WO2021031568A1 - 一种具有广视场角的可视系统 - Google Patents

一种具有广视场角的可视系统 Download PDF

Info

Publication number
WO2021031568A1
WO2021031568A1 PCT/CN2020/082501 CN2020082501W WO2021031568A1 WO 2021031568 A1 WO2021031568 A1 WO 2021031568A1 CN 2020082501 W CN2020082501 W CN 2020082501W WO 2021031568 A1 WO2021031568 A1 WO 2021031568A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
eyepiece
wearer
wide field
imaging modules
Prior art date
Application number
PCT/CN2020/082501
Other languages
English (en)
French (fr)
Inventor
陈乐春
潘婷婷
Original Assignee
江苏数字鹰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏数字鹰科技股份有限公司 filed Critical 江苏数字鹰科技股份有限公司
Publication of WO2021031568A1 publication Critical patent/WO2021031568A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/957Light-field or plenoptic cameras or camera modules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0123Head-up displays characterised by optical features comprising devices increasing the field of view

Definitions

  • the invention belongs to the technical field of visual system application, and in particular relates to a visual system with a wide field of view.
  • VR glasses that is, virtual reality glasses.
  • the specific connotation is the comprehensive use of computer graphics systems and various reality and control interface devices to provide an immersive feeling in an interactive three-dimensional environment. technology.
  • the other is electronic augmentation, also known as mixed reality.
  • Its specific connotation is the application of virtual information to the real world through computer technology. The real environment and virtual objects are superimposed on the same screen or space in real time.
  • the applicant once proposed a panoramic view presentation method based on the characteristics of human vision in the invention patent application number 2017108266261.
  • the technical solution adopted by this method is to present the wearer with a panoramic view through the cameras on the left and right sides.
  • a monocular lens group is used.
  • the monocular group needs to go through complex image fusion calculations.
  • immature algorithms it is easy to produce image distortion and deformation, resulting in poor look and feel. Therefore, this panoramic field of view presentation solution cannot really solve the increase The main field of view of VR and electronic enhanced glasses.
  • the present invention provides a visual system with a wide field of view, with the purpose of expanding the wearer’s field of view to perform more effective observation.
  • a visual system with a wide field of view comprising an imaging module and an eyepiece group; the number of imaging modules and eyepiece groups corresponding to one eye of the wearer is at least N, where N is an integer greater than or equal to 2, Each eyepiece group is arranged behind each corresponding imaging module, each imaging module corresponds to each eyepiece group, and the N eyepiece groups face the same eye of the wearer; the imaging module is used to display a wide field of view Angle image, the wide field angle image is divided into N parts and displayed on N imaging modules respectively, and the images displayed by the N imaging modules are respectively projected into the same eye of the wearer through N eyepiece groups , One eye of the wearer observes the images on the N imaging modules through N eyepiece groups at the same time.
  • all imaging modules and eyepiece groups correspond to the wearer's left eye; or, all imaging modules and eyepiece groups correspond to the wearer's right eye; or, all imaging modules and eyepiece groups are divided into two groups , Corresponding to the left and right eyes of the wearer.
  • the imaging module displays an image in a horizontal range of 100-180 degrees or a longitudinal range of 100-180 degrees directly in front of the wearer.
  • it further includes a camera group for capturing images of a wide field of view in front of the wearer, and the wide field of view images captured by the camera group are divided into N parts and projected to N images respectively On the module.
  • the types of the camera group include an optical camera group, an infrared camera group, a thermal imaging camera group, and a night vision camera group; the imaging mode of the output signal of the camera group on the imaging module is Optical imaging or digital imaging.
  • the imaging module is a display screen, and the image of the display screen is directly projected into the eyepiece group; or, the imaging module includes a display screen and a light refraction element, and the image of the display screen The light refraction element is projected into the eyepiece group.
  • each imaging module is an independent mechanism, and the image displayed on each imaging module is independent or has an overlapping area with the edge of the image displayed on the adjacent imaging module.
  • the respective imaging modules are arranged horizontally, or vertically, or in an array.
  • the respective imaging modules are arranged to form a curved surface, and the curvature of the curved surface matches the curvature of the human face.
  • one end of the eyepiece group faces a common vertex, that is, the human eye, and the other end spreads out towards the corresponding imaging module.
  • the invention solves the problem of the visual field angle of the visual system, uses more imaging modules and eyepiece groups to supplement the visual field angle, and expands the wearer's visual field angle, thereby performing more effective observation.
