WO2021032208A1 - 多喷头共点打印系统 - Google Patents

多喷头共点打印系统 Download PDF

Info

Publication number
WO2021032208A1
WO2021032208A1 PCT/CN2020/110669 CN2020110669W WO2021032208A1 WO 2021032208 A1 WO2021032208 A1 WO 2021032208A1 CN 2020110669 W CN2020110669 W CN 2020110669W WO 2021032208 A1 WO2021032208 A1 WO 2021032208A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
printing
gantry
printing system
assembly
Prior art date
Application number
PCT/CN2020/110669
Other languages
English (en)
French (fr)
Inventor
张斌
李琦
罗熠晨
杨腾
张波
马梁
杨华勇
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to JP2022508553A priority Critical patent/JP7165960B2/ja
Publication of WO2021032208A1 publication Critical patent/WO2021032208A1/zh
Priority to US17/578,398 priority patent/US11993013B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • B29C64/209Heads; Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/232Driving means for motion along the axis orthogonal to the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/227Driving means
    • B29C64/236Driving means for motion in a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/245Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/35Cleaning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment

Definitions

  • the invention relates to the technical field of biological 3D printing in tissue engineering, in particular to a multi-nozzle common point printing system of a high-precision biological printing device.
  • tissue organ transplantation is an extremely effective treatment method.
  • organ donor sources and immune rejection there are insurmountable difficulties in the practical application of organ transplantation.
  • Tissue engineering is to attach living cells to a biomaterial matrix or prepared scaffold through a certain method to construct a functional tissue substitute.
  • tissue substitute is cultured and implanted into the patient's body, replacing the original diseased tissues and organs to restore the original body functions to realize the treatment of the disease.
  • tissue engineering skin is an effective example of the good development prospects of tissue engineering.
  • the single nozzle on the market takes envisionTec as an example. Each time the material is changed, the nozzle must be moved to a new nozzle, and then the knife must be changed by vacuum adsorption, which has the problem of long time and unguaranteed positioning accuracy. In addition, if you print a discrete hexagonal shape similar to liver cells, there will be gaps between the 6 blocks, and there will be a longer time to trace; this severely limits the ability to print complex organs, and the printing time is too long and the efficiency is low.
  • the purpose of the present invention is to provide a multi-nozzle printing system that can work cooperatively with multiple nozzles and improve the printing capacity and efficiency of complex organs.
  • the biological 3D printing system includes an extruded nozzle assembly and a stage.
  • the nozzle assembly has its own nozzle, storage barrel and temperature control module; the nozzle assembly is driven to translate along three axes (X, Y, and Z axes)
  • the three-axis translation mechanism includes an X-axis translation unit, a Y-axis translation unit and a Z-axis translation unit, and the nozzle assembly is installed on the Z-axis translation unit.
  • the nozzle can move at any point on the XOY plane and move up and down along the Z axis; the nozzle assembly has independent material storage, extrusion and printing functions; the stage is to accept the materials extruded by the nozzle assembly.
  • the temperature control module maintains the temperature in the storage tank to keep the material at the temperature required for printing.
  • each nozzle assembly has its own nozzle holder.
  • the nozzle holder has a fixed part connected to the Z-axis translation unit and a mounting part connected to the nozzle assembly; the fixed part and the mounting part are inclined , The nozzle assembly is tilted.
  • the inclination of the nozzle assembly refers to the intersection with the Z axis at an angle, and the nozzle is set obliquely downward to avoid movement interference between the storage tanks, so that multiple nozzle assemblies can work together at the same time.
  • the angle adjustment mechanism can be a wedge block arranged between the nozzle support and the nozzle assembly, or the fixing part and the mounting part are hinged, and the mounting part rotates relative to the fixing part to adjust the angle between the mounting part and the fixing part, thereby adjusting the installation
  • the angle of the nozzle assembly on the part relative to the Z axis When the specified angle is reached, lock the position between the fixed part and the mounting part.
  • the locking method adopts the existing technology, such as: ratchet and pawl mechanism, and the method of tightening screws.
  • the cross section of the nozzle holder is a right-angled triangle
  • the surface where the hypotenuse of the nozzle holder is located is the mounting part
  • the surface where one of the right-angled sides of the nozzle holder is located is the fixing part.
  • the nozzle assembly has rotational freedom in the mounting surface.
  • At least one spray head assembly has a rotating mechanism, and the rotating mechanism is arranged between the mounting part and the spray head assembly; the rotation freedom of the rotating mechanism is unified with the spray head assembly.
  • the rotating mechanism uses the fixed part as a reference surface to drive the nozzle assembly to rotate in the plane where the fixed part is located, thereby adjusting the angle of the nozzles relative to the working platform and the relative angle between the nozzles.
  • the rotating mechanism includes a rotating shaft and a rotating seat, the rotating seat is fixed with the spray head assembly, and the rotating shaft is fixed with the mounting part of the spray head bracket.
  • An external force is applied to the rotating seat to rotate around the axis of rotation, thereby driving the nozzle assembly to rotate and adjusting the nozzle angle.
  • the rotating mechanism is a mechanical turntable
  • the turntable serves as a rotating seat
  • a locking screw or a locking bolt is arranged between the turntable and the nozzle support.
  • the turntable can be rotated to adjust the nozzle angle. After the nozzle angle is adjusted, lock the turntable and the nozzle holder with the locking screw or bolt, and the turntable and nozzle are positioned.
  • the rotating shaft is connected to the rotating electric machine.
  • one or more nozzle components are installed on the rotating mechanism; and, or one or more nozzle components are installed on each nozzle holder; and, or, multiple nozzle components are installed on each nozzle holder, and each nozzle component and There are respective rotating mechanisms between the nozzle supports.
  • the number of nozzles can be flexibly expanded by installing multiple nozzle assemblies on the nozzle holder, and the expanded nozzles can have rotational freedom or a fixed position.
  • the setting of the rotating mechanism enables the nozzle assembly to have rotational freedom and can achieve any angular displacement of the nozzle tip within the stroke range, so that the relative positions between multiple nozzle assemblies can be flexibly adjusted, making it possible for multiple nozzles to share the same point.
  • Multiple nozzles share the same point, which can be at the same time, multiple nozzles aim at the same designated point or area. It can also be at different times that the tip of the nozzle is aligned to the same point or area.
  • each nozzle assembly corresponds to its own Z-axis translation unit; or, at least two nozzle assemblies share a Z-axis translation unit.
  • the X-direction translation mechanism includes a fixed gantry, a mobile gantry, an X-direction gantry guide rail matched with the mobile gantry, and a stage guide rail matched with the carrier; the fixed gantry and the mobile gantry are respectively provided with respective Y-direction guide rails and Z-direction guide rail, Z-direction guide rail can be slidably installed on Y-direction guide rail, nozzle holder can be slidably installed on Z-direction guide rail; each nozzle holder corresponds to a Z-direction guide rail and/or multiple nozzle holders share a Z-direction guide.
  • each nozzle holder is installed on its own Z-direction rail, or multiple nozzle holders are installed on a Z-direction rail; or, there is a nozzle holder corresponding to a Z-direction rail, and at the same time There are also several nozzle holders sharing a Z-direction rail.
  • the movable gantry and the fixed gantry are centered, a plurality of nozzle assemblies are provided on the movable gantry, and a plurality of nozzle assemblies are provided on the fixed gantry.
  • the number of nozzle assemblies on the moving gantry and the number of nozzle assemblies on the fixed gantry can be the same or different.
  • the sprinkler assembly on the movable gantry and the sprinkler assembly on the fixed gantry are symmetrical about the middle plane of the movable gantry and the fixed gantry.
  • the mobile gantry has 3 sprinkler assemblies
  • the fixed gantry has 3 sprinkler assemblies.
  • the sprinkler assemblies in the same gantry and the sprinkler assembly in the middle are fixedly connected to the sprinkler support, and the rest of the sprinkler assemblies are connected to the sprinkler support through the rotating mechanism. .
  • the carrier rail is located between the moving gantry and the fixed gantry.
  • each X-direction guide rail has a first travel switch and a second travel switch respectively, and the movement travel between the two travel switches. That is to say, the moving gantry translates between the first travel switch and the second travel switch of its guide rail; the stage moves between the first travel switch and the second travel switch of its guide rail.
  • the three-axis translation mechanism can realize the migration of any nozzle assembly at any point in the three-dimensional coordinate system.
  • the printing system has a common point calibration sensor.
  • the nozzles of all nozzle components touch the common point sensor, the starting points of the printing path of all the nozzle components are at the same point.
  • Use the common point calibration sensor to unify the coordinate systems of all nozzle components into the world coordinate system.
  • Use the common point calibration sensor to unify the coordinate systems of all nozzle components into the world coordinate system.
  • the common point calibration sensor includes a calibration box provided with a first direction transmitter, a first direction receiver, a second direction transmitter and a second direction receiver; the first direction transmitter to the first direction receiver There is an intersection between the path of the second direction transmitter and the second direction receiver; the nozzle tip triggers the intersection point as the nozzle assembly to reach the zero position.
  • Each print head assembly starts printing tasks from the zero position.
  • the first direction and the second direction are orthogonal.
  • the first direction is the X axis and the second direction is the Y axis; alternatively, the first direction is the Y axis and the second direction is the X axis.
  • each first direction transmitter has its own corresponding first direction receiver
  • there are multiple second direction transmitters and each second direction transmitter has its own corresponding first direction receiver.
  • One-directional receiver there are multiple intersections of paths in two directions; each intersection corresponds to a nozzle assembly.
  • All print head components can reach the zero position at the same time, so all print head components can perform different printing tasks in parallel at the same time, and each print head component completes a part of the total task.
  • multiple nozzles can perform synchronous and collaborative printing on the same road, so as to realize that there can be different biological materials on a printing path.
  • the solution of setting the pre-printing module is detailed as follows.
  • the printing system has a pre-printing module.
  • the pre-printing module includes a pre-printing base.
  • the pre-printing base is provided with a cleaning nozzle, a return tank, a brush and a cutting line.
  • the cleaning nozzle is located in the return tank and the brush Located next to the reflux tank.
  • the cleaning nozzle sprays cleaning liquid to wash the nozzle, and then the cleaning liquid is collected in the return tank and then discharged; the nozzle tip of the nozzle assembly passes through the brush, and the brush wipes the nozzle tip clean; after that, the nozzle assembly squeezes out the material, Until the extruded material cross-section is stable, the nozzle assembly passes through the cutting line, the cutting line cuts off the material from the nozzle tip, and the nozzle assembly moves to the stage for formal printing tasks.
  • the pre-printing module has a pre-printing guide rail, and the pre-printing module is slidably matched with the pre-printing guide rail; the pre-printing module has a motion drive mechanism.
  • the pre-printing module is removed from the nozzle assembly.
  • the evacuation sequence of the pre-printing module the nozzle tip leaves the cleaning nozzle. , Contact with the brush, and finally the cutting line cuts off the material at the tip of the nozzle, and the pre-printing module completes the evacuation. After the pre-printing module is evacuated, the stage moves under the print head assembly.
  • the purpose of the pre-printing module is to clean the nozzles of the print head assembly, remove the residual materials from the previous printing, and perform formal printing after the extruded materials are stable.
  • nozzle assembly structure suitable for the above-mentioned multi-nozzle printing system, multi-nozzle common point printing system, printing system with pre-printing module, and existing 3D printing system.
  • the nozzle assembly includes a storage barrel, a plunger matched with the storage barrel, a temperature control module and a nozzle.
  • the temperature control module includes a heat preservation barrel cover and a heat preservation barrel bottom.
  • the storage barrel has a heat preservation barrel cover and a heat preservation barrel.
  • the temperature control area inside the bottom package, the storage barrel between the temperature control area and the nozzle is the heat preservation area, and the storage barrel in the heat preservation area is equipped with a heat preservation sleeve; the heat preservation barrel cover and the heat preservation barrel bottom are sealed and connected to form a medium cavity or medium pipe ,
  • the medium cavity or medium pipe has heating elements. The heating element heats the medium in the medium cavity or medium pipeline, and the medium exchanges heat with the storage barrel to achieve temperature control of the material in the storage barrel.
  • the temperature control module includes a heat preservation layer and a water cooling plate
  • the heat preservation layer is located between the bottom of the heat preservation bucket and the water cooling plate
  • the water cooling plate is connected with the nozzle mounting member
  • the nozzle mounting member is connected with the nozzle bracket or the rotating mechanism.
  • the nozzle mounting member includes a wing plate extending outward from the outer edge of the water cooling plate, and screw holes are provided on the wing plate. The wing plate is fixed with the sprinkler support or rotating seat by screws or bolts.
  • the medium cavity or the medium pipe has a medium inlet and a medium outlet
  • the medium is a liquid heat-conducting medium
  • the storage barrel is made of a heat-conducting medical metal material.
  • stainless steel is a commonly used thermally conductive medical metal material with good thermal conductivity and good biocompatibility, as is titanium alloy material.
  • the liquid heat transfer medium may be oil. The liquid medium envelops the storage barrel, the precision of temperature control is high, and the temperature difference of the material in the storage barrel is small, and the material temperature consistency is good.
  • the plunger is connected to the pneumatic actuator.
  • Pneumatic actuators such as cylinders.
  • the nozzle is a syringe needle.
  • the temperature control module controls the temperature of the storage barrel to keep the material in the storage barrel within the specified range.
  • the temperature control module positions and fixes the storage barrel.
  • the nozzle assembly is an independent part of the 3D printing system.
  • the stage is a working platform that accepts materials from the nozzle assembly, realizes additive stacking, and finally forms a 3D solid component; the stage of the present invention is slidably installed on the stage guide rail.
  • the 3D printing system includes an extruded nozzle assembly and a carrier, and the carrier has a cavity matching the printing vessel.
  • the printing vessel is located in the cavity or partly in the cavity.
  • the part of the cavity covering the printing vessel has conditions for installing a temperature control module (such as heating wire, oil temperature cavity, etc.).
  • the stage includes a printing vessel and a temperature control module, and the temperature control module wraps the outer circumference of the printing vessel.
  • the temperature control module includes a medium cavity or medium pipe.
  • the medium cavity or medium pipe has a cavity for accommodating a printing vessel.
  • the medium cavity has a medium inlet and a medium outlet, and the liquid medium with working temperature is input into the medium cavity or medium pipe.
  • the place where the liquid medium is heated can be an external medium container and heater, such as an oil temperature machine.
  • the medium with working temperature continuously circulates between the external medium container and the medium cavity. The total amount of liquid medium is large. Compared with only a small amount of medium in the medium cavity, the temperature control accuracy is higher and the temperature control difficulty is reduced.
  • the medium cavity is a complete communicating cavity.
  • the printing vessel is a circular vessel
  • the medium cavity is a circular cavity
  • the medium cavity is a spiral pipe.
  • the shape of the medium cavity only needs to be uniformly matched with the printing vessel.
  • a clamping solution for the printing vessel is provided here.
  • the stage includes a clamp module, and the clamp module fixes the printing vessel from the bottom.
