WO2021029565A1 - Method for screening binding inhibiting substance of api5 and fgf2 - Google Patents

Method for screening binding inhibiting substance of api5 and fgf2 Download PDF

Info

Publication number
WO2021029565A1
WO2021029565A1 PCT/KR2020/009846 KR2020009846W WO2021029565A1 WO 2021029565 A1 WO2021029565 A1 WO 2021029565A1 KR 2020009846 W KR2020009846 W KR 2020009846W WO 2021029565 A1 WO2021029565 A1 WO 2021029565A1
Authority
WO
WIPO (PCT)
Prior art keywords
fgf2
binding
protein
api5
screening
Prior art date
Application number
PCT/KR2020/009846
Other languages
French (fr)
Korean (ko)
Inventor
이병일
봉승민
Original Assignee
국립암센터
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국립암센터 filed Critical 국립암센터
Publication of WO2021029565A1 publication Critical patent/WO2021029565A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6845Methods of identifying protein-protein interactions in protein mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6872Intracellular protein regulatory factors and their receptors, e.g. including ion channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/475Assays involving growth factors
    • G01N2333/50Fibroblast growth factors [FGF]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/02Screening involving studying the effect of compounds C on the interaction between interacting molecules A and B (e.g. A = enzyme and B = substrate for A, or A = receptor and B = ligand for the receptor)

Definitions

  • the present invention comprises the steps of: i) introducing cysteine to the outside of FGF2;
  • step ii) labeling a fluorescent material on FGF2 into which the cysteine of step i) has been introduced;
  • Protein-protein, nucleic acid (DNA, RNA)-protein interactions, or appropriate nucleases and proteolytic enzymes activity in addition to normal physiological reactions such as cell development, growth, and homeostasis, can lead to the occurrence of various diseases including cancer. Even related abnormal physiological responses are involved in almost all cellular signal transductions. Therefore, materials such as organic or inorganic small molecules, aptamers, peptides, therapeutic proteins, and antibodies are rapidly being developed for diagnosis and treatment. Therefore, in order to verify the efficacy of these pharmacological candidates, quantitative analysis of small molecule compound-protein, nucleic acid-protein, peptide-protein, protein-protein avidity (interaction) or nuclease, protease activity is very important. I can.
  • heterogeneity methods include enzyme linked immunosorbent assay (ELISA), microarray, and surface plasmon resonance (SPR). These heterogeneous methods require a step of immobilizing a molecule on a substrate and a washing step for analysis of avidity (interaction) or enzyme activity. Furthermore, it is also essential to purely separate substances and reaction products bound to substances (low molecular weight compounds or nucleic acids or proteins) to be analyzed for final avidity (interaction) analysis or enzyme activity measurement.
  • ELISA enzyme linked immunosorbent assay
  • SPR surface plasmon resonance
  • homogeneous method does not require the immobilization, washing, or separation process required in the heterogeneous method, it has the advantage of being able to easily and quickly analyze the binding strength (interaction) or enzyme activity between molecules.
  • Representative examples of homogeneous methods include fluorescence resonance energy transfer (FRET) and fluorescence polarization (FP) technologies.
  • FRET fluorescence resonance energy transfer
  • FP fluorescence polarization
  • the fluorescence resonance energy transfer measurement method is widely used to measure the binding force (interaction) or enzyme activity between molecules, but due to the demands of a donor and an acceptor, a fluorescent substance is added to both molecules to be analyzed. There is a fatal drawback that must be labeled.
  • the fluorescence polarization measurement method which enables analysis of the binding strength (interaction) or enzyme activity between molecules even when a fluorescent substance is labeled on only one molecule, is a method of measuring the fluorescence polarization that occurs when the fluorescent substance in a solution is excitation. .
  • a fluorescent substance When a fluorescent substance is excited and is in a stable state, it emits fluorescence polarized light, and when the fluorescent molecule is excited, it rotates by Brownian motion to emit fluorescence to a plane different from the excitation plane, resulting in loss of fluorescent polarization. It is to use the principle.
  • low molecular weight compounds-protein, nucleic acid-protein, peptide-protein, protein -It can be said to be a powerful technology in the analysis of binding (interaction) and enzyme activity of proteins, receptors-ligands, enzymes-substrates, nucleic acids-nucleic acids, etc.
  • Republic of Korea Patent Registration No. 10-1576363 relates to a method of measuring fluorescence polarization in which a signal is amplified.
  • a signal is amplified.
  • biotin and streptavidin By amplifying the fluorescence polarization value using biotin and streptavidin, it is possible to analyze the binding force (interaction) between two molecules or measure enzyme activity. Is being disclosed.
  • the present inventors made diligent efforts to provide a method for effectively screening the binding (interaction) power of a low molecular weight compound and a protein, etc., particularly the binding power of FGF2 and API5 or inhibitors that inhibit it.As a result, by introducing cysteine into FGF2, API5 In the case of screening after reacting with, it was confirmed that the binding strength of FGF2 and API5 or inhibitors that inhibit it can be screened with high efficiency, and the present invention was completed.
  • an object of the present invention is the steps of i) introducing cysteine outside FGF2;
  • step ii) labeling a fluorescent material on FGF2 into which the cysteine of step i) has been introduced;
  • the present invention comprises the steps of: i) introducing cysteine to the outside of FGF2;
  • step ii) labeling a fluorescent material on FGF2 into which the cysteine of step i) has been introduced;
  • FGF2 binding inhibitor screening method comprising a.
  • the cysteine in step i) may be introduced at the C-terminus of FGF2.
  • the fluorescent material of step ii) is FITC (fluorescein isothiocyanate), TRITC (tetramethylrhodamine), FAM (fluorescein amidite), Rhodamine, TAMRA (Carboxytetramethylrhodamine), CyTM, CFTM (Cyanine- based fluorescent dye) and Alexa Fluor may be any one or more selected from the group consisting of.
  • the protein capable of binding to FGF2 in step iii) may have a molecular weight greater than or equal to FGF2.
  • the protein capable of binding to FGF2 of iii) is any selected from the group consisting of FLAG, histidine, CBD, MBP, TRX and GST (Glutathione S-transferase). It may be a protein to which one or more tags are fused.
  • the protein capable of binding to FGF2 in step iii) may be API5.
  • measuring the fluorescence intensity in step iv) is FRET (Fluorescence Resonance Energy Transfer), BRET (Bioluminescence Resonance Energy Transfer), FP (Fluorescence Polarization), HCS (High-content Screening). And it may be measured using one or more methods selected from the group consisting of HTS (High Throughput Screening).
  • the fluorescence intensity measured in step iv) decreases to a level of 50% to 100% compared to before mixing the candidate material of step iii), it is determined as an FGF2 binding inhibitor. It may be to further include the step of.
  • the present invention provides a FGF2 binding inhibitor selected by the screening method.
  • the binding may be a combination of FGF2 and API5.
  • the present invention provides a composition for inhibiting anticancer drug resistance comprising the FGF2 binding inhibitor.
  • FGF2 (protein) outside refers to a portion of the FGF2 protein that is directed to the outside of the FGF2 protein rather than the inside of the protein.
  • inside FGF2 (protein) refers to a portion of the FGF2 protein directed toward the inside of the FGF2 protein rather than outside the protein.
  • “Inhibition of anticancer drug resistance” of the present invention refers to all effects of reducing or alleviating the resistance or resistance of cancer cells to anticancer agents so that the anticancer effect of the anticancer agent against cancer cells can be fully exhibited.
  • API5 Apoptosis inhibitor 5
  • AAC-11 Apoptosis inhibitor 5
  • API5 has been reported to be involved in increasing cancer survival in several cancer cells. Through physical binding with Acinus (ACIN1), it inhibits the induction of apoptosis through Acinus-mediated DNA fragmentation and blocks the activity of Caspase-3, a apoptosis protein.
  • ACIN1 Acinus
  • the cytotoxicity of the anticancer drug was increased by effectively inhibiting E2F1-induced apoptosis and lowering the expression of API5.
