WO2021031046A1 - 一种随机接入方法、终端设备和网络设备 - Google Patents

一种随机接入方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2021031046A1
WO2021031046A1 PCT/CN2019/101223 CN2019101223W WO2021031046A1 WO 2021031046 A1 WO2021031046 A1 WO 2021031046A1 CN 2019101223 W CN2019101223 W CN 2019101223W WO 2021031046 A1 WO2021031046 A1 WO 2021031046A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
random access
downlink reference
reference signal
terminal device
Prior art date
Application number
PCT/CN2019/101223
Other languages
English (en)
French (fr)
Inventor
行双双
吴艺群
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980099428.7A priority Critical patent/CN114246014B/zh
Priority to EP19942308.8A priority patent/EP4017198A4/en
Priority to PCT/CN2019/101223 priority patent/WO2021031046A1/zh
Priority to CA3151640A priority patent/CA3151640A1/en
Publication of WO2021031046A1 publication Critical patent/WO2021031046A1/zh
Priority to US17/673,561 priority patent/US20220174752A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • H04W74/0841Random access procedures, e.g. with 4-step access with collision treatment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • This application relates to the field of communication technology, and in particular to a random access method, terminal equipment and network equipment.
  • the terminal device when the terminal device initiates the 4-Step RACH process, when the random access process is initialized, the terminal device can select the carrier type according to the reference signal received power (RSRP); When selecting access resources, the terminal device may select the synchronization signal block SSB according to the measurement value RSRP carried by the synchronization signal block (synchronization signal block, SSB).
  • RSRP reference signal received power
  • the embodiments of the present application provide a random access method and terminal equipment, which can realize how the terminal equipment selects one of the two random access types of 2-step RACH and 4-step RACH for random access.
  • a random access method including: a terminal device receives configuration information sent by a network device, the configuration information includes at least one threshold, and the at least one threshold includes a first threshold and a second threshold, wherein the first threshold is used
  • the terminal device selects the random access type, and the second threshold is used for the terminal device to select one downlink reference signal among multiple downlink reference signals, and each downlink reference signal of the multiple downlink reference signals is associated with one or more random access transmissions Opportunity association, the second threshold is the reference signal received power RSRP threshold;
  • the terminal device determines the random access type and a downlink reference signal according to at least one threshold; the terminal device determines a random access transmission opportunity according to the determined downlink reference signal; the terminal device is in The random access type message is sent on the random access transmission opportunity.
  • the downlink reference signal may be any downlink reference signal, such as SSB or channel state information reference signal (channel state information-reference signal, CSI-RS).
  • the random access type can include 4-step random access and 2-step random access.
  • the terminal device sends Msg3 to the network device when the preamble transmission is successful, and when Msg3 performs uplink data transmission , Can support larger data packet transmission.
  • the transmission delay for the terminal equipment to complete the 4-step random access is relatively high.
  • 2-step random access after the terminal device completes the transmission of the preamble sequence, it can directly transmit the uplink data without waiting for the network device to respond to the preamble sequence sent by the terminal device.
  • MsgA carries The service data packet of the terminal device is smaller, and the transmission delay for the terminal device to complete the 2-step random access is lower. Therefore, the random access type can be determined according to the current network status, and the network status can be judged by comparing the threshold value. Therefore, in this application, the terminal device can configure the threshold value so that the terminal device can switch the random access type according to the network status, making the random access method more flexible, and improving the success rate and efficiency of random access.
  • the first threshold is at least one of the following thresholds: the RSRP threshold, the threshold of the uplink data size to be transmitted, and the first random access transmission opportunity and the second random access associated with the same downlink reference signal.
  • the threshold of the time difference between the incoming transmission opportunities; the first random access transmission opportunity and the second random access transmission opportunity correspond to different random access types.
  • the random access type can be determined according to the comparison between the channel measurement value and the RSRP threshold; or the random access type can be determined by comparing the PUSCH data packet size with the threshold of the uplink data size to be transmitted; or according to the SSB selected by the terminal device.
  • the reference time point corresponding to the 2-step random access transmission opportunity, and the time difference of the reference time point corresponding to the 4-step random access transmission opportunity associated with the SSB, are compared with the time difference threshold to determine the random access type.
  • the first threshold may also be a network state indicator value
  • the network state indicator value may be an indicator value used to indicate the number of active users of the network, an indicator value configured such as resources or capacity. For example, when the indicator value of the number of active users indicates that the number of active users is high, the terminal device may select 2-step random access, otherwise, it may select 4-step random access.
  • the network status indicator value may also be an indicator value that directly indicates which type of random access the terminal device selects. For example, when the network device determines that 2-step random access can be selected, the network status indicator value is set to 1. When it is determined that the 4-step random access type can be selected, the network status indicator value is set to 0.
  • the terminal device determining the random access type according to at least one threshold includes: the terminal device determines the random access type according to the channel measurement value and the first threshold; where the channel measurement value is based on multiple downlink reference signals RSRP measured value.
  • the channel measurement value may be an RSRP value that measures the quality of the cell, and may reflect the current cell channel quality, so that the terminal device can select the random access type according to the channel measurement value.
  • the terminal device determining the random access type and a downlink reference signal according to at least one threshold includes: when the terminal device determines that the channel measurement value is greater than or equal to the first threshold (rsrp-threshold-ratype), determining the random access The access method is 2-step random access; when the terminal device determines that the measured value of at least one downlink reference signal received is greater than or equal to the second threshold (2step-rsrp-threshold-SSB), it determines one from the at least one downlink reference signal Downlink reference signal.
  • the first threshold rsrp-threshold-ratype
  • the terminal device determines that the measured values of the multiple received downlink reference signals are less than the second threshold (2step-rsrp-threshold-SSB)
  • the terminal device selects one of the multiple received downlink reference signals. That is, when the channel quality is good, the 2-step random access with higher transmission reliability requirements can be selected, which can reduce the transmission delay for the terminal device to complete the random access.
  • the terminal device determining the type of random access and the downlink reference signal according to at least one threshold includes: when the terminal device determines that the channel measurement value is less than the first threshold (rsrp-threshold-ratype), determining the random access The method is 4-step random access.
  • the terminal device determines that the received measurement value of at least one downlink reference signal is greater than or equal to the second threshold (4step-rsrp-threshold-SSB), it determines one downlink reference signal from the at least one downlink reference signal.
  • the terminal device determines that the measured values of the multiple received downlink reference signals are less than the second threshold (4step-rsrp-threshold-SSB)
  • the terminal device selects one of the multiple received downlink reference signals.
  • a 4-step random access with higher transmission delay can be selected to ensure the reliability of transmission.
  • the value of the second threshold 4step-rsrp-threshold-SSB used for SSB selection and the value of 2step-rsrp-threshold-SSB may be the same or different.
  • the terminal device determining the random access type and the downlink reference signal according to at least one threshold includes: the terminal device determines that there is at least one downlink reference signal in the received multiple downlink reference signals, and the RSRP of at least one downlink reference signal is greater than or equal to
  • the second threshold rsrp-threshold-SSB
  • one downlink reference signal is determined from at least one downlink reference signal; if the measured value of the determined downlink reference signal is greater than or equal to the first threshold (threshold-ratype), random access is determined
  • the type is 2-step random access; if the determined measured value of the downlink reference signal is less than the first threshold (threshold-ratype), the random access type is determined to be 4-step random access.
  • the determined type of the measured value of the downlink reference signal is the same as the type of the first threshold.
  • the terminal device first selects the SSB, and then selects the random access type, which can also achieve the threshold comparison, so that the terminal device selects the random access type and downlink reference signal that is more in line with the current network conditions.
  • the terminal device determining the random access type and the downlink reference signal according to at least one threshold includes: the terminal device determines that the RSRP of the multiple received downlink reference signals is less than the second threshold (rsrp-threshold-SSB) At this time, one downlink reference signal is determined from the received multiple downlink reference signals, and the type of random access is determined to be 4-step random access.
  • the terminal device determines the random access type and the downlink reference signal according to at least one threshold, including: When the channel measurement value is greater than or equal to the first threshold (rsrp-threshold-2step), and the RSRP of at least one downlink reference signal is greater than or equal to the first threshold (rsrp-threshold-2step), determine one from the at least one downlink reference signal Downlink reference signal; when the measured value of the determined downlink reference signal is greater than or equal to the third threshold (threshold-ratype), the type of random access is determined to be 2-step random access; the measured value of the determined downlink reference signal is less than the third threshold (threshold-ratype), the type of random access is determined to be 4-step random access.
  • the determined type of the measured value of the downlink reference signal is the same as the type of the first threshold.
  • This design also performs the selection of the random access type first, and then the selection of the SSB, which makes little modification to the existing protocol.
  • the terminal device can select a random access type and downlink reference signal that is more in line with the current network conditions, and the selection of the random access type is more flexible.
  • the first threshold (rsrp-threshold-2step) is less than the second threshold (rsrp-thresholdSSB); the terminal equipment determines the random access type and the downlink reference signal according to at least one threshold, including: the terminal equipment determines the channel measurement When the value is greater than or equal to the first threshold (rsrp-threshold-2step), and the RSRP of at least one downlink reference signal is greater than or equal to the second threshold (rsrp-thresholdSSB), select one downlink reference signal from at least one downlink reference signal, and
  • the method for determining random access is 2-step random access; the terminal equipment determines that the channel quality measurement value is greater than or equal to the first threshold (rsrp-threshold-2step), and the RSRP of multiple received downlink reference signals is less than the second Threshold (rsrp-thresholdSSB), any downlink reference signal is selected from all downlink reference signals that are greater than or equal to the first threshold (rsrp-
  • the type of the selected downlink reference signal measurement value is the same as the type of the first threshold.
  • the third threshold may also be a size threshold of the uplink data to be transmitted, may also be a network status indication value, or may be a time difference threshold, etc. This application is not limited.
  • the terminal device determining the random access type and the downlink reference signal according to at least one threshold value further includes: the terminal device determines that the channel quality measurement value is greater than or equal to the first threshold (rsrp-threshold-2step), and receiving The RSRP of the multiple received downlink reference signals are all less than the first threshold (rsrp-threshold-2step), a downlink reference signal is arbitrarily selected from the multiple downlink reference signals, and the random access type is determined to be 4-step random access.
  • the terminal device determining the random access type and the downlink reference signal according to the at least one threshold includes: when the terminal device determines that the channel measurement value is less than the first threshold, determining that the random access type is 4-step random Access; when the terminal device determines that the RSRP of at least one downlink reference signal is greater than or equal to the second threshold, it determines a downlink reference signal from the at least one downlink reference signal; the terminal device determines that the RSRP of the received multiple downlink reference signals is less than the first
  • the threshold is two, one downlink reference signal is arbitrarily selected from a plurality of downlink reference signals.
  • the terminal device determining the random access type and the downlink reference signal according to the at least one threshold includes: the terminal device determining that the RSRP of the at least one downlink reference signal is greater than or equal to the first Threshold (rsrp-thresholdSSB-2step), the type of random access is determined to be 2-step random access, and one downlink reference signal is selected from the at least one downlink reference signal; the terminal device determines the received When the RSRPs of the multiple downlink reference signals are all less than the first threshold (rsrp-thresholdSSB-2step), the type of random access is determined to be 4-step random access; the terminal device determines at least one downlink reference When the measured value of the signal is greater than or equal to the second threshold (rsrp-thresholdSSB), any one downlink reference signal is selected from the at least one downlink reference signal, or the terminal device determines that the measured value of all downlink reference signals is less than the first When the two thresholds (rsrp-thresholdSSB
  • the terminal equipment combines the selection of the random access type and the selection of the downlink reference signal, and determines the random access type and the downlink reference signal in the current network state through threshold comparison, which can improve the random access type and downlink reference signal. Probability of successful access to avoid waste of system resources.
  • a random access method including: a terminal device receives configuration information sent by a network device.
  • the configuration information includes a first threshold.
  • the first threshold is used for the terminal device to select a random access type and is used for multiple downlinks.
  • One downlink reference signal is selected from the reference signals, and each downlink reference signal of the multiple downlink reference signals is associated with one or more random access transmission opportunities;
  • the terminal device determines the random access type and one downlink reference signal according to the first threshold;
  • the terminal device determines a random access transmission opportunity according to the determined downlink reference signal; the terminal device sends a random access type message on the random access transmission opportunity.
  • the terminal device determining the random access type and the downlink reference signal according to the first threshold includes: the terminal device determining that the measurement value of at least one downlink reference signal is greater than or equal to the first threshold.
  • a threshold value rsrp-thresholdSSB-2step
  • the type of random access is determined to be 2-step random access, and one downlink reference signal is selected from the at least one downlink reference signal; the terminal device determines all downlink reference signals
  • the measured value of the reference signal is less than the first threshold (rsrp-thresholdSSB-2step)
  • it is determined that the type of the random access is 4-step random access, and one downlink reference signal is selected from all the downlink reference signals.
  • a random access method including: a network device sends configuration information to a terminal device, the configuration information includes at least one threshold, and the at least one threshold includes a first threshold and a second threshold, wherein the first threshold is used for The terminal device selects the random access type, and the second threshold is used for the terminal device to select one reference signal among multiple reference signals, and each reference signal in the multiple reference signals is associated with one or more random access transmission opportunities.
  • the threshold is the RSRP threshold of the received power of the reference signal; the network device receives the random access type message sent by the terminal according to the configuration information.
  • the first threshold is at least one of the following thresholds: the RSRP threshold, the threshold of the uplink data size to be transmitted, and the first random access transmission opportunity and the second random access associated with the same reference signal
  • the threshold of the time difference of transmission opportunities; the first random access transmission opportunity and the second random access transmission opportunity correspond to different random access types.
  • a terminal device in a fourth aspect, includes a transceiver for receiving configuration information sent by a network device.
  • the configuration information includes at least one threshold.
  • the at least one threshold includes a first threshold and a second threshold.
  • the threshold is used for the terminal device to select the random access type, and the second threshold is used for the terminal device to select one downlink reference signal from multiple downlink reference signals, and each downlink reference signal of the multiple downlink reference signals is connected to one or more random access signals.
  • the second threshold is the RSRP threshold of the received power of the reference signal; the processor is configured to determine the random access type and a downlink reference signal according to at least one threshold; the processor is also configured to determine according to the determined downlink reference signal A random access transmission opportunity; the transceiver is also used to send random access type messages on the random access transmission opportunity.
  • the first threshold is at least one of the following thresholds: the RSRP threshold, the threshold of the uplink data size to be transmitted, and the first random access transmission opportunity and the second random access associated with the same downlink reference signal.
  • the threshold of the time difference between the incoming transmission opportunities; the first random access transmission opportunity and the second random access transmission opportunity correspond to different random access types.
  • the processor is configured to: determine the random access type according to the channel measurement value and the first threshold; where the channel measurement value is a measurement value obtained according to RSRP of multiple reference signals.
  • the processor is configured to: when determining that the channel measurement value is greater than or equal to the first threshold, determine that the random access mode is 2-step random access; determine that the measurement value of at least one received downlink reference signal is greater than When it is equal to or equal to the second threshold, determine one downlink reference signal from at least one downlink reference signal. When it is determined that the measured values of the multiple received downlink reference signals are less than the second threshold, any one of the multiple received downlink reference signals is selected.
  • the processor is configured to: when determining that the channel measurement value is less than the first threshold, determine that the random access mode is 4-step random access. When it is determined that the measured value of the received at least one downlink reference signal is greater than or equal to the second threshold value, one downlink reference signal is determined from the at least one downlink reference signal. When it is determined that the measured values of the multiple received downlink reference signals are less than the second threshold, the terminal device can select one of the multiple received downlink reference signals.
  • the processor is configured to: when determining that the RSRP of at least one downlink reference signal in the received multiple downlink reference signals is greater than or equal to the second threshold, determine one downlink reference signal from the at least one downlink reference signal Reference signal; if the measured value of the determined downlink reference signal is greater than or equal to the first threshold, the random access type is determined to be 2-step random access; if the measured value of the determined downlink reference signal is less than the first threshold, the random access type is determined It is a 4-step random access. Wherein, the determined type of the measured value of the downlink reference signal is the same as the type of the first threshold.
  • the processor is configured to: when determining that the RSRPs of multiple received downlink reference signals are all less than the second threshold, determine a downlink reference signal from the multiple received downlink reference signals, and determine the random access
  • the type of entry is 4-step random access.
  • the first threshold is greater than or equal to the second threshold; the processor is configured to: the channel measurement value of the terminal device is greater than or equal to the first threshold, and the RSRP of at least one downlink reference signal is greater than or equal to the first threshold When, determine a downlink reference signal from at least one downlink reference signal; when the measured value of the determined downlink reference signal is greater than or equal to the third threshold, determine the type of random access as 2-step random access; When the measured value is less than the third threshold, it is determined that the type of random access is 4-step random access.
  • the type of the determined measured value of the downlink reference signal is the same as the type of the first threshold.
  • the first threshold is less than the second threshold; the processor is configured to: determine that the channel measurement value is greater than or equal to the first threshold, and the RSRP of at least one downlink reference signal is greater than or equal to the second threshold, from at least one Select a downlink reference signal from the downlink reference signal, and determine that the random access method is 2-step random access; determine that the channel quality measurement value is greater than or equal to the first threshold, and the RSRP of multiple received downlink reference signals is less than The second threshold: randomly select a downlink reference signal from all downlink reference signals that are greater than or equal to the first threshold; if the measured value of the selected downlink reference signal is greater than or equal to the third threshold, the random access type is determined to be 2 Step random access.
  • the third threshold may also be the size threshold of the uplink data to be transmitted, may also be a network status indication value, or may be a time difference threshold, etc. This application is not limited.
  • the type of the selected downlink reference signal measurement value is the same as the type of the first threshold.
  • the processor is used to determine that the measured value of the channel quality is greater than or equal to the first threshold, and that the RSRP of the received multiple downlink reference signals are all less than the first threshold, from any of the multiple downlink reference signals Choose a downlink reference signal and determine the random access type as 4-step random access.
  • the processor is configured to: when determining that the channel measurement value is less than the first threshold, determine that the random access type is 4-step random access; determine that the RSRP of at least one downlink reference signal is greater than or equal to all When the second threshold is used, one downlink reference signal is determined from the at least one downlink reference signal; when it is determined that the RSRPs of the multiple received downlink reference signals are all less than the second threshold, from the multiple downlink reference signals Arbitrarily select a downlink reference signal.
  • the processor is configured to: when determining that the RSRP of at least one downlink reference signal is greater than or equal to the first threshold, determine that the type of the random access is 2-step random access, and perform the following steps on the at least one downlink reference signal; Any one downlink reference signal among the reference signals; when it is determined that the RSRPs of the multiple received downlink reference signals are all less than the first threshold, determine that the type of random access is 4-step random access; determine that at least When the measured value of one downlink reference signal is greater than or equal to the second threshold, select one downlink reference signal from the at least one downlink reference signal, or when it is determined that the measured values of all downlink reference signals are less than the second threshold, from all Any one of the downlink reference signals is selected.
  • the processor is configured to: when determining that the measured value of at least one downlink reference signal is greater than or equal to the first threshold, determine that the type of random access is 2-step random access, and Any one of the at least one downlink reference signal is selected; when it is determined that the measured values of all downlink reference signals are less than the first threshold, the type of random access is determined to be 4-step random access, and all downlink reference signals Any one of the downlink reference signals in.
  • a network device including a transceiver and a memory, the memory is used to store programs and/or data: the transceiver is used to send configuration information to a terminal device, the configuration information includes at least one threshold, and the at least one threshold includes the first A threshold and a second threshold, where the first threshold is used for the terminal device to select a random access type, and the second threshold is used for the terminal device to select one reference signal among multiple reference signals, and each reference signal in the multiple reference signals Associated with one or more random access transmission opportunities, the second threshold is the received power RSRP threshold of the reference signal; the transceiver is also used to receive the random access type message sent by the terminal according to the configuration information.
  • the first threshold is at least one of the following thresholds: the RSRP threshold, the threshold of the uplink data size to be transmitted, and the first random access transmission opportunity and the second random access associated with the same reference signal
  • the threshold of the time difference of transmission opportunities; the first random access transmission opportunity and the second random access transmission opportunity correspond to different random access types.
  • an embodiment of the present application provides a computer-readable storage medium for storing computer software instructions, which includes a program for executing any one of the above-mentioned first, second, and third aspects .
  • the embodiments of the present application provide a computer program product containing instructions that, when run on an electronic device, cause the computer electronic device to execute the method described in any one of the first, second, and third aspects. The method described.
  • Figure 1 is a schematic flow diagram of a 4-step random access
  • Figure 2 is a schematic flow diagram of a 2-step random access
  • FIG. 3 is a schematic diagram of a network architecture provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 6 is a flowchart of a random access method provided by an embodiment of the application.
  • FIG. 7 is a flowchart of a random access method provided by an embodiment of this application.
  • FIG. 8 is a flowchart of a random access method provided by an embodiment of this application.
  • FIG. 9 is a flowchart of a random access method provided by an embodiment of this application.
  • FIG. 10 is a flowchart of a random access method provided by an embodiment of this application.
