WO2021031564A1 - 一种校准网络装置及天线 - Google Patents

一种校准网络装置及天线 Download PDF

Info

Publication number
WO2021031564A1
WO2021031564A1 PCT/CN2020/081462 CN2020081462W WO2021031564A1 WO 2021031564 A1 WO2021031564 A1 WO 2021031564A1 CN 2020081462 W CN2020081462 W CN 2020081462W WO 2021031564 A1 WO2021031564 A1 WO 2021031564A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration network
area
network device
metal layer
shielding element
Prior art date
Application number
PCT/CN2020/081462
Other languages
English (en)
French (fr)
Inventor
葛磊
邓有杰
赵田野
黄新文
周献庭
Original Assignee
深圳市深大唯同科技有限公司
中天宽带技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市深大唯同科技有限公司, 中天宽带技术有限公司 filed Critical 深圳市深大唯同科技有限公司
Publication of WO2021031564A1 publication Critical patent/WO2021031564A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0007Casings
    • H05K9/002Casings with localised screening
    • H05K9/0022Casings with localised screening of components mounted on printed circuit boards [PCB]
    • H05K9/0024Shield cases mounted on a PCB, e.g. cans or caps or conformal shields

Definitions

  • This application relates to the field of communication technology, and in particular to a calibration network device and antenna.
  • Calibration network devices are generally processed by PCB boards (printed circuit boards).
  • the raw materials of PCB are high-frequency copper clad laminates of standard sizes.
  • the factory that produces high-frequency copper clad laminates releases some standard sizes for sale in the market.
  • PCB boards The processor will calculate the utilization rate of the high-frequency copper clad laminate based on the size, process, and number of layers of the PCB to be processed, so as to calculate the material cost.
  • the calibration network device of the exemplary technology uses more resonant metal columns, so the installation process is complicated and the de-resonance effect is poor.
  • the main purpose of this application is to provide a calibration network device and antenna, which greatly reduces the number of de-resonance screws used and reduces the installation complexity of the calibration network device.
  • a calibration network device proposed in this application includes:
  • a calibration network component is provided with a transmission line, and the transmission line is configured for signal transmission;
  • a shielding element, the shielding element is covered on the calibration network component, and is arranged to divide the space where the transmission line is located into a plurality of cavities.
  • the shielding element may be divided into a first area, a second area, and a connecting area.
  • the first area and the second area are both perpendicularly arranged on two symmetrical sides of the connecting area, and the
  • the shielding elements include:
  • a plurality of edge walls are respectively arranged on the edges of the first area, the second area, and the connecting area, and are arranged to divide the space where the transmission line is located into three first cavities .
  • the shielding element further includes:
  • a plurality of intermediate walls, the intermediate walls are respectively arranged in the ranges of the first area and the second area;
  • the intermediate wall is configured to divide the space where the transmission line is located in the first area into a plurality of second cavities, and is configured to divide the transmission line located in the second area into Several second cavities.
  • a groove is provided on the intermediate wall.
  • the intermediate wall is made of solid metal material.
  • the intermediate wall is made of non-metallic materials, and the surface of the intermediate wall is provided with a metal layer.
  • the intermediate wall is provided with a riveting hole penetrating the intermediate wall.
  • the overall shape of the calibration network component is concave or H-shaped
  • the overall shape of the shielding layer is concave or H-shaped
  • the overall shape of the shielding layer corresponds to the overall shape of the calibration network component
  • the first area and the second area of the shielding layer are spaced apart, and are arranged to form the concave shape or the H shape.
  • the first area, the second area, and the connection area of the shielding layer are integrally formed.
  • the first area, the second area, and the connection area of the shielding layer have a separate structure.
  • the calibration network component includes a top metal layer, a dielectric substrate, and a bottom metal layer stacked in sequence, and the transmission lines are arranged on the top metal layer at intervals.
  • a plurality of conductive ground pillars are pierced on the dielectric substrate, and the top metal layer is connected to the bottom metal layer through the conductive ground pillars.
  • a plurality of conductive ground pillars are pierced on the dielectric substrate, and the top metal layer is connected to the bottom metal layer through the conductive ground pillars.
  • the end of the intermediate wall close to the calibration network component is a flat surface.
  • the shielding element is made of metal materials.
  • the shielding element is made of non-metallic materials, and a metal layer is provided on the shielding element.
  • This application also proposes a calibration network device, including:
  • a calibration network component is provided with a transmission line, and the transmission line is configured for signal transmission;
  • a shielding element the shielding element is covered on the calibration network component, and is configured to divide the space where the transmission line is located into a plurality of cavities.
  • the calibration network component includes a top metal layer, a dielectric substrate, and The bottom metal layer, the transmission lines are arranged on the top metal layer at intervals, the shielding element is made of non-metallic materials, and the shielding element is provided with a metal layer.
  • the present application also proposes an antenna, the calibration network device of any one of the above antennas, the calibration network device includes a calibration network component, the calibration network component is provided with a transmission line, the transmission line is set as a signal Transmission; and a shielding element, the shielding element is arranged on the calibration network component, and is configured to divide the space where the transmission line is located into a plurality of cavities, the calibration network component includes a top metal layer stacked in sequence, A dielectric substrate and a bottom metal layer, the transmission lines are arranged on the top metal layer at intervals, the shielding element is made of non-metallic materials, and the shielding element is provided with a metal layer;
  • the transmission line also includes a multi-level power distribution synthesis network and a plurality of parallel directional couplers;