  • it has been found that it is involved in the migration and invasion of cancer cells, which is deeply related to cancer metastasis, and plays an important role in immune evasion of cancer cells.
  • the "fibroblast growth factor 2 (FGF2)" of the present invention is one of a large family of fibroblast growth factors consisting of 23 FGF members, and is the most abundant among FGF members in the central nervous system. It plays an important role as a regulatory mediator of proliferation, differentiation, development and survival in various cell types and has mitogenic activity in the nervous system. In addition, FGF2 has a potential angiogenic effect, promotes the growth of smooth muscle cells, wound healing and tissue repair, as well as the pluripotent of human and mouse embryonic stem (ES) cells. It has been reported to remain in state. There are two types of FGF2: high molecular weight (22, 22.5, 24 or 34 kDa) and low molecular weight (18 kDa).
  • High molecular weight FGF2 has a nuclear localization signal (NLS) at the N-terminus, allowing high molecular weight FGF2 to be located in the nucleus, whereas low-molecular weight FGF2 does not have NLS at the N-terminus, whereas atypical dichotomy at the C-terminus NLS regulates some low molecular weight FGF2 to be located in the nucleus.
  • NLS nuclear localization signal
  • FGF2 binding inhibitor refers to a substance that inhibits FGF2 from binding to other proteins, and in the present invention, it may mean a substance that inhibits the binding of FGF2 and API5.
  • the fluorescence polarization value was very low after a certain period of time. This is because the existing Cys residues present inside FGF2 are not sufficiently exposed on the protein surface, so that the fluorescent substance is shared. It was determined that labeling through binding was not properly performed. On the other hand, in the case of FGF2 in which Cys was exposed to the outside of the protein by introducing Cys at the C-terminus, it was confirmed that the fluorescent label was maintained for a long period of time. In addition, the labeling efficiency values of FGF2 with Cys introduced at the C-terminus were mostly about 0.3 to 0.8, and it was determined that Alexa Fluor 488 was appropriately covalently bonded to the introduced Cys to be labeled.
  • the six candidate compounds are respectively API5 derived peptide (1), FGF2 derived peptide (2), API5 binding substance derived from thermal shift assay (3), a derivative of candidate 3 (4), and other candidate substances of 3 It is a derivative (5) and a negative control group (6).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The present invention relates to a method for screening an FGF2 binding inhibiting substance and the use thereof, the method comprising the steps of: i) introducing cysteine into the outside of FGF2; ii) labeling the cysteine-introduced FGF2 of step i) with a fluorescent material; iii) mixing the FGF2 labeled with the fluorescent material of step ii), a protein which can bind to the FGF2 and a candidate substance which can inhibit the binding therebetween; and iv) measuring the fluorescence intensity of the mixed substances of step iii). By using the screening method of the present invention, cysteine is additionally introduced into FGF2 to enable more efficient fluorescent material labeling, and thus a fluorescence polarization value measured by means of a fluorescence polarization assay and the like is amplified and the binding (interaction) force between the FGF2 and API5 or the substance inhibiting same can be efficiently screened.

Description

API5 및 FGF2의 결합 저해 물질 스크리닝 방법 API5 and FGF2 binding inhibitor screening method
본 출원은 2019년 08월 09일 출원된 대한민국 특허출원 제10-2019-0097467호 를 우선권으로 주장하고, 상기 명세서 전체는 본 출원의 참고문헌이다. This application claims priority to Korean Patent Application No. 10-2019-0097467, filed on August 09, 2019, and the entire specification is a reference to this application.
본 발명은 i) FGF2 외부에 시스테인(Cysteine)을 도입하는 단계;The present invention comprises the steps of: i) introducing cysteine to the outside of FGF2;
ii) 상기 단계 i)의 시스테인이 도입된 FGF2에 형광물질을 표지하는 단계;ii) labeling a fluorescent material on FGF2 into which the cysteine of step i) has been introduced;
iii) 상기 단계 ii)의 형광물질이 표지된 FGF2, FGF2와 결합 가능한 단백질 및 이들의 결합을 저해할 수 있는 후보물질을 혼합하는 단계; 및iii) mixing the fluorescent substance-labeled FGF2 of step ii), a protein capable of binding to FGF2, and a candidate substance capable of inhibiting the binding thereof; And
iv) 상기 단계 iii)의 혼합된 물질들의 형광 세기를 측정하는 단계;iv) measuring the fluorescence intensity of the mixed materials of step iii);
를 포함하는 FGF2 결합 저해물질 스크리닝 방법 및 이의 용도에 대한 것이다. It relates to a method for screening a FGF2 binding inhibitor comprising a and use thereof.
단백질-단백질, 핵산(DNA, RNA)-단백질간의 상호작용 또는 적절한 핵산분해효소, 단백질가수분해 효소의 활성 등은 세포의 발생, 성장 및 항상성 유지 등 정상적인 생리학적 반응 이외에도 암을 비롯한 다양한 질병 발생과 관련된 비정상적인 생리학적 반응에도 거의 모든 세포 신호전달체계(signal transduction)에 관여한다. 따라서 진단 및 치료를 위해 유기 또는 무기 저분자 화합물(small molecule), 압타머(aptamer), 펩타이드(peptide), 치료용 단백질, 항체 등의 물질들이 발 빠르게 개발되고 있다. 그러므로 이러한 약리후보물질의 효능을 검증하기 위한 저분자 화합물-단백질, 핵산-단백질, 펩타이드-단백질, 단백질-단백질간 결합력(상호작용) 또는 핵산분해효소, 단백질분해효소 활성의 정량적 분석이 매우 중요하다고 할 수 있다.Protein-protein, nucleic acid (DNA, RNA)-protein interactions, or appropriate nucleases and proteolytic enzymes activity, in addition to normal physiological reactions such as cell development, growth, and homeostasis, can lead to the occurrence of various diseases including cancer. Even related abnormal physiological responses are involved in almost all cellular signal transductions. Therefore, materials such as organic or inorganic small molecules, aptamers, peptides, therapeutic proteins, and antibodies are rapidly being developed for diagnosis and treatment. Therefore, in order to verify the efficacy of these pharmacological candidates, quantitative analysis of small molecule compound-protein, nucleic acid-protein, peptide-protein, protein-protein avidity (interaction) or nuclease, protease activity is very important. I can.
현재 이용되고 있는 분자간의 결합력(상호작용) 또는 효소활성 분석 방법은 크게 이질성(heterogeneous) 방법과 동질성(homogeneous) 방법으로 나눌 수 있다. 이질성 방법의 대표적인 예로 효소면역측정법(enzyme linked immunosorbent assay, ELISA), 마이크로어레이(microarray), 표면 플라즈몬 공명(surface plasmon resonance, SPR) 등을 들 수 있다. 이러한 이질성 방법들은 결합력(상호작용) 또는 효소활성 분석을 위해 기판 위에 분자를 고정(immobilization)하는 단계와 세척(washing) 단계가 필수적이다. 더 나아가 최종 결합력(상호작용) 분석 또는 효소활성 측정을 위해 분석하고자 하는 물질(저분자 화합물 또는 핵산 또는 단백질)과 결합해있는 물질 및 반응생성물만 순수하게 분리(separation)하는 과정 또한 필수적이다.The currently used methods for analyzing the binding strength (interaction) or enzyme activity between molecules can be largely divided into a heterogeneous method and a homogeneous method. Representative examples of heterogeneity methods include enzyme linked immunosorbent assay (ELISA), microarray, and surface plasmon resonance (SPR). These heterogeneous methods require a step of immobilizing a molecule on a substrate and a washing step for analysis of avidity (interaction) or enzyme activity. Furthermore, it is also essential to purely separate substances and reaction products bound to substances (low molecular weight compounds or nucleic acids or proteins) to be analyzed for final avidity (interaction) analysis or enzyme activity measurement.
