WO2021032100A1 - 网元分配方法及装置 - Google Patents

网元分配方法及装置 Download PDF

Info

Publication number
WO2021032100A1
WO2021032100A1 PCT/CN2020/109897 CN2020109897W WO2021032100A1 WO 2021032100 A1 WO2021032100 A1 WO 2021032100A1 CN 2020109897 W CN2020109897 W CN 2020109897W WO 2021032100 A1 WO2021032100 A1 WO 2021032100A1
Authority
WO
WIPO (PCT)
Prior art keywords
upf network
information
network elements
enterprise
network element
Prior art date
Application number
PCT/CN2020/109897
Other languages
English (en)
French (fr)
Inventor
陈殿福
邱雪峰
刘雁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021032100A1 publication Critical patent/WO2021032100A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • H04L41/044Network management architectures or arrangements comprising hierarchical management structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/12Discovery or management of network topologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • This application relates to the field of communication technology, and in particular to a network element allocation method and device.
  • the fifth generation (5G) mobile communication system introduces the concept of network slicing to cope with different communication services. Differences in requirements for network performance.
  • Network slicing refers to the customization of different logical networks based on different service requirements on physical or virtual network infrastructure.
  • a network slice can be a complete end-to-end network including terminal devices, access networks, transmission networks, core networks, and application servers, and can provide complete communication services.
  • the network slice can also be any combination of terminal equipment, access network, transmission network, core network, and application server.
  • the present application provides a network element allocation method and device, which are used to automatically select relevant network elements of the enterprise private line in a scenario where the enterprise private line is opened with the network slicing function, and to improve the efficiency of the operator in deploying the enterprise private line.
  • a network element allocation method including: a first network element receives first request information from a network slicing management network element, and the first request information is used to request allocation to an enterprise data center (DC) Target user plane function (UPF network element), the first request information includes the location information of the enterprise DC; after that, the first network element determines k target UPF network elements corresponding to the enterprise DC according to the location information of the enterprise DC, k is a positive integer; the first network element sends first indication information to the network slice management network element, where the first indication information is used to indicate k target UPF network elements.
  • DC enterprise data center
  • UPF network element Target user plane function
  • the first network element can automatically select the appropriate UPF network element for the enterprise DC according to the first request sent by the network slice management network element in real time. And notify the network slice management network element with the first instruction information.
  • the deployment of enterprise private lines eliminates the need for manual selection of network elements, which can improve the efficiency of operators in deploying enterprise private lines.
  • the first network element determines k target UPF network elements corresponding to the enterprise DC according to the location information of the enterprise DC, including: obtaining m candidate UPF network elements corresponding to the enterprise DC according to the location information of the enterprise DC
  • the information of the candidate UPF network element includes: location information of the candidate UPF network element, where m is a positive integer greater than or equal to k; and k target UPF network elements are determined from the m candidate UPF network elements.
  • the first network element obtains information of m candidate UPF network elements corresponding to the enterprise DC according to the location information of the enterprise DC, including: sending the second request information to the network repository function (NRF) ,
  • the second request information is used to request information about UPF network elements located in the same area as the enterprise DC, the second request information includes the location information of the enterprise DC; the second response information from the NRF is received, and the second response information includes m candidates UPF network element information, m candidate UPF network elements are located in the same area as the enterprise DC.
  • NRF network repository function
  • the first network element obtains the information of m candidate UPF network elements corresponding to the enterprise DC according to the location information of the enterprise DC, including: from the information of multiple UPF network elements stored in the first network element, Obtain information about m candidate UPF network elements.
  • n candidate UPF network elements are located in n operator DCs, and n is a positive integer less than or equal to m.
  • the first network element determines k target UPF network elements from m candidate UPF network elements, including: when the m candidate UPF network elements support increased bandwidth, determine from n operator DCs k target operators DC, k target operators are the k operators DC with the smallest distance from the enterprise DC among the n operator DCs, and k is less than or equal to n; for the k target operators DC
  • Each target operator DC determines a target UPF network element from the candidate UPF network elements included in the target operator DC, and the target UPF network element is a candidate UPF network element in the target operator DC that meets preset conditions. It is understandable that when k is greater than or equal to 2, based on this design, redundant backup can be implemented.
  • the first network element determines k target UPF network elements from m candidate UPF network elements, including: in the case that m candidate UPF network elements support increased bandwidth, according to the location information of the enterprise DC, And the location information of the m candidate UPF network elements, obtain the distance information of each candidate UPF network element among the m candidate UPF network elements, the distance information is used to indicate the distance between the candidate UPF network element and the enterprise DC; according to the m candidates Distance information of UPF network elements, select k target UPF network elements from m candidate UPF network elements, and k target UPF network elements are the k ones with the smallest distance from the enterprise DC among the m candidate UPF network elements Candidate UPF network element.
  • the first request information further includes bandwidth information of the enterprise DC, and the bandwidth information of the enterprise DC is used to indicate the bandwidth required by the enterprise DC;
  • the information of the candidate UPF network element also includes: bandwidth information of the candidate UPF network element, The bandwidth information of the candidate UPF network element is used to indicate the bandwidth that the candidate UPF network element can provide.
  • the first network element determines k target UPF network elements from m candidate UPF network elements, including: in the case that the m candidate UPF network elements do not support increased bandwidth, according to the location information of the enterprise DC , And the location information of the m candidate UPF network elements, obtain the distance information of each candidate UPF network element in the m candidate UPF network elements, the distance information is used to indicate the distance between the candidate UPF network element and the enterprise DC; according to m The distance information of the candidate UPF network elements, the bandwidth information of the m candidate UPF network elements, and the bandwidth information of the enterprise DC, select k target UPF network elements from the m candidate UPF network elements, provided by the k target UPF network elements The sum of bandwidth is greater than or equal to the bandwidth required by the enterprise DC, and the k target UPF network elements are the k candidate UPF network elements with the smallest distance from the enterprise DC among the m candidate UPF network elements. It is understandable that, based on this design, on the one hand, it meets the
  • the first network element obtains the distance information of each candidate UPF network element among the m candidate UPF network elements according to the location information of the enterprise DC and the position information of the m candidate UPF network elements, including:
  • the geographic information system (GIS) sends the third request information, which is used to request the distance information of each candidate UPF network element among the m candidate UPF network elements;
  • the third request information includes: the location of the enterprise DC Information, and location information of m candidate UPF network elements; receiving third response information from the GIS, the third response information including distance information of m candidate UPF network elements.
  • the first request information is also used to request the allocation of a target session management function (session management function, SMF network element) to the enterprise DC.
  • the information of the candidate UPF network element also includes the SMF network element area identifier corresponding to the candidate UPF network element.
  • the method further includes: the first network element determines p target SMF network elements according to the SMF network element area identifiers corresponding to the k target UPF network elements, and p is a positive integer;
  • the slice management network element sends second indication information, where the second indication information is used to indicate p target SMF network elements.
  • a device in a second aspect, may be a first network element, or a chip or a system on a chip in the first network element.
  • the device may include modules that perform one-to-one correspondence of the methods/operations/steps/actions described in the first aspect.
  • the modules may be hardware circuits, software, or hardware circuits combined with software.
  • the device may include a processing module and a communication module.
  • the communication module is configured to receive first request information from a network slicing management network element, the first request information is used to request the allocation of a target UPF network element to the enterprise DC, and the first request information includes location information of the enterprise DC.
  • the processing module is used to determine k target UPF network elements corresponding to the enterprise DC according to the location information of the enterprise DC, where k is a positive integer.
  • the communication module is further configured to send first indication information to the network slice management network element, where the first indication information is used to indicate k target UPF network elements.
  • the processing module is specifically used to obtain the information of m candidate UPF network elements corresponding to the enterprise DC according to the location information of the enterprise DC.
  • the candidate UPF network element information includes: the location information of the candidate UPF network element, m is a positive integer greater than or equal to k; and, determining k target UPF network elements from the m candidate UPF network elements.
  • the communication module is also used to send second request information to the NRF, the second request information is used to request information about UPF network elements located in the same area as the enterprise DC, and the second request information includes the location of the enterprise DC Information; and, receiving second response information from the NRF, the second response information including information about m candidate UPF network elements, and the m candidate UPF network elements are located in the same area as the enterprise DC.
  • the processing module is specifically configured to obtain information of m candidate UPF network elements from the information of multiple UPF network elements stored in advance.
  • n candidate UPF network elements are located in n operator DCs, and n is a positive integer less than or equal to m.
  • the processing module is specifically used to determine k target operator DCs from n operator DCs when m candidate UPF network elements support increased bandwidth.
  • the k target operators are in n Among the three operator DCs, the k operator DCs with the smallest distance from the enterprise DC are less than or equal to n; for each target operator DC in the k target operator DCs, from the target operator DC contained Among the candidate UPF network elements, a target UPF network element is determined, and the target UPF network element is a candidate UPF network element in the target operator DC that meets the preset conditions.
  • the processing module is specifically used to obtain m candidate UPF based on the location information of the enterprise DC and the location information of the m candidate UPF network elements when m candidate UPF network elements support increased bandwidth
  • the distance information of each candidate UPF network element in the network element is used to indicate the distance between the candidate UPF network element and the enterprise DC; according to the distance information of the m candidate UPF network elements, select from the m candidate UPF network elements
  • There are k target UPF network elements and the k target UPF network elements are the k candidate UPF network elements with the smallest distance from the enterprise DC among the m candidate UPF network elements.
  • the first request information further includes bandwidth information of the enterprise DC, and the bandwidth information of the enterprise DC is used to indicate the bandwidth required by the enterprise DC;
  • the information of the candidate UPF network element also includes: bandwidth information of the candidate UPF network element, The bandwidth information of the candidate UPF network element is used to indicate the bandwidth that the candidate UPF network element can provide.
  • the processing module is specifically used to obtain m candidates based on the location information of the enterprise DC and the location information of the m candidate UPF network elements when m candidate UPF network elements do not support increased bandwidth
  • the distance information of each candidate UPF network element in the UPF network element is used to indicate the distance between the candidate UPF network element and the enterprise DC; according to the distance information of m candidate UPF network elements, the bandwidth of m candidate UPF network elements Information and bandwidth information of the enterprise DC, select k target UPF network elements from the m candidate UPF network elements, the sum of the bandwidth provided by the k target UPF network elements is greater than or equal to the bandwidth required by the enterprise DC, and k target UPF
  • the network element is the k candidate UPF network elements with the smallest distance from the enterprise DC among the m candidate UPF network elements.
  • the communication module is also used to send third request information to the GIS.
  • the third request information is used to request the distance information of each candidate UPF network element among the m candidate UPF network elements; the third request information includes : Location information of the enterprise DC and location information of the m candidate UPF network elements; receiving the third response information from the GIS, the third response information including the distance information of the m candidate UPF network elements.
  • the first request information is also used to request the allocation of the target SMF network element to the enterprise DC; the information of the candidate UPF network element further includes the SMF network element area identifier corresponding to the candidate UPF network element.
  • the processing module is also used to determine p target SMF network elements according to the SMF network element area identifiers corresponding to the k target UPF network elements, and p is a positive integer; the communication module is also used to slice into the network The management network element sends second indication information, where the second indication information is used to indicate p target SMF network elements.
  • a communication device including: a processor and a memory, the memory is coupled to the processor, the memory stores instructions, and when the processor executes the instructions, the communication device Perform any of the methods involved in the design of the first aspect described above.
  • the communication device may further include a communication interface for the communication device to communicate with other devices.
  • the communication interface may be a transceiver, circuit, bus, module, or other types of communication interfaces .
  • a computer-readable storage medium stores instructions. When the instructions are run on a computer, the computer can execute any of the methods involved in the design in the first aspect. .
  • a computer program product contains instructions that, when the computer program product runs on a computer, enable the computer to execute the method involved in any one of the designs in the first aspect.
  • a chip in a sixth aspect, includes a processor, and when the processor executes an instruction, the processor is used to execute any method involved in the design in the first aspect.
  • the instruction can come from the internal memory of the chip or the external memory of the chip.
  • the chip also includes input and output circuits.
  • a communication system is provided, and a network slicing management network element and a first network element are provided.
  • the network slicing management network element is used to send first request information to the first network element, the first request information is used to request to allocate a target user plane function UPF network element to the enterprise DC, and the first request information includes the enterprise DC location information; and receiving first indication information sent by the first network element, where the first indication information is used to indicate k target UPF network elements.
