WO2021031696A1 - 一种轻型电动自行车有齿轮毂电机 - Google Patents

一种轻型电动自行车有齿轮毂电机 Download PDF

Info

Publication number
WO2021031696A1
WO2021031696A1 PCT/CN2020/098421 CN2020098421W WO2021031696A1 WO 2021031696 A1 WO2021031696 A1 WO 2021031696A1 CN 2020098421 W CN2020098421 W CN 2020098421W WO 2021031696 A1 WO2021031696 A1 WO 2021031696A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
groove
tongue
tray
rotor
Prior art date
Application number
PCT/CN2020/098421
Other languages
English (en)
French (fr)
Inventor
眭华兴
Original Assignee
眭华兴
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910757289.4A external-priority patent/CN110350749A/zh
Application filed by 眭华兴 filed Critical 眭华兴
Publication of WO2021031696A1 publication Critical patent/WO2021031696A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos

Definitions

  • the invention relates to the technical field of hub motors for electric bicycles, in particular to a geared hub motor with axial magnetic field.
  • Geared hub motors are equipped with drive motors, planetary gear reduction mechanisms and one-way clutches in the inner space of the hub and end cover, which are more suitable Light electric bicycles with good riding function and sliding ability, such as the Chinese patents CN03127256.8 and CN201510104597.9 for the through-shaft structure outer rotor motor, and the US patent US20050176542A1 for the half-shaft structure inner rotor motor.
  • the drive motors are all DC permanent magnet motors with radial magnetic field.
  • the high efficiency range is biased towards the high power range.
  • the drive motor usually runs in the low efficiency range and has a short driving range.
  • the drive motor of the electric bicycle requires frequent start/stop, acceleration/deceleration, high torque at low speed or climbing, low torque when driving on normal flat ground, wide speed range, and can maintain under various road conditions Stable performance, compared with the characteristics of general industrial motors that can usually be optimized at the rated operating point, the requirements for electric bicycle drive motors are higher.
  • Ordinary hub motors cannot meet the general requirements of people to increase the mileage of electric bicycles.
  • the field DC motor itself can meet this requirement.
  • ZL 201620995774.7 discloses a "disc coreless DC motor", but the coreless axial field motor has a double air gap structure and needs to consume more rare earth permanent magnets, and its economy is obviously insufficient.
  • the axial magnetic field motor with iron core due to its small magnetic leakage, high electromagnetic density, and wide high efficiency range, its electrical performance is reflected in the in-wheel motor. It has obvious advantages. Due to the axial magnetic pull, ordinary technicians will avoid There is an axial field motor with a single stator and single rotor structure with overturning moment. Therefore, the prior art axial field motors are all double air-gap structures. There is no fixed shaft structure that can be installed in the hub space and meets the requirements of the hub. The axial magnetic field motor technology with iron core required by the motor shaft. The application of the axial magnetic field motor with iron core of the single rotor and single stator structure in the field of electric bicycles greatly increases the mileage of electric bicycles and realizes the technological leap in this field. The best technological path for rapid progress.
  • the purpose of the present invention is to provide a geared hub motor for light electric bicycles, which is used to apply axial field motors with high efficiency and a wide range of high efficiency to the field of electric bicycles at low cost under the existing production technology conditions, so as to satisfy people Requirements for increased mileage.
  • the drive motor adopts an axial magnetic field motor with a single rotor and single stator structure and an iron core, and has a fixed shaft structure to reduce the space occupation inside the hub; a planetary gear reduction mechanism is used to reduce speed, so that the axial magnetic field motor has The characteristics of high speed and low torque greatly reduce the amount of permanent magnets, thereby greatly reducing the magnetic pulling force and greatly reducing the cost of the motor; the use of independent modular stator cores overcomes the existing production conditions lacking high-efficiency punching and winding equipment , Use the existing mature high-speed continuous die punching technology and laser welding technology to manufacture the stator core. The core material can be applied to the core and slot, while the automation of the coil winding is realized. The recent cost of the hub motor is controlled in the existing gear hub. The level of the motor.
  • the present invention provides the following solutions:
  • the invention discloses a geared hub motor for a light electric bicycle, comprising a main shaft, a hub, an end cover, a motor, and a planetary gear reduction mechanism.
  • the motor drives the hub to rotate after being reduced by the planetary gear reduction mechanism.
  • the characteristic is :
  • the motor is an axial field motor with a single rotor and single stator fixed shaft structure, and includes a rotor assembly and a stator assembly.
  • the rotor assembly includes a rotor disk and a plurality of permanent magnets mounted on the rotor disk.
  • the rotor disc is rotatably connected to the main shaft through a bearing unit with two rows of rolling elements including angular contact ball bearings;
  • the stator assembly includes a plurality of stator cores, a stator yoke disc, and a stator tray.
  • the stator iron The core is made by superimposing a plurality of silicon steel material sheets of different widths in the radial direction.
  • the stator core is provided with a first tongue and groove on the two radial superimposed surfaces at one end away from the rotor disk, which is close to the One end of the rotor disc has a pole shoe;
  • the stator yoke disc is formed by stacking a plurality of silicon steel material disc sheets in the axial direction, or the stator yoke disc is a plurality of silicon steel disc sheets and non-silicon steel
  • the reinforcing disc is laminated in the axial direction. The reinforcing disc is used to enhance the ability of the stator yoke disc to overcome the axial magnetic pull.
  • the reinforcing disc is stacked on the stator
  • the side of the yoke disk away from the rotor disk, the stator yoke disk is sleeved on the stator tray, and the stator core and the stator yoke disk or the stator yoke disk and the stator tray are in a tenon-and-mortise structure Connected, the stator tray is fixedly connected with the main shaft.
  • the stator assembly further includes a coil sleeved on the stator core, and the coil and the stator core are separated by an insulated coil frame or coated with insulating material on the stator core. Insulation barrier.
  • the first tongue and groove are "U"-shaped grooves
  • the stator yoke disk is provided with second tongue grooves arranged in a circumferential array to connect the stator core
  • the stator tray is away from the rotor disk.
  • a radial tray is provided at one end, and a third tongue and groove connected to the stator core and corresponding to the second tongue and groove is provided on the radial tray.
  • the shape corresponds to the physical part between the two first tongues and grooves of the stator core, and the slot width of the first tongue and groove is the sum of the axial length of the stator yoke and the stator tray Consistent, the physical part between the first tongue and groove of the stator core is located in the second tongue and groove, and the groove of the second tongue and the third tongue and groove The edge is clamped in the first tongue and groove.
  • the first tongue and groove is a "U"-shaped groove
  • the stator yoke is provided with second tongue and grooves arranged in a circumferential array to connect the stator core, and a first connection is also provided on the proximal axis side.
  • the stator tray has a radial tray at one end close to the rotor disk, the radial tray is provided with a second connecting hole corresponding to the first connecting hole, the stator yoke disk and the stator tray
  • the first connecting hole and the second connecting hole are riveted or bolted and fixed; the groove shape of the second tongue and groove corresponds to the physical part between the two first tongue grooves of the stator core,
  • the slot width of the first tongue and groove is consistent with the axial length of the stator yoke disk, the solid part between the first tongue and groove of the stator core is located in the second tongue and groove, and the first The groove edges of the two tongue grooves are clamped in the first tongue groove.