  • the present invention physically increases the field of view angle without complicated calculations, thereby achieving lower delay and higher imaging quality.
  • the present invention uses a camera to capture all external images and project them onto the imaging module; a plural number of imaging modules and eyepiece groups are used, each imaging module corresponds to an eyepiece, and the plural number of eyepieces face the left eye, The plural number of eyepieces face the right eye, and each eye corresponds to the plural number of eyepieces and the plural number of imaging modules, and there are multiple sets of left and right eyes.
  • the content projected onto multiple imaging modules can be merged through fusion technology or not.
  • the invention can increase the main field of view of the visual system in the military field, and help soldiers break through the naked-eye vision limitation. Not only can they see the picture directly in front, but at the same time, they can also know their side conditions without turning their heads. Improve individual combat capability.
  • the invention also has broad application prospects in the field of civil amusement.
  • Figure 1 is one of the overall structure diagrams of the first embodiment of the present invention.
  • Figure 2 is the second overall structure diagram of the first embodiment of the present invention.
  • Fig. 3 is a schematic diagram of internal main components of the first embodiment of the present invention.
  • Figure 4 is one of the overall structure diagrams of the second embodiment of the present invention.
  • Fig. 5 is the second overall structure diagram of the second embodiment of the present invention.
  • Fig. 6 is a schematic diagram of internal main components of a second embodiment of the present invention.
  • Figure 7 is a schematic diagram of the present invention.
  • VR virtual reality
  • glasses which is a technology that uses a computer graphics system and various reality and control interface devices to provide an immersive feeling in an interactive three-dimensional environment.
  • this application mode no camera is needed, and the display of the present invention directly displays the virtual scene.
  • the high-level application of the present invention is electronic enhanced glasses, which apply virtual information to the real world through computer technology, and the real environment and virtual objects are superimposed on the same screen or space simultaneously in real time.
  • the present invention captures external images through various multifunctional cameras, and projects them on the display for display.
  • electronic enhanced glasses also include the basic components of VR glasses, the following two embodiments mainly use electronic enhanced glasses to illustrate the principle of the present invention.
  • Figures 1 to 3 are an embodiment of a visual system applying the principle of the present invention, which is an electronic enhanced glasses with four eyepiece groups.
  • the electronic enhanced glasses mainly include a host 1 and headbands 2 and 3.
  • the host 1 is in the form of glasses, and it may also be in the form of a helmet or the like.
  • a plurality of camera groups 4, 5, 6, 7, and 8 are installed on the front and upper part of the host 1.
  • the back of the main body 1 is provided with a soft cushion 9 along its edge, which is used to increase the degree of comfort when it comes in contact with the wearer's skin.
  • the headbands 2 and 3 include a surrounding headband assembly 2 and a top headband assembly 3.
  • the surrounding headband assembly 2 is used to fasten the wearer's head in the horizontal direction.
  • the top headgear assembly 3 is used to fasten the wearer's head at the top of the head.
  • imaging module 10a, 10b, 10c, and 10d are installed in the middle of the host 1.
  • the form of the imaging module in this embodiment may be an LED display screen.
  • Four eyepiece groups 11a, 11b, 11c, 11d are installed at the rear of the four imaging modules.
  • the eyepiece group is arranged behind the corresponding imaging module, the imaging module and the eyepiece group have a one-to-one correspondence, that is, the imaging module 10a corresponds to the eyepiece group 11a, the imaging module 10b corresponds to the eyepiece group 11b, and the imaging module 10c It corresponds to the eyepiece group 11c, and the imaging module 10d corresponds to the eyepiece group 11d.
  • the four imaging modules 10a, 10b, 10c, and 10d are arranged laterally into a curved surface that fits the curvature of the human face.
  • the two imaging modules 10a, 10b on the left side of the curved surface correspond to the wearer’s left eye, and the right side of the curved surface
  • the two imaging modules 10c and 10d correspond to the right eye of the wearer.
  • the four eyepiece groups 11a, 11b, 11c, and 11d form an angle in pairs to form two sets of V shapes.
  • the eyepiece groups 11a and 11b face the wearer's left eye
  • the eyepiece groups 11c and 11d face the wearer's right eye.
  • FIGS. 1 to 3 The working principles of the embodiments shown in FIGS. 1 to 3 are described as follows:
  • Camera groups 4, 5, 6, 7, 8 are used to capture images with a horizontal field of view of 100 to 180 degrees directly in front of the wearer.
  • the types of camera groups include optical camera group, infrared camera group, thermal imaging camera group and night vision camera group. Different types of camera groups have imaging functions in different environments, and generally only one type of camera group works in each environment. For example, in a well-lit environment, only the optical camera set is required to capture images. Other types of camera sets do not work. In a night environment, only the night vision camera set is required to capture images. Other types of camera sets do not. jobs.
