WO2021033497A1 - Wire rope - Google Patents

Wire rope Download PDF

Info

Publication number
WO2021033497A1
WO2021033497A1 PCT/JP2020/028833 JP2020028833W WO2021033497A1 WO 2021033497 A1 WO2021033497 A1 WO 2021033497A1 JP 2020028833 W JP2020028833 W JP 2020028833W WO 2021033497 A1 WO2021033497 A1 WO 2021033497A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
strands
wire rope
single wire
cross
Prior art date
Application number
PCT/JP2020/028833
Other languages
French (fr)
Japanese (ja)
Inventor
悠 篠原
Original Assignee
朝日インテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 朝日インテック株式会社 filed Critical 朝日インテック株式会社
Priority to EP20855411.3A priority Critical patent/EP4019695A4/en
Priority to JP2021540692A priority patent/JP7138251B2/en
Publication of WO2021033497A1 publication Critical patent/WO2021033497A1/en
Priority to US17/672,030 priority patent/US20220170204A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0673Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
    • D07B1/068Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration characterised by the strand design
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0673Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/14Ropes or cables with incorporated auxiliary elements, e.g. for marking, extending throughout the length of the rope or cable
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1012Rope or cable structures characterised by their internal structure
    • D07B2201/1014Rope or cable structures characterised by their internal structure characterised by being laid or braided from several sub-ropes or sub-cables, e.g. hawsers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/104Rope or cable structures twisted
    • D07B2201/1048Rope or cable structures twisted using regular lay, i.e. the wires or filaments being parallel to rope axis
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2002Wires or filaments characterised by their cross-sectional shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2009Wires or filaments characterised by the materials used
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2027Compact winding
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3028Stainless steel
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2005Elongation or elasticity
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2005Elongation or elasticity
    • D07B2401/201Elongation or elasticity regarding structural elongation
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/007Making ropes or cables from special materials or of particular form comprising postformed and thereby radially plastically deformed elements