하지만 동질성 방법은 이질성 방법에서 요구되는 고정(immobilization), 세척(washing) 또는 분리(separation) 과정이 요구되지 않기 때문에, 간단하고 신속하게 분자간의 결합력(상호작용) 또는 효소활성 분석이 가능하다는 장점이 있다. 동질성 방법의 대표적인 예로 형광 공명 에너지 전이(fluorescence resonance energy transfer, FRET) 및 형광 편광(fluorescence polarization, FP) 등이 기술이 존재한다. 현재 형광 공명 에너지 전이 측정법은 분자간의 결합력(상호작용) 또는 효소활성 측정에 널리 이용되고 있지만, 공여체(donor) 및 수여체(acceptor)의 요구로 인해 결합력을 분석하고자 하는 두 분자에 모두 형광물질을 표지해야 하는 치명적인 단점이 존재한다. However, since the homogeneous method does not require the immobilization, washing, or separation process required in the heterogeneous method, it has the advantage of being able to easily and quickly analyze the binding strength (interaction) or enzyme activity between molecules. have. Representative examples of homogeneous methods include fluorescence resonance energy transfer (FRET) and fluorescence polarization (FP) technologies. Currently, the fluorescence resonance energy transfer measurement method is widely used to measure the binding force (interaction) or enzyme activity between molecules, but due to the demands of a donor and an acceptor, a fluorescent substance is added to both molecules to be analyzed. There is a fatal drawback that must be labeled.
반면에, 한 가지 분자에만 형광물질을 표지하여도 분자간의 결합력(상호작용) 또는 효소활성 분석이 가능한 형광 편광 측정법은 용액 내의 형광물질을 여기(excitation)시킬 때 발생하는 형광 편광을 측정하는 방법이다. 형광물질이 여기되어 안정한 상태를 유지하고 있는 경우에는 형광 편광을 방사하고, 형광 분자가 여기될 때 들뜬 경우에서는 브라운 운동에 의해 회전하여 여기 평면과 다른 평면으로 형광을 방사하게 되어 형광 편광이 소실되는 원리를 이용하는 것이다. 이러한 원리에 기초하여 분자간의 결합에 의해 분자량이 증가하면 형광편광도가 증가하고, 해리나 분해에 의해 분자량이 감소하면 형광편광도가 감소하기 때문에, 저분자 화합물-단백질, 핵산-단백질, 펩타이드-단백질, 단백질-단백질, 수용체-리간드, 효소-기질, 핵산-핵산 등의 결합력(상호작용) 및 효소활성 분석에 있어 강력한 기술이라 할 수 있다.On the other hand, the fluorescence polarization measurement method, which enables analysis of the binding strength (interaction) or enzyme activity between molecules even when a fluorescent substance is labeled on only one molecule, is a method of measuring the fluorescence polarization that occurs when the fluorescent substance in a solution is excitation. . When a fluorescent substance is excited and is in a stable state, it emits fluorescence polarized light, and when the fluorescent molecule is excited, it rotates by Brownian motion to emit fluorescence to a plane different from the excitation plane, resulting in loss of fluorescent polarization. It is to use the principle. Based on this principle, fluorescence polarization increases when molecular weight increases due to binding between molecules, and fluorescence polarization decreases when molecular weight decreases due to dissociation or decomposition. Therefore, low molecular weight compounds-protein, nucleic acid-protein, peptide-protein, protein -It can be said to be a powerful technology in the analysis of binding (interaction) and enzyme activity of proteins, receptors-ligands, enzymes-substrates, nucleic acids-nucleic acids, etc.
대한민국 등록특허 제10-1576363호는 신호가 증폭된 형광 편광 측정방법에 대한 것으로서, 바이오틴 및 스트렙트아비딘을 이용하여 형광 편광 값을 증폭시켜 두 분자간의 결합력(상호작용) 분석 또는 효소 활성 측정이 가능함을 개시하고 있다. Republic of Korea Patent Registration No. 10-1576363 relates to a method of measuring fluorescence polarization in which a signal is amplified. By amplifying the fluorescence polarization value using biotin and streptavidin, it is possible to analyze the binding force (interaction) between two molecules or measure enzyme activity. Is being disclosed.
그러나 FGF2의 결합, 특히 FGF2와 API5의 결합을 억제하는 저해물질을 스크리닝하기 위해 형광 편광을 활용하는 연구 내지 기재는 개시된 바 없다.However, there are no studies or descriptions of using fluorescent polarization to screen for inhibitors that inhibit the binding of FGF2, particularly FGF2 and API5.
이에 본 발명자들은 저분자 화합물과 단백질 등의 결합(상호작용)력, 특히 FGF2와 API5의 결합력 내지 이를 억제하는 저해물질들을 효과적으로 스크리닝할 수 있는 방법을 제공하고자 예의 노력한 결과, FGF2에 시스테인을 도입하여 API5와 반응시킨 후 스크리닝 하는 경우 높은 효율로 FGF2와 API5의 결합력 내지 이를 억제하는 저해물질들을 스크리닝할 수 있음을 확인하고 본 발명을 완성하였다. Accordingly, the present inventors made diligent efforts to provide a method for effectively screening the binding (interaction) power of a low molecular weight compound and a protein, etc., particularly the binding power of FGF2 and API5 or inhibitors that inhibit it.As a result, by introducing cysteine into FGF2, API5 In the case of screening after reacting with, it was confirmed that the binding strength of FGF2 and API5 or inhibitors that inhibit it can be screened with high efficiency, and the present invention was completed.
따라서, 본 발명의 목적은 i) FGF2 외부에 시스테인을 도입하는 단계;Accordingly, an object of the present invention is the steps of i) introducing cysteine outside FGF2;
ii) 상기 단계 i)의 시스테인이 도입된 FGF2에 형광물질을 표지하는 단계;ii) labeling a fluorescent material on FGF2 into which the cysteine of step i) has been introduced;
iii) 상기 단계 ii)의 형광물질이 표지된 FGF2, FGF2와 결합 가능한 단백질 및 이들의 결합을 저해할 수 있는 후보물질을 혼합하는 단계; 및iii) mixing the fluorescent substance-labeled FGF2 of step ii), a protein capable of binding to FGF2, and a candidate substance capable of inhibiting the binding thereof; And
iv) 상기 단계 iii)의 혼합된 물질들의 형광 세기를 측정하는 단계;iv) measuring the fluorescence intensity of the mixed materials of step iii);
를 포함하는 FGF2 결합 저해물질 스크리닝 방법 내지 이의 용도를 제공하는 것이다.It is to provide a method for screening an FGF2 binding inhibitor comprising a, and a use thereof.
상기 본 발명의 목적을 달성하기 위하여, 본 발명은 i) FGF2 외부에 시스테인을 도입하는 단계;In order to achieve the object of the present invention, the present invention comprises the steps of: i) introducing cysteine to the outside of FGF2;
ii) 상기 단계 i)의 시스테인이 도입된 FGF2에 형광물질을 표지하는 단계;ii) labeling a fluorescent material on FGF2 into which the cysteine of step i) has been introduced;
iii) 상기 단계 ii)의 형광물질이 표지된 FGF2, FGF2와 결합 가능한 단백질 및 이들의 결합을 저해할 수 있는 후보물질을 혼합하는 단계; 및iii) mixing the fluorescent substance-labeled FGF2 of step ii), a protein capable of binding to FGF2, and a candidate substance capable of inhibiting the binding thereof; And
iv) 상기 단계 iii)의 혼합된 물질들의 형광 세기를 측정하는 단계;iv) measuring the fluorescence intensity of the mixed materials of step iii);
를 포함하는 FGF2 결합 저해물질 스크리닝 방법을 제공한다. It provides a FGF2 binding inhibitor screening method comprising a.
본 발명의 바람직한 일실시예에 따르면, 상기 단계 i)의 시스테인은 FGF2의 C-말단에 도입되는 것일 수 있다. According to a preferred embodiment of the present invention, the cysteine in step i) may be introduced at the C-terminus of FGF2.
