosure.
 さらに、基材11の第1の面11Aの端子領域外60Bの画素領域35に、画素30を形成する。なお、本実施形態では、一例として、基材11の第1の面11Aに、SiN等を用いたアンダーコート層(図示省略)を介して、画素30を形成する。これにより、画素領域35に画素30が形成されたセンサ基板12が形成される。 Further, the pixel 30 is formed in the pixel region 35 of 60B outside the terminal region of the first surface 11A of the base material 11. In the present embodiment, as an example, the pixel 30 is formed on the first surface 11A of the base material 11 via an undercoat layer (not shown) using SiN or the like. As a result, the sensor substrate 12 in which the pixels 30 are formed in the pixel region 35 is formed.
 さらに、図4Bに示すように、変換層14を形成する工程では、画素30(画素領域35)の上に、変換層14を形成する。本実施形態では、センサ基板12上に直接、真空蒸着法、スパッタリング法、及びCVD(Chemical Vapor Deposition)法等の気相堆積法によって柱状結晶としてCsIの変換層14を形成する。この場合、変換層14における画素30と接する側が、柱状結晶の成長方向基点側となる。 Further, as shown in FIG. 4B, in the step of forming the conversion layer 14, the conversion layer 14 is formed on the pixel 30 (pixel region 35). In the present embodiment, the CsI conversion layer 14 is formed as columnar crystals directly on the sensor substrate 12 by a vapor deposition method such as a vacuum deposition method, a sputtering method, and a CVD (Chemical Vapor Deposition) method. In this case, the side of the conversion layer 14 in contact with the pixel 30 is the growth direction base point side of the columnar crystal.
 なお、変換層14としてCsIのシンチレータを用いる場合、本実施形態と異なる方法で、センサ基板12に変換層14を形成することもできる。例えば、アルミの板等に気相堆積法によってCsIを蒸着させたものを用意し、CsIのアルミの板と接していない側と、センサ基板12の画素30とを粘着性のシート等により貼り合わせることにより、センサ基板12に変換層14を形成してもよい。この場合、アルミの板も含めた状態の変換層14全体を保護層46により覆った状態のものを、センサ基板12の画素30と貼り合わせることが好ましい。なお、この場合、変換層14における画素30と接する側が、柱状結晶の成長方向の先端側となる。 When a CsI scintillator is used as the conversion layer 14, the conversion layer 14 can be formed on the sensor substrate 12 by a method different from that of the present embodiment. For example, prepare an aluminum plate or the like on which CsI is vapor-deposited by a vapor phase deposition method, and attach the side of the CsI that is not in contact with the aluminum plate and the pixel 30 of the sensor substrate 12 with an adhesive sheet or the like. As a result, the conversion layer 14 may be formed on the sensor substrate 12. In this case, it is preferable that the entire conversion layer 14 including the aluminum plate is covered with the protective layer 46 and bonded to the pixels 30 of the sensor substrate 12. In this case, the side of the conversion layer 14 in contact with the pixel 30 is the tip side in the growth direction of the columnar crystal.
 また、本実施形態の放射線検出器10と異なり、変換層14としてCsIに替わり、GOS(GdS:Tb)等を用いてもよい。この場合、例えば、GOSを樹脂等のバインダに分散させたシートを、白PET等により形成された支持体に粘着層等により貼り合わせたものを用意し、GOSの支持体が貼り合わせられていない側と、センサ基板12の画素30とを粘着性のシート等により貼り合わせることにより、センサ基板12に変換層14を形成することができる。なお、変換層14にCsIを用いる場合の方が、GOSを用いる場合に比べて、放射線から可視光への変換効率が高くなる。 Further, unlike the radiation detector 10 of the present embodiment, GOS (Gd 2 O 2 S: Tb) or the like may be used as the conversion layer 14 instead of CsI. In this case, for example, a sheet in which GOS is dispersed in a binder such as resin is prepared by bonding a support formed of white PET or the like with an adhesive layer or the like, and the GOS support is not bonded. The conversion layer 14 can be formed on the sensor substrate 12 by sticking the side and the pixels 30 of the sensor substrate 12 with an adhesive sheet or the like. In addition, when CsI is used for the conversion layer 14, the conversion efficiency from radiation to visible light is higher than when GOS is used.
 また、センサ基板12に形成された変換層14の上に、粘着層40を介して反射層42を設け、さらに、接着層44を介して保護層46を設ける。 Further, a reflective layer 42 is provided via the adhesive layer 40 on the conversion layer 14 formed on the sensor substrate 12, and a protective layer 46 is provided via the adhesive layer 44.
 次に、図4Cに示すように、ケーブル112を端子部60に電気的に接続する工程では、まず、基材11の第1の面11Aにおける端子領域60Aに、端子部60を形成する。なお、基材11に端子領域60Aに端子部60を形成するタイミングは本実施形態に限定されない。上述のセンサ基板12を形成する工程(図4A)、及び変換層14を形成する工程(図4B)のいずれかの工程中に、端子部60も形成してもよいし、センサ基板12を形成する工程(図4A)と変換層14を形成する工程(図4B)との間のタイミングで、端子部60を形成してもよい。 Next, as shown in FIG. 4C, in the step of electrically connecting the cable 112 to the terminal portion 60, first, the terminal portion 60 is formed in the terminal region 60A on the first surface 11A of the base material 11. The timing of forming the terminal portion 60 in the terminal region 60A on the base material 11 is not limited to this embodiment. The terminal portion 60 may also be formed during either the step of forming the sensor substrate 12 (FIG. 4A) or the step of forming the conversion layer 14 (FIG. 4B), or the sensor substrate 12 may be formed. The terminal portion 60 may be formed at a timing between the step of forming the conversion layer 14 (FIG. 4A) and the step of forming the conversion layer 14 (FIG. 4B).
 さらに、端子部60に接続層62を介してケーブル112を熱圧着させて、端子部60と接続層62とを電気的に接続する。さらに、強化部材64(図3A参照)により、積層体63を覆う。なお、一例として本実施形態では、駆動基板200が電気的に接続されたケーブル112A、及び信号処理基板300が電気的に接続されたケーブル112Bの各々を基材11の端子部60に電気的に接続する形態について説明したが、基材11の端子部60に電気的に接続するケーブル112の状態は本形態に限定されない。換言すると、ケーブル112Aに駆動基板200を電気的に接続するタイミング、及び信号処理基板300にケーブル112Bを電気的に接続するタイミングの各々は本形態に限定されない。例えば、後述する図4F及び図4Gに示す積層体19を切断する工程の後に、ケーブル112Aに駆動基板200を電気的に接続し、また信号処理基板300にケーブル112Bを電気的に接続してもよい。また、ケーブル112Aに駆動基板200を電気的に接続するタイミングと、信号処理基板300にケーブル112Bを電気的に接続するタイミングとは異なっていてもよい。 Further, the cable 112 is thermocompression bonded to the terminal portion 60 via the connection layer 62 to electrically connect the terminal portion 60 and the connection layer 62. Further, the reinforcing member 64 (see FIG. 3A) covers the laminated body 63. As an example, in the present embodiment, each of the cable 112A to which the drive board 200 is electrically connected and the cable 112B to which the signal processing board 300 is electrically connected are electrically connected to the terminal portion 60 of the base material 11. Although the form of connection has been described, the state of the cable 112 electrically connected to the terminal portion 60 of the base material 11 is not limited to this form. In other words, the timing of electrically connecting the drive board 200 to the cable 112A and the timing of electrically connecting the cable 112B to the signal processing board 300 are not limited to this embodiment. For example, after the step of cutting the laminate 19 shown in FIGS. 4F and 4G, which will be described later, the drive board 200 may be electrically connected to the cable 112A, and the cable 112B may be electrically connected to the signal processing board 300. Good. Further, the timing of electrically connecting the drive board 200 to the cable 112A and the timing of electrically connecting the cable 112B to the signal processing board 300 may be different.
 次に、図4Dに示すように、センサ基板12を支持体400から剥離する工程では、変換層14が設けられ、端子部60にケーブル112が電気的に接続された状態のセンサ基板12を支持体400から剥離する。例えば、ラミネート法では、センサ基板12(基材11)の四辺のいずれかを剥離の起点とし、起点となる辺から対向する辺に向けて徐々にセンサ基板12を支持体400から引きはがすことにより、メカニカル剥離を行う。 Next, as shown in FIG. 4D, in the step of peeling the sensor substrate 12 from the support 400, a conversion layer 14 is provided to support the sensor substrate 12 in a state where the cable 112 is electrically connected to the terminal portion 60. Peel off from body 400. For example, in the laminating method, any of the four sides of the sensor substrate 12 (base material 11) is set as the starting point of peeling, and the sensor substrate 12 is gradually peeled off from the support 400 from the starting point toward the opposite side. , Perform mechanical peeling.