  • the clamp module includes an adsorption seat, a vacuum pipeline and a vacuum pump.
  • the adsorption seat is provided with a micropore array
  • the micropore array is connected with the vacuum pipeline
  • the vacuum pipeline is connected with the vacuum pump.
  • the printing vessel needs to be clamped and fixed.
  • the printing vessel is placed on the adsorption base, and the vacuum pump is turned on. Under the action of the micropore array and the vacuum pipeline, a negative pressure is formed between the adsorption base and the printing vessel. Than fixed.
  • the microwell array is composed of a plurality of array units from the inside to the outside, the centers of all the array units overlap, and the outline of each array unit is the same or similar to the shape of the working platform; each array unit has one or more There are two micropores, and the adjacent micropores are communicated through the communication pipeline.
  • Each array unit has its own valve assembly, which is arranged on the vacuum pipeline, or the valve assembly is arranged between the vacuum pipeline and the vacuum pump. For example, if the printing vessel is a rectangle, the array unit is a similar rectangle of the work platform.
  • the printing vessel is a circular vessel
  • the microholes of the array unit are enclosed in a circle
  • all the array units are arranged in concentric circles
  • the most central array unit is a central microhole. All the concentric circular arrays or one (or several) of the concentric circular arrays can be selectively opened according to the size of the printing vessel to realize the fixation of the printing vessel.
  • the center of the array unit is located at the center of the adsorption seat.
  • the suction seat only needs to have the size to accommodate the array unit, and the shape of the suction seat is not limited.
  • the multi-nozzle collaborative biological printing method performs the following operations: place the common-point calibration sensor at the beginning of the path of the printing task, determine the nozzle assembly that needs to be printed, move the nozzle assembly to the zero position, and the nozzle assembly starts the print task from the zero position in turn , Or, all the nozzle components that perform the printing task execute the same printing path, and after all the nozzle components reach the zero position, the printing task will start from the zero position along the printing path synchronously.
  • the printing task is composed of multiple sub-paths, and all the sub-paths intersect at a point to obtain the distance between the origin of the coordinate system and the intersection.
  • the print task is composed of multiple sub-paths, and the sub-paths are independent of each other, and the starting point of each sub-path is obtained.
  • the print head components execute the sub-path printing tasks separately, and the print head components work simultaneously.
  • the nozzle assembly corresponding to the printing material is selected as the nozzle assembly for the printing task ,
  • a continuous path corresponding to each material is taken as a sub path; taking any sub path as the current task path, move the common point calibration sensor to the starting point of the current task path, and move the current nozzle assembly corresponding to the current task path to the zero position,
  • the common point calibration sensor is evacuated; the current print head assembly moves along the current task path; after the current task path is completed, select the next path as the current path, repeat the zero calibration of the current print head assembly by the common point calibration sensor, and the current print head assembly follows the current task path Movement; repeat until all sub-paths are printed.
  • the common point calibration sensor is used to calibrate the starting position of the current nozzle assembly, so as to realize the continuous collaborative printing of multiple materials and multiple nozzles, making it possible to print complex tissues of multiple materials.
  • the nozzle assembly corresponding to the printing material is selected as the nozzle assembly for the printing task, and the common point calibration sensor is placed At the beginning of the printing path, all the print head components that perform the printing task reach the zero position, and the common point calibration sensor is removed. All the print head components that perform the print task move synchronously along the print task path, and each print head component is extruded in the task path corresponding to its material Material; closed in the non-task path.
  • the main material is the dermis layer material, but in the part with blood vessels, the blood vessel material and the dermis layer material are extruded at the same time, or only the blood vessel material is extruded to realize the additive construction of the tissue.
  • the nozzle assembly of the vascular material is closed, and the nozzle assembly of the dermis material works.
  • a certain tissue is composed of a basic material, but living cells need to be planted on top of the structure of the basic material. Then, the nozzle assembly of the basic material works along the printing path and reaches the place where living cells need to be planted. When in position, the nozzle assembly corresponding to the living cell material is also turned on to incorporate the living cells.
  • the same printing path is composed of multiple materials. At this time, multiple nozzle assemblies are turned on at the same time to perform printing tasks. It is also possible that the two slice layers are of different materials. At this time, the nozzle assembly of the first slice layer material is turned on, and the nozzle assembly of the next slice layer material is closed. After the current slice layer printing task is completed, the current slice layer material The print head components are closed; all the print head components are displaced to the height of the next slice layer, and the print head component of the next slice layer material is used as the print head component of the current slice layer material, and the printing is turned on, and so on until the end of the printing task, and so on.
  • This system has multiple nozzle components, each nozzle component has at least 3 degrees of freedom for axial translation, some nozzle components also increase the rotational freedom (ie 4 degrees of freedom), the position and angle of the nozzle components can be adjusted, Multi-nozzle components can work together or in sequence, and can achieve multi-path and multi-material printing in one printing task, avoiding repeated calibration and cyclic printing processing for nano-scale multi-cell unit components, and one-time molding helps unit functions
  • the expression of 3D printed biological tissue is improved from the unit level to improve the efficiency of constructing large tissue structures and organs, and at the same time from the functional level to improve the quality of 3D printed biological tissues.
  • the multi-nozzle works together to achieve multiple printing modes such as alternate printing of multiple materials layer by layer, non-uniform mixed printing of multiple materials on the same layer, single material printing, local composite additional materials of the main material, and other printing modes.
  • the printing mode is flexible and changeable. It can realize the formation of a non-uniform mixing system of materials and simulate the actual biological system more realistically.
  • Each nozzle assembly can share a 3-axis translation mechanism, and can also have independent degrees of freedom of movement. Multiple nozzles can simultaneously perform their own printing tasks at different positions. For example, when printing the liver, each print head prints a liver unit, or each print head prints a part of the liver unit.
  • the temperature of the printing vessel of the stage is controlled by peripheral heat exchange.
  • the medium is continuously and circulated in the medium cavity after the temperature is controlled in the external medium container. The temperature of the medium is controlled accurately and easily.
  • the printing vessel is clamped by the bottom adsorption method, and the number of valve components is selected according to the size of the printing vessel to realize the stable and complete adsorption of the printing vessel.
  • the temperature control and clamping fixation do not interfere with each other, which can reliably adsorb the printing vessel, improve the accuracy of the molding structure, and take into account the environmental temperature in bioprinting. Demand, effectively guarantee the quality of the formed living body structure, and improve the survival rate of living tissue.
  • Figure 1 is an overall schematic view of the present invention.
  • Figure 2 is a schematic diagram of a nozzle assembly mounted on a fixed gantry.
  • Figure 3 is a schematic diagram of the sprinkler assembly mounted on the movable gantry.
  • Figure 4 is a schematic diagram of the nozzle assembly installed on the nozzle holder.
  • Figure 5 is a schematic diagram of a rotating seat provided on the nozzle holder.
  • Figure 6 is a schematic diagram of the spray head assembly.
  • Figure 7 is a schematic diagram of a common point calibration sensor.
  • Figure 8 is a schematic diagram of the pre-printing module.
  • Figure 9 is a schematic diagram of the pre-printing module installed on the base.
  • Figure 10 is a schematic diagram of the stage mounted on the stage rail.
  • Fig. 11 is a schematic diagram of the cooperation of the printing vessel with the temperature control module and the fixture module.
  • Figure 12 is a schematic diagram of the fixture module.
  • Figure 13 is a schematic diagram of a medium container and a vacuum pump external to the stage.
  • the multi-nozzle biological 3D printing system of the present invention includes an extruded nozzle assembly and a stage 5.
  • the nozzle assembly has its own nozzle 45, a storage tank 41 and a temperature control module 43; the nozzle assembly is driven
  • a three-axis translation mechanism that translates along three axes (X-axis 31, Y-axis 32, and Z-axis 33).
  • the three-axis translation mechanism includes X-axis 31-direction translation unit, Y-axis 32-direction translation unit and Z-axis 33-direction translation Unit, the nozzle assembly is installed on the Z-axis 33-direction translation unit.
  • the nozzle can move at any point on the XOY plane and move up and down along the Z axis 33; the nozzle assembly has independent material storage, extrusion and printing functions; the stage 5 is to accept the materials extruded by the nozzle assembly.
  • the temperature control module 43 maintains the temperature in the storage tank 41 to keep the material at the temperature required for printing.
  • each nozzle assembly has its own nozzle holder 42.
  • the nozzle holder 42 has a fixed part connected to the Z-axis 33 translation unit and a mounting part connected to the nozzle assembly; the fixed part and the mounting part At an inclination angle, the nozzle assembly is inclined.
  • the inclination of the nozzle assembly refers to the intersection with the Z axis 33 at an angle, and the nozzle 45 is arranged obliquely downward to avoid movement interference between the storage tank 41 and enable multiple nozzle assemblies to work together at the same time.
  • the material in the present invention refers to a material or mixture used for processing by the printer.
  • some existing biological materials can be used for printing.
  • many materials including natural polymers: collagen, silk fibers, gelatin, alginate, and synthetic polymers: polyethylene glycol (PEG) or a mixture of any of them can be used in the printer of the present invention for processing.
  • PEG polyethylene glycol
  • the through hole here generally refers to a planar structure or a three-dimensional structure.
  • the shape of the hole can be any shape, round, rectangular, square, diamond, etc.
  • a three-dimensional shape is formed.
  • Each or multiple faces of the three-dimensional shape have a hole structure, and these holes have a certain depth.
  • the holes can be connected or not. Connected, or partly connected, thus forming a channel that runs through the entire three-dimensional structure or part of the three-dimensional structure.
  • Such a structure can be easily realized by the printer of the present invention.
  • the material of the present invention can be mixed with stem cells for processing or printing.
  • the material serves as a scaffold structure, and the cells can be differentiated as a cost of activity, and finally, a viable tissue is formed.
  • the newly designed printer of the present invention can print any suitable material.
  • the storage barrel 41 is a container for containing biological materials, which has good biocompatibility, and different storage barrels 41 can be used to contain the same material.
  • different materials or biological inks can be placed in the storage bucket 41.
  • storage bucket A contains one type of biological material
  • storage bucket B contains another type of biological material.
  • the properties of the two materials are different.
  • the printing technology of the present invention can realize the printing of complex biological tissues or organs. This is because a biological material or organ is not uniform in structure, but has differences in structure or biological properties.
  • the skin material of mammals has epidermis and dermis.
  • the dermis has blood vessels and tissues connected to muscles.
  • the angle adjustment mechanism may be a wedge block arranged between the nozzle holder 42 and the nozzle assembly, or the fixing part and the mounting part are hinged, and the mounting part rotates relative to the fixing part, thereby adjusting the angle between the mounting part and the fixing part, thereby adjusting The angle of the nozzle assembly on the mounting part relative to the Z axis 33.
  • the locking method adopts the existing technology, such as: a ratchet and pawl mechanism, a method of fastening screws, etc.
  • the cross-section of the nozzle 45 holder is a right-angled triangle
  • the surface where the hypotenuse of the nozzle 45 holder is located is the mounting part
  • the surface where one of the right-angled sides of the nozzle 45 holder is located is the fixing part.
  • the nozzle 45 assembly has rotational freedom in the mounting surface.
  • the setting of the rotating mechanism enables the nozzle assembly to have rotational freedom and can achieve any angular displacement of the nozzle tip within the stroke range, so that the relative positions between multiple nozzle assemblies can be flexibly adjusted, making it possible for multiple nozzles to share the same point.
  • Multiple nozzles share the same point, which can be at the same time, multiple nozzles aim at the same designated point or area. It can also be at different times that the tip of the nozzle is aligned to the same point or area.
  • At least one spray head assembly has a rotating mechanism, and the rotating mechanism is disposed between the mounting portion and the spray head assembly; the rotation freedom of the rotating mechanism is unified with the spray head assembly.
  • the rotating mechanism uses the fixed part as a reference plane to drive the nozzle assembly to rotate in the plane where the fixed part is located, thereby adjusting the angle of the nozzle 45 relative to the working platform and the relative angle between the nozzles 45.
  • the rotating mechanism includes a rotating shaft 443 and a rotating seat 442, the rotating seat 442 is fixed to the spray head assembly, and the rotating shaft 443 is fixed to the mounting part of the spray head bracket 42.
  • An external force is applied to the rotating seat 442 to rotate around the rotating shaft 443, thereby driving the nozzle assembly to rotate and adjusting the angle of the nozzle 45.
  • the rotating mechanism is a mechanical turntable, the turntable serves as the rotating seat 442, and a locking screw 441 or a locking bolt is arranged between the turntable and the nozzle support 42.
  • the turntable can be rotated to adjust the angle of the nozzle 45.
  • the rotating shaft 443 is connected to the rotating electric machine.
  • one or more nozzle components are installed on the rotating mechanism; and, or one or more nozzle components are installed on each nozzle holder 42; and, or, multiple nozzle components are installed on each nozzle holder 42 , A respective rotating mechanism is provided between each nozzle assembly and the nozzle bracket 42.
  • multiple nozzle assemblies can be installed on the nozzle bracket 42 to achieve the purpose of flexibly expanding the number of nozzles, and the expanded nozzles can have a degree of freedom of rotation or a fixed position.
  • the three-axis translation mechanism can realize the migration of any nozzle assembly at any point in the three-dimensional coordinate system.
  • each spray head assembly corresponds to its own Z-axis 33-direction translation unit; or, at least two spray head assemblies share a Z-axis 33-direction translation unit.
  • the X-direction 31 translation mechanism includes a fixed gantry 21, a mobile gantry 22, an X-direction 31 gantry guide rail that cooperates with the mobile gantry 22, and a stage 5 guide rail 51 that cooperates with the stage 5;
  • the gantry 21 and the moving gantry 22 are respectively provided with a Y-direction guide 32 and a Z-direction guide 33.
  • the Z-direction guide 33 is slidably mounted on the Y-direction guide 32, and the nozzle holder 42 is slidably mounted on the Z-direction guide 33 ;
  • Each nozzle bracket 42 corresponds to a Z-direction rail 33 and or multiple nozzle brackets 42 share a Z-direction rail 33.
  • each nozzle holder 42 may be installed on its own Z-direction rail 33, or multiple nozzle holders 42 are installed on one Z-direction rail 33; or, one nozzle holder 42 corresponds to one Z-direction rail 33.
  • the movable gantry 22 and the fixed gantry 21 are centered.
  • the movable gantry 22 is provided with a plurality of nozzle assemblies
  • the fixed gantry 21 is provided with a plurality of nozzle assemblies.
  • the number of nozzle assemblies on the moving gantry 22 and the number of nozzle assemblies on the fixed gantry 21 may be the same or different.
  • the nozzle assembly on the movable gantry 22 and the nozzle assembly on the fixed gantry 21 are symmetrical about the middle plane of the movable gantry 22 and the fixed gantry 21.
  • the movable gantry 22 has 3 nozzle assemblies
  • the fixed gantry 21 has 3 nozzle assemblies.
  • the nozzle assemblies in the same gantry and the nozzle assembly in the middle are fixedly connected to the nozzle bracket 42.
  • the remaining nozzle assemblies It is connected with the nozzle holder 42 through a rotating mechanism.