  • the second tongue groove and the third tongue groove are both open grooves, and the solid part between the first tongue grooves of the stator core is inserted into the second tongue groove, the third tongue groove from the opening. Tongue and groove, so that the stator core and the stator yoke disc or the stator yoke disc and the stator tray form a tenon-and-mortise structure connection.
  • the first tongue and groove is an "L"-shaped groove
  • the stator yoke is provided with second tongue and grooves arranged in a circumferential array to connect the stator core, and a first connection is also provided on the proximal axis side.
  • the stator tray has a radial tray at one end close to the rotor disk, the radial tray is provided with a second connecting hole corresponding to the first connecting hole, the stator yoke disk and the stator tray Riveted or bolted through the first connecting hole and the second connecting hole; the solid part between the first tongue and groove of the stator core is inserted into the second tongue and groove, and then welded with The stator yoke disk is fixed.
  • the magnetic pulling force borne by the rotor disc and the overturning force generated by the unbalanced magnetic pulling force are supported by the bearing unit, and the bearing unit is a double Row angular contact ball bearings, or a series combination of deep groove ball bearings and single row angular contact ball bearings, or a series combination of two single row angular contact ball bearings.
  • the bearing unit is a series combination of a deep groove ball bearing and a single row angular contact ball bearing, the single row angular contact ball bearing is located on one side of the stator core, and the outer ring diameter is larger than that of the deep groove ball bearing.
  • the outer ring diameter, or the outer ring diameter of the deep groove ball bearing and the single row angular contact ball bearing are the same, and a washer is arranged between the outer rings of the two bearings.
  • the bearing unit is a series combination of two single row angular contact ball bearings, the two single row angular contact ball bearings are arranged in the same direction, and an elastic washer is arranged between the inner rings of the two bearings, the rotor The magnetic pulling force received by the disk is shared by the two single row angular contact ball bearings through the elastic washer.
  • the rotor disc and/or the stator yoke disc are provided with vents, and cold air is introduced into the motor from the vents through the air pressure difference generated by the rotation of the rotor disc, and hot air Eject the motor.
  • the invention applies an axial magnetic field motor, especially an axial magnetic field motor with a single stator and single rotor structure to the hub motor of an electric bicycle.
  • the amount of permanent magnets is 20% lower than that of the traditional radial magnetic field motor, and the iron core material consumption is reduced by 40%.
  • the efficiency range is advanced and the width is greatly increased, which greatly increases the continuous mileage of the electric bicycle, and can be mass-produced at low cost under the existing manufacturing technology conditions.
  • Figure 1 is a schematic diagram of the structure of a geared hub motor for a light electric bicycle according to this embodiment
  • FIG. 2 is a 3D exploded view of a geared hub motor for a light electric bicycle according to this embodiment
  • Figure 3 is a schematic diagram of the connection of the stator core, a stator yoke and a stator tray;
  • Figure 4 is a schematic diagram of the connection between the stator core, another stator yoke and another stator tray;
  • Figure 5 is a schematic diagram of the stator assembly of the motor
  • Figure 6 is a schematic diagram of a structure of the bearing unit
  • Figure 7 is a schematic diagram of another structure of the bearing unit.
  • Figure 8 is a schematic diagram of another structure of the bearing unit.
  • Fig. 9 is a "power-efficiency" curve diagram of a 48V350W prototype light-duty electric bicycle geared hub motor according to this embodiment.
  • this embodiment provides a geared hub motor for a light electric bicycle, which includes a main shaft 1, a hub 2, an end cover 3, a motor, and a planetary gear reduction mechanism.
  • the motor passes through the planetary gear reduction mechanism. After deceleration, the wheel hub 2 is driven to rotate.
  • the motor is an axial field motor with a single rotor and single stator fixed shaft structure. It includes a rotor assembly and a stator assembly.
  • the rotor assembly includes a rotor disc 4 and a rotor disc 4 mounted on the rotor disc 4 A plurality of permanent magnets 5, and a rotor disk 4 are rotatably connected to the main shaft 1 through a bearing unit with two rows of rolling elements 12 containing angular contact ball bearings;
  • the stator assembly includes a plurality of stator cores 6, a stator yoke disk 7 and A stator tray 8, the stator core 6 is made of multiple silicon steel sheets of different widths laminated in the radial direction.
  • the stator core 6 has a pole shoe 9 at one end close to the rotor disc 4, and two radial ends at the other end.
  • the first tongue and groove 10 are provided on the superimposed surfaces; the stator yoke 7 is formed by superimposing a plurality of silicon steel disc sheets in the axial direction, or the stator yoke disc 7 is a plurality of silicon steel disc sheets and The reinforcing disc 11 made of non-silicon steel material is laminated in the axial direction. The reinforcing disc 11 is used to enhance the ability of the stator yoke disc 7 to overcome the axial magnetic pull. The reinforcing disc 11 is stacked on the stator The yoke disk 7 is away from the rotor disk 4, and the stator yoke disk 7 is sleeved on the stator tray 8.
  • the stator core 6 and the stator yoke disk 7 or the stator yoke disk 7 and the stator tray 8 are connected in a tenon-and-mortise structure. 8 is fixedly connected with the spindle 1.
  • the axial magnetic field motor needs to overcome the axial magnetic pulling force between the rotor assembly and the stator assembly, and because the axial magnetic pulling force will not be theoretically uniform in the circumferential direction, it must also overcome the resulting overturning force.
  • the axial magnetic field motor usually balances the axial magnetic tension with a double air gap structure.
  • the power of the hub motor is not more than 400W. Due to the planetary gear reduction mechanism, the magnetic pulling force of the high-speed and low-torque axial field motor in the stopped state is about 200N, and the no-load speed is not more than 2500rpm/min.
  • the stator assembly also includes a coil 14 sleeved on the stator core 6.
  • the coil 14 and the stator core 6 are insulated and blocked by an insulated coil frame 15, as shown in Figures 2 and 5, or in the stator core.
  • the core is coated with an insulating layer for insulation barrier.
  • the plurality of stator cores 6 are arranged coaxially and circumferentially to form an annular magnetic pole plane composed of a plurality of stator core magnetic poles, corresponding to the magnetic pole faces of the plurality of permanent magnets 5.
  • the stator core 6 is located in the radial direction.
  • the physical part between a tongue and groove 10 is a tongue with a tenon-and-mortise structure.
  • the groove side of the first groove 10 is the axially positioned shoulder of the stator core 6, and the coil 14 is sleeved on the pole piece 9 and the first Between tenon and groove 10.
  • connection mode between the two can be selected according to the following four examples of this embodiment, but is not limited to the four examples.
  • the first tenon slot 10 is a stator core 6 with a "U"-shaped slot, which is connected to the stator tray 8 with the stator yoke 7 sleeved in a tenon-and-mortise structure:
  • the first tongue and groove 10 is a "U"-shaped groove, a stator yoke 7 formed by superimposing a plurality of silicon steel ring pieces in the axial direction, and a stator yoke disk 7 arranged in a circumferential array.
  • the core 6 is connected to the second tongue and groove 16, and the stator tray 8 has a radial tray 17 at one end away from the rotor disk 4.
  • the radial tray 17 is provided with a third tongue that is connected to the stator core 6 and corresponds to the second tongue and groove 16.
  • the grooves 18, the shape of the second groove 16 and the third groove 18 correspond to the physical part between the two first grooves 10, and the groove width of the first groove 10 is the same as that of the stator yoke disk 7 and the stator tray 8. The sum of the axial lengths is the same.
  • the second groove 16 and the third groove 18 are both open grooves, and the stator core 6 is sheathed with the coil 14.
  • the physical part between the two first grooves 10 is from the second tongue