 次に、図4Eに示すように、補強部材50を設ける工程では、基材11の第2の面11Bに、帯電防止層54及び粘着剤52(図3A及び図3B参照)を介して、貼り付け等により補強部材50を形成する。一例として本実施形態では、端子部60にケーブル112が電気的に接続されたセンサ基板12を、基材11の第2の面11Bが上側となる状態にして、アライメント機能を有する貼合装置にセットする。貼合装置は、撮像装置等を用いたアライメント機能により粘着剤52及び帯電防止層54が設けられた補強部材50の角部、及び基材11の第2の面11Bの角部を識別し、両角部が重なる状態に補強部材50とセンサ基板12(基材11)との位置合わせを行う。図4Eに示すように、貼合装置は、補強部材50とセンサ基板12(基材11)との位置合わせが成された状態で、ローラ410を矢印P方向に移動させて、補強部材50を基材11の第2の面11Bに貼り合わせる。 Next, as shown in FIG. 4E, in the step of providing the reinforcing member 50, the reinforcing member 50 is attached to the second surface 11B of the base material 11 via the antistatic layer 54 and the adhesive 52 (see FIGS. 3A and 3B). The reinforcing member 50 is formed by attaching or the like. As an example, in the present embodiment, the sensor substrate 12 in which the cable 112 is electrically connected to the terminal portion 60 is placed in a state where the second surface 11B of the substrate 11 is on the upper side, and the bonding device has an alignment function. set. The bonding device identifies the corners of the reinforcing member 50 provided with the adhesive 52 and the antistatic layer 54 and the corners of the second surface 11B of the base material 11 by an alignment function using an image pickup device or the like. The reinforcing member 50 and the sensor substrate 12 (base material 11) are aligned so that both corners overlap. As shown in FIG. 4E, the laminating device moves the roller 410 in the direction of the arrow P in a state where the reinforcing member 50 and the sensor substrate 12 (base material 11) are aligned to move the reinforcing member 50. It is attached to the second surface 11B of the base material 11.
 次に、図4F及び図4Gに示すように、センサ基板12と補強部材50とが積層された積層体19を切断する工程では、積層体19の基材11における画素領域35外に対応する端子領域外60Bの部分を切断する。本実施形態では、積層体19における、基材11のケーブル112Bが電気的に接続された辺と対向する辺の画素領域35外の部分を切断する。具体的には、図4F及び図4Gに示すように、切断線90で表した位置を切断し、積層体19の端部を切り離し、放射線検出器10を図4Hに示した状態にする。なお、本実施形態では、切断線90は、切断位置を示すために図示したものであり、基材11の第1の面11Aに実際に設けられているものではない。 Next, as shown in FIGS. 4F and 4G, in the step of cutting the laminated body 19 in which the sensor substrate 12 and the reinforcing member 50 are laminated, the terminals corresponding to the outside of the pixel region 35 in the base material 11 of the laminated body 19 The portion of 60B outside the region is cut. In the present embodiment, the portion of the laminated body 19 outside the pixel region 35 on the side opposite to the side to which the cable 112B of the base material 11 is electrically connected is cut. Specifically, as shown in FIGS. 4F and 4G, the position represented by the cutting line 90 is cut, the end portion of the laminated body 19 is cut off, and the radiation detector 10 is brought into the state shown in FIG. 4H. In this embodiment, the cutting line 90 is shown to indicate the cutting position, and is not actually provided on the first surface 11A of the base material 11.
 一例として本実施形態では、センサ基板12と補強部材50とが積層された積層体19を、基材11の第1の面11Aが上側となる状態にして、アライメント機能を有する切断装置にセットする。切断装置は、撮像装置等を用いたアライメント機能により基材11の第1の面11Aに設けられた2カ所のアライメントマーク92を検出し、検出したアライメントマーク92に基づいて、切断線90を決定する。そして、切断装置は、切断線90に沿って積層体19を切断する。 As an example, in the present embodiment, the laminated body 19 in which the sensor substrate 12 and the reinforcing member 50 are laminated is set in a cutting device having an alignment function with the first surface 11A of the base material 11 facing up. .. The cutting device detects two alignment marks 92 provided on the first surface 11A of the base material 11 by an alignment function using an imaging device or the like, and determines the cutting line 90 based on the detected alignment marks 92. To do. Then, the cutting device cuts the laminated body 19 along the cutting line 90.
 このように、本実施形態では、基材11と補強部材50とが積層された積層体19を切断する。換言すると、基材11と補強部材50とを一体として切断するため、図3Bに示したように、基材11の切断面11Cと補強部材50の切断面50Cとが面一の状態となる。なお、基材11の切断面11Cと補強部材50の切断面50Cとが「面一」の状態とは、切断面11Cと切断面50Cとが完全に同一平面上にある場合に限定されず、補強部材50の縮小や製造誤差等を許容して「面一」とみなせる状態をいう。本実施形態では、基材11の切断面11Cと補強部材50の切断面50Cとが「面一」の状態とは、基材11の切断面11Cと補強部材50の切断面11Cとの位置の差が、図3Aに示したように基材11に補強部材50を貼り合わせた場合に生じる基材11の側面11Dと補強部材50の側面50Dとの位置の差よりも少ない状態をいい、好ましくは±10μmである状態をいう。 As described above, in the present embodiment, the laminated body 19 in which the base material 11 and the reinforcing member 50 are laminated is cut. In other words, since the base material 11 and the reinforcing member 50 are cut together, the cut surface 11C of the base material 11 and the cut surface 50C of the reinforcing member 50 are in a flush state as shown in FIG. 3B. The state in which the cut surface 11C of the base material 11 and the cut surface 50C of the reinforcing member 50 are "parallel" is not limited to the case where the cut surface 11C and the cut surface 50C are completely on the same plane. It refers to a state in which the reinforcing member 50 can be regarded as "facial" by allowing shrinkage, manufacturing error, and the like. In the present embodiment, the state in which the cut surface 11C of the base material 11 and the cut surface 50C of the reinforcing member 50 are "parallel" means that the cut surface 11C of the base material 11 and the cut surface 11C of the reinforcing member 50 are positioned. It is preferable that the difference is smaller than the difference in position between the side surface 11D of the base material 11 and the side surface 50D of the reinforcing member 50 that occurs when the reinforcing member 50 is attached to the base material 11 as shown in FIG. 3A. Refers to a state of ± 10 μm.
 このように本実施形態では、上記図4A~図4Gに示した工程により、図2~図3B、及び図4Hに示した放射線検出器10が製造される。 As described above, in the present embodiment, the radiation detectors 10 shown in FIGS. 2 to 3B and 4H are manufactured by the steps shown in FIGS. 4A to 4G.
 このように、本実施形態の放射線検出器10の製造方法では、基材11と積層体19とが積層された積層体19の画素領域35外の、端子領域外60Bを切断するため、画素領域35付近まで積層体19(基材11)を切断することができる。従って、基材11(センサ基板12)の端部付近に、画素30を設けることができる。例えば、マンモグラフィ装置に適用される放射線画像撮影装置1(放射線検出器10)では、被検者の胸壁により近い位置まで画素領域35とすることができるため、被検者の胸壁近傍までを含む放射線画像を撮影することが可能となる。 As described above, in the method of manufacturing the radiation detector 10 of the present embodiment, the pixel region 60B outside the pixel region 35 of the laminate 19 in which the base material 11 and the laminate 19 are laminated is cut. The laminated body 19 (base material 11) can be cut up to the vicinity of 35. Therefore, the pixels 30 can be provided near the end of the base material 11 (sensor substrate 12). For example, in the radiation imaging device 1 (radiation detector 10) applied to the mammography device, the pixel area 35 can be set to a position closer to the chest wall of the subject, so that the radiation including the vicinity of the chest wall of the subject is included. It becomes possible to take an image.
[第2実施形態]
 次に、第2実施形態について説明する。本実施形態の放射線画像撮影装置1の電気系の構成は、第1実施形態の放射線画像撮影装置1と同様であるため、説明を省略する。一方、図5は、本実施形態の放射線検出器10を、基材11の第1の面11A側からみた平面図の一例である。また、図6Aは、図5における放射線検出器10のA-A線断面図の一例であり、図6Bは、図5における放射線検出器10のB-B線断面図の一例である。
[Second Embodiment]
Next, the second embodiment will be described. Since the configuration of the electrical system of the radiation imaging device 1 of the present embodiment is the same as that of the radiation imaging device 1 of the first embodiment, the description thereof will be omitted. On the other hand, FIG. 5 is an example of a plan view of the radiation detector 10 of the present embodiment as viewed from the first surface 11A side of the base material 11. 6A is an example of a sectional view taken along line AA of the radiation detector 10 in FIG. 5, and FIG. 6B is an example of a sectional view taken along line BB of the radiation detector 10 in FIG.
 第1実施形態の放射線検出器10では、基材11の対向する一対の辺の各々に設けられた複数の端子部60の各々に、ケーブル112Aが電気的に接続されている形態について説明した。これに対して、本実施形態の放射線検出器10は、図5に示すように、基材11の一辺のみに複数の端子部60が設けられ、各々にケーブル112Aが電気的に接続されている点が異なっている。 In the radiation detector 10 of the first embodiment, a mode in which the cable 112A is electrically connected to each of the plurality of terminal portions 60 provided on each of the pair of opposite sides of the base material 11 has been described. On the other hand, in the radiation detector 10 of the present embodiment, as shown in FIG. 5, a plurality of terminal portions 60 are provided only on one side of the base material 11, and a cable 112A is electrically connected to each of them. The point is different.