  • 6 nozzle components can meet most printing tasks. However, when the six nozzle assemblies cannot meet the printing task, the nozzle assembly on the outer side can be expanded first, and the nozzle assembly on the outer side can be expanded into two or more nozzle assemblies sharing the same nozzle holder 42.
  • the guide rail 51 of the stage 5 is located between the moving gantry 22 and the fixed gantry 21.
  • each X-direction guide rail 31 has a first travel switch K and a second travel switch K, respectively, and the movement stroke between the two travel switches K is. That is, the moving gantry 22 translates between the first travel switch K and the second travel switch K of its guide rail; the stage 5 translates between the first travel switch K and the second travel switch K of its guide rail.
  • the nozzle assembly includes a storage barrel 41, a plunger matched with the storage barrel 41, a temperature control module 43 and a nozzle 45, and the temperature control module 43 includes a heat preservation barrel cover 431 and a heat preservation barrel bottom 432, and the storage barrel 41 has a temperature control area enclosed by a heat preservation bucket cover 431 and a heat preservation bucket bottom 432.
  • the storage bucket 41 between the temperature control area and the nozzle is a heat preservation area, and the storage bucket 41 in the heat preservation area is provided with a heat preservation sleeve 436;
  • the lid 431 and the heat preservation barrel bottom 432 are sealed and connected to form a medium cavity or a medium pipe, and the medium cavity or the medium pipe has a heating element 435.
  • the heating element 435 heats the medium in the medium cavity or medium pipe, and the medium exchanges heat with the storage barrel 41 to achieve temperature control of the material in the storage barrel 41.
  • the medium of the nozzle assembly is water.
  • the heating element is an electric heating wire or a semiconductor chip.
  • the temperature control module 43 includes an insulation layer 434 and a water cooling plate.
  • the insulation layer 434 is located between the bottom 432 of the insulation barrel and the water cooling plate.
  • the water cooling plate is connected to the nozzle mounting member 437, and the nozzle mounting member 437 is connected to the nozzle bracket 42 or the rotating mechanism.
  • the spray head mounting member 437 includes a wing plate extending outward from the outer edge of the water cooling plate 433, and screw holes are provided on the wing plate.
  • the wing plate is fixed to the nozzle bracket 42 or the rotating seat 442 by screws or bolts.
  • the medium cavity or medium pipe has a medium inlet 521 and a medium outlet 522.
  • the medium is a liquid heat conducting medium
  • the storage barrel 41 is made of a heat conducting medical metal material.
  • stainless steel is a commonly used thermally conductive medical metal material with good thermal conductivity and good biocompatibility, as is titanium alloy material.
  • the liquid heat transfer medium may be oil. The liquid medium wraps the storage tank 41, the precision of temperature control is high, and the temperature difference of the material in the storage tank 41 is small, and the material temperature consistency is good.
  • the plunger is connected with the pneumatic actuator.
  • Pneumatic actuators such as cylinders.
  • the nozzle 45 is a syringe needle.
  • the temperature control module 43 controls the temperature of the storage barrel 41 and keeps the material in the storage barrel 41 within a specified range. In addition, the temperature control module 43 positions and fixes the storage barrel 41.
  • the materials need to be kept within a given temperature range for the survival and reproduction of biological components. Therefore, the storage barrel 41 needs to be temperature controlled and insulated.
  • the nozzle assembly is an independent part of the 3D printing system.
  • the biological 3D printing system has a plurality of nozzle components and a common point calibration sensor 6.
  • the nozzles 45 of all nozzle components touch the common point sensor, the printing path of all nozzle components increases The starting point is the same.
  • the common point calibration sensor 6 is used to unify the coordinate systems of all nozzle components into the world coordinate system.
  • the common point calibration sensor 6 is used to unify the coordinate systems of all nozzle components into the world coordinate system.
  • the common point calibration sensor 6 includes a calibration box provided with a first direction transmitter 61, a first direction receiver 62, a second direction transmitter 63, and a second Direction receiver 64; the path from the first direction transmitter 61 to the first direction receiver 62 and the path from the second direction transmitter 63 to the second direction receiver 64 have an intersection; the nozzle 45 triggers the point of intersection as the nozzle assembly to reach Zero position. Each print head assembly starts printing tasks from the zero position.
  • the first direction and the second direction are orthogonal.
  • the first direction is the X-axis 31 and the second direction is the Y-axis 32; or, the first direction is the Y-axis 32 and the second direction is the X-axis 31.
  • each first-direction transmitter 61 has a corresponding first-direction receiver 62; there are multiple second-direction transmitters 63, each of which is The two-direction transmitter 63 has a corresponding first-direction receiver 62; there are multiple intersections of paths in the two directions; each intersection corresponds to a nozzle assembly.
  • All print head components can reach the zero position at the same time, so all print head components can perform different printing tasks in parallel at the same time, and each print head component completes a part of the total task.
  • multiple nozzles can perform synchronous and collaborative printing on the same road, so as to realize that there can be different biological materials on a printing path.
  • the printing system has a pre-printing module.
  • the pre-printing module includes a pre-printing base 71.
  • the pre-printing base 71 is provided with a cleaning nozzle 72, a return groove 73, a brush 74, a cutting line 76 and In the material carrying area 75, the cleaning nozzle 72 is located in the return tank 73, and the brush 74 is located beside the return tank 73.
  • the cleaning nozzle 72 sprays cleaning liquid to wash the nozzle, and then the cleaning liquid is collected in the return tank 73 and then discharged; the tip of the nozzle 45 of the nozzle assembly passes through the brush 74, and the brush 74 wipes the tip of the nozzle 45 clean; then, the nozzle assembly Extrude the material outwards until the cross section of the extruded material is stable, the nozzle assembly passes through the cutting line 76, and the cutting line 76 cuts off the material from the tip of the nozzle 45, and the nozzle 45 assembly moves to the stage 5 for formal printing tasks.
  • the cutting line 76 is a metal filament or other linear or filamentary cutting member capable of cutting off the material at the tip of the nozzle 45.
  • the material bearing area 75 is located between the brush 74 and the cutting line 76.
  • the nozzle 45 is cleaned by the cleaning nozzle 45 and the brush 74, and then the material is squeezed out of the material bearing area 75. After the nozzle 45 has a stable discharge flow, the nozzle The 45 components pass through the cutting line.
  • the pre-printing module has a pre-printing guide rail, and the pre-printing module is slidably matched with the pre-printing guide rail; the pre-printing module has a motion drive mechanism.
  • the nozzle assembly is pre-printed, it can be that the position of the nozzle assembly does not move, and the pre-printing module moves below the nozzle assembly.
  • the pre-printing module is removed from the nozzle assembly.
  • the nozzle 45 tip leaves the cleaning nozzle After 72, contact with the brush 74, and finally the cutting line 76 cuts off the material at the tip of the nozzle 45, and the pre-printing module completes the evacuation.
  • the stage 5 moves below the nozzle assembly.
  • the purpose of the pre-printing module is to clean the nozzle 45 of the nozzle assembly, remove the residual materials from the previous printing, and perform formal printing after the extruded materials are stable.
  • the stage 5 is a working platform that accepts materials from the nozzle assembly, realizes additive stacking, and finally forms a 3D solid component; the stage 5 in the present invention is slidably installed on the guide rail of the stage 5 51 on.
  • the stage 5 of the biological 3D printing system includes a printing vessel and a temperature control module 52, and the temperature control module 52 wraps the outer circumference of the printing vessel.
  • the materials used in the biological 3D printing system need to be kept within the specified temperature range to achieve the additive printing of materials and increase the survival rate of biological tissues.
  • the temperature control module 52 includes a medium cavity or a medium pipe.
  • the medium cavity or the medium pipe has a cavity 53 for accommodating the printing vessel 8.
  • the medium cavity has a medium inlet 521 and a medium outlet 522, and has a working The temperature liquid medium is input into the medium cavity or medium pipeline.
  • the medium cavity is a complete communicating cavity.
  • the printing vessel is a round vessel, and the medium cavity is a circular cavity, or the medium cavity is a spiral pipe. The shape of the medium cavity only needs to be uniformly matched with the printing vessel.
  • the temperature control module 52 When the temperature control module 52 is working, after the liquid medium reaches a specified temperature outside the medium cavity, it is sent into the medium cavity or medium pipe.
  • the place where the liquid medium is heated can be an external medium container and heater, such as an oil temperature controller 560 .
  • the medium with working temperature continuously circulates between the external medium container and the medium cavity. The total amount of liquid medium is large. Compared with only a small amount of medium in the medium cavity, the temperature control accuracy is higher and the temperature control difficulty is reduced.
  • the stage 5 includes a clamp module, and the clamp module fixes the printing vessel from the bottom.
  • the clamp module includes an adsorption seat 54, a vacuum pipeline 542 and a vacuum pump 544.
  • the adsorption seat 54 is provided with a micropore array 541, the micropore array 541 is connected to the vacuum pipeline 542, and the vacuum pipeline 542 is connected to the vacuum pump 544.
  • the printing vessel needs to be clamped and fixed.
  • the printing vessel is placed on the adsorption base 54 and the vacuum pump 544 is turned on. Under the action of the micropore array 541 and the vacuum line 542, the adsorption base 54 and the printing vessel are formed Negative pressure, the printing utensil ratio is fixed.
  • the microwell array 541 is composed of a plurality of array units from the inside to the outside. The centers of all the array units overlap, and the outline of each array unit is the same or similar to the shape of the working platform; each array unit has one or more micro Each array unit has its own valve assembly 543 which is arranged on the vacuum pipeline 542, or the valve assembly 543 is arranged between the vacuum pipeline 542 and the vacuum pump 544. For example, if the printing vessel is a rectangle, the array unit is a similar rectangle of the work platform. By arranging the micro-holes in the form of array units, the clamping of work platforms of different sizes can be realized.
  • the printing vessel is a circular vessel, the micro-holes of the array unit are enclosed in a circle, all the array units are arranged in concentric circles, and the most central array unit is a central micro-hole. All the concentric circular arrays or one (or several) of the concentric circular arrays can be selectively opened according to the size of the printing vessel to realize the fixation of the printing vessel.
  • the center of the array unit is located at the center of the adsorption seat 54.
  • the suction seat 54 only needs to have a size to accommodate the array unit, and the shape of the suction seat 54 is not limited.
  • the stage 5 has both the temperature control module 52 and the fixture module described above, as shown in FIG. 10.
  • the coordinates of the six execution nozzles are reset to zero, and they enter the cleaning area and stay on the cleaning liquid nozzle 45 to rinse the cleaning liquid, and then pass through the wiping brush 74 along a fixed path to wipe the surface.
  • the 6 execution nozzles are put into the calibration module in turn to zero their respective pose coordinates.
  • the outer 4 nozzle rotation motors rotate inwardly by 45°, and the respective execution nozzles are moved by the drive motor.
  • a common point is formed around the extruded end. After the common point is completed, the print heads drive synchronous translation and move to the calibration module to detect common point errors.
  • the 5 nozzles around the middle nozzle on the side of the fixed gantry 21 will fine-tune their positions under the respective Y32 and Z axis 33 to the motor drive, and perform the test again; if the error is within the set range , Proceed to the next link.
  • the common point nozzle is moved to the pre-printing area for pre-work. Taking printing rectangles and arcs as examples, when the quality of the extruded material is stable, it moves through the cutting line 76, and the height of the cutting line 76 is set to the same position as the nozzle At the same height in the horizontal direction, the remaining nozzle 45 is thus cut off.
  • the common spot nozzle is moved to the work area vessel, and the formal extrusion printing is started. After the printing is finished, the rotating motors of the outer 4 nozzles return to the 0° position, and the coordinates of the 6 nozzles are returned to zero after the cleaning operation is performed in sequence.
  • the three-axis translation mechanism, the stage 5 and the pre-printing module are all set on the base 1, and the base 1 can provide a stable support for the biological 3D printing system and a horizontal reference surface.
  • the present invention provides a method for realizing common dot printing with multiple nozzles using the above printer.
  • the multi-nozzle collaborative biological printing method performs the following operations: place the common point calibration sensor 6 at the beginning of the path of the printing task, determine the nozzle assembly that needs to be printed, move the nozzle assembly to the zero position, and the nozzle assembly starts printing from the zero position in turn Task, or, all the nozzle components that perform the printing task execute the same printing path, and after all the nozzle components reach the zero position, the printing task starts from the zero position along the printing path synchronously.
  • the printing task when the printhead assembly starts the printing task from the zero position in sequence, the printing task is composed of multiple sub-paths, all the sub-paths intersect at one point, and the intersection of the sub-paths is used as the zero position of the printing system.
  • the nozzle assembly corresponding to the printing material is selected as the nozzle assembly for the printing task, and each material corresponds to As a sub-path; take any sub-path as the current task path, move the common point calibration sensor 6 to the starting point of the current task path, move the current nozzle assembly corresponding to the current task path to the zero position, and calibrate the sensor at a common point 6 Evacuate; the current nozzle assembly moves along the current task path; after the current task path is completed, select the next path as the current path, and repeat the common point calibration sensor 6 zero calibration of the current nozzle assembly, and the current nozzle assembly moves along the current task path; Repeat until all sub-paths are printed.
  • the common point calibration sensor 6 is used to calibrate the starting position of the current nozzle assembly, so as to realize the continuous and cooperative printing of multiple materials and multiple nozzles, making it possible to print complex tissues of multiple materials.
  • the nozzle assembly corresponding to the printing material is selected as the nozzle assembly for the printing task, and the common point calibration sensor 6 is placed at the beginning of the printing path. All print head components that perform printing tasks reach the zero position, and the common point calibration sensor 6 is removed. All print head components that perform print tasks move synchronously along the print task path, and each print head component extrudes materials in the task path corresponding to its material; Close within the non-task path.
  • the main material is the dermis layer material, but in the part with blood vessels, the blood vessel material and the dermis layer material are extruded at the same time, or only the blood vessel material is extruded to realize the additive construction of the tissue.
  • the nozzle assembly of the vascular material is closed, and the nozzle assembly of the dermis material works.
  • a certain tissue is composed of a basic material, but living cells need to be planted on top of the structure of the basic material. Then, the nozzle assembly of the basic material works along the printing path and reaches the place where living cells need to be planted. When in position, the nozzle assembly corresponding to the living cell material is also turned on to incorporate the living cells.
  • the same printing path is composed of multiple materials. At this time, multiple nozzle assemblies are turned on at the same time to perform printing tasks. It is also possible that the two slice layers are of different materials. At this time, the nozzle assembly of the first slice layer material is turned on, and the nozzle assembly of the next slice layer material is closed. After the current slice layer printing task is completed, the current slice layer material The print head components are closed; all the print head components are displaced to the height of the next slice layer, and the print head component of the next slice layer material is used as the print head component of the current slice layer material, and the printing is turned on, and so on until the end of the printing task, and so on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Ink Jet (AREA)
  • Coating Apparatus (AREA)