  • FIG. 11 is a flowchart of a random access method provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of calculating RA_RNTI according to RO according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of an electronic device provided by an embodiment of this application.
  • 15 is a schematic structural diagram of an electronic device provided by an embodiment of this application.
  • 16 is a schematic structural diagram of an electronic device provided by an embodiment of the application.
  • FIG. 17 is a schematic structural diagram of an electronic device provided by an embodiment of this application.
  • FIG. 18 is a schematic structural diagram of an electronic device provided by an embodiment of this application.
  • the terminal device sends a message 1 (message 1, msg1) to the network device.
  • Message 1 carries the preamble sequence for random access, specifically, the terminal device A preamble can be randomly selected, which can also be called a random access preamble, and the preamble is sent on the physical random access channel (PRACH); 2)
  • the network device sends it to the terminal device A random access response (random access response, RAR) message may also be referred to as a message 2 (message 2, msg2). That is, after the network device detects that the preamble is sent, it sends a RAR message in the downlink.
  • RAR random access response
  • the RAR message should at least contain the following information: the number of the preamble received by the network device, timing adjustment information, and indication information of the uplink resource location allocated to the terminal device. And the temporarily allocated cell radio network temporary identifier (TC-RNTI), etc.; 3)
  • the terminal device sends the uplink data carried on the physical uplink shared channel (PUSCH) to the network device, and also It can be called message 3 (message 3, msg3), that is, after receiving the RAR message, the terminal device sends the uplink message on the allocated uplink resources according to the instructions in the RAR message; 4)
  • the network device uses the physical downlink shared channel ( Physical Downlink Shared Channel, PDSCH) sends a contention resolution message (CRM) to the terminal device, which can also be called message 4 (message 4, msg4).
  • PDSCH Physical Downlink Shared Channel
  • CCM contention resolution message
  • the terminal device receives message 4, and the received CRM
  • the contention resolution identity (CRID) matches the identification information transmitted
  • Two-step random access process As shown in Figure 2, it includes the first step: the terminal device sends a message A (message A, msgA) to the network device, the message A includes PRACH and PUSCH, and the preamble is carried in PRACH; step 2: The terminal device receives the response of the network device to the message A, that is, the message B (message B, msgB), and the response content of the message B includes at least one of a response to the preamble and a response to the PUSCH.
  • the message A sent by the terminal device includes the contents of message 1 and message 3 in the 4-step RACH.
  • the message B sent by the network device to the terminal device includes the contents of message 2 and message 4 in the 4-step RACH.
  • the terminal device sends Msg3 to the network device when the preamble transmission is successful, and when Msg3 performs uplink data transmission , Can support larger data packet transmission.
  • the transmission delay for the terminal equipment to complete the 4-step random access is relatively high.
  • 2-step random access after the terminal device completes the transmission of the preamble sequence, it can directly transmit the uplink data without waiting for the network device to respond to the preamble sequence sent by the terminal device.
  • MsgA carries The service data packet of the terminal device is smaller, and the transmission delay for the terminal device to complete the 2-step random access is lower.
  • PUSCH Physical uplink shared channel, used to carry uplink service data.
  • the terminal device can send a radio resource control (Radio Resource Control, RRC) connection request message on the PUSCH according to the information indicated by the network device to request the network to establish an RRC connection.
  • RRC Radio Resource Control
  • sending PUSCH and sending uplink data have the same meaning, that is, the terminal device sends uplink data for random access on a predetermined PUSCH resource, and the uplink data may include random access connection RRC information such as established request.
  • the uplink data carried by the PUSCH resource has a corresponding relationship with the preamble sequence carried by the PRACH resource.
  • PRACH Physical Random Access Channel, used to carry the preamble sequence sent to the network device before the terminal device starts data transmission.
  • the terminal device may send the preamble sequence on the PRACH according to the information indicated by the network device, for the network device to identify the random access request and adjust and measure the uplink synchronization.
  • sending PRACH, sending preamble, or sending preamble has the same meaning, that is, the terminal device sends the preamble for random access on the predetermined PRACH resource.
  • SSB In 5G NR, primary synchronization signal (PSS), secondary synchronization signal (SSS), and physical broadcast channel (physical broadcast channel, PBCH) together form an SSB.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • SSB can occupy 4 orthogonal frequency division multiplexing (OFDM) symbols in the time domain, and 240 subcarriers in the frequency domain, or 20 physical resource blocks (physical resource blocks, PRB), one PRB occupies 14 subcarriers in the frequency domain. Any common resource blocks that partially or completely overlap with the SSB may be considered as occupied and not used for PDSCH or PDCCH transmission.
  • OFDM orthogonal frequency division multiplexing
  • Reference signal receiving power It is one of the key parameters in the network that can represent the strength of the wireless signal and one of the physical layer measurement requirements. It is the resource element (RE) that carries the reference signal in a certain symbol. ) Is the average value of the received signal power.
  • the embodiments of this application can be applied to a random access process in a 5G NR scenario, and can also be applied to a random access scenario in other communication systems.
  • the network architecture of the present application may include a network device 100 and a terminal device 200.
  • the network device 100 may be a device that can communicate with terminal devices.
  • the network device 100 may be a base station, and the base station may be a relay station or an access point.
  • the base station may be an eNB or an eNodeB (evolutional NodeB) in LTE.
  • the base station 100 may also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the base station 100 may also be a network device in a 5G network or a network device in a future evolved Public Land Mobile Network (PLMN) network; it may also be a wearable device or a vehicle-mounted device.
  • PLMN Public Land Mobile Network
  • the terminal device 200 may be a user equipment (UE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a terminal, a wireless communication device, a UE agent Or UE device, etc.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolution of PLMN networks, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • the network device 100 may be implemented by the structure shown in FIG. 4.
  • Figure 4 shows a general hardware architecture of a base station.
  • the base station shown in Figure 4 may include an indoor baseband processing unit (building baseband unit, BBU) and a remote radio unit (RRU).
  • BBU building baseband unit
  • RRU remote radio unit
  • the RRU is connected to the antenna feeder system (that is, the antenna).
  • the BBU and RRU can be disassembled as needed. Open to use.
  • the base station 100 may also adopt other general hardware architectures, and is not limited to the general hardware architecture shown in FIG. 4.
  • the terminal device 200 may be implemented by the structure shown in FIG. 5.
  • FIG. 5 shows the general hardware architecture of the mobile phone for description.
  • the mobile phone shown in FIG. 5 may include: a radio frequency (RF) circuit 110, a memory 120, other input devices 130, a display screen 140, a sensor 150, an audio circuit 160, an I/O subsystem 170, a processor 180, and Power 190 and other components.
  • RF radio frequency
  • FIG. 4 does not constitute a limitation on the mobile phone, and may include more or less components than shown in the figure, or combine certain components, or split certain components, or Different component arrangements.
  • the display screen 140 belongs to a user interface (UI), and the display screen 140 may include a display panel 141 and a touch panel 142.
  • the mobile phone can include more or fewer components than shown.
  • the mobile phone may also include functional modules or devices such as a camera and a Bluetooth module, which will not be repeated here.
  • the processor 180 is respectively connected with the RF circuit 110, the memory 120, the audio circuit 160, the I/O subsystem 170, and the power supply 190.
  • the I/O subsystem 170 is respectively connected with other input devices 130, the display screen 140, and the sensor 150.
  • the RF circuit 110 can be used for receiving and sending signals during the process of sending and receiving information or talking. In particular, after receiving the downlink information of the base station, it is processed by the processor 180.
  • the memory 120 may be used to store software programs and modules.
  • the processor 180 executes various functional applications and data processing of the mobile phone by running software programs and modules stored in the memory 120.
  • the other input device 130 can be used to receive input digital or character information, and generate key signal input related to the user settings and function control of the mobile phone.
  • the display screen 140 can be used to display information input by the user or information provided to the user and various menus of the mobile phone, and can also accept user input.
  • the sensor 150 may be a light sensor, a motion sensor, or other sensors.
  • the audio circuit 160 can provide an audio interface between the user and the mobile phone.
  • the I/O subsystem 170 is used to control input and output external devices. The external devices may include other device input controllers, sensor controllers, and display controllers.
  • the processor 180 is the control center of the mobile phone 200. It uses various interfaces and lines to connect various parts of the entire mobile phone. By running or executing software programs and/or modules stored in the memory 120, and calling data stored in the memory 120, Perform various functions of the mobile phone 200 and process data, thereby monitoring the mobile phone as a whole.
  • the power source 190 (such as a battery) is used to supply power to the above-mentioned components.
  • the power source may be logically connected to the processor 180 through a power management system, so that functions such as charging, discharging, and power consumption can be managed through the power management system.
  • the RF circuit 110 may be used to receive configuration information sent by a network device, and the configuration information includes at least one threshold; the processor 180 may be used to determine the type of random access and the reference signal according to the configuration information, and The determined reference signal determines a random access transmission opportunity; the RF circuit 110 can also be used to send a random access type message on the random access transmission opportunity.
  • the memory 120 may be used to store the foregoing configuration information.
  • the methods in the following embodiments can all be implemented in the network device 100 and the terminal device 200 having the above hardware structure.
  • the above-mentioned network equipment and terminal equipment are taken as examples to describe the method of the embodiment of the present application.
  • the terminal device when the terminal device supports both 2-step random access and 4-step random access at the same time, when the terminal device initiates random access, the terminal device needs to consider how to perform the 2-step random access and 4-step random access Random Access Choose one of two random access methods.
  • the terminal device when the terminal device is in the random access process, because the current random access process fails and needs to re-initiate a new random access, the terminal device also needs to consider whether to restart the 2-step random access and the 4-step random access. Choose one of the two random access methods. This application is used to explain when and which random access method the terminal device uses when the terminal device supports both 2-step random access and 4-step random access.
  • the network device can determine the random access type and the downlink reference signal associated with the transmission opportunity by configuring at least one threshold. Therefore, the embodiment of the application provides a random access method, such as As shown in Figure 6, including:
  • the network device sends configuration information to the terminal device.
  • the configuration information includes at least one threshold.
  • the at least one threshold includes a first threshold and a second threshold.
  • the first threshold is used for the terminal device to select a random access type
  • the second threshold is used for
  • each downlink reference signal of the multiple downlink reference signals is associated with one or more random access transmission opportunities
  • the second threshold is an RSRP threshold.
  • the configuration information may also include other random access parameters required by the terminal. Since 2-step random access simplifies the 4 transmission steps in 4-step random access to 2-step transmission, therefore, the requirements for the network state in the 2-step random access process are greater than that of 4-step random access. Taller. Therefore, this application can send a threshold value to the terminal device to prompt the terminal device to select 2-step random access or 4-step random access according to the threshold, and to select the downlink reference signal used when transmitting uplink data according to the threshold.
  • the configuration information may be included in the system message periodically sent by the network device.
  • the random access type may be the aforementioned 2-step random access or 4-step random access.
  • the first threshold may be at least one of the following thresholds: RSRP threshold, threshold of the size of uplink data to be transmitted, network status indication value, and first random access transmission opportunity associated with the same downlink reference signal
  • the threshold value of the time difference between the second random access transmission opportunity and the second random access transmission opportunity; the first random access transmission opportunity and the second random access transmission opportunity correspond to different random access types.
  • the first threshold may also be the threshold of other parameters, which is not limited in this application.
  • the second threshold may be the RSRP threshold of the downlink reference signal when it is used to select the downlink reference signal.
  • the multiple downlink reference signals may be downlink reference signals sent by a network device, and the selected downlink reference signal may be sent by the network device A downlink reference signal selected from the multiple downlink reference signals for determining uplink transmission time-frequency resources (for example, random access transmission opportunities).
  • the downlink reference signal may be any downlink reference signal, such as a synchronization signal block or a channel state information reference signal.
  • the row reference signal is the SSB.
  • the second threshold may be the RSRP threshold of the SSB.
  • the configuration information may also include information for configuring the association relationship between the SSB and the random access transmission opportunity (PRACH occasion, RO) for uplink transmission.
  • PRACH occasion, RO random access transmission opportunity
  • the terminal device determines a random access type and a downlink reference signal according to at least one threshold in the configuration information sent by the network device.
  • the terminal device may combine the selection of the random access type and the selection of the SSB to determine the random access type and SSB; or, in the random access process, The terminal device first selects the SSB, and then selects the random access type; or, in the random access process, the terminal device first selects the random access type, and then performs the selection of the SSB.
  • the terminal device determines a random access transmission opportunity according to the determined downlink reference signal.
  • the terminal device sends a random access message of the random access type on the random access transmission opportunity.
  • the terminal device is on the random access transmission opportunity supporting 2-step random access and the uplink data transmission opportunity corresponding to the random access transmission opportunity Send PRACH and PUSCH separately; if the random access type determined in step 602 is 4-step random access, the terminal device sends PRACH on a random access transmission opportunity that supports 4-step random access.
  • the terminal device can realize the flexible selection of the random access type, which improves the success rate and efficiency of the random access. Let the terminal equipment first select the random access type, and then perform the selection of SSB.
  • the embodiment of the present application provides a random access method. As shown in FIG. 7, the method includes:
  • a network device sends configuration information to a terminal device, where the configuration information includes a first threshold, a second threshold, and information used to configure the association relationship between the SSB and the random access transmission opportunity.
  • the configuration information may also include other random access parameters required by the terminal.
  • the first threshold is used to select the threshold of the random access type.
  • the type of the first threshold is the RSRP threshold
  • the embodiment of the application records the first threshold as rsrp-threshold-ratype, and the second threshold
  • the threshold for selecting the SSB, the second threshold is recorded as rsrp-threshold-SSB in this embodiment of the application.
  • the second threshold may be the same or different for 2-step random access or 4-step random access.
  • the network device is configured with an rsrp-threshold-SSB, which is applicable to both the selection of SSB when the terminal device determines 2-step random access and the selection of SSB when 4-step random access is determined; or, the network equipment is configured separately
  • the terminal device can use 4step-rsrp-threshold-SSB to select SSB; or, the network device is configured with the threshold 4step-rsrp-threshold-SSB for SSB selection in 4-step random access, and 2-step Random access is the offset value of 4step-rsrp-threshold-SSB selected by SSB in 4-step random access ⁇ 2step , that is, the network device is configured with 4step-rsrp-threshold-SSB and 2step-rsrp-threshold is configured at the same time
  • the offset value of -SSB relative to 4step-rsrp-threshold-SSB is ⁇ 2step , so that the value of 2step-rsrp-threshold-SSB can be 4step-rsrp-threshold-SSB+ ⁇ 2step .
  • the names of the threshold parameters rsrp-threshold-ratype, rsrp-threshold-SSB, 2step-rsrp-threshold-SSB, 4step-rsrp-threshold-SSB, rsrp-threshold-2step,
  • the threshold-ratype and rsrp-thresholdSSB-2step are only used to mark different thresholds, and do not constitute a limitation on the name of the threshold in the embodiment of the present application.
  • the terminal device receives configuration information sent by the network device.
  • the terminal device determines the random access type according to the channel measurement value and the first threshold.
  • the terminal device When the terminal device initiates random access, it first performs the initialization of the random access process. In the process of random access initialization, the terminal device selects the carrier type according to RSRP, which can be based on the RSRP value of the downlink reference signal SSB and network configuration.
  • the threshold rsrp-threshold-SSB-SUL used to supplement the uplink (supplementary UP link, SUL) selection is used to select the carrier link for the random access process.
  • the terminal device selects SUL as the carrier link for the random access process; if the RSRP value of the SSB is greater than the threshold rsrp-threshold-SSB-SUL, The terminal device selects the normal UP link (NUL) as the carrier link for the random access process.
  • NUL normal UP link
  • the terminal device can determine the random access type during the random access initialization process.
  • the terminal device may directly determine the random access type according to the indication information, and then execute step 704.
  • the indication information of the random access type may be carried in the configuration information sent by the network device. Exemplarily, when the indication information of the random access type is 1, the terminal device is instructed to select 2-step random access, and when the indication information is 0, the terminal device is instructed to select 4-step random access.
  • the terminal device may determine the random access type according to the threshold in the configuration information received in step 702.
  • the terminal device determines that the channel measurement value is greater than or equal to the first threshold rsrp-threshold-ratype, 2-step random access can be selected, that is, the random access is determined
  • the access method is 2-step random access; if the terminal device determines that the channel measurement value is less than the first threshold rsrp-threshold-ratype, the random access method is determined to be 4-step random access.
  • the channel measurement value may be the cell-level channel measurement value mrsrp_cell or the L3 upper layer channel measurement value.
  • the cell-level channel measurement value can be an RSRP value that measures cell quality.
  • the specific calculation method can be: the average value of the RSRP measurement values of multiple SSBs, Or it is the maximum value among multiple SSB measurement values.
  • the channel measurement value can be the channel measurement value M rsrp_cell obtained from the RSRP of multiple SSBs, which is:
  • ssb_rsrp represents the RSRP value of the SSB
  • N ssb_max represents the number of SSBs used to calculate the channel measurement value.
  • the RSRP values of N ssb_max SSB satisfy ssb_rsrp i > thresh_ssb_consolidation, and N ssb_max ⁇ N ssb .
  • the channel measurement value can be the maximum value among the RSRP values of multiple SSBs.
  • the terminal device determines the random access type, it can be initialized according to the parameters of the random access process of the determined type.
  • the initialization process of other parameters in the random access process by the terminal device has no impact on the solution of the present application, so it will not be repeated in this embodiment.
  • only the selection of SUL is used as an example. That is, the process of initializing the parameters of the random access process in this embodiment includes but is not limited to the selection of the SUL and the selection of the random access type. 704.
  • the terminal device determines the SSB according to the received measurement value of the at least one downlink reference signal and the second threshold.
  • the terminal device After the terminal device completes the selection of the random access type during random access initialization, it needs to continue to perform the resource selection for sending the random access message, that is, perform the selection of the SSB.
  • the terminal device determines that the random access method is 2-step random access, and when it is determined that the received measurement value of at least one SSB is greater than or equal to the second threshold, the terminal device may determine one from the at least one SSB.
  • SSB for example, select one SSB from at least one SSB; otherwise, select any SSB, that is, if the measurement values of all SSBs received by the terminal device are less than the second threshold, the terminal device selects one SSB from all SSBs.
  • the second threshold may be the second threshold corresponding to 2-step random access, that is, the aforementioned 2step-rsrp-threshold-SSB;
  • the terminal device determines that the random access mode is 4-step random access, and when it is determined that the received measurement value of at least one SSB is greater than or equal to the second threshold, the terminal device may determine one from the at least one SSB.
  • SSB for example, select one SSB from at least one SSB; otherwise, select any SSB, that is, if the measurement values of all SSBs received by the terminal device are less than the second threshold, the terminal device selects one SSB from all SSBs.
  • the second threshold may be the second threshold corresponding to the 4-step random access, that is, the aforementioned 4step-rsrp-threshold-SSB.
  • the terminal device determines a random access transmission opportunity according to the selected SSB and the information used to configure the association relationship between the SSB and the random access transmission opportunity, and then executes step 706 or step 707.
  • the terminal device selects 2-step random access, send a 2-step random access message on the random access transmission opportunity.
  • the terminal device can send the preamble sequence on the PRACH transmission opportunity associated with the SSB, and send the uplink data on the PUSCH transmission opportunity corresponding to the PRACH transmission opportunity, and then the terminal device At least one of the response information for PRACH or the response message for PUSCH is received.
  • the terminal device selects 4-step random access, send a 4-step random access message on the random access transmission opportunity.
  • the terminal device can send the preamble sequence on the PRACH transmission opportunity associated with the SSB, and then the terminal device receives the response message for the PRACH.
  • the foregoing embodiment describes the random access process in which the terminal device first performs the selection of the random access type, and then performs the process of selecting the SSB. It determines the random access type and SSB through the determination of two thresholds, and simultaneously The existing agreement has minor modifications.
  • the cell quality measurement value required by the terminal device when selecting the random access type is, for example, obtained by averaging the measured values RSRP of multiple SSBs over a long period of time, and the terminal device selects The measured value RSRP required at this time is the instantaneous RSRP value corresponding to different SSBs.
  • an embodiment of the present application also provides a random access method. As shown in FIG. 8, the method includes:
  • a network device sends configuration information to a terminal device, where the configuration information includes a first threshold, a second threshold, a third threshold, and information used to configure the association relationship between the SSB and the random access transmission opportunity.
  • the configuration information may also include other random access parameters required by the terminal.
  • the first threshold can be the threshold rsrp-threshold-2step that the terminal device can support 2-step random access
  • the second threshold can be the RSRP threshold rsrp-threshold-SSB when the terminal device is used for SSB selection
  • the third threshold can be Confirm the threshold-ratype of the random access type.
  • the second threshold is shared for 2-step random access and 4-step random access, that is, the network device is configured with a threshold for SSB selection.
  • the terminal device receives the configuration information sent by the network device.
  • the terminal device When the terminal device initiates random access, it preliminarily determines the random access type according to whether the channel measurement value is greater than or equal to the first threshold.
  • the implementation of the selection of the carrier type by the terminal device in the random access initialization process is similar to the previous embodiment. That is, during the random access initialization process, if the terminal device receives the indication information of the random access type sent by the network device, the terminal device can directly determine the random access type according to the indication information. For the subsequent execution process, refer to the corresponding figure 7 The execution process after step 704 (including step 704) in the embodiment will not be repeated here.
  • the indication information of the random access type may be carried in the configuration information sent by the network device. Exemplarily, when the indication information of the random access type is 1, the terminal device is instructed to select 2-step random access, and when the indication information is 0, the terminal device is instructed to select 4-step random access.
  • the terminal device can choose 2-step random access or 4-step random access, and then perform step 804; if channel measurement If the value is less than the first threshold rsrp-threshold-2step, it indicates that the current channel conditions cannot support 2-step random access.
  • the terminal device determines that the random access type is 4-step random access, and then performs step 810.
  • the acquisition of the channel measurement value can refer to the implementation in the above step 703, which will not be repeated here.
  • the terminal device determines the SSB according to the received measurement value of the at least one SSB and the second threshold, and then determines the random access type.
  • the method also includes: terminal device Determine the magnitude relationship between the first threshold rsrp-threshold-2step and the second threshold rsrp-threshold-SSB. If the first threshold is greater than or equal to the second threshold, continue to step 805, and if the first threshold is less than the second threshold, execute Step 807.
  • the terminal device selects an SSB from all SSBs and confirms the random access type according to the RSRP values of all SSBs received, the first threshold and the second threshold configured by the network device.
  • the terminal device can choose one SSB from at least one SSB, and the terminal device may choose 2-step random access It is also possible to select 4-step random access, and then perform step 806.