 また、詳細は後述するが、本実施形態の放射線検出器10の製造方法では、端子部60が設けられる端子領域60Aの辺に沿って、基材11と補強部材50との積層体19の部分を切断する。そのため、図6Aに示すように、本実施形態の放射線検出器10では、基材11の切断面11C及び補強部材50の切断面11Cが、積層体19における端子領域60A側の端面となる。一方、図6Bに示すように、本実施形態の放射線検出器10では、基材11の側面11D及び補強部材50の側面11Dが、積層体19における端子領域外60B側の端面となる。 Further, as will be described in detail later, in the method of manufacturing the radiation detector 10 of the present embodiment, the portion of the laminated body 19 of the base material 11 and the reinforcing member 50 along the side of the terminal region 60A where the terminal portion 60 is provided. To disconnect. Therefore, as shown in FIG. 6A, in the radiation detector 10 of the present embodiment, the cut surface 11C of the base material 11 and the cut surface 11C of the reinforcing member 50 are end faces on the terminal region 60A side of the laminated body 19. On the other hand, as shown in FIG. 6B, in the radiation detector 10 of the present embodiment, the side surface 11D of the base material 11 and the side surface 11D of the reinforcing member 50 are end faces on the 60B side outside the terminal region in the laminated body 19.
 本実施形態の放射線検出器10の製造方法の一例について図7A~図7Gを参照して説明する。 An example of the manufacturing method of the radiation detector 10 of the present embodiment will be described with reference to FIGS. 7A to 7G.
 図7Aに示すように、センサ基板12を形成する工程では、第1実施形態で説明したセンサ基板12を形成する工程(図4A参照)と同様に、支持体400に、剥離層(図示省略)を介して、基材11を形成する。なお、本実施形態では、端子領域60Aである、基材11(積層体19)の2辺を切断するため、切断位置の目印となるアライメントマーク92が基材11の第1の面11Aに3つ(アライメントマーク92A、92B、92C)設けられている。また、第1実施形態と同様に、基材11の第1の面11Aの端子領域外60Bの画素領域35に、画素30を形成する。 As shown in FIG. 7A, in the step of forming the sensor substrate 12, the release layer (not shown) is formed on the support 400 in the same manner as in the step of forming the sensor substrate 12 described in the first embodiment (see FIG. 4A). The base material 11 is formed through the substrate 11. In this embodiment, since the two sides of the base material 11 (laminated body 19), which is the terminal region 60A, are cut, the alignment mark 92, which serves as a mark of the cutting position, is 3 on the first surface 11A of the base material 11. One (alignment marks 92A, 92B, 92C) is provided. Further, similarly to the first embodiment, the pixel 30 is formed in the pixel region 35 of the terminal region 60B outside the terminal region of the first surface 11A of the base material 11.
 さらに、図7Bに示すように、変換層を形成する工程では、第1実施形態で説明したセンサ基板12を形成する工程(図4A参照)と同様に、画素30(画素領域35)の上に、変換層14を形成する。また、センサ基板12に形成された変換層14の上に、粘着層40を介して反射層42を設け、さらに、接着層44を介して保護層46を設ける。 Further, as shown in FIG. 7B, in the step of forming the conversion layer, similarly to the step of forming the sensor substrate 12 described in the first embodiment (see FIG. 4A), on the pixel 30 (pixel region 35). , The conversion layer 14 is formed. Further, on the conversion layer 14 formed on the sensor substrate 12, the reflective layer 42 is provided via the adhesive layer 40, and the protective layer 46 is further provided via the adhesive layer 44.
 次に、図7Cに示すように、センサ基板12を支持体400から剥離する工程では、第1実施形態で説明したセンサ基板12を支持体400から剥離する工程(図4D参照)と同様に、変換層14が設けられた状態のセンサ基板12を支持体400から剥離する。 Next, as shown in FIG. 7C, in the step of peeling the sensor substrate 12 from the support 400, the same as the step of peeling the sensor substrate 12 from the support 400 described in the first embodiment (see FIG. 4D). The sensor substrate 12 provided with the conversion layer 14 is peeled off from the support 400.
 次に、図7Dに示すように、補強部材50を設ける工程では、第1実施形態の補強部材50を設ける工程(図4E参照)と同様に、基材11の第2の面11Bに、帯電防止層54及び粘着剤52(図6A及び図6B参照)を介して、貼り付け等により補強部材50を形成する。 Next, as shown in FIG. 7D, in the step of providing the reinforcing member 50, the second surface 11B of the base material 11 is charged in the same manner as in the step of providing the reinforcing member 50 of the first embodiment (see FIG. 4E). The reinforcing member 50 is formed by sticking or the like via the prevention layer 54 and the adhesive 52 (see FIGS. 6A and 6B).
 次に、図7E及び図7Fに示すように、センサ基板12と補強部材50とが積層された積層体19を切断する工程では、積層体19の基材11における画素領域35外に対応する端子領域60Aの部分を切断する。積層体19の切断方法は、第1実施形態において積層体19を切断する工程(図4F及び図4G参照)と同様に行えばよい。なお、本実施形態では、切断装置により、アライメントマーク92A及びアライメントマーク92Bにより決定される切断線90Aに沿って積層体19を切断し、また、アライメントマーク92B及びアライメントマーク92Cにより決定される切断線90Bに沿って積層体19を切断する。 Next, as shown in FIGS. 7E and 7F, in the step of cutting the laminated body 19 in which the sensor substrate 12 and the reinforcing member 50 are laminated, the terminals corresponding to the outside of the pixel region 35 in the base material 11 of the laminated body 19 A portion of region 60A is cut. The cutting method of the laminated body 19 may be performed in the same manner as the step of cutting the laminated body 19 (see FIGS. 4F and 4G) in the first embodiment. In the present embodiment, the cutting device cuts the laminated body 19 along the cutting line 90A determined by the alignment mark 92A and the alignment mark 92B, and the cutting line determined by the alignment mark 92B and the alignment mark 92C. The laminate 19 is cut along 90B.
 このように、本実施形態では、基材11と補強部材50とが積層された積層体19を切断するため、上述したように、図6Aに示したように、基材11の切断面11Cと補強部材50の切断面50Cとが面一の状態となる。 As described above, in the present embodiment, in order to cut the laminated body 19 in which the base material 11 and the reinforcing member 50 are laminated, as described above, as shown in FIG. 6A, with the cut surface 11C of the base material 11. The cut surface 50C of the reinforcing member 50 is flush with each other.
 次に、図7Gに示すように、ケーブル112を端子部60に電気的に接続する工程では、第1実施形態で説明したケーブル112を端子部60に電気的に接続する工程(図4C参照)と同様に、基材11の第1の面11Aにおける端子領域60Aに、端子部60を形成する。さらに、端子部60に接続層62を介してケーブル112を熱圧着させて、端子部60と接続層62とを電気的に接続する。さらに、強化部材64(図3A参照)により、積層体63を覆う。 Next, as shown in FIG. 7G, in the step of electrically connecting the cable 112 to the terminal portion 60, the step of electrically connecting the cable 112 described in the first embodiment to the terminal portion 60 (see FIG. 4C). Similarly, the terminal portion 60 is formed in the terminal region 60A on the first surface 11A of the base material 11. Further, the cable 112 is thermocompression bonded to the terminal portion 60 via the connection layer 62 to electrically connect the terminal portion 60 and the connection layer 62. Further, the reinforcing member 64 (see FIG. 3A) covers the laminated body 63.
 このように本実施形態では、上記図7A~図7Gに示した工程により、図5~図6Bに示した放射線検出器10が製造される。 As described above, in the present embodiment, the radiation detector 10 shown in FIGS. 5 to 6B is manufactured by the steps shown in FIGS. 7A to 7G.
 このように、本実施形態の放射線検出器10の製造方法では、基材11と積層体19とが積層された積層体19の画素領域35外の、端子領域外60Bを切断するため、端子部60の端部まで、補強部材50が設けられた状態となる。そのため端子部60にケーブル112を電気的に接続する工程において、補強部材50により基材11の強度が補強されるため、端子部60部分がダメージを受けにくくなる。 As described above, in the method of manufacturing the radiation detector 10 of the present embodiment, the terminal portion is cut from the terminal region outside 60B outside the pixel region 35 of the laminate 19 in which the base material 11 and the laminate 19 are laminated. The reinforcing member 50 is provided up to the end of the 60. Therefore, in the process of electrically connecting the cable 112 to the terminal portion 60, the strength of the base material 11 is reinforced by the reinforcing member 50, so that the terminal portion 60 portion is less likely to be damaged.
 以上説明したように、上記各実施形態の放射線検出器10の製造方法は、支持体400に可撓性の基材11を設け、基材11の画素領域35に、照射された放射線に応じた電荷を蓄積する複数の画素30が設けられたセンサ基板12を形成する工程と、複数の画素30が設けられたセンサ基板12を、支持体400から剥離する工程を備える。また、放射線検出器10の製造方法は、センサ基板12における支持体400から剥離した第2の面11Bに、基材11の強度を補強する補強部材50を設ける工程と、補強部材50と基材11とを積層した積層体19の、基材11における画素領域35外に対応する部分を切断する工程と、を備える。 As described above, in the method for manufacturing the radiation detector 10 of each of the above embodiments, the flexible base material 11 is provided on the support 400, and the pixel region 35 of the base material 11 is subjected to the irradiation of radiation. A step of forming a sensor substrate 12 provided with a plurality of pixels 30 for accumulating charges and a step of peeling the sensor substrate 12 provided with the plurality of pixels 30 from the support 400 are provided. Further, the method of manufacturing the radiation detector 10 includes a step of providing a reinforcing member 50 for reinforcing the strength of the base material 11 on the second surface 11B peeled from the support 400 in the sensor substrate 12, and the reinforcing member 50 and the base material. A step of cutting a portion of the laminated body 19 in which 11 is laminated and corresponding to the outside of the pixel region 35 in the base material 11 is provided.