Abstract

多喷头共点打印系统,包括挤出式的喷头组件,三轴向平移机构和载物台,喷头组件具有各自的喷嘴、储料桶和温控模块;三轴向平移机构包括X轴向平移单元、Y轴向平移单元和Z轴向平移单元,喷头组件安装于Z轴向平移单元;喷头组件有多个,打印系统具有共点校准传感器,共点校准传感器作为打印系统的坐标系原点。本发明的优点在于:本系统具有多个喷头组件能够协同或依次工作,打印模式灵活多变,能够实现材料的非均匀混合体系成型;设置预打印区域,对喷头组件的喷嘴尖端进行清洗、清洁,并保障在正式打印任务中物料的稳定输出;对打印器皿的外周式环绕温控和底部真空吸附装夹,有效保障成型活体结构的质量,提高活体组织的成活率。

Description

多喷头共点打印系统 技术领域
本发明涉及组织工程中的生物3D打印技术领域,特别涉及一种高精度生物打印设备的多喷头共点打印系统。
背景技术
全世界每年都有极其庞大数量的人员遭受各种类型的伤害导致组织缺损,或者发生一些重大疾病从而需要进行器官移植,产生巨大的组织器官修复需求。对于人体受损大块软组织及内脏器官的治疗,组织器官移植是一种极为有效的治疗方法。但是由于器官供体来源短缺、免疫排斥等问题存在,器官移植治疗在实际运用中存在难以克服的困难。而组织工程的提出为解决上述问题开辟了新的途径。组织工程是将活细胞通过某种方法附合在生物材料基质或者制备的支架上,来构建功能组织替代物。然后将构建的组织替代物进行培养以后植入患者体内,替换原有病变组织器官来恢复原有的身体机能实现对疾病治疗。目前组织工程皮肤的研究和运用就组织工程良好发展前景的有效例证。
近几年来,3D打印技术的迅猛发展,为工业制造开辟了新的制造生产模式。在生物领域内,生物打印、细胞三维受控组织等技术也应用而生。这些技术具有操作单个细胞或单成分微小尺寸液滴的能力,可以精确控制操作对象的空间位置和分布,对于实现大块组织和器官构建过程中不同种细胞和生物材料的空间位置沉积有着巨大的意义。因此,开发生物打印技术是未来组织工程研究的必然趋势。而在一个典型的生物打印设备中,最为关键的部分就是成形喷头系统。
为了满足大尺寸复杂组织器官的制造需求,特别对于肝脏等具有明显单元性结构的组织器官,往往需要多种材料复合使用。再比如打印皮肤时候需要打印血管等组织,用单一喷头的话会有一个较长时间的更换喷头的过程,这样会影响效率,而且还有可能刚刚这边换好喷头了那边的水凝胶就固化了,如果采用同一个喷头多个输液通道的话,又会导致喷头处材料混合的问题;且无法同时打印,效率更低。
市场上的单喷头以envisionTec为例,每次换材料都要移动喷头到新的喷头处,然后采用真空吸附的方式换刀,存在时间长、定位精度无法保证的问题。此外,如果打印类似肝细胞的离散六边形形状时,6块之间有空隙,会有较长时间的走线;这样严重限制了打印复杂器官的能力,打印时间过长,效率低。
发明内容
本发明的目的在于提供一种多喷头协作工作,提高复杂器官打印能力和效率的多喷头打印系统。
生物3D打印系统,包括挤出式的喷头组件和载物台,喷头组件具有各自的喷嘴、储料桶和温控模块;驱动喷头组件沿三轴向(X轴、Y轴和Z轴)平移的三轴向平移机构,三轴向平移机构包括X轴向平移单元、Y轴向平移单元和Z轴向平移单元,喷头组件安装于Z轴向平移单元。喷头可以在XOY平面的任意一点移动,并沿Z轴向升降;喷头组件具有独立的储料、挤出和打印功能;载物台是承接喷头组件挤出的物料。温控模块保持储料桶内的温度,使物料保持在打印时需要的温度。
多喷头打印系统
作为优选的方案,喷头组件有多个,每个喷头组件有各自的喷头支架,喷头支架具有与Z轴向平移单元相连的固定部和与喷头组件相连的安装部;固定部和安装部呈倾角,喷头组件倾斜设置。喷头组件的倾斜指的是与Z轴交叉呈夹角,喷嘴斜向下设置,避免储料桶之间发生运动干涉,使多个喷头组件能够同时协同工作。
作为优选的方案,喷头支架的固定部和安装部之间有角度调节机构。角度调节机构可以是设置于喷头支架和喷头组件之间的楔形块,或者,固定部和安装部铰接,安装部相对固定部转动,从而调节安装部与固定部之间的夹角,进而调节安装部上的喷头组件相对Z轴的角度。当达到指定角度时,将固定部和安装部之间的位置锁紧。锁紧的方式采用现有技术,比 如:棘轮棘爪机构,紧固螺钉的方式等。
优选的,喷嘴支架的截面呈直角三角形,喷嘴支架的斜边所在的面为安装部,喷嘴支架的其中一个直角边所在的面为固定部。喷嘴组件以在安装面内具有转动自由度。
优选的,至少一个喷头组件具有旋转机构,旋转机构设置于安装部与喷头组件之间;旋转机构的转动自由度与喷头组件统一。旋转机构以固定部为基准面,在固定部所在的平面内带动喷头组件转动,从而调节喷嘴相对工作平台的角度,以及各喷嘴之间的相对角度。
优选的,旋转机构包括旋转轴和旋转座,旋转座与喷头组件固定,旋转轴与喷头支架的安装部固定。对旋转座施加外力,旋转做绕旋转轴转动,进而带动喷头组件转动,调节喷嘴角度。
优选的,旋转机构是机械转盘,转盘作为旋转座,转盘与喷头支架之间设置锁紧螺钉或锁紧螺栓。锁紧螺钉或锁紧螺栓未锁止转盘和喷头支架时,转盘可以被转动,调节喷嘴角度。当喷嘴角度调整好后,用锁紧螺钉或锁紧螺栓锁紧转盘和喷头支架,转盘和喷嘴被定位。
或者,旋转轴与旋转电机相连。
优选的,旋转机构上安装一个或多个喷头组件;和、或每个喷头支架上安装一个或多个喷头组件;和、或,每个喷头支架上安装多个喷头组件,每个喷头组件和喷头支架之间设有各自的旋转机构。如此,可以通过在喷头支架上安装多个喷头组件,达到灵活扩展喷头数量的目的,并且,扩展的喷头可以具有旋转自由度,也可以是固定位置。
旋转机构的设置,使得喷头组件具有转动自由度,能够在行程范围内实现喷头尖端的任意角度位移,从而能够灵活的调节多个喷头组件之间的相对位置,使多喷头共点变成可能。多喷头共点,可以是在同一时刻内,多喷头对准同一指定点或区域。也可以是在不同的时间,喷头尖端对准同一个点或区域。
三轴向平移机构
作为优选的方案,每个喷头组件对应有各自的Z轴向平移单元;或者,至少两个喷头组件共用一个Z轴向平移单元。
优选的,X向平移机构包括固定龙门,移动龙门,与移动龙门配合的X向龙门导轨和与载物台配合的载物台导轨;固定龙门和移动龙门上分别设有各自的Y向导轨和Z向导轨,Z向导轨可滑动地安装于Y向导轨上,喷头支架可滑动地安装于Z向导轨上;每个喷头支架对应一个的Z向导轨和、或多个喷头支架共用一个Z向导轨。也就是说,可以是每个喷头支架安装在各自的Z向导轨上,或者是,多个喷头支架都安装在一个Z向导轨上;或者是,有一个喷头支架对应一个Z向导轨的,同时也有几个喷头支架共用一个Z向导轨的。
优选的,移动龙门和固定龙门对中,移动龙门上设有多个喷头组件,固定龙门上设有多个喷头组件。移动龙门的喷头组件的数量和固定龙门上的喷头组件的数量可以相同也可以不同。
优选的,移动龙门的喷头组件和固定龙门上的喷头组件关于移动龙门和固定龙门的中间面对称。
作为优选的方案,移动龙门有3个喷头组件,固定龙门有3个喷头组件,在同一个龙门的喷头组件、处于中间的喷头组件与喷头支架固定相连,其余喷头组件通过旋转机构与喷头支架连接。
优选的,载物台导轨位于移动龙门和固定龙门之间。
优选的,每个X向导轨的分别具有第一行程开关和第二行程开关,两个行程开关之间为运动行程。也就是说,移动龙门在其导轨的第一行程开关和第二行程开关之间平移;载物台在其导轨的第一行程开关和第二行程开关之间平移。
三轴向平移机构能够实现任意一个喷头组件在三维坐标系的任意点的位置的迁移。
多喷头共点打印
基于上述多喷头打印系统或者常规的多喷头打印机进行多喷头共点打印的方案,详述如下。
作为优选的方案,打印系统具有共点校准传感器,所有喷头组件的喷嘴触碰到共点传感器时,所有喷头组件的打印路劲起始点共点。用共点校准传感器将所有喷头组件的坐标系都统一到世界坐标系中。用共点校准传感器将所有喷头组件的坐标系都统一到世界坐标系中。
优选的,共点校准传感器包括校准盒,校准盒设有第一方向发射器、第一方向接收器、第二方向发射器和第二方向接收器;第一方向发射器到第一方向接收器的路径和第二方向发射器到第二方向接收器的路径有交点;以喷嘴的针尖触发交点作为喷头组件到达零位。每个喷头组件从零位开始进行打印任务。
优选的,第一方向和第二方向正交。优选的,第一方向是X轴向,第二方向是Y轴向;或者,第一方向是Y轴向,第二方向是X轴向。
优选的,第一方向发射器有多个,每个第一方向发射器有各自对应的第一方向接收器;第二方向发射器有多个,每个第二方向发射器有各自对应的第一方向接收器;两个方向的路径交点有多个;每个交点对应一个的喷头组件。校准时,只要喷头组件的喷嘴尖端到达共点校准传感器的校准区域内,即认为到达零位。所有喷头组件可以同时到达零位,那么,所有喷头组件可以在同一时间内并行的进行不同路劲的打印任务,每个喷头组件完成总任务的一部分。或者,多个喷头可以对同一个路劲进行同步协同打印,从而实现在一个打印路径上能够有不同的生物材料。
预打印模块
在上述多喷头打印系统和、或多喷头共点打印方案,和、或现有的3D打印系统中,设置预打印模块的方案,详述如下。
作为优选的方案,打印系统中具有预打印模块,预打印模块包括预打印基座,预打印基座上设有清洗喷嘴,回流槽,毛刷和切割线,清洗喷嘴位于回流槽内,毛刷位于回流槽旁边。清洗喷嘴喷出清洗液,用于洗涤喷头,之后清洗液汇集于回流槽,再排出;喷头组件的喷嘴尖端经过毛刷,毛刷将喷嘴尖端擦拭清洁;之后,喷头组件向外挤出物料,直到挤出的物料截面稳定后,喷头组件经过切割线,切割线切断喷嘴尖端出的物料,喷嘴组件移动到载物台,进行正式打印任务。
优选的方案,预打印模块具有预打印导轨,预打印模块可滑动的与预打印导轨配合;预打印模块具有运动驱动机构。在喷头组件预打印时,可以是喷头组件位置不动,预打印模块移动到喷头组件下方,预打印完成后,预打印模块撤离喷头组件,预打印模块的撤离顺序时,喷嘴尖端离开清洗喷嘴后,与毛刷接触,最后切割线切断喷嘴尖端的物料,预打印模块完成撤离。预打印模块撤离后,载物台运动到喷头组件下方。
预打印模块的设置目的是为了清洗喷头组件的喷嘴,清除上一次打印时的残留物料,并且,在挤出物料稳定后,再进行正式打印。
喷头组件