  • the parallel directional coupler and the sub-port are arranged in one-to-one correspondence, the coupling end of the parallel directional coupler is connected to the branch of the Wilkinson power splitter, and the isolation end of the parallel directional coupler is connected to the terminal load
  • the input end of the parallel directional coupler is connected to the radio frequency connector of the antenna, and the output end of the parallel directional coupler is connected to the feed probe of the antenna.
  • This application uses shielding elements to divide the space where the transmission line is located into multiple cavities, and divides a large cavity into several smaller cavities.
  • a quasi-coplanar waveguide or quasi-coplanar waveguide is formed between the calibration network component and the shielding element.
  • the shielding element divides the area where the transmission line is located into multiple small cavities. The small cavities are not enough to form the preconditions for resonance generation, making the smaller cavities less difficult to de-resonate, and can greatly Reduce the number of de-resonance screws and reduce the installation complexity of the calibration network device.
  • FIG. 1 is a schematic structural diagram of an embodiment of a calibration network device according to this application.
  • FIG. 2 is a schematic structural diagram of a shielding element according to an embodiment of the calibration network device of this application;
  • FIG. 3 is a schematic structural diagram of a shielding element in another embodiment of the calibration network device according to the application.
  • Fig. 4 is a partial enlarged view of position N in Fig. 3;
  • FIG. 5 is a schematic structural diagram of another embodiment of the calibration network device according to the application.
  • FIG. 6 is a schematic diagram of the top metal layer structure of an embodiment of the calibration network device according to the application.
  • Figure 7 is a partial enlarged view of M in Figure 6;
  • FIG. 8 is a schematic structural diagram of a dielectric substrate of an embodiment of the calibration network device of this application.
  • Fig. 9 is a partial enlarged view of Q in Fig. 8.
  • This application proposes a calibration network device 200.
  • a calibration network device 200 includes: a calibration network component 10, on which a transmission line 110 is provided, and the transmission line 110 is configured for signal transmission; a shielding element 20, The shielding element 20 is arranged on the calibration network assembly 10, and the shielding element 20 is arranged to divide the space where the transmission line 110 is located into a plurality of cavities.
  • This application is suitable for setting up a calibration network for massive MIMO antennas with a working frequency band of Sub 6GHz, including 2.3G frequency band (2.3GHz-2.5GHz), 2.6G frequency band (2.496GHz-2.690GHz), 3.5G frequency band (3.3GHz-3.8 GHz), 4.5G frequency band (4.4GHz-5.2GHz), etc., which are not limited here.
  • 2.3G frequency band 2.3GHz-2.5GHz
  • 2.6G frequency band 2.496GHz-2.690GHz
  • 3.5G frequency band 3.3GHz-3.8 GHz
  • 4.5G frequency band 4.4GHz-5.2GHz
  • the transmission line 110 is set for signal transmission.
  • the transmission line 110 receives a signal or transmits a signal, in order to prevent the transmission line 110 from being interfered by the outside, the transmission line 110 needs to be shielded and protected.
  • a shielding element 20 is adopted.
  • the shielding element 20 is arranged on the calibration network assembly 10.
  • the transmission line 110 is isolated from the outside from the internal signal of the space where the shielding element 20 is located.
  • the shielding element 20 is set to divide the space where the transmission line 110 is located. There are multiple cavities, and the shielding element 20 is covered on the transmission line 110, and the transmission line 110 is covered in the shielding element 20.
  • the shielding element 20 is used to divide the space where the transmission line 110 is located into multiple cavities, and a large cavity is divided into several smaller cavities.
  • a quasi-common structure is formed between the calibration network assembly 10 and the shielding element 20.
  • the shielding element 20 divides the area where the transmission line 110 is located into a plurality of small cavities, which are not sufficient to form a precondition for resonance generation, so that a smaller cavity De-resonance is less difficult, which can greatly reduce the number of de-resonance screws and reduce the installation complexity of the calibration network device 200.
  • the shielding element 20 may be made of metallic materials or non-metallic materials, but a metal layer needs to be provided on the shielding element 20 made of non-metallic materials.
  • the shielding element 20 can be divided into a first area 201, a second area 202, and a connecting area 203.
  • the first area 201 and the second area 202 are both vertically arranged in two symmetrical areas of the connecting area 203.
  • the shielding element 20 includes a plurality of edge walls 21.
  • the edge walls 21 are respectively arranged on the edges of the first area 201, the second area 202, and the connecting area 203, and are arranged as The space where the transmission line 110 is located is divided into three first cavities.
  • the shielding element 20 of the present application includes a plurality of edge walls 21.
  • the shielding element 20 is divided into a first area 201, a second area 202, and a connecting area 203 by the plurality of edge walls 21.
  • the first area 201, the second area The first cavity in the space area where the area 202 and the connection area 203 are located is more conducive to de-resonance.
  • the shielding element 20 further includes: a plurality of intermediate walls 22, the intermediate walls 22 are respectively arranged in the range of the first area 201 and the second area 202; wherein, the intermediate wall 22 is configured to divide the space of the transmission line 110 located in the first area 201 into a number of second cavities, and is configured to divide the transmission line 110 located in the second area 202 into a number of second cavities Two cavities.
  • the application divides the first cavity where the first area 201 and the second area 202 are located into a plurality of second cavities by a plurality of intermediate walls 22, and the second cavity is relative to the first cavity.
  • the space is smaller and the de-resonance effect is better. When the number of metal screws is further reduced, resonance will not occur, which will affect the phase and power of the calibration transmission line 110.
  • a groove B is provided on the intermediate wall 22.
  • a groove B can be provided at the end of the intermediate wall 22 away from the calibration network assembly 10 to reduce the overall weight of the intermediate wall 22.