 例えば、センサ基板12の端部付近まで、画素領域35とし画素30を形成した場合、放射線検出器10の製造工程において、センサ基板12を支持体400から剥離する工程において、センサ基板12が撓むため、センサ基板12の端部付近の画素30が破損する懸念がある。しかしながら、本実施形態の放射線検出器10の製造方法では、センサ基板12を支持体400から剥離した後、基材11と補強部材50との積層体19を切断する。本実施形態の放射線検出器10の製造方法によれば、センサ基板12の剥離後に画素領域35付近で積層体19を切断することができるため、センサ基板12の端部付近まで画素30の破損が抑制された画素領域35とすることができる。 For example, when the pixel region 35 is formed and the pixel 30 is formed up to the vicinity of the end of the sensor substrate 12, the sensor substrate 12 bends in the step of peeling the sensor substrate 12 from the support 400 in the manufacturing process of the radiation detector 10. Therefore, there is a concern that the pixels 30 near the end of the sensor substrate 12 may be damaged. However, in the method for manufacturing the radiation detector 10 of the present embodiment, after the sensor substrate 12 is peeled off from the support 400, the laminate 19 of the base material 11 and the reinforcing member 50 is cut. According to the method for manufacturing the radiation detector 10 of the present embodiment, the laminated body 19 can be cut in the vicinity of the pixel region 35 after the sensor substrate 12 is peeled off, so that the pixels 30 are damaged up to the vicinity of the end portion of the sensor substrate 12. The suppressed pixel region 35 can be set.
 また、センサ基板12は基材11が可撓性を有するため、基材11そのままでは、切断し難い。これに対して上記各実施形態の放射線検出器10の製造方法では、基材11に補強部材50を設けた後、基材11と補強部材50との積層体19を切断する。基材11に比べて積層体19の厚みは厚く、かつ剛性も高いため、基材11に比べて積層体19は切断し易い。従って、上記各実施形態の放射線検出器10によれば、基材11(積層体19)の所望の範囲を、画素30を破損することなく切断することができる。 Further, since the base material 11 of the sensor substrate 12 has flexibility, it is difficult to cut the base material 11 as it is. On the other hand, in the method for manufacturing the radiation detector 10 of each of the above embodiments, after the reinforcing member 50 is provided on the base material 11, the laminated body 19 of the base material 11 and the reinforcing member 50 is cut. Since the laminate 19 is thicker and more rigid than the base material 11, the laminate 19 is easier to cut than the base material 11. Therefore, according to the radiation detector 10 of each of the above embodiments, the desired range of the base material 11 (laminated body 19) can be cut without damaging the pixels 30.
 従って、上記各実施形態の放射線検出器10の製造方法によれば、センサ基板12における、画素30が形成された画素領域35の割合を高くすることが簡便にできる。 Therefore, according to the method for manufacturing the radiation detector 10 of each of the above embodiments, it is possible to easily increase the proportion of the pixel region 35 in which the pixels 30 are formed in the sensor substrate 12.
 なお、上記各実施形態の放射線検出器10の製造方法おいて、変換層14上に補強層48を設ける工程をさらに備えていてもよい。すなわち、放射線検出器10が、補強層48を備えていてもよい。図8には、上記図3Aに示した放射線検出器10のA-A線断面図に相当する、本変形例の放射線検出器10の断面図の一例を示す。 The method for manufacturing the radiation detector 10 of each of the above embodiments may further include a step of providing a reinforcing layer 48 on the conversion layer 14. That is, the radiation detector 10 may include a reinforcing layer 48. FIG. 8 shows an example of a cross-sectional view of the radiation detector 10 of this modified example, which corresponds to the cross-sectional view taken along the line AA of the radiation detector 10 shown in FIG. 3A.
 図8に示した放射線検出器10では、保護層46で覆われた変換層14上に、補強層48がさらに設けられている。補強層48は、基材11よりも曲げ剛性が高く、変換層14と対向する面に対して垂直方向に加えられる力に対する、寸法変化(変形)が、基材11の第1の面11Aに対して垂直方向に加えられる力に対する、寸法変化よりも小さい。また、補強層48の厚みは、基材11の厚みよりも厚い。 In the radiation detector 10 shown in FIG. 8, a reinforcing layer 48 is further provided on the conversion layer 14 covered with the protective layer 46. The reinforcing layer 48 has a higher flexural rigidity than the base material 11, and the dimensional change (deformation) with respect to the force applied in the direction perpendicular to the surface facing the conversion layer 14 is caused to the first surface 11A of the base material 11. On the other hand, it is smaller than the dimensional change with respect to the force applied in the vertical direction. Further, the thickness of the reinforcing layer 48 is thicker than that of the base material 11.
 補強層48は、曲げ弾性率が150MPa以上、3000MPa以下の素材を用いることが好ましい。補強層48は、基材11の撓みを抑制する観点からは、基材11よりも曲げ剛性が高いことが好ましい。なお、曲げ弾性率が低くなると曲げ剛性も低くなり、所望の曲げ剛性を得るためには、補強層48の厚みを厚くしなくてはならず、放射線検出器10全体の厚みが増大してしまう。補強層48の材料を考慮すると、140000Pacmを越える曲げ剛性を得ようとする場合、補強層48の厚みが、比較的厚くなってしまう傾向がある。そのため、適切な剛性が得られ、かつ放射線検出器10全体の厚みを考慮すると、補強層48に用いる素材は、曲げ弾性率が150MPa以上、3000MPa以下であることがより好ましい。また、補強層48の曲げ剛性は、540Pacm以上、140000Pacm以下であることが好ましい。 The reinforcing layer 48 is preferably made of a material having a flexural modulus of 150 MPa or more and 3000 MPa or less. The reinforcing layer 48 preferably has a higher bending rigidity than the base material 11 from the viewpoint of suppressing the bending of the base material 11. As the flexural modulus decreases, the flexural rigidity also decreases, and in order to obtain the desired flexural rigidity, the thickness of the reinforcing layer 48 must be increased, and the thickness of the entire radiation detector 10 increases. .. Considering the material of the reinforcing layer 48, when trying to obtain a bending rigidity exceeding 140000 Pacm 4 , the thickness of the reinforcing layer 48 tends to be relatively thick. Therefore, when appropriate rigidity is obtained and the thickness of the entire radiation detector 10 is taken into consideration, the material used for the reinforcing layer 48 preferably has a flexural modulus of 150 MPa or more and 3000 MPa or less. Further, the flexural rigidity of the reinforcing layer 48 is preferably 540 Pacm 4 or more and 140000 Pacm 4 or less.
 また、補強層48の熱膨張率は、変換層14の材料の熱膨張率に近い方が好ましく、より好ましくは、変換層14の熱膨張率に対する補強層48の熱膨張率の比(補強層48の熱膨張率/変換層14の熱膨張率)が、0.5以上、2以下であることが好ましい。このような補強層48の熱膨張率としては、30ppm/K以上、80ppm/K以下であることが好ましい。例えば、変換層14がCsI:Tlを材料とする場合、熱膨張率は、50ppm/Kである。この場合、変換層14に比較的近い材料としては、PVC、アクリル、PET、PC、及びテフロン(登録商標)等が挙げられる。さらに、上述した曲げ弾性率を考慮すると、補強層48の材料としては、PET、及びPCの少なくとも一方を含む材料であることがより好ましい。また、補強層48は、弾力性の観点からは、降伏点を有する材料を含むことが好ましい。 Further, the coefficient of thermal expansion of the reinforcing layer 48 is preferably close to the coefficient of thermal expansion of the material of the conversion layer 14, and more preferably the ratio of the coefficient of thermal expansion of the reinforcing layer 48 to the coefficient of thermal expansion of the conversion layer 14 (reinforcing layer). The coefficient of thermal expansion of 48 / the coefficient of thermal expansion of the conversion layer 14) is preferably 0.5 or more and 2 or less. The coefficient of thermal expansion of such a reinforcing layer 48 is preferably 30 ppm / K or more and 80 ppm / K or less. For example, when the conversion layer 14 is made of CsI: Tl, the coefficient of thermal expansion is 50 ppm / K. In this case, examples of the material relatively close to the conversion layer 14 include PVC, acrylic, PET, PC, Teflon (registered trademark) and the like. Further, considering the flexural modulus described above, the material of the reinforcing layer 48 is more preferably a material containing at least one of PET and PC. Further, from the viewpoint of elasticity, the reinforcing layer 48 preferably contains a material having a yield point.