这里给出一种适用于上述多喷头打印系统、多喷头共点打印系统、具有预打印模块的打印系统和现有的3D打印系统的喷头组件结构。
作为优选的方案,喷头组件包括储料桶,与储料桶匹配的柱塞,温控模块和喷嘴,温控模块包括保温桶盖和保温桶底,储料桶具有被保温桶盖和保温桶底包裹在内的温控区域,温控区域与喷头之间的储料桶为保温区域,保温区域的储料桶设有保温套;保温桶盖和保温桶底密封连接形成介质腔或介质管道,介质腔或介质管道有加热件。加热件加热介质腔或介质管道内的介质,介质与储料桶进行热交换,达到对储料桶内物料的温度控制。
优选的,温控模块包括保温层和水冷却板,保温层位于保温桶底和水冷却板之间,水冷却板与喷头安装件相连,喷头安装件与喷头支架或者旋转机构连接。优选的,喷头安装件包括从水冷板的外缘向外延伸的翼板,翼板上设有螺孔。翼板通过螺钉或螺栓与喷头支架或旋转座固定。
优选的,介质腔或介质管道具有介质入口和介质出口,介质为液体导热介质,储料桶由导热医用金属材料制成。比如不锈钢就是一种常用的导热性好,并且具有良好的生物相容 性的导热医用金属材料,钛合金材料也是。液体导热介质可以是油。液体介质包裹住储料桶,温控的精度高,并且储料桶内的物料温差小,物料温度一致性好。
优选的,柱塞与气动执行机构相连。气动执行机构,比如气缸。喷嘴为注射器针头。
温控模块对储料桶进行温度控制,保持储料桶内的物料在指定的范围之内。并且,温控模块对储料桶进行定位和固定。
在进行生物组织3D打印时,需要使物料保持在给定的温度范围内,以便生物成分的生存和繁殖,因此,需要对储料桶进行温度控制和保温。喷头组件是3D打印系统中的一个独立部件。
载物台
这里给出一种适用于上述多喷头打印系统、多喷头共点打印系统、具有预打印模块的打印系统和现有的3D打印系统的载物台结构。
载物台是承接来自喷头组件的物料,实现增材叠加、最后形成3D实体构件的工作平台;本发明中的载物台可滑动的安装于载物台导轨上。
作为优选的方案,3D打印系统包括挤出式的喷头组件和载物台,载物台具有与打印器皿匹配的容腔。工作时,打印器皿位于容腔内,或者部分位于容腔内。这样,容腔覆盖打印器皿的部分都有安装温度控制模块(比如电热丝、油温腔等)的条件。
温度控制模块
这里给出一种与载物台结合的温控控制结构和方案。
作为优选的方案,载物台包括打印器皿和温度控制模块,温度控制模块包裹打印器皿的外周。
作为优选的方案,温度控制模块包括介质腔或介质管道,介质腔或介质管道具有容纳打印器皿的容腔介质腔具有介质入口和介质出口,具有工作温度的液体介质输入介质腔或介质管道内。也就是说,液体介质在介质腔之外达到指定温度后,再送入介质腔或介质管道内,液体介质被加热的地方可以是外接的介质容器和加热器,比如,油温机。具有工作温度的介质不断在外接的介质容器和介质腔之间循环,液体介质的总量大,相比只对介质腔内的少量介质进行温度控制的精度高、并且温度控制的难度降低。
优选的,介质腔是一个完整的连通腔体。
优选的,打印器皿是圆形器皿,介质腔为圆形腔体,或者,介质腔是螺旋管道。介质腔的形状只要是能够均匀地与打印器皿匹配即可。
夹具模块
为了防止工作过程中、打印器皿移动,这里提供一种针对打印器皿的装夹方案。
作为优选的方案,载物台包括夹具模块,夹具模块从底部固定打印器皿。
优选的,夹具模块包括吸附座,真空管路和真空气泵,吸附座上设有微孔阵列,微孔阵列与真空管路连通,真空管路与真空气泵相连。打印工作开始前,需要对打印器皿进行装夹固定,打印器皿放在吸附座上,真空气泵开启,在微孔阵列和真空管路的作用下,吸附座和打印器皿之间形成负压,打印器皿比固定。
优选的,微孔阵列由从内向外的多个阵列单元组成,所有阵列单元的中心重叠,每个阵列单元围成的轮廓与工作平台的形状相同或相似;每个阵列单元具有1个或多个微孔,相邻的微孔通过连通管路连通,每个阵列单元具有各自的阀组件,阀组件设置于真空管路上,或者阀组件设置于真空管路和真空气泵之间。比如,打印器皿是矩形,那么阵列单元是工作平台的相似矩形。通过设置阵列单元的形式来布置微孔,可以实现对不同尺寸的工作平台的装夹。
优选的,打印器皿为圆形器皿,阵列单元的微孔围成圆形,所有阵列单元呈同心圆布置,最中心的阵列单元为一个中心微孔。可以根据打印器皿的尺寸选择性的开启所有同心圆阵列或者其中一个(或几个)同心圆阵列,对打印器皿实现固定。
优选的,阵列单元的圆心位于吸附座的中心。吸附座只要具有容纳阵列单元的尺寸即 可,吸附座的形状不做限定。
多喷头协同生物打印方法
这里给出一种使用上述多喷头打印系统和、或多喷头共点打印系统进行的协同生物打印方法。
多喷头协同生物打印方法,执行以下操作:将共点校准传感器置于打印任务的路径起点,确定需要进行打印任务的喷头组件,将喷头组件移动到零位,喷头组件依次从零位开始打印任务,或者,所有进行打印任务的喷头组件执行同一条打印路径,喷头组件全部到达零位后,同步地沿打印路径从零位开始打印任务。
作为优选的方案,打印任务由多个子路径组成,所有子路径相交于一点,获得坐标系原点与交点的距离。或者,打印任务由多个子路径组成,子路径之间相互独立,获得每个子路径的起点位置,喷头组件各自执行子路径打印任务,喷头组件同时工作。
针对多材料间隔分布或几种材料交替分布的组织的打印方法,作为优选的方案,同一条打印路径中具有多种打印材料,则将打印材料对应的喷头组件选定为进行打印任务的喷头组件,每种材料对应的一段连续路径作为一个子路径;以任意子路径作为当前任务路径,将共点校准传感器移动到当前任务路径的起点,使当前任务路径对应的当前喷头组件移动到零位,共点校准传感器撤离;当前喷头组件沿当前任务路径运动;当前任务路径完成后,选择下一条路径作为当前路径,重复共点校准传感器对当前喷头组件的零位校准、当前喷头组件沿当前任务路径运动;重复,直到所有子路径打印完成。用共点校准传感器实现对当前喷头组件的起点位置校准,从而实现多材料、多喷头的连续协作打印,使多材料复杂组织的打印变成可能。
针对以某材料作为主体打印材料,但在局部需要添加或复合辅助材料的情况,作为优选的方案,将打印材料对应的喷头组件选定为进行打印任务的喷头组件,将共点校准传感器置于打印路径起点,所有进行打印任务的喷头组件到达零位,撤离共点校准传感器,所有进行打印任务的喷头组件沿着打印任务路径同步运动,每个喷头组件在其材料对应的任务路径内挤出物料;在非任务路径内关闭。
比如,在打印皮肤组织时,主要材料为真皮层材料,但在有血管的部位,血管材料跟真皮层材料同时挤出,或者仅血管材料挤出,实现组织的增材构建。血管部位打印完成后,血管材料的喷头组件关闭,真皮层材料的喷头组件工作。再比如,某种组织由一种基本材料构成,但在基本材料的结构之上,还需要种入活细胞,那么,基本材料的喷头组件沿着打印路径工作,在到达需要种入活细胞的位置时,活细胞材料对应的喷头组件也开启,将活细胞融入。还有可能是,同一条打印路径上由多种材料复合而成,这时,多个喷头组件同时开启,进行打印任务。还有可能是,两个切片层是不同材料,此时,第一个切片层材料的喷头组件开启,下一个切片层材料的喷头组件关闭,完成当前切片层打印任务后,当前切片层材料的喷头组件关闭;所有喷头组件位移到下一切片层的高度,以下一个切片层材料的喷头组件作为当前切片层材料的喷头组件,开启打印,如此不断进行,直到打印任务结束,等等。
本发明的优点在于:
1、本系统具有多个喷头组件,每个喷头组件至少具有3轴向平移自由度,某些喷头组件还增加了旋转自由度(即4个自由度),喷头组件的位置和角度可以调整,多喷头组件能够协同或依次工作,在一次打印任务中能够实现多路径、多材料打印,避免了对纳米级多细胞单元构件时的重复校准和循环打印加工,并且,一次成型有助于单元功能的表达;从单元层面提高了构建大组织结构及器官的效率,同时从功能层面提高了3D打印生物组织的质量。
2、多喷头协同工作,能够实现多种材料逐层交替打印、多种材料同层非均匀混合打印、单一材料打印、主材料局部复合附加材料等多种加料打印模式,打印模式灵活多变,能够实现材料的非均匀混合体系成型,更加真实的模拟实际生物体系。
3、每个喷头组件可以共用3轴向平移机构,也可以具有独立的运动自由度,多喷头可以在不同位置同步进行各自的打印任务。比如,打印肝脏时,每个喷头打印一个肝单元,或 者每个喷头打印肝单元的一部分。
4、设置预打印区域,对喷头组件的喷嘴尖端进行清洗、清洁,并保障在正式打印任务中物料的稳定输出。
5、载物台的打印器皿利用外周环绕式热交换进行温度控制,介质在外部介质容器中控温好后持续地、循环的输入介质腔内,介质温度控制精确,且控温容易。
6、通过底部吸附的方式进行打印器皿的装夹,根据打印器皿的大小选择接通阀组件的数量,实现对打印器皿的稳定和完全吸附。
7、对打印器皿的外周式环绕温控和底部真空吸附装夹,温度控制和装夹固定相互不干扰,能够对打印器皿进行可靠吸附,提高成型结构的精度,同时兼顾生物打印中对环境温度的需求,有效保障成型活体结构的质量,提高活体组织的成活率。
附图说明
图1是本发明的整体示意图。
图2是固定龙门上装载喷头组件的示意图。
图3是活动龙门上装载喷头组件的示意图。
图4是喷头组件安装在喷头支架的示意图。
图5是喷头支架上设有旋转座的示意图。
图6是喷头组件的示意图。
图7是共点校准传感器的示意图。
图8是预打印模块的示意图。
图9是预打印模块位安装于底座的示意图。
图10是载物台安装在载物台导轨上的示意图。
图11是打印器皿跟温度控制模块、夹具模块配合的示意图。
图12是夹具模块的原理图。
图13是载物台外接介质容器和真空气泵的示意图。
图中标识:行程开关K,底座1,载物台5,共点校准传感器6,打印器皿8,固定龙门21,移动龙门22,X轴向导轨31,Y轴向导轨,Z轴向导轨33,储料桶41,喷头支架42,温控模块43,喷嘴45,载物台导轨51,温度控制模块52,容腔53,吸附座54,第一方向发射器61,第一方向接收器62,第二方向发射器63,第二方向接收器64,预打印基座71,喷嘴72,回流槽73,毛刷74,物料承载区域75,切割线76,保温桶盖431,保温桶底432,水冷板433,保温层434,加热件435,保温套436,喷头安装件437,锁紧螺钉441,旋转座442,旋转轴443,介质入口521,介质出口522,微孔阵列541,真空管路542,阀组件543,真空气泵544,油温机560 具体实施方式