  • the intermediate wall 22 is composed of solid metal or non-metal components (the intermediate wall The surface of 22 is provided with a metal layer), multiple intermediate walls 22 will greatly increase the overall weight of the entire shielding element 20, and it is not convenient to install the entire calibration network device 200. Therefore, under the premise of ensuring the de-resonance function, reduce the number of intermediate walls The overall weight of 22 minimizes the weight of the intermediate wall 22 and improves the reliability of the product structure after the mold is opened.
  • the intermediate wall 22 is provided with a riveting hole A penetrating the intermediate wall 22.
  • a riveting hole A can be provided on each intermediate wall 22 to make the connection between the intermediate wall 22 and the calibration network assembly 10 through the riveting hole A more stable.
  • the calibration network component 10 has an overall concave shape or an H shape
  • the shielding layer 20 has an overall concave shape or an H shape
  • the overall shape of the shielding layer 20 corresponds to the overall shape of the calibration network component 10
  • the first area 201 and the second area 202 of the shielding layer 20 are spaced apart, and are arranged to form the concave shape or the H shape.
  • the calibration network device 200 is generally made of PCB boards.
  • the raw materials of the PCB boards are high-frequency copper clad laminates of standard sizes.
  • the high-frequency copper clad laminates have a variety of standard production specifications, and the common one is 305mm* 457mm, 610mm*457mm, 610mm*914mm and 1220mm*914mm, etc.
  • the processor will calculate the number of plates consumed by this unit number of high-frequency copper clad laminates according to the size, process, number of layers and other parameters to be processed, so as to calculate the material cost. Because the calibration network device 200 of the exemplary technology adopts the entire board design, the board consumption is relatively large. Therefore, in order to reduce consumables, during the production process of the calibration network device 200 described in this application, a whole PCB board is divided into many parts.
  • the transmission line 110 is printed in a single concave-shaped area or H-shaped area, and then the entire PCB board is cut into multiple concave-shaped or H-shaped areas along the edge of the concave-shaped area or H-shaped area. H shape, thereby reducing PCB board consumption and reducing production costs.
  • the first area 201, the second area 202, and the connection area 203 of the shielding layer 20 are an integral structure or a split structure.
  • the first area 201, the second area 202, and the connecting area 203 can be an integral structure or a split structure.
  • the shielding element 20 has a complex structure and can only be composed of a separate structure, the first area 201 or the second area 202 or the connection area 203 can be produced separately by special processing methods, such as wire cutting. Finally, assembly and splicing are performed to obtain a complete shielding element 20.
  • the calibration network component 10 includes a top metal layer 13, a dielectric substrate 12, and a bottom metal layer 11 stacked in sequence, and the transmission lines 110 are arranged at intervals on the top metal layer. 13 on.
  • the transmission line 110 is located on the top metal layer 13 and is spaced apart from the top metal layer 13.
  • the transmission line 110 and the top metal layer 13 are not conductive
  • the shielding element 20 is arranged on the side of the top metal layer 13 away from the dielectric substrate 12 to achieve a shielding effect on the transmission line 110.
  • the end of the middle wall 22 close to the calibration network component 10 is a neat plane to facilitate contact with the top metal layer 13.
  • the top metal layer 13 is set to provide a ground function point to ensure that the middle wall 22 is stable with the top layer.
  • the metal layer 13 is in contact with the transmission line 110 to avoid conduction and short circuit.
  • a conductive ground pillar 121 is provided on the dielectric substrate 12, and the top metal layer 13 is connected to the bottom metal layer 11 through the conductive ground pillar 121.
  • a conductive ground post 121 may be provided on the dielectric substrate 12, and the top metal layer 13 is connected to the bottom metal layer 11 through the conductive ground post 121
  • the top metal layer 13 is the upper metal layer for soldering and signal transmission of various electronic components, and the top metal layer 13 is also provided with SMP (sub-miniature push-on) RF connector pads 131
  • the bottom metal layer 11 is the lower metal ground layer for component fixation and signal transmission.
  • the bottom metal layer 11 is provided with chip resistor pads and feed probe pads.
  • the dielectric substrate 12 is provided with conductive grounding pillars 121 and the top metal layer 13 is also provided with SMP radio frequency connector fixing holes 132, feeding probe fixing holes 133, metal screw grounding holes 134, plastic rivet fixing holes 136, and conductive grounding holes 137, penetrating through the dielectric substrate 12 and the underlying metal layer 11.
  • the connector fixing hole 132 and the SMP RF connector pad 131 are set to fix the SMP RF connector, the chip resistor pad is set to fix the chip resistor, and the feeding probe pad and the feeding probe fixing hole 133 are set to fix The feed probe, therefore, the conductive grounding post 121 is arranged to electrically connect the top metal layer 13 and the bottom metal layer 11 to ensure the stability of the connection between the top metal layer 13 and the bottom metal layer 11 and improve the stability of the transmission line 110 .
  • the multi-level power distribution synthesis network has 32 sub ports 1353 and 1 total port 1354.
  • the parallel directional coupler 135 and the sub ports 1353 correspond to each other.
  • the coupling end 1352 of the parallel directional coupler 135 is connected to the branch of the Wilkinson power splitter, that is, one of the sub ports 1353, and the isolation end 1351 of the parallel directional coupler 135 is connected to the terminal load, which is 50
  • the ohmic resistance is connected, the input end of the parallel directional coupler 135 is connected to the radio frequency connector of the antenna, and the output end of the parallel directional coupler 135 is connected to the feed probe of the antenna, and the feed probe is set to feed the radiation unit.
  • this embodiment is only described with 32 sub-ports 1353 as an example, and is not limited thereto.
  • the specific structure of the calibration network device 200 refers to the foregoing embodiment. Since the calibration network device 200 adopts all the technical solutions of all the foregoing embodiments, it has at least all the technical solutions of the foregoing embodiments. The role is not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供了一种校准网络装置及天线。所述校准网络装置(200)包括校准网络组件(10),所述校准网络组件(10)上设置有传输线路(110),所述传输线路(110)设置为信号传输;以及屏蔽元件(20),所述屏蔽元件(20)盖设于所述校准网络组件(10)上,设置为将所述传输线路(110)所在空间划分成多个空腔。