본 발명의 바람직한 일실시예에 따르면, 상기 단계 ii)의 형광물질은 FITC(fluorescein isothiocyanate), TRITC(tetramethylrhodamine), FAM(fluorescein amidite), Rhodamine, TAMRA (Carboxytetramethylrhodamine), Cy™, CF™ (Cyanine-based fluorescent dye) 및 Alexa Fluor 으로 이루어진 군 중에서 선택되는 어느 하나 이상인 것일 수 있다. According to a preferred embodiment of the present invention, the fluorescent material of step ii) is FITC (fluorescein isothiocyanate), TRITC (tetramethylrhodamine), FAM (fluorescein amidite), Rhodamine, TAMRA (Carboxytetramethylrhodamine), Cy™, CF™ (Cyanine- based fluorescent dye) and Alexa Fluor may be any one or more selected from the group consisting of.
본 발명의 바람직한 일실시예에 따르면, 상기 단계 iii)의 FGF2와 결합 가능한 단백질은 FGF2 보다 분자량이 크거나 같은 것일 수 있다. According to a preferred embodiment of the present invention, the protein capable of binding to FGF2 in step iii) may have a molecular weight greater than or equal to FGF2.
본 발명의 바람직한 일실시예에 따르면, 상기 iii)의 FGF2와 결합 가능한 단백질은 플래그(FLAG), 히스티딘(Histidine), CBD, MBP, TRX 및 GST(Glutathione S-transferase)로 이루어진 군에서 선택되는 어느 하나 이상의 태그가 융합된 단백질일 수 있다. According to a preferred embodiment of the present invention, the protein capable of binding to FGF2 of iii) is any selected from the group consisting of FLAG, histidine, CBD, MBP, TRX and GST (Glutathione S-transferase). It may be a protein to which one or more tags are fused.
본 발명의 바람직한 일실시예에 따르면, 상기 단계 iii)의 FGF2와 결합 가능한 단백질은 API5 인 것일 수 있다. According to a preferred embodiment of the present invention, the protein capable of binding to FGF2 in step iii) may be API5.
본 발명의 바람직한 일실시예에 따르면, 상기 단계 iv)의 형광 세기를 측정하는 것은 FRET(Fluorescence Resonance Energy Transfer), BRET(Bioluminescence Resonance Energy Transfer), FP(Fluorescence Polarization), HCS(High-content Screening) 및 HTS(High Throughput Screening) 으로 이루어진 군에서 선택되는 어느 하나 이상의 방법을 이용하여 측정하는 것일 수 있다. According to a preferred embodiment of the present invention, measuring the fluorescence intensity in step iv) is FRET (Fluorescence Resonance Energy Transfer), BRET (Bioluminescence Resonance Energy Transfer), FP (Fluorescence Polarization), HCS (High-content Screening). And it may be measured using one or more methods selected from the group consisting of HTS (High Throughput Screening).
본 발명의 바람직한 일실시예에 따르면, v) 상기 단계 iv)에서 측정한 형광 세기가, 상기 단계 iii)의 후보물질을 혼합하기 전에 비하여 50% 내지 100% 수준으로 감소한 경우 FGF2 결합 저해물질로 판단하는 단계를 추가적으로 포함하는 것일 수 있다. According to a preferred embodiment of the present invention, when v) the fluorescence intensity measured in step iv) decreases to a level of 50% to 100% compared to before mixing the candidate material of step iii), it is determined as an FGF2 binding inhibitor. It may be to further include the step of.
또한, 본 발명은 상기 스크리닝 방법으로 선별된 FGF2 결합 저해물질을 제공한다. In addition, the present invention provides a FGF2 binding inhibitor selected by the screening method.
본 발명의 바람직한 일실시예에 따르면, 상기 결합은 FGF2와 API5의 결합인 것일 수 있다. According to a preferred embodiment of the present invention, the binding may be a combination of FGF2 and API5.
또한, 본 발명은 상기 FGF2 결합 저해물질을 포함하는 항암제 내성 억제용 조성물을 제공한다. In addition, the present invention provides a composition for inhibiting anticancer drug resistance comprising the FGF2 binding inhibitor.
본 발명의 “FGF2 (단백질) 외부”는 FGF2 단백질에서 단백질 내부가 아닌 외부로 향해있는 FGF2 단백질의 부위를 의미한다. 이에 상응하여 “FGF2 (단백질) 내부”는 FGF2 단백질에서 단백질 외부가 아닌 내부로 향해있는 FGF2 단백질의 부위를 의미한다.In the present invention, “FGF2 (protein) outside” refers to a portion of the FGF2 protein that is directed to the outside of the FGF2 protein rather than the inside of the protein. Correspondingly, “inside FGF2 (protein)” refers to a portion of the FGF2 protein directed toward the inside of the FGF2 protein rather than outside the protein.
본 발명의 “항암제 내성 억제”는 암세포의 항암제에 대한 저항 내지 내성을 감소 내지 완화시켜 항암제의 암세포에 대한 항암 효과가 완전히 나타날 수 있도록 하는 모든 효과를 의미한다. "Inhibition of anticancer drug resistance" of the present invention refers to all effects of reducing or alleviating the resistance or resistance of cancer cells to anticancer agents so that the anticancer effect of the anticancer agent against cancer cells can be fully exhibited.
본 발명의 "API5(Apoptosis inhibitor 5)"는 1997년 성장인자 없이도 세포사멸이 이루어 지지 않은 세포의 cDNA 분석을 통해 증가된 유전자로 발견되어 AAC-11이라고 명명되었다. API5는 여러 암세포에서 암의 생존 증가에 관여한다고 보고되었는데, Acinus(ACIN1)와 물리적인 결합을 통해 Acinus 매개성 DNA 절편을 통한 세포사멸 유도를 억제하고 세포사멸 단백질인 Caspase-3의 활성을 막는다. 뿐만 아니라 E2F1에 유도되는 세포사멸을 효과적으로 억제하며 API5 발현을 저하하면 항암제의 세포독성이 증가되는 것이 확인되었다. 또한, 암세포의 이동과 침윤에 관여하여 암의 전이와 관련이 깊고, 최근 암세포의 면역 회피에도 중요한 역할을 한다는 사실이 밝혀졌다."API5 (Apoptosis inhibitor 5)" of the present invention was discovered as an increased gene through cDNA analysis of cells that did not undergo apoptosis without growth factor, and was named AAC-11. API5 has been reported to be involved in increasing cancer survival in several cancer cells. Through physical binding with Acinus (ACIN1), it inhibits the induction of apoptosis through Acinus-mediated DNA fragmentation and blocks the activity of Caspase-3, a apoptosis protein. In addition, it was confirmed that the cytotoxicity of the anticancer drug was increased by effectively inhibiting E2F1-induced apoptosis and lowering the expression of API5. In addition, it has been found that it is involved in the migration and invasion of cancer cells, which is deeply related to cancer metastasis, and plays an important role in immune evasion of cancer cells.
본 발명의 "FGF2(fibroblast growth factor 2)"는 23개의 FGF 구성원으로 이루어진 커다란 섬유아세포 성장 인자들 패밀리 중의 하나로서, 중추신경계 내의 FGF 구성원 중 가장 풍부하다. 이는 다양한 세포 형태에 있어서, 증식, 분화, 발달 및 생존의 조절 매개체로서 중요한 역할을 하고 신경계에서 분열 촉진 활성(mitogenic activity)을 가진다. 또한, FGF2는 잠재적인 혈관형성(angiogenic) 효과, 평활근 세포(smooth muscle cells)의 성장 촉진, 상처 치유 및 조직 회복과 더불어, 인간 및 마우스 배아줄기(embryonic stem; ES) 세포의 다분화능(pluripotent) 상태를 유지하는 것으로 보고되었다. FGF2는 고분자량(high molecular weight; 22, 22.5, 24 또는 34 kDa) 및 저분자량(low molecular weight; 18 kDa) 두 종류가 존재한다. 고분자량 FGF2는 N 말단에 핵 위치 신호(nuclear localization signal; NLS)가 존재하여 고분자량 FGF2가 핵에 위치하도록 하는 반면, 저분자량 FGF2는 N 말단에 NLS는 존재하지 않는 반면 C 말단의 비전형적인 이분 NLS로 인해 일부 저분자량 FGF2가 핵에 위치하도록 조절한다. The "fibroblast growth factor 2 (FGF2)" of the present invention is one of a large family of fibroblast growth factors consisting of 23 FGF members, and is the most abundant among FGF members in the central nervous system. It plays an important role as a regulatory mediator of proliferation, differentiation, development and survival in various cell types and has mitogenic activity in the nervous system. In addition, FGF2 has a potential angiogenic effect, promotes the growth of smooth muscle cells, wound healing and tissue repair, as well as the pluripotent of human and mouse embryonic stem (ES) cells. It has been reported to remain in state. There are two types of FGF2: high molecular weight (22, 22.5, 24 or 34 kDa) and low molecular weight (18 kDa). High molecular weight FGF2 has a nuclear localization signal (NLS) at the N-terminus, allowing high molecular weight FGF2 to be located in the nucleus, whereas low-molecular weight FGF2 does not have NLS at the N-terminus, whereas atypical dichotomy at the C-terminus NLS regulates some low molecular weight FGF2 to be located in the nucleus.