  • the first network element is configured to receive the first request information; according to the location information of the enterprise DC, determine k target UPF network elements corresponding to the enterprise DC, where k is a positive integer; and send the first indication information to the network slice management network element.
  • FIG. 1 is a schematic diagram of a network slicing architecture provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of the architecture of a network element allocation system provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a system architecture of a 5G network provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 5 is a flowchart of a network element allocation method provided by an embodiment of this application.
  • FIG. 6 is a flowchart of another network element allocation method provided by an embodiment of this application.
  • FIG. 7 is a flowchart of another network element allocation method provided by an embodiment of the application.
  • FIG. 8 is a flowchart of another network element allocation method provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the application.
  • A/B can mean A or B.
  • the "and/or” in this article is only an association relationship describing the associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone These three situations.
  • “at least one” means one or more
  • “plurality” means two or more. The words “first” and “second” do not limit the quantity and order of execution, and the words “first” and “second” do not limit the difference.
  • the identifier may be called an index, a name, etc., which is not limited in the embodiment of the present application.
  • instructions can include direct instructions and indirect instructions, as well as explicit instructions and implicit instructions.
  • the information indicated by a certain piece of information (the first indication information and the second indication information as described below) is referred to as information to be indicated.
  • the information to be indicated may be directly indicated, wherein the information to be indicated itself or the index of the information to be indicated, etc.
  • the information to be indicated can also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated.
  • it is also possible to realize the indication of specific information by means of the pre-arranged order (for example, stipulated by the agreement) of each information, thereby reducing the indication overhead to a certain extent.
  • FIG. 1 it is a schematic diagram of a network slicing architecture provided by an embodiment of this application.
  • a business support system may include communication service management function (communication service management function, CSMF) network elements.
  • the CSMF network element is mainly responsible for transforming the telecom service requirements of operators and/or third-party customers into the requirements for network slicing, and sending the requirements for network slicing to the network slice management function (NSMF). End, modify requirements, etc.), and receive subscription requirements for network slice management data (such as performance data, fault data, fault repair data, etc.) from operators and/or third-party customers, so that NSMF network elements can obtain network slice instance management Data etc.
  • NSMF network slice management function
  • the NSMF network element is mainly responsible for receiving end-to-end network slicing management requirements sent from the CSMF network element, and managing the life cycle, performance, and failure of the network slicing instance.
  • NSMF network elements orchestrate the management actions of network slice instances, and decompose the end-to-end network slice management requirements into the requirements of each network slice subnet instance, including access network (radio access network, RAN), transport network (transport network, TN) ) And core network (core network, CN) requirements, respectively send network slice subnet instance (network slice subnet instance, NSSI) management requests to NSSMF network elements.
  • the network slice subnet management function (NSSMF) is mainly responsible for receiving network slice subnet management requirements sent by NSMF network elements, managing network slice subnet instances, and orchestrating actions within the network slice subnet instances.
  • the specific actions within the network slicing subnet include decomposing the needs of the network slicing subnet instance into network functions and/or the needs of the nested network slicing subnet instance, and may send the nested network slicing subnet instance management to other NSSMF network elements request.
  • the NSSMF network element also needs to perform life cycle management, performance management, and fault management on the managed NSSI, and feed back the management data and measurement data of the NSSI to the NSMF network element.
  • the NSSMF network element of the TN domain is implemented based on a software defined network (software defined network, SDN) adapter (adapter).
  • SDN software defined network
  • the SDN adapter can manage IP domains and enterprise customer premise equipment (customer premise equipment, CPE).
  • CPE customer premise equipment
  • Management and orchestration mainly responsible for the management of network function virtualisation (NFV) infrastructure (NFV Infrastructure, NFVI), orchestration and distribution of network services (NS) and virtual network functions (virtual network function, VNF) required resources.
  • NFV network function virtualisation
  • NS network services
  • VNF virtual network function
  • the charging function (CHF) and the element management system (EMS) can be deployed in the core network.
  • the billing function is used to bill individual users/enterprise users for resources such as network slicing.
  • the EMS can modify service parameters according to the instructions of the NSSMF network element.
  • the enterprise slice of the core network includes: control plane (CP) network elements and user plane (UP) network elements.
  • the user slice of the core network includes: control plane network elements and user plane network elements.
  • control plane network elements include but not limited to SMF network elements
  • user plane network elements include but are not limited to UPF network elements.
  • the user plane network elements of the user slice of the core network can be directly connected to the user slice of the IP domain.
  • the corporate leased line requirements include at least one of the following: (1) Location information and bandwidth information of each enterprise DC among multiple enterprise DCs; (2) International mobile subscriber identification number (IMSI) list, the IMSI list is used to record IMSIs that can be connected to enterprise private lines; (3) Isolation requirements, for example, isolation requirements can be high or medium Or low.
  • IMSI International mobile subscriber identification number
  • the BSS/CSMF network element generates the corresponding business template according to the enterprise private line requirements entered by the enterprise user. After that, the BSS/CSMF network element sends the service template to the NSMF network element.
  • NSMF network elements can allocate corresponding network slices for enterprise users according to the isolation requirements entered by enterprise users. For example, when the isolation requirement entered by the enterprise user is medium, the NSMF network element can allocate an enterprise shared slice for the enterprise user; when the isolation requirement entered by the enterprise user is low, the NSMF network element can allocate one for the enterprise user User slices. After allocating network slices to enterprise users, the NSMF network element can allocate a dedicated S-NSSAI for the enterprise user, so that the operator can perform access management and billing management on the enterprise user based on the S-NSSAI.
  • NSSMF network elements in various fields complete the parameter configuration of network slicing according to the requirements of enterprise private lines in this field.
  • the NSSMF network elements of the core network need to be configured with corresponding network elements for enterprise private lines in the network slice, such as SMF network elements, UPF network elements, and so on.
  • NSSMF network elements in various fields send the configuration results to the BSS after completing the parameter configuration of the network slicing.
  • the BSS completes the configuration of the contract information of the enterprise employees according to the enterprise dedicated line requirements entered by the enterprise users. In this way, the operator completes the opening of the enterprise dedicated line, and enterprise employees can use the enterprise dedicated line. Specifically, the terminal of the enterprise employee accesses the mobile network according to the S-NSSAI corresponding to the enterprise user, and establishes a session.
  • the UPF network element assigned to the enterprise private line can route the session data packet to the enterprise VPN.
  • the NSSMF network element of the core network allocates UPF network elements and SMF network elements for enterprise private lines in the entire network.
  • the problem with this solution is: (1) The number of UPF network elements and SMF network elements in the entire network is huge. Therefore, operators need to modify the configuration of a huge number of UPF network elements and SMF network elements, which requires a large amount of engineering. As a result, the opening efficiency of enterprise private lines is low. (2) The number of SMEs is relatively large. With the increase of enterprise users who have opened corporate private lines, operators cannot support the configuration of configuration information for every enterprise that has opened corporate private lines on every UPF network element and SMF network element.
  • the NSSMF network element of the core network can only configure the UPF network element and SMF network element near the enterprise DC to reduce the number of network elements that need to be configured.
  • the network element distribution system includes: a first network element 101 and a network slice management network element 102.
  • the network slicing management network element 102 is used to send first request information to the first network element 101, the first request information is used to request the allocation of UPF network elements to the enterprise DC, and the first request information includes location information of the enterprise DC .
  • the first network element 101, the network slice management network element 102, the NRF network element 103, and the geographic information system 104 in FIG. 2 can be implemented by one physical device, or can be implemented by multiple physical devices, or It is a logical function module in a physical device, which is not limited in the embodiment of the present application.
  • FIG. 4 shows a schematic diagram of the hardware structure of a communication device provided by an embodiment of the application.
  • the communication device includes at least one processor 201, a communication line 202, a memory 203, and at least one communication interface 204.
  • the processor 201 can be a general-purpose central processing unit (central processing unit, CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more programs for controlling the execution of the program of this application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 202 is used to transmit information between the aforementioned components.
  • the memory 203 can be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory can exist independently and is connected to the processor through the communication line 202. The memory can also be integrated with the processor.
  • the memory 203 is used to store computer-executed instructions for executing the solution of the present application, and the processor 201 controls the execution.
  • the processor 201 is configured to execute computer-executable instructions stored in the memory 203, so as to implement the session establishment method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4.
  • the communication device may further include an output device 205 and an input device 206.
  • the output device 205 communicates with the processor 201 and can display information in a variety of ways.
  • the output device 205 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector (projector) Wait.
  • the input device 206 communicates with the processor 201 and can receive user input in a variety of ways.
  • the input device 206 may be a mouse, a keyboard, a touch screen device, a sensor device, or the like.
  • a network slice management network element sends first request information to a first network element, and accordingly, the first network element receives the first request information from the network slice management network element.
  • the first request information is used to request the allocation of target UPF network elements for the enterprise.
  • the target UPF network element is the UPF network element that provides services for the enterprise DC.
  • the target UPF network element is the UPF network element whose parameters need to be configured during the process of opening the enterprise private line for the network slice management network element.
  • the first request information may include location information of the enterprise DC.
  • the location information of the enterprise DC may be latitude and longitude coordinates, geographic names, and the like. Geographical names can include: city names, street names in the city, etc.
  • the first network element determines k target UPF network elements according to the location information of the enterprise DC.
  • the first network element obtains information of m candidate UPF network elements corresponding to the enterprise DC according to the location information of the enterprise DC. After that, the first network element determines k target UPF network elements from the m candidate UPF network elements. Among them, k is a positive integer, and m is a positive integer greater than or equal to k.
  • the information of the candidate UPF network element includes at least: the identifier of the candidate UPF network element and the location information of the candidate UPF network element.
  • the location information of the candidate UPF network element may be: geographic name, latitude and longitude coordinates, etc.
  • the information of the candidate UPF network element may indicate the operator DC where the candidate UPF network element is located.
  • the information of the candidate UPF network element includes the location information of the candidate UPF network element, and the location information of the candidate UPF network element is the location information of the operator DC where the candidate UPF network element is located.
  • the information of the candidate UPF network element also includes the identifier of the operator DC where the candidate UPF network element is located.
  • the first network element may store information of multiple UPF network elements in the form of a table.
  • the first network element may also store the information of multiple UPF network elements in other ways, which is not limited in the embodiment of the present application.
  • Table 1 is used to store information of multiple UPF network elements.
  • Table 1 when the location information of the enterprise DC is Beijing, and the candidate UPF network element and the enterprise DC are located in the same city, the first network element can determine that the candidate UPF network element is UPF network element #1 And UPF network element #3.
  • the first network element obtains information of m candidate UPF network elements from other devices.
  • the first network element obtains information of m candidate UPF network elements from the NRF.
  • steps S201-S203 in FIG. 6 refer to steps S201-S203 in FIG. 6.
  • the first network element determines k target UPF network elements from the m candidate UPF network elements, and one of the following implementation manners may be adopted:
  • the value of k is preset or set according to the needs of the enterprise.
  • the distance information of the candidate UPF network element is used to indicate the distance between the candidate UPF network element and the enterprise DC.
  • the k target UPF network elements are the k candidate UPF network elements with the smallest distance from the enterprise DC among the m candidate UPF network elements.
  • the m candidate UPF network elements include UPF network element #1, UPF network element #2, UPF network element #3, and UPF network element #4.
  • the distance between UPF network element #1 and enterprise DC is 10 kilometers
  • the distance between UPF network element #2 and enterprise DC is 9 kilometers
  • the distance between UPF network element #3 and enterprise DC is 8.
  • Km the distance between UPF network element #4 and the enterprise DC is 7 km.
  • UPF network element #3 and UPF network element #4 are target UPF network elements.
  • the first network element determines k target operator DCs from the n operator DCs. After that, for each target operator DC of the k target operators DC, the first network element determines a target UPF network element from the candidate UPF network elements included in the target operator DC.
  • k is less than or equal to n.
  • the value of k is preset or set according to the needs of the enterprise.
  • the target UPF network element is a candidate UPF network element in the target operator DC that meets the preset conditions.
  • the aforementioned load may refer to the ratio between the maximum bandwidth currently provided by the UPF network element and the occupied bandwidth.
  • the first network element can determine that the k target UPF network elements are: UPF network element #4, UPF network element #3, and UPF network element #2.
  • the first network element may be based on the location information of the enterprise DC Determine the distance information of the candidate UPF network element with the location information of the candidate UPF network element; or, the first network element may also obtain the distance information of the candidate UPF network element from other devices.
  • the first network element may obtain distance information of m candidate UPF network elements from the GIS, and the specific implementation steps may refer to steps S301-S303 in FIG. 7.
  • the first network element sends first indication information to the network slice management network element, and correspondingly, the network slice management network element receives the first indication information from the first network element.