Description

一种校准网络装置及天线
相关申请
本申请要求2019-08-20申请的,申请号为201910773221.5,名称为“一种校准网络装置及天线”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及通信技术领域,特别涉及一种校准网络装置及天线。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成现有技术。
校准网络装置一般都是用PCB板(印刷电路板)加工而成的,PCB的原材料都是标准尺寸的高频覆铜板,生产高频覆铜板的工厂发布一些标准尺寸在市场上销售,PCB板加工商会根据所要加工的PCB板的尺寸、工艺、层数等参数计算出此高频覆铜板利用率,从而算出材料成本。示例性技术的校准网络装置由于采用较多的谐振金属柱,安装过程复杂,且去谐振效果差。
发明概述
技术问题
问题的解决方案
技术解决方案
本申请的主要目的是提供一种校准网络装置及天线,实现了大大减少去谐振螺钉的使用数量,降低校准网络装置的安装复杂度。
为实现上述目的,本申请提出的一种校准网络装置,包括:
校准网络组件,所述校准网络组件上设置有传输线路,所述传输线路设置为于信号传输;以及
屏蔽元件,所述屏蔽元件盖设于所述校准网络组件上,设置为将所述传输线路所在空间划分成多个空腔。
可选的,所述屏蔽元件可划分为第一区域、第二区域以及连接区域,所述第一区域与所述第二区域均垂直设置于所述连接区域的两对称侧边上,所述屏蔽元 件包括:
若干边缘墙体,所述边缘墙体分别设置于所述第一区域、所述第二区域以及所述连接区域的边缘上,设置为将所述传输线路所在空间分隔成三个第一空腔。
可选的,所述屏蔽元件还包括:
若干中间墙体,所述中间墙体分别设置于所述第一区域以及所述第二区域的范围内;
其中,所述中间墙体设置为将位于所述第一区域内的所述传输线路所在空间分隔成若干第二空腔,以及设置为将位于所述第二区域内的所述传输线路分隔成若干第二空腔。
可选的,所述中间墙体上设置有凹槽。
可选的,所述中间墙体由实心金属材料制作而成。
可选的,所述中间墙体由非金属材料制作而成,所述中间墙体的表面设置有金属层。
可选的,所述中间墙体上设置有贯穿所述中间墙体的铆接孔。
可选的,所述校准网络组件整体呈凹字形或H形,所述屏蔽层整体呈凹字形或H形,所述屏蔽层整体形状与所述校准网络组件整体形状相对应;
其中,所述屏蔽层的所述第一区域与所述第二区域间隔设置,并设置为形成所述凹字形或所述H形。
可选的,所述屏蔽层的所述第一区域、所述第二区域以及所述连接区域为一体成型结构。
可选的,所述屏蔽层的所述第一区域、所述第二区域以及所述连接区域为分体结构。
可选的,所述校准网络组件包括依次层叠设置的顶层金属层、介质基板以及底层金属层,所述传输线路间隔设置于所述顶层金属层上。
可选的,所述介质基板上穿设有若干导电接地柱,所述顶层金属层通过所述导电接地柱连接所述底层金属层。
可选的,所述介质基板上穿设有若干导电接地柱,所述顶层金属层通过所述导电接地柱连接所述底层金属层。
可选的,所述中间墙体靠近校准网络组件的一端为平面。
可选的,所述屏蔽元件由金属材料制作而成。
可选的,所述屏蔽元件由非金属材料制作而成,所述屏蔽元件上设置有金属层。
本申请还提出一种校准网络装置,包括:
校准网络组件,所述校准网络组件上设置有传输线路,所述传输线路设置为信号传输;以及
屏蔽元件,所述屏蔽元件盖设于所述校准网络组件上,设置为将所述传输线路所在空间划分成多个空腔,所述校准网络组件包括依次层叠设置的顶层金属层、介质基板以及底层金属层,所述传输线路间隔设置于所述顶层金属层上,所述屏蔽元件由非金属材料制作而成,所述屏蔽元件上设置有金属层。
本申请还提出一种天线,所述天线上述任一项所述的校准网络装置,所述校准网络装置包括校准网络组件,所述校准网络组件上设置有传输线路,所述传输线路设置为信号传输;以及屏蔽元件,所述屏蔽元件盖设于所述校准网络组件上,设置为将所述传输线路所在空间划分成多个空腔,所述校准网络组件包括依次层叠设置的顶层金属层、介质基板以及底层金属层,所述传输线路间隔设置于所述顶层金属层上,所述屏蔽元件由非金属材料制作而成,所述屏蔽元件上设置有金属层;
所述传输线路还包括多级功率分配合成网络以及多个平行定向耦合器;
所述多级功率分配合成网络由N个威尔金森功分器n级级联形成,并具有M个分端口和1个总端口,其中,所述总端口为校准端口,N=2 n-1,M=2 n,n为正整数;
所述平行定向耦合器与所述分端口一一对应设置,所述平行定向耦合器的耦合端与威尔金森功分器的支路连接,所述平行定向耦合器的隔离端与终端负载连接,所述平行定向耦合器的输入端与所述天线的射频连接器连接,所述平行定向耦合器的输出端与所述天线的馈电探针连接。
本申请利用屏蔽元件将传输线路所在空间划分成多个空腔,把一个大的空腔分成了若干个较小的空腔,在校准网络组件与屏蔽元件之间形成的准共面波导或 者准微带线传输线路上,屏蔽元件将传输线路所在区域分隔成多个小的腔体,该小的腔体不足以形成谐振产生的前提条件,使得较小的空腔去谐振难度更低,能大大减少去谐振螺钉的使用数量,降低校准网络装置的安装复杂度。
发明的有益效果
对附图的简要说明
附图说明
为了更清楚地说明本申请实施例或示例性技术中的技术方案,下面将对实施例或示例性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请校准网络装置一实施例的结构示意图;
