WO2021031021A1 - 一种频率位置的确定方法以及设备 - Google Patents

一种频率位置的确定方法以及设备 Download PDF

Info

Publication number
WO2021031021A1
WO2021031021A1 PCT/CN2019/101195 CN2019101195W WO2021031021A1 WO 2021031021 A1 WO2021031021 A1 WO 2021031021A1 CN 2019101195 W CN2019101195 W CN 2019101195W WO 2021031021 A1 WO2021031021 A1 WO 2021031021A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
cell
information
signal
frequency position
Prior art date
Application number
PCT/CN2019/101195
Other languages
English (en)
French (fr)
Inventor
毕文平
余政
杨育波
程型清
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980099196.5A priority Critical patent/CN114208266A/zh
Priority to PCT/CN2019/101195 priority patent/WO2021031021A1/zh
Publication of WO2021031021A1 publication Critical patent/WO2021031021A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a method and device for determining a frequency position.
  • the synchronization of the current communication system usually uses a primary synchronization signal and an auxiliary synchronization signal for signal synchronization.
  • the time interval between the main synchronization signal and the auxiliary synchronization signal in the time domain is relatively large, which increases the synchronization time required for the synchronization of the main synchronization signal and the auxiliary synchronization signal.
  • a resynchronization signal (RSS) is introduced.
  • the resynchronization signal occupies two consecutive resource blocks (resource block, RB) in the frequency domain, and can be any two RBs in the system bandwidth, and the lower RB of the two RBs is notified to the terminal by the base station through signaling.
  • the terminal can also measure the RSS of the neighboring cells of the serving cell, thereby further enhancing the user's mobility performance.
  • the frequency domain position information of the RSS requires 7 bits for indication, and the signaling overhead is relatively large when there are many neighboring cells.
  • an embodiment of the present application provides a method for determining a frequency position, which is used for a terminal device to determine the frequency position of the RSS of each cell.
  • the specific plan is as follows:
  • an embodiment of the present application provides a method for determining a frequency position, including: a first device receives first information sent by a second device, and the first information is used by the first device to determine the first information in the first cell. The frequency position of the signal; the first device determines the frequency position of the first signal according to the first information and the cell identity of the first cell.
  • the first device determines the frequency position of the first signal based on the first information and the cell identity. Since the cell identity can narrow the frequency range corresponding to the frequency position of the first signal, the first information can be in a smaller frequency range defined by the cell identity. The frequency position of the first signal is determined within the first signal. Generally speaking, the smaller the indicated frequency range, the smaller the corresponding signaling overhead. Therefore, in this solution, it is effective to determine the frequency position of the first signal based on the first information and the cell identity. Reduce signaling overhead.
  • the cell identification or the first information can limit the frequency positions of the first signals corresponding to different cells within different candidate frequency ranges, the number of first signals between the serving cell and neighboring cells and between multiple neighboring cells can be reduced. The collision of the frequency position of a signal reduces the mutual interference between the serving cell and neighboring cells, and between multiple neighboring cells, and improves system performance.
  • the first device determining the frequency position of the first signal according to the first information and the cell identity includes: the first device determines the first frequency set according to the cell identity, and the first frequency set It includes at least one frequency unit; the first device determines the frequency position of the first signal in the first frequency set according to the first information.
  • the first system bandwidth includes at least one frequency set, each frequency set includes at least one frequency unit, and each frequency set corresponds to an index; the first device determines the first frequency set according to the cell identifier.
  • a frequency set includes: a first device determines a first parameter according to a cell identity; a first device determines a first index corresponding to the first parameter; and a first device determines a first frequency set corresponding to the first index in at least one frequency set.
  • the first device determining the frequency position of the first signal in the first frequency set according to the first information includes: the first device determines the second parameter according to the first information;
  • the first device determines the frequency position corresponding to the second parameter in the first frequency set, and the corresponding frequency position in the first frequency set is the frequency position of the first signal.
  • the first device determining the frequency position of the first signal according to the first information and the cell identity includes: the first device determines the second frequency set according to the first information, and the second frequency The set includes at least one frequency unit; the first device determines the frequency position of the first signal in the second frequency set according to the cell identifier.
  • the second system bandwidth includes at least one frequency set, each frequency set includes at least one frequency unit, and each frequency set corresponds to an index; the first device determines according to the first information
  • the second frequency set includes: the first device determines the second index corresponding to the first information; the first device determines the second frequency set corresponding to the second index in the at least one frequency set.
  • the first device determining the frequency position of the first signal in the second frequency set according to the cell identifier includes: the first device determines the third parameter according to the cell identifier;
  • the first device determines the frequency position corresponding to the third parameter in the second frequency set, and the corresponding frequency position in the second frequency set is the frequency position of the first signal.
  • the first device determining the frequency position of the first signal according to the first information and the cell identity includes: the first device determines the first frequency position according to the cell identity; The first information determines the first offset; the first device determines the frequency position of the first signal according to the first frequency position and the first offset.
  • the first device determining the first frequency position according to the cell identity includes: the first device determines the fourth parameter according to the cell identity; the first device determines the third index corresponding to the fourth parameter ; The first device determines the frequency position corresponding to the third index, and the frequency position corresponding to the third index is the first frequency position.
  • the first device determining the first offset according to the first information includes: the first device determines the fifth parameter according to the first information; the first device determines the value corresponding to the fifth parameter Offset, the offset corresponding to the fifth parameter is the first offset.
  • the first device determining the frequency position of the first signal according to the first information and the cell identifier includes: the first device determines the second frequency position according to the first information; the first device The second offset is determined according to the cell identity; the first device determines the frequency position of the first signal according to the second frequency position and the second offset.
  • the first device determining the second frequency position according to the first information includes: the first device determines the sixth parameter according to the first information; the first device determines the frequency corresponding to the sixth parameter Position, the frequency position corresponding to the sixth parameter is the second frequency position.
  • the first device determining the second offset according to the cell identity includes: the first device determines the seventh parameter according to the cell identity; the first device determines the fourth parameter corresponding to the seventh parameter Index; the first device determines the offset corresponding to the fourth index, and the offset corresponding to the fourth index is the second offset.
  • the first device determines the frequency position of the first signal according to the first information and the cell identity, including: the first device sets the frequency of the first signal in the third frequency set according to the first information and the cell identity The frequency position of the first signal is determined in, and the third frequency set is predefined or configured by the second device.
  • the first device determines the frequency position of the first signal in the third frequency set according to the first information and the cell identity, including: And the first formula to calculate the frequency position of the first signal;
  • the first formula is:
  • f is the index corresponding to the frequency position or frequency set; Is the value of the cell identifier, a and/or M are determined according to the first information, and the number of resource blocks or narrowbands in the third frequency set is less than or equal to x.
  • the first cell is a serving cell, and the first signal is a resynchronization signal of the serving cell; or, the first cell is a neighboring cell of the serving cell, and the first signal is a serving cell The resynchronization signal of neighboring cells.
  • an embodiment of the present application provides a method for determining a frequency position, including: a second device determines first information, and the first information is used by the first device to determine the frequency position of a first signal of a first cell; second The device sends the first information to the first device.
  • the first information is used by the first device to determine the frequency position of the first signal in the first frequency set
  • the first frequency set includes at least one frequency unit
  • the first frequency set is The first device is determined according to the cell identity of the first cell.
  • the first information is used by the first device to determine the second frequency set
  • the second frequency set includes at least one frequency unit
  • the frequency position of the first signal is included in the second frequency set .
  • the first information is used to indicate the first offset
  • the first offset and the cell identity of the first cell are used by the first device to determine the frequency position of the first signal.
  • the first information is used to indicate the second frequency position
  • the second frequency position and the cell identity of the first cell are used by the first device to determine the frequency position of the first signal.
  • the first information is used to indicate the frequency position of the first signal in the third frequency set, and the third frequency set is predefined or configured by the second device.
  • the first cell is a serving cell, and the first signal is a resynchronization signal of the serving cell; or, the first cell is a neighboring cell of the serving cell, and the first signal is a serving cell The resynchronization signal of neighboring cells.
  • an embodiment of the application provides a method for determining a frequency position, including: a first device determines a cell identity of a first cell; the first device determines a frequency of a first signal in the first cell according to the cell identity position.
  • the third system bandwidth includes multiple frequency sets, each frequency set includes at least one frequency unit, and each frequency set corresponds to an index; the first device determines according to the cell identity
  • the frequency position of the first signal in the first cell includes: the first device determines the eighth parameter according to the cell identifier; the first device determines the fifth index corresponding to the eighth parameter; the first device determines the fourth frequency corresponding to the fifth index Set; the first device determines the frequency position corresponding to the fourth frequency set, and the frequency position corresponding to the fourth frequency set is the frequency position of the first signal.
  • an embodiment of the present application provides a device.
  • the device is a first device and includes: a receiving module and a processing module.
  • the receiving module is configured to receive first information sent by a second device.
  • the first information is used for the processing module to determine the frequency position of the first signal in the first cell; the processing module is used for determining the frequency position of the first signal according to the first information and the cell identity of the first cell.
  • the first system bandwidth includes at least one frequency set, each frequency set includes at least one frequency unit, and each frequency set corresponds to an index; the processing module is configured to The cell identity determines the first frequency set; the frequency position of the first signal is determined in the first frequency set according to the first information.
  • the processing module is specifically configured to determine the first parameter according to the cell identity; the processing module is specifically further configured to determine the first index corresponding to the first parameter; and the processing module , And specifically used to determine the first frequency set corresponding to the first index.
  • the processing module is specifically further configured to determine the second parameter according to the first information; the processing module is specifically further configured to determine that the second parameter is in the first frequency set The corresponding frequency position, the corresponding frequency position in the first frequency set is the frequency position of the first signal.
  • the processing module is configured to determine a second frequency set according to the first information, and the second frequency set includes at least one frequency unit; the processing module is further configured to The cell identity determines the frequency position of the first signal in the second frequency set.
  • the second system bandwidth includes at least one frequency set, each frequency set includes at least one frequency unit, and each frequency set corresponds to an index; the processing module is specifically used to determine the first A second index corresponding to the information; the processing module is specifically further configured to determine the second frequency set corresponding to the second index in the at least one frequency set.
  • the processing module is specifically used to determine the third parameter according to the cell identity; the processing module is specifically used to determine whether the third parameter is The corresponding frequency position in the second frequency set, and the corresponding frequency position in the second frequency set is the frequency position of the first signal.
  • the processing module is configured to determine the first frequency position according to the cell identity; the processing module is also configured to determine the first offset according to the first information; the processing module is also configured to The frequency position of the first signal is determined according to the first frequency position and the first offset.
  • the processing module is specifically configured to determine the fourth parameter according to the cell identity; the processing module is specifically also configured to determine the third index corresponding to the fourth parameter; the processing module is specifically also used When determining the frequency position corresponding to the third index, the frequency position corresponding to the third index is the first frequency position.
  • the processing module is specifically further configured to determine the fifth parameter according to the first information; the processing module is specifically further configured to determine the offset corresponding to the fifth parameter, The offset corresponding to the fifth parameter is the first offset.
  • the processing module is configured to determine the second frequency position according to the first information; the processing module is further configured to determine the second offset according to the cell identity; the processing module is also configured to The frequency position of the first signal is determined according to the second frequency position and the second offset.
  • the processing module is specifically configured to determine a sixth parameter based on the first information; the processing module is specifically configured to determine a frequency position corresponding to the sixth parameter, and the sixth parameter corresponds to The frequency position of is the second frequency position.
  • the processing module is specifically used to determine the seventh parameter according to the cell identity; the processing module is specifically used to determine the fourth index corresponding to the seventh parameter; the processing module is specifically also used to Used to determine the offset corresponding to the fourth index, and the offset corresponding to the fourth index is the second offset.
  • the processing module is configured to determine the frequency position of the first signal in a third frequency set according to the first information and the cell identity, and the third frequency set is a predefined , Or configured by the second device.
  • the processing module is configured to calculate the frequency position of the first signal according to the first information, the cell identifier, and the first formula ,
  • the first formula is:
  • f is the index corresponding to the frequency position or frequency set; Is the value of the cell identifier, a and/or M are determined according to the first information, and the number of resource blocks or narrowbands in the third frequency set is less than or equal to x.
  • the first cell is a serving cell, and the first signal is a resynchronization signal of the serving cell; or, the first cell is a serving cell.
  • the neighboring cell of the cell, the first signal is the resynchronization signal of the neighboring cell of the serving cell.
  • an embodiment of the present application provides an apparatus, the apparatus is a second device, and includes: a processing module, configured to determine first information, and the first information is used by the first device to determine the first cell of the first cell The frequency position of a signal; the sending module is used to send the first information to the first device.
  • the first information is used by the first device to determine the frequency position of the first signal in the first frequency set, and the first frequency set It includes at least one frequency unit, and the first frequency set is determined by the first device according to the cell identity of the first cell.
  • the first information is used by the first device to determine a second frequency set, the second frequency set includes at least one frequency unit, and the frequency position of the first signal is included in the second frequency set.
  • the first information is used to indicate a first offset, and the first offset and the cell identifier of the first cell are used by the first device to determine the frequency position of the first signal .
  • the first information is used to indicate the second frequency position, and the second frequency position and the cell identity of the first cell are used by the first device to determine the frequency position of the first signal.
  • the first information is used to indicate the frequency position of the first signal in the third frequency set, which is predefined or configured by the second device.
  • the first cell is a serving cell, and the first signal is a resynchronization signal of the serving cell; or, the first cell is a neighboring cell of the serving cell, and the first signal is the The resynchronization signal of the neighboring cell of the serving cell.
  • an embodiment of the present application provides a device.
  • the device is a first device and includes: a processor; may also include a memory and a transceiver; the transceiver is used to receive and send data; and the memory is Program code is stored, and when the processor calls the program code in the memory, the method for determining the frequency position of the first aspect or any one of the possible implementations of the first aspect is executed, or the third aspect or the third aspect is executed. The method for determining the frequency position of any possible implementation manner.
  • an embodiment of the present application provides an apparatus, the apparatus is a second device, and includes: a processor; may also include a memory and a transceiver; the transceiver is used to receive and send data; the memory is A program code is stored, and when the processor calls the program code in the memory, the method for determining the frequency position of the second aspect or any one of the possible implementation manners of the second aspect is executed.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer can execute any one of the first aspect or the first aspect.
  • a method for determining the frequency position of a possible implementation manner or, the method for determining a frequency position of the second aspect or any one of the possible implementation manners of the second aspect, or the implementation of any one of the foregoing third aspect or the third aspect Method of determining the frequency position of the way.
  • the embodiments of the present application provide a computer program product containing instructions, which when running on a computer, enable the computer to execute the frequency position determination method of the first aspect or any one of the possible implementations of the first aspect , Or, execute the method for determining the frequency position of the second aspect or any one of the possible implementations of the second aspect, or execute the method for determining the frequency position of the third aspect or any one of the possible implementations of the third aspect.
  • an embodiment of the present application provides a chip system that includes a processing unit for supporting an information processing device to implement the functions involved in the first aspect or any one of the possible implementation manners of the first aspect, Or, realize the function involved in the foregoing second aspect or any one of the possible implementation manners of the second aspect, or realize the function involved in the foregoing third aspect or any one of the possible implementation manners of the third aspect.
  • the chip system also includes a storage unit, which is used to store the program instructions and data necessary for executing the function network element.
  • the chip system can be composed of chips, or include chips and other discrete devices.
  • FIG. 1 is a schematic structural diagram of a communication system provided in an embodiment of this application.