  • the SSB received by the terminal device has a RSRP value M rsrp that satisfies the condition: rsrp-threshold-SSB ⁇ M rsrp ⁇ rsrp-threshold-2step, then the SSB that meets this condition Choose one of the SSBs and choose 4-step random access, and then go to step 809.
  • the terminal device determines that the RSRP values of all SSBs received are less than rsrp-threshold-SSB, the terminal device chooses one SSB among all SSBs, selects 4-step random access, and then performs step 809 .
  • the terminal device determines an SSB in step 805, and when the corresponding measurement value associated with the SSB is greater than or equal to the third threshold, it determines that the type of random access is 2-step random access; then, go to step 808; if If the RSRP of the SSB determined by the terminal device is less than the third threshold, it is determined that the type of random access is 4-step random access. Then, go to step 809.
  • the terminal device selects 2. Step random access; if the corresponding measurement value associated with the SSB selected in step 805 is less than the third threshold threshold-ratype, the terminal device selects 4-step random access.
  • the terminal device may choose a random access type after determining the SSB according to step 805.
  • the measurement value associated with the SSB has the same data type as the third threshold.
  • the value of the third threshold may be the threshold of the size of uplink data to be transmitted, when the terminal device wants to transmit the PUSCH payload (PUSCH payload), and the PUSCH payload to be transmitted is less than or equal to the threshold of PUSCH payload , Or when the PUSCH data packet size is less than or equal to the PUSCH data packet threshold, the terminal device can choose a 2-step random access suitable for transmitting small data packets; accordingly, if the PUSCH payload to be transmitted by the terminal device is greater than the PUSCH payload Threshold, the terminal device selects a 4-step random access suitable for large data packet transmission.
  • the configured PUSCH payload is used to describe the size of the data packet carried by the PUSCH, for example, the data packet is a transport block (TB). Since the transmitted data packet is related to the resource size and code rate of PUSCH, for example, it is related to Modulation and Coding Scheme (MCS), which is equivalent.
  • MCS Modulation and Coding Scheme
  • the resource block size of PUSCH can also be used, or The size of MCS describes the configured PUSCH payload.
  • the description of PUSCH payload can also be configured according to levels. For example, level 0 (level 0) corresponds to PUSCH payload not greater than 56 bits, and level 1 corresponds to PUSCH payload not greater than 72 bits;
  • the third threshold may also be the threshold of the time difference between the first random access transmission opportunity and the second random access transmission opportunity associated with the same downlink reference signal.
  • the random access transmission opportunities correspond to different random access types, for example, if the reference time point of the 2-step random access transmission opportunity associated with the SSB selected by the terminal device is X1, the 4-step SSB associated The reference time point corresponding to the random access transmission opportunity is X2, then the time difference between X1 and X2 is recorded as X1-X2. If the value of X1-X2 is greater than or equal to the threshold of the time difference, the terminal device can determine the random access type at this time 2-step random access, otherwise, determine the random access type to continue as 4-step random access.
  • the reference time point refers to a reference position selected for comparison, for example, it can be the start symbol, the end symbol of the transmission opportunity, the start symbol or the end symbol of the preamble in the random access message, and the payload part of the random access message.
  • the terminal device selects an SSB from all SSBs according to the RSRP values of all SSBs received, the first threshold and the second threshold configured by the network device, and confirms the random access type.
  • the terminal device determines that among the received multiple SSBs, at least one of the SSB's RSRP value M rsrp meets the condition: M rsrp ⁇ rsrp-threshold-SSB, indicating that the network is in good condition, and the terminal device can select from at least one SSB that meets the conditions Any SSB is selected, 2-step random access is selected, and step 808 is executed.
  • the terminal device can choose one SSB among at least one SSB that meets the conditions, and the terminal device may choose 2-step random access or 4-step random access. Then, the terminal device executes step 806.
  • the random access type is determined to be 4-step random access, that is, if the terminal device receives The RSRP values of the multiple SSBs M rsrp meet the condition: M rsrp ⁇ rsrp-threshold-2step, then the terminal device selects one SSB from the multiple SSBs that meet the conditions, and determines that the random access type is 4-step random access Into. Then, go to step 809.
  • the terminal device selects the 2-step random access, and then sends the 2-step random access message on the random access transmission opportunity of the 2-step random access corresponding to the SSB determined in the above steps. That is, the description of step 706 is the same.
  • the terminal device selects the 4-step random access, and then sends the 4-step random access message on the random access transmission opportunity of the 4-step random access corresponding to the SSB determined in the above steps. That is, the description of step 707 is the same.
  • the terminal device determines that the random access mode is 4-step random access, and when it is determined that the received measurement value of at least one SSB is greater than or equal to the second threshold, the terminal device may determine one SSB from the at least one SSB.
  • the second threshold may be the RSRP threshold rsrp-threshold-SSB configured by the network to the terminal in step 801 for SSB selection.
  • the terminal device sends the preamble sequence on the PRACH transmission opportunity of 4-step random access associated with the SSB according to the selected SSB, and then the terminal device receives a response message for the PRACH.
  • the difference from the embodiment corresponding to FIG. 7 is that the embodiment corresponding to FIG. 8 adds a third threshold.
  • the terminal device first performs the selection of the random access type, and then performs the selection of the SSB, so that the type of random access is The selection is more flexible, which improves the success rate and efficiency of random access.
  • an embodiment of the present application provides a random access method, as shown in FIG. 9, including:
  • the network device sends configuration information to the terminal device, where the configuration information includes a first threshold, a second threshold, and information used to configure the association relationship between the SSB and the random access transmission opportunity.
  • the configuration information may also include other random access parameters required by the terminal.
  • the first threshold is recorded as threshold-ratype
  • the second threshold is recorded as rsrp-threshold-SSB.
  • the terminal device receives configuration information sent by the network device.
  • the terminal device When the terminal device initiates random access, it determines the magnitude relationship between the RSRP of all received SSBs and the second threshold, and then performs step 904 or step 907.
  • the terminal device determines that the RSRP of at least one SSB among the received multiple SSBs is greater than or equal to the second threshold, determine one SSB from the at least one SSB, and according to the determined SSB, compare the SSB with the random access The association relationship of the transmission opportunity determines a random access transmission opportunity. Then, go to step 905 or 906.
  • step 905. If the first threshold is the SSB measurement threshold, if the RSRP of the SSB determined in step 904 is greater than or equal to the first threshold, determine that the random access type is 2-step random access. Then, go to step 908.
  • the SSB measurement threshold may be rsrp-threshold-2step, that is, if the first threshold threshold-ratype is the SSB measurement threshold rsrp-threshold-2step, if the RSRP of the SSB determined in step 904 is greater than or equal to the first threshold rsrp-threshold-2step , Determine the random access type as 2-step random access.
  • step 906 If the first threshold is the SSB measurement threshold, and if the RSRP of the SSB determined in step 904 is less than the first threshold, determine that the random access type is 4-step random access. Then, go to step 909.
  • the SSB measurement threshold can be rsrp-threshold-2step, that is, if the first threshold threshold-ratype is the SSB measurement threshold rsrp-threshold-2step, if the RSRP of the SSB determined in step 904 is less than the first threshold rsrp-threshold-2step, confirm The random access type is 4-step random access.
  • the first threshold threshold-ratype in step 905 and step 906 may also be a threshold value of the size of uplink data to be transmitted, the threshold value of the size of uplink data to be transmitted (first threshold) and corresponding step 905
  • step 906 refer to the related description in step 806.
  • the first threshold threshold-ratype in step 905 and step 906 may also be the threshold value of the time difference between the first random access transmission opportunity and the second random access transmission opportunity associated with the same downlink reference signal.
  • the time difference threshold (first threshold) and the corresponding step 905 and step 906, refer to the related description in step 806.
  • the first threshold threshold-ratype in step 905 and step 906 may also be a network status indicator value updated by the network device.
  • the network status indication value may be an indication value for the number of active users, resources, capacity and other configurations that support the two-step random access mode.
  • step 905 and step 906 may be described as: if the network status indication value If it is 1, the terminal device can choose the two-step random access method, otherwise the terminal device chooses the four-step random access method. It should be noted that there is no necessary correspondence between the value of the network status indication value and the random access type in this embodiment. The possible values and their corresponding random access types listed in this embodiment are for example. Sexual description.
  • the terminal device determines that the RSRP of all the received SSBs are less than the second threshold, it determines one SSB from all the received SSBs, and determines one based on the determined SSB and the association relationship between the SSB and the random access transmission opportunity Random access transmission opportunity, and determine the type of random access as 4-step random access. Then, go to step 909.
  • the terminal device only needs to select any SSB and simultaneously select 4-step random access.
  • the terminal device selects 2-step random access, and then sends a 2-step random access message on the random access transmission opportunity of the 2-step random access corresponding to the SSB determined in the above steps. That is, the description of step 706 is the same.
  • the terminal device selects the 4-step random access, and then sends the 4-step random access message on the random access transmission opportunity of the 4-step random access corresponding to the SSB determined in the foregoing steps. That is, the description of step 707 is the same.
  • the terminal device selects the SSB first, and then selects the random access type. In this way, each time the terminal device initiates random access, it can reselect the random access type according to the threshold configured in the configuration information. And SSB, which can improve the success rate of random access and avoid wasting system resources.
  • the selection of the random access type and the selection of the SSB can be implemented together.
  • the embodiment of the present application provides a random access method, as shown in FIG. 10, the method include:
  • the network device sends configuration information to the terminal device, where the configuration information includes a first threshold, a second threshold, and information for configuring an association relationship between an SSB and a random access transmission opportunity.
  • the configuration information may also include other random access parameters required by the terminal.
  • the first threshold may be the rsrp-threshold-2step mentioned in the above embodiment, which is used to determine whether the terminal device supports selecting 2-step random access.
  • the second threshold may be rsrp-threshold-SSB mentioned in the above embodiment.
  • the terminal device receives the configuration information sent by the network device. Then, go to step 103 or 104.
  • the terminal device initiates random access, if it is determined that among the received multiple SSBs, the RSRP of at least one SSB is greater than or equal to the first threshold, the terminal device selects 2-step random access, and in at least one SSB that meets the conditions Determine an SSB, and determine the random access transmission opportunity of 2-step random access associated with the selected SSB according to the association relationship between the selected SSB and the SSB and the random access transmission opportunity. Then, go to step 105.
  • the terminal device determines that the received RSRP value M rsrp of at least one SSB satisfies condition 1: M rsrp ⁇ rsrp-threshold-2step, indicating that the current network status is good, and the terminal device can choose a 2-step random connection with relatively high network demand. Enter, and choose one SSB from the SSB that meets Condition 1. Then, according to the association relationship, the random access transmission opportunity of the 2-step RACH associated with the selected SSB is determined.
  • the terminal device selects 4-step random access, and determines the SSB according to the relationship between the RSRP of at least one SSB and the second threshold, and according to the selected SSB, and SSB The association relationship with the random access transmission opportunity determines the random access transmission opportunity for 4-step random access. Then, go to step 106.
  • the terminal device determines that the received RSRP value M rsrp of at least one SSB does not meet the condition 1: M rsrp ⁇ rsrp-threshold-2step, indicating that the current network status is general, and the terminal device can choose a 4-step random connection with relatively low network requirements.
  • the terminal device determines whether the M rsrp of the RSRP of at least one SSB among the multiple SSBs meets the condition 2: M rsrp ⁇ rsrp-threshold-SSB. If the M rsrp of the RSRP of at least one SSB meets the condition 2, the terminal device can Choose one SSB among the SSBs that meet condition 2.
  • the terminal device can choose one SSB from the multiple SSBs. According to the association relationship between the SSB and the random access transmission opportunity, the random access transmission opportunity of the 4-step RACH associated with the optional SSB is determined.
  • the terminal device sends a 2-step random access message on the random access transmission opportunity. That is, the description of step 706 is the same.
  • the terminal device sends a 4-step random access message on the random access transmission opportunity. That is, the description of step 707 is the same.
  • the network device for the selection of random access type and SSB, is configured with two different thresholds. During the random access process, the terminal device can select the appropriate SSB and random access according to the threshold. Type, in other words, select the appropriate SSB and random access type according to the network status, which can improve the probability of success of random access.
  • the embodiment of the present application also provides a random access method. As shown in FIG. 11, the method may include:
  • the network device sends configuration information to the terminal device.
  • the configuration information includes a first threshold and information for configuring the association relationship between the SSB and the random access transmission opportunity.
  • the first threshold is used for the terminal device to select a random access type and Select one SSB from among the SSBs.
  • the configuration information may also include other random access parameters required by the terminal.
  • the terminal device receives the configuration information sent by the network device. Then, step 113 or step 114 is executed.
  • the terminal device initiates random access, if the RSRP of at least one of the received multiple SSBs is greater than or equal to the first threshold, the random access type is determined to be 2-step random access, and if the conditions are met One SSB is determined from at least one SSB, and the random access transmission opportunity for 2-step random access is determined according to the determined SSB and the association relationship between the SSB and the random access transmission opportunity. Then, go to step 115.
  • the random access type is determined to be 4-step random access, and one SSB is determined among the multiple SSBs.
  • the SSB and the association relationship determine the random access transmission opportunity for 4-step random access. Then, go to step 116.
  • the terminal device sends a 2-step random access message on the random access transmission opportunity. That is, the description of step 706 is the same.
  • the terminal device sends a 4-step random access message on the random access transmission opportunity. That is, the description of step 707 is the same.
  • the selection of the random access type and the selection of SSB are combined, and a threshold is used to determine the network state, thereby determining the random access type and SSB, which can improve the success of random access. Probability to avoid wasting system resources.
  • the selection of the random access type and the selection of the SSB can be completed when the terminal device selects the random access resource.
  • the terminal device may fail after a random access, such as due to random access response.
  • the time window (RAR time window) timeout or contention resolution timer (contention resolution timer) timeout causes this random access failure, the terminal device re-initiates a new random access, and the terminal device can reselect random access according to the pre-configured threshold. Access type and SSB.
  • different terminal devices may choose different types of random access. For example, some terminal devices choose 2-step random access and send message A, and some terminal devices choose 4-step random access and send message 1.
  • the network device will receive different types of random access messages sent by different terminal devices, detect and/or decode the random access messages, and send responses to the terminal devices based on the results of the detection or decoding of the random access messages news.
  • the network device side may predefine some identification methods for different types of random access response messages. There are several possible ways to distinguish different types of random access response messages:
  • the network device can distinguish different random access response messages through different search spaces (search spaces)/control resource sets (CORESET). Accordingly, for On the terminal device side, when receiving the random access response message, the terminal device can listen to the random access response message of 2-step random access or 4-step random access in different search spaces or CORESET, for example, the random access response message.
  • the incoming response message is a PDCCH
  • the PDCCH is used to schedule the response message for message A
  • message B or the PDCCH is used to schedule the response message for message 1, and message 2.
  • the network device can use different scrambling sequences-random access radio network temporary identifier (RA-RNTI) to distinguish different random access Response message. That is, the PDCCH for the 2-step random access response message and the PDCCH for the 4-step random access response message are scheduled to use different RA-RNTIs.
  • the RA-RNTI can be generated by the network equipment according to the time-frequency resource information where the random access transmission opportunity is located.
  • the resource allocation of 2-step random access and 4-step random access includes two methods: one is independent random access transmission opportunity (separate RO), the other is shared random access transmission opportunity (shared RO) . If it is an independent random access transmission opportunity, the time-frequency resource of the RO for 2-step random access is different from the time-frequency resource of the RO for 4-step random access. At this time, the RA- corresponding to the two types of random access RNTI is different. If it is a shared random access transmission opportunity, the time-frequency resource of the RO of 2-step random access is the same as the time-frequency resource of the RO of 4-step random access. At this time, the RA obtained according to the time-frequency resource of the RO -RNTI is the same.
  • the RA-RNTI generation formula can be modified.
  • the RA-RNTI generation formula for the 4-step random access response message in Rel-15NR is:
  • RA_RNTI 1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id
  • the RA-RNTI generation formula for the 2-step random access response message may be:
  • RA_RNTI_2step 1+1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id
  • RA_RNTI_2step is a scrambling sequence value calculated according to the PRACH time-frequency resource where the random access transmission opportunity configured by the network device to the terminal device is used for the 2-step random access response message
  • s_id represents the configuration of the network device to the terminal device
  • the first OFDM symbol of the PRACH time-frequency resource, t_id represents the first subframe index number in the system frame of the PUSCH time-frequency resource configured by the network device to the terminal device;
  • f_id represents the frequency of the PRACH time-frequency resource configured by the terminal device
  • ul_carrier_id represents the uplink carrier where the random access message A is transmitted, 0 represents the normal uplink NUL, and 1 represents the supplementary uplink SUL.
  • the number of time-frequency resources allocated to PRACH by the network device is 8 (the maximum number of frequency-domain resources allocated to the random access channel in the protocol is 8), and a system frame of time-frequency resources can be It is 10ms, and the maximum subcarrier interval can be 120KHz.
  • a system frame contains 80 subframes, and the length of each subframe can be 0.125ms.
  • a subframe can include 14 OFDM symbols in the time domain and 12 subcarriers in the frequency domain. The first OFDM symbol of the PRACH time-frequency resource is shown in FIG. 12.
  • the generated value of RA_RNTI_2step and the generated value of RA_RNTI will not transmit collision.
  • the RA-RNTI generation formula of the 2-step random access response message is increased by 1 compared with the RA-RNTI generation formula of the 4-step random access response message, which can achieve the purpose of distinguishing different random access response messages. , So that the terminal equipment can identify different types of random access response messages, and reduce the complexity of detecting the random access response messages for the terminal equipment.
  • each network element such as a terminal device, a network device, etc.
  • each network element includes a hardware structure and/or software module corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application can divide the terminal equipment, network equipment, etc. into functional modules according to the above method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules. It should be noted that the division of modules in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 13 shows a schematic structural diagram of an electronic device 13.
  • the electronic device may be the terminal device involved in the foregoing embodiment, or may be a chip.
  • the electronic device 13 includes: a receiving unit 1301, a processing unit 1302, and a sending unit 1303.
  • the receiving unit 1301 is used to support the electronic device to execute the process 702 in Fig. 7, the process 802 in Fig. 8, the process 902 in Fig. 9, the process 102 in Fig. 10, the process 112 in Fig. 11, the processing unit 1302 is used to support
  • the electronic device executes processes 602 and 603 in FIG. 6, processes 703, 704, and 705 in FIG. 7, processes 803, 804, 805, 806, 807, and 810 in FIG.
  • FIG. 14 shows a possible structural schematic diagram of an electronic device 14.
  • the electronic device may be the terminal device involved in the foregoing embodiment, or may be a chip.
  • the electronic device 14 includes a processing module 1402 and a communication module 1403.
  • the processing module 1402 has functions similar to the above-mentioned processing unit 1302.
  • the communication module 1403 includes the functions of the above-mentioned receiving unit 1301 and sending unit 1303.
  • the processing module 1402 is used to control and manage the actions of the electronic device 14.
  • the processing module 1402 is used to support
  • the electronic device 14 executes the processes 602 and 603 in FIG. 6, the processes 703, 704, and 705 in FIG. 7, the processes 803, 804, 805, 806, 807, 808, 809 in FIG.
  • the communication module 1403 is used to support communication between the electronic device and other network entities, for example, communication with the network device.
  • the electronic device 14 may also include a storage module 1401 for storing program codes and data of the electronic device 14.
  • the processing module 1402 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (digital signal processor, DSP), or an application-specific integrated circuit (application-specific integrated circuit). integrated circuit, ASIC), field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination that implements computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 1403 may be a transceiver, a transceiver circuit, or a communication interface.
  • the storage module 1401 may be a memory.
  • the processing module 1402 is a processor
  • the communication module 1403 is a transceiver
  • the storage module 1401 is a memory
  • the electronic device 14 involved in the embodiment of the present application may be the electronic device shown in FIG. 15.
  • the electronic device 15 includes a processor 1512, a transceiver 1513, a memory 1511, and a bus 1514.
  • the transceiver 1513, the processor 1512, and the memory 1511 are connected to each other through a bus 1514;
  • the bus 1514 may be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus Wait.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only a thick line is used in FIG. 15, but it does not mean that there is only one bus or one type of bus.
  • FIG. 16 shows a possible structural schematic diagram of an electronic device 16.
  • the electronic device may be the network device involved in the foregoing embodiment, or may be a chip.
  • the electronic device 16 includes a sending unit 1601 and a receiving unit 1602.
  • the sending unit 1601 is used to support the electronic device 16 to execute the process 601 in FIG. 6, the process 701 in FIG. 7, the process 801 in FIG. 8, the process 901 in FIG. 9, the process 101 in FIG. 10, the process in FIG. 11 111;
  • the receiving unit 1602 is used to execute the process 604 in FIG. 6, the processes 706 and 707 in FIG. 7, the processes 808, 809, and 811 in FIG. 8, the processes 908 and 909 in FIG.
  • FIG. 17 shows a possible structural schematic diagram of an electronic device 17.
  • the electronic device may be the network device involved in the foregoing embodiment, or may be a chip.
  • the electronic device 17 includes a communication module 1701 and a storage module 1702.
  • the communication module 1701 includes the functions of a sending unit 1601 and a receiving unit 1602.
  • the communication module 1701 is used to support communication between electronic devices and other network entities, such as communication between terminal devices.
  • the storage module 1702 is used to store the program code and data of the electronic device.
  • the communication module 1701 may be a transceiver, a transceiver circuit, or a communication interface.
  • the storage module 1702 may be a memory.
  • the electronic device 17 involved in the embodiment of the present application may be the electronic device shown in FIG. 18.
  • the electronic device 18 includes a transceiver 1813, a memory 1811, and a bus 1814.
  • the transceiver 1813 and the memory 1811 are connected to each other through a bus 1814;
  • the bus 1814 may be a PCI bus or an EISA bus.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of presentation, only one thick line is used to represent in FIG. 18, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer software instructions used for the above-mentioned Internet of Things server, which includes a program for executing the above-mentioned method embodiment.
  • the embodiment of the present application also provides a computer program product containing instructions, which when running on an electronic device, causes the electronic device to execute the method described in the foregoing method embodiment.
  • the steps of the method or algorithm described in conjunction with the disclosure of this application can be implemented in a hardware manner, or implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read only memory (ROM), erasable programmable read-only memory (erasable programmable ROM (EPROM), electrically erasable programmable read-only memory (ePROM, EEPROM), register, hard disk, portable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in the core network interface device.
  • the processor and the storage medium may also exist as discrete components in the core network interface device.
  • Computer readable media include computer storage media and communication media, where communication media includes any media that facilitates the transfer of computer programs from one place to another.
  • the storage medium may be any available medium that can be accessed by a general-purpose or special-purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种随机接入方法、终端设备和网络设备,涉及通信技术领域,能够实现终端设备如何在2-step RACH和4-step RACH两种随机接入类型中选择其中一种进行随机接入。其方法为:终端设备接收网络设备发送的配置信息,配置信息包括至少一个阈值,至少一个阈值包括第一阈值和第二阈值,第一阈值用于终端设备选择随机接入类型,第二阈值用于终端设备在多个下行参考信号中选择一个下行参考信号,第二阈值为参考信号的接收功率RSRP阈值;终端设备根据至少一个阈值确定随机接入类型以及一个下行参考信号;终端设备根据确定的下行参考信号确定一个随机接入传输机会;终端设备在随机接入传输机会上发送随机接入类型的消息。本申请实施例用于5G NR场景下的随机接入过程。