  • the first indication information may further include an identification of the enterprise DC to indicate the enterprise DC corresponding to the first indication information.
  • the first indication information may be carried in a network function assignment response (NFAssignment Response).
  • NFAssignment Response a network function assignment response
  • the network element allocation method further includes steps S201-S203 after step S101.
  • the second request information is used to request information about UPF network elements located in the same geographic area as the enterprise DC.
  • the second request information is used to request information about candidate UPF network elements corresponding to the enterprise DC.
  • the second request information includes location information of the enterprise DC.
  • the second request information is carried in a UPF network element information request (for example: UPF info Request); or, the second request information is carried in a network function discovery request (for example: Nnrf_NFDiscovery Request).
  • a UPF network element information request for example: UPF info Request
  • a network function discovery request for example: Nnrf_NFDiscovery Request
  • the network function discovery request used in the embodiment of the present application adds one information element to carry the location information of the enterprise DC.
  • the NRF determines information of m candidate UPF network elements according to the location information of the enterprise DC.
  • the NRF pre-stores the information of multiple UPF network elements.
  • step S202 For the implementation manner of step S202, reference may be made to the related description of the implementation manner (1-1) above, which will not be repeated here.
  • the second response information includes information of m candidate UPF network elements.
  • the second response information may include multiple information elements.
  • the information element may include information about one candidate UPF network element; or, the information element may include information about one or more candidate UPF network elements located in the same operator DC.
  • the second response information can be transmitted as a whole, or divided into multiple sub-information to be transmitted separately.
  • the second response information is carried in a UPF network element information response (for example: UPF info response); or, the second response information is carried in a network function discovery response (for example: Nnrf_NFDiscovery Response).
  • a UPF network element information response for example: UPF info response
  • a network function discovery response for example: Nnrf_NFDiscovery Response
  • the first network element can obtain information of m candidate UPF network elements from the NRF, so that the first network element can determine k target UPF network elements.
  • the network element allocation method further includes steps S301-S303 after step S101.
  • the first network element sends the third request information to the GIS, and accordingly, the GIS receives the third request information from the first network element.
  • the third request information is used to request the distance information of each candidate UPF network element among the m candidate UPF network elements.
  • the distance information of the candidate UPF network element is used to indicate the distance between the candidate UPF network element and the enterprise DC.
  • the third request information includes location information of the enterprise DC and location information of m candidate UPF network elements.
  • the third request information may also include an identification of the enterprise DC to indicate the enterprise DC corresponding to the third request information.
  • the third request information may be carried in a UPF network element distance information request (for example: UPF Distance Info Request).
  • GIS is a computer system with functions such as collecting, storing, operating, and displaying geographic reference information.
  • the GIS can be built by the operator itself or provided by a third-party service provider.
  • the GIS determines distance information of m candidate UPF network elements.
  • the location information of the enterprise DC includes the longitude and latitude coordinates of the enterprise DC
  • the location information of the candidate UPF network element includes the longitude and latitude coordinates of the candidate UPF network element.
  • the GIS can calculate the distance between the enterprise DC and the candidate UPF network element based on the longitude and latitude coordinates of the enterprise DC and the longitude and latitude coordinates of the candidate UPF network element to determine the distance information of the candidate UPF network element.
  • the location information of the enterprise DC includes the geographic name of the enterprise DC
  • the location information of the candidate UPF network element includes the geographic name of the candidate UPF network element.
  • GIS can determine the longitude and latitude coordinates of the enterprise DC based on the geographic name of the enterprise DC
  • GIS can determine the longitude and latitude coordinates of the candidate UPF network element based on the geographic name of the candidate UPF network element; after that, the GIS can determine the longitude and latitude coordinates of the candidate UPF network element Calculate the distance between the enterprise DC and the candidate UPF network element to determine the distance information of the candidate UPF network element.
  • the GIS sends the third response information to the first network element, and accordingly, the first network element receives the third response information from the GIS.
  • the third response information includes distance information of m candidate UPF network elements.
  • the third response information may be carried in a UPF network element distance information response (for example: UPF Distance Info Response).
  • a UPF network element distance information response for example: UPF Distance Info Response
  • the first network element can obtain distance information of m candidate UPF network elements from the GIS, so that the first network element selects k target UPF network elements from the m candidate UPF network elements.
  • the first network element determines p target SMF network elements according to the SMF network element area identifiers corresponding to the k target UPF network elements.
  • p is a positive integer.
  • the target SMF network element is an SMF network element used to provide services to the enterprise DC.
  • the target SMF network element is the SMF network element whose parameters need to be configured during the process of opening the enterprise private line for the network slice management network element.
  • SMF network element area identifiers corresponding to multiple target UPF network elements may be the same.
  • the SMF network element area identifier corresponds to one or more SMF network elements. That is, there is a correspondence between the SMF network element area identifier and the SMF network element.
  • the corresponding relationship between the SMF network element area identifier and the SMF network element can be referred to Table 2.
  • SMF network element area identifier #1 corresponds to SMF network element #1 and SMF network element #2.
  • SMF network element area identifier #2 corresponds to SMF network element #4.
  • SMF network element area identifier #4 corresponds to SMF network element #6.
  • the first network element sends second indication information to the network slice management network element, and correspondingly, the network slice management network element receives the second indication information from the first network element.
  • the second indication information is used to indicate p target SMF network elements.
  • the second indication information includes the identities of P target SMF network elements.
  • the second indication information may also include an identification of the enterprise DC to indicate the enterprise DC corresponding to the second indication information.
  • the second indication information and the first indication information may be carried in the same signaling, for example, the first response information, and the first response information may be the network function allocation response mentioned above.
  • the second indication information and the first indication information may also be carried in different signaling respectively.
  • step S103 and step S105 can be executed at the same time, so that the execution order of step S104 is before step S103.
  • step S103 may be performed first, and then steps S104-S105; or, steps S104-S105 may be performed first, and then step S103 may be performed; or, step S103 and steps S104-S105 may be performed simultaneously.
  • the network slicing management network element obtains the information of the p target SMF network elements corresponding to the enterprise DC from the network distribution function network element in an automated manner. This process does not require human involvement, which improves efficiency.
  • the embodiments shown in Figures 5 to 8 describe how to select relevant network elements for the enterprise DC from the perspective of an enterprise DC. It is understandable that an enterprise can have multiple enterprise DCs. Therefore, when an operator opens an enterprise private line service for the enterprise, the network slicing management network element may need to configure related network element parameters for multiple enterprise DCs. Therefore, for each of the multiple enterprise DCs, the embodiments shown in FIGS. 5 to 8 can be used to select relevant network elements for the enterprise DC.
  • the method provided in the embodiments of this application is mainly introduced from the perspective of interaction between the first network element and the network slice management network element.
  • the first network element and the network slice management network element may include a hardware structure and/or a software module, and the foregoing may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • Each function. Whether one of the above-mentioned functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • the division of modules in the embodiments of the present application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. The following is an example of dividing each functional module corresponding to each function:
  • FIG. 9 is a schematic structural diagram of a communication device provided by an embodiment of the application. As shown in FIG. 9, the communication device includes a processing module 301 and a communication module 302.
  • the communication module 302 is configured to receive first request information from a network slicing management network element, the first request information is used to request allocation of a target UPF network element to the enterprise DC, and the first request information includes location information of the enterprise DC.
  • the communication device provided by the embodiment of the present application can automatically select the appropriate UPF network element for the enterprise DC according to the first request sent by the network slice management network element in real time, and notify the network slice management network with the first instruction information yuan.
  • the deployment of enterprise private lines eliminates the need for manual selection of network elements, which can improve the efficiency of operators in deploying enterprise private lines.
  • the communication module 302 is also used to send second request information to the NRF.
  • the second request information is used to request information about the UPF network element located in the same area as the enterprise DC.
  • the second request information includes the information of the enterprise DC. Location information; and receiving second response information from the NRF, the second response information including information about m candidate UPF network elements, and the m candidate UPF network elements are located in the same area as the enterprise DC.
  • n candidate UPF network elements are located in n operator DCs, and n is a positive integer less than or equal to m.
  • the processing module 301 is specifically used to determine k target operators DC from n operator DCs when m candidate UPF network elements support increased bandwidth.
  • the k target operators are Among the n operator DCs, the k operator DCs with the smallest distance from the enterprise DC, k is less than or equal to n; for each target operator DC in the k target operator DCs, from the target operator DC Among the candidate UPF network elements, a target UPF network element is determined, and the target UPF network element is a candidate UPF network element in the target operator DC that meets the preset conditions.
  • the processing module 301 is specifically used to obtain m candidates based on the location information of the enterprise DC and the location information of the m candidate UPF network elements when m candidate UPF network elements support increased bandwidth.
  • the distance information of each candidate UPF network element in the UPF network element is used to indicate the distance between the candidate UPF network element and the enterprise DC; according to the distance information of the m candidate UPF network elements, from the m candidate UPF network elements Select k target UPF network elements, and the k target UPF network elements are the k candidate UPF network elements with the smallest distance from the enterprise DC among the m candidate UPF network elements.
  • the first request information further includes bandwidth information of the enterprise DC, and the bandwidth information of the enterprise DC is used to indicate the bandwidth required by the enterprise DC;
  • the information of the candidate UPF network element also includes: bandwidth information of the candidate UPF network element, The bandwidth information of the candidate UPF network element is used to indicate the bandwidth that the candidate UPF network element can provide.
  • the processing module 301 is specifically used to obtain m candidate UPF network elements according to the location information of the enterprise DC and the location information of the m candidate UPF network elements when the m candidate UPF network elements do not support increased bandwidth.
  • the distance information of each candidate UPF network element in the candidate UPF network element is used to indicate the distance between the candidate UPF network element and the enterprise DC; according to the distance information of the m candidate UPF network elements, the distance information of the m candidate UPF network elements Bandwidth information and bandwidth information of the enterprise DC, select k target UPF network elements from the m candidate UPF network elements, the sum of the bandwidth provided by the k target UPF network elements is greater than or equal to the bandwidth required by the enterprise DC, and k targets
  • the UPF network element is the k candidate UPF network elements with the smallest distance from the enterprise DC among the m candidate UPF network elements.
  • the first request information is also used to request the allocation of the target SMF network element to the enterprise DC; the information of the candidate UPF network element further includes the SMF network element area identifier corresponding to the candidate UPF network element.
  • the processing module 301 is also used to determine p target SMF network elements according to the SMF network element area identifiers corresponding to the k target UPF network elements, and p is a positive integer; the communication module is also used to communicate to the network The slice management network element sends second indication information, where the second indication information is used to indicate p target SMF network elements.
  • the communication device shown in FIG. 9 may be presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to a specific ASIC, circuit, processor and memory that executes one or more software or firmware programs, integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • the communication device shown in FIG. 9 may adopt the form of the communication device shown in FIG. 4.
  • the processor 201 of the communication device shown in FIG. 4 may call the computer program instructions stored in the memory 203 to cause the communication device shown in FIG. 4 to execute the network element allocation method in the foregoing method embodiment.
  • the processing module 301 in FIG. 9 may be implemented by the processor 201 in FIG. 4.
  • the communication module 302 in FIG. 9 may be implemented by the communication interface 204 in FIG. 4.
  • the embodiment of the present application also provides a computer program product containing computer instructions, which when running on a communication device, enables the communication device to execute the network element allocation method provided in the embodiment of the present application.
  • the steps of the method or algorithm described in combination with the disclosure of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (erasable programmable ROM, EPROM), electrically erasable programmable read-only memory (electrically erasable programmable read-only memory, EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • the memory may be coupled with the processor.
  • the memory may exist independently and be connected to the processor through a bus.
  • the memory can also be integrated with the processor.
  • the memory may be used to store application program codes for executing the technical solutions provided in the embodiments of the present application, and the processor controls the execution.
  • the processor is used to execute the application program code stored in the memory, so as to implement the technical solution provided by the embodiment of the present application.
  • the units described as separate parts may or may not be physically separate.
  • the parts displayed as units may be one physical unit or multiple physical units, that is, they may be located in one place, or they may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solutions of the embodiments of the present application are essentially or the part that contributes to the prior art, or all or part of the technical solutions can be embodied in the form of software products, which are stored in a storage medium.
  • a device which may be a single-chip microcomputer, a chip, etc.
  • a processor processor
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供一种网元分配方法及装置,涉及通信技术领域,用于自动化地选择企业专线的相关网元,提高运营商部署企业专线的效率。该方法包括:第一网元接收网络切片管理网元发送的第一请求信息,第一请求信息用于请求为企业DC分配目标UPF网元,第一请求信息包括企业DC的位置信息;第一网元根据企业DC的位置信息,确定k个目标UPF网元,k为正整数;之后,第一网元向网络切片管理网元发送第一指示信息,该第一指示信息用于指示k个目标UPF网元。本申请适用于企业专线的开通过程中。