  • the groove 16 and the third tongue groove 18 are inserted into the openings, and the groove edges of the second tongue groove 16 and the third tongue groove 18 are clamped in the first tongue groove 10, thus forming a tenon-and-mortise connection, realizing the stator core 6 and The stator yoke 7 and the stator tray 8 are fixedly connected.
  • the magnetic pulling force and electromagnetic torque of the motor are directly acted on the stator tray 8 by the stator core 6, and the stator yoke disk 7 can adopt the most economical axial stack thickness.
  • stator core 6 with the first tenon slot 10 being a "U"-shaped slot and the stator yoke plate 7 are connected in a tenon-and-mortise structure:
  • the first tongue and groove 10 is a "U"-shaped groove
  • the stator yoke disk 7 is provided with second tongue grooves 16 arranged in a circumferential array to connect and cooperate with the stator core 6.
  • the second tongue grooves 16 are openings.
  • the stator yoke disk 7 is also provided with a number of first connecting holes 19 fixedly connected to the stator tray 8 on the side near the main shaft 1; the stator tray 8 has a radial tray 17 at one end close to the rotor disk 4, and the radial tray 17 is provided There is a second connecting hole 20 corresponding to the first connecting hole 19, the stator yoke 7 is sleeved on the stator tray 8, and the stator is fixedly connected by riveting or bolting through the first connecting hole 19 and the second connecting hole 20;
  • the groove shape of the second tongue groove 16 of the yoke disk 7 corresponds to the physical part between the two first tongue grooves 10, and the groove width of the first tongue groove 10 is the same as the axial length of the stator yoke disk 7, and the coil is sleeved 14 of the stator core 6, the physical part between the two first tongue grooves 10 is inserted from the opening of the second tongue groove 16, and the physical part between the first tongue grooves 10 is located in the second tongue
  • the magnetic pulling force and electromagnetic torque of the motor are transmitted from the stator yoke disk 7 to the stator tray 8. For this reason, the number of stator yoke disk laminations can be appropriately increased to increase its strength.
  • stator core 6 with the first "U"-shaped slot and the stator yoke 7 with the reinforcing disc 11 are connected in a tenon-and-mortise structure:
  • the first tenon groove 10 is a "U"-shaped groove
  • the stator yoke disk 7 is formed by superimposing a plurality of circular ring pieces of silicon steel material and a reinforcing disk piece 11 of non-silicon steel material in the axial direction, as shown in FIG. 4 ,
  • the reinforcing ring piece 11 is stacked on the side of the stator yoke disk 7 away from the rotor disk 4 to enhance the ability of the stator yoke disk 7 to overcome axial magnetic tension and electromagnetic torque.
  • the stator yoke disk 7 is provided with a circumferential array
  • the second tongue groove 16 is arranged to be connected and matched with the stator iron core 6.
  • the second tongue groove 16 is an open slot.
  • the stator yoke disk 7 is also provided with a number of first connecting holes 19 fixedly connected to the stator tray 8 on the near main shaft side. .
  • the stator tray 8 adopts the same structure as the second embodiment, and its end close to the rotor disk 4 has a radial tray 17, and the radial tray 17 is provided with a second connecting hole 20 corresponding to the first connecting hole 19, and the stator yoke disk 7
  • the stator core 6 is sleeved on the stator tray 8 through the first connection hole 19 and the second connection hole 20, and is fixedly connected by riveting or bolting; the stator iron core 6 sleeved with the coil 14 is between the two first tongue grooves 10
  • the solid part of is inserted from the opening of the second tongue and groove 16, and the groove edge of the stator yoke plate 7 with the reinforcing ring piece 11 is clamped in the first tongue and groove 10, thus forming a tongue-and-groove connection, realizing the stator core 6 is fixedly connected to the stator yoke disk 7.
  • stator iron core 6 and the stator yoke plate 7 with the first tongue groove being an "L" groove are connected in a tenon-and-mortise structure:
  • the first tongue and groove is an "L" shaped groove.
  • the stator yoke disk 7 is provided with second tongue grooves 16 arranged in a circumferential array to connect the stator core.
  • the proximal side is also provided with a first connecting hole 19, and the stator tray 8 is close to One end of the rotor disk 4 has a radial tray 17, and the radial tray 17 is provided with a second connecting hole 20 corresponding to the first connecting hole 19, and the stator yoke disk 7 and the stator tray 8 are connected to the second through the first connecting hole 19
  • the hole 20 is riveted or bolted; the solid part between the two first tongue grooves 10 of the stator core 6 is inserted into the second tongue groove 16 and is fixed to the stator yoke disk 7 by welding.
  • the bearing unit can be a double row angular contact ball bearing 21, as shown in Figure 7; or a series combination of a deep groove ball bearing 22 and a single row angular contact ball bearing 23, as shown in Figures 1 and 6; or two single row The series combination of angular contact ball bearings 23 is shown in FIG. 8.
  • the bearing unit is a series combination of a deep groove ball bearing 22 and a single row angular contact ball bearing 23.
  • the single row angular contact ball bearing 23 is located on the side of the stator core 6, and its outer ring diameter is larger than that of the deep groove ball bearing 22.
  • the pulling force acts on the bearing stop of the single row angular contact ball bearing 23, as shown in Figure 6; the outer ring diameter of the deep groove ball bearing 22 and the single row angular contact ball bearing 23 are the same, and a washer 24 is arranged between the outer rings, and the magnetic pulling force passes The washer 24 transmits and acts on the bearing stop of the deep groove ball bearing 22.
  • the bearing unit selects a series combination of two single row angular contact ball bearings 23, the two single row angular contact ball bearings 23 are arranged in the same direction, and an elastic washer 25 is arranged between the inner rings, as shown in Figure 8.
  • the elastic washer 25 adopts a wave lamination.
  • the magnetic tension causes the elastic washer 25 to compress and deform and is shared by the two single row angular contact ball bearings 23; when the outer ring diameters of the two single row angular contact ball bearings 23 are different, the magnetic tension acts on When the outer rings of two single-row angular contact ball bearings 23 have the same diameter on the bearing stop, a washer 24 is arranged between the outer rings.
  • the rotor disk 4 and/or the stator yoke disk 7 are provided with vents 25. Since the rotor disk 4 and the stator core 6 rotate relative to each other, the air in the air gap 13 will flow with the rotor disk 4, and the edge of the rotor disk 4 The flow rate of the air is greater than that of the inner air, so the outer air pressure is lower than the inner air pressure, forming a "pumping effect". Cold air enters the air gap 13 from the vent 25, and hot air is discharged from the motor, thereby improving the heat dissipation capacity.
  • the geared hub motor prototype with the above structure of this embodiment is designed with a rated voltage of 48V, a rated power of 350W, an axial field motor no-load speed of 1988rpm/min, and a hub 2 no-load speed of 280rpm/min, axial
  • the magnetic field DC motor adopts the 12-slot 16-pole fractional-slot synchronous DC motor type.
  • the inner and outer diameters of the axial magnetic field stator core composed of the stator core 7 and the stator yoke disk 9 are respectively with use Concentrated winding, the number of parallel branches is 4, and the magnetic pole position sensor is a Hall position sensor.
  • the test result of the prototype is shown in Figure 9.
  • the maximum efficiency is nearly 86%, and the efficiencies in the power range of 125W-515W input power are all above 80%.
  • the present invention is especially suitable for small-power light electric bicycles. Riding test on a prototype car with 20-inch 1.75-inch wide tires, using a 48V14Ah lithium battery as the power source, on a flat road with winds of three to four, at an average speed of 24Km/h pure electric riding test, and the continuous mileage is 95Km.
  • the increase is nearly 50%, and the objective of the present invention is achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种轻型电动自行车有齿轮毂电机,包括主轴(1)、轮毂(2)、端盖(3)、电机和行星齿轮减速机构,电机为单转子单定子定轴结构的轴向磁场电机,包括一转子组件和一定子组件,转子组件中的转子盘(4)通过包含有角接触球轴承的具有两列滚动体的轴承单元与主轴(1)滚动连接,定子组件中包括多个硅钢材料的定子铁芯(6)、一个硅钢材料的定子轭盘(7)和定子托盘(8),定子铁芯(6)与定子轭盘(7)以榫卯结构连接,或者定子铁芯(6)与定子轭盘(7)和定子托盘(8)以榫卯结构连接,定子轭盘(7)与定子托盘(8)套接,定子托盘(8)与主轴(1)固定连接。该电机成本低、效率高、高效率区间宽,能大幅提高电动自行车的续行里程。