图2为本申请校准网络装置一实施例屏蔽元件的结构示意图;
图3为本申请校准网络装置另一实施例屏蔽元件的结构示意图;
图4为图3中N处的局部放大图;
图5为本申请校准网络装置又一实施例的结构示意图;
图6为本申请校准网络装置一实施例的顶层金属层结构示意图;
图7为图6中M处的局部放大图;
图8为本申请校准网络装置一实施例的介质基板的结构示意图;
图9为图8中Q处的局部放大图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
发明实施例
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,本申请实施例中所有方向性指示(诸如上、下、左、右、前、后... ...)仅设置为解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本申请中涉及“第一”、“第二”等的描述仅设置为描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出了一种校准网络装置200。
如图1至图5所示,一种校准网络装置200,包括:校准网络组件10,所述校准网络组件10上设置有传输线路110,所述传输线路110设置为信号传输;屏蔽元件20,所述屏蔽元件20设置于所述校准网络组件10上,所述屏蔽元件20设置为将所述传输线路110所在空间划分成多个空腔。
本申请适设置为工作频段为Sub 6GHz的大规模MIMO天线的校准网络,包括2.3G频段(2.3GHz-2.5GHz)、2.6G频段(2.496GHz-2.690GHz)、3.5G频段(3.3GHz-3.8GHz),4.5G频段(4.4GHz-5.2GHz)等,在此不作限定。
本实施例中,所述传输线路110设置为信号传输,当传输线路110接收到信号或者传输信号时,为了防止传输线路110受到外界的干扰,需要将传输线路110进行屏蔽保护,其中,本申请采用一屏蔽元件20,屏蔽元件20设置于校准网络组件10上,传输线路110相对于屏蔽元件20所在空间的内部信号与外界相隔离,同时,屏蔽元件20设置为将传输线路110所在空间划分成多个空腔,且屏蔽元件20盖设于传输线路110上,并将传输线路110包覆于屏蔽元件20内,由于传输线路上存在校准网络线路和馈电网络的存在,腔体内部的馈电网络会激励起不同模式的电磁能量,在所需频率通带内产生谐振,导致馈电网络的功率、相位出现异常波动,而产生谐振也需要一定空间尺寸的腔体。本申请利用屏蔽元件20将传输线路110所在空间划分成多个空腔,把一个大的空腔分成了若干个较小的空 腔,在校准网络组件10与屏蔽元件20之间形成的准共面波导或者准微带线传输线路110上,屏蔽元件20将传输线路110所在区域分隔成多个小的腔体,该小的腔体不足以形成谐振产生的前提条件,使得较小的空腔去谐振难度更低,能大大减少去谐振螺钉的使用数量,降低校准网络装置200的安装复杂度。
作为另一实施例,屏蔽元件20可以采用金属材料制成,也可采用非金属材料制成,但需要在非金属材料制成的屏蔽元件20上设置一层金属层。
具体的,所述屏蔽元件20可划分为第一区域201、第二区域202以及连接区域203,所述第一区域201与所述第二区域202均垂直设置于所述连接区域203的两对称侧边上,所述屏蔽元件20包括若干边缘墙体21,所述边缘墙体21分别设置于所述第一区域201、所述第二区域202以及所述连接区域203的边缘上,设置为将所述传输线路110所在空间分隔成三个第一空腔。本实施例中,本申请的屏蔽元件20包括若干边缘墙体21,屏蔽元件20通过若干边缘墙体21划分为第一区域201、第二区域202以及连接区域203,第一区域201、第二区域202以及连接区域203所在的空间区域的第一空腔更有利于去谐振。
具体的,所述屏蔽元件20还包括:若干中间墙体22,所述中间墙体22分别设置于所述第一区域201以及所述第二区域202的范围内;其中,所述中间墙体22设置为将位于所述第一区域201内的所述传输线路110所在空间分隔成若干第二空腔,以及设置为将位于所述第二区域202内的所述传输线路110分隔成若干第二空腔。本实施例中,本申请将第一区域201和第二区域202所在的第一空腔通过若干中间墙体22分隔成多个第二空腔,第二空腔相对于第一空腔而言,其空间体积更小,去谐振效果更佳,进一步减少金属螺丝钉的使用数量时,也不会出现谐振,使校准传输线路110的相位、功率产生影响。
如图4所示,具体的,所述中间墙体22上设置有凹槽B。本实施例中,可在中间墙体22远离校准网络组件10的一端开设凹槽B,减少中间墙体22的整体重量,例如,中间墙体22采用实心金属或者非金属部件组成(中间墙体22的表面设置有金属层),多个中间墙体22将大大增加整个屏蔽元件20的整体重量,不便于安装整个校准网络装置200,因此,在保证去谐振功能的前提下,减少中间墙体22的整体重量,使中间墙体22的重量达到最低,提高开模后产品结构的可靠性。
具体的,所述中间墙体22上设置有贯穿所述中间墙体22的铆接孔A。本实施例中,可在每个中间墙体22上开设铆接孔A,使中间墙体22通过铆接孔A与校准网络组件10的连接更稳定。