  • the imaging mode of the output signals of the camera groups 4, 5, 6, 7, and 8 on the imaging module is optical imaging or digital imaging.
  • the camera groups 4, 5, 6, 7, and 8 divide the captured wide field of view image into four horizontally according to the field of view, and project them on the four imaging modules 10a, 10b, 10c, and 10d, respectively.
  • the four imaging modules 10a, 10b, 10c, and 10d are physically independent of each other, and the image displayed on each imaging module is independent or overlaps with the edge of the image displayed on the adjacent imaging module .
  • a captured image with a field of view of 180 degrees can be divided into four images of 0-45 degrees, 45-90 degrees, 90-135 degrees, and 135-180 degrees, and the imaging module 10a displays 0
  • the imaging module 10b displays a field of view of 45 to 90 degrees
  • the imaging module 10c displays a field of view of 90 to 135 degrees
  • the imaging module 10d displays a field of view of 135 to 180 degrees.
  • the edges of the image are partially overlapped, such as overlapping by 5 degrees, and divided into four images of 0-50 degrees, 45-90 degrees, 90-135 degrees, and 130-180 degrees.
  • the image display on the imaging module is the same as above .
  • the images displayed by the four imaging modules 10a, 10b, 10c, and 10d are projected into the human eyes through the four eyepiece groups 11a, 11b, 11c, and 11d respectively, and are observed by the left and right eyes of the wearer. That is, the wearer’s left eye observes the images on the two imaging modules 10a, 10b through the two eyepiece groups 11a, 11b, while the wearer’s right eye observes the two imaging modules through the two eyepiece groups 11c, 11d. Images on modules 10c, 10d.
  • the imaging module includes not only a display screen, but also a light refraction element, and the image of the display screen is projected into the eyepiece group through the light refraction element.
  • FIG. 7 for the principle diagram of the present invention.
  • the imaging module and the eyepiece group are arranged horizontally, and the main purpose is to expand the horizontal angle of view.
  • the number of imaging modules and eyepiece groups is chosen to be 4 considering that the current field of view of the monocular group is generally only 70-80.
  • the human eye Each is assigned a 90-degree field of view, and each eye cannot be covered with one eyepiece group, but it can be covered theoretically with two eyepiece groups. Therefore, the number of imaging modules and eyepiece sets in this embodiment is selected to be four.
  • the number of imaging modules and eyepiece groups can also be 6, 8, 10, or even more.
  • Figures 4 to 6 are another embodiment of the visual system applying the principle of the present invention, which is an electronic enhanced glasses with eight eyepiece groups.
  • the difference between the AR glasses and the first embodiment shown in FIG. 1 to FIG. 3 mainly lies in the number and arrangement of internal imaging modules and eyepiece groups.
  • FIG. 6 after removing the shell of the host 1, it can be seen that eight imaging modules 10e, 10f, 10g, 10h, 10i, 10j, 10k, and 10l are installed in the middle of the host 1.
  • Eight eyepiece groups 11e, 11f, 11g, 11h, 11i, 11j, 11k, 11l are installed at the rear of the eight imaging modules.
  • the eyepiece group is arranged behind the corresponding imaging module, and the imaging module and the eyepiece group have a one-to-one correspondence.
  • the eight imaging modules are divided into two groups, forming two T-shaped arrays respectively.
  • the four imaging modules 10e, 10f, 10g, and 10h correspond to the wearer’s left eye
  • the four imaging modules 10i, 10j, and 10k , 10l corresponds to the wearer's right eye.
  • the eight eyepiece groups are also divided into two groups, respectively forming two "T" shaped arrays.
  • the eyepiece groups 11e, 11f, 11g, and 11h face the wearer's left eye
  • the eyepiece groups 11i, 11j, 11k, and 11l face the wearer.
  • Right eye is forming two T-shaped arrays respectively.
  • the images captured by the camera group are divided and projected onto eight imaging modules 10e, 10f, 10g, 10h, 10i, 10j, 10k, and 10l.
  • the division method is to first divide the captured image into two groups, and then divide the edge areas on both sides into 10h and 10l imaging modules. The remaining areas are divided into three equal parts, divided into 10e, 10f, 10g and 10i, 10j, 10k imaging modules.
  • the images displayed by the four imaging modules 10e, 10f, 10g, and 10h are projected into the wearer’s left eye through the four eyepiece groups 11e, 11f, 11g, and 11h, while the other four imaging modules 10i, 10j, 10k, and 10l
  • the displayed image is projected into the wearer's right eye through the four eyepiece groups 11i, 11j, 11k, and 11l.
  • the imaging module includes not only a display screen, but also a light refraction element, and the image of the display screen is projected into the eyepiece group through the light refraction element.
  • FIG. 7 for the principle diagram of the present invention.
  • the imaging module and the eyepiece group are mainly arranged longitudinally, and the purpose is to expand the longitudinal field of view.
  • the number of imaging modules and eyepiece sets is selected to be 8, and most (6) are set vertically. These are to expand the wearer's vertical field of view, and a few (2) are used for Complement the angle of view of the edge.