Description

一种轻型电动自行车有齿轮毂电机 技术领域
本发明涉及电动自行车的轮毂电机技术领域,特别是涉及一种轴向磁场有齿轮毂电机。
背景技术
现有的电动自行车电机主要有两类,一类是安装在自行车中轴部位的中置电机,另一类是与轮毂一体的轮毂电机,其中轮毂电机又分为低速轮毂电机和具有行星齿轮减速机构的有齿轮毂电机两种。由于低速轮毂电机的电动自行车存在磁滞阻力,自行车的骑行功能被严重弱化,有齿轮毂电机是在轮毂和端盖的内部空间装有驱动电机、行星齿轮减速机构及单向离合器,更适合具能良好骑行功能和滑行能力的轻型电动自行车,例如通轴结构外转子电机的中国专利CN03127256.8、CN201510104597.9,又如半轴结构内转子电机的美国专利US20050176542A1。上述两种轮毂电机,其驱动电机均为径向磁场的直流永磁电机,高效区间偏向高功率段,车辆在正常行驶时驱动电机通常运行在低效率区间,行驶里程较短。
电动自行车的驱动电机,要求频繁的启动/停车、加速/减速,低速或爬坡时要求高转矩,正常平地行驶时要求低转矩,变速范围大,并且能在各种不同路况行驶时保持稳定的性能,相较于一般工业电机通常可以优化在额定的工作点的特性,电动自行车驱动电机的要求更高,普通的轮毂电机无法满足人们提高电动自行车续行里程的普遍要求,而轴向磁场直流电机本身就能满足这一要求。如ZL 201620995774.7公开的“一种盘式无铁心直流电机”,但该无铁芯结构的轴向磁场电机为双气隙结构,需消耗较多的稀土永磁体,其经济性明显不足。
有铁心的轴向磁场电机,由于其磁漏小、电磁密度高,高效率区间宽,其电气性能体现在轮毂电机上有明显的优势,由于存在轴向磁拉力,一般技术人员会规避同时还存在倾覆力矩的单定子单转子结构型式的轴向磁场电机,所以 现有技术的轴向磁场电机均为双气隙结构,还没有出现定轴结构的、能安装在轮毂空间内的、满足轮毂电机通轴要求的有铁芯的轴向磁场电机技术,将单转子单定子结构的有铁芯的轴向磁场电机应用于电动自行车领域,是大幅提高电动自行车续行里程,实现该领域技术跨越式进步的最佳的技术路径。
发明内容
本发明的目的是提供一种轻型电动自行车有齿轮毂电机,用以将效率高、高效率区间宽的轴向磁场电机在现有的生产技术条件下低成本地应用于电动自行车领域,满足人们对行驶里程增加的要求。
其技术思路是:驱动电机采用单转子单定子结构有铁芯的轴向磁场电机,并且为定轴结构型式,减小轮毂内部的空间占有;采用行星齿轮减速机构减速,使轴向磁场电机具有高速低扭矩的特性,由此大幅减少永磁体用量,从而大幅减小磁拉力和大幅降低电机成本;采用独立模块的定子铁芯,克服缺乏高效率冲卷设备和绕线设备的现有生产条件,利用现有成熟的高速连续模冲片工艺和激光焊接工艺制造定子铁芯,铁芯材料可以芯、槽套用,同时实现线圈绕线的自动化,轮毂电机的近期成本控制在现有有齿轮毂电机的水平。
为此,本发明提供了如下方案:
本发明公开了一种轻型电动自行车有齿轮毂电机,包括主轴、轮毂、端盖、电机和行星齿轮减速机构,所述电机通过所述行星齿轮减速机构减速后驱动所述轮毂转动,其特征是:所述电机为单转子单定子定轴结构的轴向磁场电机,包括一转子组件和一定子组件,所述转子组件包括一转子盘和安装在所述转子盘上的多个永磁体,所述转子盘通过包含有角接触球轴承的具有两列滚动体的轴承单元与所述主轴转动连接;所述定子组件包括多个定子铁芯、一个定子轭盘和一个定子托盘,所述定子铁芯为多个不同宽度的硅钢材料的薄片沿径向方向叠合而成,所述定子铁芯在远离所述转子盘的一端的两径向叠合面上设有第一榫槽,接近所述转子盘的一端具有极靴;所述定子轭盘为多个硅钢材料的圆盘薄片沿轴向方向叠合而成,或者所述定子轭盘为多个硅钢材料的圆盘薄片与非硅钢材料的补强圆盘片沿轴向方向叠合而成,所述补强圆盘片用以增强所述定子轭盘克服轴向磁拉力的能力,所述补强圆环片叠放在定子轭盘远离转子盘 的一侧,所述定子轭盘套设在所述定子托盘上,所述定子铁芯与所述定子轭盘或者与所述定子轭盘和所述定子托盘以榫卯结构连接,所述定子托盘与所述主轴固定连接。
优选地,所述定子组件还包括套设在所述定子铁芯上的线圈,所述线圈和所述定子铁芯之间通过绝缘的线圈骨架或在所述定子铁芯上涂敷绝缘材料进行绝缘阻隔。
优选地,所述第一榫槽为“U”形槽,所述定子轭盘设有周向阵列布置的连接所述定子铁芯的第二榫槽,所述定子托盘远离所述转子盘的一端具有径向托盘,所述径向托盘上设有连接所述定子铁芯并与所述第二榫槽对应的第三榫槽,所述第二榫槽和所述第三榫槽的槽形与所述定子铁芯的两个所述第一榫槽之间的实体部分对应一致,所述第一榫槽的槽宽与所述定子轭盘和所述定子托盘的轴向长度之和一致,所述定子铁芯的所述第一榫槽之间的实体部分位于所述第二榫槽和所述第三榫槽内,所述第二榫槽和所述第三榫槽的槽边夹持在所述第一榫槽内。
优选地,所述第一榫槽为“U”形槽,所述定子轭盘设有周向阵列布置的连接所述定子铁芯的第二榫槽,其近轴侧还设有第一连接孔,所述定子托盘接近所述转子盘的一端具有径向托盘,所述径向托盘上设有与所述第一连接孔对应的第二连接孔,所述定子轭盘和所述定子托盘通过所述第一连接孔和第二连接孔铆接或栓接固定;所述第二榫槽的槽形与所述定子铁芯的两个所述第一榫槽之间的实体部分对应一致,所述第一榫槽的槽宽与所述定子轭盘的轴向长度一致,所述定子铁芯的所述第一榫槽之间的实体部分位于所述第二榫槽内,所述第二榫槽的槽边夹持在所述第一榫槽内。
优选地,所述第二榫槽和所述第三榫槽均为开口槽,所述定子铁芯的所述第一榫槽间的实体部分自开口处插入所述第二榫槽、第三榫槽,从而使所述定子铁芯与所述定子轭盘或者与所述定子轭盘和所述定子托盘形成榫卯结构连接。