具体的,所述校准网络组件10整体呈凹字形或H形,所述屏蔽层20整体呈凹字形或H形,所述屏蔽层20整体形状与所述校准网络组件10整体形状相对应;其中,所述屏蔽层20的所述第一区域201与所述第二区域202间隔设置,并设置为形成所述凹字形或所述H形。本实施例中,校准网络装置200一般都是用PCB板加工而成的,PCB板的原材料都是标准尺寸的高频覆铜板,高频覆铜板具有多种标准生产规格,常见的有305mm*457mm、610mm*457mm、610mm*914mm以及1220mm*914mm等等,加工商会根据所要加工的尺寸、工艺、层数等参数计算出此单位数量高频覆铜板消耗的板材,从而算出材料成本。示例性技术的校准网络装置200由于采用整板设计方案,板材消耗相对较大,因此,为了减少耗材,在本申请所述校准网络装置200生产的过程中,在一整块PCB板上划分多个凹字形区域或者H形区域,在单一的凹字形区域或者H形区域内印刷传输线路110,之后,沿着凹字形区域或者H形区域的边缘将整块PCB板切割成多个凹字形或者H形,从而降低PCB板材消耗,减低了生产成本。
具体的,所述屏蔽层20的所述第一区域201、所述第二区域202以及所述连接区域203为一体成型结构或分体结构。为了便于加工,可以将第一区域201、第二区域202以及连接区域203为一体成型结构或分体结构,当第一区域201、第二区域202以及连接区域203为一体成型结构时,可以采用冲压等加工方式生产,若屏蔽元件20结构复杂,只能通过分体结构组成,则第一区域201或第二区域202或连接区域203均可采用特种加工方式单独生产,例如线切割加工等,最后进行组装拼接得到完整的屏蔽元件20。
如图6至图9所示,具体的,所述校准网络组件10包括依次层叠设置的顶层金属层13、介质基板12以及底层金属层11,所述传输线路110间隔设置于所述顶层金属层13上。本实施例中,为了便于加工本申请的校准网络装置200,当在顶层金属层13上设置大多数电子元器件后,例如多个射频连接器、多个馈电探针等设置于顶层金属层13上,将顶层金属层13、介质基板12以及底层金属层11压合后 ,传输线路110位于顶层金属层13上,并与顶层金属层13间隔设置,传输线路110与顶层金属层13不导通,设置为避免造成短路,屏蔽元件20设置在顶层金属层13远离介质基板12的一面,实现对传输线路110的屏蔽效果。
作为再一个实施例,中间墙体22靠近校准网络组件10的一端为整齐的平面,便于与顶层金属层13接触,顶层金属层13设置为提供接地功能点,保证中间墙体22稳定的与顶层金属层13接触,避免与传输线路110导通,避免造成短路。
具体的,所述介质基板12上设置有导电接地柱121,所述顶层金属层13通过所述导电接地柱121连接所述底层金属层11。本实施例中,为了保证顶层金属层13与底层金属层之间连接的稳定性,本申请在介质基板12上可设置导电接地柱121,顶层金属层13通过导电接地柱121连接底层金属层11,例如,顶层金属层13为各电子元器件焊接及信号传输的上金属层,顶层金属层13上还设置有SMP(sub-miniature push-on,超小型推入式)射频连接器焊盘131,底层金属层11为元件固定及信号传输的下金属地层,底层金属层11上设置有贴片电阻焊盘和馈电探针焊盘,介质基板12上设置有导电接地柱121,顶层金属层13上还设置有贯穿介质基板12和底层金属层11的SMP射频连接器固定孔132、馈电探针固定孔133、金属螺钉接地孔134、塑料铆钉固定孔136以及导电接地孔137,SMP射频连接器固定孔132和SMP射频连接器焊盘131设置为固定SMP射频连接器,贴片电阻焊盘设置为固定贴片电阻,馈电探针焊盘和馈电探针固定孔133设置为固定馈电探针,因此,导电接地柱121设置为将顶层金属层13与底层金属层11电连接,保证顶层金属层13与底层金属层11之间连接的稳定性,提高传输线路110的稳定性。
为实现上述目的,本申请还提供一种天线,所述天线包括上述的校准网络装置200,所述传输线路110包括多级功率分配合成网络以及多个平行定向耦合器135;所述多级功率分配合成网络由N个威尔金森功分器n级级联形成,并具有M个分端口1353和1个总端口1354,其中,所述总端口1354为校准端口,N=2 n-1,M=2 n,n为正整数;所述平行定向耦合器135与所述分端口1353一一对应设置,所述平行定向耦合器135的耦合端1352与威尔金森功分器的支路连接,所述平行定向耦合器135的隔离端1351与终端负载连接,所述平行定向耦合器135的输入端与所述天线的射频连接器连接,所述平行定向耦合器135的输出端与所述 天线的馈电探针连接。
以31个威尔金森功分器级级联形成为例进行说明,多级功率分配合成网络共有32个分端口1353和1个总端口1354,平行定向耦合器135与分端口1353一一对应设置,也为32个,且平行定向耦合器135的耦合端1352与威尔金森功分器的支路也即其中一个分端口1353连接,平行定向耦合器135的隔离端1351与终端负载也即50欧姆电阻连接,平行定向耦合器135的输入端与天线的射频连接器连接,平行定向耦合器135的输出端与天线的馈电探针连接,馈电探针设置为给辐射单元馈电。可以理解的是,本实施例仅是以32个分端口1353为例进行说明,并不以此为限。
在本实施例中,该校准网络装置200的具体结构参照上述实施例,由于本校准网络装置200采用了上述所有实施例的全部技术方案,因此至少具有上述实施例的技术方案所带来的所有作用,在此不再一一赘述。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (17)