Description

一种随机接入方法、终端设备和网络设备 技术领域
本申请涉及通信技术领域,尤其涉及一种随机接入方法、终端设备和网络设备。
背景技术
随着未来超可靠低时延(ultra-reliable low latency,URLLC)以及机器通信(machine type communication,MTC)和物联网(internet of things,IoT)的迅速发展,稀疏、小包及低时延需求的数据传输也有了越来越多的应用场景,要满足这一类数据业务的传输,传统的4步随机接入信道(4-Step random access channel,4-Step RACH)过程由于终端设备与网络设备之间的多步交互引入的时延成为了技术瓶颈。随后,2-step RACH过程作为一种降低时延的主流方案被提出,其主要思想是将传统4-step RACH流程的4个步骤减少为2个步骤,从而加速了随机接入的过程。
目前的Rel-15NR标准协议中,终端设备发起4-Step RACH过程时,在随机接入过程初始化时,终端设备可以根据参考信号接收功率(reference signal received power,RSRP)来选择载波类型;在随机接入资源选择时,终端设备可以根据同步信号块(synchronization signal block,SSB)携带的测量值RSRP来选择同步信号块SSB。
随着通信技术的发展,越来越多的终端设备将会同时支持2-step RACH和4-step RACH两种随机接入方式,但是目前的标准协议没有对随机接入类型的选择进行规定,终端设备发起随机接入时,终端设备需要考虑如何在2-step RACH和4-step RACH两种随机接入方式中选择其中一种进行随机接入。
发明内容
本申请实施例提供一种随机接入方法和终端设备,能够实现终端设备如何在2-step RACH和4-step RACH两种随机接入类型中选择其中一种进行随机接入。
第一方面,提供一种随机接入的方法,包括:终端设备接收网络设备发送的配置信息,配置信息包括至少一个阈值,至少一个阈值包括第一阈值和第二阈值,其中,第一阈值用于终端设备选择随机接入类型,第二阈值用于终端设备在多个下行参考信号中选择一个下行参考信号,多个下行参考信号中的每个下行参考信号与一个或多个随机接入传输机会关联,第二阈值为参考信号接收功率RSRP阈值;终端设备根据至少一个阈值确定随机接入类型以及一个下行参考信号;终端设备根据确定的下行参考信号确定一个随机接入传输机会;终端设备在随机接入传输机会上发送随机接入类型的消息。其中,下行参考信号可以是任何下行参考信号,例如SSB或者信道状态信息参考信号(channel state information-reference signal,CSI-RS)。
其中,随机接入类型可以包括4步随机接入和2步随机接入。以4步随机接入和2步随机接入对比来说,在无线传输业务中,4步随机接入时,终端设备在preamble传输成功时,向网络设备发送Msg3,在Msg3进行上行数据传输时,可以支持较大的数据包传输。终端设备完成4步随机接入的传输时延较高。而2步随机接入,终端设备完成前导序列的传输后,可以直接进行上行数据的传输,无需等待网络设备对终端设 备发送的前导序列的响应消息,为了保证数据传输的可靠性,MsgA中携带的业务数据包较小,终端设备完成2步随机接入的传输时延较低。因此,可以根据当前的网络状态确定选择哪种随机接入类型,该网络状态可以通过阈值比较大小进行判断。因此,在本申请中,终端设备可以通过配置阈值的方式使得终端设备可以根据网络状态切换随机接入类型,使得随机接入方式更灵活,提升了随机接入的成功率和效率。
在一种可能的设计中,第一阈值为如下阈值中的至少一种:RSRP阈值、待传输上行数据大小的阈值以及同一个下行参考信号所关联第一随机接入传输机会和第二随机接入传输机会的时间差的阈值;第一随机接入传输机会和第二随机接入传输机会对应于不同的随机接入类型。例如可以根据信道测量值与RSRP阈值进行比较确定随机接入类型;或者根据PUSCH的数据包大小和待传输上行数据大小的阈值进行比较确定随机接入类型;或者根据终端设备选择的SSB所关联的2步随机接入的传输机会对应的参考时间点,与该SSB关联的4步随机接入的传输机会对应的参考时间点的时间差,与时间差的阈值进行比较,确定随机接入类型。第一阈值还可以为网络状态指示值,该网络状态指示值可以为用于指示网络的活跃用户数的指示值、资源或者容量等配置的指示值。例如活跃用户数的指示值指示活跃用户数较高时,终端设备可以选择2步随机接入,否则可以选择4步随机接入。在一些实施例中,网络状态指示值还可以为直接指示终端设备选用哪种随机接入类型的指示值,例如,网络设备确定可以选用2步随机接入时,将网络状态指示值置为1,确定可以选用4步随机接入类型时,将网络状态指示值置为0。
在一种可能的设计中,终端设备根据至少一个阈值确定随机接入类型包括:终端设备根据信道测量值以及第一阈值确定随机接入类型;其中,信道测量值为根据多个下行参考信号的RSRP得到的测量值。信道测量值可以是衡量小区质量的RSRP值,可以反映出当前的小区信道质量,以便终端设备根据信道测量值选择随机接入类型。
在一种可能的设计中,终端设备根据至少一个阈值确定随机接入类型以及一个下行参考信号包括:终端设备确定信道测量值大于或等于第一阈值(rsrp-threshold-ratype)时,确定随机接入的方式为2步随机接入;终端设备确定接收到的至少一个下行参考信号的测量值大于或等于第二阈值(2step-rsrp-threshold-SSB)时,从至少一个下行参考信号中确定一个下行参考信号。终端设备确定接收到的多个下行参考信号的测量值小于第二阈值(2step-rsrp-threshold-SSB)时,终端设备从接收到的多个下行参考信号中任选一个。即,当信道质量较好时,可以选择传输可靠性需求更高的2步随机接入,可使得终端设备完成随机接入的传输时延低。
在一种可能的设计中,终端设备根据至少一个阈值确定随机接入的类型以及下行参考信号包括:终端设备确定信道测量值小于第一阈值(rsrp-threshold-ratype)时,确定随机接入的方式为4步随机接入。终端设备确定接收到的至少一个下行参考信号的测量值大于或等于第二阈值(4step-rsrp-threshold-SSB)时,从至少一个下行参考信号中确定一个下行参考信号。终端设备确定接收到的多个下行参考信号的测量值小于第二阈值(4step-rsrp-threshold-SSB)时,终端设备从接收到的多个下行参考信号中任选一个。即,信道质量一般时,可选择传输时延较高的的4步随机接入,保证传输的可靠性。其中,用于SSB选择的第二阈值4step-rsrp-threshold-SSB的值与 2step-rsrp-threshold-SSB的值可以相同,或者不同。
在一种可能的设计中,终端设备根据至少一个阈值确定随机接入类型以及下行参考信号包括:终端设备确定在所接收到的多个下行参考信号中存在至少一个下行参考信号的RSRP大于或等于第二阈值(rsrp-threshold-SSB)时,从至少一个下行参考信号中确定一个下行参考信号;若确定的下行参考信号的测量值大于或等于第一阈值(threshold-ratype),确定随机接入类型为2步随机接入;若确定的下行参考信号的测量值小于第一阈值(threshold-ratype),确定随机接入类型为4步随机接入。其中,确定的下行参考信号的测量值的类型与所述第一阈值的类型相同。这种设计中,终端设备先做SSB的选择,再进行随机接入类型的选择,也可以达到通过阈值比较,使得终端设备选择更符合当前网络状况的随机接入类型和下行参考信号。
在一种可能的设计中,终端设备根据至少一个阈值确定随机接入类型以及下行参考信号包括:终端设备确定接收到的多个下行参考信号的RSRP均小于第二阈值(rsrp-threshold-SSB)时,从接收到的多个下行参考信号中确定一个下行参考信号,并确定随机接入的类型为4步随机接入。
在一种可能的设计中,第一阈值(rsrp-threshold-2step)大于或等于第二阈值(rsrp-thresholdSSB);终端设备根据至少一个阈值确定随机接入类型以及下行参考信号包括:在终端设备的信道测量值大于或者等于第一阈值(rsrp-threshold-2step),且至少一个下行参考信号的RSRP大于或等于第一阈值(rsrp-threshold-2step)时,从至少一个下行参考信号中确定一个下行参考信号;确定的下行参考信号的测量值大于或等于第三阈值(threshold-ratype)时,确定随机接入的类型为2步随机接入;确定的下行参考信号的测量值小于第三阈值(threshold-ratype)时,确定随机接入的类型为4步随机接入。其中,确定的下行参考信号的测量值的类型与第一阈值的类型相同这种设计也是先执行随机接入类型的选择,后进行SSB的选择,对现有协议修改较小。同样,通过阈值比较,可以使得终端设备选择更符合当前网络状况的随机接入类型和下行参考信号,随机接入类型的选择更加灵活。
在一种可能的设计中,第一阈值(rsrp-threshold-2step)小于第二阈值(rsrp-thresholdSSB);终端设备根据至少一个阈值确定随机接入类型以及下行参考信号包括:终端设备确定信道测量值大于或者等于第一阈值(rsrp-threshold-2step),且至少一个下行参考信号的RSRP大于或等于第二阈值(rsrp-thresholdSSB)时,从至少一个下行参考信号中选择一个下行参考信号,并确定随机接入的方式为2步随机接入;终端设备确定信道质量的测量值大于或者等于第一阈值(rsrp-threshold-2step),且接收到的多个下行参考信号的RSRP均小于第二阈值(rsrp-thresholdSSB),在所有的满足大于或者等于第一阈值(rsrp-threshold-2step)的下行参考信号中任意选择一个下行参考信号;若选择的下行参考信号的测量值大于或者等于第三阈值(threshold-ratype),则确定随机接入类型为2步随机接入。选择的下行参考信号的测量值的类型与第一阈值的类型相同。其中,第三阈值也可以为待传输的上行数据大小阈值,也可以是网络状态指示值,也可以是时间差阈值等。本申请不做限定。
在一种可能的设计中,终端设备根据至少一个阈值确定随机接入类型以及下行参考信号还包括:终端设备确定信道质量的测量值大于或者等于第一阈值 (rsrp-threshold-2step),且接收到的多个下行参考信号的RSRP均小于第一阈值(rsrp-threshold-2step),从多个下行参考信号中任意选择一个下行参考信号,并确定随机接入类型为4步随机接入。
在一种可能的设计中,终端设备根据所述至少一个阈值确定随机接入类型以及所述下行参考信号包括:终端设备确定信道测量值小于第一阈值时,确定随机接入类型为4步随机接入;终端设备确定至少一个下行参考信号的RSRP大于或等于第二阈值时,从至少一个下行参考信号中确定一个下行参考信号;终端设备确定接收到的多个下行参考信号的RSRP均小于第二阈值时,从多个下行参考信号中任意选择一个下行参考信号。
在一种可能的设计中,所述终端设备根据所述至少一个阈值确定所述随机接入类型以及所述下行参考信号包括:所述终端设备确定至少一个下行参考信号的RSRP大于或等于第一阈值(rsrp-thresholdSSB-2step)时,确定所述随机接入的类型为2步随机接入,并在所述至少一个下行参考信号中任选一个下行参考信号;所述终端设备确定所接收到的所述多个下行参考信号的RSRP均小于所述第一阈值(rsrp-thresholdSSB-2step)时,确定所述随机接入的类型为4步随机接入;所述终端设备确定至少一个下行参考信号的测量值大于或等于第二阈值(rsrp-thresholdSSB)时,从所述至少一个下行参考信号中任选一个下行参考信号,或者所述终端设备确定所有下行参考信号的测量值小于所述第二阈值(rsrp-thresholdSSB)时,从所有下行参考信号中任选一个下行参考信号。可以看出,这种设计中,终端设备将随机接入类型的选择和下行参考信号的选择结合在一起实施,通过阈值比较确定当前网络状态下的随机接入类型和下行参考信号,可提升随机接入成功概率,避免系统资源浪费。
第二方面,提供一种随机接方法,包括:终端设备接收网络设备发送的配置信息,配置信息包括第一阈值,第一阈值用于终端设备选择随机接入类型,以及用于在多个下行参考信号中选择一个下行参考信号,多个下行参考信号中的每个下行参考信号与一个或多个随机接入传输机会关联;终端设备根据第一阈值确定随机接入类型以及一个下行参考信号;终端设备根据确定的下行参考信号确定一个随机接入传输机会;终端设备在随机接入传输机会上发送随机接入类型的消息。
在一种可能的设计中,所述终端设备根据第一阈值确定所述随机接入类型以及所述下行参考信号包括:所述终端设备确定至少一个下行参考信号的测量值大于或等于所述第一阈值(rsrp-thresholdSSB-2step)时,确定所述随机接入的类型为2步随机接入,并在所述至少一个下行参考信号中任选一个下行参考信号;所述终端设备确定所有下行参考信号的测量值小于所述第一阈值(rsrp-thresholdSSB-2step)时,确定所述随机接入的类型为4步随机接入,并在所有下行参考信号中任选一个下行参考信号。这种设计是通过一个阈值比较的方式选择随机接入类型和下行参考信号,过程更加简洁。
第三方面,提供一种随机接入的方法,包括:网络设备向终端设备发送配置信息,配置信息包括至少一个阈值,至少一个阈值包括第一阈值和第二阈值,其中,第一阈值用于终端设备选择随机接入类型,第二阈值用于终端设备在多个参考信号中选择一个参考信号,多个参考信号中的每个参考信号与一个或多个随机接入传输机会关联, 第二阈值为参考信号的接收功率RSRP阈值;网络设备接收终端根据配置信息发送的随机接入类型的消息。第二方面的有益效果可以参见第一方面,此处不再赘述。
在一种可能的设计中,第一阈值为如下阈值中的至少一种:RSRP阈值、待传输上行数据大小的阈值以及同一个参考信号所关联第一随机接入传输机会和第二随机接入传输机会的时间差的阈值;第一随机接入传输机会和第二随机接入传输机会对应于不同的随机接入类型。
第四方面,提供一种终端设备,终端设备包括:收发器,用于接收网络设备发送的配置信息,配置信息包括至少一个阈值,至少一个阈值包括第一阈值和第二阈值,其中,第一阈值用于终端设备选择随机接入类型,第二阈值用于终端设备在多个下行参考信号中选择一个下行参考信号,多个下行参考信号中的每个下行参考信号与一个或多个随机接入传输机会关联,第二阈值为参考信号的接收功率RSRP阈值;处理器,用于根据至少一个阈值确定随机接入类型以及一个下行参考信号;处理器,还用于根据确定的下行参考信号确定一个随机接入传输机会;收发器,还用于在随机接入传输机会上发送随机接入类型的消息。
在一种可能的设计中,第一阈值为如下阈值中的至少一种:RSRP阈值、待传输上行数据大小的阈值以及同一个下行参考信号所关联第一随机接入传输机会和第二随机接入传输机会的时间差的阈值;第一随机接入传输机会和第二随机接入传输机会对应于不同的随机接入类型。
在一种可能的设计中,处理器用于:根据信道测量值以及第一阈值确定随机接入类型;其中,信道测量值为根据多个参考信号的RSRP得到的测量值。
在一种可能的设计中,处理器用于:确定信道测量值大于或等于第一阈值时,确定随机接入的方式为2步随机接入;确定接收到的至少一个下行参考信号的测量值大于或等于第二阈值时,从至少一个下行参考信号中确定一个下行参考信号。确定接收到的多个下行参考信号的测量值小于第二阈值时,从接收到的多个下行参考信号中任选一个。
在一种可能的设计中,处理器用于:确定信道测量值小于第一阈值时,确定随机接入的方式为4步随机接入。确定接收到的至少一个下行参考信号的测量值大于或等于第二阈值时,从至少一个下行参考信号中确定一个下行参考信号。确定接收到的多个下行参考信号的测量值小于第二阈值时,终端设备从接收到的多个下行参考信号中任选一个。
在一种可能的设计中,处理器用于:确定在所接收到的多个下行参考信号中存在至少一个下行参考信号的RSRP大于或等于第二阈值时,从至少一个下行参考信号中确定一个下行参考信号;若确定的下行参考信号的测量值大于或等于第一阈值,确定随机接入类型为2步随机接入;若确定的下行参考信号的测量值小于第一阈值,确定随机接入类型为4步随机接入。其中,确定的下行参考信号的测量值的类型与第一阈值的类型相同。
在一种可能的设计中,处理器用于:确定接收到的多个下行参考信号的RSRP均小于第二阈值时,从接收到的多个下行参考信号中确定一个下行参考信号,并确定随机接入的类型为4步随机接入。
在一种可能的设计中,第一阈值大于或等于第二阈值;处理器用于:在终端设备的信道测量值大于或者等于第一阈值,且至少一个下行参考信号的RSRP大于或等于第一阈值时,从至少一个下行参考信号中确定一个下行参考信号;确定的下行参考信号的测量值大于或等于第三阈值时,确定随机接入的类型为2步随机接入;确定的下行参考信号的测量值小于第三阈值时,确定随机接入的类型为4步随机接入。确定的下行参考信号的测量值的类型与第一阈值的类型相同。
在一种可能的设计中,第一阈值小于第二阈值;处理器用于:确定信道测量值大于或者等于第一阈值,且至少一个下行参考信号的RSRP大于或等于第二阈值时,从至少一个下行参考信号中选择一个下行参考信号,并确定随机接入的方式为2步随机接入;确定信道质量的测量值大于或者等于第一阈值,且接收到的多个下行参考信号的RSRP均小于第二阈值,在所有的满足大于或者等于第一阈值的下行参考信号中任意选择一个下行参考信号;若选择的下行参考信号的测量值大于或者等于第三阈值,则确定随机接入类型为2步随机接入。中,第三阈值也可以为待传输的上行数据大小阈值,也可以是网络状态指示值,也可以是时间差阈值等。本申请不做限定。选择的下行参考信号的测量值的类型与第一阈值的类型相同。
在一种可能的设计中,处理器用于:确定信道质量的测量值大于或者等于第一阈值,且接收到的多个下行参考信号的RSRP均小于第一阈值,从多个下行参考信号中任意选择一个下行参考信号,并确定随机接入类型为4步随机接入。