优选地,所述第一榫槽为“L”形槽,所述定子轭盘设有周向阵列布置的连接所述定子铁芯的第二榫槽,其近轴侧还设有第一连接孔,所述定子托盘接 近所述转子盘的一端具有径向托盘,所述径向托盘上设有与所述第一连接孔对应的第二连接孔,所述定子轭盘和所述定子托盘通过所述第一连接孔和所述第二连接孔铆接或栓接;所述定子铁芯的所述第一榫槽之间的实体部分插入所述第二榫槽内,再通过焊接方式与所述定子轭盘固定。
优选地,单转子单定子结构的轴向磁场轮毂电机,其所述转子盘所承受的磁拉力以及因不平衡的磁拉力而产生的倾覆力由所述轴承单元支持,所述轴承单元为双列角接触球轴承,或深沟球轴承与单列角接触球轴承的串联组合,或两个单列角接触球轴承的串联组合。
优选地,所述轴承单元为深沟球轴承与单列角接触球轴承的串联组合中,所述单列角接触球轴承位于所述定子铁心一侧,其外圈直径大于所述深沟球轴承的外圈直径,或所述深沟球轴承与所述单列角接触球轴承的外圈直径相同并在两个轴承的外圈间设置垫圈。
优选地,所述轴承单元为两个单列角接触球轴承的串联组合中,两个所述单列角接触球轴承同向排列,并在该两个轴承的内圈间设置弹性垫圈,所述转子盘受到的磁拉力通过所述弹性垫圈由两个所述单列角接触球轴承共同分担。
优选地,所述转子盘和/或所述定子轭盘上设有通风口,通过所述转子盘的旋转产生的空气压力差,冷空气从所述通风口导入所述电机内部,将热空气排出所述电机。
本发明相对于现有技术取得了以下技术效果:
本发明将轴向磁场电机,特别是单定子单转子结构的轴向磁场电机应用于电动自行车的轮毂电机,永磁体用量比传统径向磁场电机下降20%,铁芯材料消耗减少40%,高效率区间提前且宽度大幅增加,大幅提高了电动自行车的续行里程,并且可以在现有制备技术条件下进行低成本的批量生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的 前提下,还可以根据这些附图获得其他的附图。
图1为本实施例轻型电动自行车有齿轮毂电机结构示意图;
图2为本实施例轻型电动自行车有齿轮毂电机3D分解图;
图3为定子铁芯、一种定子轭盘和一种定子托盘的连接示意图;
图4为定子铁芯、另一种定子轭盘和另一种定子托盘的连接示意图;
图5为电机的定子组件结构示意图;
图6为轴承单元的一种结构示意图;
图7为轴承单元的另一种结构示意图;
图8为轴承单元的另一种结构示意图;
图9为本实施例轻型电动自行车有齿轮毂电机48V350W样机“功率—效率”曲线图。
附图标记说明:1主轴;2轮毂;3端盖;4转子盘;5永磁体;6定子铁芯;7定子轭盘;8定子托盘;9极靴;10第一榫槽;11补强圆盘片;12滚动体;13气隙;14线圈;15线圈骨架;16第二榫槽;17径向托盘;18第三榫槽;19第一连接孔;20第二连接孔;21双列角接触球轴承;22深沟球轴承;23单列角接触球轴承;24垫圈;25弹性垫圈;26通风口。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1-8所示,本实施例提供一种轻型电动自行车有齿轮毂电机,包括主轴1、轮毂2、端盖3、电机和行星齿轮减速机构,所述电机通过所述行星齿轮减速机构减速后驱动轮毂2转动,所述电机为单转子单定子定轴结构的轴向磁场电机,包括一转子组件和一定子组件,所述转子组件包括一转子盘4和安装在转子盘4上的多个永磁体5,转子盘4通过包含有角接触球轴承的具有两列滚动体12的轴承单元与主轴1转动连接;所述定子组件包括多个定子铁芯6、一个定子轭盘7和一个定子托盘8,定子铁芯6为多个不同宽度的硅钢材 料的薄片沿径向方向叠合而成,定子铁芯6在接近转子盘4的一端具有极靴9,另一端的两径向叠合面上均设有第一榫槽10;定子轭盘7为多个硅钢材料的圆盘薄片沿轴向方向叠合而成,或者定子轭盘7为多个硅钢材料的圆盘薄片与非硅钢材料的补强圆盘片11沿轴向方向叠合而成,补强圆盘片11用以增强定子轭盘7克服轴向磁拉力的能力,补强圆环片11叠放在定子轭盘7远离转子盘4的一侧,定子轭盘7套设在定子托盘8上,定子铁芯6与定子轭盘7或者与定子轭盘7和定子托盘8以榫卯结构连接,定子托盘8与主轴1固定连接。
轴向磁场电机,需要克服转子组件和定子组件间的轴向磁拉力,又由于该轴向磁拉力在周向上不会呈理论上的均匀性,还需克服由此产生的倾覆力,为此,轴向磁场电机通常以双气隙结构平衡轴向磁拉力。本实施例轮毂电机,功率不大于400W,由于有行星齿轮减速机构减速,高速低扭矩的轴向磁场电机在停转状态的磁拉力在200N左右,空载转速不大于2500rpm/min,“角接触球轴承+两列滚动体12”的轴承单元将转子盘4转动连接在主轴1的技术方案,其有效性和稳定性已得到实验验证;本实施例多个定子铁芯6与定子轭盘7榫卯结构连接的轴向磁场电机,其永磁体磁通经过“永磁体5的N极~气隙13~定子铁芯6~定子轭盘7~相邻的定子铁芯6~气隙13~相邻的永磁体5的S极”,形成闭合的磁回路。
所述定子组件还包括套设在定子铁芯6上的线圈14,线圈14和定子铁芯6之间通过绝缘的线圈骨架15进行绝缘阻隔,如图2、图5所示,或在定子铁芯上涂敷绝缘层进行绝缘阻隔。
多个定子铁芯6同轴周向排列,形成由多个定子铁芯磁极组成的环形磁极平面,与多个永磁体5的磁极面相对应,定子铁芯6上位于径向方向的两个第一榫槽10之间的实体部分,为榫卯结构的榫舌,第一榫槽10的槽侧面为定子铁芯6的轴向定位的榫肩,线圈14套设在极靴9和第一榫槽10之间。
本领域技术人员需根据轴向磁场电机的磁拉力和电磁转矩的大小,采取适当的结构形式确保定子组件的可靠性,定子铁芯6、定子轭盘7和定子托盘8的结构形式以及三者间的连接方式,可根据本实施方案的以下四个实施例但不仅限于该四个实施例进行选择。
实施例一:
第一榫槽10为“U”形槽的定子铁芯6,与套接有定子轭盘7的定子托盘8以榫卯结构连接:
如图3所示,第一榫槽10为“U”形槽,多个硅钢材料的圆环片沿轴向方向叠合而成的定子轭盘7,设有周向阵列布置的与定子铁芯6连接配合的第二榫槽16,定子托盘8远离转子盘4的一端具有径向托盘17,径向托盘17上设有连接定子铁芯6并与第二榫槽16对应的第三榫槽18,第二榫槽16和第三榫槽18的槽形与两个第一榫槽10之间的实体部分对应一致,第一榫槽10的槽宽与定子轭盘7和定子托盘8的轴向长度之和一致,第二榫槽16和第三榫槽18均为开口槽,套装有线圈14的定子铁芯6,其两个第一榫槽10间的实体部分从第二榫槽16和第三榫槽18的开口处插入,第二榫槽16和第三榫槽18的槽边夹持在第一榫槽10中,如此形成榫卯连接,实现了定子铁芯6与定子轭盘7和定子托盘8的固定连接。
本实施例中,电机的磁拉力和电磁转矩,由定子铁芯6直接作用于定子托盘8上,定子轭盘7可采用最经济的轴向叠厚。
实施例二:
第一榫槽10为“U”形槽的定子铁芯6与定子轭盘7以榫卯结构连接:
如图4所示,第一榫槽10为“U”形槽,定子轭盘7设有周向阵列布置的与定子铁芯6连接配合的第二榫槽16,第二榫槽16为开口槽,定子轭盘7的近主轴1侧还设有若干个与定子托盘8固定连接的第一连接孔19;定子托盘8接近转子盘的4一端具有径向托盘17,径向托盘17上设有与第一连接孔19对应的第二连接孔20,定子轭盘7套接在定子托盘8上,通过第一连接孔19和第二连接孔20,用铆接或栓接工艺固定连接;定子轭盘7的第二榫槽16的槽形与两个第一榫槽10之间的实体部分对应一致,第一榫槽10的槽宽与定子轭盘7的轴向长度一致,套装有线圈14的定子铁芯6,其两个第一榫槽10之间的实体部分从第二榫槽16的开口处插入,第一榫槽10之间的实体部分位于第二榫槽16内,第二榫槽16的槽边夹持在第一榫槽10内,如此形成榫卯连接,实现了定子铁芯6与定子轭盘7的固定连接。
本实施例中,电机的磁拉力和电磁转矩由定子轭盘7传递给定子托盘8,为此可适当增加定子轭盘叠片的数量以增加其强度。
实施例三:
第一榫槽为“U”形槽的定子铁芯6与具有补强圆盘片11的定子轭盘7以榫卯结构连接:
第一榫槽10为“U”形槽,定子轭盘7为多个硅钢材料的圆环片和非硅钢材料的补强圆盘片11沿轴向方向叠合而成,如图4所示,补强圆环片11叠放在定子轭盘7远离转子盘4的一侧,用以增强定子轭盘7克服轴向磁拉力和电磁转矩的能力,定子轭盘7设有周向阵列布置的与定子铁芯6连接配合的第二榫槽16,第二榫槽16为开口槽,定子轭盘7的近主轴侧还设有若干个与定子托盘8固定连接的第一连接孔19。
定子托盘8采用与实施例二相同的结构,其接近转子盘4的一端具有径向托盘17,径向托盘17上设有与第一连接孔19对应的第二连接孔20,定子轭盘7套接在定子托盘8上,通过第一连接孔19和第二连接孔20,用铆接或栓接工艺固定连接;套装有线圈14的定子铁芯6,其两个第一榫槽10之间的实体部分从第二榫槽16的开口处插入,具有补强圆环片11的定子轭盘7的槽边夹持在第一榫槽10中,如此形成榫卯连接,实现了定子铁芯6与定子轭盘7的固定连接。
实施例四:
第一榫槽为“L”形槽的定子铁芯6与定子轭盘7以榫卯结构连接:
第一榫槽为“L”形槽,定子轭盘7设有周向阵列布置的连接定子铁芯的第二榫槽16,其近轴侧还设有第一连接孔19,定子托盘8接近转子盘4的一端具有径向托盘17,径向托盘17上设有与第一连接孔19对应的第二连接孔20,定子轭盘7和定子托盘8通过第一连接孔19和第二连接孔20铆接或栓接;定子铁芯6的两个第一榫槽10之间的实体部分插入第二榫槽16内,通过焊接方式与定子轭盘7固定。
本领域技术人员可根据实际需要对轴承单元的具体形式进行选择,只要轴 承单元包含有能够承担轴向磁拉力的角接触球轴承,并且轴承单元具有承担倾覆力矩的两列滚动体12即可。例如,轴承单元可以为双列角接触球轴承21,如图7所示;或深沟球轴承22与单列角接触球轴承23的串联组合,如图1、图6所示;或两个单列角接触球轴承23的串联组合,如图8所示。
轴承单元为深沟球轴承22与单列角接触球轴承23的串联组合中,单列角接触球轴承23位于定子铁芯6一侧,其外圈直径大于深沟球轴承22的外圈直径,磁拉力作用于单列角接触球轴承23的轴承挡上,如图6所示;深沟球轴承22与单列角接触球轴承23外圈直径相同,在其外圈间设置有垫圈24,磁拉力通过垫圈24传递作用于深沟球球轴承22的轴承挡上。
磁拉力较大时,轴承单元选择两个单列角接触球轴承23的串联组合,两个单列角接触球轴承23同向排列,并在其内圈间设置弹性垫圈25,如图8所示,弹性垫圈25采用波形叠片,磁拉力使弹性垫圈25产生压缩变形而由两个单列角接触球轴承23共同分担;两个单列角接触球轴承23外圈直径不相同时,磁拉力分别作用于两个单列角接触球轴承23的轴承挡上,两个单列角接触球轴承23外圈直径相同时,在其外圈间设置垫圈24。
本实施例转子盘4和/或定子轭盘7上设有通风口25,由于转子盘4与定子铁芯6相对转动,将带动气隙13中的空气随转子盘4流动,转子盘4边缘处空气的流速大于内侧空气的流速,因而外侧气压小于内侧气压,形成“泵吸效应”,冷空气从通风口25进入气隙13,热空气从电机中排出,从而提高散热能力。
如图2所示,采用本实施例上述结构的有齿轮毂电机样机,设计额定电压48V,额定功率350W,轴向磁场电机空载转速1988rpm/min,轮毂2空载转速280rpm/min,轴向磁场直流电机采用12槽16极分数槽同步直流电机型式,由定子铁芯7与定子轭盘9组成的轴向磁场定子铁心的内外径分别为
Figure PCTCN2020098421-appb-000001
Figure PCTCN2020098421-appb-000002
采用
Figure PCTCN2020098421-appb-000003