Abstract

一种具有广视场角的可视系统,应用于VR眼镜或电子增强眼镜,机构组成包括成像模组(10a、10b、10c、10d)和目镜组(11a、11b、11c、11d),可带有摄像头组(4、5、6、7、8)或不带,与佩戴者的一只眼睛对应的成像模组(10a、10b、10c、10d)和目镜组(11a、11b、11c、11d)的数量至少为N个,N为大于等于2的整数,目镜组(11a、11b、11c、11d)与成像模组(10a、10b、10c、10d)对应设置,N个目镜组(11a、11b、11c、11d)朝向佩戴者的同一只眼睛;广视场角图像分成N份,分别显示在N个成像模组(10a、10b、10c、10d)上,然后通过N个目镜组(11a、11b、11c、11d)被佩戴者的一只眼睛观测到。通过设置更多的成像模组(10a、10b、10c、10d)和目镜组(11a、11b、11c、11d)来补充视场角,扩大了佩戴者的视场角,从而进行更有效的观测;由于是通过物理的方式增大了视场角,无需复杂的运算,可以实现更低的延迟和更高的成像质量。

Description

一种具有广视场角的可视系统 技术领域
本发明属于可视系统应用技术领域,尤其涉及一种具有广视场角的可视系统。
背景技术
目前世界主要发达国家都在制定和组织实施单兵作战系统发展计划,一些适应各自国情的单兵作战武器系统平台异军突起,特别是头戴可视系统已成为士兵的标配。
可视系统分为两类,一类是VR眼镜,即虚拟现实眼镜,其具体内涵是综合利用电脑图形系统和各种现实及控制等接口设备,在生成可交互的三维环境中提供沉浸感觉的技术。另一类是电子增强,也被称为混合现实,其具体内涵是通过电脑技术,将虚拟的信息应用到真实世界,真实的环境和虚拟的物体实时地叠加到了同一个画面或空间同时存在。
士兵在战场上通过佩戴的VR、电子增强眼镜将实现信息的智能化,传送地图信息、发送图像给同伴、帮助士兵彼此警告潜在的威胁,例如陷阱和伏击等。
在作战和训练中,观测能力对于战斗是十分重要的。然而现有的VR、电子增强眼镜由于技术条件的问题,视场角是有限的,视场角普遍只有70~80度,做到100多度很难。这就造成了投射到人眼中的画面比较小,一般只能观测正前方的很小区域的目标,对于侧方视野外的目标观测不到,不能完全模拟真实人眼视角的观察范围。这就对作战人员的安全构成了重大威胁。如果能通过某种辅助战术装备及时发现侧方视场角外的敌人,快速做出反应,则可以先发打击克敌制胜。
申请人曾经在申请号为2017108266261的发明专利中提出一种基于人眼视觉特点的全景视野呈现方法,该方法采取的技术方案是通过左右两侧的摄像头给佩戴者呈现全景视野,但这个方法里采用的是单目镜组。单目镜组要呈现全景视野给人眼,需要经过复杂的图像融合计算,在算法不成熟的情况下容易产生图像失真、变型,导致观感不佳,因此这种全景视野呈现方案无法真正解决增大VR、电子增强眼镜主视 场角的问题。
发明内容
针对目前的VR、电子增强眼镜的视场角不够大的问题,本发明提供了一种具有广视场角的可视系统,目的在于扩大佩戴者的视场角,从而进行更有效的观测。
为达到上述目的,本发明的实施例采用如下技术方案:
一种具有广视场角的可视系统,包括成像模组和目镜组;与佩戴者的一只眼睛对应的成像模组和目镜组的数量至少为N个,N为大于等于2的整数,各个目镜组设置在相应的各个成像模组的后方,各个成像模组与各个目镜组分别一一对应,N个目镜组朝向佩戴者的同一只眼睛;所述成像模组用于显示广视场角的图像,广视场角的图像被分成N份,分别显示在N个成像模组上,所述N个成像模组显示的图像分别通过N个目镜组投射到佩戴者的同一只眼睛中,佩戴者的一只眼睛在同一时间通过N个目镜组观察N个成像模组上的图像。
依照本发明的一个方面,所有成像模组和目镜组对应佩戴者的左眼;或者,所有成像模组和目镜组对应佩戴者的右眼;或者,所有成像模组和目镜组分为两组,分别对应佩戴者的左眼和右眼。
依照本发明的一个方面,所述成像模组显示的是佩戴者正前方100~180度水平范围或100~180度纵向范围视场角的图像。
依照本发明的一个方面,还包括摄像头组,所述摄像头组用于捕捉佩戴者前方广视场角的图像,摄像头组捕捉到的广视场角的图像分成N份,分别投射到N个成像模组上。