Definitions

  • the technology disclosed in this specification relates to wire rope.
  • Single twist is a form in which a plurality of single wires are twisted to each other
  • double twist is a form in which a plurality of strands composed of a plurality of strands twisted to each other are twisted to each other. Since the single-twisted wire rope has higher rigidity than the double-twisted wire rope, there is an advantage that the wire rope has high elongation resistance, for example, the initial elongation is small.
  • the initial elongation of the wire rope is the elongation that occurs in the initial stage when a new wire rope is used. If the initial elongation of the wire rope is large, the operability of the wire rope may decrease.
  • the initial elongation of the wire rope is small.
  • the double-twisted wire rope has lower rigidity than the single-twisted wire rope, but the flexibility of shape change is higher by that amount. Therefore, for example, the wire rope is used by inserting it into a curved tube. In this case, there is an advantage that the frictional resistance of the wire rope in the tube is small and the slidability is high.
  • This specification discloses a technique capable of solving the above-mentioned problems.
  • the wire rope disclosed in the present specification includes a plurality of strands twisted to each other, and each of the plurality of strands has a configuration in which a plurality of strands are twisted to each other.
  • a single wire is provided in a recess formed on the outer peripheral side of the wire rope by two strands adjacent to each other along the circumferential direction of the wire rope, and the cross section of the wire rope includes a single wire.
  • a part of the single wire is located inside the virtual tangent circle of one of the two strands.
  • a single wire is arranged in a recess formed on the outer peripheral side of the wire rope by two strands adjacent to each other.
  • the gap existing between the two strands is filled so that a part of the single wire is located inside the virtual circumscribed circle of one of the two strands adjacent to each other. Therefore, according to this wire rope, compared with a configuration in which a single wire is interposed between two strands adjacent to each other, or a configuration in which a single wire is located outside the virtual tangent circle of two strands adjacent to each other. , The filling rate of the wire rope can be increased, and thus the elongation resistance of the wire rope can be improved.
  • the wire of one of the two strands and the wire of the other strand In the wire rope, in the cross section, inside the wire rope in the radial direction with respect to the single wire, the wire of one of the two strands and the wire of the other strand.
  • the strands may be arranged adjacent to each other, and a part of the single wire may be located between the strands of the one strand and the strands of the other strand in the circumferential direction.
  • the gap existing between the two strands is filled so that the single wire constitutes two strands adjacent to each other and is located between the strands arranged adjacent to each other. Has been done.
  • the filling rate of the wire rope can be increased as compared with the configuration in which the single wires are not located between the strands arranged adjacent to each other, thereby improving the elongation resistance of the wire rope. Can be planned more effectively.
  • the single wire in the cross section, is in contact with the wire of one of the two strands and the wire of the other strand. May be.
  • the gap existing between the two strands is filled so that the single wire contacts the strands constituting the two strands adjacent to each other. Therefore, according to this wire rope, the filling rate of the wire rope can be increased as compared with the configuration in which the single wire is separated from the strands formed by the strands, which is more effective in improving the elongation resistance of the wire rope. Can be targeted.
  • the cross-sectional area of the single wire in the cross section, may be larger than the cross-sectional area of each of the strands constituting the strand.
  • the strength of the wire rope by the single wire can be improved as compared with the configuration in which the cross-sectional area of the single wire is smaller than the cross-sectional area of each strand of the strand.
  • the tensile strength of the single wire may be lower than the tensile strength of each of the strands constituting the strand. According to this wire rope, the elongation resistance of the wire rope is increased because the single wire easily bites between the strands of the two strands as compared with the configuration in which the tensile strength of the single wire is equal to or higher than the tensile strength of the strands constituting the strand. Improvement can be achieved more effectively.
  • the tensile strength of the single wire may be in the range of ⁇ 5% of the tensile strength of each of the strands constituting the strand. According to this wire rope, the tensile strength of the wire rope as a whole can be made uniform.
  • the area of the virtual circumscribed circle is a perfect circle having the same area as the area of the strands when all the strands constituting the one strand are perfect circles.
  • the configuration may be smaller than the area of the virtual circumscribed circle of the virtual strand (if any).
  • the area of the virtual circumscribed circle of the strand is the same as that of the virtual circumscribed circle of the virtual strand, and the stretch resistance of the wire rope is increased by the smaller gap between the strands. Improvement can be achieved more effectively.
  • the area of the virtual circumscribing circle of the single wire is when the single wire is a perfect circle (when the area is the same as the area of the single wire).
  • the configuration may be larger than the area of the single wire (the area of the perfect circle).
  • a recess (gap) formed on the outer peripheral side of the wire rope by two strands adjacent to each other can be effectively filled (closed) by a single wire. Therefore, the gap between the plurality of strands inside each side strand (each side strand) can be more effectively filled (closed) by the plurality of strands. Therefore, the elongation resistance of the wire rope can be improved more effectively.
  • the single wire is adjacent to the first single wire arranged in a recess formed on the outer peripheral side of the wire rope by the first set of the strands adjacent to each other.
  • the distance between the pair of strands is longer than the distance between the pair of strands located so as to sandwich the second single wire in the circumferential direction, and among the strands of the first set, the first The number of the strands in contact with the single wire 1 may be larger than the number of the strands in contact with the second single wire among the strands of the second set.
  • the longer the distance between the pair of strands sandwiching the single wire the larger the number of strands in contact with the single wire.
  • the larger the gap existing between the two strands adjacent to each other the more the gap existing between the two strands is filled so that the single wire comes into contact with many strands.
  • the filling rate of the wire rope is the same as the configuration in which the number of strands in contact with the single wire is the same regardless of the size of the gap existing between the two strands. This makes it possible to improve the elongation resistance of the wire rope.
  • the single wire includes a first single wire arranged in a recess formed on the outer peripheral side of the wire rope by the first set of the strands adjacent to each other, and in the cross section.
  • the distance between the pair of strands located so as to sandwich the first single wire in the circumferential direction is positioned so as to sandwich the first single wire in the circumferential direction in a cross section different from the cross section.
  • the number of the strands that are longer than the distance between the pair of strands and are in contact with the first single wire in the cross section of the first set of strands is determined in the other cross section.
  • the number of the strands in contact with the first single wire may be larger than the number of the strands.
  • the distance between a pair of strands located so as to sandwich the first single wire in the circumferential direction among the common first set of strands is different from the cross section of one wire rope. It differs from the cross section, and the longer the distance between the pair of strands sandwiching the first single wire, the greater the number of strands in contact with the first single wire.
  • the larger the gap existing between the two strands the larger the cross section of the first single wire comes into contact with more strands. As described above, the gap existing between the two strands is filled.
  • the number of strands in contact with the single wire is the same even though the gap existing between the two strands differs depending on the axial position of the wire rope.
  • the filling rate of the wire rope can be increased, and thus the elongation resistance of the wire rope can be improved.
  • the single wire is adjacent to the first single wire arranged in a recess formed on the outer peripheral side of the wire rope by the strands of the first set adjacent to each other.
  • the distance between the pair of strands is longer than the distance between the pair of strands located so as to sandwich the second single wire in the circumferential direction, and among the strands of the first set.
  • the number of the strands in contact with the first single wire is larger than the number of the strands in contact with the second single wire among the strands of the second set, and in the cross section.
  • the distance between the pair of strands located so as to sandwich the first single wire in the circumferential direction is positioned so as to sandwich the first single wire in the circumferential direction in a cross section different from the cross section.
  • the number of strands in contact with the first single wire in the cross section is determined in the other cross section.
  • the configuration may be larger than the number of the strands in contact with the first single wire. According to this wire rope, the filling rate of the wire rope can be increased, and thereby the elongation resistance of the wire rope can be improved.
  • the shape of the cross section of the wire may be different from any of a perfect circle, an ellipse, and an oval.
  • the cross-sectional shape of the wire is different from that of a perfect circle, an ellipse, and an oval, so that the gap existing between the two strands is filled. As a result, the elongation resistance of the wire rope can be improved.
  • the shape of the cross section of the single wire may be different from any of a perfect circle, an ellipse, and an oval.
  • the cross-sectional shape of the single wire is different from that of a perfect circle, an ellipse, and an oval, so that the gap existing between the two strands is filled. Therefore, the elongation resistance of the wire rope can be improved.
  • the technique disclosed in the present specification can be realized in various forms, for example, a wire rope, a method for manufacturing a wire rope, and the like.
  • FIG. 1 is a cross-sectional perspective view schematically showing the configuration of the wire rope 10 in the present embodiment
  • FIG. 2 is an explanatory view showing the cross-sectional configuration of the wire rope 10 in the present embodiment.
  • the wire rope 10 of the present embodiment can be used for various purposes (for example, for braking a bicycle, for operating an endoscope).
  • the wire rope 10 includes a core material 20, a plurality of (more specifically, 6) side strands 30, and a plurality of (more specifically, 6) wire ropes. It is equipped with a single wire 40 (40A to 40F).
  • the core material 20 has a plurality of metal strands 22 twisted together. More specifically, the core material 20 has a structure in which six metal strands 22 are twisted around one metal strand 22.
  • Each metal wire 22 constituting the core material 20 is made of, for example, stainless steel (for example, SUS304).
  • the plurality of side strands 30 are twisted together around the core material 20. That is, the plurality of side strands 30 are arranged so as to be arranged along the circumferential direction of the wire rope 10 (the circumferential direction of the virtual circle centered on the central axis Q1 of the wire rope 10 (core material 20)).
  • the central axis Q1 is the center of the virtual circumscribed circle of the metal wire 22 located at the center of the core material 20.
  • the central axis Q1 is the center of the virtual circumscribed circle in the cross section of the wire.
  • Each side strand 30 has a plurality of metal strands 32 twisted together.
  • each side strand 30 has a configuration in which six metal strands 32 are twisted around one metal strand 32.
  • Each metal wire 32 constituting the side strand 30 is made of, for example, stainless steel (for example, SUS304).
  • the side strand 30 is an example of a strand in the claims, and each metal wire 32 constituting the side strand 30 is an example of a wire in the claims.
  • a plurality of single wires 40 are twisted around the core material 20 together with the side strands 30 in the same direction as the side strands 30.
  • a single wire 40 is arranged in a recess formed on the outer peripheral side of the wire rope 10 by two side strands 30 adjacent to each other along the circumferential direction of the wire rope 10. That is, the wire rope 10 includes the same number of single wires 40 as the side strands 30.
  • each single wire 40 is composed of one metal wire.
  • Each single wire 40 is made of, for example, stainless steel (eg, SUS304).
  • the wire rope 10 since the wire rope 10 includes the six side strands 30, there are six combinations of the two side strands 30 adjacent to each other along the circumferential direction of the wire rope 10. In this embodiment, one single wire 40 is arranged for each of these six combinations.
  • the core material 20 is formed by Z twist
  • each side strand 30 is formed by S twist
  • the plurality of side strands 30 and the single wire 40 around the core material 20 are formed by Z twist.
  • the twisting method and twisting direction of each wire are not limited to these. The details of the cross-sectional structure of the wire rope 10 will be described below.
  • A-2 Details of the cross-sectional structure of the wire rope 10: (Relationship between one single wire 40 and one side strand 30)
  • the wire rope 10 of the present embodiment satisfies the following first requirement with respect to one single wire 40 and one side strand 30.
  • First requirement> In at least one cross section of the wire rope 10 (a cross section orthogonal to the axial direction of the wire rope 10 (the direction along the central axis Q1 of the wire rope 10)), a part of at least one single wire 40 is a part of the wire rope 10 It is located inside the first virtual tangent circle M1 of at least one of the two side strands 30 adjacent to each other along the circumferential direction of the rope.
  • the first virtual circumscribed circle M1 has the smallest radius among the perfect circles surrounding all the metal strands 32 constituting one side strand 30, and constitutes the side strand 30 (constituting the side strand 30). It is a perfect circle circumscribing a group of metal strands 32).
  • the first requirement means that one single wire 40 bites into the metal strands 32 constituting one side strand 30 so as to be located between each other.
  • a part of the single wire 40 exists between the two side strands 30 so as to be located inside the first virtual circumscribed circle M1 of the side strands 30. The gap is filled.
  • the filling rate of the wire rope 10 can be increased as compared with the configuration in which the single wire 40 is located outside the first virtual circumscribed circle M1 of the side strand 30, whereby the wire can be increased. It is possible to improve the elongation resistance of the rope 10 (for example, reduce the initial elongation).
  • a part of one single wire 40 is a first virtual circumscribed circle of each of two side strands 30 adjacent to each other along the circumferential direction of the wire rope 10. It is preferably located inside the M1.
  • the gap existing between the two side strands 30 adjacent to each other is further filled, so that the filling rate of the wire rope 10 can be further increased, thereby improving the elongation resistance of the wire rope 10. It can be planned more effectively.
  • the wire rope 10 of the present embodiment further satisfies the following first requirement A with respect to one single wire 40 and one side strand 30.
  • First requirement A In at least one cross section of the wire rope 10, a part of at least one single wire 40 is located closest to the single wire 40 among the plurality of metal strands 32 constituting one side strand 30. It is located on the central axis Q2 side of the side strand 30 from the first virtual circumscribed line B1 that circumscribes both of the two metal strands 32.
  • the first virtual circumscribed line B1 is located on the single wire 40 side of the two virtual straight lines that are in contact with each other so as to straddle both of the two metal strands 32 located closest to the single wire 40. It is virtual to do.
  • the first requirement A means that the degree of biting of one single wire 40 with respect to one side strand 30 is larger than that of the first requirement described above.
  • the gap existing between the two side strands 30 adjacent to each other is further filled, so that the filling rate of the wire rope 10 can be further increased. Therefore, the elongation resistance of the wire rope 10 can be improved more effectively.
  • the wire rope 10 of the present embodiment further satisfies the following first requirement B with respect to one single wire 40 and one side strand 30.
  • First requirement B> In at least one cross section of the wire rope 10, at least one single wire 40 is two of the plurality of metal strands 32 constituting one side strand 30 that are located closest to the single wire 40. It is in contact with at least one of the metal wires 32.
  • the gap existing between the two side strands 30 adjacent to each other is further filled, so that the filling rate of the wire rope 10 can be further increased. Therefore, the elongation resistance of the wire rope 10 can be improved more effectively.
  • the single wire 40 and the side strand 30 are in contact with each other, it is possible to prevent the liquid from entering the inside of the wire rope 10 through the gap between the single wire 40 and the side strand 30, so that the wire rope 10 is resistant to water immersion. The sex can be improved. Further, since the single wire 40 and the side strand 30 are in contact with each other, it is possible to suppress the axial displacement of the wire rope 10 between the single wire 40 and the side strand 30 due to the deformation of the wire rope 10.
  • one single wire 40 is in contact with both of the two metal strands 32 located closest to the single wire 40.
  • the single wire 40 may be in point contact with the metal wire 32, but it is preferable that the single wire 40 is in surface contact with the metal wire 32.
  • the surface contact means that, in the cross section of the wire rope 10, the substantially linear portion of the single wire 40 and the substantially linear portion of the wire (metal wire 32, etc.) are partially. Or it means that they are in line contact as a whole.
  • the single wire 40 and the side strand 30 are in surface contact with each other, the gap existing between the two side strands 30 adjacent to each other is further filled, so that the wire rope 10 can withstand the above-mentioned resistance. Since the improvement of the extensibility can be obtained more effectively and the contact area between the single wire 40 and the side strand 30 (metal strand 32) is large, the water immersion resistance of the wire rope 10 can be improved and the single wire 40 and the side strand 30 can be improved. It is possible to more effectively suppress the misalignment with and.
  • each part of the six single wires 40 (40A to 40F) is located inside the first virtual circumscribed circle M1 of each of the two side strands 30 adjacent to each other.
  • each part of the six single wires 40 (40A to 40F) is located inside the first virtual circumscribed circle M1 of one of the two side strands 30 adjacent to each other.
  • the other part of the single wire 40 is located inside the first virtual circumscribed circle M1 of the other side strand 30 of the two side strands 30 adjacent to each other, and is the first requirement.
  • at least the single wires 40B to 40F satisfy the first requirement A and the first requirement B.
  • a part of the single wire 40F circumscribes both of the two metal strands 32 (metal strands 32E and 32F in FIG. 2) located closest to the single wire 40F in one side strand 30. It is located on the central axis Q2 side of the side strand 30 from the virtual circumscribed line B1 of No. 1 (see also FIG. 3 described later).
  • the two metal strands 32 (metal strands 32E and 32F in FIG. 2) located closest to the single wire 40F are two metals arranged next to the single wire 40F without interposing other strands. It is a wire 32 (metal wire 32E, 32F in FIG. 2).
  • 50% or more of the single wires 40 preferably satisfy the first requirement (further, the first requirement A and the first requirement B), and 80. It is preferable that a number of single wires 40 of% or more satisfy the first requirement (further, the first requirement A and the first requirement B).
  • the wire rope 10 of the present embodiment satisfies the following second requirement with respect to one single wire 40 and two side strands 30.
  • ⁇ Second requirement> In at least one cross section of the wire rope 10, one side inside the radial direction of the wire rope 10 (the radial direction of the circle centered on the central axis Q1 of the wire rope 10) with respect to one single wire 40.
  • the metal wire 32 constituting the strand 30 hereinafter, referred to as "first metal wire 32X" and the metal wire 32 forming another side strand 30 (hereinafter, "second metal wire 32Y"). ") And are arranged adjacent to each other.
  • a part of the single wire 40 is located between the first metal wire 32X and the second metal wire 32Y in the circumferential direction of the wire rope 10.
  • the fact that a part of the single wire 40 is located between the first metal wire 32X and the second metal wire 32Y means that the first metal is centered on the central axis Q1 of the wire rope 10.
  • a second virtual circumscribed circle M2 that surrounds both the strands 32X and the second metal strands 32Y and circumscribes at least one of the first metal strands 32X and the second metal strands 32Y.
  • it means that a part of the single wire 40 is located (see also FIG. 3 described later).
  • the single wire 40 bites into the wire rope so as to be located between the first metal wire 32X and the second metal wire 32Y, and the two side strands.
  • the gap existing between 30 is filled. Therefore, according to the present embodiment, the filling rate of the wire rope 10 can be increased as compared with the configuration in which the single wire 40 is not located between the first metal wire 32X and the second metal wire 32Y. As a result, the elongation resistance of the wire rope 10 can be improved more effectively.
  • the wire rope 10 of the present embodiment further satisfies the following second requirement A with respect to one single wire 40 and two side strands 30.
  • a part of at least one single wire 40 is a second virtual circumscribed line B2 that circumscribes both the first metal wire 32X and the second metal wire 32Y. Therefore, it is located on the central axis Q1 side of the wire rope 10.
  • the second virtual circumscribed line B2 is on the single wire 40 side of the two virtual straight lines that are in contact with each other so as to straddle both the first metal wire 32X and the second metal wire 32Y. It is a virtual straight line located.
  • the second requirement A means that the degree of biting of one single wire 40 between the first metal wire 32X and the second metal wire 32Y is larger than that of the second requirement described above. To do.
  • the gap existing between the two side strands 30 adjacent to each other is further filled, so that the filling rate of the wire rope 10 can be further increased. Therefore, the elongation resistance of the wire rope 10 can be improved more effectively.
  • the wire rope 10 of the present embodiment further satisfies the following second requirement B with respect to one single wire 40 and two side strands 30.
  • ⁇ Second requirement B> In at least one cross section of the wire rope 10, at least one single wire 40 is in contact with at least one of the first metal wire 32X and the second metal wire 32Y.
  • the gap existing between the two side strands 30 adjacent to each other is further filled, so that the filling rate of the wire rope 10 can be further increased. Therefore, the elongation resistance of the wire rope 10 can be improved more effectively.
  • the single wire 40 and the side strand 30 are in contact with each other, it is possible to prevent liquid from entering the inside of the wire rope 10 through the gap between the single wire 40 and the side strand 30. Therefore, the water immersion resistance of the wire rope 10 can be improved. Further, since the single wire 40 and the side strand 30 are in contact with each other, it is possible to suppress the axial displacement of the wire rope 10 between the single wire 40 and the side strand 30 due to the deformation of the wire rope 10.
  • one single wire 40 is in contact with both the first metal wire 32X and the second metal wire 32Y.
  • the single wire 40 may be in point contact with the first metal wire 32X or the second metal wire 32Y, but is in surface contact with the first metal wire 32X or the second metal wire 32Y. It is preferable to do.
  • the single wire 40 and the metal strands 32X and 32Y are in surface contact with each other, the gap existing between the two side strands 30 adjacent to each other is further filled, so that the elongation resistance of the wire rope 10 described above is improved.
  • the improvement can be achieved more effectively, and since the contact area between the single wire 40 and the side strands 30 (metal strands 32X, 32Y) is large, the water immersion resistance of the wire rope 10 can be improved and the single wire 40 and the side strands can be improved. It is possible to more effectively suppress the misalignment with 30.
  • the wire rope 10 of the present embodiment further satisfies the following second requirement C with respect to one single wire 40 and two side strands 30.
  • ⁇ Second requirement C> In at least one cross section of the wire rope 10, the distance L1 between the pair of metal strands 32 located so as to sandwich the first single wire 40 in the circumferential direction in the side strands 30 of the first set is the second set. The distance between the pair of metal wire 32s located so as to sandwich the second single wire 40 in the circumferential direction is longer than the distance L2. Further, the number of metal strands 32 in contact with the first single wire 40 in the side strands 30 of the first set is in contact with the second single wire 40 in the side strands 30 in the second set.
  • the number of metal wire 32s in contact with the single wire 40 is the same regardless of the size of the gap existing between the two side strands 30.
  • the filling rate of the wire rope 10 can be increased, whereby the elongation resistance of the wire rope 10 can be improved.
  • the wire rope 10 of the present embodiment further satisfies the following second requirement D with respect to one single wire 40 and two side strands 30.
  • second requirement D In the first cross section of the wire rope, the distance between the pair of metal strands 32 located so as to sandwich the single wire 40 in the circumferential direction among the pair of side strands 30 adjacent to each other is the second of the wire rope 10.
  • a pair of side strands 30 of the set of side strands 30 are located so as to sandwich the single wire 40 in the circumferential direction. It is longer than the distance between the metal wires 32.
  • the number of metal strands 32 in contact with the single wire 40 in the set of side strands 30 is the single wire in the set of side strands 30 in the second cross section. This is more than the number of metal strands 32 in contact with 40.
  • the distance between the pair of metal strands 32 located so as to sandwich the single wire 40 in the circumferential direction among the common set of side strands 30 is the wire rope. 10 corresponds to an example of a first cross section (corresponding to an example of "the cross section" of claim 9) and a second cross section (corresponding to an example of "a cross section different from the cross section" of claim 9).
  • the single wire 40 comes into contact with more metal strands 32 as the cross section where the gap existing between the two side strands 30 becomes larger. As described above, the gap existing between the two side strands 30 is filled. Therefore, according to the present embodiment, the number of metal strands 32 in contact with the single wire 40, although the gap existing between the two side strands 30 differs depending on the axial position of the wire rope 10. The filling rate of the wire rope 10 can be increased as compared with the configuration in which the wires rope 10 is the same, whereby the elongation resistance of the wire rope 10 can be improved.
  • each of the single wires 40B, 40D, and 40F is located between the first metal wire 32X and the second metal wire 32Y in the circumferential direction of the wire rope 10. It meets the second requirement. Further, at least the single wires 40B, 40D and 40F satisfy the second requirement A and the second requirement B. For example, a part of the single wire 40B is located on the central axis Q1 side of the wire rope 10 from the second virtual circumscribed line B2 that circumscribes both the first metal wire 32X and the second metal wire 32Y. (See also FIG. 3 below).
  • a single wire 40 (40B, 40D, 40F) that satisfies the second requirement (second requirement A) and a single wire 40 (40A, 40C, 40E) that does not satisfy the second requirement (second requirement A). are alternately arranged along the circumferential direction of the wire rope 10.
  • the strength of the wire rope 10 is increased due to the uneven distribution of the single wire 40 satisfying the second requirement (second requirement A) and the single wire 40 not satisfying the second requirement (second requirement A). It is possible to suppress the occurrence of bias.
  • the plurality of single wires 40 included in the wire rope 10 it is preferable that 30% or more of the single wires 40 satisfy the second requirement (furthermore, the second requirement A and the second requirement B). It is preferable that a number of single wires 40 of% or more satisfy the second requirement (further, the second requirement A and the second requirement B).
  • the distance L1 between the pair of metal strands 32 located so as to sandwich the first single wire 40B is between the pair of metal strands 32 located so as to sandwich the second single wire 40C. Distance is longer than L2. Further, the number of metal strands 32 in contact with the first single wire 40B is larger than the number of metal strands 32 in contact with the second single wire 40C. For example, the same relationship holds for the single wire 40F and the single wire 40A, and for the single wire 40D and the single wire 40E.
  • a plurality of side strands 30 are non-uniformly arranged in the circumferential direction, and the size of the gap between the side strands 30 of each set is also non-uniform, but the non-uniform gap is formed.
  • the single wire 40 having a shape corresponding to the gap between the side strands 30 of each set is positioned so as to fill the gap.
  • FIG. 3 is an explanatory view partially showing different cross-sectional configurations of the wire rope 10.
  • FIG. 3A shows a cross-sectional configuration in the vicinity of the single wire 40B in the first cross section (same as the cross section of FIG. 2)
  • FIG. 3B shows a second cross section (the same as the cross section of FIG. 2).
  • the first cross section is a cross section of the wire rope 10 at different positions in the axial direction) in the vicinity of the single wire 40B.
  • the distance L1 between the pair of metal strands 32 located so as to sandwich the single wire 40B in the circumferential direction in the first cross section sandwiches the single wire 40B in the circumferential direction in the second cross section.
  • the wire rope 10 of the present embodiment preferably satisfies the following third requirement with respect to the structure of the single wire 40 and the metal wire 32 constituting the side strand 30.
  • ⁇ Third requirement> In at least one cross section of the wire rope 10, the cross-sectional area of one single wire 40 is larger than the cross-sectional area of each metal wire 32 constituting one side strand 30.
  • the strength of the wire rope 10 by the single wire 40 is increased as compared with the configuration in which the cross-sectional area of the single wire 40 is smaller than the cross-sectional area of the metal strand 32 constituting the side strand 30. Can be improved.
  • the single wire 40 is more likely to bite between the metal strands 32, and the filling rate of the wire rope 10 can be increased, whereby the resistance of the wire rope 10 can be increased. It is possible to improve the extensibility more effectively.
  • the cross-sectional area of one single wire 40 is preferably equal to or less than the total cross-sectional area of the two metal strands 32. Further, it is preferable that the diameter of the virtual circumscribed circle of one single wire 40 is larger than the diameter of the virtual circumscribed circle of one metal wire 32. However, it is preferable that the diameter of the circumscribed circle of one single wire 40 is smaller than the diameter of the first virtual circumscribed circle M1 of one side strand 30. As a result, it is possible to suppress a decrease in the flexibility of the wire rope 10 due to the thickness of the single wire 40. Further, it is preferably 2 times or less the diameter of the virtual circumscribed circle of one metal wire 32, and more preferably 1.5 times or less the diameter of the virtual circumscribed circle of one metal wire 32. preferable.
  • the wire rope 10 of the present embodiment preferably satisfies the following third requirement A with respect to the structure of the single wire 40 and the metal wire 32 constituting the side strand 30.
  • ⁇ Third requirement A> The tensile strength (N / mm 2 ) of at least one single wire 40 is substantially the same as the tensile strength of each metal wire 32 constituting the side strand 30. That is, the hardness of the single wire 40 is substantially the same as the hardness of each metal wire 32 constituting the side strand 30.
  • each of the tensile strength of the single wire 40 and the metal wires 32 for example, 1500 N / mm 2 or more and 2500N / mm 2 or less.
  • the fact that the tensile strength of the single wire 40 and the metal strand 32 is substantially the same means that the difference in tensile strength between the two is ⁇ 5% or less.
  • the tensile strength of the single wire 40 and the metal wire 32 may be, for example, 1500 N / mm 2 or more and 2000 N / N / mm 2 or less.
  • any cross-sectional area of the six single wires 40 (40A to 40F) is larger than the cross-sectional area of each metal wire 32 constituting one side strand 30, and satisfies the third requirement. ing. Further, the tensile strength of any of the six single wires 40 (40A to 40F) is substantially the same as the tensile strength of the side strand 30 (metal wire 32). Therefore, it can be seen that the single wire 40 and the metal wire 32 are deformed from each other and bite into the gap existing between the two side strands 30 adjacent to each other.
  • each of the plurality of side strands 30 has an uneven shape (a shape different from that of a perfect circle, an ellipse, and an oval), and the shapes are different from each other. Therefore, the shapes of the gaps (recesses) between the two side strands 30 adjacent to each other are also different from each other, and each gap is different from the shape corresponding to the gap (either a perfect circle, an ellipse, or an oval).
  • the single wire 40 deformed into the shape) is arranged so as to bite between the two side strands 30.
  • the plurality of side strands 30 are unevenly arranged and the shapes of the plurality of side strands 30 are different from each other, the plurality of single wires 40 are also included. They are arranged non-uniformly and have different shapes.
  • a specific description will be given.
  • the wire rope 10 of the present embodiment preferably satisfies the following fourth requirement with respect to the plurality of single wires 40.
  • ⁇ Fourth requirement> In at least one cross section of the wire rope 10, at least two single wires 40 have different diameters of the third virtual circumscribed circle M3 of the single wires 40.
  • ⁇ Fourth requirement A> Separate from the circumferential distance of the pair of single wires 40 located across the one side strand 30 (the shortest circumferential distance of the wire rope 10 of the pair of single wires 40) in at least one cross section of the wire rope 10. It is different from the distance in the circumferential direction of the pair of single wires 40 located across the one side strand 30 of the above.
  • the cross-sectional shapes of the six single wires 40 are different from each other.
  • the diameter of the third virtual circumscribed circle M3 is different between the single wire 40A and the single wire 40C.
  • the distances of the six single wires 40 (40A to 40F) in the circumferential direction are different from each other.
  • the wire rope 10 is arranged so that the non-uniformly shaped single wire 40 bites between the plurality of side strands 30 arranged in the non-uniform shape and position. It is possible to increase the filling rate of the wire rope 10 and thereby improve the elongation resistance of the wire rope 10.
  • the wire rope 10 of the present embodiment satisfies the following fifth requirement with respect to the side strand 30.
  • the area of the first virtual circumscribed circle M1 of at least one side strand 30 of the two side strands 30 in which the single wire 40 is interposed in the circumferential direction of the wire rope 10 is all the metal elements constituting the side strand 30. It is smaller than the area of the fourth virtual circumscribed circle M4 of the virtual strand 30P when the line 32 is a perfect circle.
  • the area of the first virtual circumscribed circle M1 of the side strand 30 is the same as that of the fourth virtual circumscribed circle M4 of the virtual strand 30P. Since the gap between the metal strands 32 of the strand 30 is narrow, the elongation resistance of the wire rope 10 can be improved more effectively.
  • a plurality of side strands 30 are arranged along the circumferential direction of the wire rope 10 while being in contact with each other over the entire circumference. Further, all the side strands 30 are in contact with the core material 20.
  • the contact between the side strands 30 may be point contact, but is preferably surface contact. Further, the contact between the side strand 30 and the core material 20 may be point contact, but is preferably surface contact.
  • FIG. 4 is an explanatory view showing a cross-sectional configuration of the side strand 30 and the virtual strand 30P.
  • FIG. 4 (A) shows the cross-sectional configuration of the virtual strand 30P
  • FIG. 4 (B) shows the cross-sectional configuration of the side strand 30.
  • the side strand 30 is secondary to the wire rope 10 before processing, such as swaging to make the side strand 30 deformed or wire drawing with a deformed die.
  • each metal wire 32P in the virtual strand 30P is deformed so as to be crushed.
  • the area (radius r1) of the first virtual circumscribed circle M1 of the side strand 30 is smaller than the area (radius r4) of the fourth virtual circumscribed circle M4 of the virtual strand 30P, and the fifth requirement. Meet.
  • the area of the third virtual circumscribed circle M3 of the single wire 40 shown in FIG. 2 is the area of the single wire when the single wire 40 is a perfect circle (when it is a perfect circle having the same area as the area of the single wire 40).
  • the configuration may be larger than the area of the perfect circle).
  • the elongation resistance of the wire rope 10 can be improved more effectively. Further, since the liquid is suppressed from entering the core material 20 of the wire rope 10 from the gap between the single wire 40 and the side strand 30 or the gap between the metal strands 32 adjacent to the side strand 30, the durability of the wire rope 10 is maintained. The sex can be improved.
  • each single wire 40 is separated from the core material 20. Specifically, each single wire 40 is located outside the fifth virtual circumscribed circle M5 of the core material 20. Further, each single wire 40 is located outside the contact position of the two side strands 30 adjacent to each other in the radial direction of the wire rope 10. Further, one metal wire 22 constituting the core material 20 is arranged so as to face one single wire 40 via the contact position of the two adjacent side strands 30. With such a configuration, liquid is prevented from entering the core material 20 of the wire rope 10 through the gap between the single wire 40 and the side strand 30, so that the water immersion resistance of the wire rope 10 can be improved.
  • the wire rope 10 satisfying each of the above requirements can be manufactured as follows.
  • a plurality of wire ropes 10 are twisted around the wire rope 10 together with a plurality of side strands 30.
  • a plurality of side strands 30 are arranged so as to line up around the wire rope 10, and a single wire 40 is formed in a recess formed on the outer peripheral side of the wire rope 10 by the two side strands 30 adjacent to each other.
  • a stranded wire in which is arranged is produced.
  • the stranded wire is subjected to secondary processing such as swaging processing for deforming the side strand 30 and the single wire 40 and wire drawing processing using a deformed die.
  • secondary processing such as swaging processing for deforming the side strand 30 and the single wire 40 and wire drawing processing using a deformed die.
  • the core material 20, the side strands 30, and the single wire 40 are crushed inward in the radial direction of the wire rope 10, and as a result, the wire rope 10 described above is produced.
  • the single wire 40 is arranged between each of the plurality of side strands 30 in the double stranded wire. Then, in at least one cross section of the wire rope 10, a part of at least one single wire 40 is a first virtual of at least one of two side strands 30 adjacent to each other along the circumferential direction of the wire rope 10. It is located inside the circumscribed circle M1 (first requirement above). As a result, the elongation resistance of the wire rope 10 can be improved while ensuring the flexibility of changing the shape of the wire rope 10.
  • the configuration of the wire rope 10 in the above embodiment is merely an example and can be variously deformed.
  • the number of side strands 30 in the wire rope 10 of the above embodiment, the number of strands forming the side strands 30 and the core material 20, and the number of layers can be variously deformed.
  • the number of side strands 30 may be 3 or more.
  • the wire rope 10 of the above embodiment includes the core material 20, the wire rope 10 has a configuration in which a plurality of side strands 30 and a plurality of single wires 40 are twisted to each other without the core material 20. May be good.
  • the core material 20 is a stranded wire in which a plurality of strands are twisted together, but it may be a single wire composed of one strand.
  • the wire rope 10 has the above-mentioned first requirements A and B, a second requirement, a second requirement A to D, a third requirement, a third requirement A, a fourth requirement, and a fourth requirement.
  • A it is not necessary to meet at least one of the fifth requirements.
  • the tensile strength of the single wire 40 may be lower or higher than the tensile strength of each metal wire 32 constituting the side strand 30.
  • the single wire 40 is the metal strand 32 of the two side strands 30 as compared with the configuration in which the tensile strength of the single wire 40 is equal to or higher than the tensile strength of the metal strand 32. Since it is easy to bite in between, it is possible to more effectively improve the elongation resistance of the wire rope 10.
  • each member in the wire rope 10 of the above embodiment is merely an example and can be variously deformed.
  • the metal strands 22 and 32 and the single wire 40 constituting the core material 20 and the side strand 30 may be formed of a metal other than stainless steel, or may be formed of a material other than metal (for example, resin). It may be.