 補強層48は、プラスチックを材料とした基板である。補強層48の材料となるプラスチックは、上述した理由から熱可塑性の樹脂であることが好ましく、PC、PET、スチロール、アクリル、ポリアセターゼ、ナイロン、ポリプロピレン、ABS、エンプラ、及びポリフェニレンエーテルの少なくとも一つが挙げられる。なお、補強層48は、これらのうち、ポリプロピレン、ABS、エンプラ、PET、及びポリフェニレンエーテルの少なくとも一つであることが好ましく、スチロール、アクリル、ポリアセターゼ、及びナイロンの少なくとも一つであることがより好ましく、PC及びPETの少なくとも一つであることがさらに好ましい。なお、補強層48と補強部材50との具体的な特性、及び材料等は、同一であってもよいし、異なっていてもよい。 The reinforcing layer 48 is a substrate made of plastic. The plastic used as the material of the reinforcing layer 48 is preferably a thermoplastic resin for the reasons described above, and at least one of PC, PET, styrene, acrylic, polyacetase, nylon, polypropylene, ABS, engineering plastic, and polyphenylene ether can be mentioned. Be done. The reinforcing layer 48 is preferably at least one of polypropylene, ABS, engineering plastic, PET, and polyphenylene ether, and more preferably at least one of styrene, acrylic, polyacetase, and nylon. , PC and PET are more preferable. The specific characteristics, materials, and the like of the reinforcing layer 48 and the reinforcing member 50 may be the same or different.
 変換層14を気相堆積法を用いて形成した場合、図8及び上記図3A等に示すように、変換層14は、その外縁に向けて厚さが徐々に薄くなる傾斜を有して形成される。以下において、製造誤差及び測定誤差を無視した場合の厚さが略一定とみなせる、変換層14の中央領域を中央部という。また、変換層14の中央部の平均厚さに対して例えば90%以下の厚さを有する、変換層14の外周領域を周縁部という。すなわち、変換層14は、周縁部においてセンサ基板12に対して傾斜した傾斜面を有する。図8に示す補強層48は、変換層14の中央部全体、及び周縁部の一部を覆う。換言すると、補強層48の外縁が、変換層14の周縁部の傾斜面上に位置する。 When the conversion layer 14 is formed by the vapor phase deposition method, the conversion layer 14 is formed with an inclination that gradually decreases in thickness toward the outer edge thereof, as shown in FIGS. 8 and 3A. Will be done. In the following, the central region of the conversion layer 14 in which the thickness can be regarded as substantially constant when manufacturing errors and measurement errors are ignored is referred to as a central portion. Further, an outer peripheral region of the conversion layer 14 having a thickness of, for example, 90% or less of the average thickness of the central portion of the conversion layer 14 is referred to as a peripheral edge portion. That is, the conversion layer 14 has an inclined surface inclined with respect to the sensor substrate 12 at the peripheral edge portion. The reinforcing layer 48 shown in FIG. 8 covers the entire central portion and a part of the peripheral portion of the conversion layer 14. In other words, the outer edge of the reinforcing layer 48 is located on the inclined surface of the peripheral edge of the conversion layer 14.
 なお、補強層48を設ける位置等は、図8に示した形態に限定されない。例えば、補強層48が、変換層14の全体を覆う形態であってもよい。また例えば、図8では補強層48が変換層14の傾斜部に沿って曲がった状態に設けられているが、曲がらずに板状に、変換層14の傾斜部と補強層48との間に空間が設けられる状態としてもよい。 The position where the reinforcing layer 48 is provided is not limited to the form shown in FIG. For example, the reinforcing layer 48 may cover the entire conversion layer 14. Further, for example, in FIG. 8, the reinforcing layer 48 is provided in a bent state along the inclined portion of the conversion layer 14, but is formed in a plate shape without bending between the inclined portion of the conversion layer 14 and the reinforcing layer 48. A space may be provided.
 このような補強層48を変換層14に設ける工程は、支持体400からセンサ基板12を剥離する前に行うことが好ましい。変換層14上に補強層48が設けられた放射線検出器10では、基材11の強度がより補強される。 It is preferable that the step of providing the reinforcing layer 48 on the conversion layer 14 is performed before the sensor substrate 12 is peeled off from the support 400. In the radiation detector 10 in which the reinforcing layer 48 is provided on the conversion layer 14, the strength of the base material 11 is further reinforced.
 なお、上記各実施形態では、放射線検出器10が、放射線を変換層14により、一旦光に変換し、変換した光を電荷に変換する間接変換型である形態について説明したが、間接変換型に限定されない。放射線検出器10は、放射線を電荷へ直接変換する直接変換型であってもよい。直接変換型の放射線検出器10は、上述した変換層14に代わり、センサ部34が、放射線を受けて電荷を発生する機能を有する。直接変換型のセンサ部34としては、a-Se(アモルファスセレン)及び結晶CdTe(結晶テルル化カドミウム)等が例示される。 In each of the above embodiments, the radiation detector 10 is an indirect conversion type in which the radiation is once converted into light by the conversion layer 14 and the converted light is converted into electric charges. Not limited. The radiation detector 10 may be a direct conversion type that directly converts radiation into electric charges. The direct conversion type radiation detector 10 has a function in which the sensor unit 34 receives radiation and generates an electric charge instead of the conversion layer 14 described above. Examples of the direct conversion type sensor unit 34 include a-Se (amorphous selenium) and crystal CdTe (crystal cadmium telluride).
 直接変換型の放射線検出器10の場合、上述した図4A~図4Hを参照して説明した工程のうち、図4Bに示した変換層14を形成する工程が省略される。すなわち、図4Aに示したセンサ基板12を形成する工程の次に、図4Cに示した、ケーブル112を端子部60に電気的に接続する工程が実施される。なお、画素30(画素領域35)に対して保護層46等を設ける場合、図4Aに示したセンサ基板12を形成する工程において実施される。 In the case of the direct conversion type radiation detector 10, the step of forming the conversion layer 14 shown in FIG. 4B is omitted from the steps described with reference to FIGS. 4A to 4H described above. That is, after the step of forming the sensor substrate 12 shown in FIG. 4A, the step of electrically connecting the cable 112 to the terminal portion 60 shown in FIG. 4C is performed. When the protective layer 46 or the like is provided on the pixel 30 (pixel region 35), it is carried out in the step of forming the sensor substrate 12 shown in FIG. 4A.
 なお、上記実施形態の放射線検出器10を用いた放射線画像撮影装置1は、図9~図11に示すように、筐体120に収納された状態で使用される。なお、一例として図9~図11では、第1実施形態の放射線検出器10を用いた放射線画像撮影装置1を示している。 The radiation image capturing device 1 using the radiation detector 10 of the above embodiment is used in a state of being housed in the housing 120 as shown in FIGS. 9 to 11. As an example, FIGS. 9 to 11 show a radiation imaging apparatus 1 using the radiation detector 10 of the first embodiment.
 図9には、基材11の第2の面11B側から放射線が照射されるISS(Irradiation Side Sampling)方式の放射線画像撮影装置1の一例の断面図を示す。図9に示すように、筐体120内には、放射線検出器10、電源部108、及び制御基板110が放射線の入射方向と交差する方向に並んで設けられている。放射線検出器10は、被写体を透過した放射線が照射される筐体120の照射面120A側に、センサ基板12における基材11の第1の面11A側が対向する状態に配置されている。 FIG. 9 shows a cross-sectional view of an example of an ISS (Irradiation Side Sampling) type radiation imaging apparatus 1 in which radiation is irradiated from the second surface 11B side of the base material 11. As shown in FIG. 9, the radiation detector 10, the power supply unit 108, and the control board 110 are provided side by side in the housing 120 in a direction intersecting the incident direction of the radiation. The radiation detector 10 is arranged in a state in which the first surface 11A side of the base material 11 on the sensor substrate 12 faces the irradiation surface 120A side of the housing 120 in which the radiation transmitted through the subject is irradiated.
 また、図10には、変換層14側から放射線が照射されるPSS(Penetration Side Sampling)方式の放射線画像撮影装置1の一例の断面図を示す。図10に示すように、筐体120内には、放射線検出器10、電源部108、及び制御基板110が放射線の入射方向と交差する方向に並んで設けられている。放射線検出器10は、被写体を透過した放射線が照射される筐体120の照射面120A側に、センサ基板12における基材11の第2の面11B側が対向する状態に配置されている。 Further, FIG. 10 shows a cross-sectional view of an example of a PSS (Penetration Side Sampling) type radiation imaging apparatus 1 in which radiation is irradiated from the conversion layer 14 side. As shown in FIG. 10, a radiation detector 10, a power supply unit 108, and a control board 110 are provided side by side in the housing 120 in a direction intersecting the incident direction of radiation. The radiation detector 10 is arranged in a state in which the second surface 11B side of the base material 11 on the sensor substrate 12 faces the irradiation surface 120A side of the housing 120 in which the radiation transmitted through the subject is irradiated.
 制御基板110と駆動基板200とは、ケーブル220によって電気的に接続されている。また、図9及び図10では記載が省略されているが、制御基板110と信号処理基板300とは、ケーブルによって電気的に接続されている。 The control board 110 and the drive board 200 are electrically connected by a cable 220. Further, although the description is omitted in FIGS. 9 and 10, the control board 110 and the signal processing board 300 are electrically connected by a cable.
 また、制御基板110は、電源線115により、制御基板110に形成された画像メモリ106や制御部100等に電源を供給する電源部108と接続されている。 Further, the control board 110 is connected by a power supply line 115 to a power supply unit 108 that supplies power to the image memory 106 and the control unit 100 formed on the control board 110.