依照本发明的一个方面,所述摄像头组的类型包括光学摄像头组、红外摄像头组、热成像摄像头组以及夜视摄像头组;所述摄像头组的输出信号在所述成像模组上的成像方式为光学成像或数字成像。
依照本发明的一个方面,所述成像模组为显示屏,所述显示屏的图像直接投射到目镜组中;或者,所述成像模组包括显示屏和光线折射元件,所述显示屏的图像通过光线折射元件投射到目镜组中。
依照本发明的一个方面,所述各个成像模组是相互独立的机构,每个成像模组上显示的图像是独立的或者与相邻的成像模组上所显示的图像的边沿有重叠区域。
依照本发明的一个方面,所述各个成像模组横向排列、或者纵向排列、或者阵列排列。
依照本发明的一个方面,所述各个成像模组排列后形成弧面,弧面的弧度与人脸的弧度相匹配。
依照本发明的一个方面,所述目镜组的一端朝向共同的顶点即人眼,另一端散开朝向对应的成像模组。
由于采用上述技术方案,本发明实施的优点是:
本发明解决了可视系统视场角问题,用更多的成像模组和目镜组来补充视场角,通过扩大佩戴者的视场角,从而进行更有效的观测。与现有技术相比,本发明是通过物理方式增大视场角,无需复杂的运算,从而实现了更低的延迟和更高的成像质量。
本发明用摄像头把外部的图像都捕捉进来以后,投射到成像模组上;采用复数数量的成像模组和目镜组,每个成像模组对应一个目镜,复数数量的目镜对着左边的眼睛,复数数量的目镜对着右边的眼睛,每个眼对应复数数量的目镜和复数数量的成像模组,左右眼各有多组。对投射到多个成像模组上的内容,可以通过融合技术融合,也可以不做融合。
本发明在军用领域可以增大可视系统的主视场角,帮助士兵突破裸眼视力限制,不仅可以看到正前方的画面,同时不需要转动头部即可对自己侧方情况也了如指掌,切实提高单兵作战能力。本发明在民用游乐领域也同样具有广阔的应用前景。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一种实施例的整体结构图之一。
图2是本发明第一种实施例的整体结构图之二。
图3是本发明第一种实施例的内部主要组件示意图。
图4是本发明第二种实施例的整体结构图之一。
图5是本发明第二种实施例的整体结构图之二。
图6是本发明第二种实施例的内部主要组件示意图。
图7是本发明的原理图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的基础应用是VR(虚拟现实)眼镜,是利用电脑图形系统和各种现实及控制等接口设备,在生成可交互的三维环境中提供沉浸感觉的技术。在这种应用方式中,是不需要摄像头的,本发明的显示器直接显示虚拟的场景。
本发明的高阶应用是电子增强眼镜,是通过电脑技术,将虚拟的信息应用到真实世界,真实的环境和虚拟的物体实时地叠加到了同一个画面或空间同时存在。在这种应用方式中,本发明通过各种多功能摄像头捕捉外界画面,投射到显示器上进行显示。
由于电子增强眼镜也包含了VR眼镜的基础部件,因此,以下两个实施例主要以电子增强眼镜对本发明的原理进行说明。
实施例一:
图1至图3是应用了本发明原理的可视系统的一种实施例,这是一种具有四个目镜组的电子增强眼镜。
参考图1和图2,该电子增强眼镜主要包括主机1和头带2、3。本实施例中主机1为眼镜形式,此外也可为头盔等形式。
主机1的前部和上部安装有多个摄像头组4、5、6、7、8。
主机1的背部沿其边缘设有软质缓冲垫9,用于与佩戴者皮肤接触时增加舒适程度。
头带2、3包括周围头带组件2和顶部头带组件3。周围头带组件2用于在水平方向紧固佩戴者头部。顶部头戴组件3用于在头顶处紧固佩戴者头部。
参考图3,除去主机1的外壳后,可以看到,在主机1的中部安装有四个成像模组10a、10b、10c、10d。本实施例中的成像模组的形式可是LED显示屏。四个成像模组的后部安装有四个目镜组11a、11b、11c、11d。目镜组设置在相应的成像模组的后方,成像模组与目镜组是一一对应的关系,即成像模组10a与目镜组11a对应、成像模组10b与目镜组11b对应、成像模组10c与目镜组11c对应、成像模组10d与目镜组11d对应。