在一种可能的设计中,处理器用于:确定信道测量值小于所述第一阈值时,确定所述随机接入类型为4步随机接入;确定至少一个下行参考信号的RSRP大于或等于所述第二阈值时,从所述至少一个下行参考信号中确定一个下行参考信号;确定接收到的多个下行参考信号的RSRP均小于所述第二阈值时,从所述多个下行参考信号中任意选择一个下行参考信号。在一种可能的设计中,处理器用于:确定至少一个下行参考信号的RSRP大于或等于第一阈值时,确定所述随机接入的类型为2步随机接入,并在所述至少一个下行参考信号中任选一个下行参考信号;确定所接收到的所述多个下行参考信号的RSRP均小于所述第一阈值时,确定所述随机接入的类型为4步随机接入;确定至少一个下行参考信号的测量值大于或等于第二阈值时,从所述至少一个下行参考信号中任选一个下行参考信号,或者确定所有下行参考信号的测量值小于所述第二阈值时,从所有下行参考信号中任选一个下行参考信号。
在一种可能的设计中,处理器用于:确定至少一个下行参考信号的测量值大于或等于所述第一阈值时,确定所述随机接入的类型为2步随机接入,并在所述至少一个下行参考信号中任选一个下行参考信号;确定所有下行参考信号的测量值小于所述第一阈值时,确定所述随机接入的类型为4步随机接入,并在所有下行参考信号中任选一个下行参考信号。
第五方面,提供一种网络设备,包括收发器和存储器,存储器用于存储程序和/或数据:收发器,用于向终端设备发送配置信息,配置信息包括至少一个阈值,至少一个阈值包括第一阈值和第二阈值,其中,第一阈值用于终端设备选择随机接入类型,第二阈值用于终端设备在多个参考信号中选择一个参考信号,多个参考信号中的每个参考信号与一个或多个随机接入传输机会关联,第二阈值为参考信号的接收功率RSRP 阈值;收发器,还用于接收终端根据配置信息发送的随机接入类型的消息。
在一种可能的设计中,第一阈值为如下阈值中的至少一种:RSRP阈值、待传输上行数据大小的阈值以及同一个参考信号所关联第一随机接入传输机会和第二随机接入传输机会的时间差的阈值;第一随机接入传输机会和第二随机接入传输机会对应于不同的随机接入类型。
第五方面,本申请实施例提供了一种计算机可读存储介质,用于储存计算机软件指令,其包含用于执行上述第一方面、第二方面以及第三方面中任一方面所设计的程序。
第六方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在电子设备上运行时,使得计算机电子设备执行上述第一方面、第二方面和第三方面中任一方面所述的方法。
附图说明
图1为一种4步随机接入的流程示意图;
图2为一种2步随机接入的流程示意图;
图3为本申请实施例提供的一种网络架构示意图;
图4为本申请实施例提供的一种网络设备的结构示意图;
图5为本申请实施例提供的一种终端设备的结构示意图;
图6为本申请实施例提供的一种随机接入的方法流程图;
图7为本申请实施例提供的一种随机接入的方法流程图;
图8为本申请实施例提供的一种随机接入的方法流程图;
图9为本申请实施例提供的一种随机接入的方法流程图;
图10为本申请实施例提供的一种随机接入的方法流程图;
图11为本申请实施例提供的一种随机接入的方法流程图;
图12为本申请实施例提供的一种根据RO计算RA_RNTI的示意图;
图13为本申请实施例提供的一种电子设备的结构示意图;
图14为本申请实施例提供的一种电子设备的结构示意图;
图15为本申请实施例提供的一种电子设备的结构示意图;
图16为本申请实施例提供的一种电子设备的结构示意图;
图17为本申请实施例提供的一种电子设备的结构示意图;
图18为本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为了便于理解,示例地给出了部分与本申请相关概念的说明以供参考。如下所示:
4步随机接入过程:如图1所示,包括4步,1)终端设备向网络设备发送消息1(message 1,msg1),消息1中携带随机接入的前导序列,具体地,终端设备可以随机选择一个preamble,也可以称为随机接入前导序列(random access preamble),并在物理随机接入信道(physical random access channel,PRACH)上发送该前导序列;2)网络设备向终端设备发送随机接入响应(random access response,RAR)消息,也可以称为消息2(message 2,msg2)。即网络设备在检测到有preamble发送后,下行发送RAR消息,RAR消息中至少应包含以下信息:网络设备收到的preamble的编号、 定时调整信息、为该终端设备分配的上行资源位置指示信息,以及临时分配的小区无线网络临时标识(temporary cell radio network temporary identifier,TC-RNTI)等;3)终端设备向网络设备发送承载于物理上行共享信道(physical uplink shared channel,PUSCH)的上行数据,也可以称为消息3(message 3,msg3),即终端设备在收到RAR消息后,根据其RAR消息中的指示,在分配的上行资源上发送上行消息;4)网络设备通过物理下行共享信道(Physical Downlink Shared Channel,PDSCH)向终端设备发送竞争解决消息(contention resolution message,CRM),也可以称为消息4(message 4,msg4),当终端设备接收到消息4,并且所接收到的CRM的竞争解决标识(contention resolution identity,CRID)与终端传输的标识信息匹配,终端设备可以认为随机接入成功。
2步随机接入过程:如图2所示,包括第1步:终端设备向网络设备发送消息A(message A,msgA),消息A包括PRACH和PUSCH,PRACH中承载有preamble;第2步:终端设备接收网络设备对于消息A的响应,即消息B(message B,msgB),消息B的响应内容包括针对preamble的响应和针对PUSCH的响应中的至少一种。例如,一种实施例中,终端设备发送的消息A中包括4-step RACH中的消息1和消息3的内容。网络设备向终端设备发送的消息B包括4-step RACH中的消息2和消息4的内容。
以4步随机接入和2步随机接入对比来说,在无线传输业务中,4步随机接入时,终端设备在preamble传输成功时,向网络设备发送Msg3,在Msg3进行上行数据传输时,可以支持较大的数据包传输。终端设备完成4步随机接入的传输时延较高。而2步随机接入,终端设备完成前导序列的传输后,可以直接进行上行数据的传输,无需等待网络设备对终端设备发送的前导序列的响应消息,为了保证数据传输的可靠性,MsgA中携带的业务数据包较小,终端设备完成2步随机接入的传输时延较低。
PUSCH:物理上行共享信道,用来承载上行业务数据。在随机接入过程中,终端设备可以根据网络设备指示的信息在PUSCH上发送无线资源控制(Radio Resource Control,RRC)连接请求消息,用来向网络请求进行RRC连接的建立。在本申请方案中,发送PUSCH,发送上行数据表述为相同的含义,即终端设备在预定的PUSCH资源上,发送用于随机接入的上行数据,该上行数据中可能包含用于随机接入连接建立的请求等RRC信息。该PUSCH资源所承载的上行数据与PRACH资源所承载的前导序列有对应关系。
PRACH:物理随机接入信道,用来承载终端设备开始发起数据传输前,向网络设备发送的前导序列。例如,终端设备可以根据网络设备指示的信息在PRACH上发送前导序列,用于网络设备对随机接入请求的识别和上行同步的调整测量。在本申请方案中,发送PRACH,发送前导序列,或者发送preamble表述为相同的含义,即终端设备在预定的PRACH的资源上发送用于随机接入的前导序列。
SSB:在5G NR中,主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和物理广播信道(physical broadcast channel,PBCH)共同构成一个SSB。SSB在时域上可以占用4个正交频分复用技术(orthogonal frequency division multiplexing,OFDM)符号,在频域上可以占用240个 子载波,也可以说占用20个物理资源块(physical resource block,PRB),一个PRB在频域上占用14个子载波。与SSB部分或完全重叠的任何公共资源块可被视为被占用,并且不被用于PDSCH或PDCCH传输。
参考信号接收功率(reference signal receiving power,RSRP):是网络中可以代表无线信号强度的关键参数以及物理层测量需求之一,是在某个符号内承载参考信号的所有资源粒子(resource element,RE)上接收到的信号功率的平均值。
本申请实施例可以应用于5G NR场景下的随机接入过程,也可以适用于其他通信系统中的随机接入场景。
如图3所示,本申请的网络架构可以包括网络设备100和终端设备200。
网络设备100可以是能和终端设备通信的设备。例如网络设备100可以为基站,基站可以是中继站或接入点等。基站可以是LTE中的eNB或eNodeB(evolutional NodeB)。基站100还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。基站100还可以是5G网络中的网络设备或未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的网络设备;还可以是可穿戴设备或车载设备等。
终端设备200可以是用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进的PLMN网络中的终端等。
在一个示例中,网络设备100可以通过如图4所示的结构实现。图4示出了一种基站的通用硬件架构。图4所示的基站可以包括室内基带处理单元(building baseband unit,BBU)和远端射频模块(remote radio unit,RRU),RRU和天馈系统(即天线)连接,BBU和RRU可以根据需要拆开使用。应注意,在具体实现过程中,基站100还可以采用其他通用硬件架构,而并非仅仅局限于图4所示的通用硬件架构。
在一个示例中,终端设备200可以通过如图5所示的结构实现。以终端设备200为手机为例,图5示出了手机的通用硬件架构进行说明。图5所示的手机可以包括:射频(radio Frequency,RF)电路110、存储器120、其他输入设备130、显示屏140、传感器150、音频电路160、I/O子系统170、处理器180、以及电源190等部件。本领域技术人员可以理解,图4所示的手机的结构并不构成对手机的限定,可以包括比图示更多或者更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领域技术人员可以理解显示屏140属于用户界面(user Interface,UI),显示屏140可以包括显示面板141和触摸面板142。且手机可以包括比图示更多或者更少的部件。尽管未示出,手机还可以包括摄像头、蓝牙模块等功能模块或器件,在此不再赘述。
进一步地,处理器180分别与RF电路110、存储器120、音频电路160、I/O子系统170、以及电源190均连接。I/O子系统170分别与其他输入设备130、显示屏140、 传感器150均连接。其中,RF电路110可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器180处理。存储器120可用于存储软件程序以及模块。处理器180通过运行存储在存储器120的软件程序以及模块,从而执行手机的各种功能应用以及数据处理。其他输入设备130可用于接收输入的数字或字符信息,以及产生与手机的用户设置以及功能控制有关的键信号输入。显示屏140可用于显示由用户输入的信息或提供给用户的信息以及手机的各种菜单,还可以接受用户输入。传感器150可以为光传感器、运动传感器或者其他传感器。音频电路160可提供用户与手机之间的音频接口。I/O子系统170用来控制输入输出的外部设备,外部设备可以包括其他设备输入控制器、传感器控制器、显示控制器。处理器180是手机200的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在存储器120内的软件程序和/或模块,以及调用存储在存储器120内的数据,执行手机200的各种功能和处理数据,从而对手机进行整体监控。电源190(比如电池)用于给上述各个部件供电,优选的,电源可以通过电源管理系统与处理器180逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能。
在本申请实施例中,RF电路110可以用于接收网络设备发送的配置信息,配置信息中包括至少一个阈值;处理器180可以用于根据配置信息确定随机接入的类型以及参考信号,并根据确定的参考信号确定一个随机接入传输机会;RF电路110还可以用于在随机接入传输机会上发送随机接入类型的消息。
在本申请实施例中,存储器120可以用于存储上述配置信息。
以下实施例中的方法均可以在具有上述硬件结构的网络设备100和终端设备200中实现。以下实施例中以上述网络设备和终端设备为例,对本申请实施例的方法进行说明。
应用上述网络架构,当终端设备同时支持2步随机接入和4步随机接入两种随机接入方式,终端设备发起随机接入时,终端设备需要考虑如何在2步随机接入和4步随机接入两种随机接入方式中选择其中一种。另外,当终端设备在随机接入过程中,因为当前随机接入过程失败,需要重新发起新的随机接入时,终端设备也需要考虑是否要重新在2步随机接入和4步随机接入两种随机接入方式中选择其中一种。本申请用于说明当终端设备同时支持2步随机接入和4步随机接入两种随机接入方式时,终端设备在何时,采用哪一种随机接入方式。
针对该问题,本申请实施例中,网络设备可以通过配置至少一个阈值来确定随机接入类型和与传输机会关联的下行参考信号,因此,本申请实施例提供一种随机接入的方法,如图6所示,包括:
601、网络设备向终端设备发送配置信息,该配置信息包括至少一个阈值,至少一个阈值包括第一阈值和第二阈值,其中,第一阈值用于终端设备选择随机接入类型,第二阈值用于终端设备在多个下行参考信号中选择一个下行参考信号,多个下行参考信号中的每个下行参考信号与一个或多个随机接入传输机会关联,第二阈值为RSRP阈值。该配置信息还可以包括终端所需的其他随机接入参数。由于2步随机接入将4步随机接入中的4个传输步骤简化为2个步骤传输,因此,在2步随机接入过程中对网络状态的要求相对4步随机接入来说要更高些。因此,本申请可以通过向终端设备 下发阈值的方式,促使终端设备根据阈值选择2步随机接入或者4步随机接入,以及根据阈值选择传输上行数据时用到的下行参考信号。
在本申请实施例中,配置信息可以包括在网络设备周期性发送的系统消息中。
在本申请实施例中,该随机接入类型可以为上述提及的2步随机接入或者4步随机接入。
在本申请实施例中,第一阈值可以为如下阈值中的至少一种:RSRP阈值、待传输上行数据大小的阈值、网络状态指示值以及同一个下行参考信号所关联第一随机接入传输机会和第二随机接入传输机会的时间差的阈值;第一随机接入传输机会和第二随机接入传输机会对应于不同的随机接入类型。当然,第一阈值也可以为其它参数的阈值,本申请不做限定。第二阈值可以为用于选择下行参考信号时,下行参考信号的RSRP阈值。
在本申请实施例中,在多个下行参考信号中选择一个下行参考信号时,该多个下行参考信号可以是网络设备发送的下行参考信号,选择的一个下行参考信号可以是在网络设备发送的多个下行参考信号中选择的用于确定上行传输时频资源(例如,随机接入传输机会)的下行参考信号。
在本申请实施例中,下行参考信号可以是任何下行参考信号,例如同步信号块或者信道状态信息参考信号。本申请实施例以下行参考信号为SSB为例进行说明。当下行参考信号为SSB时,第二阈值可以是SSB的RSRP阈值。
在该配置信息中,还可以包括用于配置SSB与上行传输的随机接入传输机会(PRACH occasion,RO)的关联关系的信息,当终端设备选择出了SSB时,就可以根据该关联关系确定出RO,以在RO上向网络设备发送随机接入消息,即发送PRACH。
602、终端设备根据网络设备发送的配置信息中的至少一个阈值确定随机接入类型以及一个下行参考信号。
在本申请实施例中,在随机接入过程中,终端设备可以将随机接入类型的选择和SSB的选择结合在一起确定随机接入类型以及SSB;也可以是,在随机接入过程中,终端设备先进行SSB的选择,然后再进行随机接入类型的选择;也可以是,在随机接入过程中,终端设备先执行随机接入类型的选择,然后执行SSB的选择。
603、终端设备根据确定的下行参考信号确定一个随机接入传输机会。
604、终端设备在随机接入传输机会上发送随机接入类型的随机接入消息。
如果步骤602中确定出的随机接入类型为2步随机接入,终端设备在支持2步随机接入的随机接入传输机会上和与所述随机接入传输机会对应的上行数据传输机会上分别发送PRACH和PUSCH;如果步骤602中确定出的随机接入类型为4步随机接入,终端设备在支持4步随机接入的随机接入传输机会上发送PRACH。
在本申请实施例中,根据网络设备配置的阈值,使得终端设备可以实现随机接入类型的灵活选择,提升了随机接入的成功率和效率。以终端设备先进行随机接入类型的选择,后执行SSB的选择进行阐述。本申请实施例提供一种随机接入的方法,如图7所示,该方法包括:
701、网络设备向终端设备发送配置信息,该配置信息包括第一阈值、第二阈值以及用于配置SSB与随机接入传输机会的关联关系的信息。该配置信息还可以包括终端 所需的其他随机接入参数。
在本申请实施例中,第一阈值用于选择随机接入类型的阈值,当第一阈值的类型为RSRP阈值时,本申请实施例将第一阈值记为rsrp-threshold-ratype,第二阈值用于选择SSB的阈值,本申请实施例将第二阈值记为rsrp-threshold-SSB。
其中,当终端确认随机接入类型为2步随机接入或者4步随机接入后,第二阈值对于2步随机接入或者4步随机接入可以是相同的,也可以是不同的。
示例性的,网络设备配置了一个rsrp-threshold-SSB,对于终端设备确定2步随机接入时执行SSB的选择和确定4步随机接入时执行SSB的选择都适用;或者,网络设备分别配置了用于2步随机接入时执行SSB选择的阈值2step-rsrp-threshold-SSB以及用于4步随机接入时执行SSB选择的阈值4step-rsrp-threshold-SSB,如果网络设备未配置2step-rsrp-threshold-SSB,终端设备可以使用4step-rsrp-threshold-SSB来选择SSB;或者,网络设备配置了用于4步随机接入时SSB选择的阈值4step-rsrp-threshold-SSB,和2步随机接入相对于4步随机接入时SSB选择的阈值4step-rsrp-threshold-SSB的偏移值△ 2step,即网络设备配置了4step-rsrp-threshold-SSB,同时配置了2step-rsrp-threshold-SSB相对于4step-rsrp-threshold-SSB的偏移值△ 2step,这样,2step-rsrp-threshold-SSB的值可以为4step-rsrp-threshold-SSB+△ 2step