  • Figure 2(a) is a schematic diagram of an embodiment of a method for determining a frequency position provided in an embodiment of the application;
  • Figure 2(b) is a schematic diagram of another embodiment of a method for determining a frequency position provided in an embodiment of this application;
  • FIG. 3 is a schematic structural diagram of the first device in an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a second device in an embodiment of the application.
  • FIG. 5 is another schematic structural diagram of the first device in an embodiment of the application.
  • Fig. 6 is another schematic structural diagram of the second device in an embodiment of the application.
  • the embodiment of the application provides a method for determining the frequency position, which is used for the terminal equipment to determine the frequency position of the RSS of each cell, and reduce the mutual interference between the serving cell and the neighboring cells, and between multiple neighboring cells , Reduce signaling overhead and improve system performance.
  • frequency position described in the embodiments of the present application can also be referred to as “frequency domain position”
  • frequency set can also be referred to as “candidate position set”, “candidate frequency position set”, and “frequency domain position”.
  • Set or "set of candidate frequency domain positions”.
  • the technical solution of the present application can be applied to various data processing communication systems. For example, code division multiple access (code division multiple access, CDMA), time division multiple access (time division multiple access, TDMA), frequency division multiple access (frequency division multiple access, FDMA), orthogonal frequency division multiple access (orthogonal frequency- division multiple access, OFDMA), single carrier frequency division multiple access (single carrier FDMA, SC-FDMA) and other systems.
  • code division multiple access code division multiple access
  • time division multiple access time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal frequency division multiple access
  • single carrier frequency division multiple access single carrier frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • 5G fifth-generation
  • 5G new radio
  • NMV2X new radio vehicles
  • D2D equipment Device to device
  • the above-mentioned communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided in the embodiments of the present application.
  • the system architecture and business scenarios described in the embodiments of this application are intended to illustrate the technical solutions of the embodiments of this application more clearly, and do not constitute a limitation on the technical solutions provided in the embodiments of this application.
  • Those of ordinary skill in the art will know that with the network With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided in the embodiments of the present application are equally applicable to similar technical problems.
  • FIG. 1 is a block diagram of a communication system to which a method for determining a frequency position in an embodiment of the application is applicable.
  • the communication system may be a base station access system of a 2G network (that is, the RAN includes a base station and a base station controller), or may be a base station access system of a 3G network (that is, the RAN includes a base station and an RNC), or may be 4G
  • the base station access system of the network that is, the RAN includes an eNB and RNC
  • the RAN includes one or more network devices.
  • the network device may be any device with a wireless transceiver function, or a chip set in a device with a specific wireless transceiver function.
  • the network equipment includes, but is not limited to: base stations (such as base stations BS, base stations NodeB, evolved base stations eNodeB or eNB, base stations gNodeB or gNB in the fifth generation 5G communication system, base stations in future communication systems, and connections in WiFi systems. Ingress node, wireless relay node, wireless backhaul node), etc.
  • the base station may be: macro base station, micro base station, pico base station, small station, relay station, etc. Multiple base stations can support the network of one or more technologies mentioned above, or the future evolution network.
  • the core network may support the network of one or more technologies mentioned above, or a future evolution network.
  • the base station may include one or more co-site or non co-site transmission receiving points (transmission receiving points, TRP).
  • the network device may also be a wireless controller, a centralized unit (CU), or a distributed unit (DU) in a cloud radio access network (cloud radio access network, CRAN) scenario.
  • the network device can also be a server, a wearable device, or a vehicle-mounted device.
  • the following description takes the network device as a base station as an example.
  • the multiple network devices may be base stations of the same type, or base stations of different types.
  • the base station can communicate with the terminal equipment 1-6, and can also communicate with the terminal equipment 1-6 through a relay station.
  • the terminal device 1-6 can support communication with multiple base stations of different technologies.
  • the terminal device can support communication with a base station supporting an LTE network, a base station supporting a 5G network, and a base station supporting an LTE network.
  • the dual connection of the base station of the 5G network For example, the terminal is connected to the RAN node of the wireless network.
  • RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit) , BBU), or wireless fidelity (Wifi) access point (AP), etc.
  • a network device may include a centralized unit (CU) node, or a distributed unit (DU) node, or a RAN device including a CU node and a DU node.
  • Terminal equipment 1-6 also known as user equipment (UE), mobile station (MS), mobile terminal (MT), terminal, etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • terminal equipment 1-6 is a way to provide users with voice and/or A device with data connectivity, or a chip set in the device, for example, a handheld device with a wireless connection function, a vehicle-mounted device, etc.
  • terminal devices are: mobile phones (mobile phones), tablet computers, notebook computers, handheld computers, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented Augmented reality (AR) equipment, wireless terminals in industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical surgery, and smart grid (smart grid)
  • the terminal device provided in the embodiment of the present application may be a low-complexity terminal device and/or a terminal device in the coverage enhancement A mode.
  • the base station and UE1-UE6 form a communication system.
  • the base station sends one or more of system information, RAR message, and paging message to one or more of UE1-UE6.
  • UE4-UE6 also constitute a communication system.
  • UE5 can be implemented as a base station.
  • UE5 can send one or more of system information, control information and paging messages to UE4 and One or more UEs in UE6.
  • the terminal can measure the RSS of the neighboring cells of the serving cell, thereby further enhancing the user's mobility performance.
  • the frequency configuration information of each RSS needs to be notified to the terminal using 7-bit signaling.
  • the signaling overhead is relatively large.
  • An embodiment of the present application provides a method for determining a frequency position. Please refer to FIG. 2(a), which is a schematic diagram of an interaction process between a first device and a second device provided in an embodiment of this application.
  • the method for determining the frequency position in the embodiment of this application mainly includes the following steps:
  • the second device determines first information, where the first information is used to instruct the first device to determine the frequency position of the first signal of the first cell.
  • the first cell may be arbitrary, and the first cell may be a serving cell or a neighboring cell of the serving cell.
  • the first signal may be the resynchronization signal RSS or other signals, which is not limited in this application.
  • the frequency location of the first signal may be the frequency location of the RSS of the serving cell. If the first cell is a neighboring cell of the serving cell, the frequency position of the first signal may be the frequency position of the RSS of the neighboring cell of the serving cell.
  • the first cell includes: a serving cell and/or a neighboring cell of the serving cell.
  • the first signal of the first cell includes: the first signal of the serving cell, and/or the first signal of the neighboring cell of the serving cell.
  • the first information used to instruct the first device to determine the frequency position of the first signal includes: the first information is used to instruct the first device to determine the first signal of the serving cell, and/or the frequency of the first signal of the neighboring cell of the serving cell Location; At the same time, it also indicates at least one of the following indicators: 1.
  • the frequency location of the first signal of the serving cell is the same as the frequency location of the first signal of the neighboring cell of the serving cell; 2.
  • the first signal of the serving cell Whether the frequency set where it is located is the same as the frequency set where the first signal of the neighboring cell of the serving cell is located, and the frequency set includes a narrowband.
  • the second device determines second information, which is used to indicate whether the frequency position of the first signal of the serving cell is the same as the frequency position of the first signal of the neighboring cell of the serving cell; and/or , Whether the frequency set where the first signal of the serving cell is located is the same as the frequency set where the first signal of the neighboring cell of the serving cell is located, and the frequency set includes a narrowband.
  • the second device sends the above-mentioned second information to the first device, and the first device receives the second information and determines according to the second information: the frequency position of the first signal of the serving cell and the neighboring cell of the serving cell
  • the frequency positions of the first signals are the same or different; and/or the frequency set where the first signal of the serving cell is located is the same or different from the frequency set where the first signal of the neighboring cell of the serving cell is located.
  • the second device sends the first information to the first device.
  • the first information may indicate a frequency set, and the first information may also indicate a corresponding frequency position in the frequency set.
  • the first information may also indicate an offset, and the first information may also indicate a frequency position.
  • the frequency set includes at least one frequency unit, and the frequency unit may be a resource block or a narrowband.
  • a frequency set may include: one or more resource blocks, or one or more narrowbands.
  • the frequency location may include: resource block number or narrowband number.
  • One frequency set corresponds to one index, and the index may be a number or not the number of the frequency set.
  • the narrowband number can be used as the index of the frequency set, or the narrowband number may not be used as the index of the frequency set, for example, the narrowband number and the index A corresponding relationship.
  • One frequency set corresponds to one index, and the number corresponding to each resource block in the narrowband can be regarded as a frequency position.
  • the specific indication content of the first information may be a value or parameter, including N bits.
  • the first information indicates the corresponding frequency position in the frequency set.
  • a narrowband usually includes 6 resource blocks.
  • N can be 3, and the first information uses 3 bits to indicate the narrowband.
  • Each resource block in the narrowband for example: 000 indicates the first resource block in the narrowband (numbered k1), 001 indicates the second resource block in the narrowband (numbered k2), 010 indicates the third resource in the narrowband Block (numbered k3), 011 indicates the fourth resource block in the narrowband (numbered k4), 100 indicates the fifth resource block in the narrowband (numbered k5), and 101 indicates the sixth resource block in the narrowband ( The number is k6), where the order of the numbers k1-k6 can be from low bit to high bit, or from high bit to low bit.
  • the first information indicates the frequency set.
  • the system bandwidth includes L narrowbands.
  • N can be ceil ⁇ log2(L) ⁇ bits, and the first information uses N bits Indicates the position of the narrow band within the system bandwidth.
  • the position of the narrowband may be determined by the narrowband index, and the first information indicates that the narrowband index determines the position of the narrowband. For example, when the system bandwidth is 10MHz, it includes 8 narrowbands.
  • N 3, for example: 000 indicates a narrowband with a narrowband index of 0, 001 indicates a narrowband with a narrowband index of 1, 010 indicates a narrowband with a narrowband index of 2, and 011 indicates a narrowband A narrowband with an index of 3, 100 indicates a narrowband with a narrowband index of 4, 101 indicates a narrowband with a narrowband index of 5, 110 indicates a narrowband with a narrowband index of 6, and 111 indicates a narrowband with a narrowband index of 7.
  • the first information indicates the offset
  • the offset granularity of the offset is the first frequency unit.
  • the first frequency unit is a resource block, a narrowband, or L resource blocks, and L can be a predefined Or indicated by the second device.
  • the offset indicated by the first information is M
  • the offset is M first frequency units.
  • it can shift to the direction where the resource block number is larger, or it can shift to the direction where the resource block number is smaller.
  • the first information indicates a frequency position
  • the frequency position may be a narrowband number, a resource block number, or a subcarrier number.
  • the first information may directly indicate the frequency position, or the first indication information may indicate the frequency position according to a certain correspondence relationship.
  • the technical solution of the present application determines the frequency position of the first signal based on both the first information and the cell identity, the frequency range that the first information can indicate can be reduced, thus saving signaling overhead .
  • the first device determines the frequency position of the first signal according to the first information and the cell identity.
  • the first device determines the frequency position of the first signal according to the first information and the cell identity, and the following implementation methods can be adopted:
  • the first way the first device determines the first frequency set according to the cell identity, the first frequency set includes at least one frequency unit; the first device determines the frequency position of the first signal in the first frequency set according to the first information.
  • the first system bandwidth includes at least one frequency set, each frequency set includes at least one frequency unit, and each frequency set corresponds to an index; the first device determines the first frequency set according to the cell identity, and may perform the following steps:
  • Step 11 The first device determines the first parameter according to the cell identity.
  • the first parameter may be equal to the cell identity.
  • the first parameter can also be calculated from the cell identity.
  • the specific calculation methods include but are not limited to: the cell identity is divided by the first variable and then rounded up, the cell identity is divided by the second variable and then rounded down, and the cell identity is relative to One or more algorithms in the remainder of the third variable,
  • all variables in the first variable, second variable, and third variable can be constants, and the value of each variable is arbitrary; all variables in the first variable, second variable, and third variable It can all be configured by the first device; some of the first variable, the second variable, and the third variable are configured by the first device, and the other part of the first variable, the second variable, and the third variable are constants, The value of each variable in this part of the variable is arbitrary. It should be noted that the description in this part is applicable to the first variable, the second variable and the third variable mentioned in the following in this application, and will not be repeated hereafter.
  • Step 12 The first device determines the first index corresponding to the first parameter.
  • the first index may be equal to the first parameter.
  • the first index is determined by the first parameter and the corresponding relationship.
  • the corresponding relationship may specifically include, but is not limited to, a corresponding relationship table or a corresponding relationship formula.
  • Step 13 The first device determines the first frequency set corresponding to the first index in at least one frequency set.
  • the first index may be a narrowband number, for example, one narrowband corresponds to one frequency set.
  • the first device determines the frequency position of the first signal in the first frequency set according to the first indication information, and may perform the following steps:
  • Step 14 The first device determines the second parameter according to the first information.
  • the second parameter may be directly indicated by the first information.
  • Step 15 The first device determines the frequency position corresponding to the second parameter in the first frequency set, and the corresponding frequency position in the first frequency set is the frequency position of the first signal.
  • the second way the first device determines the second frequency set according to the first information, and the second frequency set includes at least one frequency unit; the first device determines the frequency position of the first signal in the second frequency set according to the cell identifier.
  • the second system bandwidth includes at least one frequency set, each frequency set includes at least one frequency unit, and each frequency set corresponds to an index;
  • the first device determines the second frequency set according to the first information, and may perform the following steps:
  • Step 21 The first device determines the second index corresponding to the first information.
  • the second index may be directly indicated by the first information.
  • Step 22 The first device determines the second frequency set corresponding to the second index in the at least one frequency set.
  • the first device determines the frequency position of the first signal in the second frequency set according to the cell identity, and may perform the following steps:
  • Step 23 The first device determines the third parameter according to the cell identity.
  • the third parameter may be equal to the cell identity.
  • the third parameter can also be calculated from the cell identity.
  • the specific calculation methods include but are not limited to: the cell identity is divided by the first variable and then rounded up, the cell identity is divided by the second variable and then rounded down, and the cell identity is relative to One or more algorithms in the remainder of the third variable. .
  • Step 24 The first device determines the frequency position corresponding to the third parameter in the second frequency set, and the corresponding frequency position in the second frequency set is the frequency position of the first signal.
  • the position of the lowest RB of the first signal is determined in the second frequency set, for example, the position of the lowest RB of the first signal is determined according to the following formula.
  • Is cell-ID, M and a are predefined constants or parameters configured by the network, x is configured by the base station through higher layers or determined or predefined according to the first indication information, and f is the frequency position of the first signal.
  • the cell-ID may be referred to as a cell identity (cell identity), or may be referred to as a physical layer cell identity (physical layer cell identity).
  • the third way the first device determines the first frequency position according to the cell identity; the first device determines the first offset according to the first information; the first device determines the first signal according to the first frequency position and the first offset Frequency location.
  • the first device may also determine the first offset according to the first information; the first device determines the frequency position of the first signal according to the first offset, the cell identifier, and the system bandwidth.
  • the first device determines the first frequency location according to the cell identity, and may perform the following steps:
  • Step 31 The first device determines the fourth parameter according to the cell identity.
  • the fourth parameter can be equal to the cell identity.
  • the fourth parameter can also be calculated from the cell identity.
  • the specific calculation methods include but are not limited to: the cell identity is divided by the first variable and then rounded up, the cell identity is divided by the second variable and then rounded down, and the cell identity is relative to One or more algorithms in the remainder of the third variable.
  • Step 32 The first device determines the third index corresponding to the fourth parameter
  • the third index can be equal to the fourth parameter.
  • the third index is determined by the fourth parameter and the corresponding relationship.
  • the corresponding relationship may specifically include, but is not limited to, a corresponding relationship table.
  • Step 33 The first device determines the frequency position corresponding to the third index, and the frequency position corresponding to the third index is the first frequency position.
  • the third index may be equal to its corresponding frequency position, such as a resource block number.
  • the frequency position (resource block number) corresponding to the third index may also be obtained after calculation by the third index.
  • the specific calculation methods include, but are not limited to, one or more of the following: dividing the cell identity by the first variable and rounding up, dividing the cell identity by the second variable and rounding down, and calculating the remainder of the cell identity relative to the third variable. .
  • the first device determines the first offset according to the first information, and may perform the following steps:
  • Step 34 The first device determines the fifth parameter according to the first information.
  • the fifth parameter may be directly indicated by the first information.
  • Step 35 The first device determines the offset corresponding to the fifth parameter, and the offset corresponding to the fifth parameter is the first offset.
  • the fifth parameter may be equal to its corresponding offset.
  • the offset corresponding to the fifth parameter can also be obtained after calculation by the fifth parameter.
  • the specific calculation methods include, but are not limited to, one or more of the following: dividing the cell identity by the first variable and rounding up, dividing the cell identity by the second variable and rounding down, and calculating the remainder of the cell identity relative to the third variable. .