四个成像模组10a、10b、10c、10d横向排成一个贴合人脸弧度的弧面,弧面左侧的两个成像模组10a、10b对应着佩戴者的左眼,弧面右侧的两个成像模组10c、10d对应着佩戴者的右眼。四个目镜组11a、11b、11c、11d两两形成夹角,形成两组V字形,目镜组11a、11b朝着佩戴者的左眼,目镜组11c、11d朝着佩戴者的右眼。
图1至图3所示的实施例的工作原理说明如下:
摄像头组4、5、6、7、8用于捕捉佩戴者正前方100~180度水平范围视场角的图像。摄像头组的类型包括光学摄像头组、红外摄像头组、热成像摄像头组及夜视摄像头组等。不同类型的摄像头组分别具有在不同环境下的成像功能,在每种环境下一般只需一种摄像头组工作。例如,在光线充足的环境下,只需光学摄像头组捕捉图像即可,其他类型的摄像头组不工作,而在夜晚环境下,只需夜视摄像头组捕捉图像即可,其他类型的摄像头组不工作。摄像头组4、5、6、7、8的输出信号在成像模组上的成像方式为光学成像或者是数字成像。
摄像头组4、5、6、7、8把捕捉到的广视场角的图像按照视场角横向分成四份,分别投射到四个成像模组10a、10b、10c、10d上。四个成像模组10a、10b、10c、10d在物理机构上是相互独立,每个成像模组上显示的图像是独立的或者与相邻的成像模组上所显示的图像的边沿有重叠区域。举例来说,以捕捉到的180度视场角的图像为例,可以分割成0~45度、45~90度、90~135度、135~180度四个图像,成像模组10a显示0~45度的视场,成像模组10b显示45~90度的视场,成像模组10c显示90~135度的视场,成像模组10d显示135~180度的视场。也可以是图像的边沿有部分重叠,例如重叠5度,分割成0~50度、45~90度、90~135度、130~180度四个图像,图像在成像模组上的显示方式 同上。
四个成像模组10a、10b、10c、10d显示的图像分别通过四个目镜组11a、11b、11c、11d投射到人眼中,被佩戴者的左、右眼观测到。即,佩戴者的左眼通过两个目镜组11a、11b观察的是两个成像模组10a、10b上的图像,而佩戴者的右眼通过两个目镜组11c、11d观察的是两个成像模组10c、10d上的图像。
在其他实施例中,成像模组不仅包括显示屏,还可以包括光线折射元件,显示屏的图像通过光线折射元件投射到目镜组中。
本发明的原理图参考图7。
本实施例中,成像模组和目镜组横向排列,主要目的是为了扩大横向的视场角。
本实施例中,设置成像模组和目镜组的数量选择为4个是考虑到,目前单目镜组的视场角普遍只有70~80,对于期望的180度的视场角来所,人眼每只分配90度的视场角,每只眼睛用1只目镜组无法覆盖、用2只目镜组即可理论上实现覆盖。所以本实施例中成像模组和目镜组的数量选择为4个。当然在其他实施例中,成像模组和目镜组的数量也可是6个、8个、10个甚至更多。
实施例二:
图4至图6是应用了本发明原理的可视系统的另外一种实施例,这是一种具有八个目镜组的电子增强眼镜。
该AR眼镜与图1至图3所示实施例一的区别主要在于内部成像模组和目镜组的数量和设置方式。
参考图6,除去主机1的外壳后,可以看到,在主机1的中部安装有八个成像模组10e、10f、10g、10h、10i、10j、10k、10l。八个成像模组的后部安装有八个目镜组11e、11f、11g、11h、11i、11j、11k、11l。目镜组设置在相应的成像模组的后方,成像模组与目镜组是一一对应的关系。
八个成像模组分为两组,分别形成两个“T”字形阵列,四个成像模组10e、10f、10g、10h对应着佩戴者的左眼,四个成像模组10i、10j、10k、10l对应着佩戴者的右眼。八个目镜组也分为两组,分别形成两个“T”字形阵列,目镜组11e、11f、11g、11h朝着佩戴者的左眼,目镜 组11i、11j、11k、11l朝着佩戴者的右眼。
图4至图6所示的实施例的工作原理说明如下:
由摄像头组捕捉到图像分割后被投射到八个成像模组10e、10f、10g、10h、10i、10j、10k、10l上。分割方式为,先将捕捉到图像左右分为两组,然后两侧的边缘区域分给10h和10l成像模组,剩下的区域分别上下三等分,分给10e、10f、10g和10i、10j、10k成像模组。