Description

网元分配方法及装置
本申请要求于2019年08月19日提交国家知识产权局、申请号为201910765685.1、申请名称为“网元分配方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及网元分配方法及装置。
背景技术
随着多种多样的通信业务的不断涌现,不同的通信业务对网络性能的需求存在显著的区别,第五代(5th generation,5G)移动通信系统引入了网络切片的概念,以应对不同通信业务对网络性能的需求的差异。
网络切片,是指物理或者虚拟的网络基础设施上,根据不同的服务需求定制化不同的逻辑网络。网络切片可以是一个包括了终端设备、接入网、传输网、核心网和应用服务器的完整的端到端网络,能够提供完整的通信服务。网络切片也可以是终端设备、接入网、传输网、核心网和应用服务器的任意组合。
随着5G网络的部署,运营商可以利用5G系统的网络切片功能来开通企业专线,从而减少企业专线业务的开通时间,以及使得企业专线能够随着企业需求变化进行快速高效的调整。大部分企业专线对隔离度的要求较低,因此运营商可以在现有的企业切片/用户切片上选择相关网元进行参数配置,以便于为企业开通企业专线业务。目前,运营商以手工的方式为企业专线选择相关网元,效率较低。
发明内容
本申请提供一种网元分配方法及装置,用于在以网络切片功能开通企业专线的场景下,自动化选择企业专线的相关网元,提高运营商部署企业专线的效率。
第一方面,提供一种网元分配方法,包括:第一网元接收来自于网络切片管理网元的第一请求信息,第一请求信息用于请求为企业数据中心(data center,DC)分配目标用户面功能(user plane function,UPF网元),第一请求信息包括企业DC的位置信息;之后,第一网元根据企业DC的位置信息,确定企业DC对应的k个目标UPF网元,k为正整数;第一网元向网络切片管理网元发送第一指示信息,第一指示信息用于指示k个目标UPF网元。
与现有技术相比,在本申请实施例所提供的技术方案中,第一网元可以实时地根据网络切片管理网元所发送的第一请求,自动为企业DC选择合适的UPF网元,并以第一指示信息通知网络切片管理网元。这样一来,企业专线的部署无需人工选择网元的过程,可以提高运营商部署企业专线的效率。
一种可能的设计中,第一网元根据企业DC的位置信息,确定企业DC对应的k个目标UPF网元,包括:根据企业DC的位置信息,获取企业DC对应的m个候选UPF网元的信息,候选UPF网元的信息包括:候选UPF网元的位置信息,m为大于等于k的正整数;从m个候选UPF网元中确定k个目标UPF网元。
一种可能的设计中,第一网元根据企业DC的位置信息,获取企业DC对应的m个候选UPF网元的信息,包括:向网络存储功能(network repository function,NRF)发送第二请求信息,第二请求信息用于请求与企业DC位于同一区域的UPF网元的信息,第二请求信息包括企业DC的位置信息;接收来自于NRF的第二响应信息,第二响应信息包括m个候选UPF网元的信息,m个候选UPF网元与企业DC位于同一区域。
一种可能的设计中,第一网元根据企业DC的位置信息,获取企业DC对应的m个候选UPF网元的信息,包括:从第一网元存储的多个UPF网元的信息中,获取m个候选UPF网元的信息。
一种可能的设计中,m个候选UPF网元位于n个运营商DC中,n为小于等于m的正整数。
一种可能的设计中,第一网元从m个候选UPF网元中确定k个目标UPF网元,包括:m个候选UPF网元支持增加带宽的情况下,从n个运营商DC中确定k个目标运营商DC,k个目标运营商是在n个运营商DC中,与企业DC之间的距离最小的k个运营商DC,k小于等于n;对于k个目标运营商DC中的每一个目标运营商DC,从目标运营商DC所包含的候选UPF网元中,确定一个目标UPF网元,目标UPF网元是目标运营商DC中符合预设条件的候选UPF网元。可以理解的是,在k大于等于2的情况下,基于该设计,可以实现冗余备份。
一种可能的设计中,第一网元从m个候选UPF网元中确定k个目标UPF网元,包括:在m个候选UPF网元支持增加带宽的情况下,根据企业DC的位置信息,以及m个候选UPF网元的位置信息,获取m个候选UPF网元中每一个候选UPF网元的距离信息,距离信息用于指示候选UPF网元与企业DC之间的距离;根据m个候选UPF网元的距离信息,从m个候选UPF网元中选择k个目标UPF网元,k个目标UPF网元是在m个候选UPF网元中,与企业DC之间的距离最小的k个候选UPF网元。可以理解的是,在k大于等于2的情况下,基于该设计,可以实现冗余备份。进一步的,由于k个目标UPF网元分布于不同的运营商DC中,这样可以避免一个运营商DC发生故障,导致k个目标UPF网元均不能为企业DC提供服务的情况发生,从而进一步地提高可靠性。
一种可能的设计中,第一请求信息还包括企业DC的带宽信息,企业DC的带宽信息用于指示企业DC需要的带宽;候选UPF网元的信息还包括:候选UPF网元的带宽信息,候选UPF网元的带宽信息用于指示候选UPF网元能够提供的带宽。
一种可能的设计中,第一网元从m个候选UPF网元中确定k个目标UPF网元,包括:在m个候选UPF网元不支持增加带宽的情况下,根据企业DC的位置信息,以及m个候选UPF网元的位置信息,获取m个候选UPF网元中每一个候选UPF网元的距离信息,距离信息用于指示候选UPF网元与企业DC之间的距离;根据m个候选UPF网元的距离信息、m个候选UPF网元的带宽信息、以及企业DC的带宽信息,从m个候选UPF网元中选择k个目标UPF网元,k个目标UPF网元所提供的带宽之和大于等于企业DC所需要的带宽,k个目标UPF网元是在m个候选UPF网元中,与企业DC之间的距离最小的k个候选UPF网元。可以理解的是,基于该设计,一方面, 满足企业DC对UPF网元的距离要求;另一方面,满足企业DC对UPF网元的带宽要求。
一种可能的设计中,第一网元根据企业DC的位置信息,以及m个候选UPF网元的位置信息,获取m个候选UPF网元中每一个候选UPF网元的距离信息,包括:向地理信息系统(geographic information system,GIS)发送第三请求信息,第三请求信息用于请求m个候选UPF网元中每一个候选UPF网元的距离信息;第三请求信息包括:企业DC的位置信息、以及m个候选UPF网元的位置信息;接收来自于GIS的第三响应信息,第三响应信息包括m个候选UPF网元的距离信息。
一种可能的设计中,第一请求信息还用于请求为企业DC分配目标会话管理功能(session management function,SMF网元)。候选UPF网元的信息还包括候选UPF网元对应的SMF网元区域标识。
一种可能的设计中,该方法还包括:第一网元根据k个目标UPF网元对应的SMF网元区域标识,确定p个目标SMF网元,p为正整数;第一网元向网络切片管理网元发送第二指示信息,第二指示信息用于指示p个目标SMF网元。基于该设计,运营商无需以人工的方式为企业DC选择SMF网元,提高了运营商部署企业专线的效率。
第二方面,提供一种装置,该装置可以是第一网元,也可以是第一网元中的芯片或者片上系统。该装置可以包括执行第一方面中所描述的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该装置可以包括处理模块和通信模块。
例如,通信模块,用于接收来自于网络切片管理网元的第一请求信息,第一请求信息用于请求为企业DC分配目标UPF网元,第一请求信息包括企业DC的位置信息。处理模块,用于根据企业DC的位置信息,确定企业DC对应的k个目标UPF网元,k为正整数。通信模块,还用于向网络切片管理网元发送第一指示信息,第一指示信息用于指示k个目标UPF网元。
一种可能的设计中,处理模块,具体用于根据企业DC的位置信息,获取企业DC对应的m个候选UPF网元的信息,候选UPF网元的信息包括:候选UPF网元的位置信息,m为大于等于k的正整数;以及,从m个候选UPF网元中确定k个目标UPF网元。
一种可能的设计中,通信模块,还用于向NRF发送第二请求信息,第二请求信息用于请求与企业DC位于同一区域的UPF网元的信息,第二请求信息包括企业DC的位置信息;以及,接收来自于NRF的第二响应信息,第二响应信息包括m个候选UPF网元的信息,m个候选UPF网元与企业DC位于同一区域。
一种可能的设计中,处理模块,具体用于从预先存储的多个UPF网元的信息中,获取m个候选UPF网元的信息。
一种可能的设计中,m个候选UPF网元位于n个运营商DC中,n为小于等于m的正整数。
一种可能的设计中,处理模块,具体用于在m个候选UPF网元支持增加带宽的情况下,从n个运营商DC中确定k个目标运营商DC,k个目标运营商是在n个运营商DC中,与企业DC之间的距离最小的k个运营商DC,k小于等于n;对于k个目标运 营商DC中的每一个目标运营商DC,从目标运营商DC所包含的候选UPF网元中,确定一个目标UPF网元,目标UPF网元是目标运营商DC中符合预设条件的候选UPF网元。
一种可能的设计中,处理模块,具体用于在m个候选UPF网元支持增加带宽的情况下,根据企业DC的位置信息,以及m个候选UPF网元的位置信息,获取m个候选UPF网元中每一个候选UPF网元的距离信息,距离信息用于指示候选UPF网元与企业DC之间的距离;根据m个候选UPF网元的距离信息,从m个候选UPF网元中选择k个目标UPF网元,k个目标UPF网元是在m个候选UPF网元中,与企业DC之间的距离最小的k个候选UPF网元。
一种可能的设计中,第一请求信息还包括企业DC的带宽信息,企业DC的带宽信息用于指示企业DC需要的带宽;候选UPF网元的信息还包括:候选UPF网元的带宽信息,候选UPF网元的带宽信息用于指示候选UPF网元能够提供的带宽。
一种可能的设计中,处理模块,具体用于在m个候选UPF网元不支持增加带宽的情况下,根据企业DC的位置信息,以及m个候选UPF网元的位置信息,获取m个候选UPF网元中每一个候选UPF网元的距离信息,距离信息用于指示候选UPF网元与企业DC之间的距离;根据m个候选UPF网元的距离信息、m个候选UPF网元的带宽信息、以及企业DC的带宽信息,从m个候选UPF网元中选择k个目标UPF网元,k个目标UPF网元所提供的带宽之和大于等于企业DC所需要的带宽,k个目标UPF网元是在m个候选UPF网元中,与企业DC之间的距离最小的k个候选UPF网元。
一种可能的设计中,通信模块,还用于向GIS发送第三请求信息,第三请求信息用于请求m个候选UPF网元中每一个候选UPF网元的距离信息;第三请求信息包括:企业DC的位置信息、以及m个候选UPF网元的位置信息;接收来自于GIS的第三响应信息,第三响应信息包括m个候选UPF网元的距离信息。
一种可能的设计中,第一请求信息还用于请求为企业DC分配目标SMF网元;候选UPF网元的信息还包括候选UPF网元对应的SMF网元区域标识。
一种可能的设计中,处理模块,还用于根据k个目标UPF网元对应的SMF网元区域标识,确定p个目标SMF网元,p为正整数;通信模块,还用于向网络切片管理网元发送第二指示信息,第二指示信息用于指示p个目标SMF网元。
第三方面,提供一种通信装置,包括:处理器和存储器,所述存储器和所述处理器耦合,所述存储器存储有指令,当所述处理器执行所述指令时,使得所述通信装置执行上述第一方面中任一种设计所涉及的方法。可选的,该通信装置还可以包括通信接口,所述通信接口用于该通信装置与其他设备进行通信,示例性的,通信接口可以是收发器、电路、总线、模块或其他类型的通信接口。
第四方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当该指令在计算机上运行时,可以使得计算机执行上述第一方面中任一种设计所涉及的方法。
第五方面,提供一种计算机程序产品,该计算机程序产品包含指令,当计算机程序产品在计算机上运行时,使得计算机可以执行上述第一方面中任一种设计所涉及的 方法。
第六方面,提供一种芯片,该芯片包括处理器,当该处理器执行指令时,处理器用于执行上述第一方面中任一种设计所涉及的方法。该指令可以来自芯片内部的存储器,也可以来自芯片外部的存储器。可选的,该芯片还包括输入输出电路。
第七方面,提供一种通信系统,网络切片管理网元和第一网元。网络切片管理网元,用于向所述第一网元发送第一请求信息,该第一请求信息用于请求为企业DC分配目标用户面功能UPF网元,该第一请求信息包括所述企业DC的位置信息;以及,接收第一网元发送的第一指示信息,第一指示信息用于指示k个目标UPF网元。第一网元,用于接收第一请求信息;根据企业DC的位置信息,确定企业DC对应的k个目标UPF网元,k为正整数;向网络切片管理网元发送第一指示信息。
其中,第二方面至第七方面中任一种设计所带来的技术效果可参见上文中对应的方法所带来的技术效果。
附图说明
图1为本申请实施例提供的一种网络切片的架构示意图;
图2为本申请实施例提供的一种网元分配系统的架构示意图;
图3为本申请实施例提供的一种5G网络的系统架构示意图;
图4为本申请实施例提供的一种通信设备的结构示意图;
图5为本申请实施例提供的一种网元分配方法的流程图;
图6为本申请实施例提供的另一种网元分配方法的流程图;
图7为本申请实施例提供的另一种网元分配方法的流程图;
图8为本申请实施例提供的另一种网元分配方法的流程图;
图9为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
在本申请的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,“至少一个”是指一个或多个,“多个”是指两个或两个以上。“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
需要说明的是,标识可以称为索引、名称等,本申请实施例对此不作限定。
在本申请的描述中,“指示”可以包括直接指示和间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的第一指示信息、第二指示信息)所指示的信息称为待指示信息,则具体实现过程中,对所述待指示信息进行指示的方式有很多种。例如,可以直接指示所述待指示信息,其中所述待指示信息本身或者所述待指示信息的索引等。又例如,也可以通过指示其他信息来间接指示所述待指示信息,其中该其他信息与所述待指示信息之间存在关联关系。又例如,还可以仅仅指示所述待指示信 息的一部分,而所述待指示信息的其他部分则是已知的或者提前约定的。另外,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
如图1所示,为本申请实施例提供的一种网络切片的架构示意图。
其中,业务支持系统(business support system,BSS)可以包括通信服务管理功能(communication service management function,CSMF)网元。CSMF网元主要负责将运营商和/或第三方客户的电信化服务需求转化为对网络切片的需求,向网络切片管理功能(network slice management function,NSMF)发送对网络切片的需求(如创建、终结、修改需求等),接收运营商和/或第三方客户对网络切片管理数据(例如性能数据、故障数据、故障修复数据等)的订阅需求,从而使得NSMF网元能够获取网络切片实例的管理数据等。
NSMF网元主要负责接收来自CSMF网元发送的端到端网络切片管理需求,对网络切片实例的生命周期、性能、故障等进行管理。NSMF网元编排网络切片实例的管理动作,将端到端网络切片的管理需求分解为各网络切片子网实例的需求,包括接入网络(radio access network,RAN),传输网络(transport network,TN)及核心网(core network,CN)的需求,分别向NSSMF网元发送网络切片子网实例(network slice subnet instance,NSSI)管理请求。
网络切片子管理功能(network slice subnet management function,NSSMF),主要负责接收NSMF网元发送的网络切片子网管理需求,对网络切片子网实例进行管理,编排网络切片子网实例内部的动作。网络切片子网内部的具体动作包括将网络切片子网实例的需求分解为各网络功能和/或嵌套网络切片子网实例的需求,可能向其他NSSMF网元发送嵌套网络切片子网实例管理请求。NSSMF网元还需要对所管理的NSSI进行生命周期管理、性能管理、故障管理等,以及向NSMF网元反馈NSSI的管理数据和测量数据。
TN域的NSSMF网元基于软件定义网络(software defined network,SDN)适配器(adapter)实现。SDN adapter可以管理IP域以及企业客户前置设备(customer premise equipment,CPE)。
管理和编排器(management and orchestration,MANO),主要负责管理网络功能虚拟化(network function virtualisation,NFV)基础设施(NFV Infrastructure,NFVI),编排和分配网络服务(network service,NS)和虚拟网络功能(virtual network function,VNF)所需的资源。在端到端网络切片的管理中,MANO接收来自NSSMF网元的管理需求,编排构成NSSI所需的NS或VNF。
核心网中可以部署计费功能(charging function,CHF)和网元管理系统(element management system,EMS)。计费功能用于对个人用户/企业用户使用网络切片等资源进行计费。EMS可以根据NSSMF网元的指令,修改业务参数。