 図9及び図10に示した放射線画像撮影装置1の筐体120内には、放射線検出器10を透過した放射線が出射される側にシート116がさらに設けられている。シート116としては、例えば、銅製のシートが挙げられる。銅製のシートは入射放射線によって2次放射線を発生し難く、よって、後方、すなわち変換層14側への散乱を防止する機能を有する。なお、シート116は、少なくとも変換層14の放射線が出射する側の面全体を覆い、また、変換層14全体を覆うことが好ましい。 A sheet 116 is further provided in the housing 120 of the radiation imaging apparatus 1 shown in FIGS. 9 and 10 on the side where the radiation transmitted through the radiation detector 10 is emitted. Examples of the sheet 116 include a copper sheet. The copper sheet is less likely to generate secondary radiation due to incident radiation, and therefore has a function of preventing scattering to the rear, that is, to the conversion layer 14 side. It is preferable that the sheet 116 covers at least the entire surface of the conversion layer 14 on the side where the radiation is emitted, and also covers the entire conversion layer 14.
 また、図9及び図10に示した放射線画像撮影装置1の筐体120内には、放射線が入射される側(照射面120A側)に保護層117がさらに設けられている。保護層117としては、絶縁性のシート(フィルム)に、アルペット(登録商標)のシート、パリレン(登録商標)膜、及びポリエチレンテレフタレート等の絶縁性のシート等の防湿膜が適用できる。保護層117は、画素領域35に対する防湿機能及び帯電防止機能を有している。そのため、保護層117は、少なくとも画素領域35の放射線が入射される側の面全体を覆うことが好ましく、放射線が入射される側のセンサ基板12の面全体を覆うことが好ましい。 Further, in the housing 120 of the radiation imaging apparatus 1 shown in FIGS. 9 and 10, a protective layer 117 is further provided on the side where radiation is incident (the irradiation surface 120A side). As the protective layer 117, a moisture-proof film such as an Alpet (registered trademark) sheet, a parylene (registered trademark) film, and an insulating sheet such as polyethylene terephthalate can be applied to the insulating sheet (film). The protective layer 117 has a moisture-proof function and an antistatic function for the pixel region 35. Therefore, the protective layer 117 preferably covers at least the entire surface of the pixel region 35 on the side where the radiation is incident, and preferably covers the entire surface of the sensor substrate 12 on the side where the radiation is incident.
 図9及び図10に示す例のように、電源部108及び制御基板110の各々の方が、放射線検出器10よりも厚みを有している場合が多い。このような場合、図11に示す例のように、電源部108及び制御基板110の各々が設けられている筐体120の部分の厚みよりも、放射線検出器10が設けられている筐体120の部分の厚みの方が薄くてもよい。なお、このように、電源部108及び制御基板110の各々が設けられている筐体120の部分と、放射線検出器10が設けられている筐体120の部分とで、厚みを異ならせる場合、両部分の境界部に段差が生じていると境界部120Bに接触した被検者に違和感等を与える懸念があるため、境界部120Bの形態は傾斜を有する状態とすることが好ましい。 As shown in the examples shown in FIGS. 9 and 10, each of the power supply unit 108 and the control board 110 is often thicker than the radiation detector 10. In such a case, as in the example shown in FIG. 11, the housing 120 in which the radiation detector 10 is provided is thicker than the thickness of the housing 120 in which each of the power supply unit 108 and the control board 110 is provided. The thickness of the portion may be thinner. In this way, when the thickness of the housing 120 in which the power supply unit 108 and the control board 110 are provided and the thickness of the housing 120 in which the radiation detector 10 is provided are different. If there is a step at the boundary between the two portions, there is a concern that the subject who comes into contact with the boundary 120B may feel uncomfortable. Therefore, it is preferable that the shape of the boundary 120B has an inclination.
 これにより、放射線検出器10の厚さに応じた極薄型の可搬型電子カセッテを構成することが可能となる。 This makes it possible to construct an ultra-thin portable electronic cassette according to the thickness of the radiation detector 10.
 また例えば、この場合、電源部108及び制御基板110の各々が設けられている筐体120の部分と、放射線検出器10が設けられている筐体120の部分とで、筐体120の材質が異なっていてもよい。さらに、例えば、電源部108及び制御基板110の各々が設けられている筐体120の部分と、放射線検出器10が設けられている筐体120の部分とが、別体として構成されていてもよい。 Further, for example, in this case, the material of the housing 120 is a portion of the housing 120 in which each of the power supply unit 108 and the control board 110 is provided and a portion of the housing 120 in which the radiation detector 10 is provided. It may be different. Further, for example, even if the portion of the housing 120 in which each of the power supply unit 108 and the control board 110 is provided and the portion of the housing 120 in which the radiation detector 10 is provided are configured as separate bodies. Good.
 また、上述したように、筐体120は、放射線、特にX線の吸収率が低く、且つ高剛性であることが好ましく、弾性率が十分に高い材料により構成されることが好ましいが、筐体120の照射面120Aに対応する部分について、放射線の吸収率が低く、且つ高剛性であり、弾性率が十分に高い材料で構成し、その他の部分については、照射面120Aに対応する部分と異なる材料、例えば、照射面120Aの部分よりも弾性率が低い材料で構成してもよい。 Further, as described above, the housing 120 is preferably made of a material having a low absorption rate of radiation, particularly X-rays, high rigidity, and a sufficiently high elastic modulus. The portion of the 120 corresponding to the irradiation surface 120A is made of a material having a low radiation absorption rate, high rigidity, and a sufficiently high elastic modulus, and the other parts are different from the portion corresponding to the irradiation surface 120A. It may be composed of a material, for example, a material having a lower elastic modulus than the portion of the irradiation surface 120A.
 また、上記各実施形態では、図1に示したように画素30がマトリクス状に2次元配列されている態様について説明したがこれに限らず、例えば、1次元配列であってもよいし、ハニカム配列であってもよい。また、画素の形状も限定されず、矩形であってもよいし、六角形等の多角形であってもよい。さらに、画素領域35の形状も限定されないことはいうまでもない。 Further, in each of the above embodiments, the embodiment in which the pixels 30 are two-dimensionally arranged in a matrix as shown in FIG. 1 has been described, but the present invention is not limited to this, and for example, a one-dimensional arrangement may be used or a honeycomb. It may be an array. Further, the shape of the pixel is not limited, and it may be a rectangle or a polygon such as a hexagon. Further, it goes without saying that the shape of the pixel region 35 is not limited.
 その他、上記各実施形態で説明した放射線画像撮影装置1及び放射線検出器10等の構成や製造方法等は一例であり、本発明の主旨を逸脱しない範囲内において状況に応じて変更可能であることはいうまでもない。
 2019年8月16日出願の日本国特許出願2019-149303号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
In addition, the configuration, manufacturing method, etc. of the radiation imaging device 1 and the radiation detector 10 described in each of the above embodiments are examples, and can be changed according to the situation within a range not deviating from the gist of the present invention. Needless to say.
The disclosure of Japanese Patent Application No. 2019-149303 filed August 16, 2019 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.
1 放射線画像撮影装置
10 放射線検出器
11 基材、11A 第1の面、11B 第2の面、11C 切断面、11D 側面
12 センサ基板
14 変換層
19 積層体
30 画素
32 TFT(スイッチング素子)
34 センサ部
35 画素領域
36 信号配線
38 走査配線
39 共通配線
40 粘着層
42 反射層
44 接着層
46 保護層
48 補強層
50 補強部材、50C 切断面、50D 側面
52 粘着剤
54 帯電防止層
60 端子部、60A 端子領域、60B 端子領域外
62 接続層
63 積層体
64、65 強化部材
90、90A、90B 切断線
92、92A~92C アライメントマーク
100 制御部、100A CPU、100B メモリ、100C 記憶部
102 駆動部
104 信号処理部
106 画像メモリ
108 電源部
110 制御基板
112、112A、112B、220 ケーブル
115 電源線
116 シート
117 保護層
120 筐体、120A 照射面、120B 境界部
200 駆動基板
202、302 接続領域
210 駆動IC
300 信号処理基板
310 信号処理IC
400 支持体
410 ローラ
P 矢印
1 Radiation imaging device 10 Radiation detector 11 Base material, 11A 1st surface, 11B 2nd surface, 11C Cut surface, 11D Side surface 12 Sensor substrate 14 Conversion layer 19 Laminated body 30 Pixels 32 TFT (switching element)
34 Sensor part 35 Pixel area 36 Signal wiring 38 Scanning wiring 39 Common wiring 40 Adhesive layer 42 Reflective layer 44 Adhesive layer 46 Protective layer 48 Reinforcing layer 50 Reinforcing member, 50C Cut surface, 50D Side surface 52 Adhesive 54 Antistatic layer 60 Terminal part , 60A terminal area, 60B terminal area outside 62 Connection layer 63 Laminated body 64, 65 Reinforcing member 90, 90A, 90B Cutting line 92, 92A to 92C Alignment mark 100 Control unit, 100A CPU, 100B memory, 100C storage unit 102 Drive unit 104 Signal processing unit 106 Image memory 108 Power supply unit 110 Control board 112, 112A, 112B, 220 Cable 115 Power supply line 116 Sheet 117 Protective layer 120 Housing, 120A irradiation surface, 120B Boundary 200 Drive board 202, 302 Connection area 210 Drive IC
300 Signal processing board 310 Signal processing IC
400 Support 410 Roller P Arrow