四个成像模组10e、10f、10g、10h显示的图像分别通过四个目镜组11e、11f、11g、11h投射到佩戴者的左眼中,而另外四个成像模组10i、10j、10k、10l显示的图像分别通过四个目镜组11i、11j、11k、11l投射到佩戴者的右眼中。
在其他实施例中,成像模组不仅包括显示屏,还可以包括光线折射元件,显示屏的图像通过光线折射元件投射到目镜组中。
本发明的原理图参考图7。
本实施例中,成像模组和目镜组主要为纵向排列,目的是为了扩大纵向的视场角。
本实施例中,设置成像模组和目镜组的数量选择为8个,而且大部分(6个)为纵向设置,这些是为了扩大佩戴者纵向的视场角,另外少数(2个)用于补充边缘的视场角。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本领域技术的技术人员在本发明公开的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种具有广视场角的可视系统,包括成像模组和目镜组;其特征在于:与佩戴者的一只眼睛对应的成像模组和目镜组的数量至少为N个,N为大于等于2的整数,各个目镜组设置在相应的各个成像模组的后方,各个成像模组与各个目镜组分别一一对应,N个目镜组朝向佩戴者的同一只眼睛;所述成像模组用于显示广视场角的图像,广视场角的图像被分成N份,分别显示在N个成像模组上,所述N个成像模组显示的图像分别通过N个目镜组投射到佩戴者的同一只眼睛中,佩戴者的一只眼睛在同一时间通过N个目镜组观察N个成像模组上的图像。
  2. 根据权利要求1所述的具有广视场角的可视系统,其特征在于:所有成像模组和目镜组对应佩戴者的左眼;或者,所有成像模组和目镜组对应佩戴者的右眼;或者,所有成像模组和目镜组分为两组,分别对应佩戴者的左眼和右眼。
  3. 根据权利要求1所述的具有广视场角的可视系统,其特征在于:所述成像模组显示的是佩戴者正前方100~180度水平范围或100~180度纵向范围视场角的图像。
  4. 根据权利要求1所述的具有广视场角的可视系统,其特征在于:还包括摄像头组,所述摄像头组用于捕捉佩戴者前方广视场角的图像,摄像头组捕捉到的广视场角的图像分成N份,分别投射到N个成像模组上。
  5. 根据权利要求4所述的具有广视场角的可视系统,其特征在于:所述摄像头组的类型包括光学摄像头组、红外摄像头组、热成像摄像头组以及夜视摄像头组;所述摄像头组的输出信号在所述成像模组上的成像方式为光学成像或数字成像。
  6. 根据权利要求1所述的具有广视场角的可视系统,其特征在于:所述成像模组为显示屏,所述显示屏的图像直接投射到目镜组中;或者,所述成像模组包括显示屏和光线折射元件,所述显示屏的图像通过光线折射元件投射到目镜组中。
  7. 根据权利要求1所述的具有广视场角的可视系统,其特征在于:所述各个成像模组是相互独立的机构,每个成像模组上显示的图像是独立的或者与相邻的成像模组上所显示的图像的边沿有重叠区域。
  8. 根据权利要求1所述的具有广视场角的可视系统,其特征在于:所述各个成像模组横向排列、或者纵向排列、或者阵列排列。
  9. 根据权利要求1所述的具有广视场角的可视系统,其特征在于:所述各个成像模组排列后形成弧面,弧面的弧度与人脸的弧度相匹配。
  10. 根据权利要求1所述的具有广视场角的可视系统,其特征在于:所述目镜组的一端朝向共同的顶点即人眼,另一端散开朝向对应的成像模组。
PCT/CN2020/082501 2019-08-20 2020-03-31 一种具有广视场角的可视系统 WO2021031568A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910768623.6A CN110361867A (zh) 2019-08-20 2019-08-20 一种具有广视场角的可视系统
CN201910768623.6 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021031568A1 true WO2021031568A1 (zh) 2021-02-25