结合附图,详细说明本发明的结构和工作过程。
多喷头生物3D打印系统
如图1所示,本发明的多喷头生物3D打印系统,包括挤出式的喷头组件和载物台5,喷头组件具有各自的喷嘴45、储料桶41和温控模块43;驱动喷头组件沿三轴向(X轴31、Y轴32和Z轴33)平移的三轴向平移机构,三轴向平移机构包括X轴31向平移单元、Y轴32向平移单元和Z轴33向平移单元,喷头组件安装于Z轴33向平移单元。喷头可以在XOY平面的任意一点移动,并沿Z轴33向升降;喷头组件具有独立的储料、挤出和打印功能;载物台5是承接喷头组件挤出的物料。温控模块43保持储料桶41内的温度,使物料保持在打印时需要的温度。生物打印系统的喷头组件有多个,每个喷头组件有各自的喷头支架42,喷头支架42具有与Z轴33向平移单元相连的固定部和与喷头组件相连的安装部;固定部和安装部呈倾角,喷头组件倾斜设置。喷头组件的倾斜指的是与Z轴33交叉呈夹角,喷嘴45斜向下设置,避免储料桶41之间发生运动干涉,使多个喷头组件能够同时协同工作。
物料
在本发明里所述的物料指的是用于被打印机进行加工的一种材料或者混合物。当用本发明的3D打印机进行加工的时候,现有的一些生物材料可以被用来进行打印。例如,许多材料包括天然聚合物:胶原,丝纤维,明胶,海藻酸盐和合成聚合物:聚乙二醇(PEG)或者它们任意一种混合可以被用于本发明的打印机进行加工。这些作为生物3D打印的材料,也称为“生物墨水”。虽然材料本身属于传统材料,但是都可以采用被分发明的打印设备和方法进行打印。这种打印的生物材料具有立体空间结构,或者具有四维空间,可以设置任意的通孔的。这里的通孔一般是指平面的结构或者立体的结构。例如,在平面上具有孔,这孔的形状可以是任何形状,圆形,长方形,正方形,菱形等等。当多个面在不同的维度上,就形成了立体形状,立体形状的各个面或者多个面具有孔的结构,而且这些孔都具有一定的深度,这里各个孔之间可以相通,也可以不相通,或者部分相通,这样就形成了贯穿整个立体结构或者部分立体结构的通道。这样的结构采用本发明的打印机容易实现。
在一些方式中,本发明所说的料可以与干细胞混合在一起进行加工或者打印,这样,材料作为支架结构,而细胞作为活性成本可以进行分化,最终,形成具有活性的组织。当然,也可以打印出支架结构,然后让干细胞填充了骨架的空间里去,最终也形成活的组织。
总之,本发明的新设计的打印进可以打印任何合适材料。
在一些方式中,储料桶41为容纳生物材料的容器,具有良好的生物相容性,不同的储料桶41可以用于盛装同样的材料。可选的,在储料桶41里可以盛放不同的材料或者生物墨水,例如储料桶A盛放一种生物材料,储料桶B盛放另外一种生物材料,两种材料的性质不是一样的,采用本发明的打印技术,可以实现复杂生物组织或者器官的打印。这是因为,一种生物材料或者器官,在结构是并不是均匀一致的,而是具有结构或者生物性质上的差异。比如,哺乳动物的皮肤材料,具有表皮、真皮,真皮具有血管以及与肌肉连接的组织,这些不同部位的结构不同,厚度不同,还有各个组织之间的过度结构也是不同的,这种不同还包括密度、孔径等等。这样,如果需要通过传统的打印进行打印,所有的结构或者组织都是一样的,而通过本发明的打印技术,可以一次性进行不同结构的生物材料。
在一些具体的方式中,如图4所示,喷头支架42的固定部和安装部之间有角度调节机构。角度调节机构可以是设置于喷头支架42和喷头组件之间的楔形块,或者,固定部和安装部铰接,安装部相对固定部转动,从而调节安装部与固定部之间的夹角,进而调节安装部上的喷头组件相对Z轴33的角度。当达到指定角度时,将固定部和安装部之间的位置锁紧。锁紧的方式采用现有技术,比如:棘轮棘爪机构,紧固螺钉的方式等。
在一些具体的方式中,如图4所示,喷嘴45支架的截面呈直角三角形,喷嘴45支架的斜边所在的面为安装部,喷嘴45支架的其中一个直角边所在的面为固定部。喷嘴45组件以在安装面内具有转动自由度。
旋转机构
旋转机构的设置,使得喷头组件具有转动自由度,能够在行程范围内实现喷头尖端的任意角度位移,从而能够灵活的调节多个喷头组件之间的相对位置,使多喷头共点变成可能。多喷头共点,可以是在同一时刻内,多喷头对准同一指定点或区域。也可以是在不同的时间,喷头尖端对准同一个点或区域。
在一些具体的方式中,如图5所示,至少一个喷头组件具有旋转机构,旋转机构设置于安装部与喷头组件之间;旋转机构的转动自由度与喷头组件统一。旋转机构以固定部为基准面,在固定部所在的平面内带动喷头组件转动,从而调节喷嘴45相对工作平台的角度,以及各喷嘴45之间的相对角度。
在一些具体的方式中,旋转机构包括旋转轴443和旋转座442,旋转座442与喷头组件固定,旋转轴443与喷头支架42的安装部固定。对旋转座442施加外力,旋转做绕旋转轴 443转动,进而带动喷头组件转动,调节喷嘴45角度。
在一些具体的方式中,旋转机构是机械转盘,转盘作为旋转座442,转盘与喷头支架42之间设置锁紧螺钉441或锁紧螺栓。锁紧螺钉441或锁紧螺栓未锁止转盘和喷头支架42时,转盘可以被转动,调节喷嘴45角度。当喷嘴45角度调整好后,用锁紧螺钉441或锁紧螺栓锁紧转盘和喷头支架42,转盘和喷嘴45被定位。或者,旋转轴443与旋转电机相连。
在一些具体的方式中,旋转机构上安装一个或多个喷头组件;和、或每个喷头支架42上安装一个或多个喷头组件;和、或,每个喷头支架42上安装多个喷头组件,每个喷头组件和喷头支架42之间设有各自的旋转机构。如此,可以通过在喷头支架42上安装多个喷头组件,达到灵活扩展喷头数量的目的,并且,扩展的喷头可以具有旋转自由度,也可以是固定位置。
三轴向平移机构
三轴向平移机构能够实现任意一个喷头组件在三维坐标系的任意点的位置的迁移。
在一些具体的方式中,每个喷头组件对应有各自的Z轴33向平移单元;或者,至少两个喷头组件共用一个Z轴33向平移单元。
如图2和图3所示,X向31平移机构包括固定龙门21,移动龙门22,与移动龙门22配合的X向31龙门导轨和与载物台5配合的载物台5导轨51;固定龙门21和移动龙门22上分别设有各自的Y向导轨32和Z向导轨33,Z向导轨33可滑动地安装于Y向导轨32上,喷头支架42可滑动地安装于Z向导轨33上;每个喷头支架42对应一个的Z向导轨33和、或多个喷头支架42共用一个Z向导轨33。也就是说,可以是每个喷头支架42安装在各自的Z向导轨33上,或者是,多个喷头支架42都安装在一个Z向导轨33上;或者是,有一个喷头支架42对应一个Z向导轨33的,同时也有几个喷头支架42共用一个Z向导轨33的。
如图2和图3所示,移动龙门22和固定龙门21对中,移动龙门22上设有多个喷头组件,固定龙门21上设有多个喷头组件。移动龙门22的喷头组件的数量和固定龙门21上的喷头组件的数量可以相同也可以不同。
如图2和图3所示,移动龙门22的喷头组件和固定龙门21上的喷头组件关于移动龙门22和固定龙门21的中间面对称。
如图2和图3所示,移动龙门22有3个喷头组件,固定龙门21有3个喷头组件,在同一个龙门的喷头组件、处于中间的喷头组件与喷头支架42固定相连,其余喷头组件通过旋转机构与喷头支架42连接。通常来说,6个喷头组件可以满足大部分的打印任务。但当6个喷头组件无法满足打印任务时,可以优先从外侧的喷头组件扩展,将位于外侧的喷头组件扩展成两个或者两个以上喷头组件共用一个喷头支架42。
再一些具体的实施方式中,如图1所示,载物台5导轨51位于移动龙门22和固定龙门21之间。
如图1、2、3所示,每个X向导轨31的分别具有第一行程开关K和第二行程开关K,两个行程开关K之间为运动行程。也就是说,移动龙门22在其导轨的第一行程开关K和第二行程开关K之间平移;载物台5在其导轨的第一行程开关K和第二行程开关K之间平移。
喷头组件
在一些实施例中,喷头组件包括储料桶41,与储料桶41匹配的柱塞,温控模块43和喷嘴45,温控模块43包括保温桶盖431和保温桶底432,储料桶41具有被保温桶盖431和保温桶底432包裹在内的温控区域,温控区域与喷头之间的储料桶41为保温区域,保温区域的储料桶41设有保温套436;保温桶盖431和保温桶底432密封连接形成介质腔或介质管道,介质腔或介质管道有加热件435。加热件435加热介质腔或介质管道内的介质,介质与储料桶41进行热交换,达到对储料桶41内物料的温度控制。通常喷头组件的介质为水。加热件是电热丝或者半导体片等。
温控模块43包括保温层434和水冷却板,保温层434位于保温桶底432和水冷却板之 间,水冷却板与喷头安装件437相连,喷头安装件437与喷头支架42或者旋转机构连接。优选的,喷头安装件437包括从水冷板433的外缘向外延伸的翼板,翼板上设有螺孔。翼板通过螺钉或螺栓与喷头支架42或旋转座442固定。
介质腔或介质管道具有介质入口521和介质出口522,介质为液体导热介质,储料桶41由导热医用金属材料制成。比如不锈钢就是一种常用的导热性好,并且具有良好的生物相容性的导热医用金属材料,钛合金材料也是。液体导热介质可以是油。液体介质包裹住储料桶41,温控的精度高,并且储料桶41内的物料温差小,物料温度一致性好。
柱塞与气动执行机构相连。气动执行机构,比如气缸。喷嘴45为注射器针头。
温控模块43对储料桶41进行温度控制,保持储料桶41内的物料在指定的范围之内。并且,温控模块43对储料桶41进行定位和固定。
在进行生物组织3D打印时,需要使物料保持在给定的温度范围内,以便生物成分的生存和繁殖,因此,需要对储料桶41进行温度控制和保温。喷头组件是3D打印系统中的一个独立部件。
多喷头共点打印
在一些实施例中,如图7所示,生物3D打印系统具有多个喷头组件和共点校准传感器6,所有喷头组件的喷嘴45触碰到共点传感器时,所有喷头组件的打印路劲起始点共点。用共点校准传感器6将所有喷头组件的坐标系都统一到世界坐标系中。用共点校准传感器6将所有喷头组件的坐标系都统一到世界坐标系中。