  • Step 36 Determine the frequency position of the first signal according to the first offset and the first frequency position.
  • the frequency position of the first signal is a position where the first frequency position is upwardly (a high frequency direction, or a direction of a large subcarrier number) offset by a first offset, or the position of the first signal is a first frequency position Offset the position of the first offset downward (low frequency direction, or small subcarrier number direction). It should be noted that the description of the first offset here is also applicable to the second offset of the fourth method.
  • the first device may also determine the position of the first signal according to the first frequency position of the first offset and the system bandwidth. For example, calculate (p+q)mod z according to the following formula, where p is the resource block number corresponding to the first frequency position, q is the first offset, and z is the number of resource blocks included in the system bandwidth. It should be noted that the description of the first offset here is also applicable to the second offset of the fourth method. The fourth way: the first device determines the second frequency position according to the first information; the first device determines the second offset according to the cell identity; the first device determines the first signal according to the second frequency position and the second offset Frequency location.
  • the first device determines the second frequency location according to the first information, and may perform the following operations:
  • Step 41 The first device determines the sixth parameter according to the first information
  • the sixth parameter may be directly indicated by the first information.
  • Step 42 The first device determines the frequency position corresponding to the sixth parameter, and the frequency position corresponding to the sixth parameter is the second frequency position.
  • the sixth parameter may be equal to its corresponding frequency position, such as the resource block number.
  • the frequency position (such as the resource block number) corresponding to the sixth parameter may also be obtained after calculation by the sixth parameter.
  • the specific calculation methods include, but are not limited to, one or more of the following: dividing the cell identity by the first variable and rounding up, dividing the cell identity by the second variable and rounding down, and calculating the remainder of the cell identity relative to the third variable. .
  • the first device determines the second offset according to the cell identity, and may perform the following steps:
  • Step 43 The first device determines the seventh parameter according to the cell identity.
  • Step 44 The first device determines the fourth index corresponding to the seventh parameter.
  • Step 45 The first device determines the offset corresponding to the fourth index, and the offset corresponding to the fourth index is the second offset.
  • the offset determined by the first device according to the cell identity (or the first information) is N, and N is an integer greater than or equal to 1.
  • the frequency position (resource block number) determined by the first device according to the first information (or cell identity) is k1, and the frequency position of the first signal is the resource with the resource block number (k1+N) or k1+N) mod B Block, where B is the number of resource blocks included in the system bandwidth, and mod is the remainder function.
  • the first device determines the frequency position of the first signal in a third frequency set according to the first information and the cell identity, and the third frequency set is predefined or configured by the second device.
  • the first device determines the frequency position of the first signal according to the first information, the cell identifier, and the first formula.
  • the first formula can be:
  • the f is the index corresponding to the frequency position or the frequency set; Is the value of the cell identifier, a and/or M are determined according to the first information, and the number of resource blocks or narrowbands in the third frequency set is less than or equal to x.
  • M and a may use the first indication information and the second indication information to indicate.
  • the first device determines the frequency granularity according to the first information, the first device determines the frequency position of the first signal under the frequency granularity according to the cell identifier; or the first device determines the frequency granularity according to the cell identifier ,
  • the frequency granularity refers to the number of frequency units included between two adjacent candidate positions of the first signal
  • the frequency unit may be a resource block or a subcarrier or a narrowband.
  • the candidate positions of the first signal are possible positions of the first signal.
  • the first device determines the frequency position of the first signal under the frequency granularity according to the cell identifier (or the first information).
  • the first information indicates that the frequency granularity is N, and the frequency position of the first signal under the frequency granularity is calculated according to the following formula.
  • the formula can be: or Where f is the index corresponding to the frequency location or frequency set, Is the value of the cell identifier, M is predefined or configured by the second device, the second device may refer to the network, B is the number of resource blocks contained in the system bandwidth, mod is the remainder function, and N is the frequency particle Degree, P is a predefined constant or configured by the second device.
  • the foregoing first system bandwidth and second system bandwidth refer to the working bandwidth of the communication system, and the working bandwidth of the first device is smaller than the working bandwidth of the communication system.
  • the working bandwidth of the communication system may specifically be: the system bandwidth of Long Term Evolution LTE. As described in Table 1, there is a correspondence between the system bandwidth and the resource block RB.
  • the first device measures the strength of the first signal at the frequency position of the first signal.
  • FIG. 2(b) is a schematic flowchart of a first device determining a frequency position of a first signal according to an embodiment of this application.
  • the frequency determination method in the embodiment of this application mainly includes the following steps:
  • the first device determines the cell identity of the first cell.
  • the first cell may be arbitrary, and the first cell may be a serving cell or a neighboring cell of the serving cell.
  • the first signal may be the resynchronization signal RSS or other signals, which is not limited in this application.
  • the first device determines the frequency position of the first signal according to the cell identity of the first cell.
  • the frequency location of the first signal may be the frequency location of the RSS of the serving cell. If the first cell is a neighboring cell of the serving cell, the frequency position of the first signal may be the frequency position of the RSS of the neighboring cell of the serving cell.
  • the system bandwidth includes multiple frequency sets, each frequency set includes at least one frequency unit, and each frequency set corresponds to an index.
  • the first device determines the frequency position of the first signal according to the cell identity of the first cell, and may perform the following steps:
  • Step 61 The first device determines the eighth parameter according to the cell identity.
  • the eighth parameter can be equal to the cell identity.
  • the eighth parameter may also be calculated from the cell identity, and its specific calculation method includes but is not limited to one or more algorithms among the upper round function, the lower round function, and the remainder function.
  • Step 62 The first device determines the fifth index corresponding to the eighth parameter.
  • Step 63 The first device determines the fourth frequency set corresponding to the fifth index.
  • Step 64 The first device determines the corresponding frequency position in the fourth frequency set, and the frequency position corresponding to the fourth frequency set is the frequency position of the first signal.
  • the first device measures the strength of the first signal at the frequency position of the first signal.
  • the first terminal determines the frequency position of the first signal through the cell identity, which may be determined without using a signaling indication, so that no signaling overhead is caused.
  • the first device 300 includes: a receiving module 302 for receiving first information sent by a second device, where the first information is used
  • the processing module 301 determines the frequency position of the first signal in the first cell; the processing module 301 is configured to determine the frequency position of the first signal according to the first information and the cell identity of the first cell.
  • the processing module 301 is configured to determine a first frequency set according to the cell identity, and the first frequency set includes at least one frequency unit; the processing module 301 is further configured to determine the first frequency set according to the first information Determine the frequency position of the first signal in.
  • the processing module 301 is specifically configured to determine the first parameter according to the cell identity; the processing module is specifically also configured to determine the first index corresponding to the first parameter; the processing module 301 is specifically further configured to Used to determine the first frequency set corresponding to the first index.
  • the processing module 301 is specifically configured to determine the second parameter according to the first information; the processing module 301 is specifically configured to determine the frequency corresponding to the second parameter in the first frequency set. Position, the corresponding frequency position in the first frequency set is the frequency position of the first signal.
  • the processing module 301 is configured to determine a second frequency set according to the first information, and the second frequency set includes at least one frequency unit; the processing module 301 is further configured to determine the second frequency set according to the cell identifier. Determine the frequency position of the first signal in the second frequency set.
  • the first system bandwidth includes at least one frequency set, each frequency set includes at least one frequency unit, and each frequency set corresponds to an index;
  • the processing module 301 is specifically configured to determine the second index corresponding to the first information; the processing module is also specifically configured to determine the second frequency set corresponding to the second index in the at least one frequency set.
  • the processing module 301 is specifically used to determine the third parameter according to the cell identity; the processing module 301 is specifically also used to determine the frequency position corresponding to the third parameter in the second frequency set, so The corresponding frequency position in the second frequency set is the frequency position of the first signal.
  • the processing module is configured to determine the first frequency position according to the cell identity; the processing module 301 is further configured to determine the first offset according to the first information; the processing module 301 is further configured to determine the first offset according to the first information A frequency position and a first offset determine the frequency position of the first signal.
  • the processing module 301 is specifically configured to determine the fourth parameter according to the cell identity; the processing module 301 is specifically also configured to determine the third index corresponding to the fourth parameter; the processing module 301 is specifically also configured to determine The frequency position corresponding to the third index, and the frequency position corresponding to the third index is the first frequency position.
  • the processing module 301 is specifically further configured to determine the fifth parameter according to the first information; the processing module 301 is specifically further configured to determine the offset corresponding to the fifth parameter, and the fifth parameter The offset corresponding to the parameter is the first offset.
  • the processing module 301 is configured to determine the second frequency position according to the first information; the processing module 301 is also configured to determine the second offset according to the cell identity; the processing module 301 is also configured to determine the second offset according to the first information The second frequency position and the second offset determine the frequency position of the first signal.
  • the processing module 301 is specifically configured to determine the sixth parameter based on the first information; the processing module 301 is specifically configured to determine the frequency position corresponding to the sixth parameter, and the frequency position corresponding to the sixth parameter Is the second frequency position.
  • the processing module 301 is specifically used to determine the seventh parameter according to the cell identity; the processing module 301 is specifically used to determine the fourth index corresponding to the seventh parameter; the processing module 301 is also specifically used to Determine the offset corresponding to the fourth index, and the offset corresponding to the fourth index is the second offset
  • the processing module 301 is configured to determine the frequency position of the first signal in a third frequency set according to the first information and the cell identity, the third frequency set is predefined, or the second device Configured.
  • the processing module is configured to calculate the frequency position of the first signal according to the first information, the cell identifier, and a first formula, and the first formula is:
  • f is the index corresponding to the frequency position or frequency set; Is the value of the cell identifier, a and/or M are determined according to the first information, and the number of resource blocks or narrowbands in the third frequency set is less than or equal to x.
  • the first cell is a serving cell, and the first signal is a resynchronization signal of the serving cell; or, the first cell is a neighboring cell of the serving cell, and the first signal is a neighbor of the serving cell The resynchronization signal of the cell.
  • the second device 400 includes: a processing module 401, configured to determine first information, and the first information is used by the first device to determine the first The frequency position of the first signal of the cell; the sending module 402 is configured to send the first information to the first device.
  • the first information is used by the first device to determine the frequency position of the first signal in the first frequency set, the first frequency set includes at least one frequency unit, and the first frequency set is The first device is determined according to the cell identity of the first cell.
  • the first information is used by the first device to determine a second frequency set
  • the second frequency set includes at least one frequency unit
  • the frequency position of the first signal is included in the second frequency set.
  • the first information is used to indicate a first offset
  • the first offset and the cell identity of the first cell are used by the first device to determine the frequency position of the first signal.
  • the first information is used to indicate the second frequency position, and the second frequency position and the cell identity of the first cell are used by the first device to determine the frequency position of the first signal.
  • the first information is used to indicate the frequency position of the first signal in the third frequency set, which is predefined or configured by the second device.
  • the first cell is a serving cell, and the first signal is a resynchronization signal of the serving cell; or, the first cell is a neighboring cell of the serving cell, and the first signal is a neighboring of the serving cell The resynchronization signal of the cell.
  • An embodiment of the present application further provides a computer storage medium, wherein the computer storage medium stores a program, and the program executes a part or all of the steps recorded in the foregoing method embodiment.
  • the first device 500 includes one or more processors 501 (one in FIG. 5 is taken as an example).
  • the first device 500 may further include a memory 503 and a communication interface 502.
  • the processor 501, the communication interface 502, and the memory 503 are connected through a communication bus.
  • the processor 501 may be a general-purpose central processing unit (CPU), a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the communication interface 502 may be used to send and receive information.
  • the communication interface 502 may receive the first information sent by the second device.
  • the memory 503 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electronic device.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM Erasable programmable read-only memory
  • CD-ROM or other optical disc storage optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other Magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the memory 503 may exist independently and is connected to the processor 501 through a bus.
  • the memory 503 may also be integrated with the processor 501.
  • the memory 503 is used to store application program codes for executing the solutions of the present application, and the processor 501 controls the execution.
  • the processor 501 is configured to execute application program codes stored in the memory 503.
  • the processor 501 may include one or more CPUs, and each CPU may be a single-core (single-core) processor or a multi-core (multi-core) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the second device 600 includes one or more processors 601 (one in FIG. 6 is taken as an example).
  • the second device 600 may further include a memory 603 and a communication interface 602.
  • the processor 601, the communication interface 602, and the memory 603 are connected through a communication bus.
  • the processor 601 may be a general-purpose central processing unit (CPU), a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the program of the present application.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the communication interface 602 may be used to send and receive information.
  • the communication interface 602 may send first information to the first device.
  • the memory 603 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM) or other types of dynamic storage devices that can store information and instructions, or an electronic device. Erasable programmable read-only memory (EEPROM), CD-ROM or other optical disc storage, optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other Magnetic storage devices, or any other media that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but are not limited thereto.
  • the memory 603 may exist independently and is connected to the processor 601 through a bus.
  • the memory 603 may also be integrated with the processor 601.
  • the memory 603 is used to store application program code for executing the solution of the present application, and the processor 601 controls the execution.
  • the processor 601 is configured to execute application program codes stored in the memory 603.
  • the processor 601 may include one or more CPUs, and each CPU may be a single-core (single-core) processor or a multi-core (multi-core) processor.
  • the processor here may refer to one or more devices, circuits, and/or processing cores for processing data (for example, computer program instructions).
  • the first device 300 and the second device 400 are presented in the form of dividing various functional modules in an integrated manner.
  • the "module” here can refer to application-specific integrated circuits (ASICs), circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other functions that can provide the aforementioned functions Device.
  • ASICs application-specific integrated circuits
  • the first device 300 and the second device 400 may adopt the form shown in FIG. 5 or FIG. 6.
  • the processor 501 in FIG. 5 may invoke the computer-executable instructions stored in the memory 503, so that the first device 300 executes the frequency position determination method in the foregoing method embodiment.
  • the functions/implementation process of the processing module 301 and the receiving module 302 in FIG. 3 may be implemented by the processor 501 in FIG. 5 calling a computer execution instruction stored in the memory 503.
  • the function/implementation process of the processing module 301 in FIG. 3 can be implemented by the processor 501 in FIG. 5 calling computer execution instructions stored in the memory 503, and the function/implementation process of the receiving module 302 in FIG.
  • the communication interface 502 in 5 is implemented.
  • the first device 300 and the second device 400 provided in the embodiment of the present application can be used to perform the above-mentioned method for determining the frequency position, the technical effects that can be obtained can refer to the above-mentioned method embodiment, which will not be repeated here.
  • the first device 300 and the second device 400 are presented in the form of dividing various functional modules in an integrated manner.
  • the embodiment of the present application may also divide the function modules of the execution function network element and the control function network element corresponding to each function, which is not specifically limited in the embodiment of the present application.
  • an embodiment of the present application provides a chip system, and the chip system includes a processor for implementing the above-mentioned method for determining a frequency position.
  • the chip system also includes memory.
  • the memory is used to store program instructions and data necessary for the first information processing device and the second information processing device.
  • the chip system may be composed of chips, or may include chips and other discrete devices, which are not specifically limited in the embodiment of the present application.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method of the terminal device or the network device in the foregoing method embodiment is executed.
  • processors mentioned in the embodiments of the present invention may be a central processing unit (central processing unit, CPU), or other general-purpose processors, digital signal processors (digital signal processors, DSP), and application-specific integrated circuits ( application specific integrated circuit (ASIC), ready-made programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processors
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present invention may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory serial DRAM, SLDRAM
  • direct rambus RAM direct rambus RAM, DR RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including several instructions to make a computer device (which can be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种频率位置的确定方法以及设备,用于终端设备确定每个小区的RSS所在频率位置,降低服务小区与相邻小区之间,以及多个相邻小区之间的相互干扰,减小信令开销,提升系统性能。频率位置的确定方法包括:第一设备接收第二设备发送的第一信息,第一信息用于第一设备确定第一小区中的第一信号的频率位置;第一设备根据第一信息以及第一小区的小区标识,确定第一信号的频率位置。本方法和设备提高了网络的覆盖能力,可以应用于物联网,例如MTC、IoT、LTE-M、M2M等。