需要说明的是,本申请实施例中,阈值参数的名称:rsrp-threshold-ratype、rsrp-threshold-SSB、2step-rsrp-threshold-SSB、4step-rsrp-threshold-SSB、rsrp-threshold-2step、threshold-ratype以及rsrp-thresholdSSB-2step只是用于标记不同阈值,不构成对本申请实施例中阈值名称的限定。
702、终端设备接收网络设备发送的配置信息。
703、终端设备根据信道测量值以及第一阈值确定随机接入类型。
终端设备发起进行随机接入时,先执行随机接入过程的初始化,在随机接入初始化的过程中,终端设备根据RSRP来选择载波类型,具体可以是根据下行参考信号SSB的RSRP值与网络配置的用于补充上行链路(supplementary UP link,SUL)选择的阈值rsrp-threshold-SSB-SUL来选择随机接入过程的载波链路。举例来说,如果SSB的RSRP值小于或者等于阈值rsrp-threshold-SSB-SUL,终端设备选择SUL作为随机接入过程的载波链路;如果SSB的RSRP值大于阈值rsrp-threshold-SSB-SUL,终端设备选择常规上行链路(normal UP link,NUL)作为随机接入过程的载波链路。
终端设备可以在随机接入初始化过程中确定随机接入类型。在随机接入初始化过程中,如果终端设备接收到网络设备发送的随机接入类型的指示信息,那么终端设备可以直接根据该指示信息确定随机接入类型,然后执行步骤704。该随机接入类型的指示信息可以携带在网络设备发送的配置信息中。示例性的,所述随机接入类型的指示信息为1时,指示终端设备选择2步随机接入,指示信息为0时,指示终端设备选择4步随机接入。
如果终端设备未接收到该随机接入类型的指示信息,在一些实施例中,终端设备可以根据步骤702中接收到的配置信息中的阈值确定随机接入类型。
在一些实施例中,第一阈值为RSRP阈值rsrp-threshold-ratype时,若终端设备确定信道测量值大于或者等于第一阈值rsrp-threshold-ratype,可以选择2步随机接入, 即确定随机接入的方式为2步随机接入;若终端设备确定信道测量值小于第一阈值rsrp-threshold-ratype时,确定随机接入的方式为4步随机接入。
其中,信道测量值可以为小区级的信道测量值mrsrp_cell或者L3高层的信道测量值。以信道测量值为小区级的信道测量值Mrsrp_cell为例,该小区级的信道测量值可以是衡量小区质量的RSRP值,其具体的计算方式可以为:多个SSB的RSRP测量值的平均值,或者为多个SSB的测量值中的最大值。示例性地:
1)如果网络设备配置了SSB测量阈值thresh_ssb_consolidation,以及用于计算小区质量的RSRP值的SSB个数N ssb,则信道测量值可以为根据多个SSB的RSRP得到的信道测量值M rsrp_cell,为:
Figure PCTCN2019101223-appb-000001
其中,ssb_rsrp表示SSB的RSRP值,N ssb_max表示用于计算信道测量值的SSB的数量。N ssb_max个SSB的RSRP值满足ssb_rsrp i>thresh_ssb_consolidation,N ssb_max≤N ssb
2)如果网络设备未配置thresh_ssb_consolidation以及N ssb,信道测量值可以为多个SSB的RSRP值中的最大值。在本实施例中,终端设备确定随机接入类型后,可以根据所确定类型的随机接入过程的参数进行初始化。终端设备对随机接入过程中的其他参数的初始化过程对本申请方案没有影响,因此在本实施例中不再赘述。本实施例中仅以SUL的选择进行举例说明,即本实施例中随机接入过程参数初始化的过程包括但不限于所述的SUL的选择和随机接入类型的选择。704、终端设备根据接收到的至少一个下行参考信号的测量值与第二阈值确定SSB。
终端设备在随机接入初始化时完成了随机接入类型的选择之后,需要继续执行发送随机接入消息的资源选择,即执行SSB的选择。
在一些实施例中,终端设备确定随机接入的方式为2步随机接入,且确定接收到的至少一个SSB的测量值大于或等于第二阈值时,终端设备可以从至少一个SSB中确定一个SSB,例如从至少一个SSB中任选一个SSB;否则,选择任一SSB,即如果终端设备接收到的所有SSB的测量值均小于第二阈值时,终端设备从所有SSB中任选一个SSB。所述第二阈值可以为2步随机接入对应的第二阈值,即上述提到的2step-rsrp-threshold-SSB;
在一些实施例中,终端设备确定随机接入的方式为4步随机接入,且确定接收到的至少一个SSB的测量值大于或等于第二阈值时,终端设备可以从至少一个SSB中确定一个SSB,例如从至少一个SSB中任选一个SSB;否则,选择任一SSB,即如果终端设备接收到的所有SSB的测量值均小于第二阈值时,终端设备从所有SSB中任选一个SSB。第二阈值可以为4步随机接入对应的第二阈值,即上述提到的4step-rsrp-threshold-SSB。
705、终端设备根据选择的SSB,和用于配置SSB与随机接入的传输机会的关联关系的信息,确定一个随机接入传输机会,而后执行步骤706或者步骤707。
706、若终端设备选择的是2步随机接入,则在随机接入传输机会上发送2步随机接入的消息。
也即,如果终端设备选择的是2步随机接入,终端设备可以在与SSB关联的 PRACH传输机会上发送前导序列,在与PRACH传输机会对应的PUSCH传输机会上发送上行数据,而后,终端设备接收针对PRACH的响应信息或者针对PUSCH的响应消息中的至少一个。
707、若终端设备选择的是4步随机接入,则在随机接入传输机会上发送4步随机接入的消息。
也即,如果终端设备选择的是4步随机接入,终端设备可以在与SSB关联的PRACH传输机会上发送前导序列,而后,终端设备接收针对PRACH的响应消息。
上述实施例中描述了在随机接入过程中,终端设备先执行随机接入类型的选择,然后执行SSB的选择的过程,其通过两个阈值的判定确定了随机接入类型以及SSB,同时对现有协议修改较小。
可以理解的是,本实施例中终端设备在随机接入类型选择时所需要的小区质量测量值是,例如通过长期的对多个SSB的测量值RSRP取均值得到的,而终端设备在SSB选择时所需要的测量值RSRP是不同SSB对应的瞬时RSRP值。
针对上述终端设备先执行随机接入类型的选择,后进行SSB的选择,本申请实施例还提供一种随机接入的方式,如图8所示,该方法包括:
801、网络设备向终端设备发送配置信息,该配置信息包括第一阈值、第二阈值、第三阈值以及用于配置SSB与随机接入传输机会的关联关系的信息。该配置信息还可以包括终端所需的其他随机接入参数。
第一阈值可以为终端设备可以支持2步随机接入的阈值rsrp-threshold-2step,第二阈值可以为终端设备用于SSB选择时的RSRP阈值rsrp-threshold-SSB,第三阈值可以为用于确认随机接入类型的阈值threshold-ratype。其中,第二阈值对2步随机接入和4步随机接入来说是共享的,即网络设备配置了一个用于SSB选择的阈值。
802、终端设备接收网络设备发送的配置信息。
803、终端设备发起随机接入时,根据信道测量值是否大于或等于第一阈值初步确定随机接入类型。
终端设备在随机接入初始化过程中对载波类型的选择,其实现方式与上一实施例类似。即在随机接入初始化过程中,如果终端设备接收到网络设备发送的随机接入类型的指示信息,那么终端设备可以直接根据该指示信息确定随机接入类型,后续执行过程可以参见图7对应的实施例中步骤704(包括步骤704)之后的执行过程,此处不再赘述。该随机接入类型的指示信息可以携带在网络设备发送的配置信息中。示例性的,所述随机接入类型的指示信息为1时,指示终端设备选择2步随机接入,指示信息为0时,指示终端设备选择4步随机接入。
如果终端设备未接收到网络设备发送的随机接入类型的指示信息,继续执行步骤803。
如果信道测量值大于或者等于第一阈值rsrp-threshold-2step,说明当前的信道条件良好,终端设备可以选择2步随机接入,也可以选择4步随机接入,然后执行步骤804;如果信道测量值小于第一阈值rsrp-threshold-2step,说明当前的信道条件不能支持2步随机接入,终端设备确定随机接入类型为4步随机接入,然后执行步骤810。
其中,信道测量值的获取可以参见上述步骤703中的实现,此处不再赘述。
804、终端设备根据接收到的至少一个SSB的测量值与第二阈值确定SSB,然后确定随机接入类型。
网络设备配置的第一阈值rsrp-threshold-2step与第二阈值rsrp-threshold-SSB的大小关系,会影响到终端设备对随机接入类型以及SSB的选择结果,因此,该方法还包括:终端设备确定第一阈值rsrp-threshold-2step与第二阈值rsrp-threshold-SSB的大小关系,若第一阈值大于或等于第二阈值,则继续执行步骤805,若第一阈值小于第二阈值,则执行步骤807。
805、第一阈值大于或等于第二阈值时,终端设备根据接收到所有SSB的RSRP值,网络设备配置的第一阈值和第二阈值,从所有SSB中选择一个SSB,确认随机接入类型。
即,在第一阈值rsrp-threshold-2step≥第二阈值rsrp-threshold-SSB的情况下:
如果终端设备接收到的SSB中,至少一个SSB的RSRP的值M rsrp满足条件:M rsrp≥rsrp-threshold-2step,终端设备在至少一个SSB中任选一个SSB,终端设备可能选择2步随机接入,也可能选择4步随机接入,然后执行步骤806。
在一些实施例中,如果终端设备接收到的SSB中,至少有一个SSB的RSRP的值M rsrp满足条件:rsrp-threshold-SSB<M rsrp<rsrp-threshold-2step,则在满足该条件的SSB中任选一个SSB,并选择4步随机接入,然后执行步骤809。
在一些实施例中,如果终端设备确定接收到的所有SSB的RSRP的值都小于rsrp-threshold-SSB,终端设备在所有SSB中任选一个SSB,并选择4步随机接入,然后执行步骤809。
806、终端设备在步骤805中确定了一个SSB,该SSB所关联的对应测量值大于或等于第三阈值时,则确定随机接入的类型为2步随机接入;而后,进入步骤808;若终端设备确定的SSB的RSRP小于第三阈值,则确定随机接入的类型为4步随机接入。而后,进入步骤809。
即,如果网络设备在配置信息中还配置了第三阈值threshold-ratype,终端设备确定步骤805中选择的SSB所关联的对应测量值大于或者等于第三阈值threshold-ratype时,则终端设备选择2步随机接入;如果步骤805中选择的SSB所关联的对应测量值小于第三阈值threshold-ratype时,终端设备选择4步随机接入。
在一些实施例中,如果网络设备未配置第三阈值,终端设备在根据步骤805确定了SSB之后,可以任选一种随机接入类型。
在本步骤中,SSB所关联的测量值与第三阈值的数据类型相同。
在本实施例中,第三阈值的取值可以是待传输上行数据大小的阈值时,终端设备要传输PUSCH的有效载荷(PUSCH payload)时,待传输的PUSCH payload小于或者等于PUSCH payload的阈值时,或者说PUSCH的数据包大小小于或者等于PUSCH的数据包的阈值时,终端设备可以选择适合传输小数据包的2步随机接入;相应地,如果终端设备待传输的PUSCH payload大于PUSCH payload的阈值,终端设备选择适合大数据包传输的4步随机接入。应当理解,配置的PUSCH payload用来描述PUSCH承载的数据包的大小,例如数据包为传输块(transport block,TB)。由于传输的数据包与PUSCH的资源大小和码率相关,例如与调制编码策略(Modulation and Coding  Scheme,MCS)相关,等效的,在实际网络配置中,还可以用PUSCH的资源块大小,或者MCS的大小来描述配置的PUSCH payload。同时,为了降低网络配置信息的开销,PUSCH payload的描述还可以按照等级来配置。例如等级0(level 0)对应PUSCH payload可以不大于56bits,level 1对应PUSCH payload不大于72bits;
在一些申请实施例中,第三阈值还可以是同一个下行参考信号所关联第一随机接入传输机会和第二随机接入传输机会的时间差的阈值,第一随机接入传输机会和第二随机接入传输机会对应于不同的随机接入类型时,举例来说,如果终端设备选择的SSB所关联的2步随机接入的传输机会对应的参考时间点为X1,该SSB关联的4步随机接入的传输机会对应的参考时间点为X2,那么X1与X2的时间差记为X1-X2,如果X1-X2的值大于或者等于时间差的阈值,终端设备此时可以确定随机接入类型为2步随机接入,否则,确定随机接入类型继续为4步随机接入。其中,参考时间点是指为了比较而选择的一个参考位置,例如可以是传输机会的起始符号,终止符号,随机接入消息中preamble的起始符号或者终止符号,随机接入消息中payload部分的起始符号或者终止符号,MsgB对应的随机接入响应信息的起始或者终止符号,MsgA对应的网络设备发送的响应消息(例如竞争解决消息)的起始或者终止符号,或者其他某个特定位置等。
807、若第一阈值小于第二阈值,终端设备根据接收到所有SSB的RSRP值,网络设备配置的第一阈值和第二阈值,从所有SSB中选择一个SSB,确认随机接入类型。
即,在第一阈值rsrp-threshold-2step<第二阈值rsrp-threshold-SSB的情况下:
如果终端设备确定接收到的多个SSB中,至少有一个SSB的RSRP的值M rsrp满足条件:M rsrp≥rsrp-threshold-SSB,说明网络状态良好,终端设备可以从满足条件的至少一个SSB中任选一个SSB,并选择2步随机接入,然后执行步骤808。
在一些实施例中,如果终端设备接收到的SSB中,所有SSB的RSRP均小于第二阈值,且至少有一个SSB的RSRP的值Mrsrp满足条件:rsrp-threshold-2step<Mrsrp<rsrp-thresholdSSB,终端设备在满足条件的至少一个SSB中任选一个SSB,终端设备可能选择2步随机接入,也可能选择4步随机接入。然后,终端设备执行步骤806。
在一些实施例中,如果终端设备接收到的所有SSB的RSRP均小于第一阈值,从所有SSB中任意选择一个SSB,并确定随机接入类型为4步随机接入,即若终端设备接收到的多个SSB的RSRP的值M rsrp均满足条件:M rsrp<rsrp-threshold-2step,则终端设备从满足条件的多个SSB中任选一个SSB,并确定随机接入类型为4步随机接入。而后,进入步骤809。
808、终端设备选择的是2步随机接入,则在上述步骤中确定的SSB所对应的2步随机接入的随机接入传输机会上发送2步随机接入的消息。即与步骤706的描述相同。
809、终端设备选择的是4步随机接入,则在上述步骤中确定的SSB所对应的4步随机接入的随机接入传输机会上发送4步随机接入的消息。即与步骤707的描述相同。
810、终端设备确定随机接入的方式为4步随机接入,且确定接收到的至少一个SSB的测量值大于或等于第二阈值时,终端设备可以从至少一个SSB中确定一个SSB。
示例性的,从至少一个SSB中任选一个SSB;否则,选择任一SSB,即如果终端设备接收到的所有SSB的测量值均小于第二阈值时,终端设备从所有SSB中任选一个SSB。第二阈值可以为步骤801中网络向终端配置的用于SSB选择时的RSRP阈值rsrp-threshold-SSB。
811、终端设备根据选择的SSB,在与SSB关联的4步随机接入的PRACH传输机会上发送前导序列,而后,终端设备接收针对PRACH的响应消息。
与图7对应的实施例不同的是,图8对应的实施例增加了第三阈值,相同的是,终端设备先执行随机接入类型的选择,而后执行SSB的选择,使得随机接入的类型选择更灵活,提升了随机接入的成功率和效率。
下面一个实施例,对上述提及的终端设备先做SSB的选择,再进行随机接入类型的选择进行阐述。因此,本申请实施例提供一种随机接入的方法,如图9所示,包括:
901、网络设备向终端设备发送配置信息,配置信息包括第一阈值、第二阈值以及用于配置SSB与随机接入传输机会的关联关系的信息。该配置信息还可以包括终端所需的其他随机接入参数。
本申请实施例中,第一阈值记为threshold-ratype,第二阈值记为rsrp-threshold-SSB。
902、终端设备接收网络设备发送的配置信息。
903、终端设备发起随机接入时,确定所接收到的所有SSB的RSRP与第二阈值的大小关系,而后执行步骤904或者步骤907。
904、若终端设备确定在所接收到的多个SSB中存在至少一个SSB的RSRP大于或等于第二阈值时,从至少一个SSB中确定一个SSB,并根据确定的SSB,与SSB与随机接入的传输机会的关联关系,确定一个随机接入传输机会。而后,进入步骤905或者906。
即如果至少有一个SSB的RSRP的值M rsrp满足条件:M rsrp≥rsrp-threshold-SSB,则从满足条件的SSB中任选一个SSB。
905、如果第一阈值为SSB测量阈值时,若步骤904中确定的SSB的RSRP大于或等于第一阈值,确定随机接入类型为2步随机接入。而后,进入步骤908。
SSB测量阈值可以为rsrp-threshold-2step,即如果第一阈值threshold-ratype为SSB测量阈值rsrp-threshold-2step时,若步骤904中确定的SSB的RSRP大于或等于第一阈值rsrp-threshold-2step,确定随机接入类型为2步随机接入。
906、如果第一阈值为SSB测量阈值时,若步骤904中确定的SSB的RSRP小于第一阈值,确定随机接入类型为4步随机接入。而后,进入步骤909。