본 발명의 “FGF2 결합 저해물질”은 FGF2가 다른 단백질과 결합하는 것을 억제하는 물질을 의미하며, 본 발명에서는 FGF2와 API5가 결합하는 것을 억제하는 물질을 의미할 수 있다. The "FGF2 binding inhibitor" of the present invention refers to a substance that inhibits FGF2 from binding to other proteins, and in the present invention, it may mean a substance that inhibits the binding of FGF2 and API5.
본 발명의 FGF2 결합 저해물질 스크리닝 방법에서, 시스테인을 FGF2 단백질의 외부에 위치하도록 도입하는 경우 Alexa Fluor 488 등의 형광물질이 FGF2에 보다 높은 효율로 표지될 수 있었다(실시예 2). 상기 Alexa Fluor 488이 표지된 FGF2, His 및 GST로 태그된 API5와 API5 및 FGF2의 결합 억제제 후보물질들을 한번에 반응시킨 후 형광 편광 분석방법으로 분석한 결과 형광 편광값이 유의적으로 상승하여 다양한 API5 및 FGF2의 결합 억제제 후보물질들을 효과적으로 스크리닝할 수 있었다(실시예 3).In the FGF2 binding inhibitor screening method of the present invention, when cysteine was introduced to be located outside the FGF2 protein, a fluorescent substance such as Alexa Fluor 488 could be labeled on FGF2 with higher efficiency (Example 2). The Alexa Fluor 488-labeled FGF2, His, and GST-tagged API5 and API5 and FGF2 binding inhibitor candidates were reacted at once and analyzed by fluorescence polarization analysis. As a result, the fluorescence polarization value was significantly increased, resulting in various API5 and FGF2 binding inhibitor candidates were effectively screened (Example 3).
따라서, 본 발명은 i) FGF2 외부에 시스테인(Cysteine)을 도입하는 단계;Accordingly, the present invention comprises the steps of: i) introducing cysteine to the outside of FGF2;
ii) 상기 단계 i)의 시스테인이 도입된 FGF2에 형광물질을 표지하는 단계;ii) labeling a fluorescent material on FGF2 into which the cysteine of step i) has been introduced;
iii) 상기 단계 ii)의 형광물질이 표지된 FGF2, FGF2와 결합 가능한 단백질 및 이들의 결합을 저해할 수 있는 후보물질을 혼합하는 단계; 및iii) mixing the fluorescent substance-labeled FGF2 of step ii), a protein capable of binding to FGF2, and a candidate substance capable of inhibiting the binding thereof; And
iv) 상기 단계 iii)의 혼합된 물질들의 형광 세기를 측정하는 단계;iv) measuring the fluorescence intensity of the mixed materials of step iii);
를 포함하는 FGF2 결합 저해물질 스크리닝 방법을 제공할 수 있다. It can provide a method for screening a FGF2 binding inhibitor comprising a.
본 발명의 상기 단계 i)의 시스테인은 FGF2의 C-말단에 도입되는 것일 수 있다. FGF2는 본래 C167 및 C234 위치에 시스테인을 포함하고 있으나, 이는 FGF2 단백질 내부를 향해있어서 Alexa Fluor 488 등 형광물질이 결합하는데에 어려움이 있었다. 이에 FGF2의 C 말단에 시스테인을 도입(C289)하는 경우 Alexa Fluor 488 등 형광물질과의 결합 효율이 증가할 수 있다. The cysteine in step i) of the present invention may be introduced at the C-terminus of FGF2. FGF2 originally contained cysteine at the C167 and C234 positions, but this was directed to the inside of the FGF2 protein, so it was difficult to bind fluorescent substances such as Alexa Fluor 488. Accordingly, when cysteine is introduced (C289) at the C-terminus of FGF2, the binding efficiency with fluorescent materials such as Alexa Fluor 488 may increase.
본 발명의 상기 단계 ii)의 형광물질은 FITC(fluorescein isothiocyanate), TRITC(tetramethylrhodamine), FAM(fluorescein amidite), Rhodamine, TAMRA (Carboxytetramethylrhodamine), Cy™, CF™ (Cyanine-based fluorescent dye) 및 Alexa Fluor 으로 이루어진 군 중에서 선택되는 어느 하나 이상인 것이 바람직하고, 보다 바람직하게는 FITC(fluorescein isothiocyanate) 또는 Alexa Fluor 인 것이 바람직하며, 가장 바람직하게는 Alexa Fluor 인 것이 가장 바람직하다. 상기 Alexa Fluor은 Alexa Fluor 488 일 수 있다. The fluorescent material of step ii) of the present invention is FITC (fluorescein isothiocyanate), TRITC (tetramethylrhodamine), FAM (fluorescein amidite), Rhodamine, TAMRA (Carboxytetramethylrhodamine), Cy™, CF™ (Cyanine-based fluorescent dye), and Alexa Fluor. It is preferably any one or more selected from the group consisting of, more preferably FITC (fluorescein isothiocyanate) or Alexa Fluor, and most preferably Alexa Fluor. The Alexa Fluor may be Alexa Fluor 488.
형광 편광 분석방법에 기반하여 단백질-단백질(펩타이드) 결합 내지 이를 억제하는 억제제를 스크리닝하는 경우, 단백질-단백질(펩타이드) 결합이 이루어진다면 형광 편광값은 증가하는 것으로, 단백질-단백질(펩타이드) 결합이 억제된다면 형광 편광값이 억제하는 것으로 예측할 수 있다. When screening for protein-protein (peptide) binding or inhibitors that inhibit it based on the fluorescence polarization analysis method, the fluorescence polarization value increases if protein-protein (peptide) binding occurs, and protein-protein (peptide) binding is If suppressed, it can be predicted that the fluorescence polarization value suppresses.
본 발명에서 FGF2에 시스테인을 도입하는 것은 형광 편광 분석방법에서 형광 편광 값의 차이를 보다 극대화시키기 위해서는 분자량이 작은 물질에 형광물질을 표지하여야하기 때문에, FGF2에 시스테인을 도입함으로써 형광물질과의 결합 효율을 증폭시키기 위함이다(도 2). 따라서, 상기 단계 iii)의 FGF2와 결합 가능한 단백질은 FGF2 보다 분자량이 크거나 같은 것일 수 있으며, 바람직하게는 FGF2 보다 분자량이 큰 것일 수 있다. 상기 FGF2와 결합 가능한 단백질은 FGFR 또는 API5 일 수 있고, 바람직하게는 API5일 수 있다. FGF2 전장(residue 1-288)의 분자량은 약 30.8 kDa 이며, FGF2(residue 135-288)의 분자량은 17.1 kDa이고, N 말단에 His-tag 및 C 말단에 시스테인을 도입한 FGF2(residue 135-288)의 분자량은 약 19.8 kDa이다. His-API5의 분자량은 약 61 kDa, GST가 표지된 His-API5의 분자량은 약 170kDa 이다. In the present invention, the introduction of cysteine into FGF2 means that in order to further maximize the difference in fluorescence polarization values in the fluorescence polarization analysis method, a fluorescent material must be labeled on a material having a small molecular weight. It is to amplify (Fig. 2). Accordingly, the protein capable of binding to FGF2 in step iii) may have a molecular weight greater than or equal to that of FGF2, preferably having a molecular weight greater than that of FGF2. The protein capable of binding to FGF2 may be FGFR or API5, preferably API5. The full length of FGF2 (residue 1-288) has a molecular weight of about 30.8 kDa, the molecular weight of FGF2 (residue 135-288) is 17.1 kDa, and FGF2 (residue 135-288) in which a His-tag at the N-terminus and cysteine are introduced at the C-terminus ) Has a molecular weight of about 19.8 kDa. The molecular weight of His-API5 is about 61 kDa, and the molecular weight of His-API5 labeled with GST is about 170 kDa.