核心网中可以部署企业切片和/或用户切片。核心网的企业切片包括:控制面(control plane,CP)网元和用户面(user plane,UP)网元。核心网的用户切片包括:控制面网元和用户面网元。在核心网中,无论用户切片还是企业切片,控制面网元包括但不限于SMF网元,用户面网元包括但不限于UPF网元。
核心网的用户切片的用户面网元可以直接连接IP域的用户切片。
为了保证安全性,核心网的企业切片的用户面网元可以以虚拟专用网络(virtual private network,VPN)的方式连接IP域的企业切片。其中,核心网的企业切片的用户面网元与VPN之间的隧道可以为通用路由封装(generic routing encapsulation,GRE)隧道。VPN中可以包括:云(cloud)防火墙(firewall,FW)和云CPE。
为了便于理解本申请的技术方案,下面先对企业专线的开通流程进行介绍。
企业用户在运营商的BSS/CSMF网元自助门户(portal)上录入企业专线需求,企业专线需求包括以下至少一项:(1)多个企业DC中每一个企业DC的位置信息、带宽信息;(2)国际移动用户识别码(international mobile subscriber identification number,IMSI)列表,该IMSI列表用于记录可以接入企业专线的IMSI;(3)隔离需求,示例性的,隔离需求可以为高、中或者低。
BSS/CSMF网元根据企业用户录入的企业专线需求,生成相应的业务模板。之后,BSS/CSMF网元将该业务模板发送给NSMF网元。
NSMF网元可以根据企业用户录入的隔离需求,为企业用户分配相应的网络切片。例如,在企业用户录入的隔离需求为中的情况下,NSMF网元可以为企业用户分配一个企业共享切片;在企业用户录入的隔离需求为低的情况下,NSMF网元可以为企业用户分配一个用户切片。在为企业用户分配网络切片之后,NSMF网元可以为该企业用户分配专用的S-NSSAI,以便于运营商根据该S-NSSAI,对企业用户进行接入管理和计费管理。并且,NSMF网元还将业务模板中各种企业专线需求,分配给各个领域的NSSMF网元,例如:接入网的NSSMF网元、承载网的NSSMF网元、以及核心网的NSSMF网元。
各个领域的NSSMF网元根据该领域的企业专线需求,完成网络切片的参数配置。具体的,核心网的NSSMF网元需要在网络切片中为企业专线配置相应的网元,例如SMF网元、UPF网元等。
各个领域的NSSMF网元在完成网络切片的参数配置之后,将配置的结果发送给BSS。
BSS根据企业用户录入的企业专线需求,完成对企业员工的签约信息的配置。这样一来,运营商完成对企业专线的开通,企业员工可以使用该企业专线。具体的,企业员工的终端根据该企业用户对应的S-NSSAI接入移动网络,并建立会话。分配给该企业专线的UPF网元可以将会话的数据包路由到企业的VPN。
需要说明的是,在上述企业专线的开通流程中,核心网的NSSMF网元如何在网络切片中为企业专线分配相应的UPF网元、SMF网元是待考虑的技术问题。
一种方案是核心网的NSSMF网元在全网中为企业专线分配UPF网元和SMF网元。该方案的问题在于:(1)全网的UPF网元、SMF网元的数量巨大。因此,运营商需要对数量巨大的UPF网元和SMF网元进行配置修改,工程量较大。这样一来,企业专线的开通效率较低。(2)中小企业数量较多。随着开通企业专线的企业用户的增多,运营商无法支持在每一个UPF网元和SMF网元上配置每一个开通企业专线的企业的配置信息。
因此,在企业用户向运营商申请开通企业专线的场景下,核心网的NSSMF网元 可以仅对企业DC附近的UPF网元和SMF网元进行配置,以减少需要配置的网元的数量。
目前,运营商主要以人工的方式在核心网的NSSMF网元上对企业DC附近的UPF网元和SMF网元进行配置,影响运营商开通企业专线的效率。
为了解决上述技术问题,本申请实施例提供一种网元分配方法、装置以及系统,详细内容可参见下文。
本申请实施例提供的技术方案可以应用于各种通信系统,例如,5G移动通信系统,未来演进系统或者多种通信融合系统等。本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
如图2所示,为本申请实施例提供的一种网元分配系统,该网元分配系统包括:第一网元101以及网络切片管理网元102。
其中,网络切片管理网元102,用于向第一网元101发送第一请求信息,该第一请求信息用于请求为企业DC分配UPF网元,该第一请求信息包括企业DC的位置信息。
第一网元101,用于在接收到第一请求信息之后,根据第一请求信息中的企业DC的位置信息,确定企业DC对应的m个候选UPF网元的信息;之后,从m个候选UPF网元中确定k个目标UPF网元;向网络切片管理网元发送第一指示信息,该第一指示信息用于指示k个目标UPF网元。其中,k为正整数,m为大于等于k的正整数。
在第一请求信息还用于请求为企业DC分配SMF网元的情况下,第一网元101,还用于根据k个目标UPF网元对应的SMF网元区域标识,确定p个目标SMF网元;以及,向网络切片管理网元102发送第二指示信息,该第二指示信息用于指示p个目标SMF网元。
可选的,该网元分配系统还包括:NRF网元103。在本申请实施例中,NRF网元103用于向第一网元101提供UPF网元的相关信息,例如:UPF网元的位置信息、SMF网元区域标识等。
可选的,该网元分配系统还包括:地理信息系统104。地理信息系统104用于向第一网元101提供UPF网元与企业DC之间的距离。
可选的,图2所示的网络切片管理网元可以是NSSMF网元,该NSSMF网元可以为核心网的NSSMF网元。
可选的,假设图2所示的网元分配系统应用于5G网络,上述第一网元101可以是5G网络中新增的一个网元,或者第一网元101可以集成于目前5G网络中已有的网元上。
如图3所示,为目前5G网络的系统架构图。该5G网络可以包括:UE、接入网(radio access network,RAN)、核心网、数据网络(data network,DN)。其中,核心网中可以包括以下网元:UPF网元、SMF网元、NRF网元、网络开放功能(network exposure function,NEF)网元、鉴权服务器功能(authentication server function,AUSF)网元、接入和移动性管理功能(access and mobility management function,AMF)网元、 策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)网元、应用功能(application function,AF)网元。
其中,终端通过下一代网络(Next generation,N)1接口(简称N1)与AMF网元通信,RAN设备通过N2接口(简称N2)与AMF网元通信,RAN设备通过N3接口(简称N3)与UPF网元通信,UPF网元通过N6接口(简称N6)与DN通信。
AMF网元、SMF网元、UDM网元、AUSF网元、或者PCF网元等控制面网元也可以采用服务化接口进行交互。比如,如图3所示,AMF对外提供的服务化接口可以为Namf;SMF网元对外提供的服务化接口可以为NSMF网元;UDM网元对外提供的服务化接口可以为Nudm;PCF网元对外提供的服务化接口可以为Npcf,AUSF网元对外提供的服务化接口可以为Nausf;在此不再一一描述。
示例性的,第一网元可以集成在NRF网元或者NSSMF网元上,本申请实施例不限于此。
可选的,图2中的第一网元101、网络切片管理网元102、NRF网元103、以及地理信息系统104可以由一个实体设备实现,也可以由多个实体设备共同实现,还可以是一个实体设备内的一个逻辑功能模块,本申请实施例对此不作限定。
例如,图2中的第一网元101、网络切片管理网元102、NRF网元103、以及地理信息系统104可以通过图4中的通信设备来实现。图4所示为本申请实施例提供的通信设备的硬件结构示意图。该通信设备包括至少一个处理器201,通信线路202,存储器203以及至少一个通信接口204。
处理器201可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路202用于在上述组件之间传送信息。
通信接口204,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。
存储器203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路202与处理器相连接。存储器也可以和处理器集成在一起。
其中,存储器203用于存储执行本申请方案的计算机执行指令,并由处理器201来控制执行。处理器201用于执行存储器203中存储的计算机执行指令,从而实现本申请下述实施例提供的会话建立方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请 实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备可以包括多个处理器,例如图4中的处理器201和处理器207。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备还可以包括输出设备205和输入设备206。输出设备205和处理器201通信,可以以多种方式来显示信息。例如,输出设备205可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备206和处理器201通信,可以以多种方式接收用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备可以是一个通用设备或者是一个专用设备。在具体实现中,通信设备可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图4中类似结构的设备。本申请实施例不限定通信设备的类型。
下面结合说明书附图对本申请实施例提供的技术方案进行具体阐述。
如图5所示,为本申请实施例提供的一种网元分配方法,该方法包括以下步骤:
S101、网络切片管理网元向第一网元发送第一请求信息,相应地,第一网元接收来自于网络切片管理网元的第一请求信息。
其中,第一请求信息用于请求为企业分配目标UPF网元。需要说明的是,目标UPF网元是为该企业DC提供服务的UPF网元。或者说,目标UPF网元即为网络切片管理网元在开通企业专线的过程中需要进行参数配置的UPF网元。
第一请求信息可以包括企业DC的位置信息。示例性的,企业DC的位置信息可以为经纬度坐标、地理名称等。地理名称可以包括:城市名称、城市中的街道名称等。
可选的,第一请求信息还可以包括企业DC的标识和/或企业DC的带宽信息。企业DC的带宽信息用于指示企业DC所需要的带宽。在本申请实施例中,带宽用于表征数据传输能力。也即,带宽可以是指单位时间内通过链路的数据量。
需要说明的是,若网络切片管理网元获知运营商所部署的UPF网元均支持增加带宽,则第一请求信息可以不携带企业DC的带宽信息。
上述UPF网元支持增加带宽,是指UPF网元所支持的最大带宽可以根据用户的需求而改变。UPF网元不支持增加带宽,是指UPF网元所支持的最大带宽是不变的。在本申请实施例中,UPF网元是否支持增加带宽,是运营商预先确定的。需要说明的是,UPF网元支持增加带宽,也可以称为UPF网元支持扩容;UPF网元不支持增加带宽,也可以称为UPF网元不支持扩容。
可选的,第一请求信息可以承载于网络功能分配请求(例如:NF Assignment Request)中,本申请实施例对此不作限制。
S102、第一网元根据企业DC的位置信息,确定k个目标UPF网元。
作为一种实现方式,第一网元根据企业DC的位置信息,获取企业DC对应的m个候选UPF网元的信息。之后,第一网元从m个候选UPF网元中确定k个目标UPF网元。其中,k为正整数,m为大于等于k的正整数。
对于m个候选UPF网元中的每一个候选UPF网元,候选UPF网元的信息至少包括:候选UPF网元的标识、以及候选UPF网元的位置信息。示例性的,候选UPF网元的位置信息可以为:地理名称、经纬度坐标等。
可选的,候选UPF网元的信息还可以包括:候选UPF网元的带宽信息、和/或候选UPF网元对应的SMF网元区域标识。
需要说明的是,对于m个候选UPF网元中的每一个候选UPF网元,候选UPF网元是与企业DC位于同一地理区域的UPF网元。这里,地理区域可以是指企业DC所在的街道、城市、或者省份。或者,地理区域是以企业DC为中心的规则区域或者不规则区域。例如,地理区域是以企业DC为中心,预设长度为半径的圆形区域。又例如,地理区域是以企业DC为中心,预设长度为边长的矩形区域。
可以理解的是,UPF网元位于运营商DC中,而运营商可以部署多个运营商DC,因此m个候选UPF网元可以位于n个运营商DC中,n为小于等于m的正整数。对于n个运营商DC中的每一个运营商DC,运营商DC包括一个或多个候选UPF网元。可以理解的是,
Figure PCTCN2020109897-appb-000001
其中m i是n个运营商DC中第i个运营商DC所包含的候选UPF网元的数目。
上述运营商DC在部署UPF网元之外,还可以部署核心网的其他网元和/或接入网的设备。其中,接入网的设备可以是指基站的基带单元(baseband unit,BBU)。可选的,运营商DC可以称为机房、中心机房等。
在本申请实施例中,候选UPF网元的信息可以指示候选UPF网元所位于的运营商DC。例如,候选UPF网元的信息包括候选UPF网元的位置信息,候选UPF网元的位置信息即为候选UPF网元所位于的运营商DC的位置信息。又例如,候选UPF网元的信息还包括候选UPF网元所位于的运营商DC的标识。
在本申请实施例中,第一网元获取企业DC对应的m个候选UPF网元的信息,可以采用以下实现方式之一:
(1-1)第一网元预先存储了多个UPF网元的信息。在这种情况下,第一网元根据企业DC的位置信息,从第一网元预先存储的多个UPF网元的信息中,获取到m个候选UPF网元的信息。
可选的,第一网元可以以表格的形式存储多个UPF网元的信息。当然,第一网元也可以采用其他方式存储多个UPF网元的信息,本申请实施例对此不作限定。
示例性的,表1用于存储多个UPF网元的信息。结合表1进行举例说明,在企业DC的位置信息为北京的情况下,在候选UPF网元与企业DC位于同一城市的情况下,第一网元可以确定候选UPF网元为UPF网元#1和UPF网元#3。
表1
UPF网元的标识 UPF网元所在的地理区域
UPF网元#1 北京
UPF网元#2 上海
UPF网元#3 北京
UPF网元#4 上海
UPF网元#5 深圳
(1-2)第一网元从其他设备获取到m个候选UPF网元的信息。示例性的,第一网元从NRF获取m个候选UPF网元的信息,其具体实现步骤可参见图6中的步骤S201-S203。
在本申请实施例中,第一网元从m个候选UPF网元中确定k个目标UPF网元,可以采用以下实现方式之一:
(2-1)在m个候选UPF网元均支持增加带宽的情况下,第一网元根据企业DC的位置信息,以及m个候选UPF网元的位置信息,获取m个候选UPF网元中每一个候选UPF网元的距离信息。之后,第一网元根据m个候选UPF网元的距离信息,从m个候选UPF网元中选择k个目标UPF网元。
其中,k的取值是预设的,或者根据企业需求设置的。
上述候选UPF网元的距离信息用于指示候选UPF网元与企业DC之间的距离。
一种可能的设计中,k个目标UPF网元是在m个候选UPF网元中,与企业DC之间的距离最小的k个候选UPF网元。举例来说,假设k的取值为2,m个候选UPF网元包括UPF网元#1、UPF网元#2、UPF网元#3、以及UPF网元#4。其中,UPF网元#1与企业DC之间的距离为10千米,UPF网元#2与企业DC之间的距离为9千米,UPF网元#3与企业DC之间的距离为8千米,UPF网元#4与企业DC之间的距离为7千米。这种情况下,UPF网元#3和UPF网元#4为目标UPF网元。
(2-2)在m个候选UPF网元均支持增加带宽的情况下,第一网元从n个运营商DC中确定k个目标运营商DC。之后,对于k个目标运营商DC中的每一个目标运营商DC,第一网元从目标运营商DC所包含的候选UPF网元中,确定一个目标UPF网元。
其中,k小于等于n。k的取值是预设的,或者根据企业需求设置的。
一种可能的设计中,k个目标运营商DC是在n个运营商DC中,与企业DC之间的距离最小的k个运营商DC。举例来说,假设k的取值为2,n个运营商DC包括运营商DC#1、运营商DC#2、运营商DC#3、运营商DC#4,运营商DC#5。其中,运营商DC#1与企业DC之间的距离为10千米,运营商DC#2与企业DC之间的距离为15千米,运营商DC#3余企业DC之间的距离为11千米,运营商DC#4与企业DC之间的距离为9千米,运营商DC#5与企业DC之间的距离为50千米。这种情况下,运营商DC#4和运营商DC#1为目标运营商。
由于UPF网元部署于运营商DC中,UPF网元所在的地理位置可以相当于运营商DC所在的地理位置。因此,企业DC与运营商DC之间的距离,可以等于企业DC与运营商DC中的UPF网元之间的距离。
一种可能的设计中,目标UPF网元是目标运营商DC中符合预设条件的候选UPF网元。
示例性的,预设条件为:目标UPF网元是目标运营商DC中负载最小的候选UPF网元;或者,目标UPF网元是目标运营商DC中所支持的带宽最大的候选UPF网元。
可选的,上述负载可以是指UPF网元目前所提供的最大带宽与被占用的带宽之间的比值。
基于上述实现方式(2-2),在k大于等于2的情况下,企业DC所对应的多个目标UPF网元分别位于不同的运营商DC中。从而,当某一个运营商DC发生故障时,其他运营商DC中的目标UPF网元能够继续为企业DC提供服务,从而实现冗余备份,避免企业专线的故障。