集中绕组,并联支路数为4,磁极位置传感器为霍尔位置传感器。
样机测试结果见图9,最大效率近86%,输入功率125W~515W的功率范围内的效率均在80%以上,从效率曲线图可以看出,本发明尤其适用于小功率 的轻型电动自行车。20寸1.75英寸宽轮胎的样车骑行测试,用48V14Ah锂电池作动力源,在风力三~四级的平坦路面上,按平均时速24Km/h纯电动骑行测试,续行里程达95Km,较市场上同样配置的采用径向磁场有齿轮毂电机的电动自行车提高了近50%,实现了本发明的目的。
本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,同样可以实现本发明的轻型电动自行车有齿轮毂电机。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种轻型电动自行车有齿轮毂电机,包括主轴、轮毂、端盖、电机和行星齿轮减速机构,所述电机通过所述行星齿轮减速机构减速后驱动所述轮毂转动,其特征是:所述电机为单转子单定子定轴结构的轴向磁场电机,包括一转子组件和一定子组件,所述转子组件包括一转子盘和安装在所述转子盘上的多个永磁体,所述转子盘通过包含有角接触球轴承的具有两列滚动体的轴承单元与所述主轴转动连接;所述定子组件包括多个定子铁芯、一个定子轭盘和一个定子托盘,所述定子铁芯为多个不同宽度的硅钢材料的薄片沿径向方向叠合而成,所述定子铁芯在远离所述转子盘的一端的两径向叠合面上设有第一榫槽;所述定子轭盘为多个硅钢材料的圆盘薄片沿轴向方向叠合而成,或者所述定子轭盘为多个硅钢材料的圆盘薄片与非硅钢材料的补强圆盘片沿轴向方向叠合而成,所述定子轭盘套设在所述定子托盘上,所述定子铁芯与所述定子轭盘或者与所述定子轭盘和所述定子托盘以榫卯结构连接,所述定子托盘与所述主轴固定连接。
  2. 根据权利要求1所述的轻型电动自行车有齿轮毂电机,其特征在于,所述定子组件还包括套设在所述定子铁芯上的线圈,所述线圈和所述定子铁芯之间通过绝缘的线圈骨架或在所述定子铁芯上涂敷绝缘材料进行绝缘阻隔。
  3. 根据权利要求1所述的轻型电动自行车有齿轮毂电机,其特征在于,所述第一榫槽为“U”形槽,所述定子轭盘设有周向阵列布置的连接所述定子铁芯的第二榫槽,所述定子托盘远离所述转子盘的一端具有径向托盘,所述径向托盘上设有连接所述定子铁芯并与所述第二榫槽对应的第三榫槽,所述定子铁芯的所述第一榫槽之间的实体部分位于所述第二榫槽和所述第三榫槽内,所述第二榫槽和所述第三榫槽的槽边夹持在所述第一榫槽内。
  4. 根据权利要求1所述的轻型电动自行车有齿轮毂电机,其特征在于,所述第一榫槽为“U”形槽,所述定子轭盘设有周向阵列布置的连接所述定子铁芯的第二榫槽,其近轴侧还设有第一连接孔,所述定子托盘接近所述转子盘的一端具有径向托盘,所述径向托盘上设有与所述第一连接孔对应的第二连接孔,所述定子轭盘和所述定子托盘通过所述第一连接孔和所述第二连接孔铆接或栓接;所述定子铁芯的所述第一榫槽之间的实体部分位于所述第二榫槽内, 所述第二榫槽的槽边夹持在所述第一榫槽内。
  5. 根据权利要求3或4所述的轻型电动自行车有齿轮毂电机,其特征在于,所述第二榫槽和所述第三榫槽均为开口槽,所述定子铁芯的所述第一榫槽间的实体部分自开口处插入所述第二榫槽或第二榫槽和第三榫槽,从而使所述定子铁芯与所述定子轭盘或者与所述定子轭盘和所述定子托盘形成榫卯结构连接。
  6. 根据权利要求1所述的轻型电动自行车有齿轮毂电机,其特征在于,所述第一榫槽为“L”形槽,所述定子轭盘设有周向阵列布置的连接所述定子铁芯的第二榫槽,其近轴侧还设有第一连接孔,所述定子托盘接近所述转子盘的一端具有径向托盘,所述径向托盘上设有与所述第一连接孔对应的第二连接孔,所述定子轭盘和所述定子托盘通过所述第一连接孔和第二连接孔铆接或栓接;所述定子铁芯的所述第一榫槽之间的实体部分插入所述第二榫槽内,所述定子铁芯再通过焊接方式与所述定子轭盘固定。
  7. 根据权利要求1所述的轻型电动自行车有齿轮毂电机,其特征在于,所述轴承单元为双列角接触球轴承,或深沟球轴承与单列角接触球轴承的串联组合,或两个单列角接触球轴承的串联组合。
  8. 根据权利要求7所述的轻型电动自行车有齿轮毂电机,其特征在于,所述轴承单元为深沟球轴承与单列角接触球轴承的串联组合中,所述单列角接触球轴承位于所述定子铁芯一侧,其外圈直径大于所述深沟球轴承的外圈直径,或所述深沟球轴承与所述单列角接触球轴承的外圈直径相同并在两个轴承的外圈间设置垫圈。
  9. 根据权利要求7所述的轻型电动自行车有齿轮毂电机,其特征在于,所述轴承单元为两个单列角接触球轴承的串联组合中,两个所述单列角接触球轴承同向排列,并在两个轴承的内圈间设置弹性垫圈,所述转子盘受到的磁拉力通过弹性垫圈由两个所述单列角接触球轴承共同分担。
  10. 根据权利要求1所述的轻型电动自行车有齿轮毂电机,其特征在于,所述转子盘和/或所述定子轭盘上设有通风口,通过所述转子盘的旋转产生的空气压力差,冷空气从所述通风口导入所述电机内部,将热空气排出所述电机。
PCT/CN2020/098421 2019-08-16 2020-06-28 一种轻型电动自行车有齿轮毂电机 WO2021031696A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910757289.4 2019-08-16
CN201910757289.4A CN110350749A (zh) 2019-08-16 2019-08-16 一种轴向磁场轮毂电机
CN202010557135.3 2020-06-18
CN202010557135 2020-06-18