Family

ID=68224174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082501 WO2021031568A1 (zh) 2019-08-20 2020-03-31 一种具有广视场角的可视系统

Country Status (2)

Country Link
CN (1) CN110361867A (zh)
WO (1) WO2021031568A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110361867A (zh) * 2019-08-20 2019-10-22 江苏数字鹰科技股份有限公司 一种具有广视场角的可视系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932105A (zh) * 2015-06-24 2015-09-23 北京理工大学 一种拼接式头盔显示装置
US9237338B1 (en) * 2013-10-14 2016-01-12 Simulated Percepts, Llc Apparatus for image display with multi-focal length progressive lens or multiple discrete lenses each having different fixed focal lengths or a variable focal length
CN105657370A (zh) * 2016-01-08 2016-06-08 李昂 一种封闭性的可穿戴全景摄像与处理系统及其操作方法
CN107462994A (zh) * 2017-09-04 2017-12-12 浙江大学 沉浸式虚拟现实头戴显示装置和沉浸式虚拟现实显示方法
CN107592521A (zh) * 2017-09-14 2018-01-16 陈乐春 基于人眼视觉特点的全景视野呈现方法
CN107589544A (zh) * 2017-09-04 2018-01-16 浙江大学 一种大视场头戴显示装置及大视场拼接方法
US20190113755A1 (en) * 2017-10-18 2019-04-18 Seiko Epson Corporation Virtual image display device
CN110361867A (zh) * 2019-08-20 2019-10-22 江苏数字鹰科技股份有限公司 一种具有广视场角的可视系统
CN210199409U (zh) * 2019-08-20 2020-03-27 江苏数字鹰科技股份有限公司 一种具有广视场角的可视眼镜

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9237338B1 (en) * 2013-10-14 2016-01-12 Simulated Percepts, Llc Apparatus for image display with multi-focal length progressive lens or multiple discrete lenses each having different fixed focal lengths or a variable focal length
CN104932105A (zh) * 2015-06-24 2015-09-23 北京理工大学 一种拼接式头盔显示装置
CN105657370A (zh) * 2016-01-08 2016-06-08 李昂 一种封闭性的可穿戴全景摄像与处理系统及其操作方法
CN107462994A (zh) * 2017-09-04 2017-12-12 浙江大学 沉浸式虚拟现实头戴显示装置和沉浸式虚拟现实显示方法
CN107589544A (zh) * 2017-09-04 2018-01-16 浙江大学 一种大视场头戴显示装置及大视场拼接方法
CN107592521A (zh) * 2017-09-14 2018-01-16 陈乐春 基于人眼视觉特点的全景视野呈现方法
US20190113755A1 (en) * 2017-10-18 2019-04-18 Seiko Epson Corporation Virtual image display device
CN110361867A (zh) * 2019-08-20 2019-10-22 江苏数字鹰科技股份有限公司 一种具有广视场角的可视系统
CN210199409U (zh) * 2019-08-20 2020-03-27 江苏数字鹰科技股份有限公司 一种具有广视场角的可视眼镜

Also Published As

Publication number Publication date
CN110361867A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
US5320534A (en) Helmet mounted area of interest (HMAoI) for the display for advanced research and training (DART)
Kiyokawa et al. An optical see-through display for mutual occlusion of real and virtual environments
CN108375840B (zh) 基于小型阵列图像源的光场显示单元及使用其的三维近眼显示装置
CN106707508A (zh) 帽子型虚拟现实图像显示系统
WO2019041614A1 (zh) 沉浸式虚拟现实头戴显示装置和沉浸式虚拟现实显示方法
CN101661163A (zh) 增强现实系统的立体头盔显示器
CN108398787B (zh) 增强现实显示设备、方法和增强现实眼镜
US10642038B1 (en) Waveguide based fused vision system for a helmet mounted or head worn application
CN110709898A (zh) 视频透视式显示系统
Melzer et al. Head-mounted displays
CN107592521A (zh) 基于人眼视觉特点的全景视野呈现方法
WO2021031568A1 (zh) 一种具有广视场角的可视系统
CN210199409U (zh) 一种具有广视场角的可视眼镜
US20190011702A1 (en) Helmet-Mounted Visualization Device Without Parallax and its Operation Method
US11567323B2 (en) Partial electronic see-through head-mounted display
WO2020095556A1 (ja) 虚像表示装置、および虚像表示方法
US10567744B1 (en) Camera-based display method and system for simulators
CN112673620B (zh) 用于辅助驾驶飞行器的光电装备
WO2019225774A1 (ko) 듀얼뷰반사형 집적영상시스템
CN113196140B (zh) 虚拟图像显示装置和虚拟图像显示方法
Browne et al. Performance and comfort of monocular head-mounted displays in flight simulators
JP5151359B2 (ja) 頭部装着型画像取得装置及びそれを用いた頭部装着型表示装置
WO2023005606A1 (zh) 一种显示装置及其显示方法
Draper Advanced UMV operator interface
RU84539U1 (ru) Устройство разведки объектов методом комбинированного стереоэффекта

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20855583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20855583

Country of ref document: EP

Kind code of ref document: A1