(2-3)在m个候选UPF网元不支持增加带宽的情况下,第一网元根据企业DC的位置信息,以及m个候选UPF网元的位置信息,获取m个候选UPF网元中每一个候选UPF网元的距离信息。之后,第一网元根据m个候选UPF网元的距离信息、m个候选UPF网元的带宽信息、以及企业DC的带宽信息,从m个候选UPF网元中选择k个目标UPF网元。
一种可能的设计中,k个目标UPF网元所提供的带宽之和大于等于企业DC所需要的带宽。并且,k个目标UPF网元是在m个候选UPF网元中,与企业DC之间的距离最小的k个候选UPF网元。
可选的,k个目标UPF网元所提供的带宽之和可以大于等于企业DC所需要的带宽的2倍,以便于实现冗余备份,避免k个目标UPF网元中的一部分目标UPF网元出现故障时,影响企业专线的通信。
举例说明,m个候选UPF网元为UPF网元#1、UPF网元#2、UPF网元#3、UPF网元#4、UPF网元#5、以及UPF网元#5。UPF网元#1与企业DC之间的距离为10千米,UPF网元#2与企业DC之间的距离为9千米,UPF网元#3与企业DC之间的距离为8千米,UPF网元#4与企业DC之间的距离为7千米,UPF网元#5与企业DC之间的距离为12千米。按照候选UPF网元与企业DC之间的距离从小到大排序为:UPF网元#4、UPF网元#3、UPF网元#2、UPF网元#1、UPF网元#5。假设UPF网元#4能提供的带宽为1.5吉比特/秒(GB/s),UPF网元#3能提供的带宽为2.5GB/s,UPF网元#2能提供的带宽为1GB/s,UPF网元#1能提供的带宽为3GB/s,UPF网元#5能提供的带宽为1.2GB/s。
若企业DC所需要的带宽为5GB/s,则第一网元可以确定k个目标UPF网元为:UPF网元#4、UPF网元#3、以及UPF网元#2。
若企业DC所需要的带宽为6GB/s,则第一网元可以确定k个目标UPF网元为:UPF网元#4、UPF网元#3、UPF网元#2、以及UPF网元#1。
需要说明的是,上述实现方式(2-1)或者实现方式(2-3)中,对于m个候选UPF网元中的每一个候选UPF网元,第一网元可以根据企业DC的位置信息和候选UPF网元的位置信息,确定候选UPF网元的距离信息;或者,第一网元也可以从其他设备获取候选UPF网元的距离信息。例如,第一网元可以从GIS获取m个候选UPF网元的距离信息,其具体实现步骤可以参考图7中的步骤S301-S303。
S103、第一网元向网络切片管理网元发送第一指示信息,相应地,网络切片管理网元接收来自于第一网元的第一指示信息。
其中,第一指示信息用于指示k个目标UPF网元。
一种设计中,第一指示信息包括k个目标UPF网元的标识。
可选的,第一指示信息还可以包括企业DC的标识,以表明该第一指示信息所对应的企业DC。
可选的,第一指示信息可以承载于网络功能分配响应(NF Assignment Response)中。
基于图5所示的技术方案,第一网元可以实时地根据网络切片管理网元所发送的第一请求,自动为企业DC选择合适的UPF网元,并以第一指示信息通知网络切片管理网元。这样一来,无需人工选择网元的过程,可以提高运营商部署企业专线的效率。
基于图5所示的网元分配方法上,如图6所示,该网元分配方法在步骤S101之后,还包括步骤S201-S203。
S201、第一网元向NRF发送第二请求信息,相应地,NRF接收来自于第一网元的第二请求信息。
其中,第二请求信息用于请求与企业DC位于同一地理区域的UPF网元的信息。或者说,第二请求信息用于请求企业DC对应的候选UPF网元的信息。
第二请求信息包括企业DC的位置信息。
可选的,第二请求信息还可以包括企业DC的标识,以表明该第二请求信息所对应的企业DC。
可选的,第二请求信息承载于UPF网元信息请求(例如:UPF info Request)中;或者,第二请求信息承载于网络功能发现请求(例如:Nnrf_NFDiscovery Request)中。
需要说明的是,相较于现有技术中的网络功能发现请求,本申请实施例所采用的网络功能发现请求增加了一个信元,以承载企业DC的位置信息。
S202、NRF根据企业DC的位置信息,确定m个候选UPF网元的信息。
可以理解的是,NRF预先存储了多个UPF网元的信息。
步骤S202的实现方式可参考上文中实现方式(1-1)的相关描述,在此不再赘述。
S203、NRF向第一网元发送第二响应信息,相应地,第一网元接收来自于NRF的第二响应信息。
其中,第二响应信息包括m个候选UPF网元的信息。
可选的,第二响应信息还可以包括企业DC的标识,以表明该第二响应信息所对应的企业DC。
可选的,第二响应信息可以包括多个信元。其中,对于多个信元中的每一个信元,信元可以包括一个候选UPF网元的信息;或者,信元可以包括位于同一个运营商DC的一个或多个候选UPF网元的信息。
可以理解的是,第二响应信息可以作为一个整体来传输,也可以分为多个子信息分别传输。
可选的,第二响应信息承载于UPF网元信息响应(例如:UPF info response)中;或者,第二响应信息承载于网络功能发现响应(例如:Nnrf_NFDiscovery Response)中。
基于图6所示的技术方案,第一网元可以从NRF获取到m个候选UPF网元的信息,以便于第一网元确定k个目标UPF网元。
基于图5所示的网元分配方法上,如图7所示,该网元分配方法在步骤S101之后, 还包括步骤S301-S303。
S301、第一网元向GIS发送第三请求信息,相应地,GIS接收来自于第一网元的第三请求信息。
其中,第三请求信息用于请求m个候选UPF网元中每一个候选UPF网元的距离信息。候选UPF网元的距离信息用于指示候选UPF网元与企业DC之间的距离。
第三请求信息包括企业DC的位置信息、以及m个候选UPF网元的位置信息。
可选的,第三请求信息还可以包括企业DC的标识,以表明该第三请求信息所对应的企业DC。
可选的,第三请求信息可以承载于UPF网元距离信息请求(例如:UPF Distance Info Request)中。
需要说明的是,GIS是一种具有采集、存储、操作、显示地理参考信息等功能的计算机系统。该GIS可以由运营商自身搭建,也可以由第三方服务商提供。
S302、GIS确定m个候选UPF网元的距离信息。
作为一种实现方式,对于m个候选UPF网元中的每一个候选UPF网元,GIS根据企业DC的位置信息以及候选UPF网元的位置信息,确定候选UPF网元的距离信息。
例如,企业DC的位置信息包括企业DC的经纬度坐标,候选UPF网元的位置信息包括候选UPF网元的经纬度坐标。这种情况下,GIS可以根据企业DC的经纬度坐标和候选UPF网元的经纬度坐标,计算企业DC与候选UPF网元之间的距离,从而确定候选UPF网元的距离信息。
又例如,企业DC的位置信息包括企业DC的地理名称,候选UPF网元的位置信息包括候选UPF网元的地理名称。这种情况下,GIS可以根据企业DC的地理名称,确定企业DC的经纬度坐标;以及,GIS可以根据候选UPF网元的地理名称,确定候选UPF网元的经纬度坐标;之后,GIS可以根据企业DC的经纬度坐标和候选UPF网元的经纬度坐标,计算企业DC与候选UPF网元之间的距离,从而确定候选UPF网元的距离信息。
S303、GIS向第一网元发送第三响应信息,相应地,第一网元接收来自于GIS的第三响应信息。
其中,第三响应信息包括m个候选UPF网元的距离信息。
可选的,第三响应信息可以承载于UPF网元距离信息响应(例如:UPF Distance Info Response)中。
基于图7所示的技术方案,第一网元可以从GIS获取到m个候选UPF网元的距离信息,以便于第一网元从m个候选UPF网元中选择k个目标UPF网元。
可选的,在图5所示的网元分配方法的基础上,若第一请求信息还用于请求为企业DC分配目标SMF网元,则如图8所示。该网元分配方法在步骤S102之后,还可以包括步骤S104和S105。
S104、第一网元根据k个目标UPF网元对应的SMF网元区域标识,确定p个目标SMF网元。
其中,p为正整数。
在本申请实施例中,目标SMF网元是用于向企业DC提供服务的SMF网元。或 者说,目标SMF网元即为网络切片管理网元在开通企业专线的过程中需要进行参数配置的SMF网元。
需要说明的是,多个目标UPF网元对应的SMF网元区域标识可能相同。
需要说明的是,SMF网元区域标识对应一个或多个SMF网元。也即,SMF网元区域标识与SMF网元之间存在对应关系。SMF网元区域标识与SMF网元之间的对应关系可以参考表2所示。在表2中,SMF网元区域标识#1对应SMF网元#1和SMF网元#2。SMF网元区域标识#2对应SMF网元#4。SMF网元区域标识#4对应SMF网元#6。
表2
Figure PCTCN2020109897-appb-000002
结合表2进行举例说明,假设k个目标UPF网元为UPF网元#1、UPF网元#2、以及UPF网元#3,其中,UPF网元#1对应SMF网元区域标识#1,UPF网元#2对应SMF网元区域标识#1,UPF网元#3对应SMF区域标识#2,因此第一网元可以确定目标SMF为:SMF网元#1、SMF网元#2、以及SMF网元#4。
S105、第一网元向网络切片管理网元发送第二指示信息,相应地,网络切片管理网元接收来自于第一网元的第二指示信息。
其中,第二指示信息用于指示p个目标SMF网元。
一种设计中,第二指示信息包括P个目标SMF网元的标识。
可选的,第二指示信息还可以包括企业DC的标识,以表明该第二指示信息所对应的企业DC。
需要说明的是,第二指示信息和第一指示信息可以承载于同一信令中,例如第一响应信息,第一响应信息可以为上文中提到的网络功能分配响应。第二指示信息和第一指示信息也可以分别承载于不同信令中。
若第二指示信息和第一指示信息承载于同一信令中,则步骤S103和步骤S105可以同时执行,从而步骤S104的执行顺序位于步骤S103之前。
若第二指示信息和第一指示信息承载于不同信令中,则本申请实施例不限制步骤S103与步骤S104-S105之间的执行顺序。例如,可以先执行步骤S103,再执行步骤S104-S105;或者,先执行步骤S104-S105,再执行步骤S103;又或者,同时执行步骤S103,以及步骤S104-S105。
基于图8所示的技术方案,网络切片管理网元以自动化的方式从网络分配功能网元获取到企业DC对应的p个目标SMF网元的信息。这一过程无需人工参与,提高了效率。
图5-图8所示的实施例是从一个企业DC的角度来描述如何为企业DC选择相关的网元。可以理解的是,企业可以建有多个企业DC,因此运营商在为企业开通企业专 线业务时,网络切片管理网元可能需要为多个企业DC进行相关网元的参数配置。因此,对于多个企业DC中的每一个企业DC,均可以采用上述图5-图8所示的实施例,以为企业DC选择相关的网元。
上述本申请提供的实施例中,主要从第一网元和网络切片管理网元之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的第一网元和网络切片管理网元可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。面以采用对应每一个功能划分每一个功能模块为例进行说明:
图9为本申请实施例提供的一种通信装置的结构示意图。如图9所示,该通信装置包括处理模块301和通信模块302。
在一个实施例中,该通信装置可用于执行上述图5至图8中第一网元的操作。
例如,通信模块302,用于接收来自于网络切片管理网元的第一请求信息,第一请求信息用于请求为企业DC分配目标UPF网元,第一请求信息包括企业DC的位置信息。
处理模块301,用于根据企业DC的位置信息,确定企业DC对应的k个目标UPF网元,k为正整数。通信模块,还用于向网络切片管理网元发送第一指示信息,第一指示信息用于指示k个目标UPF网元。
由此,本申请实施例所提供的通信装置可以实时地根据网络切片管理网元所发送的第一请求,自动为企业DC选择合适的UPF网元,并以第一指示信息通知网络切片管理网元。这样一来,企业专线的部署无需人工选择网元的过程,可以提高运营商部署企业专线的效率。
一种可能的设计中,处理模块301,具体用于根据企业DC的位置信息,获取企业DC对应的m个候选UPF网元的信息,候选UPF网元的信息包括:候选UPF网元的位置信息,m为大于等于k的正整数;以及,从m个候选UPF网元中确定k个目标UPF网元。
一种可能的设计中,通信模块302,还用于向NRF发送第二请求信息,第二请求信息用于请求与企业DC位于同一区域的UPF网元的信息,第二请求信息包括企业DC的位置信息;以及,接收来自于NRF的第二响应信息,第二响应信息包括m个候选UPF网元的信息,m个候选UPF网元与企业DC位于同一区域。
一种可能的设计中,处理模块301,具体用于从预先存储的多个UPF网元的信息中,获取m个候选UPF网元的信息。
一种可能的设计中,m个候选UPF网元位于n个运营商DC中,n为小于等于m的正整数。
一种可能的设计中,处理模块301,具体用于在m个候选UPF网元支持增加带宽的情况下,从n个运营商DC中确定k个目标运营商DC,k个目标运营商是在n个运营商DC中,与企业DC之间的距离最小的k个运营商DC,k小于等于n;对于k个目标运营商DC中的每一个目标运营商DC,从目标运营商DC所包含的候选UPF网元中,确定一个目标UPF网元,目标UPF网元是目标运营商DC中符合预设条件的候选UPF网元。
一种可能的设计中,处理模块301,具体用于在m个候选UPF网元支持增加带宽的情况下,根据企业DC的位置信息,以及m个候选UPF网元的位置信息,获取m个候选UPF网元中每一个候选UPF网元的距离信息,距离信息用于指示候选UPF网元与企业DC之间的距离;根据m个候选UPF网元的距离信息,从m个候选UPF网元中选择k个目标UPF网元,k个目标UPF网元是在m个候选UPF网元中,与企业DC之间的距离最小的k个候选UPF网元。
一种可能的设计中,第一请求信息还包括企业DC的带宽信息,企业DC的带宽信息用于指示企业DC需要的带宽;候选UPF网元的信息还包括:候选UPF网元的带宽信息,候选UPF网元的带宽信息用于指示候选UPF网元能够提供的带宽。
一种可能的设计中,处理模块301,具体用于在m个候选UPF网元不支持增加带宽的情况下,根据企业DC的位置信息,以及m个候选UPF网元的位置信息,获取m个候选UPF网元中每一个候选UPF网元的距离信息,距离信息用于指示候选UPF网元与企业DC之间的距离;根据m个候选UPF网元的距离信息、m个候选UPF网元的带宽信息、以及企业DC的带宽信息,从m个候选UPF网元中选择k个目标UPF网元,k个目标UPF网元所提供的带宽之和大于等于企业DC所需要的带宽,k个目标UPF网元是在m个候选UPF网元中,与企业DC之间的距离最小的k个候选UPF网元。
一种可能的设计中,通信模块302,还用于向GIS发送第三请求信息,第三请求信息用于请求m个候选UPF网元中每一个候选UPF网元的距离信息;第三请求信息包括:企业DC的位置信息、以及m个候选UPF网元的位置信息;接收来自于GIS的第三响应信息,第三响应信息包括m个候选UPF网元的距离信息。
一种可能的设计中,第一请求信息还用于请求为企业DC分配目标SMF网元;候选UPF网元的信息还包括候选UPF网元对应的SMF网元区域标识。
一种可能的设计中,处理模块301,还用于根据k个目标UPF网元对应的SMF网元区域标识,确定p个目标SMF网元,p为正整数;通信模块,还用于向网络切片管理网元发送第二指示信息,第二指示信息用于指示p个目标SMF网元。
其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在本申请实施例中,图9所示的通信装置可以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。
在一个简单的实施例中,本领域技术人员可以想到图9所示的通信装置可以采用图4所示的通信设备的形式。
也即,图4所示的通信设备的处理器201可以通过调用存储器203中存储的计算机程序指令,使得图4所示的通信设备执行上述方法实施例中的网元分配方法。
示例性的,图9中的处理模块301可以由图4中的处理器201来实现。图9中的通信模块302可以由图4中的通信接口204来实现。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令;当所述计算机可读存储介质在通信装置上运行时,使得该通信装置本申请实施例所提供的网元分配方法。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例还提供一种包含计算机指令的计算机程序产品,当其在通信装置上运行时,使得通信装置可以执行本申请实施例所提供的网元分配方法。
本申请实施例还提供一种芯片系统,该芯片系统包括处理器,用于实现本申请实施例所提供的网元分配方法。在一种可能的设计中,该芯片系统还包括存储器,用于保存本发明实施例装置必要的程序指令和/或数据。在一种可能的设计中,该芯片系统还包括存储器,用于处理器调用存储器中存储的应用程序代码。该芯片系统,可以由一个或多个芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。或者,存储器可以与处理器耦合,例如存储器可以是独立存在,通过总线与处理器相连接。存储器也可以和处理器集成在一起。存储器可以用于存储执行本申请实施例提供的技术方案的应用程序代码,并由处理器来控制执行。处理器用于执行存储器中存储的应用程序代码,从而实现本申请实施例提供的技术方案。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模 块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (27)