在一些具体的实施方式中,如图7所示,共点校准传感器6包括校准盒,校准盒设有第一方向发射器61、第一方向接收器62、第二方向发射器63和第二方向接收器64;第一方向发射器61到第一方向接收器62的路径和第二方向发射器63到第二方向接收器64的路径有交点;以喷嘴45的针尖触发交点作为喷头组件到达零位。每个喷头组件从零位开始进行打印任务。
在一些具体的实施方式中,第一方向和第二方向正交。比如,第一方向是X轴向31,第二方向是Y轴32向;或者,第一方向是Y轴32向,第二方向是X轴向31。
在一些具体的实施方式中,第一方向发射器61有多个,每个第一方向发射器61有各自对应的第一方向接收器62;第二方向发射器63有多个,每个第二方向发射器63有各自对应的第一方向接收器62;两个方向的路径交点有多个;每个交点对应一个的喷头组件。校准时,只要喷头组件的喷嘴45尖端到达共点校准传感器6的校准区域内,即认为到达零位。所有喷头组件可以同时到达零位,那么,所有喷头组件可以在同一时间内并行的进行不同路劲的打印任务,每个喷头组件完成总任务的一部分。或者,多个喷头可以对同一个路劲进行同步协同打印,从而实现在一个打印路径上能够有不同的生物材料。
预打印模块
如图8、9所示,打印系统中具有预打印模块,预打印模块包括预打印基座71,预打印基座71上设有清洗喷嘴72,回流槽73,毛刷74,切割线76和物料承载区域75,清洗喷嘴72位于回流槽73内,毛刷74位于回流槽73旁边。清洗喷嘴72喷出清洗液,用于洗涤喷头,之后清洗液汇集于回流槽73,再排出;喷头组件的喷嘴45尖端经过毛刷74,毛刷74将喷嘴45尖端擦拭清洁;之后,喷头组件向外挤出物料,直到挤出的物料截面稳定后,喷头组件经过切割线76,切割线76切断喷嘴45尖端出的物料,喷嘴45组件移动到载物台5,进行正式打印任务。切割线76是金属细丝或者其他能够切断喷嘴45尖端物料的线状或丝状切割件。
物料承载区域75位于毛刷74和切割线76之间,喷嘴45先经清洁喷嘴45和毛刷74清洁后,再将物料挤出在物料承载区域75,等喷嘴45出料流量稳定后,喷嘴45组件再经过切割线。
优选的方案,预打印模块具有预打印导轨,预打印模块可滑动的与预打印导轨配合;预打印模块具有运动驱动机构。在喷头组件预打印时,可以是喷头组件位置不动,预打印模 块移动到喷头组件下方,预打印完成后,预打印模块撤离喷头组件,预打印模块的撤离顺序时,喷嘴45尖端离开清洗喷嘴72后,与毛刷74接触,最后切割线76切断喷嘴45尖端的物料,预打印模块完成撤离。预打印模块撤离后,载物台5运动到喷头组件下方。
预打印模块的设置目的是为了清洗喷头组件的喷嘴45,清除上一次打印时的残留物料,并且,在挤出物料稳定后,再进行正式打印。
载物台
如图9所示,载物台5是承接来自喷头组件的物料,实现增材叠加、最后形成3D实体构件的工作平台;本发明中的载物台5可滑动的安装于载物台5导轨51上。
在一些实施方式中,生物3D打印系统的载物台5包括打印器皿和温度控制模块52,温度控制模块52包裹打印器皿的外周。
温度控制模块52
生物3D打印系统使用的物料需要保持在指定的温度范围内,才能够实现物料的增材打印和提高生物组织的成活率。
在一些实施方式中,如图9所示,温度控制模块52包括介质腔或介质管道,介质腔或介质管道具有容纳打印器皿8的容腔53介质腔具有介质入口521和介质出口522,具有工作温度的液体介质输入介质腔或介质管道内。介质腔是一个完整的连通腔体。打印器皿是圆形器皿,介质腔为圆形腔体,或者,介质腔是螺旋管道。介质腔的形状只要是能够均匀地与打印器皿匹配即可。
温度控制模块52工作时,液体介质在介质腔之外达到指定温度后,再送入介质腔或介质管道内,液体介质被加热的地方可以是外接的介质容器和加热器,比如,油温机560。具有工作温度的介质不断在外接的介质容器和介质腔之间循环,液体介质的总量大,相比只对介质腔内的少量介质进行温度控制的精度高、并且温度控制的难度降低。
夹具模块
在一些实施方式中,如图11、12所示,载物台5包括夹具模块,夹具模块从底部固定打印器皿。
夹具模块包括吸附座54,真空管路542和真空气泵544,吸附座54上设有微孔阵列541,微孔阵列541与真空管路542连通,真空管路542与真空气泵544相连。打印工作开始前,需要对打印器皿进行装夹固定,打印器皿放在吸附座54上,真空气泵544开启,在微孔阵列541和真空管路542的作用下,吸附座54和打印器皿之间形成负压,打印器皿比固定。
微孔阵列541由从内向外的多个阵列单元组成,所有阵列单元的中心重叠,每个阵列单元围成的轮廓与工作平台的形状相同或相似;每个阵列单元具有1个或多个微孔,相邻的微孔通过连通管路连通,每个阵列单元具有各自的阀组件543,阀组件543设置于真空管路542上,或者阀组件543设置于真空管路542和真空气泵544之间。比如,打印器皿是矩形,那么阵列单元是工作平台的相似矩形。通过设置阵列单元的形式来布置微孔,可以实现对不同尺寸的工作平台的装夹。
打印器皿为圆形器皿,阵列单元的微孔围成圆形,所有阵列单元呈同心圆布置,最中心的阵列单元为一个中心微孔。可以根据打印器皿的尺寸选择性的开启所有同心圆阵列或者其中一个(或几个)同心圆阵列,对打印器皿实现固定。
优选的,阵列单元的圆心位于吸附座54的中心。吸附座54只要具有容纳阵列单元的尺寸即可,吸附座54的形状不做限定。
在一些具体的实施方式中,载物台5同时具有上述温度控制模块52和夹具模块,如图10所示。
以6个喷头组件的储料桶41内置6种不同物料共点打印为例介绍本发明的生物3D打印系统的工作流程:
打印开始前6个执行喷头坐标归零,依次进入清洗区停留在所述清洗液喷嘴45上让清 洗液冲洗,沿固定路径依次穿过擦拭毛刷74将表面擦净。所述6个执行喷头依次放入校准模块进行各自位姿坐标调零,以固定龙门21一侧中间喷头为基准,外侧4个喷头旋转电机向内旋转45°,由驱动电机移动各自执行喷头在其周围形成挤出末端共点。共点完成后各喷头驱动同步平动,移动至校准模块中检测共点误差。若误差在设定范围之外,则固定龙门21一侧中间喷头周围的5个喷头在各自Y32、Z轴33向电机驱动下微调自身位置,并再次进行检测;若误差在设定范围之内,则进行下一环节。所述共点喷头系移动到预打印区进行预工作,以打印矩形和圆弧为例,当挤出材料质量稳定后,移动穿过切割线76,切割线76高度设置为与喷头共点位置在水平方向同一高度上,以此切断喷嘴45处残留。所述共点喷头系移动到工作区器皿中,开始正式挤出打印。打印结束后外侧4个喷头旋转电机返回0°位置,所述6个喷头依次执行清洗操作后坐标归零。
三轴向平移机构,载物台5和预打印模块等都设置于底座1上,底座1能够为生物3D打印系统提供稳定的支撑,以及水平的基准面。
多喷头协同生物打印方法
本发明提供一种使用上述打印机实现多喷头共点打印的方法。多喷头协同生物打印方法,执行以下操作:将共点校准传感器6置于打印任务的路径起点,确定需要进行打印任务的喷头组件,将喷头组件移动到零位,喷头组件依次从零位开始打印任务,或者,所有进行打印任务的喷头组件执行同一条打印路径,喷头组件全部到达零位后,同步地沿打印路径从零位开始打印任务。
在一些实施例中,喷头组件依次从零位开始打印任务时,打印任务由多个子路径组成,所有子路径相交于一点,子路径的交点作为打印系统的零位。
针对多材料间隔分布或几种材料交替分布的组织的打印方法,同一条打印路径中具有多种打印材料,则将打印材料对应的喷头组件选定为进行打印任务的喷头组件,每种材料对应的一段连续路径作为一个子路径;以任意子路径作为当前任务路径,将共点校准传感器6移动到当前任务路径的起点,使当前任务路径对应的当前喷头组件移动到零位,共点校准传感器6撤离;当前喷头组件沿当前任务路径运动;当前任务路径完成后,选择下一条路径作为当前路径,重复共点校准传感器6对当前喷头组件的零位校准、当前喷头组件沿当前任务路径运动;重复,直到所有子路径打印完成。用共点校准传感器6实现对当前喷头组件的起点位置校准,从而实现多材料、多喷头的连续协作打印,使多材料复杂组织的打印变成可能。
针对以某材料作为主体打印材料,但在局部需要添加或复合辅助材料的情况,将打印材料对应的喷头组件选定为进行打印任务的喷头组件,将共点校准传感器6置于打印路径起点,所有进行打印任务的喷头组件到达零位,撤离共点校准传感器6,所有进行打印任务的喷头组件沿着打印任务路径同步运动,每个喷头组件在其材料对应的任务路径内挤出物料;在非任务路径内关闭。
比如,在打印皮肤组织时,主要材料为真皮层材料,但在有血管的部位,血管材料跟真皮层材料同时挤出,或者仅血管材料挤出,实现组织的增材构建。血管部位打印完成后,血管材料的喷头组件关闭,真皮层材料的喷头组件工作。再比如,某种组织由一种基本材料构成,但在基本材料的结构之上,还需要种入活细胞,那么,基本材料的喷头组件沿着打印路径工作,在到达需要种入活细胞的位置时,活细胞材料对应的喷头组件也开启,将活细胞融入。还有可能是,同一条打印路径上由多种材料复合而成,这时,多个喷头组件同时开启,进行打印任务。还有可能是,两个切片层是不同材料,此时,第一个切片层材料的喷头组件开启,下一个切片层材料的喷头组件关闭,完成当前切片层打印任务后,当前切片层材料的喷头组件关闭;所有喷头组件位移到下一切片层的高度,以下一个切片层材料的喷头组件作为当前切片层材料的喷头组件,开启打印,如此不断进行,直到打印任务结束,等等。
在缺少本文中所具体公开的任何元件、限制的情况下,可以实现本文所示和所述的发明。所采用的术语和表达法被用作说明的术语而非限制,并且不希望在这些术语和表达法的使用中排除所示和所述的特征或其部分的任何等同物,而且应该认识到各种改型在本发明的范围 内都是可行的。因此应该理解,尽管通过各种实施例和可选的特征具体公开了本发明,但是本文所述的概念的修改和变型可以被本领域普通技术人员所采用,并且认为这些修改和变型落入所附权利要求书限定的本发明的范围之内。
本文中所述或记载的文章、专利、专利申请以及所有其他文献和以电子方式可得的信息的内容在某种程度上全文包括在此以作参考,就如同每个单独的出版物被具体和单独指出以作参考一样。申请人保留把来自任何这种文章、专利、专利申请或其他文献的任何及所有材料和信息结合入本申请中的权利。