  1. 一种校准网络装置,其中,包括:
    校准网络组件,所述校准网络组件上设置有传输线路,所述传输线路设置为信号传输;以及
    屏蔽元件,所述屏蔽元件盖设于所述校准网络组件上,设置为将所述传输线路所在空间划分成多个空腔。
  2. 如权利要求1所述的校准网络装置,其中,所述屏蔽元件可划分为第一区域、第二区域以及连接区域,所述第一区域与所述第二区域均垂直设置于所述连接区域的两对称侧边上,所述屏蔽元件包括:
    若干边缘墙体,所述边缘墙体分别设置于所述第一区域、所述第二区域以及所述连接区域的边缘上,设置为将所述传输线路所在空间分隔成三个第一空腔。
  3. 如权利要求2所述的校准网络装置,其中,所述屏蔽元件还包括:
    若干中间墙体,所述中间墙体分别设置于所述第一区域以及所述第二区域的范围内;
    其中,所述中间墙体设置为将位于所述第一区域内的所述传输线路所在空间分隔成若干第二空腔,以及设置为将位于所述第二区域内的所述传输线路分隔成若干第二空腔。
  4. 如权利要求3所述的校准网络装置,其中,所述中间墙体上设置有凹槽。
  5. 如权利要求3所述的校准网络装置,其中,所述中间墙体由实心金属材料制作而成。
  6. 如权利要求3所述的校准网络装置,其中,所述中间墙体由非金属材料制作而成,所述中间墙体的表面设置有金属层。
  7. 如权利要求4所述的校准网络装置,其中,所述中间墙体上设置有贯穿所述中间墙体的铆接孔。
  8. 如权利要求2所述的校准网络装置,其中,所述校准网络组件整体 呈凹字形或H形,所述屏蔽层整体呈凹字形或H形,所述屏蔽层整体形状与所述校准网络组件整体形状相对应;
    其中,所述屏蔽层的所述第一区域与所述第二区域间隔设置,并设置为形成所述凹字形或所述H形。
  9. 如权利要求8所述的校准网络装置,其中,所述屏蔽层的所述第一区域、所述第二区域以及所述连接区域为一体成型结构。
  10. 如权利要求8所述的校准网络装置,其中,所述屏蔽层的所述第一区域、所述第二区域以及所述连接区域为分体结构。
  11. 如权利要求1所述的校准网络装置,其中,所述校准网络组件包括依次层叠设置的顶层金属层、介质基板以及底层金属层,所述传输线路间隔设置于所述顶层金属层上。
  12. 如权利要求11所述的校准网络装置,其中,所述介质基板上穿设有若干导电接地柱,所述顶层金属层通过所述导电接地柱连接所述底层金属层。
  13. 如权利要求11所述的校准网络装置,其中,所述中间墙体靠近校准网络组件的一端为平面。
  14. 如权利要求1所述的校准网络装置,其中,所述屏蔽元件由金属材料制作而成。
  15. 如权利要求1所述的校准网络装置,其中,所述屏蔽元件由非金属材料制作而成,所述屏蔽元件上设置有金属层。
  16. 一种校准网络装置,其中,包括:
    校准网络组件,所述校准网络组件上设置有传输线路,所述传输线路设置为信号传输;以及
    屏蔽元件,所述屏蔽元件盖设于所述校准网络组件上,设置为将所述传输线路所在空间划分成多个空腔,所述校准网络组件包括依次层叠设置的顶层金属层、介质基板以及底层金属层,所述传输线路间隔设置于所述顶层金属层上,所述屏蔽元件由非金属材料制作而成,所述屏蔽元件上设置有金属层。
  17. 一种天线,其中,所述天线包括校准网络装置,所述校准网络装置包括校准网络组件,所述校准网络组件上设置有传输线路,所述传输线路设置为信号传输;以及屏蔽元件,所述屏蔽元件盖设于所述校准网络组件上,设置为将所述传输线路所在空间划分成多个空腔,所述校准网络组件包括依次层叠设置的顶层金属层、介质基板以及底层金属层,所述传输线路间隔设置于所述顶层金属层上,所述屏蔽元件由非金属材料制作而成,所述屏蔽元件上设置有金属层;
    所述传输线路还包括多级功率分配合成网络以及多个平行定向耦合器;
    所述多级功率分配合成网络由N个威尔金森功分器n级级联形成,并具有M个分端口和1个总端口,其中,所述总端口为校准端口,N=2n-1,M=2n,n为正整数;
    所述平行定向耦合器与所述分端口一一对应设置,所述平行定向耦合器的耦合端与威尔金森功分器的支路连接,所述平行定向耦合器的隔离端与终端负载连接,所述平行定向耦合器的输入端与所述天线的射频连接器连接,所述平行定向耦合器的输出端与所述天线的馈电探针连接。
PCT/CN2020/081462 2019-08-20 2020-03-26 一种校准网络装置及天线 WO2021031564A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910773221.5A CN110519977B (zh) 2019-08-20 2019-08-20 一种校准网络装置及天线
CN201910773221.5 2019-08-20