Claims (11)

  1.  支持体に可撓性の基材を設け、前記基材の画素領域に、照射された放射線に応じた電荷を蓄積する複数の画素が設けられた基板を形成する工程と、
     前記複数の画素が設けられた前記基板を、前記支持体から剥離する工程と、
     前記基板における前記支持体から剥離した面に、前記基材の強度を補強する補強部材を設ける工程と、
     前記補強部材と前記基材とを積層した積層体の、前記基材における前記画素領域外に対応する部分を切断する工程と、
     を備えた放射線検出器の製造方法。
    A step of providing a flexible base material on a support and forming a substrate provided with a plurality of pixels for accumulating charges according to the irradiated radiation in the pixel region of the base material.
    A step of peeling the substrate provided with the plurality of pixels from the support,
    A step of providing a reinforcing member for reinforcing the strength of the base material on the surface of the substrate peeled off from the support, and
    A step of cutting a portion of the laminated body in which the reinforcing member and the base material are laminated, which corresponds to the outside of the pixel region of the base material.
    A method of manufacturing a radiation detector equipped with.
  2.  前記補強部材及び前記基材の切断面が面一である、
     請求項1に記載の放射線検出器の製造方法。
    The cut surface of the reinforcing member and the base material is flush with each other.
    The method for manufacturing a radiation detector according to claim 1.
  3.  前記基板は、前記複数の画素が設けられた面に、ケーブルを電気的に接続するための端子部が設けられた端子領域を有し、
     前記基材を切断する工程では、前記端子領域以外を切断する、
     請求項1または請求項2に記載の放射線検出器の製造方法。
    The substrate has a terminal area provided with a terminal portion for electrically connecting a cable on a surface provided with the plurality of pixels.
    In the step of cutting the base material, a portion other than the terminal region is cut.
    The method for manufacturing a radiation detector according to claim 1 or 2.
  4.  前記基板を前記支持体から剥離する工程よりも前に、
     前記端子部にケーブルを電気的に接続する工程をさらに備える、
     請求項3に記載の放射線検出器の製造方法。
    Prior to the step of peeling the substrate from the support,
    A step of electrically connecting a cable to the terminal portion is further provided.
    The method for manufacturing a radiation detector according to claim 3.
  5.  前記基材を切断する工程の後に、
     前記基板の前記基材が切断された側の辺に沿って、前記複数の画素が設けられた面にケーブルを電気的に接続するための端子部を設ける工程をさらに備える、
     請求項1または請求項2に記載の放射線検出器の製造方法。
    After the step of cutting the substrate,
    A step of providing a terminal portion for electrically connecting the cable to the surface provided with the plurality of pixels along the side of the substrate on the side where the base material is cut is further provided.
    The method for manufacturing a radiation detector according to claim 1 or 2.
  6.  前記補強部材は、前記基材よりも剛性が高い、
     請求項1から請求項5のいずれか1項に記載の放射線検出器の製造方法。
    The reinforcing member has higher rigidity than the base material.
    The method for manufacturing a radiation detector according to any one of claims 1 to 5.
  7.  前記補強部材は、曲げ弾性率が500MPa以上、3000MPa以下である、
     請求項1から請求項6のいずれか1項に記載の放射線検出器の製造方法。
    The reinforcing member has a flexural modulus of 500 MPa or more and 3000 MPa or less.
    The method for manufacturing a radiation detector according to any one of claims 1 to 6.
  8.  前記補強部材は、ポリカーボネート及びポリエチレンテレフタレートの少なくとも一つを材料とした部材である、
     請求項1から請求項7のいずれか1項に記載の放射線検出器の製造方法。
    The reinforcing member is a member made of at least one of polycarbonate and polyethylene terephthalate.
    The method for manufacturing a radiation detector according to any one of claims 1 to 7.
  9.  前記基材は、前記複数の画素が設けられた面にマークを有し、
     前記積層体を切断する工程では、前記マークに応じた位置を切断する、
     請求項1から請求項8のいずれか1項に記載の放射線検出器の製造方法。
    The base material has a mark on the surface provided with the plurality of pixels.
    In the step of cutting the laminate, the position corresponding to the mark is cut.
    The method for manufacturing a radiation detector according to any one of claims 1 to 8.
  10.  前記基板を形成する工程と、前記基板を前記支持体から剥離する工程の間に、
     前記複数の画素が設けられた前記基材の面に、前記放射線を光に変換する変換層を形成する工程をさらに備え、
     前記複数の画素の各々は、前記変換層が変換した前記光に応じた電荷を蓄積する、
     請求項1から請求項9のいずれか1項に記載の放射線検出器の製造方法。
    Between the step of forming the substrate and the step of peeling the substrate from the support
    A step of forming a conversion layer for converting the radiation into light is further provided on the surface of the base material provided with the plurality of pixels.
    Each of the plurality of pixels accumulates an electric charge corresponding to the light converted by the conversion layer.
    The method for manufacturing a radiation detector according to any one of claims 1 to 9.
  11.  前記複数の画素の各々は、前記放射線を受けて電荷を発生するセンサ部を含み、前記センサ部で発生した電荷を蓄積する、
     請求項1から請求項9のいずれか1項に記載の放射線検出器の製造方法。
    Each of the plurality of pixels includes a sensor unit that receives the radiation and generates an electric charge, and accumulates the electric charge generated by the sensor unit.
    The method for manufacturing a radiation detector according to any one of claims 1 to 9.
PCT/JP2020/030992 2019-08-16 2020-08-17 Method for manufacturing radiation detector WO2021033663A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021540936A JPWO2021033663A1 (en) 2019-08-16 2020-08-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019149303 2019-08-16
JP2019-149303 2019-08-16