SSB测量阈值可以为rsrp-threshold-2step,即如果第一阈值threshold-ratype为SSB测量阈值rsrp-threshold-2step时,若步骤904中确定的SSB的RSRP小于第一阈值rsrp-threshold-2step,确定随机接入类型为4步随机接入。在其他一些实施例中,步骤905和步骤906中的第一阈值threshold-ratype还可以是待传输上行数据大小的阈值,所述待传输上行数据大小的阈值(第一阈值)及对应的步骤905和步骤906的描述参考步骤806中的相关描述。
在其他一些实施例中,步骤905和步骤906中的第一阈值threshold-ratype还可以是同一个下行参考信号所关联第一随机接入传输机会和第二随机接入传输机会的时间差的阈值,所述时间差阈值(第一阈值)及对应的步骤905和步骤906的描述参考步骤806中的相关描述。
在其他一些实施例中,步骤905和步骤906中的第一阈值threshold-ratype还可以是网络设备更新的网络状态指示值。示例性的,所述网络状态指示值可以是支持两步随机接入方式的活跃用户数,资源,容量等配置的指示值,相应的,步骤905和步骤906可以描述为:如果网络状态指示值为1,则终端设备可以选择两步随机接入方式,否则终端设备选择四步随机接入方式。需要说明的是,本实施例中网络状态指示值的取值和随机接入类型之间无必然的对应关系,本实施中所列举的可能取值及其对应的随机接入类型是为了做示例性说明。
907、终端设备确定接收到的所有SSB的RSRP均小于第二阈值时,从接收到的所有SSB中确定一个SSB,根据确定的SSB,与SSB与随机接入的传输机会的关联关系,确定一个随机接入传输机会,并确定随机接入的类型为4步随机接入。而后,进入步骤909。
也即,如果终端设备接收到的多个SSB的RSRP的值M rsrp满足条件:M rsrp<rsrp-threshold-SSB,终端设备选择任一个SSB即可,同时选择4步随机接入。
908、终端设备选择的是2步随机接入,则在上述步骤中确定的SSB所对应的2步随机接入的随机接入传输机会上发送2步随机接入的消息。即与步骤706的描述相同。
909、终端设备选择的是4步随机接入,则在上述步骤中确定的SSB所对应的4步随机接入的随机接入传输机会上发送4步随机接入的消息。即与步骤707的描述相同。
本申请实施例中,终端设备先进行SSB的选择,再进行随机接入类型的选择,这样,终端设备在每次发起随机接入时,可以根据配置信息中配置的阈值重新选择随机接入类型以及SSB,进而可以提升随机接入的成功率,避免系统资源浪费。
下面一个实施例,针对上述提及的终端设备可以将随机接入类型的选择和SSB的选择结合在一起实现,本申请实施例提供一种随机接入的方法,如图10所示,该方法包括:
101、网络设备向终端设备发送配置信息,该配置信息包括第一阈值、第二阈值以及用于配置SSB与随机接入传输机会的关联关系的信息。该配置信息还可以包括终端所需的其他随机接入参数。
第一阈值可以为以上实施例中提及的rsrp-threshold-2step,用于确定终端设备是否支持选择2步随机接入。第二阈值可以为以上实施例中提及的rsrp-threshold-SSB。
102、终端设备接收网络设备发送的配置信息。而后,进入步骤103或者104。
103、终端设备发起随机接入时,若确定接收到的多个SSB中,至少一个SSB的RSRP大于或等于第一阈值,终端设备选择2步随机接入,并在满足条件的至少一个SSB中确定一个SSB,根据选择的SSB,与SSB与随机接入的传输机会的关联关系,确定选择的SSB所关联的2步随机接入的随机接入传输机会。而后,进入步骤105。
即,终端设备确定接收到的至少一个SSB的RSRP的值M rsrp满足条件1:M rsrp≥rsrp-threshold-2step,说明当前网络状态良好,终端设备可以选择对网络需求相对高的2步随机接入,并在满足条件1的SSB中任选一个SSB。而后,根据关联关系,确定出与所选的SSB关联的2-step RACH的随机接入传输机会。
104、若确定接收到的多个SSB的RSRP小于第一阈值,终端设备选择4步随机接入,并根据至少一个SSB的RSRP与第二阈值的大小关系确定SSB,根据选择的SSB,与SSB与随机接入的传输机会的关联关系,确定4步随机接入的随机接入传输机会。而后,进入步骤106。
即,终端设备确定接收到的至少一个SSB的RSRP的值M rsrp不满足条件1:M rsrp≥rsrp-threshold-2step,说明当前网络状态一般,终端设备可以选择网络需求相对低的4步随机接入。并且,终端设备确定多个SSB中是否有至少一个SSB的RSRP的M rsrp满足条件2:M rsrp≥rsrp-threshold-SSB,如果存在至少一个SSB的RSRP的M rsrp满足条件2,那么终端设备可以在满足条件2的SSB中任选一个SSB。否则,如果多个SSB中不存在满足条件2的SSB,那么终端设备可以从多个SSB中任选一个SSB。根据SSB与随机接入传输机会的关联关系,确定出与任选的SSB关联的4-step RACH的随机接入传输机会。
105、终端设备在随机接入传输机会上发送2步随机接入的消息。即与步骤706的描述相同。
106、终端设备在随机接入传输机会上发送4步随机接入的消息。即与步骤707的描述相同。
图10对应的实施例中,对于随机接入类型的选择和SSB的选择,网络设备配置了两个不同的阈值,终端设备在随机接入过程中,可以根据阈值选择合适的SSB和随机接入类型,或者说是根据网络状态选择合适的SSB和随机接入类型,可提升随机接入的成功概率。
为了简化终端设备在随机接入过程中对随机接入类型和SSB的选择,在一些实施例中,也可以只涉及一个阈值,记为第一阈值rsrp-thresholdSSB-2step,终端设备可以根据这一个第一阈值快速判断执行随机接入的随机接入类型和SSB。因此,本申请实施例还提供一种随机接入的方法,如图11所示,该方法可以包括:
111、网络设备向终端设备发送配置信息,该配置信息包括第一阈值以及用于配置SSB与随机接入传输机会的关联关系的信息,第一阈值用于终端设备选择随机接入类型以及在多个SSB中选择一个SSB。该配置信息还可以包括终端所需的其他随机接入参数。
112、终端设备接收网络设备发送的配置信息。而后,执行步骤113或者步骤114。
113、终端设备发起随机接入时,若接收到的多个SSB中,至少有一个SSB的RSRP大于或等于第一阈值,则确定随机接入类型为2步随机接入,并在满足条件的至少一个SSB中确定一个SSB,根据确定的SSB以及SSB与随机接入传输机会的关联关系确定出2步随机接入的随机接入传输机会。而后,进入步骤115。
114、终端设备发起随机接入时,若接收到的多个SSB的RSRP均小于第一阈值,则确定随机接入类型为4步随机接入,并在多个SSB中确定一个SSB,根据确定的SSB 以及关联关系确定出4步随机接入的随机接入传输机会。而后,进入步骤116。
115、终端设备在随机接入传输机会上发送2步随机接入的消息。即与步骤706的描述相同。
116、终端设备在随机接入传输机会上发送4步随机接入的消息。即与步骤707的描述相同。
因此,图11对应的实施例中,将随机接入类型的选择和SSB的选择结合在一起,通过一个阈值来确定网络状态,从而确定出随机接入类型以及SSB,可以提升随机接入成功的概率,避免系统资源浪费。
在以上实施例中,随机接入类型的选择和SSB的选择可以在终端设备进行随机接入资源选择时完成,此时,终端设备终端可以在一次随机接入失败后,比如由于随机接入响应时间窗(RAR time window)超时或者竞争解决计时器(contention resolution timer)超时导致的该次随机接入失败时,终端设备重新发起新的随机接入,终端设备可以根据预配置的阈值重新选择随机接入类型和SSB。
在随机接入过程中,不同终端设备可能选择的随机接入类型不同,比如一部分终端设备选择2步随机接入,发送消息A,另外一部分终端设备选择4步随机接入,发送消息1。网络设备会接收到不同终端设备发送的不同类型的随机接入消息,并对随机接入消息进行检测和/或译码,并根据对随机接入消息的检测或者译码结果向终端设备发送响应消息。为了降低终端设备对随机接入响应消息的检测复杂度,网络设备侧可以会预定义不同类型的随机接入响应消息的一些识别方法。区分不同类型的随机接入响应消息可能的几种方法有:
1、在网络设备发送随机接入响应消息时,网络设备可通过不同的搜索空间(search space)/控制资源集合(control resource set,CORESET)来区分不同的随机接入响应消息,相应地,对于终端设备侧来说,终端设备在接收随机接入响应消息时,可以在不同的搜索空间或者CORESET来侦听2步随机接入或者4步随机接入的随机接入响应消息,例如该随机接入响应消息为PDCCH时,该PDCCH是用来调度针对消息A的响应消息,消息B,或者PDCCH是用来调度针对消息1的响应消息,消息2。
2、或者,在网络设备发送随机接入响应消息时,网络设备可使用不同的加扰序列-随机接入无线网络标识(random access radio network temporary identifier,RA-RNTI)来区分不同的随机接入响应消息。即调度针对2步随机接入响应消息的PDCCH和调度针对4步随机接入响应消息的PDCCH使用不同的RA-RNTI。其中,RA-RNTI可以网络设备根据随机接入传输机会所在的时频资源信息生成的。
其中,2步随机接入和4步随机接入的资源分配包括两种方式:一种是独立的随机接入传输机会(separate RO),一种是共享的随机接入传输机会(shared RO)。如果是独立的随机接入传输机会,2步随机接入的RO所在的时频资源与4步随机接入的RO所在的时频资源不同,此时两种随机接入类型所对应的RA-RNTI是不同的。如果是共享的随机接入传输机会,2步随机接入的RO所在的时频资源与4步随机接入的RO所在的时频资源相同,此时根据RO所在的时频资源所得到的RA-RNTI是相同的。
为了能够区分不同的随机接入响应消息,在本申请实施例中,可以对RA-RNTI的生成公式进行修正。
Rel-15NR中针对4步随机接入响应消息的RA-RNTI的生成公式为:
RA_RNTI=1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id
在该生成公式的基础上,本申请实施例中,针对2步随机接入响应消息的RA-RNTI的生成公式可以为:
RA_RNTI_2step=1+1+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id
=2+s_id+14*t_id+14*80*f_id+14*80*8*ul_carrier_id
其中,RA_RNTI_2step是根据网络设备向终端设备配置的随机接入传输机会所在的PRACH时频资源计算获得的一个用于2步随机接入响应消息的加扰序列值,s_id表示网络设备给终端设备配置的PRACH时频资源的第一个OFDM符号,t_id表示网络设备向终端设备配置的PUSCH时频资源的系统帧中的第一个子帧索引号;f_id表示终端设备配置的PRACH时频资源的频域的索引号;ul_carrier_id表示随机接入消息A传输所在的上行载波,0表示正常上行链路NUL,1表示补充上行链路SUL。如图12所示,示出了网络设备向PRACH分配的时频资源个数为8(协议中向随机接入信道分配的频域资源个数最大为8),一个时频资源的系统帧可以为10ms,子载波间隔最大可以为120KHz,对应的,在时域上,一个系统帧包含80个子帧,每个子帧的长度可以为0.125ms。一个子帧在时域上可以包含14个OFDM符号,频域上可以包含12个子载波,PRACH时频资源的第一个OFDM符号如图12所示。
由于目前用于PRACH传输的最小时域传输单位是2个OFDM符号,因此,RA_RNTI_2step的生成值与RA_RNTI的生成值不会发送碰撞。
可以看出,2步随机接入响应消息的RA-RNTI的生成公式相对4步随机接入响应消息的RA-RNTI的生成公式,增加了1,能够达到区分不同的随机接入响应消息的目的,以便终端设备能够识别不同类型的随机接入响应消息,降低终端设备对随机接入响应消息的检测复杂度。
上述主要从各个网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,各个网元,例如终端设备、网络设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端设备、网络设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图13示出了一种电子设备13的结构示意图,电子设备可以为上述实施例中所涉及的终端设备,也可以为芯片。电子设备13包括:接收单元1301,处理单元1302以及发送单元1303。接收单元1301 用于支持电子设备执行图7中的过程702,图8中的过程802,图9中的过程902,图10中的过程102,图11中的过程112,处理单元1302用于支持电子设备执行图6中的过程602以及603,图7中的过程703,704,705,图8中的过程803,804,805,806,807以及810,图9中的过程903,904,905,906,907,图10中的过程103,104,图11中的过程113和114;发送单元1303用于执行图6中的过程604,图7中的过程706,707,图8中的过程808、809和811,图9中的过程908和909,图10中的过程105和106,图11中的过程115和116。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图14示出了一种电子设备14的可能的结构示意图。电子设备可以为上述实施例中所涉及的终端设备,也可以为芯片。电子设备14包括:处理模块1402和通信模块1403。处理模块1402与上述处理单元1302的功能类似,通信模块1403包括上述接收单元1301和发送单元1303的功能,处理模块1402用于对电子设备14的动作进行控制管理,例如,处理模块1402用于支持电子设备14执行图6中的过程602以及603,图7中的过程703,704,705,图8中的过程803,804,805,806,807,808,809,图9中的过程903,904,905,906,907,图10中的过程103,104,图11中的过程113和114,和/或用于本文所描述的技术的其它过程。通信模块1403用于支持电子设备与其他网络实体的通信,例如与网络设备之间的通信。电子设备14还可以包括存储模块1401,用于存储电子设备14的程序代码和数据。
其中,处理模块1402可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块1403可以是收发器、收发电路或通信接口等。存储模块1401可以是存储器。
当处理模块1402为处理器,通信模块1403为收发器,存储模块1401为存储器时,本申请实施例所涉及的电子设备14可以为图15所示的电子设备。
参阅图15所示,该电子设备15包括:处理器1512、收发器1513、存储器1511以及总线1514。其中,收发器1513、处理器1512以及存储器1511通过总线1514相互连接;总线1514可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图15中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在采用对应各个功能划分各个功能模块的情况下,图16示出了一种电子设备16可能的结构示意图,电子设备可以为上述实施例中所涉及的网络设备,也可以为芯片。电子设备16包括:发送单元1601和接收单元1602。发送单元1601用于支持电子设备16执行图6中的过程601,图7中的过程701,图8中的过程801,图9中的过程901,图10中的过程101,图11中的过程111;接收单元1602用于执行图6中的过程 604、图7中的过程706和707、图8中的过程808、809以及811、图9中的过程908和909、图10中的过程105和106以及图11中的过程115和116相对应的过程。其中,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
在采用集成的单元的情况下,图17示出了一种电子设备17的可能的结构示意图。电子设备可以为上述实施例中所涉及的网络设备,也可以为芯片。电子设备17包括:通信模块1701、存储模块1702。通信模块1701包括发送单元1601以及接收单元1602的功能。通信模块1701用于支持电子设备与其他网络实体的通信,例如终端设备之间的通信。存储模块1702用于存储电子设备的程序代码和数据。
其中,通信模块1701可以是收发器、收发电路或通信接口等。存储模块1702可以是存储器。
当通信模块1701为收发器,存储模块1702为存储器时,本申请实施例所涉及的电子设备17可以为图18所示的电子设备。
参阅图18所示,该电子设备18包括:收发器1813、存储器1811以及总线1814。其中,收发器1813、以及存储器1811通过总线1814相互连接;总线1814可以是PCI总线或EISA总线等。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图18中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本申请实施例还提供一种计算机可读存储介质,用于储存为上述物联网服务器所用的计算机软件指令,其包含用于执行上述方法实施例所设计的程序。
本申请实施例还提供一种包含指令的计算机程序产品,当其在电子设备上运行时,使得电子设备执行上述方法实施例所述的方法。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically ePROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于核心网接口设备中。当然,处理器和存储介质也可以作为分立组件存在于核心网接口设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请保护范围之内。因此, 本申请的保护范围应以所述权利要求的保护范围为准。