Abstract

The present invention improves the elongation resistance of a wire rope by enhancing the filling rate of the wire rope. This wire rope is provided with a plurality of strands that are twisted with each other, and the plurality of strands each have a configuration in which a plurality of element wires are twisted with each other. The wire rope is further provided with a single wire that is disposed in a recess section formed on the outer peripheral side of the wire rope by two strands that are adjacent to each other in the peripheral direction of the wire rope. In the transverse cross-section of the wire rope, a portion of the single wire is positioned inside a virtual circumscribed circle of one of the two strands.

Description

ワイヤロープWire rope
 本明細書に開示される技術は、ワイヤロープに関する。 The technology disclosed in this specification relates to wire rope.
 ワイヤロープの形態として、いわゆる単撚りと、いわゆる複撚りとがある。単撚りは、複数本の単線が、互いに撚り合わされた形態であり、複撚りは、互いに撚り合わされた複数本の素線から構成される複数本のストランドが、互いに撚り合わされた形態である。単撚りのワイヤロープは、複撚りのワイヤロープに比べて、剛性が高いため、ワイヤロープの耐伸び性が高く、例えば初期伸びが小さいというメリットがある。ここで、ワイヤロープの初期伸びとは、新品のワイヤロープを使用するときの初期の段階で生じる伸びである。ワイヤロープの初期伸びが大きいとワイヤロープの操作性が低下するおそれがあるため、ワイヤロープの初期伸びは小さいことが好ましい。一方、複撚りのワイヤロープは、単撚りのワイヤロープに比べて、剛性が低いが、その分だけ、形状変化の柔軟性が高いため、例えば、ワイヤロープを、湾曲したチューブに挿入して使用する場合、チューブ内におけるワイヤロープの摩擦抵抗が小さく摺動性が高い、というメリットがある。 There are so-called single twist and so-called double twist as the form of the wire rope. Single twist is a form in which a plurality of single wires are twisted to each other, and double twist is a form in which a plurality of strands composed of a plurality of strands twisted to each other are twisted to each other. Since the single-twisted wire rope has higher rigidity than the double-twisted wire rope, there is an advantage that the wire rope has high elongation resistance, for example, the initial elongation is small. Here, the initial elongation of the wire rope is the elongation that occurs in the initial stage when a new wire rope is used. If the initial elongation of the wire rope is large, the operability of the wire rope may decrease. Therefore, it is preferable that the initial elongation of the wire rope is small. On the other hand, the double-twisted wire rope has lower rigidity than the single-twisted wire rope, but the flexibility of shape change is higher by that amount. Therefore, for example, the wire rope is used by inserting it into a curved tube. In this case, there is an advantage that the frictional resistance of the wire rope in the tube is small and the slidability is high.
 そこで、従来から、複撚りのワイヤロープにおける複数本のストランドのそれぞれの間に充填ワイヤやAgストランド(以下、「充填ワイヤ等」という)を配置する技術が知られている(例えば、特許文献1,2参照)。これらの従来の技術では、互いに隣り合う2本のストランドの間に充填ワイヤ等が介在することによって、ワイヤロープの充填率(ワイヤロープの横断面における隙間の少なさ)が高くなることに起因して、ワイヤロープの耐伸び性が向上し得る。すなわち、これらの従来の技術によれば、形状変化の柔軟性を確保しつつ、ワイヤロープの耐伸び性が向上することが期待される。 Therefore, conventionally, a technique of arranging a filling wire or an Ag strand (hereinafter, referred to as “filling wire or the like”) between each of a plurality of strands in a double-twisted wire rope has been known (for example, Patent Document 1). , 2). In these conventional techniques, the filling rate of the wire rope (the small gap in the cross section of the wire rope) is increased by interposing the filling wire or the like between two strands adjacent to each other. Therefore, the elongation resistance of the wire rope can be improved. That is, according to these conventional techniques, it is expected that the stretch resistance of the wire rope is improved while ensuring the flexibility of the shape change.
特開平7-138923号公報Japanese Unexamined Patent Publication No. 7-138923 米国特許第6049042号明細書U.S. Pat. No. 6049042
 しかし、上記従来の技術では、充填ワイヤ等が互いに隣り合う2本のストランドの間に単に撚り沿わされているだけなので、充填ワイヤ等とストランドを構成する素線との間に空洞が存在するため、ワイヤロープの充填率が不十分であり、ワイヤロープの耐伸び性を十分に向上させることができない。 However, in the above-mentioned conventional technique, since the filling wire or the like is simply twisted along the two strands adjacent to each other, there is a cavity between the filling wire or the like and the strands constituting the strand. , The filling rate of the wire rope is insufficient, and the elongation resistance of the wire rope cannot be sufficiently improved.
 本明細書では、上述した課題を解決することが可能な技術を開示する。 This specification discloses a technique capable of solving the above-mentioned problems.
 本明細書に開示される技術は、例えば、以下の形態として実現することが可能である。 The technology disclosed in the present specification can be realized, for example, in the following form.
(1)本明細書に開示されるワイヤロープは、互いに撚り合わされた複数本のストランドを備え、前記複数本のストランドのそれぞれは、複数本の素線を互いに撚り合わせた構成を有する、ワイヤロープであって、前記ワイヤロープの周方向に沿って互いに隣り合う2本の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置された単線を備え、前記ワイヤロープの横断面において、前記単線の一部が、前記2本のストランドのうちの一方のストランドの仮想外接円の内側に位置している。本ワイヤロープでは、単線が、互いに隣り合う2本のストランドによりワイヤロープの外周側に形成される凹所に配置されている。そして、その単線の一部が互いに隣り合う2本のストランドのうちの一方のストランドの仮想外接円の内側に位置するように、2本のストランドの間に存在する隙間が埋められている。従って、本ワイヤロープによれば、単線が互いに隣り合う2本のストランドの間に介在する構成や、単線が互いに隣り合う2本のストランドの仮想外接円の外側に位置している構成に比べて、ワイヤロープの充填率を高めることができ、これによりワイヤロープの耐伸び性の向上を図ることができる。 (1) The wire rope disclosed in the present specification includes a plurality of strands twisted to each other, and each of the plurality of strands has a configuration in which a plurality of strands are twisted to each other. A single wire is provided in a recess formed on the outer peripheral side of the wire rope by two strands adjacent to each other along the circumferential direction of the wire rope, and the cross section of the wire rope includes a single wire. A part of the single wire is located inside the virtual tangent circle of one of the two strands. In this wire rope, a single wire is arranged in a recess formed on the outer peripheral side of the wire rope by two strands adjacent to each other. Then, the gap existing between the two strands is filled so that a part of the single wire is located inside the virtual circumscribed circle of one of the two strands adjacent to each other. Therefore, according to this wire rope, compared with a configuration in which a single wire is interposed between two strands adjacent to each other, or a configuration in which a single wire is located outside the virtual tangent circle of two strands adjacent to each other. , The filling rate of the wire rope can be increased, and thus the elongation resistance of the wire rope can be improved.
(2)上記ワイヤロープにおいて、前記横断面において、前記単線に対して前記ワイヤロープの径方向の内側に、前記2本のストランドのうちの前記一方のストランドの前記素線と他方のストランドの前記素線とが隣接配置されており、前記単線の一部は、前記周方向において前記一方のストランドの素線と前記他方のストランドの素線との間に位置している構成としてもよい。本ワイヤロープでは、単線が、互いに隣り合う2本のストランドをそれぞれ構成し、かつ、互いに隣接配置された素線同士の間に位置するように、2本のストランドの間に存在する隙間が埋められている。従って、本ワイヤロープによれば、単線が互いに隣接配置された素線同士の間に位置しない構成に比べて、ワイヤロープの充填率を高めることができ、これによりワイヤロープの耐伸び性の向上を、より効果的に図ることができる。 (2) In the wire rope, in the cross section, inside the wire rope in the radial direction with respect to the single wire, the wire of one of the two strands and the wire of the other strand. The strands may be arranged adjacent to each other, and a part of the single wire may be located between the strands of the one strand and the strands of the other strand in the circumferential direction. In this wire rope, the gap existing between the two strands is filled so that the single wire constitutes two strands adjacent to each other and is located between the strands arranged adjacent to each other. Has been done. Therefore, according to this wire rope, the filling rate of the wire rope can be increased as compared with the configuration in which the single wires are not located between the strands arranged adjacent to each other, thereby improving the elongation resistance of the wire rope. Can be planned more effectively.
(3)上記ワイヤロープにおいて、前記横断面において、前記単線は、前記2本のストランドのうちの前記一方のストランドの前記素線と他方のストランドの前記素線とのそれぞれに接触している構成としてもよい。本ワイヤロープでは、単線が、互いに隣り合う2本のストランドをそれぞれ構成する素線に接触するように、2本のストランドの間に存在する隙間が埋められている。従って、本ワイヤロープによれば、単線がストランドの構成する素線から離間した構成に比べて、ワイヤロープの充填率を高めることができ、これによりワイヤロープの耐伸び性の向上を、より効果的に図ることができる。 (3) In the wire rope, in the cross section, the single wire is in contact with the wire of one of the two strands and the wire of the other strand. May be. In this wire rope, the gap existing between the two strands is filled so that the single wire contacts the strands constituting the two strands adjacent to each other. Therefore, according to this wire rope, the filling rate of the wire rope can be increased as compared with the configuration in which the single wire is separated from the strands formed by the strands, which is more effective in improving the elongation resistance of the wire rope. Can be targeted.
(4)上記ワイヤロープにおいて、前記横断面において、前記単線の断面積は、前記ストランドを構成する前記各素線の断面積より大きい構成としてもよい。本ワイヤロープでは、単線の断面積が、ストランドの各素線の断面積より小さい構成に比べて、単線によるワイヤロープの強度を向上させることができる。 (4) In the wire rope, in the cross section, the cross-sectional area of the single wire may be larger than the cross-sectional area of each of the strands constituting the strand. In this wire rope, the strength of the wire rope by the single wire can be improved as compared with the configuration in which the cross-sectional area of the single wire is smaller than the cross-sectional area of each strand of the strand.
(5)上記ワイヤロープにおいて、前記単線の抗張力は、前記ストランドを構成する前記各素線の抗張力より低い構成としてもよい。本ワイヤロープによれば、単線の抗張力がストランドを構成する素線の抗張力以上である構成に比べて、単線が2本のストランドの素線の間に食い込みやすいため、ワイヤロープの耐伸び性の向上を、より効果的に図ることができる。 (5) In the wire rope, the tensile strength of the single wire may be lower than the tensile strength of each of the strands constituting the strand. According to this wire rope, the elongation resistance of the wire rope is increased because the single wire easily bites between the strands of the two strands as compared with the configuration in which the tensile strength of the single wire is equal to or higher than the tensile strength of the strands constituting the strand. Improvement can be achieved more effectively.
(6)上記ワイヤロープにおいて、前記単線の抗張力は、前記ストランドを構成する前記各素線の抗張力の±5%の範囲内である構成としてもよい。本ワイヤロープによれば、ワイヤロープの全体としての抗張力の均一化を図ることができる。 (6) In the wire rope, the tensile strength of the single wire may be in the range of ± 5% of the tensile strength of each of the strands constituting the strand. According to this wire rope, the tensile strength of the wire rope as a whole can be made uniform.
(7)上記ワイヤロープにおいて、前記仮想外接円の面積は、前記一方のストランドを構成する全ての前記素線が正円であった場合(前記素線の面積と同一の面積を有する正円であった場合)の仮想ストランドの仮想外接円の面積より小さい構成としてもよい。本ワイヤロープによれば、ストランドの仮想外接円の面積が、仮想ストランドの仮想外接円と同じである構成に比べて、ストランドの素線間の隙間が小さい分だけ、ワイヤロープの耐伸び性の向上を、より効果的に図ることができる。 (7) In the wire rope, the area of the virtual circumscribed circle is a perfect circle having the same area as the area of the strands when all the strands constituting the one strand are perfect circles. The configuration may be smaller than the area of the virtual circumscribed circle of the virtual strand (if any). According to this wire rope, the area of the virtual circumscribed circle of the strand is the same as that of the virtual circumscribed circle of the virtual strand, and the stretch resistance of the wire rope is increased by the smaller gap between the strands. Improvement can be achieved more effectively.
(8)上記ワイヤロープにおいて、前記横断面において、前記単線の仮想外接円の面積は、前記単線が正円であった場合(前記単線の面積と同一の面積を有する正円であった場合)の単線の面積(前記正円の面積)より大きい構成としてもよい。本ワイヤロープによれば、互いに隣り合う2本のストランドによりワイヤロープの外周側に形成される凹所(隙間)を単線よって効果的に埋める(塞ぐ)ことができる。このため、各側ストランド(各々の側ストランド)内部の複数本の素線間の隙間を、これら複数本の素線によって、より効果的に埋める(塞ぐ)ことが可能になる。従って、ワイヤロープの耐伸び性の向上を、より効果的に図ることができる。 (8) In the wire rope, in the cross section, the area of the virtual circumscribing circle of the single wire is when the single wire is a perfect circle (when the area is the same as the area of the single wire). The configuration may be larger than the area of the single wire (the area of the perfect circle). According to this wire rope, a recess (gap) formed on the outer peripheral side of the wire rope by two strands adjacent to each other can be effectively filled (closed) by a single wire. Therefore, the gap between the plurality of strands inside each side strand (each side strand) can be more effectively filled (closed) by the plurality of strands. Therefore, the elongation resistance of the wire rope can be improved more effectively.
(9)上記ワイヤロープにおいて、前記単線は、互いに隣り合う第1の組の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置される第1の単線と、互いに隣り合う第2の組の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置される第2の単線と、を含み、前記横断面において、前記第1の単線を前記周方向で挟むように位置する一対の素線間の距離は、前記第2の単線を前記周方向で挟むように位置する一対の素線間の距離より長く、かつ、前記第1の組の前記ストランドのうち、前記第1の単線と接触している前記素線の本数は、前記第2の組の前記ストランドのうち、前記第2の単線と接触している前記素線の本数より多い構成としてもよい。本ワイヤロープによれば、単線を挟む一対の素線の距離が長いほど、該単線に接触している素線の本数が多い。これにより、互いに隣り合う2本のストランドの間に存在する隙間が大きいほど、単線が多くの素線と接触するように、2本のストランドの間に存在する隙間が埋められている。従って、本ワイヤロープによれば、2本のストランドの間に存在する隙間の大きさに関係なく、単線に接触している素線の本数が同じである構成に比べて、ワイヤロープの充填率を高めることができ、これによりワイヤロープの耐伸び性の向上を図ることができる。 (9) In the wire rope, the single wire is adjacent to the first single wire arranged in a recess formed on the outer peripheral side of the wire rope by the first set of the strands adjacent to each other. Includes a second single wire arranged in a recess formed on the outer peripheral side of the wire rope by the strands of the pair, and is positioned so as to sandwich the first single wire in the circumferential direction in the cross section. The distance between the pair of strands is longer than the distance between the pair of strands located so as to sandwich the second single wire in the circumferential direction, and among the strands of the first set, the first The number of the strands in contact with the single wire 1 may be larger than the number of the strands in contact with the second single wire among the strands of the second set. According to this wire rope, the longer the distance between the pair of strands sandwiching the single wire, the larger the number of strands in contact with the single wire. As a result, the larger the gap existing between the two strands adjacent to each other, the more the gap existing between the two strands is filled so that the single wire comes into contact with many strands. Therefore, according to this wire rope, the filling rate of the wire rope is the same as the configuration in which the number of strands in contact with the single wire is the same regardless of the size of the gap existing between the two strands. This makes it possible to improve the elongation resistance of the wire rope.
(10)上記ワイヤロープにおいて、前記単線は、互いに隣り合う第1の組の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置される第1の単線を含み、前記横断面において前記第1の単線を前記周方向で挟むように位置する一対の前記素線間の距離は、前記横断面とは別の横断面において前記第1の単線を前記周方向で挟むように位置する一対の前記素線間の距離より長く、かつ、前記第1の組のストランドのうち、前記横断面において前記第1の単線と接触している前記素線の本数は、前記別の横断面において前記第1の単線と接触している前記素線の本数より多い構成としてもよい。本ワイヤロープによれば、共通の第1の組のストランドのうち、第1の単線を周方向で挟むように位置する一対の素線間の距離が、ワイヤロープの一の横断面と別の横断面とで異なっており、第1の単線を挟む一対の素線間の距離が長いほど、該第1の単線に接触している素線の本数が多い。これにより、共通の第1の組のストランドと第1の単線とについて、2本のストランドの間に存在する隙間が大きくなっている横断面ほど、第1の単線が多くの素線と接触するように、2本のストランドの間に存在する隙間が埋められている。従って、本ワイヤロープによれば、2本のストランドの間に存在する隙間がワイヤロープの軸方向の位置によって異なるにもかかわらず、単線と接触している素線の本数が同じである構成に比べて、ワイヤロープの充填率を高めることができ、これによりワイヤロープの耐伸び性の向上を図ることができる。 (10) In the wire rope, the single wire includes a first single wire arranged in a recess formed on the outer peripheral side of the wire rope by the first set of the strands adjacent to each other, and in the cross section. The distance between the pair of strands located so as to sandwich the first single wire in the circumferential direction is positioned so as to sandwich the first single wire in the circumferential direction in a cross section different from the cross section. The number of the strands that are longer than the distance between the pair of strands and are in contact with the first single wire in the cross section of the first set of strands is determined in the other cross section. The number of the strands in contact with the first single wire may be larger than the number of the strands. According to this wire rope, the distance between a pair of strands located so as to sandwich the first single wire in the circumferential direction among the common first set of strands is different from the cross section of one wire rope. It differs from the cross section, and the longer the distance between the pair of strands sandwiching the first single wire, the greater the number of strands in contact with the first single wire. As a result, with respect to the common first set of strands and the first single wire, the larger the gap existing between the two strands, the larger the cross section of the first single wire comes into contact with more strands. As described above, the gap existing between the two strands is filled. Therefore, according to this wire rope, the number of strands in contact with the single wire is the same even though the gap existing between the two strands differs depending on the axial position of the wire rope. In comparison, the filling rate of the wire rope can be increased, and thus the elongation resistance of the wire rope can be improved.
(11)上記ワイヤロープにおいて、前記単線は、互いに隣り合う第1の組の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置される第1の単線と、互いに隣り合う第2の組の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置される第2の単線と、を含み、前記横断面において、前記第1の単線を前記周方向で挟むように位置する一対の前記素線間の距離は、前記第2の単線を前記周方向で挟むように位置する一対の前記素線間の距離より長く、かつ、前記第1の組の前記ストランドのうち、前記第1の単線と接触している前記素線の本数は、前記第2の組の前記ストランドのうち、前記第2の単線と接触している前記素線の本数より多く、前記横断面において前記第1の単線を前記周方向で挟むように位置する一対の前記素線間の距離は、前記横断面とは別の横断面において前記第1の単線を前記周方向で挟むように位置する一対の前記素線間の距離より長く、かつ、前記第1の組のストランドのうち、前記横断面において前記第1の単線と接触している前記素線の本数は、前記別の横断面において前記第1の単線と接触している前記素線の本数より多い構成としてもよい。本ワイヤロープによれば、ワイヤロープの充填率を高めることができ、これによりワイヤロープの耐伸び性の向上を図ることができる。 (11) In the wire rope, the single wire is adjacent to the first single wire arranged in a recess formed on the outer peripheral side of the wire rope by the strands of the first set adjacent to each other. Includes a second single wire arranged in a recess formed on the outer peripheral side of the wire rope by the strands of the pair, and is positioned so as to sandwich the first single wire in the circumferential direction in the cross section. The distance between the pair of strands is longer than the distance between the pair of strands located so as to sandwich the second single wire in the circumferential direction, and among the strands of the first set. The number of the strands in contact with the first single wire is larger than the number of the strands in contact with the second single wire among the strands of the second set, and in the cross section. The distance between the pair of strands located so as to sandwich the first single wire in the circumferential direction is positioned so as to sandwich the first single wire in the circumferential direction in a cross section different from the cross section. Of the first set of strands that are longer than the distance between the pair of strands, the number of strands in contact with the first single wire in the cross section is determined in the other cross section. The configuration may be larger than the number of the strands in contact with the first single wire. According to this wire rope, the filling rate of the wire rope can be increased, and thereby the elongation resistance of the wire rope can be improved.