Publications (1)

Publication Number Publication Date
WO2021033663A1 true WO2021033663A1 (en) 2021-02-25

Family

ID=74660960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030992 WO2021033663A1 (en) 2019-08-16 2020-08-17 Method for manufacturing radiation detector

Country Status (3)

Country Link
JP (1) JPWO2021033663A1 (en)
TW (1) TW202113395A (en)
WO (1) WO2021033663A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151768A (en) * 2006-11-22 2008-07-03 Konica Minolta Medical & Graphic Inc Scintillator panel for radiation, manufacturing method of scintillator panel for radiation, and radiation image picking-up device
JP2014137373A (en) * 2013-01-17 2014-07-28 Palo Alto Research Center Inc High resolution x-ray imaging with thin, flexible digital sensors
JP2018159612A (en) * 2017-03-22 2018-10-11 富士フイルム株式会社 Radiation detector and radiation image photographing apparatus
JP2019061130A (en) * 2017-09-27 2019-04-18 株式会社ジャパンディスプレイ Display and method for manufacturing display

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010127680A (en) * 2008-11-26 2010-06-10 Konica Minolta Medical & Graphic Inc Radiographic image detecting sensor unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151768A (en) * 2006-11-22 2008-07-03 Konica Minolta Medical & Graphic Inc Scintillator panel for radiation, manufacturing method of scintillator panel for radiation, and radiation image picking-up device
JP2014137373A (en) * 2013-01-17 2014-07-28 Palo Alto Research Center Inc High resolution x-ray imaging with thin, flexible digital sensors
JP2018159612A (en) * 2017-03-22 2018-10-11 富士フイルム株式会社 Radiation detector and radiation image photographing apparatus
JP2019061130A (en) * 2017-09-27 2019-04-18 株式会社ジャパンディスプレイ Display and method for manufacturing display

Also Published As

Publication number Publication date
JPWO2021033663A1 (en) 2021-02-25
TW202113395A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
JP6906687B2 (en) Radiation detector and radiation imaging device
WO2019181570A1 (en) Radiation detector, radiological imaging device, and production method
TWI821460B (en) Radiation detector, radiographic imaging device and manufacturing method
US20210364658A1 (en) Method of manufacturing radiation detector and radiographic imaging apparatus
JP7451787B2 (en) Radiographic imaging device
WO2021033663A1 (en) Method for manufacturing radiation detector
WO2021006304A1 (en) Radiation detector and radiographic imaging device
TWI834890B (en) Radiography detector and radiography imaging device
JP7332784B2 (en) Radiation detector and radiographic imaging device
WO2021132396A1 (en) Manufacturing method of radiation image capture device
US11612366B2 (en) Radiation detector, radiography apparatus, and method of manufacturing radiation detector
WO2021177118A1 (en) Radiation detector, radiographic imaging device, and radiation detector manufacturing method
TWI833894B (en) Radiation detector manufacturing method and radiographic imaging device
US20220102399A1 (en) Method of manufacturing radiographic imaging apparatus, and transport jig
JP7125502B2 (en) Radiation detector, radiation imaging device, and manufacturing method
WO2021166779A1 (en) Radiation detector, radiography device, and production method for radiation detector
TW201941385A (en) Radiographic imaging device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854867

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540936

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854867

Country of ref document: EP

Kind code of ref document: A1