Description

一种频率位置的确定方法以及设备 技术领域
本申请实施例涉及通信技术领域,尤其涉及一种频率位置的确定方法以及设备。
背景技术
目前的通信系统的同步,通常采用主同步信号和辅助同步信号进行信号同步。主同步信号和辅助同步信号两者之间在时域上的时间间隔较大,增加了主同步信号和辅助同步信号进行同步所需的同步时长。为了减少同步时长,节约功耗,引入了重同步信号(resynchronization signal,RSS)。重同步信号在频域上占用连续的2个资源块(resource block,RB),并且可以是系统带宽内的任意两个RB,两个RB中的低位RB由基站通过信令通知终端。
现有技术中,终端还可以通过测量服务小区的相邻小区的RSS,从而进一步增强用户的移动性能。但是现有技术中,RSS的频域位置信息需要7个比特进行指示,当相邻小区较多时信令开销较大。
发明内容
为了解决上述技术问题,本申请实施例中提供了一种频率位置的确定方法,用于终端设备确定每个小区的RSS所在频率位置。具体方案如下:
第一方面,本申请实施例中提供了一种频率位置的确定方法,包括:第一设备接收第二设备发送的第一信息,第一信息用于第一设备确定第一小区中的第一信号的频率位置;第一设备根据第一信息以及第一小区的小区标识,确定第一信号的频率位置。
其中,第一设备基于第一信息和小区标识确定第一信号的频率位置,由于小区标识可以缩小第一信号的频率位置对应的频率范围,使得第一信息可以在小区标识限定的较小频率范围内确定第一信号的频率位置,一般来说,指示的频率范围越小,对应的信令开销越小,因此本方案中通过基于第一信息和小区标识确定第一信号的频率位置可以有效的减小信令开销。此外,由于小区标识或第一信息可以将不同小区对应的第一信号的频率位置限定在不同的候选频率范围内,可以减少服务小区与相邻小区之间,以及多个相邻小区之间第一信号所在频率位置的碰撞,从而降低服务小区与相邻小区之间,以及多个相邻小区之间的相互干扰,提升系统性能。
在第一方面的一种可能的实现方式中,第一设备根据第一信息以及小区标识,确定第一信号的频率位置,包括:第一设备根据小区标识确定第一频率集合,第一频率集合包括至少一个频率单元;第一设备根据第一信息在第一频率集合中确定第一信号的频率位置。
在第一方面的一种可能的实现方式中,第一系统带宽包括至少一个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;第一设备根据小区标识确定第一频率集合,包括:第一设备根据小区标识确定第一参数;第一设备确定第一参数对应的第一索引;第一设备确定在至少一个频率集合中第一索引对应的第一频率集合。
在第一方面的一种可能的实现方式中,第一设备根据第一信息在第一频率集合中确定 第一信号的频率位置,包括:第一设备根据第一信息确定第二参数;
第一设备确定第二参数在第一频率集合中对应的频率位置,第一频率集合中对应的频率位置为第一信号的频率位置。
在第一方面的一种可能的实现方式中,第一设备根据第一信息以及小区标识,确定第一信号的频率位置,包括:第一设备根据第一信息确定第二频率集合,第二频率集合包括至少一个频率单元;第一设备根据小区标识在第二频率集合中确定第一信号的频率位置。
在第一方面的一种可能的实现方式中,第二系统带宽包括至少一个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;第一设备根据第一信息确定第二频率集合,包括:第一设备确定第一信息对应的第二索引;第一设备确定在至少一个频率集合中第二索引对应的第二频率集合。
在第一方面的一种可能的实现方式中,第一设备根据小区标识在第二频率集合中确定第一信号的频率位置,包括:第一设备根据小区标识确定第三参数;
第一设备确定第三参数在第二频率集合中对应的频率位置,第二频率集合中对应的频率位置为第一信号的频率位置。
在第一方面的一种可能的实现方式中,第一设备根据第一信息以及小区标识,确定第一信号的频率位置,包括:第一设备根据小区标识确定第一频率位置;第一设备根据第一信息确定第一偏移量;第一设备根据第一频率位置和第一偏移量确定第一信号的频率位置。
在第一方面的一种可能的实现方式中,第一设备根据小区标识确定第一频率位置,包括:第一设备根据小区标识确定第四参数;第一设备确定第四参数对应的第三索引;第一设备确定第三索引对应的频率位置,第三索引对应的频率位置为第一频率位置。
在第一方面的一种可能的实现方式中,第一设备根据第一信息确定第一偏移量,包括:第一设备根据第一信息确定第五参数;第一设备确定第五参数对应的偏移量,第五参数对应的偏移量为第一偏移量。
在第一方面的一种可能的实现方式中,第一设备根据第一信息以及小区标识,确定第一信号的频率位置,包括:第一设备根据第一信息确定第二频率位置;第一设备根据小区标识确定第二偏移量;第一设备根据第二频率位置和第二偏移量确定第一信号的频率位置。
在第一方面的一种可能的实现方式中,第一设备根据第一信息确定第二频率位置,包括:第一设备根据第一信息确定第六参数;第一设备确定第六参数对应的频率位置,第六参数对应的频率位置为第二频率位置。
在第一方面的一种可能的实现方式中,第一设备根据小区标识确定第二偏移量,包括:第一设备根据小区标识确定第七参数;第一设备确定第七参数对应的第四索引;第一设备确定第四索引对应的偏移量,第四索引对应的偏移量为第二偏移量。
在第一方面的一种可能的实现方式中,第一设备根据第一信息以及小区标识,确定第一信号的频率位置,包括:第一设备根据第一信息以及小区标识,在第三频率集合中确定第一信号的频率位置,第三频率集合为预定义的,或第二设备配置的。
在第一方面的一种可能的实现方式中,第一设备根据第一信息以及小区标识,在第三频率集合中确定第一信号的频率位置,包括:第一设备根据第一信息、小区标识和第一公式计算得到第一信号的频率位置;
第一公式为:
Figure PCTCN2019101195-appb-000001
f为频率位置或频率集合对应的索引;
Figure PCTCN2019101195-appb-000002
为小区标识的值,a和/或M为根据第一信息确定的,第三频率集合中的资源块或窄带的编号小于或等于x。
在第一方面的一种可能的实现方式中,第一小区是服务小区,第一信号为服务小区的重同步信号;或,第一小区是服务小区的相邻小区,第一信号为服务小区的相邻小区的重同步信号。
第二方面,本申请实施例提供了一种频率位置的确定方法,包括:第二设备确定第一信息,第一信息用于第一设备确定第一小区的第一信号的频率位置;第二设备向第一设备发送第一信息。
在第二方面的一种可能的实现方式中,第一信息用于第一设备确定在第一频率集合中第一信号的频率位置,第一频率集合包括至少一个频率单元,第一频率集合为第一设备根据第一小区的小区标识确定的。
在第二方面的一种可能的实现方式中,第一信息用于第一设备确定第二频率集合,第二频率集合包括至少一个频率单元,第一信号的频率位置包含于第二频率集合中。
在第二方面的一种可能的实现方式中,第一信息用于指示第一偏移量,第一偏移量和第一小区的小区标识用于第一设备确定第一信号的频率位置。
在第二方面的一种可能的实现方式中,第一信息用于指示第二频率位置,第二频率位置和第一小区的小区标识用于第一设备确定第一信号的频率位置。
在第二方面的一种可能的实现方式中,第一信息用于指示在第三频率集合中第一信号的频率位置,第三频率集合为预定义的,或第二设备配置的。
在第二方面的一种可能的实现方式中,第一小区为服务小区,第一信号为服务小区的重同步信号;或,第一小区为服务小区的相邻小区,第一信号为服务小区的相邻小区的重同步信号。
第三方面,本申请实施例中提供了一种频率位置的确定方法,包括:第一设备确定第一小区的小区标识;第一设备根据小区标识,确定第一小区中的第一信号的频率位置。
在第三方面的一种可能的实现方式中,第三系统带宽包括多个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;第一设备根据小区标识,确定第一小区中的第一信号的频率位置,包括:第一设备根据小区标识确定第八参数;第一设备确定第八参数对应的第五索引;第一设备确定第五索引对应的第四频率集合;第一设备确定第四频率集合对应的频率位置,第四频率集合对应的频率位置为第一信号的频率位置。
第四方面,本申请实施例中提供了一种装置,所述装置为第一设备,包括:接收模块和处理模块,该接收模块,用于接收第二设备发送的第一信息,其中,该第一信息用于处理模块确定第一小区中的第一信号的频率位置;该处理模块,用于根据第一信息以及第一小区的小区标识,确定第一信号的频率位置。
在第四方面的一种可能的实现方式中,第一系统带宽包括至少一个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;处理模块,用于根据所述小区标识确定第一频率集合;根据第一信息在第一频率集合中确定第一信号的频率位置。
在第四方面的一种可能的实现方式中,处理模块,具体用于根据所述小区标识确定第一参数;处理模块,具体还用于确定所述第一参数对应的第一索引;处理模块,具体还用于确定所述第一索引对应的所述第一频率集合。
在第四方面的一种可能的实现方式中,处理模块,具体还用于根据所述第一信息确定第二参数;处理模块,具体还用于确定第二参数在所述第一频率集合中对应的频率位置,该第一频率集合中对应的频率位置为第一信号的频率位置。
在第四方面的一种可能的实现方式中,处理模块,用于根据所述第一信息确定第二频率集合,所述第二频率集合包括至少一个频率单元;处理模块,还用于根据该小区标识在第二频率集合中确定第一信号的频率位置。
在第四方面的一种可能的实现方式中,第二系统带宽包括至少一个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;处理模块,具体用于确定第一信息对应的第二索引;处理模块,具体还用于确定在至少一个频率集合中第二索引对应的第二频率集合。
在第四方面的一种可能的实现方式中,在第六种可能的实现方式中,处理模块,具体还用于根据小区标识确定第三参数;处理模块,具体还用于确定第三参数在所述第二频率集合中对应的频率位置,所述第二频率集合中对应的频率位置为所述第一信号的频率位置。
在第四方面的一种可能的实现方式中,处理模块,用于根据小区标识确定第一频率位置;处理模块,还用于根据第一信息确定第一偏移量;处理模块,还用于根据该第一频率位置和第一偏移量确定第一信号的频率位置。
在第四方面的一种可能的实现方式中,处理模块,具体用于根据小区标识确定第四参数;处理模块,具体还用于确定第四参数对应的第三索引;处理模块,具体还用于确定第三索引对应的频率位置,所述第三索引对应的频率位置为所述第一频率位置。
在第四方面的一种可能的实现方式中,处理模块,具体还用于根据所述第一信息确定第五参数;处理模块,具体还用于确定所述第五参数对应的偏移量,所述第五参数对应的偏移量为所述第一偏移量。
在第四方面的一种可能的实现方式中,处理模块,用于根据第一信息确定第二频率位置;处理模块,还用于根据小区标识确定第二偏移量;处理模块,还用于根据第二频率位置和第二偏移量确定第一信号的频率位置。
在第四方面的一种可能的实现方式中,处理模块,具体用于根据第一信息确定第六参数;处理模块,具体还用于确定该第六参数对应的频率位置,该第六参数对应的频率位置为第二频率位置。
在第四方面的一种可能的实现方式中,处理模块,具体还用于根据小区标识确定第七参数;处理模块,具体还用于确定第七参数对应的第四索引;处理模块,具体还用于确定该第四索引对应的偏移量,该第四索引对应的偏移量为第二偏移量。
可在第四方面的一种可能的实现方式中,处理模块,用于根据第一信息以及小区标识,在第三频率集合中确定第一信号的频率位置,该第三频率集合为预定义的,或第二设备配置的。
在第四方面的一种可能的实现方式中,在第十四种可能的实现方式中,处理模块,用于根据第一信息、小区标识和第一公式计算得到所述第一信号的频率位置,该第一公式为:
Figure PCTCN2019101195-appb-000003
其中,f为频率位置或频率集合对应的索引;
Figure PCTCN2019101195-appb-000004
为小区标识的值,a和/或M为根据第一信息确定的,第三频率集合中的资源块或窄带的编号小于或等于x。
在第四方面的一种可能的实现方式中,在第十五种可能的实现方式中,第一小区是服务小区,第一信号为该服务小区的重同步信号;或,第一小区是服务小区的相邻小区,第一信号为该服务小区的相邻小区的重同步信号。
第五方面,本申请实施例中提供了一种装置,所述装置为第二设备,包括:处理模块,用于确定第一信息,该第一信息用于第一设备确定第一小区的第一信号的频率位置;发送模块,用于向该第一设备发送该第一信息。可选的,结合上述第五方面,在第一种可能的实现方式中,第一信息用于该第一设备确定在第一频率集合中所述第一信号的频率位置,该第一频率集合包括至少一个频率单元,该第一频率集合为第一设备根据所述第一小区的小区标识确定的。
在第五方面的一种可能的实现方式中,第一信息用于第一设备确定第二频率集合,该第二频率集合包括至少一个频率单元,该第一信号的频率位置包含于第二频率集合。在第五方面的一种可能的实现方式中,第一信息用于指示第一偏移量,该第一偏移量和第一小区的小区标识用于第一设备确定第一信号的频率位置。在第五方面的一种可能的实现方式中,第一信息用于指示第二频率位置,第二频率位置和第一小区的小区标识用于第一设备确定所述第一信号的频率位置。在第五方面的一种可能的实现方式中,第一信息用于指示在第三频率集合中第一信号的频率位置,该第三频率集合为预定义的,或第二设备配置的。在第五方面的一种可能的实现方式中,第一小区为服务小区,第一信号为该服务小区的重同步信号;或,第一小区为服务小区的相邻小区,第一信号为该服务小区的相邻小区的重同步信号。第六方面,本申请实施例中提供了一种装置,所述装置为第一设备,包括:处理器;还可以包括存储器和收发器;所述收发器用于接收和发送数据;所述存储器中存储有程序代码,所述处理器调用所述存储器中的程序代码时执行上述第一方面或第一方面任意一种可能实现方式的频率位置的确定方法,或,执行上述第三方面或第三方面任意一种可能实现方式的频率位置的确定方法。
第七方面,本申请实施例中提供了一种装置,所述装置为第二设备,包括:处理器;还可以包括存储器和收发器;所述收发器用于接收和发送数据;所述存储器中存储有程序代码,所述处理器调用所述存储器中的程序代码时执行上述第二方面或第二方面任意一种可能实现方式的频率位置的确定方法。
第八方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述第一方面或第一方面任意一 种可能实现方式的频率位置的确定方法,或,执行上述第二方面或第二方面任意一种可能实现方式的频率位置的确定方法或,执行上述第三方面或第三方面任意一种可能实现方式的频率位置的确定方法。
第九方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机可以执行上述第一方面或第一方面任意一种可能实现方式的频率位置的确定方法,或,执行上述第二方面或第二方面任意一种可能实现方式的频率位置的确定方法,或,执行上述第三方面或第三方面任意一种可能实现方式的频率位置的确定方法。
第十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理单元,用于支持信息处理装置实现上述第一方面或第一方面任意一种可能的实现方式中所涉及的功能,或,实现上述第二方面或第二方面任意一种可能的实现方式中所涉及的功能,或,实现上述第三方面或第三方面任意一种可能的实现方式中所涉及的功能。
在一种可能的设计中,芯片系统还包括存储单元,存储单元,用于保存执行功能网元必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
其中,第二方面至第十方面中任一种实现方式所带来的技术效果可参见第一方面至第三方面中不同实现方式所带来的技术效果,此处不再赘述。
附图说明
图1为本申请实施例中提供的一个通信系统的结构示意图;
图2(a)为本申请实施例中提供的频率位置的确定方法的一个实施例示意图;
图2(b)为本申请实施例中提供的频率位置的确定方法的另一个实施例示意图;
图3为本申请实施例中第一设备的一个结构示意图;
图4为本申请实施例中第二设备的一个结构示意图;
图5为本申请实施例中第一设备的另一个结构示意图;
图6为本申请实施例中第二设备的另一个结构示意图。
具体实施方式
本申请实施例中提供了一种频率位置的确定方法,用于终端设备确定每个小区的RSS所在频率位置,降低服务小区与相邻小区之间,以及多个相邻小区之间的相互干扰,减小信令开销,提升系统性能。