(12)上記ワイヤロープにおいて、前記素線の横断面の形状は、正円と楕円と長円形とのいずれとも異なる形状である構成としてもよい。本ワイヤロープによれば、素線の横断面の形状が、正円と楕円と長円形とのいずれとも異なる形状であることによって、2本のストランドの間に存在する隙間が埋められており、これにより、ワイヤロープの耐伸び性の向上を図ることができる。 (12) In the wire rope, the shape of the cross section of the wire may be different from any of a perfect circle, an ellipse, and an oval. According to this wire rope, the cross-sectional shape of the wire is different from that of a perfect circle, an ellipse, and an oval, so that the gap existing between the two strands is filled. As a result, the elongation resistance of the wire rope can be improved.
(13)上記ワイヤロープにおいて、前記単線の横断面の形状は、正円と楕円と長円形とのいずれとも異なる形状である構成としてもよい。本ワイヤロープによれば、単線の横断面の形状が、正円と楕円と長円形とのいずれとも異なる形状であることによって、2本のストランドの間に存在する隙間が埋められており、これにより、ワイヤロープの耐伸び性の向上を図ることができる。 (13) In the wire rope, the shape of the cross section of the single wire may be different from any of a perfect circle, an ellipse, and an oval. According to this wire rope, the cross-sectional shape of the single wire is different from that of a perfect circle, an ellipse, and an oval, so that the gap existing between the two strands is filled. Therefore, the elongation resistance of the wire rope can be improved.
 なお、本明細書に開示される技術は、種々の形態で実現することが可能であり、例えば、ワイヤロープ、ワイヤロープの製造方法等の形態で実現することができる。 The technique disclosed in the present specification can be realized in various forms, for example, a wire rope, a method for manufacturing a wire rope, and the like.
実施形態におけるワイヤロープ10の構成を概略的に示す断面斜視図Cross-sectional perspective view schematically showing the configuration of the wire rope 10 in the embodiment. 実施形態におけるワイヤロープ10の横断面構成を示す説明図Explanatory drawing showing cross-sectional structure of wire rope 10 in embodiment ワイヤロープ10の互いに異なる横断面構成を部分的に示す説明図Explanatory drawing partially showing different cross-sectional configurations of the wire rope 10. 側ストランド30と仮想ストランド30Pとの横断面構成を示す説明図Explanatory drawing which shows cross-sectional structure of side strand 30 and virtual strand 30P
A.実施形態:
A-1.ワイヤロープ10の構成:
 図1は、本実施形態におけるワイヤロープ10の構成を概略的に示す断面斜視図であり、図2は、本実施形態におけるワイヤロープ10の横断面構成を示す説明図である。本実施形態のワイヤロープ10は、種々の用途(例えば、自転車のブレーキ用、内視鏡操作用)に用いられ得る。
A. Embodiment:
A-1. Configuration of wire rope 10:
FIG. 1 is a cross-sectional perspective view schematically showing the configuration of the wire rope 10 in the present embodiment, and FIG. 2 is an explanatory view showing the cross-sectional configuration of the wire rope 10 in the present embodiment. The wire rope 10 of the present embodiment can be used for various purposes (for example, for braking a bicycle, for operating an endoscope).
 図1および図2に示すように、ワイヤロープ10は、芯材20と、複数本の(より具体的には6本の)側ストランド30と、複数本(より具体的には6本の)の単線40(40A~40F)と、を備えている。 As shown in FIGS. 1 and 2, the wire rope 10 includes a core material 20, a plurality of (more specifically, 6) side strands 30, and a plurality of (more specifically, 6) wire ropes. It is equipped with a single wire 40 (40A to 40F).
 芯材20は、互いに撚り合わされた複数本の金属素線22を有している。より具体的には、芯材20は、1本の金属素線22の周りに6本の金属素線22が撚り合わされた構成を有している。芯材20を構成する各金属素線22は、例えば、ステンレス鋼(例えばSUS304)により形成されている。 The core material 20 has a plurality of metal strands 22 twisted together. More specifically, the core material 20 has a structure in which six metal strands 22 are twisted around one metal strand 22. Each metal wire 22 constituting the core material 20 is made of, for example, stainless steel (for example, SUS304).
 複数本の側ストランド30は、芯材20の周りに互いに撚り合わされている。すなわち、複数本の側ストランド30は、ワイヤロープ10の周方向(ワイヤロープ10(芯材20)の中心軸Q1を中心とする仮想円の周方向)に沿って並ぶように配置されている。なお、中心軸Q1は、芯材20の中心に位置する金属素線22の仮想外接円の中心とする。また、芯材20が1本の素線により構成されている場合、中心軸Q1は、その素線の横断面の仮想外接円の中心とする。各側ストランド30は、互いに撚り合わされた複数本の金属素線32を有している。より具体的には、各側ストランド30は、1本の金属素線32の周りに6本の金属素線32が撚り合わされた構成を有している。側ストランド30を構成する各金属素線32は、例えば、ステンレス鋼(例えばSUS304)により形成されている。側ストランド30は、特許請求の範囲におけるストランドの一例であり、側ストランド30を構成する各金属素線32は、特許請求の範囲における素線の一例である。 The plurality of side strands 30 are twisted together around the core material 20. That is, the plurality of side strands 30 are arranged so as to be arranged along the circumferential direction of the wire rope 10 (the circumferential direction of the virtual circle centered on the central axis Q1 of the wire rope 10 (core material 20)). The central axis Q1 is the center of the virtual circumscribed circle of the metal wire 22 located at the center of the core material 20. When the core material 20 is composed of one wire, the central axis Q1 is the center of the virtual circumscribed circle in the cross section of the wire. Each side strand 30 has a plurality of metal strands 32 twisted together. More specifically, each side strand 30 has a configuration in which six metal strands 32 are twisted around one metal strand 32. Each metal wire 32 constituting the side strand 30 is made of, for example, stainless steel (for example, SUS304). The side strand 30 is an example of a strand in the claims, and each metal wire 32 constituting the side strand 30 is an example of a wire in the claims.
 複数本の単線40は、芯材20の周りに、側ストランド30と共に側ストランド30と同方向に撚り合わされている。ワイヤロープ10の周方向に沿って互いに隣り合う2本の側ストランド30によりワイヤロープ10の外周側に形成される凹所に単線40が配置されている。すなわち、ワイヤロープ10は、側ストランド30と同数の単線40を備えている。また、各単線40は、1本の金属素線により構成されている。各単線40は、例えば、ステンレス鋼(例えばSUS304)により形成されている。 A plurality of single wires 40 are twisted around the core material 20 together with the side strands 30 in the same direction as the side strands 30. A single wire 40 is arranged in a recess formed on the outer peripheral side of the wire rope 10 by two side strands 30 adjacent to each other along the circumferential direction of the wire rope 10. That is, the wire rope 10 includes the same number of single wires 40 as the side strands 30. Further, each single wire 40 is composed of one metal wire. Each single wire 40 is made of, for example, stainless steel (eg, SUS304).
 また、本実施形態では、ワイヤロープ10は6本の側ストランド30を備えるため、ワイヤロープ10の周方向に沿って互いに隣り合う2本の側ストランド30の組合せは6個存在する。本実施形態では、これら6個の組合せのそれぞれについて、1本の単線40が配置されている。また、本実施形態では、芯材20がZ撚りで形成され、各側ストランド30はS撚りで形成され、芯材20の周りの複数本の側ストランド30および単線40はZ撚りで形成されているが、各線の撚り方および撚り方向は、これらに限られない。なお、ワイヤロープ10の断面構成の詳細については次述する。 Further, in the present embodiment, since the wire rope 10 includes the six side strands 30, there are six combinations of the two side strands 30 adjacent to each other along the circumferential direction of the wire rope 10. In this embodiment, one single wire 40 is arranged for each of these six combinations. Further, in the present embodiment, the core material 20 is formed by Z twist, each side strand 30 is formed by S twist, and the plurality of side strands 30 and the single wire 40 around the core material 20 are formed by Z twist. However, the twisting method and twisting direction of each wire are not limited to these. The details of the cross-sectional structure of the wire rope 10 will be described below.
A-2.ワイヤロープ10の断面構成の詳細:
(1本の単線40と1本の側ストランド30との関係)
 本実施形態のワイヤロープ10は、1本の単線40と1本の側ストランド30とに関して、次の第1の要件を満たしている。
 <第1の要件>
 ワイヤロープ10の少なくとも1つの横断面(ワイヤロープ10の軸方向(ワイヤロープ10の中心軸Q1に沿った方向)に直交する断面)において、少なくとも1本の単線40の一部が、ワイヤロープ10の周方向に沿って互いに隣り合う2本の側ストランド30のうち、少なくとも一方の側ストランド30の第1の仮想外接円M1の内側に位置している。
 ここで、第1の仮想外接円M1は、1本の側ストランド30を構成する全ての金属素線32を囲む正円のうち、半径が最も小さく、側ストランド30(該側ストランド30を構成する金属素線32の群)に外接する正円である。第1の要件は、1本の単線40が、1本の側ストランド30を構成する金属素線32同士の間に位置するように食い込んでいることを意味する。ワイヤロープ10では、第1の要件を満たすことにより、単線40の一部が側ストランド30の第1の仮想外接円M1の内側に位置するように、2本の側ストランド30の間に存在する隙間が埋められている。従って、本実施形態によれば、単線40が側ストランド30の第1の仮想外接円M1の外側に位置している構成に比べて、ワイヤロープ10の充填率を高めることができ、これによりワイヤロープ10の耐伸び性の向上(例えば初期伸びの低減)を図ることができる。
A-2. Details of the cross-sectional structure of the wire rope 10:
(Relationship between one single wire 40 and one side strand 30)
The wire rope 10 of the present embodiment satisfies the following first requirement with respect to one single wire 40 and one side strand 30.
<First requirement>
In at least one cross section of the wire rope 10 (a cross section orthogonal to the axial direction of the wire rope 10 (the direction along the central axis Q1 of the wire rope 10)), a part of at least one single wire 40 is a part of the wire rope 10 It is located inside the first virtual tangent circle M1 of at least one of the two side strands 30 adjacent to each other along the circumferential direction of the rope.
Here, the first virtual circumscribed circle M1 has the smallest radius among the perfect circles surrounding all the metal strands 32 constituting one side strand 30, and constitutes the side strand 30 (constituting the side strand 30). It is a perfect circle circumscribing a group of metal strands 32). The first requirement means that one single wire 40 bites into the metal strands 32 constituting one side strand 30 so as to be located between each other. In the wire rope 10, by satisfying the first requirement, a part of the single wire 40 exists between the two side strands 30 so as to be located inside the first virtual circumscribed circle M1 of the side strands 30. The gap is filled. Therefore, according to the present embodiment, the filling rate of the wire rope 10 can be increased as compared with the configuration in which the single wire 40 is located outside the first virtual circumscribed circle M1 of the side strand 30, whereby the wire can be increased. It is possible to improve the elongation resistance of the rope 10 (for example, reduce the initial elongation).
 なお、ワイヤロープ10の少なくとも1つの横断面において、1本の単線40の一部は、ワイヤロープ10の周方向に沿って互いに隣り合う2本の側ストランド30のそれぞれの第1の仮想外接円M1の内側に位置していることが好ましい。これは、1本の単線40が、互いに隣り合う2本の側ストランド30のそれぞれについて、各側ストランド30が有する金属素線32同士の間に位置するように食い込んでいることを意味する。これにより、互いに隣り合う2本の側ストランド30の間に存在する隙間がさらに埋められるため、ワイヤロープ10の充填率をさらに高めることができ、これによりワイヤロープ10の耐伸び性の向上を、より効果的に図ることができる。 In addition, in at least one cross section of the wire rope 10, a part of one single wire 40 is a first virtual circumscribed circle of each of two side strands 30 adjacent to each other along the circumferential direction of the wire rope 10. It is preferably located inside the M1. This means that one single wire 40 bites into each of the two side strands 30 adjacent to each other so as to be located between the metal strands 32 of each side strand 30. As a result, the gap existing between the two side strands 30 adjacent to each other is further filled, so that the filling rate of the wire rope 10 can be further increased, thereby improving the elongation resistance of the wire rope 10. It can be planned more effectively.
 本実施形態のワイヤロープ10は、1本の単線40と1本の側ストランド30とに関して、さらに、次の第1の要件Aを満たしていることが好ましい。
 <第1の要件A>
 ワイヤロープ10の少なくとも1つの横断面において、少なくとも1本の単線40の一部は、1本の側ストランド30を構成する複数本の金属素線32のうち、該単線40の最も近くに位置する2本の金属素線32の両方に外接する第1の仮想外接線B1より、該側ストランド30の中心軸Q2側に位置している。
 ここで、第1の仮想外接線B1は、単線40の最も近くに位置する2本の金属素線32の両方に跨がるように接する2本の仮想直線のうち、該単線40側に位置する仮想である。第1の要件Aは、上述した第1の要件に比べて、1本の側ストランド30に対する、1本の単線40の食い込み度合いが大きいことを意味する。ワイヤロープ10では、第1の要件Aを満たすことにより、互いに隣り合う2本の側ストランド30の間に存在する隙間がさらに埋められるため、ワイヤロープ10の充填率をさらに高めることができ、これによりワイヤロープ10の耐伸び性の向上を、より効果的に図ることができる。
It is preferable that the wire rope 10 of the present embodiment further satisfies the following first requirement A with respect to one single wire 40 and one side strand 30.
<First requirement A>
In at least one cross section of the wire rope 10, a part of at least one single wire 40 is located closest to the single wire 40 among the plurality of metal strands 32 constituting one side strand 30. It is located on the central axis Q2 side of the side strand 30 from the first virtual circumscribed line B1 that circumscribes both of the two metal strands 32.
Here, the first virtual circumscribed line B1 is located on the single wire 40 side of the two virtual straight lines that are in contact with each other so as to straddle both of the two metal strands 32 located closest to the single wire 40. It is virtual to do. The first requirement A means that the degree of biting of one single wire 40 with respect to one side strand 30 is larger than that of the first requirement described above. In the wire rope 10, by satisfying the first requirement A, the gap existing between the two side strands 30 adjacent to each other is further filled, so that the filling rate of the wire rope 10 can be further increased. Therefore, the elongation resistance of the wire rope 10 can be improved more effectively.
 本実施形態のワイヤロープ10は、1本の単線40と1本の側ストランド30とに関して、さらに、次の第1の要件Bを満たしていることが好ましい。
 <第1の要件B>
 ワイヤロープ10の少なくとも1つの横断面において、少なくとも1本の単線40は、1本の側ストランド30を構成する複数本の金属素線32のうち、該単線40の最も近くに位置する2本の金属素線32の少なくとも一方に接触している。
 ワイヤロープ10では、第1の要件Bを満たすことにより、互いに隣り合う2本の側ストランド30の間に存在する隙間がさらに埋められるため、ワイヤロープ10の充填率をさらに高めることができ、これによりワイヤロープ10の耐伸び性の向上を、より効果的に図ることができる。また、単線40と側ストランド30とが接触していることにより、単線40と側ストランド30との隙間からワイヤロープ10の内部に液体が浸入することが抑制されるため、ワイヤロープ10の耐浸水性を向上させることができる。また、単線40と側ストランド30とが接触していることにより、ワイヤロープ10の変形に伴う単線40と側ストランド30との、ワイヤロープ10の軸方向の位置ずれを抑制することができる。
It is preferable that the wire rope 10 of the present embodiment further satisfies the following first requirement B with respect to one single wire 40 and one side strand 30.
<First requirement B>
In at least one cross section of the wire rope 10, at least one single wire 40 is two of the plurality of metal strands 32 constituting one side strand 30 that are located closest to the single wire 40. It is in contact with at least one of the metal wires 32.
In the wire rope 10, by satisfying the first requirement B, the gap existing between the two side strands 30 adjacent to each other is further filled, so that the filling rate of the wire rope 10 can be further increased. Therefore, the elongation resistance of the wire rope 10 can be improved more effectively. Further, since the single wire 40 and the side strand 30 are in contact with each other, it is possible to prevent the liquid from entering the inside of the wire rope 10 through the gap between the single wire 40 and the side strand 30, so that the wire rope 10 is resistant to water immersion. The sex can be improved. Further, since the single wire 40 and the side strand 30 are in contact with each other, it is possible to suppress the axial displacement of the wire rope 10 between the single wire 40 and the side strand 30 due to the deformation of the wire rope 10.
 なお、1本の単線40は、該単線40の最も近くに位置する2本の金属素線32の両方に接触していることが好ましい。これにより、上述したワイヤロープ10の耐伸び性の向上、ワイヤロープ10の耐浸水性の向上や、単線40と側ストランド30との位置ずれの抑制を、より効果的に図ることができる。また、単線40は、金属素線32に点接触していてもよいが、金属素線32に互いに面接触していることが好ましい。ここで、本明細書において、面接触とは、ワイヤロープ10の横断面において、単線40が有する略直線状部分と素線(金属素線32等)が有する略直線状部分とが、部分的または全体的に線接触していることをいう。単線40と側ストランド30(金属素線32)とが面接触していることにより、互いに隣り合う2本の側ストランド30の間に存在する隙間がさらに埋められるため、上述したワイヤロープ10の耐伸び性の向上を、より効果的に得られると共に、単線40と側ストランド30(金属素線32)との接触面積が大きいため、ワイヤロープ10の耐浸水性の向上や単線40と側ストランド30との位置ずれの抑制を、より効果的に図ることができる。 It is preferable that one single wire 40 is in contact with both of the two metal strands 32 located closest to the single wire 40. As a result, it is possible to more effectively improve the elongation resistance of the wire rope 10 described above, improve the water immersion resistance of the wire rope 10, and suppress the misalignment between the single wire 40 and the side strand 30. Further, the single wire 40 may be in point contact with the metal wire 32, but it is preferable that the single wire 40 is in surface contact with the metal wire 32. Here, in the present specification, the surface contact means that, in the cross section of the wire rope 10, the substantially linear portion of the single wire 40 and the substantially linear portion of the wire (metal wire 32, etc.) are partially. Or it means that they are in line contact as a whole. Since the single wire 40 and the side strand 30 (metal wire 32) are in surface contact with each other, the gap existing between the two side strands 30 adjacent to each other is further filled, so that the wire rope 10 can withstand the above-mentioned resistance. Since the improvement of the extensibility can be obtained more effectively and the contact area between the single wire 40 and the side strand 30 (metal strand 32) is large, the water immersion resistance of the wire rope 10 can be improved and the single wire 40 and the side strand 30 can be improved. It is possible to more effectively suppress the misalignment with and.
 図2に示す例では、6本の単線40(40A~40F)のそれぞれの一部は、互いに隣り合う2本の側ストランド30のそれぞれの第1の仮想外接円M1の内側に位置しており、第1の要件を満たしている。詳細には、6本の単線40(40A~40F)のそれぞれの一部は、互いに隣り合う2本の側ストランド30のうち、一方の側ストランドの第1の仮想外接円M1の内側に位置しており、該単線40の別の一部は、互いに隣り合う2本の側ストランド30のうち、他方の側ストランド30の第1の仮想外接円M1の内側に位置しており、第1の要件を満たしている。また、少なくとも、単線40B~40Fは、上記第1の要件Aおよび第1の要件Bを満たしている。例えば、単線40Fの一部は、1本の側ストランド30における、単線40Fの最も近くに位置する2本の金属素線32(図2中の金属素線32E,32F)の両方に外接する第1の仮想外接線B1より、該側ストランド30の中心軸Q2側に位置している(後述の図3も参照)。単線40Fの最も近くに位置する2本の金属素線32(図2中の金属素線32E,32F)は、単線40Fの隣に、他の素線を介さずに配置された2本の金属素線32(図2中の金属素線32E,32F)である。なお、ワイヤロープ10が備える複数本の単線40のうち、50%以上の数の単線40が第1の要件(さらには第1の要件A、第1の要件B)を満たすことが好ましく、80%以上の数の単線40が第1の要件(さらには第1の要件A、第1の要件B)を満たすことが好ましい。 In the example shown in FIG. 2, each part of the six single wires 40 (40A to 40F) is located inside the first virtual circumscribed circle M1 of each of the two side strands 30 adjacent to each other. , Meets the first requirement. Specifically, each part of the six single wires 40 (40A to 40F) is located inside the first virtual circumscribed circle M1 of one of the two side strands 30 adjacent to each other. The other part of the single wire 40 is located inside the first virtual circumscribed circle M1 of the other side strand 30 of the two side strands 30 adjacent to each other, and is the first requirement. Meet. Further, at least the single wires 40B to 40F satisfy the first requirement A and the first requirement B. For example, a part of the single wire 40F circumscribes both of the two metal strands 32 ( metal strands 32E and 32F in FIG. 2) located closest to the single wire 40F in one side strand 30. It is located on the central axis Q2 side of the side strand 30 from the virtual circumscribed line B1 of No. 1 (see also FIG. 3 described later). The two metal strands 32 ( metal strands 32E and 32F in FIG. 2) located closest to the single wire 40F are two metals arranged next to the single wire 40F without interposing other strands. It is a wire 32 ( metal wire 32E, 32F in FIG. 2). Of the plurality of single wires 40 included in the wire rope 10, 50% or more of the single wires 40 preferably satisfy the first requirement (further, the first requirement A and the first requirement B), and 80. It is preferable that a number of single wires 40 of% or more satisfy the first requirement (further, the first requirement A and the first requirement B).
(1本の単線40と2本の側ストランド30との関係)
 本実施形態のワイヤロープ10は、1本の単線40と2本の側ストランド30とに関して、次の第2の要件を満たしていることが好ましい。
 <第2の要件>
 ワイヤロープ10の少なくとも1つの横断面において、1本の単線40に対してワイヤロープ10の径方向(ワイヤロープ10の中心軸Q1を中心とする円の半径方向)の内側に、1本の側ストランド30を構成する金属素線32(以下、「第1の金属素線32X」という)と別の1本の側ストランド30を構成する金属素線32(以下、「第2の金属素線32Y」という)とが隣接配置されている。また、単線40の一部は、ワイヤロープ10の周方向において第1の金属素線32Xと第2の金属素線32Yとの間に位置している。
 ここで、単線40の一部が第1の金属素線32Xと第2の金属素線32Yとの間に位置しているとは、ワイヤロープ10の中心軸Q1を中心とし、第1の金属素線32Xと第2の金属素線32Yとの両方を囲み、かつ、第1の金属素線32Xと第2の金属素線32Yとの少なくとも一方に外接する第2の仮想外接円M2の内側に、単線40の一部が位置していることをいう(後述の図3も参照)。ワイヤロープ10では、第2の要件を満たすことにより、単線40が、第1の金属素線32Xと第2の金属素線32Yとの間に位置するように食い込んでおり、2本の側ストランド30の間に存在する隙間が埋められている。従って、本実施形態によれば、単線40が第1の金属素線32Xと第2の金属素線32Yとの間に位置しない構成に比べて、ワイヤロープ10の充填率を高めることができ、これによりワイヤロープ10の耐伸び性の向上を、より効果的に図ることができる。
(Relationship between one single wire 40 and two side strands 30)
It is preferable that the wire rope 10 of the present embodiment satisfies the following second requirement with respect to one single wire 40 and two side strands 30.
<Second requirement>