Publications (1)

Publication Number Publication Date
WO2021031564A1 true WO2021031564A1 (zh) 2021-02-25

Family

ID=68626872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/081462 WO2021031564A1 (zh) 2019-08-20 2020-03-26 一种校准网络装置及天线

Country Status (2)

Country Link
CN (1) CN110519977B (zh)
WO (1) WO2021031564A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110519977B (zh) * 2019-08-20 2020-09-11 深圳市深大唯同科技有限公司 一种校准网络装置及天线

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746755A (zh) * 2013-12-27 2014-04-23 摩比天线技术(深圳)有限公司 Td智能天线的校准网络
CN108683464A (zh) * 2018-04-20 2018-10-19 京信通信系统(中国)有限公司 天线校准网络装置及其屏蔽罩
CN108696322A (zh) * 2018-04-20 2018-10-23 京信通信系统(中国)有限公司 天线校准网络装置
CN110519977A (zh) * 2019-08-20 2019-11-29 深圳市深大唯同科技有限公司 一种校准网络装置及天线

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9063058B2 (en) * 2011-08-04 2015-06-23 Mnemonics, Inc. Wireless surface acoustic wave corrosion sensor and interrogation system for concrete structures
CN204271235U (zh) * 2014-11-19 2015-04-15 广州海格通信集团股份有限公司 一种3dB正交定向耦合器
CN108768549B (zh) * 2018-08-10 2023-09-19 昆山恩电开通信设备有限公司 一种应用于5g通信的多天线校准网络装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103746755A (zh) * 2013-12-27 2014-04-23 摩比天线技术(深圳)有限公司 Td智能天线的校准网络
CN108683464A (zh) * 2018-04-20 2018-10-19 京信通信系统(中国)有限公司 天线校准网络装置及其屏蔽罩
CN108696322A (zh) * 2018-04-20 2018-10-23 京信通信系统(中国)有限公司 天线校准网络装置
CN110519977A (zh) * 2019-08-20 2019-11-29 深圳市深大唯同科技有限公司 一种校准网络装置及天线

Also Published As

Publication number Publication date
CN110519977A (zh) 2019-11-29
CN110519977B (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
CN201383535Y (zh) 一种矩形波导-基片集成波导信号转换及功率分配器
CN107565225A (zh) 一种阵列天线结构及多层过孔结构
CN106469848B (zh) 一种基于双谐振模式的宽带差分贴片天线
CN110224231B (zh) 一种校准网络装置及Massive MIMO阵列天线
US11557839B2 (en) Double frequency vertical polarization antenna and television
CN208889845U (zh) 一种微带天线
CN212517490U (zh) 天线装置和电子设备
US20210376481A1 (en) Radiation apparatus and multi-band array antenna
WO2021139540A1 (zh) 缝隙天线和电子设备
US11063339B2 (en) Antenna module and communication device
WO2021031564A1 (zh) 一种校准网络装置及天线
GB2503225A (en) A Balun including a slotline coupled to an input line and output line and sandwiched between a first and second layer of dielectric material
WO2021227812A1 (zh) 天线装置、电子设备及用于天线装置的去耦方法
CN101394016A (zh) 一种一分四带状线功分器及其制备方法
CN209880827U (zh) 一种校准网络装置及Massive MIMO阵列天线
CN204011706U (zh) 带屏蔽罩rfid uhf的小型陶瓷介质天线
WO2021227813A1 (zh) 天线装置和电子设备
WO2021227827A1 (zh) 天线装置和电子设备
US20210091466A1 (en) Antenna structure and communication device
Stark et al. A broadband vertical transition for millimeter-wave applications
KR101182425B1 (ko) 스터브가 있는 슬롯 안테나
CN103515683A (zh) 波导微带线转换器
RU2670216C1 (ru) Планарный поляризационный селектор
WO2021227830A1 (zh) 天线装置和电子设备
WO2024065281A1 (zh) 一种缝隙天线及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853837

Country of ref document: EP

Kind code of ref document: A1