下面结合附图,对本申请的实施例进行描述。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
另外,本申请实施例中所述的“频率位置”也可以称之为“频域位置”,“频率集合” 也可以称之为“候选位置集合”、“候选频率位置集合”、“频域集合”或“候选频域位置集合”。
本申请技术方案可以应用于各种数据处理的通信系统中。例如例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)和其它系统等。本申请技术方案还可以用于第五代(5generation,简称:“5G”)通信系统、新空口(new radio,NR)、以及新空口车联网(New Radio vehicle to everything,NR V2X)系统以及设备对设备(device to device,D2D)通信系统。术语“系统”可以和“网络”相互替换。
此外,上述的通信系统还可以适用于面向未来的通信技术,都适用本申请实施例提供的技术方案。本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
图1为本申请实施例中一种频率位置的确定方法所适用的通信系统的结框示意图。该通信系统可以为2G网络的基站接入系统(即所述RAN包括基站和基站控制器),或可以为3G网络的基站接入系统(即所述RAN包括基站和RNC),或可以为4G网络的基站接入系统(即所述RAN包括eNB和RNC),或可以为5G网络的基站接入系统。
所述RAN包括一个或多个网络设备。所述网络设备可以是任意一种具有无线收发功能的设备,或,设置于具体无线收发功能的设备内的芯片。所述网络设备包括但不限于:基站(例如基站BS,基站NodeB、演进型基站eNodeB或eNB、第五代5G通信系统中的基站gNodeB或gNB、未来通信系统中的基站、WiFi系统中的接入节点、无线中继节点、无线回传节点)等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的一种或者多种技术的网络,或者未来演进网络。所述核心网可以支持上述提及一种或者多种技术的网络,或者未来演进网络。基站可以包含一个或多个共站或非共站的传输接收点(transmission receiving point,TRP)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU)或者分布单元(distributed unit,DU)等。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备1-6进行通信,也可以通过中继站与终端设备1-6进行通信。终端设备1-6可以支持与不同技术的多个基站进行通信,例如,终端设备可以支持与支持LTE网络的基站通信,也可以支持与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。例如将终端接入到无线网络的RAN节点。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller, BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。在一种网络结构中,网络设备可以包括集中单元(centralized unit,CU)节点、或分布单元(distributed unit,DU)节点、或包括CU节点和DU节点的RAN设备。
终端设备1-6,又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、终端等,是一种向用户提供语音和/或数据连通性的设备,或,设置于该设备内的芯片,例如,具有无线连接功允许的手持式设备、车载设备等。目前,一些终端设备的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例提供的终端设备可以是低复杂度终端设备和/或处于覆盖增强A模式下的终端设备。
在本申请实施例中,基站和UE1-UE6组成一个通信系统,在该通信系统中,基站发送系统信息、RAR消息和寻呼消息中的一种或多种给UE1-UE6中的一个或多个UE,此外,UE4-UE6也组成一个通信系统,在该通信系统中,UE5可以作为基站的功能实现,UE5可以发送系统信息、控制信息和寻呼消息中的一种或多种给UE4和UE6中的一个或多个UE。
现有技术中,终端可以通过测量服务小区的相邻小区的RSS,从而进一步增强用户的移动性能。目前,每个RSS的频率配置信息需要使用7比特的信令通知终端。当相邻小区较多时,其信令开销较大。
为了解决现有技术中指示RSS所在频率位置所需的信令开销大的问题。本申请实施例中提供了一种频率位置的确定方法。请参阅图2(a)所示,为本申请实施例中提供的一种第一设备与第二设备之间的交互流程示意图。本申请实施例中频率位置的确定方法,主要包括以下步骤:
201、第二设备确定第一信息,第一信息用于指示第一设备确定第一小区的第一信号的频率位置。
其中,第一小区可以是任意的,第一小区可以是服务小区,也可以是服务小区的相邻小区。第一信号可以是重同步信号RSS,也可以是其他信号,对此本申请中不做任何限定。
相应的,若第一小区是服务小区,则第一信号的频率位置可以是服务小区的RSS所在频率位置。若第一小区为服务小区的相邻小区,则第一信号的频率位置可以是服务小区的相邻小区的RSS所在频率位置。
可选的,第一小区包括:服务小区,和/或,服务小区的相邻小区。第一小区的第一信号包括:服务小区的第一信号,和/或,服务小区的相邻小区的第一信号。第一信息用于指示第一设备确定第一信号的频率位置包括:第一信息用于指示第一设备确定服务小区的第 一信号,和/或服务小区的相邻小区的第一信号的频率位置;同时还指示以下至少一项指示:一、指示服务小区的第一信号的频率位置,与服务小区的相邻小区的第一信号的频率位置是否相同;二、指示服务小区的第一信号所在的频率集合,与服务小区的相邻小区的第一信号所在的频率集合是否相同,该频率集合包括窄带。
可选的,第二设备确定第二信息,该第二信息用于指示:服务小区的第一信号的频率位置,与服务小区的相邻小区的第一信号的频率位置是否相同;和/或,服务小区的第一信号所在的频率集合,与服务小区的相邻小区的第一信号所在的频率集合是否相同,该频率集合包括窄带。
进一步的,第二设备将上述的第二信息发送至第一设备,第一设备接收到第二信息,并根据第二信息确定:服务小区的第一信号的频率位置与服务小区的相邻小区的第一信号的频率位置相同或不同;和/或,服务小区的第一信号所在的频率集合,与服务小区的相邻小区的第一信号所在的频率集合相同或不相同。
202、第二设备向第一设备发送第一信息。
其中,第一信息可以指示频率集合,第一信息也可以指示频率集合中对应的频率位置。第一信息还可以指示一个偏移量,第一信息还可以指示一个频率位置。频率集合中包括至少一个频率单元,频率单元可以是资源块或窄带。
可选的,一个频率集合可以包括:一个或多个资源块,或一个或多个窄带。可选的,频率位置可以包括:资源块编号或窄带编号。
一个频率集合对应一个索引,该索引可以是编号,也可以不是频率集合的编号。例如,当一个频率集合为一个窄带时,且当一个窄带对应一个频率集合时窄带编号就可以作为频率集合的索引,也可以不使用窄带编号作为频率集合的索引,例如建立窄带编号与索引之间的一种对应关系。一个频率集合对应一个索引,窄带内每一个资源块对应的编号就可以认为是一个频率位置。
当第一信息指示的是频率集合、频率集合中对应的频率位置、偏移量、或频率位置时,其第一信息具体指示内容可以是一个值或参数,包括N个比特。
具体来说,第一信息指示频率集合中对应的频率位置,以频率集合为一个窄带为例,一个窄带通常包括6个资源块,此时N可以为3,第一信息使用3个比特指示窄带内的每一个资源块,例如:000指示窄带内的第一个资源块(编号为k1),001指示窄带内的第二个资源块(编号为k2),010指示窄带内的第三个资源块(编号为k3),011指示窄带内的第四个资源块(编号为k4),100指示窄带内的第五个资源块(编号为k5),101指示窄带内的第六个资源块(编号为k6),其中编号为k1-k6的顺序可以是从低比特位到高比特位,也可以是从高比特位到低比特位。
具体来说,第一信息指示频率集合,以频率集合为一个窄带为例,系统带宽内包括L个窄带,此时N可以为ceil{log2(L)}个比特,第一信息使用N个比特指示系统带宽内窄带的位置。窄带的位置可以通过窄带索引来确定,第一信息指示窄带索引确定窄带的位置。如系统带宽为10MHz时,包括8个窄带,此时N=3,例如:000指示窄带索引为0的窄带,001指示窄带索引为1的窄带,010指示窄带索引为2的窄带,011指示窄带索引为3的窄 带,100指示窄带索引为4的窄带,101指示窄带索引为5的窄带,110指示窄带索引为6的窄带,111指示窄带索引为7的窄带。
具体来说,第一信息指示偏移量,该偏移量的偏移颗粒度为第一频率单元,如第一频率单元为资源块,窄带,或L个资源块,L可以为预定义的或第二设备指示的。示例性的,第一信息指示的偏移量为M,则偏移M个第一频率单元。可选的,可以向资源块编号大的方向偏移,也可以向资源块编号小的方向偏移。
具体来说,第一信息指示频率位置,该频率位置可以是窄带编号,资源块编号,或子载波编号。第一信息可以直接指示该频率位置,也可以第一指示信息根据一定的对应关系指示该频率位置。
需要说明的是,由于本申请技术方案中是基于第一信息和小区标识两者共同确定第一信号的频率位置,因此,第一信息可以指示的频率范围可以被缩小,因此可以节约信令开销。
203、第一设备根据第一信息和小区标识确定第一信号的频率位置。
第一设备根据第一信息和小区标识确定第一信号的频率位置,可以采用以下几种实现方式:
第一种方式:第一设备根据小区标识确定第一频率集合,第一频率集合种包括至少一个频率单元;第一设备根据第一信息在第一频率集合中确定第一信号的频率位置。
示例性的,第一系统带宽包括至少一个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;第一设备根据小区标识确定第一频率集合,可以执行以下步骤:
步骤11:第一设备根据小区标识确定第一参数。
其中,第一参数可以等于小区标识。第一参数也可以是由小区标识经过计算后,其具体计算方式包括但不限于:小区标识除以第一变量后上取整、小区标识除以第二变量后下取整、小区标识相对于第三变量求余中的一项或多项算法,
可选的,第一变量、第二变量、第三变量中的全部变量可以均为常数,并且每个变量的值都是任意的;第一变量、第二变量、第三变量中的全部变量可以均为第一设备配置的;第一变量、第二变量、第三变量中的一部分变量为第一设备配置的,第一变量、第二变量、第三变量中的另一部分变量为常数,该部分变量中每个变量的值都是任意的。需要说明的是,此部分描述适用于本申请中下文中所涉及的第一变量、第二变量和第三变量,下文中将不再赘述。
步骤12:第一设备确定第一参数对应的第一索引。
其中,第一索引可以等于第一参数。第一索引和第一参数之间具有对应关系,第一索引由第一参数和对应关系确定,对应关系具体可以包括但不限于:对应关系表,或对应关系公式。
步骤13:第一设备在至少一个频率集合中确定第一索引对应的第一频率集合。
其中,第一索引可以是窄带编号,例如一个窄带对应一个频率集合。
示例性的,第一设备根据第一指示信息在第一频率集合中确定第一信号的频率位置, 可以执行以下步骤:
步骤14:第一设备根据所述第一信息确定第二参数。
其中,第二参数可以时第一信息直接指示的。
步骤15:第一设备确定第二参数在第一频率集合中对应的频率位置,第一频率集合中对应的频率位置为第一信号的频率位置。
第二种方式:第一设备根据第一信息确定第二频率集合,第二频率集合种包括至少一个频率单元;第一设备根据小区标识在第二频率集合中确定第一信号的频率位置。
具体来说,第二系统带宽包括至少一个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;
示例性的,第一设备根据第一信息确定第二频率集合,可以执行以下步骤:
步骤21:第一设备确定第一信息对应的第二索引。
其中,第二索引可以是第一信息直接指示的。
步骤22:第一设备确定在至少一个频率集合中第二索引对应的第二频率集合。
示例性的,第一设备根据小区标识在第二频率集合中确定第一信号的频率位置,可以执行以下步骤:
步骤23:第一设备根据小区标识确定第三参数。
其中,第三参数可以等于小区标识。第三参数也可以是由小区标识经过计算后,其具体计算方式包括但不限于:小区标识除以第一变量后上取整、小区标识除以第二变量后下取整、小区标识相对于第三变量求余中的一项或多项算法。。
步骤24:第一设备确定第三参数在第二频率集合中对应的频率位置,第二频率集合中对应的频率位置为第一信号的频率位置。
例如,第一设备根据第一信息确定第二频率集合为N个RB(如N=4,且RB的编号为k1,k2,k3,k4),第一设备根据小区标识(cell-ID)在第二频率集合中确定第一信号的最低RB所在的位置,如根据如下公式确定第一信号的最低RB的位置。
Figure PCTCN2019101195-appb-000005
其中
Figure PCTCN2019101195-appb-000006
为cell-ID,M、a为预先定义的常数或网络通过配置的参数,x为基站通过高层配置的或根据第一指示信息确定的或预定义的,f为第一信号的频率位置。
其中,cell-ID可以称之为小区标识(cell indenty),也可以称为物理层小区标识(physical layer cell identity)。第一信息指示第二频率集合为N个RB(如N=4,且RB的编号为k1,k2,k3,k4),通过公式计算在第二频率集合中确定第一信号的最低RB的编号,如x=N=4,M=1,a=0,当cell-ID为100,则f=0,即此时第一信号的最低RB的编号k1。
需要说明的是,上述第一种方式对应的示例与上述第二种方式中的示例相同,其相关描述可参阅上述示例中的描述,此处不再赘述。
第三种方式:第一设备根据小区标识确定第一频率位置;第一设备根据第一信息确定 第一偏移量;第一设备根据第一频率位置和第一偏移量确定第一信号的频率位置。
此外,示例性的,第一设备还可以根据第一信息确定第一偏移量;第一设备根据第一偏移量,小区标识以及系统带宽确定第一信号的频率位置。
示例性的,第一设备根据小区标识确定第一频率位置,可以执行以下步骤:
步骤31:第一设备根据小区标识确定第四参数。
同样,第四参数可以等于小区标识。第四参数也可以是由小区标识经过计算后,其具体计算方式包括但不限于:小区标识除以第一变量后上取整、小区标识除以第二变量后下取整、小区标识相对于第三变量求余中的一项或多项算法。
步骤32:第一设备确定第四参数对应的第三索引;
同样,第三索引可以等于第四参数。第三索引和第四参数之间具有对应关系,第三索引由第四参数和对应关系确定,对应关系具体可以包括但不限于:对应关系表。
步骤33:第一设备确定第三索引对应的频率位置,第三索引对应的频率位置为第一频率位置。
同样,第三索引可以等于其对应的频率位置,如资源块编号。第三索引对应的频率位置(资源块编号)也可以由第三索引计算后得到。其具体计算方式包括但不限于:小区标识除以第一变量后上取整、小区标识除以第二变量后下取整、小区标识相对于第三变量求余中的一项或多项算法。
示例性的,第一设备根据第一信息确定第一偏移量,可以执行以下步骤:
步骤34:第一设备根据第一信息确定第五参数。
其中,第五参数可以是第一信息直接指示的。
步骤35:第一设备确定第五参数对应的偏移量,第五参数对应的偏移量为第一偏移量。
其中,第五参数可以等于其对应的偏移量。第五参数对应的偏移量也可以由第五参数计算后得到。其具体计算方式包括但不限于:小区标识除以第一变量后上取整、小区标识除以第二变量后下取整、小区标识相对于第三变量求余中的一项或多项算法。步骤36,根据第一偏移量和第一频率位置确定第一信号的频率位置。
示例性的,第一信号的频率位置为第一频率位置向上(高频率方向,或大的子载波编号方向)偏移第一偏移量的位置,或者第一信号的位置为第一频率位置向下(低频率方向,或小的子载波编号方向)偏移第一偏移量的位置。需要说明的是,此处关于第一偏移量的描述同样适用用于第四种方式种的第二偏移量。