In at least one cross section of the wire rope 10, one side inside the radial direction of the wire rope 10 (the radial direction of the circle centered on the central axis Q1 of the wire rope 10) with respect to one single wire 40. The metal wire 32 constituting the strand 30 (hereinafter, referred to as "first metal wire 32X") and the metal wire 32 forming another side strand 30 (hereinafter, "second metal wire 32Y"). ") And are arranged adjacent to each other. A part of the single wire 40 is located between the first metal wire 32X and the second metal wire 32Y in the circumferential direction of the wire rope 10.
Here, the fact that a part of the single wire 40 is located between the first metal wire 32X and the second metal wire 32Y means that the first metal is centered on the central axis Q1 of the wire rope 10. Inside a second virtual circumscribed circle M2 that surrounds both the strands 32X and the second metal strands 32Y and circumscribes at least one of the first metal strands 32X and the second metal strands 32Y. In addition, it means that a part of the single wire 40 is located (see also FIG. 3 described later). In the wire rope 10, by satisfying the second requirement, the single wire 40 bites into the wire rope so as to be located between the first metal wire 32X and the second metal wire 32Y, and the two side strands. The gap existing between 30 is filled. Therefore, according to the present embodiment, the filling rate of the wire rope 10 can be increased as compared with the configuration in which the single wire 40 is not located between the first metal wire 32X and the second metal wire 32Y. As a result, the elongation resistance of the wire rope 10 can be improved more effectively.
 本実施形態のワイヤロープ10は、1本の単線40と2本の側ストランド30とに関して、さらに、次の第2の要件Aを満たしていることが好ましい。
 <第2の要件A>
 ワイヤロープ10の少なくとも1つの横断面において、少なくとも1本の単線40の一部は、第1の金属素線32Xと第2の金属素線32Yとの両方に外接する第2の仮想外接線B2より、ワイヤロープ10の中心軸Q1側に位置している。
 ここで、第2の仮想外接線B2は、第1の金属素線32Xと第2の金属素線32Yとの両方に跨がるように接する2本の仮想直線のうち、該単線40側に位置する仮想直線である。第2の要件Aは、上述した第2の要件に比べて、第1の金属素線32Xと第2の金属素線32Yとの間に対する、1本の単線40の食い込み度合いが大きいことを意味する。ワイヤロープ10では、第2の要件Aを満たすことにより、互いに隣り合う2本の側ストランド30の間に存在する隙間がさらに埋められるため、ワイヤロープ10の充填率をさらに高めることができ、これによりワイヤロープ10の耐伸び性の向上を、より効果的に図ることができる。
It is preferable that the wire rope 10 of the present embodiment further satisfies the following second requirement A with respect to one single wire 40 and two side strands 30.
<Second requirement A>
In at least one cross section of the wire rope 10, a part of at least one single wire 40 is a second virtual circumscribed line B2 that circumscribes both the first metal wire 32X and the second metal wire 32Y. Therefore, it is located on the central axis Q1 side of the wire rope 10.
Here, the second virtual circumscribed line B2 is on the single wire 40 side of the two virtual straight lines that are in contact with each other so as to straddle both the first metal wire 32X and the second metal wire 32Y. It is a virtual straight line located. The second requirement A means that the degree of biting of one single wire 40 between the first metal wire 32X and the second metal wire 32Y is larger than that of the second requirement described above. To do. In the wire rope 10, by satisfying the second requirement A, the gap existing between the two side strands 30 adjacent to each other is further filled, so that the filling rate of the wire rope 10 can be further increased. Therefore, the elongation resistance of the wire rope 10 can be improved more effectively.
 本実施形態のワイヤロープ10は、1本の単線40と2本の側ストランド30とに関して、さらに、次の第2の要件Bを満たしていることが好ましい。
 <第2の要件B>
 ワイヤロープ10の少なくとも1つの横断面において、少なくとも1本の単線40は、第1の金属素線32Xと第2の金属素線32Yとの少なくとも一方に接触している。
 ワイヤロープ10では、第2の要件Bを満たすことにより、互いに隣り合う2本の側ストランド30の間に存在する隙間がさらに埋められるため、ワイヤロープ10の充填率をさらに高めることができ、これによりワイヤロープ10の耐伸び性の向上を、より効果的に図ることができる。また、単線40と側ストランド30(金属素線32X,32Y)とが接触していることにより、単線40と側ストランド30との隙間からワイヤロープ10の内部に液体が浸入することが抑制されるため、ワイヤロープ10の耐浸水性を向上させることができる。また、単線40と側ストランド30とが接触していることにより、ワイヤロープ10の変形に伴う単線40と側ストランド30との、ワイヤロープ10の軸方向の位置ずれを抑制することができる。
It is preferable that the wire rope 10 of the present embodiment further satisfies the following second requirement B with respect to one single wire 40 and two side strands 30.
<Second requirement B>
In at least one cross section of the wire rope 10, at least one single wire 40 is in contact with at least one of the first metal wire 32X and the second metal wire 32Y.
In the wire rope 10, by satisfying the second requirement B, the gap existing between the two side strands 30 adjacent to each other is further filled, so that the filling rate of the wire rope 10 can be further increased. Therefore, the elongation resistance of the wire rope 10 can be improved more effectively. Further, since the single wire 40 and the side strand 30 ( metal strands 32X, 32Y) are in contact with each other, it is possible to prevent liquid from entering the inside of the wire rope 10 through the gap between the single wire 40 and the side strand 30. Therefore, the water immersion resistance of the wire rope 10 can be improved. Further, since the single wire 40 and the side strand 30 are in contact with each other, it is possible to suppress the axial displacement of the wire rope 10 between the single wire 40 and the side strand 30 due to the deformation of the wire rope 10.
 なお、1本の単線40は、第1の金属素線32Xと第2の金属素線32Yとの両方に接触していることが好ましい。これにより、上述したワイヤロープ10の耐伸び性の向上、ワイヤロープ10の耐浸水性の向上や、単線40と側ストランド30との位置ずれの抑制を、より効果的に図ることができる。また、単線40は、第1の金属素線32Xや第2の金属素線32Yに点接触していてもよいが、第1の金属素線32Xや第2の金属素線32Yに互いに面接触していることが好ましい。単線40と金属素線32X,32Yとが面接触していることにより、互いに隣り合う2本の側ストランド30の間に存在する隙間がさらに埋められるため、上述したワイヤロープ10の耐伸び性の向上を、より効果的に図ることができると共に、単線40と側ストランド30(金属素線32X,32Y)との接触面積が大きいため、ワイヤロープ10の耐浸水性の向上や単線40と側ストランド30との位置ずれの抑制を、より効果的に図ることができる。 It is preferable that one single wire 40 is in contact with both the first metal wire 32X and the second metal wire 32Y. As a result, it is possible to more effectively improve the elongation resistance of the wire rope 10 described above, improve the water immersion resistance of the wire rope 10, and suppress the misalignment between the single wire 40 and the side strand 30. Further, the single wire 40 may be in point contact with the first metal wire 32X or the second metal wire 32Y, but is in surface contact with the first metal wire 32X or the second metal wire 32Y. It is preferable to do. Since the single wire 40 and the metal strands 32X and 32Y are in surface contact with each other, the gap existing between the two side strands 30 adjacent to each other is further filled, so that the elongation resistance of the wire rope 10 described above is improved. The improvement can be achieved more effectively, and since the contact area between the single wire 40 and the side strands 30 ( metal strands 32X, 32Y) is large, the water immersion resistance of the wire rope 10 can be improved and the single wire 40 and the side strands can be improved. It is possible to more effectively suppress the misalignment with 30.
 本実施形態のワイヤロープ10は、1本の単線40と2本の側ストランド30とに関して、さらに、次の第2の要件Cを満たしていることが好ましい。
 <第2の要件C>
 ワイヤロープ10の少なくとも1つの横断面において、第1の組の側ストランド30において第1の単線40を周方向で挟むように位置する一対の金属素線32間の距離L1は、第2の組の側ストランド30において第2の単線40を周方向で挟むように位置する一対の金属素線32間の距離L2より長い。また、第1の組の側ストランド30のうち、第1の単線40と接触している金属素線32の本数は、第2の組の側ストランド30のうち、第2の単線40と接触している金属素線32の本数より多い。ワイヤロープ10では、第2の要件Cを満たすことにより、単線40を挟む一対の金属素線32の距離が長いほど、該単線40に接触している金属素線32の本数が多い。これにより、互いに隣り合う2本の側ストランド30の間に存在する隙間が大きいほど、単線40が多くの金属素線32と接触するように、2本の側ストランド30の間に存在する隙間が埋められている。従って、本実施形態によれば、2本の側ストランド30の間に存在する隙間の大きさに関係なく、単線40に接触している金属素線32の本数が同じである構成に比べて、ワイヤロープ10の充填率を高めることができ、これによりワイヤロープ10の耐伸び性の向上を図ることができる。
It is preferable that the wire rope 10 of the present embodiment further satisfies the following second requirement C with respect to one single wire 40 and two side strands 30.
<Second requirement C>
In at least one cross section of the wire rope 10, the distance L1 between the pair of metal strands 32 located so as to sandwich the first single wire 40 in the circumferential direction in the side strands 30 of the first set is the second set. The distance between the pair of metal wire 32s located so as to sandwich the second single wire 40 in the circumferential direction is longer than the distance L2. Further, the number of metal strands 32 in contact with the first single wire 40 in the side strands 30 of the first set is in contact with the second single wire 40 in the side strands 30 in the second set. This is more than the number of metal strands 32. In the wire rope 10, by satisfying the second requirement C, the longer the distance between the pair of metal strands 32 sandwiching the single wire 40, the larger the number of metal strands 32 in contact with the single wire 40. As a result, the larger the gap existing between the two side strands 30 adjacent to each other, the more the gap existing between the two side strands 30 so that the single wire 40 comes into contact with many metal strands 32. It is buried. Therefore, according to the present embodiment, the number of metal wire 32s in contact with the single wire 40 is the same regardless of the size of the gap existing between the two side strands 30. The filling rate of the wire rope 10 can be increased, whereby the elongation resistance of the wire rope 10 can be improved.
 本実施形態のワイヤロープ10は、1本の単線40と2本の側ストランド30とに関して、さらに、次の第2の要件Dを満たしていることが好ましい。
 <第2の要件D>
 ワイヤロープの第1の横断面において、互いに隣り合う1組の側ストランド30のうち、単線40を周方向で挟むように位置する一対の金属素線32間の距離は、ワイヤロープ10の第2の横断面(第1の横断面とはワイヤロープ10の軸方向において異なる位置での横断面)において、当該1組の側ストランド30のうち、単線40を周方向で挟むように位置する一対の金属素線32間の距離より長い。また、第1の横断面において、1組の側ストランド30のうち、単線40と接触している金属素線32の本数は、第2の横断面において、1組の側ストランド30のうち、単線40と接触している金属素線32の本数より多い。ワイヤロープ10では、第2の要件Dを満たすことにより、共通の1組の側ストランド30のうち、単線40を周方向で挟むように位置する一対の金属素線32間の距離が、ワイヤロープ10の第1の横断面(請求項9の「前記横断面」の一例に相当する)と第2の横断面(請求項9の「前記横断面とは別の横断面」の一例に相当する)とで異なっており、単線40を挟む一対の金属素線32間の距離が長いほど、該単線40に接触している金属素線32の本数が多い。これにより、共通の2本の側ストランド30と単線40とについて、2本の側ストランド30の間に存在する隙間が大きくなっている横断面ほど、単線40が多くの金属素線32と接触するように、2本の側ストランド30の間に存在する隙間が埋められている。従って、本実施形態によれば、2本の側ストランド30の間に存在する隙間がワイヤロープ10の軸方向の位置によって異なるにもかかわらず、単線40と接触している金属素線32の本数が同じである構成に比べて、ワイヤロープ10の充填率を高めることができ、これによりワイヤロープ10の耐伸び性の向上を図ることができる。
It is preferable that the wire rope 10 of the present embodiment further satisfies the following second requirement D with respect to one single wire 40 and two side strands 30.
<Second requirement D>
In the first cross section of the wire rope, the distance between the pair of metal strands 32 located so as to sandwich the single wire 40 in the circumferential direction among the pair of side strands 30 adjacent to each other is the second of the wire rope 10. In the cross section (cross section at a position different from that of the first cross section in the axial direction of the wire rope 10), a pair of side strands 30 of the set of side strands 30 are located so as to sandwich the single wire 40 in the circumferential direction. It is longer than the distance between the metal wires 32. Further, in the first cross section, the number of metal strands 32 in contact with the single wire 40 in the set of side strands 30 is the single wire in the set of side strands 30 in the second cross section. This is more than the number of metal strands 32 in contact with 40. In the wire rope 10, by satisfying the second requirement D, the distance between the pair of metal strands 32 located so as to sandwich the single wire 40 in the circumferential direction among the common set of side strands 30 is the wire rope. 10 corresponds to an example of a first cross section (corresponding to an example of "the cross section" of claim 9) and a second cross section (corresponding to an example of "a cross section different from the cross section" of claim 9). ), And the longer the distance between the pair of metal wire 32s sandwiching the single wire 40, the larger the number of metal wire 32s in contact with the single wire 40. As a result, with respect to the common two side strands 30 and the single wire 40, the single wire 40 comes into contact with more metal strands 32 as the cross section where the gap existing between the two side strands 30 becomes larger. As described above, the gap existing between the two side strands 30 is filled. Therefore, according to the present embodiment, the number of metal strands 32 in contact with the single wire 40, although the gap existing between the two side strands 30 differs depending on the axial position of the wire rope 10. The filling rate of the wire rope 10 can be increased as compared with the configuration in which the wires rope 10 is the same, whereby the elongation resistance of the wire rope 10 can be improved.
 図2に示す例では、少なくとも、単線40B,40D,40Fのそれぞれの一部は、ワイヤロープ10の周方向において第1の金属素線32Xと第2の金属素線32Yとの間に位置しており、第2の要件を満たしている。また、少なくとも、単線40B,40D,40Fは、上記第2の要件Aおよび第2の要件Bを満たしている。例えば、単線40Bの一部は、第1の金属素線32Xと第2の金属素線32Yとの両方に外接する第2の仮想外接線B2より、ワイヤロープ10の中心軸Q1側に位置している(後述の図3も参照)。 In the example shown in FIG. 2, at least a part of each of the single wires 40B, 40D, and 40F is located between the first metal wire 32X and the second metal wire 32Y in the circumferential direction of the wire rope 10. It meets the second requirement. Further, at least the single wires 40B, 40D and 40F satisfy the second requirement A and the second requirement B. For example, a part of the single wire 40B is located on the central axis Q1 side of the wire rope 10 from the second virtual circumscribed line B2 that circumscribes both the first metal wire 32X and the second metal wire 32Y. (See also FIG. 3 below).
 また、第2の要件(第2の要件A)を満たす単線40(40B,40D,40F)と、第2の要件(第2の要件A)を満たさない単線40(40A,40C,40E)とが、ワイヤロープ10の周方向に沿って交互に並んでいる。これにより、第2の要件(第2の要件A)を満たす単線40と第2の要件(第2の要件A)を満たさない単線40とが偏在することに起因してワイヤロープ10の強度に偏りが生じることを抑制することができる。なお、ワイヤロープ10が備える複数本の単線40のうち、30%以上の数の単線40が第2の要件(さらには第2の要件A、第2の要件B)を満たすことが好ましく、50%以上の数の単線40が第2の要件(さらには第2の要件A、第2の要件B)を満たすことが好ましい。 Further, a single wire 40 (40B, 40D, 40F) that satisfies the second requirement (second requirement A) and a single wire 40 (40A, 40C, 40E) that does not satisfy the second requirement (second requirement A). Are alternately arranged along the circumferential direction of the wire rope 10. As a result, the strength of the wire rope 10 is increased due to the uneven distribution of the single wire 40 satisfying the second requirement (second requirement A) and the single wire 40 not satisfying the second requirement (second requirement A). It is possible to suppress the occurrence of bias. Of the plurality of single wires 40 included in the wire rope 10, it is preferable that 30% or more of the single wires 40 satisfy the second requirement (furthermore, the second requirement A and the second requirement B). It is preferable that a number of single wires 40 of% or more satisfy the second requirement (further, the second requirement A and the second requirement B).
 また、図2に示す例では、第1の単線40Bを挟むように位置する一対の金属素線32間の距離L1は、第2の単線40Cを挟むように位置する一対の金属素線32間の距離L2より長い。また、第1の単線40Bと接触している金属素線32の本数は、第2の単線40Cと接触している金属素線32の本数より多い。なお、例えば、単線40Fと単線40Aや、単線40Dと単線40Eとについても同様の関係が成り立っている。このようにして、ワイヤロープ10では、複数本の側ストランド30が周方向に不均一に並んでおり、各組の側ストランド30の隙間の大きさも不均一であるが、その不均一な隙間を埋めるように、各組の側ストランド30の隙間に応じた形状の単線40が食い込むように位置している。その結果、ワイヤロープ10の充填率を高めることができ、これによりワイヤロープ10の耐伸び性の向上を図ることができる。 Further, in the example shown in FIG. 2, the distance L1 between the pair of metal strands 32 located so as to sandwich the first single wire 40B is between the pair of metal strands 32 located so as to sandwich the second single wire 40C. Distance is longer than L2. Further, the number of metal strands 32 in contact with the first single wire 40B is larger than the number of metal strands 32 in contact with the second single wire 40C. For example, the same relationship holds for the single wire 40F and the single wire 40A, and for the single wire 40D and the single wire 40E. In this way, in the wire rope 10, a plurality of side strands 30 are non-uniformly arranged in the circumferential direction, and the size of the gap between the side strands 30 of each set is also non-uniform, but the non-uniform gap is formed. The single wire 40 having a shape corresponding to the gap between the side strands 30 of each set is positioned so as to fill the gap. As a result, the filling rate of the wire rope 10 can be increased, and thus the elongation resistance of the wire rope 10 can be improved.
 図3は、ワイヤロープ10の互いに異なる横断面構成を部分的に示す説明図である。図3(A)には、第1の横断面(図2の横断面と同じ)における単線40B付近の横断面構成が示されており、図3(B)には、第2の横断面(第1の断面とは、ワイヤロープ10の軸方向において異なる位置での横断面)における単線40B付近の横断面構成が示されている。図3に示すように、第1の横断面において単線40Bを周方向で挟むように位置する一対の金属素線32間の距離L1は、第2の横断面において、単線40Bを周方向で挟むように位置する一対の金属素線32間の距離L3より長い。また、第1の横断面において、単線40Bと接触している金属素線32の本数は、第2の横断面において、単線40Bと接触している金属素線32の本数より多い。これにより、2本の側ストランド30の間に存在する隙間がワイヤロープ10の軸方向の位置によって異なるにもかかわらず、単線40Bと接触している金属素線32の本数が同じである構成に比べて、ワイヤロープ10の充填率を高めることができ、これによりワイヤロープ10の耐伸び性の向上を図ることができる。 FIG. 3 is an explanatory view partially showing different cross-sectional configurations of the wire rope 10. FIG. 3A shows a cross-sectional configuration in the vicinity of the single wire 40B in the first cross section (same as the cross section of FIG. 2), and FIG. 3B shows a second cross section (the same as the cross section of FIG. 2). The first cross section is a cross section of the wire rope 10 at different positions in the axial direction) in the vicinity of the single wire 40B. As shown in FIG. 3, the distance L1 between the pair of metal strands 32 located so as to sandwich the single wire 40B in the circumferential direction in the first cross section sandwiches the single wire 40B in the circumferential direction in the second cross section. The distance between the pair of metal strands 32 located so as to be longer than L3. Further, in the first cross section, the number of metal strands 32 in contact with the single wire 40B is larger than the number of metal strands 32 in contact with the single wire 40B in the second cross section. As a result, the number of metal strands 32 in contact with the single wire 40B is the same even though the gap existing between the two side strands 30 differs depending on the axial position of the wire rope 10. In comparison, the filling rate of the wire rope 10 can be increased, whereby the elongation resistance of the wire rope 10 can be improved.
(単線40と側ストランド30を構成する金属素線32との構造の関係)
 本実施形態のワイヤロープ10は、単線40と側ストランド30を構成する金属素線32との構造に関して、次の第3の要件を満たしていることが好ましい。
 <第3の要件>
 ワイヤロープ10の少なくとも1つの横断面において、1本の単線40の断面積は、1本の側ストランド30を構成する各金属素線32の断面積より大きい。
 ワイヤロープ10では、第3の要件を満たすことにより、単線40の断面積が、側ストランド30を構成する金属素線32の断面積より小さい構成に比べて、単線40によるワイヤロープ10の強度を向上させることができる。また、例えばワイヤロープ10の形成時やワイヤロープ10の屈曲時に、単線40が金属素線32同士の間により食い込みやすく、ワイヤロープ10の充填率を高めることができ、これによりワイヤロープ10の耐伸び性の向上を、より効果的に図ることができる。
(Structural relationship between the single wire 40 and the metal strand 32 constituting the side strand 30)
The wire rope 10 of the present embodiment preferably satisfies the following third requirement with respect to the structure of the single wire 40 and the metal wire 32 constituting the side strand 30.
<Third requirement>
In at least one cross section of the wire rope 10, the cross-sectional area of one single wire 40 is larger than the cross-sectional area of each metal wire 32 constituting one side strand 30.