본 발명의 상기 iii)의 FGF2와 결합 가능한 단백질에 플래그(FLAG), 히스티딘(Histidine), CBD, MBP, TRX 및 GST(Glutathione S-transferase)로 이루어진 군에서 선택되는 어느 하나 이상의 태그를 융합하는 것일 수 있다. 바람직하게는 히스티딘(Histidine), GST(Glutathione S-transferase) 또는 히스티딘 및 GST를 모두 융합하는 것이 바람직하다. To fuse any one or more tags selected from the group consisting of FLAG, histidine, CBD, MBP, TRX and GST (Glutathione S-transferase) to the protein capable of binding to FGF2 of iii) of the present invention. I can. It is preferable to fuse all of histidine, GST (Glutathione S-transferase) or histidine and GST.
본 발명의 상기 단계 iv)의 형광 세기를 측정하는 것은 바람직하게 형광 편광의 세기를 측정하는 것일 수 있으며, FRET(Fluorescence Resonance Energy Transfer), BRET(Bioluminescence Resonance Energy Transfer), FP(Fluorescence Polarization), HCS(High-content Screening) 및 HTS(High Throughput Screening) 으로 이루어진 군에서 선택되는 어느 하나 이상의 방법을 이용하여 측정하는 것일 수 있다. 보다 바람직하게는 FP(Fluorescence Polarization) 또는 HTS(High Throughput Screening) 방법을 이용하여 측정하는 것이 바람직하다. Measuring the fluorescence intensity in step iv) of the present invention may preferably be measuring the intensity of fluorescence polarization, and FRET (Fluorescence Resonance Energy Transfer), BRET (Bioluminescence Resonance Energy Transfer), FP (Fluorescence Polarization), HCS It may be measured using one or more methods selected from the group consisting of (High-content Screening) and High Throughput Screening (HTS). More preferably, it is preferable to measure using FP (Fluorescence Polarization) or HTS (High Throughput Screening) method.
본 발명의 상기 스크리닝 방법은 v) 상기 단계 iv)에서 측정한 형광 세기가, 상기 단계 iii)의 후보물질을 혼합하기 전에 비하여 50% 내지 100% 수준으로 감소한 경우 FGF2 결합 저해물질로 판단하는 단계를 추가적으로 포함하는 것일 수 있다. 바람직하게는 형광 세기가 55% 내지 90% 수준으로 감소한 경우 FGF2 결합 저해물질로 판단하는 것이 바람직하고, 보다 바람직하게는 60% 내지 70% 수준으로 감소한 경우 FGF2 결합 저해물질로 판단하는 것이 바람직하다. The screening method of the present invention comprises the step of determining as an FGF2 binding inhibitor when v) the fluorescence intensity measured in step iv) decreases to a level of 50% to 100% compared to before mixing the candidate material of step iii). It may be additionally included. Preferably, when the fluorescence intensity is reduced to a level of 55% to 90%, it is preferable to determine it as an FGF2 binding inhibitor, and more preferably, when it is reduced to a level of 60% to 70%, it is preferable to determine it as an FGF2 binding inhibitor.
결과적으로, 본 발명은 상기 스크리닝 방법으로 선별된 FGF2 결합 저해물질을 제공할 수 있다. As a result, the present invention can provide a FGF2 binding inhibitor selected by the screening method.
본 발명의 상기 결합은 FGF2와 API5의 결합인 것일 수 있다. The binding of the present invention may be a combination of FGF2 and API5.
또한, 본 발명은 상기 FGF2 결합 저해물질을 포함하는 항암제 내성 억제용 조성물을 제공할 수 있다. In addition, the present invention can provide a composition for inhibiting anticancer drug resistance comprising the FGF2 binding inhibitor.
상기 항암제는 독소루비신, 5-플루오로우라실, 카르보플라틴, 시스플라틴, 카르무스틴, 다카바진, 에토포사이드, 비노렐빈, 토포테칸, 이리노테칸 및 에스트라무스틴으로 이루어진 군에서 선택되는 어느 하나 이상인 것일 수 있다.The anticancer agent may be any one or more selected from the group consisting of doxorubicin, 5-fluorouracil, carboplatin, cisplatin, carmustine, dacarbazine, etoposide, vinorelbine, topotecan, irinotecan, and estramustine. .
본 발명의 스크리닝 방법을 이용하는 경우 FGF2에 시스테인을 추가적을 도입함으로써 형광물질이 보다 효율적으로 표지될 수 있게 하여 형광 편광 분석방법 등으로 측정한 형광 편광값을 증폭시켜 FGF2와 API5의 결합(상호작용)력 내지 이를 억제하는 물질을 효과적으로 스크리닝할 수 있다.In the case of using the screening method of the present invention, by introducing additional cysteine to FGF2, the fluorescent substance can be more efficiently labeled, thereby amplifying the fluorescence polarization value measured by the fluorescence polarization analysis method, etc., and binding (interaction) of FGF2 and API5 It is possible to effectively screen the power or substances that inhibit it.
도 1은 FP 분석방법 기반 단백질-단백질(펩타이드) 결합 또는 결합 저해물질을 분석하는 방법 내지 스크리닝 하는 방법의 원리를 나타낸다. 단백질-단백질(펩타이드) 결합을 분석할 때에는 FP 신호가 증가하는 경우 단백질과 단백질(펩타이드)가 결합한 것을 의미하고, 단백질-단백질(펩타이드) 결합 저해물질을 스크리닝할 때에는 FP 신호가 감소하는 경우 단백질과 단백질(펩타이드)의 결합이 저해된 것을 의미한다. 1 shows the principle of a method for analyzing or screening a protein-protein (peptide) binding or binding inhibitor based on an FP analysis method. When analyzing protein-protein (peptide) binding, when the FP signal increases, it means that the protein and protein (peptide) are combined.When screening for a protein-protein (peptide) binding inhibitor, when the FP signal decreases, It means that the binding of protein (peptide) is inhibited.
도 2는 본 발명의 API5 및 FGF2의 결합을 저해하는 물질 스크리닝 방법의 원리를 나타낸다. Figure 2 shows the principle of the method for screening substances that inhibit the binding of API5 and FGF2 of the present invention.
도 3은 C 말단에 시스테인이 도입된 FGF2 단백질을 나타낸다. 붉은색이 FGF2 단백질 외부에 새로 도입된 시스테인이며, 노란색은 기존에 존재하던 FGF2 단백질 내부를 향한 시스테인을 나타낸다. 3 shows the FGF2 protein into which cysteine is introduced at the C-terminus. The red color represents the newly introduced cysteine outside the FGF2 protein, and the yellow color represents the existing cysteine toward the inside of the FGF2 protein.
도 4는 C 말단에 시스테인이 도입된 FGF2 단백질(하늘색)과 결합한 API5 단백질(초록색)을 나타낸다. FGF2에는 기존에 167번(C167) 및 234번(C234) 위치에 시스테인이 존재(노란색)하였으나 이는 FGF2 단백질 내부를 향해 있으며, 새로 도입한 289번 시스테인(C289, 붉은색)은 FGF2 단백질 외부에 위치한다.4 shows the API5 protein (green color) bound to the FGF2 protein (light blue) into which cysteine was introduced at the C-terminus. In FGF2, cysteine at positions 167 (C167) and 234 (C234) previously existed (yellow), but this is toward the inside of the FGF2 protein, and the newly introduced cysteine at position 289 (C289, red) is located outside the FGF2 protein. do.