  1. 一种网元分配方法,其特征在于,包括:
    接收来自于网络切片管理网元的第一请求信息,所述第一请求信息用于请求为企业数据中心DC分配目标用户面功能UPF网元,所述第一请求信息包括所述企业DC的位置信息;
    根据所述企业DC的位置信息,确定所述企业DC对应的k个所述目标UPF网元,k为正整数;
    向所述网络切片管理网元发送第一指示信息,所述第一指示信息用于指示k个所述目标UPF网元。
  2. 根据权利要求1所述的网元分配方法,其特征在于,所述根据所述企业DC的位置信息,确定所述企业DC对应的k个目标UPF网元,包括:
    根据所述企业DC的位置信息,获取所述企业DC对应的m个候选UPF网元的信息,所述m个候选UPF网元的信息包括:所述m个候选UPF网元的位置信息,m为大于等于k的正整数;
    从所述m个候选UPF网元中确定k个所述目标UPF网元。
  3. 根据权利要求2所述的网元分配方法,其特征在于,所述根据所述企业DC的位置信息,获取所述企业DC对应的m个候选UPF网元的信息,包括:
    向网络存储功能NRF发送第二请求信息,所述第二请求信息用于请求与所述企业DC位于同一区域的UPF网元的信息,所述第二请求信息包括所述企业DC的位置信息;
    接收来自于所述NRF的第二响应信息,所述第二响应信息包括所述m个候选UPF网元的信息,所述m个候选UPF网元与所述企业DC位于同一区域。
  4. 根据权利要求2所述的网元分配方法,其特征在于,所述根据所述企业DC的位置信息,获取所述企业DC对应的m个候选UPF网元的信息,包括:
    从存储的多个UPF网元的信息中,获取所述m个候选UPF网元的信息。
  5. 根据权利要求2至4任一项所述的网元分配方法,其特征在于,所述m个候选UPF网元位于n个运营商DC中,n为小于等于m的正整数。
  6. 根据权利要求5所述的网元分配方法,其特征在于,所述从所述m个候选UPF网元中确定k个所述目标UPF网元,包括:
    在所述m个候选UPF网元支持增加带宽的情况下,从所述n个运营商DC中确定k个目标运营商DC,所述k个目标运营商是在所述n个运营商DC中与所述企业DC之间的距离最小的k个运营商DC,k小于等于n;
    对于所述k个目标运营商DC中的每一个目标运营商DC,从所述目标运营商DC所包含的候选UPF网元中,确定一个目标UPF网元,所述目标UPF网元是所述目标运营商DC中符合预设条件的候选UPF网元。
  7. 根据权利要求2至4任一项所述的网元分配方法,其特征在于,所述从所述m个候选UPF网元中确定k个所述目标UPF网元,包括:
    在所述m个候选UPF网元支持增加带宽的情况下,根据所述企业DC的位置信息,以及所述m个候选UPF网元的位置信息,获取所述m个候选UPF网元中每一个候选 UPF网元的距离信息,所述距离信息用于指示所述候选UPF网元与所述企业DC之间的距离;
    根据所述m个候选UPF网元的距离信息,从所述m个候选UPF网元中选择k个所述目标UPF网元,k个所述目标UPF网元是在所述m个候选UPF网元中,与所述企业DC之间的距离最小的k个候选UPF网元。
  8. 根据权利要求2至4任一项所述的网元分配方法,其特征在于,所述第一请求信息还包括所述企业DC的带宽信息,所述企业DC的带宽信息用于指示所述企业DC需要的带宽;
    所述候选UPF网元的信息还包括:所述候选UPF网元的带宽信息,所述候选UPF网元的带宽信息用于指示所述候选UPF网元能够提供的带宽。
  9. 根据权利要求8所述的网元分配方法,其特征在于,所述从所述m个候选UPF网元中确定k个所述目标UPF网元,包括:
    在所述m个候选UPF网元不支持增加带宽的情况下,根据所述企业DC的位置信息,以及所述m个候选UPF网元的位置信息,获取所述m个候选UPF网元中每一个候选UPF网元的距离信息,所述距离信息用于指示所述候选UPF网元与所述企业DC之间的距离;
    根据所述m个候选UPF网元的距离信息、所述m个候选UPF网元的带宽信息、以及所述企业DC的带宽信息,从所述m个候选UPF网元中选择k个所述目标UPF网元,k个所述目标UPF网元所提供的带宽之和大于等于所述企业DC所需要的带宽,k个所述目标UPF网元是在所述m个候选UPF网元中,与所述企业DC之间的距离最小的k个候选UPF网元。
  10. 根据权利要求7或9所述的网元分配方法,其特征在于,根据所述企业DC的位置信息,以及所述m个候选UPF网元的位置信息,获取所述m个候选UPF网元中每一个候选UPF网元的距离信息,包括:
    向地理信息系统GIS发送第三请求信息,所述第三请求信息用于请求所述m个候选UPF网元中每一个候选UPF网元的距离信息;所述第三请求信息包括:所述企业DC的位置信息、以及所述m个候选UPF网元的位置信息;
    接收来自于所述GIS的第三响应信息,所述第三响应信息包括所述m个候选UPF网元的距离信息。
  11. 根据权利要求2至10任一项所述的网元分配方法,其特征在于,所述第一请求信息还用于请求为所述企业DC分配目标会话管理功能SMF网元;
    所述候选UPF网元的信息还包括候选UPF网元对应的SMF网元区域标识。
  12. 根据权利要求11所述的网元分配方法,其特征在于,所述方法还包括:
    根据k个所述目标UPF网元对应的SMF网元区域标识,确定p个目标SMF网元,p为正整数;
    向所述网络切片管理网元发送第二指示信息,所述第二指示信息用于指示所述p个目标SMF网元。
  13. 一种通信装置,其特征在于,包括:
    通信模块,用于接收来自于网络切片管理网元的第一请求信息,所述第一请求信 息用于请求为企业数据中心DC分配目标用户面功能UPF网元,所述第一请求信息包括所述企业DC的位置信息;
    处理模块,用于根据所述企业DC的位置信息,确定所述企业DC对应的k个所述目标UPF网元,k为正整数;
    所述通信模块,还用于向所述网络切片管理网元发送第一指示信息,所述第一指示信息用于指示k个所述目标UPF网元。
  14. 根据权利要求13所述的通信装置,其特征在于,所述处理模块,具体用于根据所述企业DC的位置信息,获取所述企业DC对应的m个候选UPF网元的信息,所述m个候选UPF网元的信息包括:所述候选UPF网元的位置信息,m为大于等于k的正整数;以及,从所述m个候选UPF网元中确定k个所述目标UPF网元。
  15. 根据权利要求14所述的通信装置,其特征在于,所述通信模块,还用于向网络存储功能NRF发送第二请求信息,所述第二请求信息用于请求与所述企业DC位于同一区域的UPF网元的信息,所述第二请求信息包括所述企业DC的位置信息;以及,接收来自于所述NRF的第二响应信息,所述第二响应信息包括所述m个候选UPF网元的信息,所述m个候选UPF网元与所述企业DC位于同一区域。
  16. 根据权利要求14所述的通信装置,其特征在于,所述处理模块,具体用于从预先存储的多个UPF网元的信息中,获取所述m个候选UPF网元的信息。
  17. 根据权利要求14至16任一项所述的装置,其特征在于,所述m个候选UPF网元位于n个运营商DC中,n为小于等于m的正整数。
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述处理模块,具体用于在所述m个候选UPF网元支持增加带宽的情况下,从所述n个运营商DC中确定k个目标运营商DC,所述k个目标运营商是在所述n个运营商DC中,与所述企业DC之间的距离最小的k个运营商DC,k小于等于n;对于所述k个目标运营商DC中的每一个目标运营商DC,从所述目标运营商DC所包含的候选UPF网元中,确定一个目标UPF网元,所述目标UPF网元是所述目标运营商DC中符合预设条件的候选UPF网元。
  19. 根据权利要求14至16任一项所述的通信装置,其特征在于,
    所述处理模块,具体用于在所述m个候选UPF网元支持增加带宽的情况下,根据所述企业DC的位置信息,以及所述m个候选UPF网元的位置信息,获取所述m个候选UPF网元中每一个候选UPF网元的距离信息,所述距离信息用于指示所述候选UPF网元与所述企业DC之间的距离;根据所述m个候选UPF网元的距离信息,从所述m个候选UPF网元中选择k个所述目标UPF网元,k个所述目标UPF网元是在所述m个候选UPF网元中,与所述企业DC之间的距离最小的k个候选UPF网元。
  20. 根据权利要求14至16任一项所述的通信装置,其特征在于,所述第一请求信息还包括所述企业DC的带宽信息,所述企业DC的带宽信息用于指示所述企业DC需要的带宽;
    所述候选UPF网元的信息还包括:所述候选UPF网元的带宽信息,所述候选UPF网元的带宽信息用于指示所述候选UPF网元能够提供的带宽。
  21. 根据权利要求20所述的通信装置,其特征在于,
    所述处理模块,具体用于在所述m个候选UPF网元不支持增加带宽的情况下,根据所述企业DC的位置信息,以及所述m个候选UPF网元的位置信息,获取所述m个候选UPF网元中每一个候选UPF网元的距离信息,所述距离信息用于指示所述候选UPF网元与所述企业DC之间的距离;根据所述m个候选UPF网元的距离信息、所述m个候选UPF网元的带宽信息、以及所述企业DC的带宽信息,从所述m个候选UPF网元中选择k个所述目标UPF网元,k个所述目标UPF网元所提供的带宽之和大于等于所述企业DC所需要的带宽,k个所述目标UPF网元是在所述m个候选UPF网元中,与所述企业DC之间的距离最小的k个候选UPF网元。
  22. 根据权利要求19或21所述的通信装置,其特征在于,
    所述通信模块,还用于向地理信息系统GIS发送第三请求信息,所述第三请求信息用于请求所述m个候选UPF网元中每一个候选UPF网元的距离信息;所述第三请求信息包括:所述企业DC的位置信息、以及所述m个候选UPF网元的位置信息;接收来自于所述GIS的第三响应信息,所述第三响应信息包括所述m个候选UPF网元的距离信息。
  23. 根据权利要求14至22任一项所述的通信装置,其特征在于,所述第一请求信息还用于请求为所述企业DC分配目标会话管理功能SMF网元;
    所述候选UPF网元的信息还包括候选UPF网元对应的SMF网元区域标识。
  24. 根据权利要求23所述的通信装置,其特征在于,
    所述处理模块,还用于根据k个所述目标UPF网元对应的SMF网元区域标识,确定p个目标SMF网元,p为正整数;
    所述通信模块,还用于向所述网络切片管理网元发送第二指示信息,所述第二指示信息用于指示所述p个目标SMF网元。
  25. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和存储器耦合,所述存储器用于存储计算机程序指令,当所述处理器执行所述计算机程序指令时,使得通信装置执行权利要求1至12任一项所述的网元分配方法。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1至12任一项所述的网元分配方法。
  27. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1至12中任一项所述的方法。
PCT/CN2020/109897 2019-08-19 2020-08-18 网元分配方法及装置 WO2021032100A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910765685.1 2019-08-19
CN201910765685.1A CN112398675B (zh) 2019-08-19 2019-08-19 网元分配方法及装置