In the wire rope 10, by satisfying the third requirement, the strength of the wire rope 10 by the single wire 40 is increased as compared with the configuration in which the cross-sectional area of the single wire 40 is smaller than the cross-sectional area of the metal strand 32 constituting the side strand 30. Can be improved. Further, for example, when the wire rope 10 is formed or when the wire rope 10 is bent, the single wire 40 is more likely to bite between the metal strands 32, and the filling rate of the wire rope 10 can be increased, whereby the resistance of the wire rope 10 can be increased. It is possible to improve the extensibility more effectively.
 なお、本実施形態では、1本の単線40の断面積は、2本分の金属素線32の断面積の合計値以下であることが好ましい。また、1本の単線40の仮想外接円の直径は、1本の金属素線32の仮想外接円の直径より大きいことが好ましい。但し、1本の単線40の外接円の直径は、1本の側ストランド30の第1の仮想外接円M1の直径より小さいことが好ましい。これにより、単線40の太さに起因してワイヤロープ10の柔軟性が低下することを抑制することができる。また、1本の金属素線32の仮想外接円の直径の2倍以下であることが好ましく、1本の金属素線32の仮想外接円の直径の1.5倍以下であることが、より好ましい。 In the present embodiment, the cross-sectional area of one single wire 40 is preferably equal to or less than the total cross-sectional area of the two metal strands 32. Further, it is preferable that the diameter of the virtual circumscribed circle of one single wire 40 is larger than the diameter of the virtual circumscribed circle of one metal wire 32. However, it is preferable that the diameter of the circumscribed circle of one single wire 40 is smaller than the diameter of the first virtual circumscribed circle M1 of one side strand 30. As a result, it is possible to suppress a decrease in the flexibility of the wire rope 10 due to the thickness of the single wire 40. Further, it is preferably 2 times or less the diameter of the virtual circumscribed circle of one metal wire 32, and more preferably 1.5 times or less the diameter of the virtual circumscribed circle of one metal wire 32. preferable.
 本実施形態のワイヤロープ10は、単線40と側ストランド30を構成する金属素線32との構造に関して、次の第3の要件Aを満たしていることが好ましい。
 <第3の要件A>
 少なくとも1本の単線40の抗張力(N/mm)は、側ストランド30を構成する各金属素線32の抗張力と略同一である。
 すなわち、単線40の硬度は、側ストランド30を構成する各金属素線32の硬度と略同一である。具体的には、単線40と金属素線32とのそれぞれの抗張力は、例えば、1500N/mm以上、2500N/mm以下である。単線40と金属素線32との抗張力が略同一であることは、両者の抗張力の差が、±5%以下であることをいう。なお、単線40と金属素線32とのそれぞれの抗張力は、例えば、1500N/mm以上、2000N/N/mm以下であってもよい。
The wire rope 10 of the present embodiment preferably satisfies the following third requirement A with respect to the structure of the single wire 40 and the metal wire 32 constituting the side strand 30.
<Third requirement A>
The tensile strength (N / mm 2 ) of at least one single wire 40 is substantially the same as the tensile strength of each metal wire 32 constituting the side strand 30.
That is, the hardness of the single wire 40 is substantially the same as the hardness of each metal wire 32 constituting the side strand 30. Specifically, each of the tensile strength of the single wire 40 and the metal wires 32, for example, 1500 N / mm 2 or more and 2500N / mm 2 or less. The fact that the tensile strength of the single wire 40 and the metal strand 32 is substantially the same means that the difference in tensile strength between the two is ± 5% or less. The tensile strength of the single wire 40 and the metal wire 32 may be, for example, 1500 N / mm 2 or more and 2000 N / N / mm 2 or less.
 図2に示す例では、6本の単線40(40A~40F)のいずれの断面積も、1本の側ストランド30を構成する各金属素線32の断面積より大きく、第3の要件を満たしている。また、6本の単線40(40A~40F)のいずれの抗張力も、側ストランド30(金属素線32)の抗張力と略同一である。このため、単線40と金属素線32とは、互いに変形し、互いに隣り合う2本の側ストランド30の間に存在する隙間に食い込んでいることが分かる。 In the example shown in FIG. 2, any cross-sectional area of the six single wires 40 (40A to 40F) is larger than the cross-sectional area of each metal wire 32 constituting one side strand 30, and satisfies the third requirement. ing. Further, the tensile strength of any of the six single wires 40 (40A to 40F) is substantially the same as the tensile strength of the side strand 30 (metal wire 32). Therefore, it can be seen that the single wire 40 and the metal wire 32 are deformed from each other and bite into the gap existing between the two side strands 30 adjacent to each other.
(複数本の単線40の関係)
 図2に示すように、複数本の側ストランド30は、いずれも凹凸を有する形状(正円と楕円と長円形とのいずれとも異なる形状)となっており、かつ、形状が互いに異なる。従って、互いに隣り合う2本の側ストランド30の間の隙間(凹所)の形状も互いに異なり、それぞれの隙間には、該隙間に対応した形状(正円と楕円と長円形とのいずれとも異なる形状)に変形した単線40が2本の側ストランド30の間に食い込むように配置されている。このように、本実施形態のワイヤロープ10では、複数本の側ストランド30が不均一に配置されており、かつ、複数本の側ストランド30の形状が互いに異なるため、複数本の単線40も、不均一に配置され、かつ、形状が互いに異なる。以下、具体的に説明する。
(Relationship between multiple single wires 40)
As shown in FIG. 2, each of the plurality of side strands 30 has an uneven shape (a shape different from that of a perfect circle, an ellipse, and an oval), and the shapes are different from each other. Therefore, the shapes of the gaps (recesses) between the two side strands 30 adjacent to each other are also different from each other, and each gap is different from the shape corresponding to the gap (either a perfect circle, an ellipse, or an oval). The single wire 40 deformed into the shape) is arranged so as to bite between the two side strands 30. As described above, in the wire rope 10 of the present embodiment, since the plurality of side strands 30 are unevenly arranged and the shapes of the plurality of side strands 30 are different from each other, the plurality of single wires 40 are also included. They are arranged non-uniformly and have different shapes. Hereinafter, a specific description will be given.
 本実施形態のワイヤロープ10は、複数本の単線40に関して、次の第4の要件を満たしていることが好ましい。
 <第4の要件>
 ワイヤロープ10の少なくとも1つの横断面において、少なくとも2本の単線40は、該単線40の第3の仮想外接円M3の直径が互いに異なっている。
 <第4の要件A>
 ワイヤロープ10の少なくとも1つの横断面において、1本の側ストランド30を挟んで位置する一対の単線40の周方向の距離(一対の単線40のワイヤロープ10の周方向の最短距離)と、別の1本の側ストランド30を挟んで位置する一対の単線40の周方向の距離とは異なっている。
The wire rope 10 of the present embodiment preferably satisfies the following fourth requirement with respect to the plurality of single wires 40.
<Fourth requirement>
In at least one cross section of the wire rope 10, at least two single wires 40 have different diameters of the third virtual circumscribed circle M3 of the single wires 40.
<Fourth requirement A>
Separate from the circumferential distance of the pair of single wires 40 located across the one side strand 30 (the shortest circumferential distance of the wire rope 10 of the pair of single wires 40) in at least one cross section of the wire rope 10. It is different from the distance in the circumferential direction of the pair of single wires 40 located across the one side strand 30 of the above.
 図2に示す例では、6本の単線40(40A~40F)の断面形状は互いに異なっている。また、少なくとも、単線40Aと単線40Cとは、第3の仮想外接円M3の直径が互いに異なっている。また、6本の単線40(40A~40F)の周方向の距離は互いにばらついている。このように、ワイヤロープ10では、不均一な形状および位置に配置された複数本の側ストランド30の間に、不均一な形状の単線40が食い込むように配置されていることにより、ワイヤロープ10の充填率を高めることができ、これによりワイヤロープ10の耐伸び性の向上を図ることができる。 In the example shown in FIG. 2, the cross-sectional shapes of the six single wires 40 (40A to 40F) are different from each other. Further, at least, the diameter of the third virtual circumscribed circle M3 is different between the single wire 40A and the single wire 40C. Further, the distances of the six single wires 40 (40A to 40F) in the circumferential direction are different from each other. As described above, in the wire rope 10, the wire rope 10 is arranged so that the non-uniformly shaped single wire 40 bites between the plurality of side strands 30 arranged in the non-uniform shape and position. It is possible to increase the filling rate of the wire rope 10 and thereby improve the elongation resistance of the wire rope 10.
(各側ストランド30の関係)
 本実施形態のワイヤロープ10は、側ストランド30に関して、次の第5の要件を満たしていることが好ましい。
 <第5の要件>
 ワイヤロープ10の周方向において単線40が間に介在する2本の側ストランド30の少なくとも一方の側ストランド30の第1の仮想外接円M1の面積は、該側ストランド30を構成する全ての金属素線32が正円であった場合の仮想ストランド30Pの第4の仮想外接円M4の面積より小さい。
 ワイヤロープ10では、第5の要件を満たすことにより、側ストランド30の第1の仮想外接円M1の面積が、仮想ストランド30Pの第4の仮想外接円M4と同じである構成に比べて、側ストランド30の金属素線32の同士の間の隙間が狭い分だけ、ワイヤロープ10の耐伸び性の向上を、より効果的に図ることができる。
(Relationship of strands 30 on each side)
It is preferable that the wire rope 10 of the present embodiment satisfies the following fifth requirement with respect to the side strand 30.
<Fifth requirement>
The area of the first virtual circumscribed circle M1 of at least one side strand 30 of the two side strands 30 in which the single wire 40 is interposed in the circumferential direction of the wire rope 10 is all the metal elements constituting the side strand 30. It is smaller than the area of the fourth virtual circumscribed circle M4 of the virtual strand 30P when the line 32 is a perfect circle.
In the wire rope 10, by satisfying the fifth requirement, the area of the first virtual circumscribed circle M1 of the side strand 30 is the same as that of the fourth virtual circumscribed circle M4 of the virtual strand 30P. Since the gap between the metal strands 32 of the strand 30 is narrow, the elongation resistance of the wire rope 10 can be improved more effectively.
 なお、本実施形態では、複数本の側ストランド30が、ワイヤロープ10の周方向に沿って互いに接触しつつ全周に亘って配置されている。また、全ての側ストランド30は、芯材20に接触している。なお、側ストランド30同士の接触は、点接触でもよいが、面接触であることが好ましい。また、側ストランド30と芯材20との接触は、点接触でもよいが、面接触であることが好ましい。 In the present embodiment, a plurality of side strands 30 are arranged along the circumferential direction of the wire rope 10 while being in contact with each other over the entire circumference. Further, all the side strands 30 are in contact with the core material 20. The contact between the side strands 30 may be point contact, but is preferably surface contact. Further, the contact between the side strand 30 and the core material 20 may be point contact, but is preferably surface contact.
 図4は、側ストランド30と仮想ストランド30Pとの横断面構成を示す説明図である。図4(A)には、仮想ストランド30Pの横断面構成が示されており、図4(B)には、側ストランド30の横断面構成が示されている。後述するように、側ストランド30は、ワイヤロープ10の製造工程において、加工前のワイヤロープ10に対して、側ストランド30を異形にするためのスウェージング加工や異形ダイスによる伸線加工といった二次加工を行うことにより、仮想ストランド30Pにおける各金属素線32Pがつぶれるように変形したものである。図3に示すように、側ストランド30の第1の仮想外接円M1の面積(半径r1)は、仮想ストランド30Pの第4の仮想外接円M4の面積(半径r4)より小さく、第5の要件を満たす。 FIG. 4 is an explanatory view showing a cross-sectional configuration of the side strand 30 and the virtual strand 30P. FIG. 4 (A) shows the cross-sectional configuration of the virtual strand 30P, and FIG. 4 (B) shows the cross-sectional configuration of the side strand 30. As will be described later, in the manufacturing process of the wire rope 10, the side strand 30 is secondary to the wire rope 10 before processing, such as swaging to make the side strand 30 deformed or wire drawing with a deformed die. By performing the processing, each metal wire 32P in the virtual strand 30P is deformed so as to be crushed. As shown in FIG. 3, the area (radius r1) of the first virtual circumscribed circle M1 of the side strand 30 is smaller than the area (radius r4) of the fourth virtual circumscribed circle M4 of the virtual strand 30P, and the fifth requirement. Meet.
 図2に示す単線40の第3の仮想外接円M3の面積は、単線40が正円であった場合(単線40の面積と同一の面積を有する正円であった場合)の単線の面積(前記正円の面積)より大きい構成としてもよい。このような構成により、互いに隣り合う2本の側ストランド30によりワイヤロープ10の外周側に形成される凹所(隙間)を単線40よって効果的に埋める(塞ぐ)ことができる。このため、各側ストランド(各々の側ストランド)30内部の複数本の金属素線32間の隙間を、これら複数本の金属素線32によって、より効果的に埋める(塞ぐ)ことが可能になる。従って、ワイヤロープ10の耐伸び性の向上を、より効果的に図ることができる。また、単線40と側ストランド30との隙間、あるいは側ストランド30の隣接する金属素線32の隙間からワイヤロープ10の芯材20に液体が侵入することが抑制されるため、ワイヤロープ10の耐久性を向上させることができる。 The area of the third virtual circumscribed circle M3 of the single wire 40 shown in FIG. 2 is the area of the single wire when the single wire 40 is a perfect circle (when it is a perfect circle having the same area as the area of the single wire 40). The configuration may be larger than the area of the perfect circle). With such a configuration, the recess (gap) formed on the outer peripheral side of the wire rope 10 by the two side strands 30 adjacent to each other can be effectively filled (closed) by the single wire 40. Therefore, the gap between the plurality of metal strands 32 inside each side strand (each side strand) 30 can be more effectively filled (closed) by the plurality of metal strands 32. .. Therefore, the elongation resistance of the wire rope 10 can be improved more effectively. Further, since the liquid is suppressed from entering the core material 20 of the wire rope 10 from the gap between the single wire 40 and the side strand 30 or the gap between the metal strands 32 adjacent to the side strand 30, the durability of the wire rope 10 is maintained. The sex can be improved.
(単線40と芯材20との関係)
 図2に示すように、ワイヤロープ10の少なくとも1つの横断面において、各単線40は、芯材20から離間している。具体的には、各単線40は、芯材20の第5の仮想外接円M5の外側に位置している。また、各単線40は、互いに隣り合う2本の側ストランド30の接触位置よりも、ワイヤロープ10の径方向の外側に位置している。また、芯材20を構成する1本の金属素線22は、該隣り合う2本の側ストランド30の接触位置を介して、1本の単線40と対向するように配置されている。このような構成により、単線40と側ストランド30との隙間からワイヤロープ10の芯材20に液体が浸入することが抑制されるため、ワイヤロープ10の耐浸水性を向上させることができる。
(Relationship between single wire 40 and core material 20)
As shown in FIG. 2, in at least one cross section of the wire rope 10, each single wire 40 is separated from the core material 20. Specifically, each single wire 40 is located outside the fifth virtual circumscribed circle M5 of the core material 20. Further, each single wire 40 is located outside the contact position of the two side strands 30 adjacent to each other in the radial direction of the wire rope 10. Further, one metal wire 22 constituting the core material 20 is arranged so as to face one single wire 40 via the contact position of the two adjacent side strands 30. With such a configuration, liquid is prevented from entering the core material 20 of the wire rope 10 through the gap between the single wire 40 and the side strand 30, so that the water immersion resistance of the wire rope 10 can be improved.
 なお、以上の各要件を満たすワイヤロープ10は、次のように製造することができる。ワイヤロープ10の周りに、複数本の側ストランド30と共に、複数本のワイヤロープ10を撚り合わせる。これにより、ワイヤロープ10の周りに、複数本の側ストランド30が並ぶように配置され、かつ、互いに隣り合う2本の側ストランド30によりワイヤロープ10の外周側に形成される凹所に単線40が配置された撚り線が作製される。この撚り線に対して、側ストランド30および単線40を異形にするためのスウェージング加工や異形ダイスによる伸線加工といった二次加工を行う。これにより、芯材20と側ストランド30と単線40とがワイヤロープ10の径方向の内側に向けて潰され、その結果、上述したワイヤロープ10が作製される。 The wire rope 10 satisfying each of the above requirements can be manufactured as follows. A plurality of wire ropes 10 are twisted around the wire rope 10 together with a plurality of side strands 30. As a result, a plurality of side strands 30 are arranged so as to line up around the wire rope 10, and a single wire 40 is formed in a recess formed on the outer peripheral side of the wire rope 10 by the two side strands 30 adjacent to each other. A stranded wire in which is arranged is produced. The stranded wire is subjected to secondary processing such as swaging processing for deforming the side strand 30 and the single wire 40 and wire drawing processing using a deformed die. As a result, the core material 20, the side strands 30, and the single wire 40 are crushed inward in the radial direction of the wire rope 10, and as a result, the wire rope 10 described above is produced.
A-3.本実施形態の効果:
 以上説明したように、本実施形態に係るワイヤロープ10では、複撚り線における複数本の側ストランド30のそれぞれの間に単線40が配置されている。そして、ワイヤロープ10の少なくとも1つの横断面において、少なくとも1本の単線40の一部が、ワイヤロープ10の周方向に沿って互いに隣り合う2本の側ストランド30の少なくとも一方の第1の仮想外接円M1の内側に位置している(上記第1の要件)。これにより、ワイヤロープ10の形状変化の柔軟性を確保しつつ、ワイヤロープ10の耐伸び性を向上させることができる。
A-3. Effect of this embodiment:
As described above, in the wire rope 10 according to the present embodiment, the single wire 40 is arranged between each of the plurality of side strands 30 in the double stranded wire. Then, in at least one cross section of the wire rope 10, a part of at least one single wire 40 is a first virtual of at least one of two side strands 30 adjacent to each other along the circumferential direction of the wire rope 10. It is located inside the circumscribed circle M1 (first requirement above). As a result, the elongation resistance of the wire rope 10 can be improved while ensuring the flexibility of changing the shape of the wire rope 10.
B.変形例:
 本明細書で開示される技術は、上述の実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の形態に変形することができ、例えば次のような変形も可能である。
B. Modification example:
The technique disclosed in the present specification is not limited to the above-described embodiment, and can be transformed into various forms without departing from the gist thereof. For example, the following modifications are also possible.
 上記実施形態におけるワイヤロープ10の構成は、あくまで一例であり、種々変形可能である。例えば、上記実施形態のワイヤロープ10における側ストランド30の本数や、側ストランド30や芯材20を構成する素線の本数や層数は、種々変形可能である。例えば、側ストランド30の本数を3本以上としてもよい。また、上記実施形態のワイヤロープ10は、芯材20を備えているが、芯材20を備えずに、複数本の側ストランド30と複数本の単線40とが互いに撚り合わされた構成であってもよい。また、上記実施形態では、芯材20は、複数本の素線がより合わされた撚り線であったが、1本の素線により構成された単線であってもよい。 The configuration of the wire rope 10 in the above embodiment is merely an example and can be variously deformed. For example, the number of side strands 30 in the wire rope 10 of the above embodiment, the number of strands forming the side strands 30 and the core material 20, and the number of layers can be variously deformed. For example, the number of side strands 30 may be 3 or more. Further, although the wire rope 10 of the above embodiment includes the core material 20, the wire rope 10 has a configuration in which a plurality of side strands 30 and a plurality of single wires 40 are twisted to each other without the core material 20. May be good. Further, in the above embodiment, the core material 20 is a stranded wire in which a plurality of strands are twisted together, but it may be a single wire composed of one strand.
 また、ワイヤロープ10は、上述した第1の要件A,B、第2の要件、第2の要件A~D、第3の要件、第3の要件A、第4の要件、第4の要件A、第5の要件のうちの少なくとも1つを満たさなくても良い。例えば、単線40の抗張力は、側ストランド30を構成する各金属素線32の抗張力より低くてもよいし、高くてもよい。単線40の抗張力が金属素線32の抗張力より低くければ、単線40の抗張力が金属素線32の抗張力以上である構成に比べて、単線40が2本の側ストランド30の金属素線32の間に食い込みやすいため、ワイヤロープ10の耐伸び性の向上を、より効果的に図ることができる。 Further, the wire rope 10 has the above-mentioned first requirements A and B, a second requirement, a second requirement A to D, a third requirement, a third requirement A, a fourth requirement, and a fourth requirement. A, it is not necessary to meet at least one of the fifth requirements. For example, the tensile strength of the single wire 40 may be lower or higher than the tensile strength of each metal wire 32 constituting the side strand 30. If the tensile strength of the single wire 40 is lower than the tensile strength of the metal strand 32, the single wire 40 is the metal strand 32 of the two side strands 30 as compared with the configuration in which the tensile strength of the single wire 40 is equal to or higher than the tensile strength of the metal strand 32. Since it is easy to bite in between, it is possible to more effectively improve the elongation resistance of the wire rope 10.
 上記実施形態のワイヤロープ10における各部材の材料は、あくまで一例であり、種々変形可能である。例えば、芯材20、側ストランド30を構成する金属素線22,32や単線40は、ステンレス鋼以外の金属により形成されたものでもよいし、金属以外の材料(例えば樹脂)により形成されたものでもよい。 The material of each member in the wire rope 10 of the above embodiment is merely an example and can be variously deformed. For example, the metal strands 22 and 32 and the single wire 40 constituting the core material 20 and the side strand 30 may be formed of a metal other than stainless steel, or may be formed of a material other than metal (for example, resin). It may be.
10:ワイヤロープ 20:芯材 22,32(32E,32F,32P):金属素線 30:側ストランド 30P:仮想ストランド 32X:第1の金属素線 32Y:第2の金属素線 40(40A~40F):単線 B1:第1の仮想外接線 B2:第2の仮想外接線 M1:第1の仮想外接円 M2:第2の仮想外接円 M3:第3の仮想外接円 M4:第4の仮想外接円 M5:第5の仮想外接円 Q1:中心軸 Q2:中心軸 10: Wire rope 20: Core material 22, 32 (32E, 32F, 32P): Metal wire 30: Side strand 30P: Virtual strand 32X: First metal wire 32Y: Second metal wire 40 (40A ~ 40F): Single line B1: 1st virtual circumscribed line B2: 2nd virtual circumscribed line M1: 1st virtual circumscribed circle M2: 2nd virtual circumscribed circle M3: 3rd virtual circumscribed circle M4: 4th virtual Circumscribed circle M5: Fifth virtual circumscribed circle Q1: Central axis Q2: Central axis