Claims (10)

  1. 多喷头共点打印系统,包括挤出式的喷头组件,三轴向平移机构和载物台,喷头组件具有各自的喷嘴、储料桶和温控模块;三轴向平移机构包括X轴向平移单元、Y轴向平移单元和Z轴向平移单元,喷头组件安装于Z轴向平移单元;其特征在于:喷头组件有多个,打印系统具有共点校准传感器,经共点校准传感器校准后、所有喷头组件的喷嘴共点。
  2. 如权利要求1所述的多喷头打印系统,其特征在于:共点校准传感器包括校准盒,校准盒设有第一方向发射器、第一方向接收器、第二方向发射器和第二方向接收器;第一方向发射器到第一方向接收器的路径和第二方向发射器到第二方向接收器的路径有交点;以喷嘴的针尖触发交点作为喷头组件到达零位。3、如权利要求2所述的多喷头打印系统,其特征在于:第一方向和第二方向正交。
  3. 如权利要求3所述的多喷头打印系统,其特征在于:第一方向发射器有多个,每个第一方向发射器有各自对应的第一方向接收器;第二方向发射器有多个,每个第二方向发射器有各自对应的第一方向接收器;两个方向的路径交点有多个;每个交点对应一个的喷头组件。
  4. 如权利要求1所述的多喷头打印系统,其特征在于:每个喷头组件对应有各自的Z轴向平移单元;或者,至少两个喷头组件共用一个Z轴向平移单元。
  5. 如权利要求5所述的多喷头打印系统,其特征在于:X向平移机构包括固定龙门,移动龙门,与移动龙门配合的X向龙门导轨和与载物台配合的载物台导轨;固定龙门和移动龙门上分别设有各自的Y向导轨和Z向导轨,Z向导轨可滑动地安装于Y向导轨上,喷头支架可滑动地安装于Z向导轨上;每个喷头支架对应一个的Z向导轨和、或多个喷头支架共用一个Z向导轨。也就是说,可以是每个喷头支架安装在各自的Z向导轨上,或者是,多个喷头支架都安装在一个Z向导轨上;或者是,有一个喷头支架对应一个Z向导轨的,同时也有几个喷头支架共用一个Z向导轨的。
  6. 如权利要求6所述的多喷头打印系统,其特征在于:移动龙门和固定龙门对中,移动龙门上设有多个喷头组件,固定龙门上设有多个喷头组件。
  7. 如权利要求6所述的多喷头打印系统,其特征在于:移动龙门的喷头组件和固定龙门上的喷头组件关于移动龙门和固定龙门的中间面对称。
  8. 如权利要求6所述的多喷头打印系统,其特征在于:移动龙门有3个喷头组件,固定龙门有3个喷头组件,在同一个龙门的喷头组件、处于中间的喷头组件与喷头支架固定相连,其余喷头组件通过旋转机构与喷头支架连接。
  9. 如权利要求1所述的多喷头打印系统,其特征在于:打印系统中具有预打印模块,预打印模块包括预打印基座,预打印基座上设有清洗喷嘴,回流槽,毛刷和切割线,清洗喷嘴位于回流槽内,毛刷位于回流槽旁边。
  10. 如权利要求10所述的多喷头打印系统,其特征在于:预打印模块具有预打印导轨,预打印模块可滑动的与预打印导轨配合;预打印模块具有运动驱动机构。
PCT/CN2020/110669 2019-08-22 2020-08-22 多喷头共点打印系统 WO2021032208A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022508553A JP7165960B2 (ja) 2019-08-22 2020-08-22 多ノズルヘッド共通点のプリントシステム
US17/578,398 US11993013B2 (en) 2019-08-22 2022-01-18 Multi-nozzle concurrent printing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910777590.1A CN110450417B (zh) 2019-08-22 2019-08-22 多喷头共点打印系统
CN201910777590.1 2019-08-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/578,398 Continuation US11993013B2 (en) 2019-08-22 2022-01-18 Multi-nozzle concurrent printing system

Publications (1)

Publication Number Publication Date
WO2021032208A1 true WO2021032208A1 (zh) 2021-02-25

Family

ID=68488496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110669 WO2021032208A1 (zh) 2019-08-22 2020-08-22 多喷头共点打印系统

Country Status (4)

Country Link
US (1) US11993013B2 (zh)
JP (1) JP7165960B2 (zh)
CN (1) CN110450417B (zh)
WO (1) WO2021032208A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113547606A (zh) * 2021-06-28 2021-10-26 中国矿业大学 用于3d打印相似物理模型的复合型喷嘴及其工作方法
CN114872319A (zh) * 2022-04-20 2022-08-09 杭州正向增材制造技术有限公司 空间打印装置及打印方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110450417B (zh) * 2019-08-22 2021-12-28 浙江大学 多喷头共点打印系统
CN114103105B (zh) * 2021-11-14 2023-09-26 杭州千岛泵业有限公司 一种生产聚丙烯防腐设备的工艺
CN114454485B (zh) * 2022-03-03 2023-11-03 芯体素(杭州)科技发展有限公司 一种用于清洗微纳3d打印头的装置及清洗方法
CN115179653B (zh) * 2022-07-11 2024-02-20 嘉兴学院 图案宽度和间距可调多材料电流体动力学打印设备及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205768058U (zh) * 2016-05-17 2016-12-07 江南大学 一种打印喷头组水平校准装置
US20180370116A1 (en) * 2017-06-27 2018-12-27 University Of Florida Research Foundation, Inc. Three-dimensional printing of reactive materials using intersecting jets
CN109421263A (zh) * 2017-08-28 2019-03-05 三纬国际立体列印科技股份有限公司 具有打印头维护单元的3d打印机及其打印头控制方法
CN109435474A (zh) * 2018-09-11 2019-03-08 华中科技大学 一种具有多电极环电场控制功能的多喷嘴联合电喷印喷头
WO2019111222A1 (en) * 2017-12-07 2019-06-13 GKN Aerospace North America, Inc. Coaxial wire feed multi-laser metal deposition device
CN110039774A (zh) * 2019-05-24 2019-07-23 杭州捷诺飞生物科技股份有限公司 3d打印机及其打印方法
CN110450417A (zh) * 2019-08-22 2019-11-15 浙江大学 多喷头共点打印系统
CN110450405A (zh) * 2019-08-22 2019-11-15 浙江大学 多喷头协同生物打印方法
CN110450418A (zh) * 2019-08-22 2019-11-15 浙江大学 多喷头打印系统
CN110549618A (zh) * 2019-08-22 2019-12-10 浙江大学 生物3d打印系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103935134B (zh) * 2014-04-16 2016-04-27 华北科技学院 一种单喷头多通道三维打印机及其使用方法
CN104908325A (zh) * 2015-06-15 2015-09-16 南京师范大学 基于uv光固化工艺的建筑打印成型方法
CN106725999B (zh) * 2017-01-12 2018-06-29 吉林大学 高精度超声防堵多细胞生物增材制造方法及装置
CN110039762B (zh) * 2019-04-10 2021-06-15 西安理工大学 一种多喷头协同的细胞/软组织3d打印装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205768058U (zh) * 2016-05-17 2016-12-07 江南大学 一种打印喷头组水平校准装置
US20180370116A1 (en) * 2017-06-27 2018-12-27 University Of Florida Research Foundation, Inc. Three-dimensional printing of reactive materials using intersecting jets
CN109421263A (zh) * 2017-08-28 2019-03-05 三纬国际立体列印科技股份有限公司 具有打印头维护单元的3d打印机及其打印头控制方法
WO2019111222A1 (en) * 2017-12-07 2019-06-13 GKN Aerospace North America, Inc. Coaxial wire feed multi-laser metal deposition device
CN109435474A (zh) * 2018-09-11 2019-03-08 华中科技大学 一种具有多电极环电场控制功能的多喷嘴联合电喷印喷头
CN110039774A (zh) * 2019-05-24 2019-07-23 杭州捷诺飞生物科技股份有限公司 3d打印机及其打印方法
CN110450417A (zh) * 2019-08-22 2019-11-15 浙江大学 多喷头共点打印系统
CN110450405A (zh) * 2019-08-22 2019-11-15 浙江大学 多喷头协同生物打印方法
CN110450418A (zh) * 2019-08-22 2019-11-15 浙江大学 多喷头打印系统
CN110549618A (zh) * 2019-08-22 2019-12-10 浙江大学 生物3d打印系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113547606A (zh) * 2021-06-28 2021-10-26 中国矿业大学 用于3d打印相似物理模型的复合型喷嘴及其工作方法
CN113547606B (zh) * 2021-06-28 2022-04-12 中国矿业大学 用于3d打印相似物理模型的复合型喷嘴及其工作方法
CN114872319A (zh) * 2022-04-20 2022-08-09 杭州正向增材制造技术有限公司 空间打印装置及打印方法
CN114872319B (zh) * 2022-04-20 2024-04-09 浙江正向增材制造有限公司 空间打印装置及打印方法

Also Published As

Publication number Publication date
JP7165960B2 (ja) 2022-11-07
CN110450417A (zh) 2019-11-15
US11993013B2 (en) 2024-05-28
CN110450417B (zh) 2021-12-28
JP2022536199A (ja) 2022-08-12
US20220134654A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
WO2021032208A1 (zh) 多喷头共点打印系统
CN110450405B (zh) 多喷头协同生物打印方法
CN110549618A (zh) 生物3d打印系统
US11738501B2 (en) System for additive manufacturing of three-dimensional structures and method for same
CN110450418B (zh) 多喷头打印系统
Ozbolat et al. Evaluation of bioprinter technologies
CN104441654B (zh) 一种三维生物打印装置及方法
CN111372785B (zh) 印刷机的印刷头部、印刷机和印刷方法
US20160159006A1 (en) Pneumatic manufacturing system for complex tissues and organs, having multiple degrees of freedom and multiple nozzles
CN110039762B (zh) 一种多喷头协同的细胞/软组织3d打印装置
CN102755203A (zh) 一种喷射与喷涂相结合的复杂组织器官制造系统
CN210062030U (zh) 3d打印机
CN115416283B (zh) 针对皮肤表皮层模型的生物3d打印制备系统及3d打印方法
AU2020102583A4 (en) Multi-head cooperative cell 3D printing device
CN112140530B (zh) 一种多模块串行生物3d打印装置
KR102323912B1 (ko) 가교제 분무 장치와 다발형 노즐이 결합된 이종 및 다층 수화젤 구조물 프린팅 시스템
KR102045271B1 (ko) 다중 패턴을 구현할 수 있는 3차원 프린팅 시스템 및 이를 이용한 3차원 프린팅 방법
Chen et al. A multi-material bioprinting platform towards stratified articular cartilage tissue fabrication
CN101567446B (zh) 空间锌银电池阴极片模块成型装置及其方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022508553

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855436

Country of ref document: EP

Kind code of ref document: A1