示例性的,第一设备还可以根据第一偏移量第一频率位置和系统带宽确定第一信号的位置。例如根据如下公式计算(p+q)mod z其中p为第一频率位置对应的资源块编号,q为第一偏移量,z为系统带宽内包括的资源块个数。需要说明的是,此处关于第一偏移量的描述同样适用用于第四种方式种的第二偏移量。第四种方式:第一设备根据第一信息确定第二频率位置;第一设备根据小区标识确定第二偏移量;第一设备根据第二频率位置和第二偏移量确定第一信号的频率位置。
示例性的,第一设备根据第一信息确定第二频率位置,可以执行以下操作:
步骤41:第一设备根据第一信息确定第六参数;
其中,第六参数可以是第一信息直接指示的。
步骤42:第一设备确定第六参数对应的频率位置,第六参数对应的频率位置为第二频率位置。
同样,第六参数可以等于其对应的频率位置,如资源块编号。第六参数对应的频率位置(如资源块编号)也可以由第六参数计算后得到。其具体计算方式包括但不限于:小区标识除以第一变量后上取整、小区标识除以第二变量后下取整、小区标识相对于第三变量求余中的一项或多项算法。
示例性的,第一设备根据小区标识确定第二偏移量,可以执行以下步骤:
步骤43:第一设备根据所述小区标识确定第七参数。
步骤44:第一设备确定第七参数对应的第四索引。
步骤45:第一设备确定第四索引对应的偏移量,第四索引对应的偏移量为第二偏移量。
例如,第一设备根据小区标识(或第一信息)确定的偏移量为N,N为大于或等于1的整数。第一设备根据第一信息(或小区标识)确定的频率位置(资源块编号)为k1,则第一信号的频率位置为资源块编号为(k1+N)或k1+N)mod B的资源块,其中B为系统带宽内包含的资源块数目,mod为取余函数。
第五种方式:第一设备根据所述第一信息以及所述小区标识,在第三频率集合中确定第一信号的频率位置,第三频率集合为预定义的,或第二设备配置的。
示例性的,第一设备根据第一信息、小区标识以及第一公式确定第一信号的频率位置。第一公式可以是:
Figure PCTCN2019101195-appb-000007
所述f为频率位置或频率集合对应的索引;
Figure PCTCN2019101195-appb-000008
为所述小区标识的值,a和/或M为根据第一信息确定的,第三频率集合中的资源块或窄带的编号小于或等于x。可选的,M和a可以分别使用第一指示信息和第二指示信息进行指示。
第六种方式:第一设备根据第一信息确定频率颗粒度,第一设备根据小区标识确定在该频率颗粒度下的第一信号的频率位置;或者,第一设备根据小区标识确定频率颗粒度,其中频率颗粒度是指相邻两个第一信号的候选位置之间包括的频率单元的个数,频率单元可以是资源块或子载波或窄带。第一信号的候选位置是可能的第一信号的位置。
示例性的,第一设备根据小区标识(或第一信息)确定在该频率颗粒度下的第一信号的频率位置。
例如,第一信息(或小区标识)指示频率颗粒度为N,根据如下公式计算该频率颗粒度下的第一信号的频率位置。
公式可以是:
Figure PCTCN2019101195-appb-000009
Figure PCTCN2019101195-appb-000010
其中f为频率位置或频率集合对应的索引,
Figure PCTCN2019101195-appb-000011
为所述小区标识的值,M为预先定义的,或第二设备配置的, 第二设备可以是指网络,B为系统带宽内包含的资源块数目,mod为取余函数,N是频率颗粒度,P为预定义的常数或第二设备配置的。
上述的第一系统带宽和第二系统带宽是指通信系统的工作带宽,第一设备的工作带宽小于通信系统的工作带宽。其中通信系统的工作带宽具体可以是:长期演进LTE的系统带宽。如表1所述为系统带宽于资源块RB之间的一种对应关系。
表1
Figure PCTCN2019101195-appb-000012
可选的,第一设备在第一信号的频率位置上测量第一信号的强度。
需要说明的是,本申请中所提及的公式均只是一种示例性的说明,只要是与该公式获得方式相同结果的方法均为本发明的保护内容。
为了进一步减小信令开销,本申请实施例中还提供了另一种频率位置的确定方法。
请参阅图2(b)所示,为本申请实施例中提供的一种第一设备确定第一信号频率位置的流程示意图。本申请实施例中的频率确定方法,主要包括以下步骤:
204、第一设备确定第一小区的小区标识。
其中,第一小区可以是任意的,第一小区可以是服务小区,也可以是服务小区的相邻小区。第一信号可以是重同步信号RSS,也可以是其他信号,对此本申请中不做任何限定。
205、第一设备根据第一小区的小区标识确定第一信号的频率位置。
相应的,若第一小区是服务小区,则第一信号的频率位置可以是服务小区的RSS所在频率位置。若第一小区为服务小区的相邻小区,则第一信号的频率位置可以是服务小区的相邻小区的RSS所在频率位置。
系统带宽包括多个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引,第一设备根据第一小区的小区标识确定第一信号的频率位置,可以执行以下步骤:
步骤61:第一设备根据小区标识确定第八参数。
同样,第八参数可以等于小区标识。第八参数也可以是由小区标识经过计算后,其具体计算方式包括但不限于:上取整函数、下取整函数、求余函数中的一项或多项算法。
步骤62:第一设备确定第八参数对应的第五索引。
步骤63:第一设备确定第五索引对应的第四频率集合。
步骤64:第一设备确定第四频率集合中对应的频率位置,第四频率集合对应的频率位置为第一信号的频率位置。
可选的,第一设备在第一信号的频率位置上测量第一信号的强度。
本申请实施例中,第一终端通过小区标识确定第一信号的频率位置,可以不使用信令指示确定,从而不会带来信令开销。
为便于更好的实施本申请实施例的上述方案,下面还提供用于实施上述方案的相关装置。
请参阅如图3所示,为本申请实施例中第一设备的结构示意图,第一设备300包括:接收模块302,用于接收第二设备发送的第一信息,其中,该第一信息用于处理模块301确定第一小区中的第一信号的频率位置;处理模块301,用于根据第一信息以及所述第一小区的小区标识,确定所述第一信号的频率位置。
在一种实施例方式中,处理模块301,用于根据小区标识确定第一频率集合,该第一频率集合包括至少一个频率单元;处理模块301,还用于根据第一信息在第一频率集合中确定第一信号的频率位置。
在一种实施例方式中,处理模块301,具体用于根据所述小区标识确定第一参数;处理模块,具体还用于确定所述第一参数对应的第一索引;处理模块301,具体还用于确定所述第一索引对应的所述第一频率集合。
在一种实施例方式中,处理模块301,具体还用于根据所述第一信息确定第二参数;处理模块301,具体还用于确定第二参数在所述第一频率集合中对应的频率位置,该第一频率集合中对应的频率位置为第一信号的频率位置。
在一种实施例方式中,处理模块301,用于根据所述第一信息确定第二频率集合,该第二频率集合包括至少一个频率单元;处理模块301,还用于根据该小区标识在第二频率集合中确定第一信号的频率位置。
在一种实施例方式中,第一系统带宽包括至少一个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;
处理模块301,具体用于确定第一信息对应的第二索引;处理模块,具体还用于确定在至少一个频率集合中第二索引对应的第二频率集合。
在一种实施例方式中,处理模块301,具体还用于根据小区标识确定第三参数;处理模块301,具体还用于确定第三参数在所述第二频率集合中对应的频率位置,所述第二频率集合中对应的频率位置为第一信号的频率位置。
在一种实施例方式中,处理模块,用于根据小区标识确定第一频率位置;处理模块301,还用于根据第一信息确定第一偏移量;处理模块301,还用于根据该第一频率位置和第一偏移量确定第一信号的频率位置。
在一种实施例方式中,处理模块301,具体用于根据小区标识确定第四参数;处理模块301,具体还用于确定第四参数对应的第三索引;处理模块301,具体还用于确定第三索引对应的频率位置,所述第三索引对应的频率位置为所述第一频率位置。
在一种实施例方式中,处理模块301,具体还用于根据所述第一信息确定第五参数;处理模块301,具体还用于确定所述第五参数对应的偏移量,该第五参数对应的偏移量为第一偏移量。
在一种实施例方式中,处理模块301,用于根据第一信息确定第二频率位置;处理模块301,还用于根据小区标识确定第二偏移量;处理模块301,还用于根据第二频率位置和第二偏移量确定第一信号的频率位置。
在一种实施例方式中,处理模块301,具体用于根据第一信息确定第六参数;处理模块301,具体还用于确定该第六参数对应的频率位置,该第六参数对应的频率位置为第二频率位置。
在一种实施例方式中,处理模块301,具体还用于根据小区标识确定第七参数;处理模块301,具体还用于确定第七参数对应的第四索引;处理模块301,具体还用于确定该第四索引对应的偏移量,该第四索引对应的偏移量为第二偏移量
在一种实施例方式中,处理模块301,用于根据第一信息以及小区标识,在第三频率集合中确定第一信号的频率位置,该第三频率集合为预定义的,或第二设备配置的。
在一种实施例方式中,处理模块,用于根据第一信息、小区标识和第一公式计算得到所述第一信号的频率位置,该第一公式为:
Figure PCTCN2019101195-appb-000013
其中,f为频率位置或频率集合对应的索引;
Figure PCTCN2019101195-appb-000014
为小区标识的值,a和/或M为根据第一信息确定的,第三频率集合中的资源块或窄带的编号小于或等于x。
在一种实施例方式中,第一小区是服务小区,第一信号为该服务小区的重同步信号;或,第一小区是服务小区的相邻小区,第一信号为该服务小区的相邻小区的重同步信号。
请参阅如图4所示,为本申请实施例中第二设备的结构示意图,第二设备400包括:处理模块401,用于确定第一信息,该第一信息用于第一设备确定第一小区的第一信号的频率位置;发送模块402,用于向该第一设备发送该第一信息。在一种实施例方式中,第一信息用于该第一设备确定在第一频率集合中所述第一信号的频率位置,该第一频率集合包括至少一个频率单元,该第一频率集合为第一设备根据所述第一小区的小区标识确定的。
在一种实施例方式中,第一信息用于第一设备确定第二频率集合,该第二频率集合包括至少一个频率单元,该第一信号的频率位置包含于第二频率集合。
在一种实施例方式中,第一信息用于指示第一偏移量,该第一偏移量和第一小区的小区标识用于第一设备确定第一信号的频率位置。
在一种实施例方式中,第一信息用于指示第二频率位置,第二频率位置和第一小区的小区标识用于第一设备确定所述第一信号的频率位置。
在一种实施例方式中,第一信息用于指示在第三频率集合中第一信号的频率位置,该第三频率集合为预定义的,或第二设备配置的。
在一种实施例方式中,第一小区为服务小区,第一信号为该服务小区的重同步信号;或,第一小区为服务小区的相邻小区,第一信号为该服务小区的相邻小区的重同步信号。
需要说明的是,上述装置各模块/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其带来的技术效果与本申请方法实施例相同,具体内容可参见本申请前述所示的方法实施例中的叙述,此处不再赘述。
本申请实施例还提供一种计算机存储介质,其中,该计算机存储介质存储有程序,该程序执行包括上述方法实施例中记载的部分或全部步骤。
接下来介绍本申请实施例提供的另一种第一设备,请参阅图5所示,第一设备500包括:一个或多个处理器501(图5中以一个为例)。
可选的,第一设备500还可以包括存储器503和通信接口502。处理器501、通信接口502和存储器503通过通信总线相连。
处理器501可以是一个通用中央处理器(CPU),微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口502可以用于收发信息,例如本申请中,通信接口502可以接收第二设备发送的第一信息。
存储器503可以是只读存储器(ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(EEPROM)、只读光盘(CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器503可以是独立存在,通过总线与处理器501相连接。存储器503也可以和处理器501集成在一起。
其中,所述存储器503用于存储执行本申请方案的应用程序代码,并由处理器501来控制执行。所述处理器501用于执行所述存储器503中存储的应用程序代码。
在具体实现中,处理器501可以包括一个或多个CPU,每个CPU可以是一个单核(single-core)处理器,也可以是一个多核(multi-Core)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
接下来介绍本申请实施例提供的另一种第二设备,请参阅图6所示,第二设备600包括:一个或多个处理器601(图6中以一个为例)。
可选的,第二设备600还可以包括存储器603和通信接口602。处理器601、通信接口602和存储器603通过通信总线相连。
处理器601可以是一个通用中央处理器(CPU),微处理器,ASIC,或一个或多个用于控制本申请方案程序执行的集成电路。
通信接口602可以用于收发信息,例如本申请中,通信接口602可以向该第一设备发送第一信息。
存储器603可以是只读存储器(ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(EEPROM)、只读光盘(CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器603可以是独立存在,通过总线与处理器601相连接。存储器603也可以和处理器601集成在一起。
其中,所述存储器603用于存储执行本申请方案的应用程序代码,并由处理器601来控制执行。所述处理器601用于执行所述存储器603中存储的应用程序代码。
在具体实现中,处理器601可以包括一个或多个CPU,每个CPU可以是一个单核 (single-core)处理器,也可以是一个多核(multi-Core)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在本实施例中,第一设备300和第二设备400以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路(application-specific integrated circuit,ASIC),电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到第一设备300和第二设备400可以采用图5或图6所示的形式。
比如,图5中的处理器501可以通过调用存储器503中存储的计算机执行指令,使得第一设备300执行上述方法实施例中的频率位置的确定方法。
一种可能的方式中,图3中的处理模块301和接收模块302的功能/实现过程可以通过图5中的处理器501调用存储器503中存储的计算机执行指令来实现。或者,图3中的处理模块301的功能/实现过程可以通过图5中的处理器501调用存储器503中存储的计算机执行指令来实现,图3中的接收模块302的功能/实现过程可以通过图5中的通信接口502来实现。
由于本申请实施例提供的第一设备300和第二设备400可用于执行上述频率位置的确定方法,因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
上述实施例中,第一设备300和第二设备400以采用集成的方式划分各个功能模块的形式来呈现。当然,本申请实施例也可以对应各个功能划分执行功能网元和控制功能网元的各个功能模块,本申请实施例对此不作具体限定。
可选的,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,用于实现上述频率位置的确定方法。在一种可能的设计中,该芯片系统还包括存储器。该存储器,用于保存第一信息处理装置和第二信息处理装置必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件,本申请实施例对此不作具体限定。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备或网络设备的方法。
应理解,本发明实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本发明实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如 静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (48)