Publications (1)

Publication Number Publication Date
WO2021032100A1 true WO2021032100A1 (zh) 2021-02-25

Family

ID=74603557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/109897 WO2021032100A1 (zh) 2019-08-19 2020-08-18 网元分配方法及装置

Country Status (2)

Country Link
CN (1) CN112398675B (zh)
WO (1) WO2021032100A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114615132A (zh) * 2022-02-25 2022-06-10 亚信科技(中国)有限公司 一种分流upf的故障处理方法、装置、设备和存储介质
CN115297020A (zh) * 2022-08-24 2022-11-04 中国电信股份有限公司 通信控制方法及装置、电子设备、存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113613290B (zh) * 2021-08-12 2023-06-16 中国联合网络通信集团有限公司 一种下行数据流传送方法、装置及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100273451A1 (en) * 2009-04-28 2010-10-28 Bergstroem Joakim Method and Apparatus for Mobile Terminal Positioning Operations
CN108307402A (zh) * 2016-08-31 2018-07-20 中兴通讯股份有限公司 管理upf的方法、装置及系统
CN109121185A (zh) * 2017-06-23 2019-01-01 中兴通讯股份有限公司 网络切片子网的选择方法及装置、计算机可读存储介质
CN110049504A (zh) * 2018-01-15 2019-07-23 华为技术有限公司 一种会话管理方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109246778B (zh) * 2017-06-16 2020-12-04 华为技术有限公司 功能网元的选择方法及相关设备
CN112910913B (zh) * 2017-06-19 2022-07-12 华为技术有限公司 一种会话建立的方法和网络系统
CN109121170B (zh) * 2017-06-26 2021-04-20 华为技术有限公司 会话管理的方法、装置、设备及系统
CN109391504B (zh) * 2017-08-11 2022-04-29 华为技术有限公司 网络切片的部署方法和装置
CN110035562B (zh) * 2018-01-12 2021-02-12 华为技术有限公司 会话管理方法、设备及系统
CN110086640B (zh) * 2018-01-26 2022-01-14 华为技术有限公司 业务使能的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100273451A1 (en) * 2009-04-28 2010-10-28 Bergstroem Joakim Method and Apparatus for Mobile Terminal Positioning Operations
CN108307402A (zh) * 2016-08-31 2018-07-20 中兴通讯股份有限公司 管理upf的方法、装置及系统
CN109121185A (zh) * 2017-06-23 2019-01-01 中兴通讯股份有限公司 网络切片子网的选择方法及装置、计算机可读存储介质
CN110049504A (zh) * 2018-01-15 2019-07-23 华为技术有限公司 一种会话管理方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON, NEC: "ETSUN Conclusion: Architecture for UPF not controlled by the A-SMF", 3GPP DRAFT; S2-1810488 ETSUN CONCLUSION - ARCHITECTURE_V1.0, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Dongguan, China; 20181015 - 20181019, 9 October 2018 (2018-10-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051539465 *
NOKIA, NOKIA SHANGHAI BELL: "OI#7e 23.501: Clarifying the notion of DNAI", 3GPP DRAFT; S2-177019 - 501 - DNAI V0, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Ljubljana, SL; 20171023 - 20171027, 22 October 2017 (2017-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051346974 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114615132A (zh) * 2022-02-25 2022-06-10 亚信科技(中国)有限公司 一种分流upf的故障处理方法、装置、设备和存储介质
CN115297020A (zh) * 2022-08-24 2022-11-04 中国电信股份有限公司 通信控制方法及装置、电子设备、存储介质

Also Published As

Publication number Publication date
CN112398675A (zh) 2021-02-23
CN112398675B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
US11432366B2 (en) Session management method, device, and system
US11882485B2 (en) Session management function entity selection method, apparatus, and system
EP4191959B1 (en) Method and system for ensuring service level agreement of an application
US11612013B2 (en) Data transmission method, device, and system
WO2020147760A1 (zh) 一种局域网通信方法、装置及系统
WO2021032100A1 (zh) 网元分配方法及装置
US11558346B2 (en) Address management method and system, and device
EP3886404A1 (en) Domain name server allocation method and device
WO2020119460A1 (zh) 网络切片选择的方法、设备及系统
CN109862581B (zh) 一种通信方法及装置
WO2020164290A1 (zh) 策略控制方法、装置及系统
WO2020063397A1 (zh) 订阅更新方法、设备及系统
US10897699B2 (en) Subscription update method, device, and system
WO2020001282A1 (zh) 接入方法、设备及系统
WO2019120073A1 (zh) 数据传输方法、设备及系统
WO2019184723A1 (zh) 策略和计费控制规则获取方法、装置及系统
WO2020103517A1 (zh) 终端的能力信息的获取方法、装置及系统
US20130148596A1 (en) Resource management system and method of centralized base station in mobile communication network
CN112019363B (zh) 确定业务传输需求的方法、设备及系统
WO2018121178A1 (zh) 一种资源调整方法、装置和系统
CN117544941A (zh) 会话管理方法、设备及系统
WO2020249032A1 (zh) 通信方法及装置
CN110266826A (zh) 地址管理方法、设备及系统
CN113992695B (zh) 网元设备间业务协同的方法和网元设备
WO2020093742A1 (zh) 一种api发布方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855404

Country of ref document: EP

Kind code of ref document: A1