도 5는 API5 및 FGF2 결합을 형광 편광 분석방법에 기반하여 측정한 결과를 나타낸다. His-API5 단백질에 Alexa Fluor 488로 표지된 His-FGF2와 결합시키는 경우 FP 값이 188에서 272로 증가하였다. GST-API5 단백질에 Alexa Fluor 488로 표지된 His-FGF2와 결합시키는 경우 FP 값이 183에서 258로 증가하였다. 5 shows the results of measuring API5 and FGF2 binding based on the fluorescence polarization analysis method. When the His-API5 protein was bound to His-FGF2 labeled with Alexa Fluor 488, the FP value increased from 188 to 272. When the GST-API5 protein was combined with His-FGF2 labeled with Alexa Fluor 488, the FP value increased from 183 to 258.
도 6은 본 발명의 방법을 이용하여 API5 및 FGF2 결합 억제제 후보 물질들을 스크리닝한 결과를 나타낸다.6 shows the results of screening candidates for API5 and FGF2 binding inhibitors using the method of the present invention.
[실시예 1][Example 1]
재조합 단백질 준비Preparation of recombinant protein
FGF2 및 API5의 결합을 억제하는 저해물질의 스크리닝 효율을 증가시키기 위하여 FGF2 및 API5의 형광물질에의 친화도를 증폭시키고자 하였다.In order to increase the screening efficiency of inhibitors that inhibit the binding of FGF2 and API5, it was attempted to amplify the affinity of FGF2 and API5 to fluorescent substances.
구체적으로, 대장균(E. coli)에서 대량 발현을 위해 FGF2에서 C211S 및 C229S로 돌연변이시켰다. FGF2 단백질 외부인 C 말단에 289번째 아미노산으로서 시스테인(Cysteine; Cys) 잔기를 도입하였다(Cys289, 도 3). 단백질 정제 효율을 높이기 위하여 FGF2 및 API5에 모두 His tag을 하였다. 단백질 정제 효율 높이고 FGF2와 분자량 차이를 보다 크게 하기 위하여 API5에 GST(Glutathion S-transferase)을 융합한 재조합 API5도 추가로 제작하였다. Specifically, it was mutated from FGF2 to C211S and C229S for mass expression in E. coli. A cysteine (Cys) residue was introduced as the 289th amino acid at the C-terminus outside the FGF2 protein (Cys289, FIG. 3). In order to increase the efficiency of protein purification, both FGF2 and API5 were tagged with His. In order to increase the efficiency of protein purification and to increase the molecular weight difference from FGF2, a recombinant API5 in which GST (Glutathion S-transferase) was fused to API5 was also prepared.
[실시예 2][Example 2]
단백질에 형광물질 표지Fluorescent labeling on proteins
시스테인(Cysteine, Cys)의 도입이 FGF2와 형광물질(염료) 표지 효율에 영향을 미치는지 여부를 확인하고자 하였다. We tried to determine whether the introduction of cysteine (Cys) affects the labeling efficiency of FGF2 and fluorescent substances (dyes).
구체적으로, TCEP 용액(pH 7.5)를 Cys를 도입하지 않은 FGF2 또는 상기 <실시예 1>에서 제조한 FGF2의 100배(molar ratio) 넣어준 다음 10분 동안 실온에서 반응시킨다. 10분 후에 염료 Alexa Fluor 488을 넣고(Dye/protein ratio = 0.5-3), 바로 pipetting으로 섞은 후 table top centrifuge로 spin down한다. 그리고 실온에서 2시간 동안 반응시키는데, 그때, 30분 마다 pipetting을 해준다. 마지막으로 호일로 감싼 후, 4℃에서 15시간 반응시킨다(단백질-형광물질 반응). FGF2에 결합하지 않은 염료는 HiTrap Desalting column을 이용하여 제거한다(과잉 형광물질 제거). Desalting column을 해서 얻은 profile peak을 확인하고 그 peak안에 들어가는 튜브를 수거한다. 튜브 각각의 용액을 280nm 및 494nm에서 각각 흡광도를 측정한 후, 하기 [수학식 1] 및 [수학식 2]를 통하여 표지 효율을 확인하였다. [수학식 2]의 염료(M)/단백질(M) 값이 1 이하인 경우 표지 효율이 높은 것으로 판단하였으며, 값이 1보다 큰 경우는 단백질과 과반응 되었거나 반응하지 않은 염료가 섞인 것으로 판단하였다. Specifically, a TCEP solution (pH 7.5) was added to FGF2 without Cys or 100 times (molar ratio) of FGF2 prepared in Example 1, and then reacted at room temperature for 10 minutes. After 10 minutes, put the dye Alexa Fluor 488 (Dye/protein ratio = 0.5-3), mix by pipetting immediately, and spin down with a table top centrifuge. And it is allowed to react at room temperature for 2 hours, at that time, pipetting every 30 minutes. Finally, after wrapping with foil, it is reacted at 4°C for 15 hours (protein-fluorescent substance reaction). Dye that does not bind to FGF2 is removed using a HiTrap Desalting column (excess fluorescent substance removed). Check the profile peak obtained by performing the desalting column, and collect the tube that enters the peak. After measuring the absorbance of each solution in each tube at 280nm and 494nm, respectively, the labeling efficiency was confirmed through the following [Equation 1] and [Equation 2]. When the dye (M)/protein (M) value of [Equation 2] was 1 or less, it was determined that the labeling efficiency was high, and when the value was greater than 1, it was determined that the protein and the overreacted or unreacted dye were mixed.
단백질 몰 흡광계수(protein molar extinction coefficient)는 16,055 cm-1M-1) 이고, 염료 몰 흡광계수(dye molar extinction coefficient; Alexa Fluor 488)는 71,000 cm-1M-1 으로 하였다. Amax 는 최대 파장에서 측정한 염료의 흡광도(Alexa Fluor 488: Abs 495) 이며, CF 는 보정계수(Correction factor; Alexa Fluor 488: 0.11) 이며, 희석 배율(Dilution factor) 은 흡광도를 측정하기 전 희석된 샘플의 양 을 나타낸다. The protein molar extinction coefficient (protein molar extinction coefficient) was 16,055 cm -1 M -1 ), and the dye molar extinction coefficient (Alexa Fluor 488) was 71,000 cm -1 M -1 . Amax is the absorbance of the dye measured at the maximum wavelength (Alexa Fluor 488: Abs 495), CF is the correction factor (Alexa Fluor 488: 0.11), and the dilution factor is diluted before measuring absorbance. Indicate the amount of sample.
[수학식 1][Equation 1]
단백질 농도(M) = [A280-(A494 × 0.11)]× 희석배율 / 단백질 몰 흡광계수Protein concentration (M) = [A 280 -(A 494 × 0.11)] × dilution ratio / protein molar extinction coefficient
[수학식 2][Equation 2]
염료(M)/단백질(M) = A494 × 희석배율 / 염료 물 흡광계수 × 단백질 농도(M)Dye (M)/protein (M) = A 494 × dilution factor / dye water extinction coefficient × protein concentration (M)
그 결과, Cys을 도입하지 않은 FGF2의 경우, 일정 시간 경과 후 형광 편광 값이 매우 낮아지는 현상이 나타났는데, 이는 FGF2 내부에 존재하는 기존 Cys 잔기가 단백질 표면에 충분히 노출되지 않아 이에 형광 물질이 공유결합을 통한 표지가 적절히 이루어지지 않은 것으로 판단하였다. 반면에, C 말단에 Cys를 도입하여 Cys를 단백질 외부로 노출시킨 FGF2의 경우, 오랜 기간 형광 표지가 유지되는 것을 확인할 수 있었다. 또한, C 말단에 Cys를 도입한 FGF2의 표지 효율값은 대부분 약 0.3~0.8을 나타내어 도입된 Cys에 Alexa Fluor 488이 적절하게 공유결합하여 표지된 것으로 판단하였다.As a result, in the case of FGF2 without introducing Cys, the fluorescence polarization value was very low after a certain period of time. This is because the existing Cys residues present inside FGF2 are not sufficiently exposed on the protein surface, so that the fluorescent substance is shared. It was determined that labeling through binding was not properly performed. On the other hand, in the case of FGF2 in which Cys was exposed to the outside of the protein by introducing Cys at the C-terminus, it was confirmed that the fluorescent label was maintained for a long period of time. In addition, the labeling efficiency values of FGF2 with Cys introduced at the C-terminus were mostly about 0.3 to 0.8, and it was determined that Alexa Fluor 488 was appropriately covalently bonded to the introduced Cys to be labeled.