Publications (1)

Publication Number Publication Date
WO2021031696A1 true WO2021031696A1 (zh) 2021-02-25

Family

ID=74660017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/098421 WO2021031696A1 (zh) 2019-08-16 2020-06-28 一种轻型电动自行车有齿轮毂电机

Country Status (1)

Country Link
WO (1) WO2021031696A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037335A1 (en) * 2009-01-19 2011-02-17 New Motech Co., Ltd. Axial motor
CN102326317A (zh) * 2009-02-26 2012-01-18 大金工业株式会社 电枢用铁心
JP5515689B2 (ja) * 2009-11-30 2014-06-11 ダイキン工業株式会社 電機子用コア
CN110350749A (zh) * 2019-08-16 2019-10-18 眭华兴 一种轴向磁场轮毂电机
CN111030332A (zh) * 2019-09-11 2020-04-17 眭华兴 一种轴向磁场有齿轮毂电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110037335A1 (en) * 2009-01-19 2011-02-17 New Motech Co., Ltd. Axial motor
CN102326317A (zh) * 2009-02-26 2012-01-18 大金工业株式会社 电枢用铁心
JP5515689B2 (ja) * 2009-11-30 2014-06-11 ダイキン工業株式会社 電機子用コア
CN110350749A (zh) * 2019-08-16 2019-10-18 眭华兴 一种轴向磁场轮毂电机
CN111224527A (zh) * 2019-08-16 2020-06-02 眭华兴 一种轴向磁场轮毂电机
CN111030332A (zh) * 2019-09-11 2020-04-17 眭华兴 一种轴向磁场有齿轮毂电机

Similar Documents

Publication Publication Date Title
WO2021031973A1 (zh) 一种单元模块组合式定子轴向磁场有齿轮毂电机
CN100420125C (zh) 轴向磁通电动机组件
CN1574546B (zh) 电机
CN110460175B (zh) 一种轴向磁通集中绕组型混合励磁电机
CN100454729C (zh) 两向混合励磁无刷电机
CN203942424U (zh) 一种无轭闭口槽多盘式永磁电机
CN107359767A (zh) 一种Halbach型阵列永磁盘式无铁芯空心轴电机
KR20130105689A (ko) 일종의 디스크 형식 복식 다중조합 3차원 영구 자석 모터
CN104113171A (zh) 一种无轭闭口槽多盘式永磁电机
CN204012963U (zh) 高功率密度外转子直流无刷电机
US20140361655A1 (en) Brushless permanent-magnet motor
CN111030332A (zh) 一种轴向磁场有齿轮毂电机
CN105896861A (zh) 一种轮毂式轴向励磁永磁电机
WO2021031696A1 (zh) 一种轻型电动自行车有齿轮毂电机
CN102602782A (zh) 开关磁阻式无齿轮曳引机
CN103795211A (zh) 一种子母式轮毂电机
CN212627618U (zh) 一种轻型电动自行车有齿轮毂电机
US20230268788A1 (en) Stator windings with variable cross-section for geometry optimization and direct cooling
CN202193523U (zh) 开关磁阻电动机式电梯曳引机
CN103840586A (zh) 永磁外转子轮毂电机
CN210724516U (zh) 一种双定子单转子盘式永磁电动机
CN112290768A (zh) 一种轻型电动自行车有齿轮毂电机
CN112838730A (zh) 一种盘式电动机及两轮电动车
CN2833990Y (zh) 新型高效永磁直流电机
CN214480208U (zh) 一种盘式电动机及两轮电动车

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20854629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20854629

Country of ref document: EP

Kind code of ref document: A1