Claims (13)

  1.  互いに撚り合わされた複数本のストランドを備え、前記複数本のストランドのそれぞれは、複数本の素線を互いに撚り合わせた構成を有する、ワイヤロープであって、
     前記ワイヤロープの周方向に沿って互いに隣り合う2本の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置された単線を備え、
     前記ワイヤロープの横断面において、前記単線の一部が、前記2本のストランドのうちの一方のストランドの仮想外接円の内側に位置している、
    ワイヤロープ。
    A wire rope comprising a plurality of strands twisted to each other, each of the plurality of strands having a structure in which a plurality of strands are twisted together.
    It comprises a single wire arranged in a recess formed on the outer peripheral side of the wire rope by two strands adjacent to each other along the circumferential direction of the wire rope.
    In the cross section of the wire rope, a part of the single wire is located inside the virtual circumscribed circle of one of the two strands.
    Wire rope.
  2.  請求項1に記載のワイヤロープであって、
     前記横断面において、
      前記単線に対して前記ワイヤロープの径方向の内側に、前記2本のストランドのうちの前記一方のストランドの前記素線と他方のストランドの前記素線とが隣接配置されており、
      前記単線の一部は、前記周方向において前記一方のストランドの前記素線と前記他方のストランドの前記素線との間に位置している、
    ワイヤロープ。
    The wire rope according to claim 1.
    In the cross section
    The wire of one of the two strands and the wire of the other strand are arranged adjacent to each other inside the wire rope in the radial direction with respect to the single wire.
    A part of the single wire is located between the strand of the one strand and the strand of the other strand in the circumferential direction.
    Wire rope.
  3.  請求項1または請求項2に記載のワイヤロープであって、
     前記横断面において、
      前記単線は、前記2本のストランドのうちの前記一方のストランドの前記素線と他方のストランドの前記素線とのそれぞれに接触している、
    ワイヤロープ。
    The wire rope according to claim 1 or 2.
    In the cross section
    The single wire is in contact with the wire of one of the two strands and the wire of the other strand, respectively.
    Wire rope.
  4.  請求項1から請求項3までのいずれか一項に記載のワイヤロープであって、
     前記横断面において、前記単線の断面積は、前記ストランドを構成する前記各素線の断面積より大きい、
    ワイヤロープ。
    The wire rope according to any one of claims 1 to 3.
    In the cross section, the cross-sectional area of the single wire is larger than the cross-sectional area of each of the strands constituting the strand.
    Wire rope.
  5.  請求項1から請求項4までのいずれか一項に記載のワイヤロープであって、
     前記単線の抗張力は、前記ストランドを構成する前記各素線の抗張力より低い、
    ワイヤロープ。
    The wire rope according to any one of claims 1 to 4.
    The tensile strength of the single wire is lower than the tensile strength of each of the strands constituting the strand.
    Wire rope.
  6.  請求項1から請求項4までのいずれか一項に記載のワイヤロープであって、
     前記単線の抗張力は、前記ストランドを構成する前記各素線の抗張力の±5%の範囲内である、
    ワイヤロープ。
    The wire rope according to any one of claims 1 to 4.
    The tensile strength of the single wire is within ± 5% of the tensile strength of each of the strands constituting the strand.
    Wire rope.
  7.  請求項1から請求項6までのいずれか一項に記載のワイヤロープであって、
     前記仮想外接円の面積は、前記一方のストランドを構成する全ての前記素線が正円であった場合の仮想ストランドの仮想外接円の面積より小さい、
    ワイヤロープ。
    The wire rope according to any one of claims 1 to 6.
    The area of the virtual circumscribed circle is smaller than the area of the virtual circumscribed circle of the virtual strand when all the strands constituting the one strand are perfect circles.
    Wire rope.
  8.  請求項1から請求項7までのいずれか一項に記載のワイヤロープであって、
     前記横断面において、前記単線の仮想外接円の面積は、前記単線が正円であった場合の単線の面積より大きい、ワイヤロープ。
    The wire rope according to any one of claims 1 to 7.
    A wire rope in which the area of the virtual circumscribed circle of the single wire is larger than the area of the single wire when the single wire is a perfect circle in the cross section.
  9.  請求項1に記載のワイヤロープであって、
     前記単線は、互いに隣り合う第1の組の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置される第1の単線と、互いに隣り合う第2の組の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置される第2の単線と、を含み、
     前記横断面において、前記第1の単線を前記周方向で挟むように位置する一対の前記素線間の距離は、前記第2の単線を前記周方向で挟むように位置する一対の前記素線間の距離より長く、かつ、前記第1の組の前記ストランドのうち、前記第1の単線と接触している前記素線の本数は、前記第2の組の前記ストランドのうち、前記第2の単線と接触している前記素線の本数より多い、
    ワイヤロープ。
    The wire rope according to claim 1.
    The single wire is formed by a first single wire arranged in a recess formed on the outer peripheral side of the wire rope by a first set of strands adjacent to each other and a wire by a second set of strands adjacent to each other. Including a second single wire arranged in a recess formed on the outer peripheral side of the rope,
    In the cross section, the distance between the pair of strands located so as to sandwich the first single wire in the circumferential direction is the pair of strands located so as to sandwich the second single wire in the circumferential direction. The number of the strands that are longer than the distance between the strands and are in contact with the first single wire among the strands of the first set is the second of the strands of the second set. More than the number of the strands in contact with the single wire of
    Wire rope.
  10.  請求項1に記載のワイヤロープであって、
     前記単線は、互いに隣り合う第1の組の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置される第1の単線を含み、
     前記横断面において前記第1の単線を前記周方向で挟むように位置する一対の前記素線間の距離は、前記横断面とは別の横断面において前記第1の単線を前記周方向で挟むように位置する一対の前記素線間の距離より長く、かつ、前記第1の組のストランドのうち、前記横断面において前記第1の単線と接触している前記素線の本数は、前記別の横断面において前記第1の単線と接触している前記素線の本数より多い、
    ワイヤロープ。
    The wire rope according to claim 1.
    The single wire comprises a first single wire arranged in a recess formed on the outer peripheral side of the wire rope by the first set of strands adjacent to each other.
    The distance between the pair of strands located so as to sandwich the first single wire in the circumferential direction in the cross section is such that the first single wire is sandwiched in the circumferential direction in a cross section different from the cross section. Among the first set of strands, the number of the strands that are longer than the distance between the pair of strands and are in contact with the first single wire in the cross section is different. More than the number of the strands in contact with the first single wire in the cross section of
    Wire rope.
  11.  請求項1に記載のワイヤロープであって、
     前記単線は、互いに隣り合う第1の組の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置される第1の単線と、互いに隣り合う第2の組の前記ストランドにより前記ワイヤロープの外周側に形成される凹所に配置される第2の単線と、を含み、
     前記横断面において、前記第1の単線を前記周方向で挟むように位置する一対の前記素線間の距離は、前記第2の単線を前記周方向で挟むように位置する一対の前記素線間の距離より長く、かつ、前記第1の組の前記ストランドのうち、前記第1の単線と接触している前記素線の本数は、前記第2の組の前記ストランドのうち、前記第2の単線と接触している前記素線の本数より多く、
     前記横断面において前記第1の単線を前記周方向で挟むように位置する一対の前記素線間の距離は、前記横断面とは別の横断面において前記第1の単線を前記周方向で挟むように位置する一対の前記素線間の距離より長く、かつ、前記第1の組のストランドのうち、前記横断面において前記第1の単線と接触している前記素線の本数は、前記別の横断面において前記第1の単線と接触している前記素線の本数より多い、
    ワイヤロープ。
    The wire rope according to claim 1.
    The single wire is formed by a first single wire arranged in a recess formed on the outer peripheral side of the wire rope by a first set of strands adjacent to each other and a wire by a second set of strands adjacent to each other. Including a second single wire arranged in a recess formed on the outer peripheral side of the rope,
    In the cross section, the distance between the pair of strands located so as to sandwich the first single wire in the circumferential direction is the pair of strands located so as to sandwich the second single wire in the circumferential direction. The number of the strands that are longer than the distance between the strands and are in contact with the first single wire among the strands of the first set is the second of the strands of the second set. More than the number of the strands in contact with the single wire of
    The distance between the pair of strands located so as to sandwich the first single wire in the circumferential direction in the cross section is such that the first single wire is sandwiched in the circumferential direction in a cross section different from the cross section. Among the first set of strands, the number of the strands that are longer than the distance between the pair of strands and are in contact with the first single wire in the cross section is different. More than the number of the strands in contact with the first single wire in the cross section of
    Wire rope.
  12.  請求項1から請求項11までのいずれか一項に記載のワイヤロープであって、
     前記素線の横断面の形状は、正円と楕円と長円形とのいずれとも異なる形状である、
    ワイヤロープ。
    The wire rope according to any one of claims 1 to 11.
    The shape of the cross section of the strand is different from any of a perfect circle, an ellipse, and an oval.
    Wire rope.
  13.  請求項1から請求項12までのいずれか一項に記載のワイヤロープであって、
     前記単線の横断面の形状は、正円と楕円と長円形とのいずれとも異なる形状である、
    ワイヤロープ。
    The wire rope according to any one of claims 1 to 12.
    The shape of the cross section of the single wire is different from any of a perfect circle, an ellipse, and an oval.
    Wire rope.
PCT/JP2020/028833 2019-08-22 2020-07-28 Wire rope WO2021033497A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20855411.3A EP4019695A4 (en) 2019-08-22 2020-07-28 Wire rope
JP2021540692A JP7138251B2 (en) 2019-08-22 2020-07-28 wire rope
US17/672,030 US20220170204A1 (en) 2019-08-22 2022-02-15 Wire rope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019152317 2019-08-22
JP2019-152317 2019-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/672,030 Continuation US20220170204A1 (en) 2019-08-22 2022-02-15 Wire rope