  1. 一种频率位置的确定方法,其特征在于,包括:
    第一设备接收第二设备发送的第一信息,其中,所述第一信息用于所述第一设备确定第一小区中的第一信号的频率位置;
    所述第一设备根据所述第一信息以及所述第一小区的小区标识,确定所述第一信号的频率位置。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一设备根据所述第一信息以及所述小区标识,确定所述第一信号的频率位置,包括:
    所述第一设备根据所述小区标识确定第一频率集合,所述第一频率集合包括至少一个频率单元;
    所述第一设备根据所述第一信息在第一频率集合中确定所述第一信号的频率位置。
  3. 根据权利要求2所述的方法,其特征在于,第一系统带宽包括至少一个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;
    所述第一设备根据所述小区标识确定第一频率集合,包括:
    所述第一设备根据所述小区标识确定第一参数;
    所述第一设备确定所述第一参数对应的第一索引;
    所述第一设备确定在所述至少一个频率集合中所述第一索引对应的所述第一频率集合。
  4. 根据权利要求2或3所述的方法,其特征在于,所述第一设备根据所述第一信息在第一频率集合中确定所述第一信号的频率位置,包括:
    所述第一设备根据所述第一信息确定第二参数;
    所述第一设备确定所述第二参数在所述第一频率集合中对应的频率位置,所述第一频率集合中对应的频率位置为所述第一信号的频率位置。
  5. 根据权利要求1所述的方法,其特征在于,
    所述第一设备根据所述第一信息以及所述小区标识,确定所述第一信号的频率位置,包括:
    所述第一设备根据所述第一信息确定第二频率集合,所述第二频率集合包括至少一个频率单元;
    所述第一设备根据所述小区标识在所述第二频率集合中确定第一信号的频率位置。
  6. 根据权利要求5所述的方法,其特征在于,第二系统带宽包括至少一个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;
    所述第一设备根据所述第一信息确定第二频率集合,包括:
    所述第一设备确定所述第一信息对应的第二索引;
    所述第一设备确定在所述至少一个频率集合中所述第二索引对应的所述第二频率集合。
  7. 根据权利要求5或6所述的方法,其特征在于,所述第一设备根据所述小区标识在 所述第二频率集合中确定第一信号的频率位置,包括:
    所述第一设备根据所述小区标识确定第三参数;
    所述第一设备确定所述第三参数在所述第二频率集合中对应的频率位置,所述第二频率集合中对应的频率位置为所述第一信号的频率位置。
  8. 根据权利要求1所述的方法,其特征在于,
    所述第一设备根据所述第一信息以及所述小区标识,确定所述第一信号的频率位置,包括:
    所述第一设备根据所述小区标识确定第一频率位置;
    所述第一设备根据所述第一信息确定第一偏移量;
    所述第一设备根据所述第一频率位置和所述第一偏移量确定所述第一信号的频率位置。
  9. 根据权利要求8所述的方法,其特征在于,所述第一设备根据所述小区标识确定第一频率位置,包括:
    所述第一设备根据所述小区标识确定第四参数;
    所述第一设备确定所述第四参数对应的第三索引;
    所述第一设备确定所述第三索引对应的频率位置,所述第三索引对应的频率位置为所述第一频率位置。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一设备根据所述第一信息确定第一偏移量,包括:
    所述第一设备根据所述第一信息确定第五参数;
    所述第一设备确定所述第五参数对应的偏移量,所述第五参数对应的偏移量为所述第一偏移量。
  11. 根据权利要求1所述的方法,其特征在于,
    所述第一设备根据所述第一信息以及小区标识,确定所述第一信号的频率位置,包括:
    所述第一设备根据所述第一信息确定第二频率位置;
    所述第一设备根据所述小区标识确定第二偏移量;
    所述第一设备根据所述第二频率位置和所述第二偏移量确定所述第一信号的频率位置。
  12. 根据权利要求11所述的方法,其特征在于,所述第一设备根据所述第一信息确定第二频率位置,包括:
    所述第一设备根据所述第一信息确定第六参数;
    所述第一设备确定所述第六参数对应的频率位置,所述第六参数对应的频率位置为所述第二频率位置。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第一设备根据所述小区标识确定第二偏移量,包括:
    所述第一设备根据所述小区标识确定第七参数;
    所述第一设备确定所述第七参数对应的第四索引;
    所述第一设备确定所述第四索引对应的偏移量,所述第四索引对应的偏移量为所述第二偏移量。
  14. 根据权利要求1所述的方法,其特征在于,
    所述第一设备根据所述第一信息以及小区标识,确定所述第一信号的频率位置,包括:
    所述第一设备根据所述第一信息以及所述小区标识,在第三频率集合中确定所述第一信号的频率位置,所述第三频率集合为预定义的,或第二设备配置的。
  15. 根据权利要求14所述的方法,其特征在于,所述第一设备根据所述第一信息以及所述小区标识,在第三频率集合中确定所述第一信号的频率位置,包括:
    所述第一设备根据所述第一信息、所述小区标识和第一公式计算得到所述第一信号的频率位置;
    所述第一公式为:
    Figure PCTCN2019101195-appb-100001
    所述f为频率位置或频率集合对应的索引;
    Figure PCTCN2019101195-appb-100002
    为所述小区标识的值,a和/或M为根据第一信息确定的,第三频率集合中的资源块或窄带的编号小于或等于x。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,
    所述第一小区是服务小区,所述第一信号为所述服务小区的重同步信号;或,
    所述第一小区是服务小区的相邻小区,所述第一信号为所述服务小区的相邻小区的重同步信号。
  17. 一种频率位置的确定方法,其特征在于,包括:
    第二设备确定第一信息,所述第一信息用于第一设备确定第一小区的第一信号的频率位置;
    所述第二设备向所述第一设备发送所述第一信息。
  18. 根据权利要求17所述的方法,其特征在于,所述第一信息用于所述第一设备确定在第一频率集合中所述第一信号的频率位置,所述第一频率集合包括至少一个频率单元,所述第一频率集合为所述第一设备根据所述第一小区的小区标识确定的。
  19. 根据权利要求17所述的方法,其特征在于,所述第一信息用于所述第一设备确定第二频率集合,所述第二频率集合包括至少一个频率单元,所述第一信号的频率位置包含于所述第二频率集合中。
  20. 根据权利要求17所述的方法,其特征在于,所述第一信息用于指示第一偏移量,所述第一偏移量和所述第一小区的小区标识用于所述第一设备确定所述第一信号的频率位置。
  21. 根据权利要求17所述的方法,其特征在于,所述第一信息用于指示第二频率位置,所述第二频率位置和所述第一小区的小区标识用于所述第一设备确定所述第一信号的频率位置。
  22. 根据权利要求17所述的方法,其特征在于,所述第一信息用于指示在第三频率集合中所述第一信号的频率位置,所述第三频率集合为预定义的,或所述第二设备配置的。
  23. 根据权利要求17-22中任一项所述的方法,其特征在于,
    所述第一小区为服务小区,所述第一信号为所述服务小区的重同步信号;或,
    所述第一小区为服务小区的相邻小区,所述第一信号为所述服务小区的相邻小区的重同步信号。
  24. 一种装置,其特征在于,所述装置为第一设备,包括:
    接收模块,用于接收第二设备发送的第一信息,其中,所述第一信息用于处理模块确定第一小区中的第一信号的频率位置;
    所述处理模块,用于根据所述第一信息以及所述第一小区的小区标识,确定所述第一信号的频率位置。
  25. 根据权利要求24所述的装置,其特征在于,
    所述处理模块,用于根据所述小区标识确定第一频率集合,所述第一频率集合包括至少一个频率单元;
    所述处理模块,还用于根据所述第一信息在第一频率集合中确定所述第一信号的频率位置。
  26. 根据权利要求25所述的装置,其特征在于,第一系统带宽包括至少一个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;
    所述处理模块,具体用于根据所述小区标识确定第一参数;
    所述处理模块,具体还用于确定所述第一参数对应的第一索引;
    所述处理模块,具体还用于确定所述第一索引对应的所述第一频率集合。
  27. 根据权利要求25或26所述的装置,其特征在于,
    所述处理模块,具体还用于根据所述第一信息确定第二参数;
    所述处理模块,具体还用于确定所述第二参数在所述第一频率集合中对应的频率位置,所述第一频率集合中对应的频率位置为所述第一信号的频率位置。
  28. 根据权利要求24所述的装置,其特征在于,
    所述处理模块,用于根据所述第一信息确定第二频率集合,所述第二频率集合包括至少一个频率单元;
    所述处理模块,还用于根据所述小区标识在所述第二频率集合中确定第一信号的频率位置。
  29. 根据权利要求28所述的装置,其特征在于,第二系统带宽包括至少一个频率集合,每个频率集合包括至少一个频率单元,且每个频率集合对应一个索引;
    所述处理模块,具体用于确定所述第一信息对应的第二索引;
    所述处理模块,具体还用于确定在所述至少一个频率集合中所述第二索引对应的所述第二频率集合。
  30. 根据权利要求28或29所述的装置,其特征在于,
    所述处理模块,具体还用于根据所述小区标识确定第三参数;
    所述处理模块,具体还用于确定所述第三参数在所述第二频率集合中对应的频率位置,所述第二频率集合中对应的频率位置为所述第一信号的频率位置。
  31. 根据权利要求24所述的装置,其特征在于,
    所述处理模块,用于根据所述小区标识确定第一频率位置;
    所述处理模块,还用于根据所述第一信息确定第一偏移量;
    所述处理模块,还用于根据所述第一频率位置和所述第一偏移量确定所述第一信号的频率位置。
  32. 根据权利要求31所述的装置,其特征在于,
    所述处理模块,具体用于根据所述小区标识确定第四参数;
    所述处理模块,具体还用于确定所述第四参数对应的第三索引;
    所述处理模块,具体还用于确定所述第三索引对应的频率位置,所述第三索引对应的频率位置为所述第一频率位置。
  33. 根据权利要求31或32所述的装置,其特征在于,
    所述处理模块,具体还用于根据所述第一信息确定第五参数;
    所述处理模块,具体还用于确定所述第五参数对应的偏移量,所述第五参数对应的偏移量为所述第一偏移量。
  34. 根据权利要求24所述的装置,其特征在于,
    所述处理模块,用于根据所述第一信息确定第二频率位置;
    所述处理模块,还用于根据所述小区标识确定第二偏移量;
    所述处理模块,还用于根据所述第二频率位置和所述第二偏移量确定所述第一信号的频率位置。
  35. 根据权利要求34所述的装置,其特征在于,
    所述处理模块,具体用于根据所述第一信息确定第六参数;
    所述处理模块,具体还用于确定所述第六参数对应的频率位置,所述第六参数对应的频率位置为所述第二频率位置。
  36. 根据权利要求34或35所述的装置,其特征在于,
    所述处理模块,具体还用于根据所述小区标识确定第七参数;
    所述处理模块,具体还用于确定所述第七参数对应的第四索引;
    所述处理模块,具体还用于确定所述第四索引对应的偏移量,所述第四索引对应的偏移量为所述第二偏移量。
  37. 根据权利要求24所述的装置,其特征在于,
    所述处理模块,用于根据所述第一信息以及所述小区标识,在第三频率集合中确定所述第一信号的频率位置,所述第三频率集合为预定义的,或第二设备配置的。
  38. 根据权利要求37所述的装置,其特征在于,
    所述处理模块,用于根据所述第一信息、所述小区标识和第一公式计算得到所述第一信号的频率位置;
    所述第一公式为:
    Figure PCTCN2019101195-appb-100003
    所述f为频率位置或频率集合对应的索引;
    Figure PCTCN2019101195-appb-100004
    为所述小区标识的值,a和/或M为根据第一信息确定的,第三频率集合中的资源块或窄带的编号小于或等于x。
  39. 根据权利要求24-38中任一项所述的装置,其特征在于,
    所述第一小区是服务小区,所述第一信号为所述服务小区的重同步信号;或,
    所述第一小区是服务小区的相邻小区,所述第一信号为所述服务小区的相邻小区的重同步信号。
  40. 一种装置,其特征在于,所述装置为第二设备,包括:
    处理模块,用于确定第一信息,所述第一信息用于第一设备确定第一小区的第一信号的频率位置;
    发送模块,用于向所述第一设备发送所述第一信息。
  41. 根据权利要求40所述的装置,其特征在于,所述第一信息用于所述第一设备确定在第一频率集合中所述第一信号的频率位置,所述第一频率集合包括至少一个频率单元,所述第一频率集合为所述第一设备根据所述第一小区的小区标识确定的。
  42. 根据权利要求40所述的装置,其特征在于,所述第一信息用于所述第一设备确定第二频率集合,所述第二频率集合包括至少一个频率单元,所述第一信号的频率位置包含于所述第二频率集合。
  43. 根据权利要求40所述的装置,其特征在于,所述第一信息用于指示第一偏移量,所述第一偏移量和所述第一小区的小区标识用于所述第一设备确定所述第一信号的频率位置。
  44. 根据权利要求40所述的装置,其特征在于,所述第一信息用于指示第二频率位置,所述第二频率位置和所述第一小区的小区标识用于所述第一设备确定所述第一信号的频率位置。
  45. 根据权利要求40所述的装置,其特征在于,所述第一信息用于指示在第三频率集合中所述第一信号的频率位置,所述第三频率集合为预定义的,或所述第二设备配置的。
  46. 根据权利要求40-45任一项所述的装置,其特征在于,
    所述第一小区为服务小区,所述第一信号为所述服务小区的重同步信号;或,
    所述第一小区为服务小区的相邻小区,所述第一信号为所述服务小区的相邻小区的重同步信号。
  47. 一种装置,其特征在于,所述装置为第一设备,包括:
    处理器、存储器和收发器;
    所述存储器中存储有程序代码,所述处理器用于通过调用所述存储器中的程序代码时执行如权利要求1至16中任一项所述的方法。
  48. 一种装置,其特征在于,所述装置为第二设备,包括:
    处理器、存储器;
    所述存储器中存储有程序代码,所述处理器用于通过调用所述存储器中的程序代码时执行如权利要求17至23中任一项所述的方法。
PCT/CN2019/101195 2019-08-16 2019-08-16 一种频率位置的确定方法以及设备 WO2021031021A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980099196.5A CN114208266A (zh) 2019-08-16 2019-08-16 一种频率位置的确定方法以及设备
PCT/CN2019/101195 WO2021031021A1 (zh) 2019-08-16 2019-08-16 一种频率位置的确定方法以及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/101195 WO2021031021A1 (zh) 2019-08-16 2019-08-16 一种频率位置的确定方法以及设备