Claims (28)

  1. 一种随机接入的方法,其特征在于,包括:
    终端设备接收网络设备发送的配置信息,所述配置信息包括至少一个阈值,所述至少一个阈值包括第一阈值和第二阈值,其中,所述第一阈值用于所述终端设备选择随机接入类型,所述第二阈值用于所述终端设备在多个下行参考信号中选择一个下行参考信号,所述多个下行参考信号中的每个下行参考信号与一个或多个随机接入传输机会关联,所述第二阈值为参考信号的接收功率RSRP阈值;
    所述终端设备根据所述至少一个阈值确定随机接入类型以及一个下行参考信号;
    所述终端设备根据所述确定的下行参考信号确定一个随机接入传输机会;
    所述终端设备在所述随机接入传输机会上发送所述随机接入类型的消息。
  2. 根据权利要求1所述的方法,其特征在于,所述第一阈值为如下阈值中的至少一种:
    RSRP阈值、待传输上行数据大小的阈值以及同一个下行参考信号所关联第一随机接入传输机会和第二随机接入传输机会的时间差的阈值;所述第一随机接入传输机会和第二随机接入传输机会对应于不同的随机接入类型。
  3. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述至少一个阈值确定所述随机接入类型包括:
    所述终端设备根据信道测量值以及所述第一阈值确定所述随机接入类型;
    其中,所述信道测量值为根据多个下行参考信号的RSRP得到的测量值。
  4. 根据权利要求3所述的方法,其特征在于,所述终端设备根据所述至少一个阈值确定所述随机接入类型以及一个下行参考信号包括:
    所述终端设备确定信道测量值大于或等于所述第一阈值时,确定所述随机接入的方式为2步随机接入;
    所述终端设备确定接收到的至少一个下行参考信号的测量值大于或等于所述第二阈值时,从所述至少一个下行参考信号中确定一个下行参考信号。
  5. 根据权利要求3或4所述的方法,其特征在于,所述终端设备根据所述至少一个阈值确定所述随机接入的类型以及所述下行参考信号包括:
    所述终端设备确定信道测量值小于所述第一阈值时,确定所述随机接入的方式为4步随机接入。
  6. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述至少一个阈值确定所述随机接入类型以及所述下行参考信号包括:
    所述终端设备确定在所接收到的多个下行参考信号中存在至少一个下行参考信号的RSRP大于或等于所述第二阈值时,从所述至少一个下行参考信号中确定一个下行参考信号;
    若所述确定的下行参考信号的测量值大于或等于所述第一阈值,确定所述随机接入类型为2步随机接入;
    若所述确定的下行参考信号的测量值小于所述第一阈值,确定所述随机接入类型为4步随机接入;
    其中,所述确定的下行参考信号的测量值的类型与所述第一阈值的类型相同。
  7. 根据权利要求1、2和6任一项所述的方法,其特征在于,所述终端设备根据所述至少一个阈值确定所述随机接入类型以及所述下行参考信号包括:
    所述终端设备确定接收到的多个下行参考信号的RSRP均小于所述第二阈值时,从所述接收到的多个下行参考信号中确定一个下行参考信号,并确定所述随机接入的类型为4步随机接入。
  8. 根据权利要求1或2所述的方法,其特征在于,所述第一阈值大于或等于所述第二阈值;
    所述终端设备根据所述至少一个阈值确定所述随机接入类型以及所述下行参考信号包括:
    在所述终端设备的信道测量值大于或者等于所述第一阈值,且至少一个下行参考信号的RSRP大于或等于所述第一阈值时,从所述至少一个下行参考信号中确定一个下行参考信号;
    所述确定的下行参考信号的测量值大于或等于第三阈值时,确定所述随机接入的类型为2步随机接入;所述确定的下行参考信号的测量值小于所述第三阈值时,确定所述随机接入的类型为4步随机接入;
    其中,所述确定的下行参考信号的测量值的类型与所述第一阈值的类型相同。
  9. 根据权利要求1或2所述的方法,其特征在于,所述第一阈值小于所述第二阈值;
    所述终端设备根据所述至少一个阈值确定所述随机接入类型以及所述下行参考信号包括:所述终端设备确定信道测量值大于或者等于所述第一阈值,且至少一个下行参考信号的RSRP大于或等于所述第二阈值时,从所述至少一个下行参考信号中选择一个下行参考信号,并确定所述随机接入的方式为2步随机接入;
    所述终端设备确定信道质量的测量值大于或者等于所述第一阈值,且接收到的多个下行参考信号的RSRP均小于所述第二阈值,在所有的满足大于或者等于所述第一阈值的下行参考信号中任意选择一个下行参考信号;若选择的所述下行参考信号的测量值大于或者等于第三阈值,则确定所述随机接入类型为2步随机接入;
    其中,所述选择的下行参考信号的测量值的类型与所述第一阈值的类型相同。
  10. 根据权利要求9所述的方法,其特征在于,所述终端设备根据所述至少一个阈值确定所述随机接入类型以及所述下行参考信号还包括:所述终端设备确定信道质量的测量值大于或者等于所述第一阈值,且接收到的所述多个下行参考信号的RSRP均小于所述第一阈值,从所述多个下行参考信号中任意选择一个下行参考信号,并确定所述随机接入类型为4步随机接入。
  11. 根据权利要求1或2所述的方法,其特征在于,所述终端设备根据所述至少一个阈值确定所述随机接入类型以及所述下行参考信号包括:
    所述终端设备确定信道测量值小于所述第一阈值时,确定所述随机接入类型为4步随机接入;
    所述终端设备确定至少一个下行参考信号的RSRP大于或等于所述第二阈值时,从所述至少一个下行参考信号中确定一个下行参考信号;所述终端设备确定接收到的多个下行参考信号的RSRP均小于所述第二阈值时,从所述多个下行参考信号中任意 选择一个下行参考信号。
  12. 一种随机接入的方法,其特征在于,包括:
    网络设备向终端设备发送配置信息,所述配置信息包括至少一个阈值,所述至少一个阈值包括第一阈值和第二阈值,其中,所述第一阈值用于所述终端设备选择随机接入类型,所述第二阈值用于所述终端设备在多个参考信号中选择一个参考信号,所述多个参考信号中的每个参考信号与一个或多个随机接入传输机会关联,所述第二阈值为参考信号的接收功率RSRP阈值;
    所述网络设备接收所述终端根据所述配置信息发送的所述随机接入类型的消息。
  13. 根据权利要求12所述的方法,其特征在于,所述第一阈值为如下阈值中的至少一种:
    RSRP阈值、待传输上行数据大小的阈值以及同一个参考信号所关联第一随机接入传输机会和第二随机接入传输机会的时间差的阈值;所述第一随机接入传输机会和第二随机接入传输机会对应于不同的随机接入类型。
  14. 一种终端设备,其特征在于,所述终端设备包括:
    收发器,用于接收网络设备发送的配置信息,所述配置信息包括至少一个阈值,所述至少一个阈值包括第一阈值和第二阈值,其中,所述第一阈值用于所述终端设备选择随机接入类型,所述第二阈值用于所述终端设备在多个下行参考信号中选择一个下行参考信号,所述多个下行参考信号中的每个下行参考信号与一个或多个随机接入传输机会关联,所述第二阈值为参考信号的接收功率RSRP阈值;
    处理器,用于根据所述至少一个阈值确定随机接入类型以及一个下行参考信号;
    所述处理器,还用于根据所述确定的下行参考信号确定一个随机接入传输机会;
    所述收发器,还用于在所述随机接入传输机会上发送所述随机接入类型的消息。
  15. 根据权利要求14所述的终端设备,其特征在于,所述第一阈值为如下阈值中的至少一种:
    RSRP阈值、待传输上行数据大小的阈值以及同一个下行参考信号所关联第一随机接入传输机会和第二随机接入传输机会的时间差的阈值;所述第一随机接入传输机会和第二随机接入传输机会对应于不同的随机接入类型。
  16. 根据权利要求14或15所述的终端设备,其特征在于,所述处理器用于:
    根据信道测量值以及所述第一阈值确定所述随机接入类型;
    其中,所述信道测量值为根据多个参考信号的RSRP得到的测量值。
  17. 根据权利要求16所述的终端设备,其特征在于,所述处理器用于:
    确定信道测量值大于或等于所述第一阈值时,确定所述随机接入的方式为2步随机接入;
    确定接收到的至少一个下行参考信号的测量值大于或等于所述第二阈值时,从所述至少一个下行参考信号中确定一个下行参考信号。
  18. 根据权利要求16或17所述的终端设备,其特征在于,所述处理器用于:确定信道测量值小于所述第一阈值时,确定所述随机接入的方式为4步随机接入。
  19. 根据权利要求14或15所述的终端设备,其特征在于,所述处理器用于:
    确定在所接收到的多个下行参考信号中存在至少一个下行参考信号的RSRP大于 或等于所述第二阈值时,从所述至少一个下行参考信号中确定一个下行参考信号;
    若所述确定的下行参考信号的测量值大于或等于所述第一阈值,确定所述随机接入类型为2步随机接入;
    若所述确定的下行参考信号的测量值小于所述第一阈值,确定所述随机接入类型为4步随机接入;
    其中,所述确定的下行参考信号的测量值的类型与所述第一阈值的类型相同。
  20. 根据权利要求14、15和19任一项所述的终端设备,其特征在于,所述处理器用于:
    确定接收到的多个下行参考信号的RSRP均小于所述第二阈值时,从所述接收到的多个下行参考信号中确定一个下行参考信号,并确定所述随机接入的类型为4步随机接入。
  21. 根据权利要求14或15所述的终端设备,其特征在于,所述第一阈值大于或等于所述第二阈值;
    所述处理器用于:
    在所述终端设备的信道测量值大于或者等于所述第一阈值,且至少一个下行参考信号的RSRP大于或等于所述第一阈值时,从所述至少一个下行参考信号中确定一个下行参考信号;
    所述确定的下行参考信号的测量值大于或等于第三阈值时,确定所述随机接入的类型为2步随机接入;所述确定的下行参考信号的测量值小于所述第三阈值时,确定所述随机接入的类型为4步随机接入;
    其中,所述确定的下行参考信号的测量值的类型与所述第一阈值的类型相同。
  22. 根据权利要求14或15所述的终端设备,其特征在于,所述第一阈值小于所述第二阈值;
    所述处理器用于:
    确定信道测量值大于或者等于所述第一阈值,且至少一个下行参考信号的RSRP大于或等于所述第二阈值时,从所述至少一个下行参考信号中选择一个下行参考信号,并确定所述随机接入的方式为2步随机接入;
    确定信道质量的测量值大于或者等于所述第一阈值,且接收到的多个下行参考信号的RSRP均小于所述第二阈值,在所有的满足大于或者等于所述第一阈值的下行参考信号中任意选择一个下行参考信号;若选择的所述下行参考信号的测量值大于或者等于第三阈值,则确定所述随机接入类型为2步随机接入;
    其中,所述选择的下行参考信号的测量值的类型与所述第一阈值的类型相同。
  23. 根据权利要求22所述的终端设备,其特征在于,所述处理器用于:
    确定信道质量的测量值大于或者等于所述第一阈值,且接收到的所述多个下行参考信号的RSRP均小于所述第一阈值,从所述多个下行参考信号中任意选择一个下行参考信号,并确定所述随机接入类型为4步随机接入。
  24. 根据权利要求14或15所述的终端设备,其特征在于,所述处理器用于:
    确定信道测量值小于所述第一阈值时,确定所述随机接入类型为4步随机接入;
    确定至少一个下行参考信号的RSRP大于或等于所述第二阈值时,从所述至少一 个下行参考信号中确定一个下行参考信号;确定接收到的多个下行参考信号的RSRP均小于所述第二阈值时,从所述多个下行参考信号中任意选择一个下行参考信号。
  25. 一种网络设备,其特征在于,包括收发器和存储器,所述存储器用于存储程序和/或数据:
    所述收发器,用于向终端设备发送配置信息,所述配置信息包括至少一个阈值,所述至少一个阈值包括第一阈值和第二阈值,其中,所述第一阈值用于所述终端设备选择随机接入类型,所述第二阈值用于所述终端设备在多个参考信号中选择一个参考信号,所述多个参考信号中的每个参考信号与一个或多个随机接入传输机会关联,所述第二阈值为参考信号的接收功率RSRP阈值;
    所述收发器,还用于接收所述终端根据所述配置信息发送的所述随机接入类型的消息。
  26. 根据权利要求25所述的网络设备,其特征在于,所述第一阈值为如下阈值中的至少一种:
    RSRP阈值、待传输上行数据大小的阈值以及同一个参考信号所关联第一随机接入传输机会和第二随机接入传输机会的时间差的阈值;所述第一随机接入传输机会和第二随机接入传输机会对应于不同的随机接入类型。
  27. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在电子设备上运行时,使得所述电子设备执行如权利要求1-13中任一项所述的方法。
  28. 一种计算机程序产品,其特征在于,当所述计算机程序产品在电子设备上运行时,使得电子设备执行如权利要求1-13中任一项所述的方法。
PCT/CN2019/101223 2019-08-16 2019-08-16 一种随机接入方法、终端设备和网络设备 WO2021031046A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980099428.7A CN114246014B (zh) 2019-08-16 2019-08-16 一种随机接入方法、终端设备和网络设备
EP19942308.8A EP4017198A4 (en) 2019-08-16 2019-08-16 DIRECT ACCESS METHOD, TERMINAL DEVICE AND NETWORK DEVICE
PCT/CN2019/101223 WO2021031046A1 (zh) 2019-08-16 2019-08-16 一种随机接入方法、终端设备和网络设备
CA3151640A CA3151640A1 (en) 2019-08-16 2019-08-16 Random access method, terminal device, and network device
US17/673,561 US20220174752A1 (en) 2019-08-16 2022-02-16 Random access method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101223 WO2021031046A1 (zh) 2019-08-16 2019-08-16 一种随机接入方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/673,561 Continuation US20220174752A1 (en) 2019-08-16 2022-02-16 Random access method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2021031046A1 true WO2021031046A1 (zh) 2021-02-25

Family

ID=74659808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101223 WO2021031046A1 (zh) 2019-08-16 2019-08-16 一种随机接入方法、终端设备和网络设备

Country Status (5)

Country Link
US (1) US20220174752A1 (zh)
EP (1) EP4017198A4 (zh)
CN (1) CN114246014B (zh)
CA (1) CA3151640A1 (zh)
WO (1) WO2021031046A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210243815A1 (en) * 2020-01-31 2021-08-05 Qualcomm Incorporated Multiple message types and procedure for selection of a message type for a random access message in a two-step random access procedure
CN113453373A (zh) * 2021-06-01 2021-09-28 Tcl通讯(宁波)有限公司 一种5g nr上行接入的方法、装置、终端设备及存储介质
WO2023025015A1 (zh) * 2021-08-23 2023-03-02 维沃移动通信有限公司 随机接入资源选择、配置方法、装置、终端及网络侧设备
WO2023160478A1 (zh) * 2022-02-24 2023-08-31 华为技术有限公司 一种通信方法及装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102588873B1 (ko) * 2019-10-04 2023-10-13 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
KR20220137086A (ko) * 2020-02-03 2022-10-11 삼성전자주식회사 무선 통신 시스템에서 통신을 수행하는 방법 및 장치
CN114902585A (zh) * 2022-04-08 2022-08-12 北京小米移动软件有限公司 一种阈值确定方法/装置/设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108282895A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种随机接入方法及终端
CN109863814A (zh) * 2016-10-19 2019-06-07 高通股份有限公司 增强型随机接入信道(rach)规程

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109863814A (zh) * 2016-10-19 2019-06-07 高通股份有限公司 增强型随机接入信道(rach)规程
CN108282895A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种随机接入方法及终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NOKIA; NOKIA SHANGHAI BELL: "Feature lead summary#3 on 2 step RACH procedures", 3GPP DRAFT; R1-1907900 2-STEP RACH PROCEDURE FEATURE LEAD SUMMARY RAN1#97, vol. RAN WG1, 17 May 2019 (2019-05-17), Reno, USA, pages 1 - 59, XP051740159 *
See also references of EP4017198A4 *
VIVO: "Discussion on the MsgA resource selection", 3GPP DRAFT; R2-1905655 DISCUSSION ON THE MSGA RESOURCE SELECTION, vol. RAN WG2, 2 May 2019 (2019-05-02), Reno, USA, pages 1 - 7, XP051710013 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210243815A1 (en) * 2020-01-31 2021-08-05 Qualcomm Incorporated Multiple message types and procedure for selection of a message type for a random access message in a two-step random access procedure
US11457482B2 (en) * 2020-01-31 2022-09-27 Qualcomm Incorporated Multiple message types and procedure for selection of a message type for a random access message in a two-step random access procedure
CN113453373A (zh) * 2021-06-01 2021-09-28 Tcl通讯(宁波)有限公司 一种5g nr上行接入的方法、装置、终端设备及存储介质
WO2023025015A1 (zh) * 2021-08-23 2023-03-02 维沃移动通信有限公司 随机接入资源选择、配置方法、装置、终端及网络侧设备
WO2023160478A1 (zh) * 2022-02-24 2023-08-31 华为技术有限公司 一种通信方法及装置

Also Published As

Publication number Publication date
US20220174752A1 (en) 2022-06-02
EP4017198A4 (en) 2022-09-07
CN114246014A (zh) 2022-03-25
CN114246014B (zh) 2024-04-12
EP4017198A1 (en) 2022-06-22
CA3151640A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
WO2021031046A1 (zh) 一种随机接入方法、终端设备和网络设备
CN109997405B (zh) 用于执行随机接入信道进程的方法及其用户设备
WO2021032027A1 (zh) 一种随机接入方法、终端设备和网络设备
US11503643B2 (en) Random access method and device
US11206693B2 (en) Method and apparatus for transmitting and receiving a signal in a wireless communication system
WO2017117991A1 (zh) 资源配置方法、装置和基站
WO2019095307A1 (zh) 一种传输消息的方法及设备
US10716051B2 (en) Method and apparatus for transmitting D2D discovery signal and communication system
WO2019047599A1 (zh) 一种ra-rnti确定方法及装置
US20220304059A1 (en) Method and Apparatus for Sharing Channel Occupancy Time on Unlicensed Spectrum
EP3592073A1 (en) Resource scheduling method and device
CN110121176B (zh) 无线通信方法、终端和网络设备
US20220225425A1 (en) Random Access Method And Apparatus
US20230171799A1 (en) Method and apparatus for sensing measurement and report for sidelink
WO2020029258A1 (zh) 信息发送和接收方法以及装置
CN111436085B (zh) 通信方法及装置
WO2019214734A1 (en) Methods, terminal device and base station for physical downlink control channel monitoring
US20220377766A1 (en) Configured ul with repetition
US20220225407A1 (en) Methods, ue and network node for handling a bandwidth part configuration
CN108243503B (zh) 在未授权频谱中的无线电资源调度方法及使用其的基站
EP3886496B1 (en) Resource reservation method and related device
CN111066355A (zh) 一种通信方法及设备
CN113647133B (zh) 发送、接收反馈信息的方法和设备
WO2023232007A1 (zh) 信号传输方法及装置
WO2022152058A1 (zh) 一种小数据传输的资源分配方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942308

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3151640

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019942308

Country of ref document: EP

Effective date: 20220315