Publications (1)

Publication Number Publication Date
WO2021033497A1 true WO2021033497A1 (en) 2021-02-25

Family

ID=74660815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028833 WO2021033497A1 (en) 2019-08-22 2020-07-28 Wire rope

Country Status (4)

Country Link
US (1) US20220170204A1 (en)
EP (1) EP4019695A4 (en)
JP (1) JP7138251B2 (en)
WO (1) WO2021033497A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877151A (en) * 1972-01-14 1973-10-17
JPS60177995U (en) * 1984-09-26 1985-11-26 神鋼鋼線工業株式会社 wire rope
JPH0450388A (en) * 1990-06-08 1992-02-19 Tokyo Seiko Co Ltd Cable-laid rope
JPH07138923A (en) 1993-11-15 1995-05-30 Igeta Seiko Kk Guard rope
US6049042A (en) 1997-05-02 2000-04-11 Avellanet; Francisco J. Electrical cables and methods of making same
JP2003201688A (en) * 2001-12-26 2003-07-18 Tokyo Seiko Co Ltd Compound wire rope
JP2014237908A (en) * 2013-06-07 2014-12-18 株式会社日立製作所 Wire rope for elevator
KR20160056273A (en) * 2014-11-11 2016-05-19 주식회사 디에스글로벌 Steel strand for reinforcing structure and method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2241955A (en) * 1940-07-16 1941-05-13 Wickwire Spencer Steel Company Metallic rope and cable
GB2324542A (en) * 1997-04-25 1998-10-28 Bridon Plc Rope with additional reinforcing members
JP7286410B2 (en) * 2019-05-21 2023-06-05 東京製綱株式会社 WIRE ROPE, WIRE ROPE END PROCESSING METHOD, AND SPIRAL MEMBER

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4877151A (en) * 1972-01-14 1973-10-17
JPS60177995U (en) * 1984-09-26 1985-11-26 神鋼鋼線工業株式会社 wire rope
JPH0450388A (en) * 1990-06-08 1992-02-19 Tokyo Seiko Co Ltd Cable-laid rope
JPH07138923A (en) 1993-11-15 1995-05-30 Igeta Seiko Kk Guard rope
US6049042A (en) 1997-05-02 2000-04-11 Avellanet; Francisco J. Electrical cables and methods of making same
JP2003201688A (en) * 2001-12-26 2003-07-18 Tokyo Seiko Co Ltd Compound wire rope
JP2014237908A (en) * 2013-06-07 2014-12-18 株式会社日立製作所 Wire rope for elevator
KR20160056273A (en) * 2014-11-11 2016-05-19 주식회사 디에스글로벌 Steel strand for reinforcing structure and method of manufacturing the same

Also Published As

Publication number Publication date
JP7138251B2 (en) 2022-09-15
EP4019695A1 (en) 2022-06-29
US20220170204A1 (en) 2022-06-02
JPWO2021033497A1 (en) 2021-02-25
EP4019695A4 (en) 2023-09-13

Similar Documents

Publication Publication Date Title
US20170328000A1 (en) Wire rope
US20050144926A1 (en) Flattened helical tire cord
JP2018076625A (en) High strength wire rope
JP5969163B2 (en) Rubber hose
JP6665150B2 (en) Hollow stranded wire
US20180105981A1 (en) Manipulation rope
JP5091438B2 (en) Inner cable and push-pull control cable using it
JP6329695B1 (en) Multilayer body, multilayer hollow body, and catheter provided with multilayer hollow body
EP3009560A2 (en) Steel cord for tire reinforcement
WO2021033497A1 (en) Wire rope
JP2020187930A (en) Twisted wire conductor
US7617713B2 (en) Final die for wire drawing machines
JP6775283B2 (en) Bending resistant wire and wire harness
US8402732B1 (en) Twisted cable
JP2016539485A (en) Method for producing stranded wire and stranded wire
EP2628850B1 (en) Twisted strand or cable with a smooth outer surface
JP6548772B2 (en) Flame resistant wire rope
JP6631979B2 (en) Wire rope
EP2807400B1 (en) Chinese finger with flat or flattened filaments
JP2009057664A (en) Method for producing steel cord for reinforcing rubber article
JP3895135B2 (en) Steel cord for tire reinforcement
JP2021188211A (en) Steel wire rope
JP2008091242A (en) Twisted-wire conductor and its manufacturing method
JPH05186975A (en) Steel cord for tire
WO2023074567A1 (en) Wire rope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021540692

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020855411

Country of ref document: EP

Effective date: 20220322