Publications (1)

Publication Number Publication Date
WO2021031021A1 true WO2021031021A1 (zh) 2021-02-25

Family

ID=74659642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101195 WO2021031021A1 (zh) 2019-08-16 2019-08-16 一种频率位置的确定方法以及设备

Country Status (2)

Country Link
CN (1) CN114208266A (zh)
WO (1) WO2021031021A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547506A (zh) * 2009-02-17 2009-09-30 华中科技大学 基于信号接收强度信息指纹的gsm网络定位用户方法
CN102724699A (zh) * 2011-05-05 2012-10-10 电信科学技术研究院 Otdoa测量及定位辅助数据发送方法、系统及装置
CN107864494A (zh) * 2016-09-22 2018-03-30 中国移动通信有限公司研究院 一种同步参考信号的发送方法、接收方法、基站及终端
CN108282863A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 一种上行测量信号的指示方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547506A (zh) * 2009-02-17 2009-09-30 华中科技大学 基于信号接收强度信息指纹的gsm网络定位用户方法
CN102724699A (zh) * 2011-05-05 2012-10-10 电信科学技术研究院 Otdoa测量及定位辅助数据发送方法、系统及装置
CN107864494A (zh) * 2016-09-22 2018-03-30 中国移动通信有限公司研究院 一种同步参考信号的发送方法、接收方法、基站及终端
CN108282863A (zh) * 2017-01-05 2018-07-13 华为技术有限公司 一种上行测量信号的指示方法及装置

Also Published As

Publication number Publication date
CN114208266A (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2019213841A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021031390A1 (zh) 用于指示控制信息的方法和装置
JP7150042B2 (ja) 信号伝送方法、ネットワーク装置及び端末装置
EP3065503A1 (en) Radio communication method, radio communication system, radio station and radio terminal
US11019629B2 (en) Device-to-device communication method and apparatus
JP2020530699A (ja) ネットワークデバイス、端末デバイスおよび関連する方法
WO2020029191A1 (zh) 能力上报的方法和设备
WO2019096232A1 (zh) 通信方法和通信装置
WO2020082395A1 (zh) 信号传输方法、发射端设备和接收端设备
WO2020073257A1 (zh) 无线通信方法和终端设备
CN110690944A (zh) 信道状态信息的优先级发送、确定方法及装置、存储介质、用户设备
US20220330203A1 (en) Data Transmission Method and Apparatus
US11564216B2 (en) Information transmission method and device
EP4109938A1 (en) Sidelink capability sending method and terminal device
WO2020258051A1 (zh) 小区接入的方法和设备
JP7416157B2 (ja) 基地局、移動局および無線通信システム
WO2016112705A1 (zh) 一种支持多种无线网络接入的方法、装置及存储介质
WO2021031021A1 (zh) 一种频率位置的确定方法以及设备
WO2022067532A1 (zh) 无线通信的方法、终端设备和网络设备
JP2023539912A (ja) 通信方法及びデバイス
CN112437455A (zh) 小区参数的确定方法及设备
WO2020199023A1 (zh) 一种通信方法及设备
JP2023513648A (ja) 無線通信方法及び端末装置
WO2018201840A1 (zh) 一种信息传输方法及装置
EP3764709A1 (en) Information transmission method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19942203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19942203

Country of ref document: EP

Kind code of ref document: A1