[실시예 3][Example 3]
단백질 결합 저해물질 스크리닝Protein binding inhibitor screening
1×PBS에 보관중인 정제한 API5 전장(1.2 mM)과 상기 <실시예 2>에서 제조한 Alexa Fluor 488로 표지된 FGF2(residue 135-288; 10 nM) 결합여부를 형광 편광(Fluorescence polarization) 분석방법으로 확인하였다. 그리고 결합체를 스크리닝 하고자 하는 저분자 화합물(small molecule compound)들과 혼합하고 형광 편광 경쟁 분석방법(Fluorescence polarization competition assay)을 수행하여 FGF2-API5(FGF2 결합부위) 결합을 억제하는 물질을 동정하였다. Fluorescence polarization analysis of binding of purified API5 full length (1.2 mM) stored in 1×PBS and FGF2 (residue 135-288; 10 nM) labeled with Alexa Fluor 488 prepared in Example 2 above It was confirmed by the method. Then, the conjugate was mixed with the small molecule compounds to be screened and a fluorescence polarization competition assay was performed to identify a substance that inhibits FGF2-API5 (FGF2 binding site) binding.
보다 구체적으로, 1.2 mM 농도의 His tag 또는 GST가 융합된 API5 단백질, 10 nM의 Alexa Fluor 488로 표지된 FGF2, 1.5~2.25 mM의 후보 화합물 6종을 각각의 농도로 준비하고 96-웰 블랙 플레이트에 각각 넣고 혼합하여 상온에서 30분 동안 반응시킨 후 Infinte F200 Pro(TECAN Group Ltd, Switzerland)를 이용해 상온에서 형광편광 값(fluorescence polarization(mp))을 측정하였다. 여기(Excitation) 파장은 485 nm, 방출(Emission) 파장은 535 nm로 하였다. 상기 후보 화합물 6종은 각각 API5 유래 펩타이드(1), FGF2 유래 펩타이드(2), Thermal shift assay에서 도출된 API5 결합물질(3), 3번 후보물질의 유도체(4), 3번 후보물질의 다른 유도체(5) 및 음성대조군(6) 이다.More specifically, a 1.2 mM His tag or GST fused API5 protein, 10 nM Alexa Fluor 488 labeled FGF2, and 6 candidate compounds of 1.5 to 2.25 mM were prepared at each concentration, and a 96-well black plate Each was put into each of the mixture and reacted at room temperature for 30 minutes, and then fluorescence polarization (mp) was measured at room temperature using Infinte F200 Pro (TECAN Group Ltd, Switzerland). The excitation wavelength was 485 nm, and the emission wavelength was 535 nm. The six candidate compounds are respectively API5 derived peptide (1), FGF2 derived peptide (2), API5 binding substance derived from thermal shift assay (3), a derivative of candidate 3 (4), and other candidate substances of 3 It is a derivative (5) and a negative control group (6).
그 결과, 화합물을 넣지 않은 경우(No inhibitor) 형광 편광 값이 279로 측정된 것과 비교하여 저해 후보물질을 첨가한 경우 약 152 에서 250 범위의 다양한 형광편광 값이 나타났으며, 특히 3번 후보물질의 경우 형광편광값이 약 50% 수준으로 감소한 것으로 나타났다. 형광 편광값 감소 수준을 결합 억제 비율(% of inhibition)로 나타내는 경우, [도 6]에서 나타나는 바와 같이 후보물질들 사이의 결합 저해 정도가 분명하게 구별될 수 있어 FGF2와 API5 의 결합을 억제할 수 있는 저해후보물질들을 효과적으로 스크리닝 할 수 있음을 확인하였다.As a result, when the compound was not added (No inhibitor), the fluorescence polarization value was measured as 279, compared to the measurement of 279, and when the inhibitory candidate material was added, various fluorescence polarization values in the range of about 152 to 250 appeared, especially candidate 3 In the case of, it was found that the fluorescence polarization value decreased to about 50% level. When the level of reduction in fluorescence polarization value is expressed as a percentage of inhibition, as shown in [Fig. 6], the degree of binding inhibition between candidate substances can be clearly distinguished, thereby inhibiting the binding of FGF2 and API5. It was confirmed that candidates for inhibition can be screened effectively.
본 발명에서 제공하는 스크리닝 방법을 이용하는 경우 FGF2에 시스테인을 추가적을 도입함으로써 형광물질이 보다 효율적으로 표지될 수 있게 하여 형광 편광 분석방법 등으로 측정한 형광 편광값을 증폭시켜 FGF2와 API5의 결합(상호작용)력 내지 이를 억제하는 물질을 효과적으로 스크리닝할 수 있으므로 산업상 이용가능성이 높다. In the case of using the screening method provided by the present invention, by introducing an additional cysteine into FGF2, the fluorescent substance can be labeled more efficiently, thereby amplifying the fluorescence polarization value measured by the fluorescence polarization analysis method, etc., and binding of FGF2 and API5 It has high industrial applicability because it can effectively screen for action) or substances that inhibit it.

Claims (11)

  1. i) FGF2 외부에 시스테인(Cysteine)을 도입하는 단계;i) introducing cysteine to the outside of FGF2;
    ii) 상기 단계 i)의 시스테인이 도입된 FGF2에 형광물질을 표지하는 단계;ii) labeling a fluorescent material on FGF2 into which the cysteine of step i) has been introduced;
    iii) 상기 단계 ii)의 형광물질이 표지된 FGF2, FGF2와 결합 가능한 단백질 및 이들의 결합을 저해할 수 있는 후보물질을 혼합하는 단계; 및iii) mixing the fluorescent substance-labeled FGF2 of step ii), a protein capable of binding to FGF2, and a candidate substance capable of inhibiting the binding thereof; And
    iv) 상기 단계 iii)의 혼합된 물질들의 형광 세기를 측정하는 단계;iv) measuring the fluorescence intensity of the mixed materials of step iii);
    를 포함하는 FGF2 결합 저해물질 스크리닝 방법. FGF2 binding inhibitor screening method comprising a.
  2. 제1항에 있어서, 상기 단계 i)의 시스테인은 FGF2의 C-말단에 도입되는 것을 특징으로 하는 스크리닝 방법. The screening method according to claim 1, wherein the cysteine of step i) is introduced at the C-terminus of FGF2.
  3. 제1항에 있어서, 상기 단계 ii)의 형광물질은 FITC(fluorescein isothiocyanate), TRITC(tetramethylrhodamine), FAM(fluorescein amidite), Rhodamine, TAMRA (Carboxytetramethylrhodamine), Cy™, CF™ (Cyanine-based fluorescent dye) 및 Alexa Fluor 으로 이루어진 군 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 스크리닝 방법. The method of claim 1, wherein the fluorescent material in step ii) is FITC (fluorescein isothiocyanate), TRITC (tetramethylrhodamine), FAM (fluorescein amidite), Rhodamine, TAMRA (Carboxytetramethylrhodamine), Cy™, CF™ (Cyanine-based fluorescent dye). And Alexa Fluor?, screening method, characterized in that at least any one selected from the group consisting of.
  4. 제1항에 있어서, 상기 단계 iii)의 FGF2와 결합 가능한 단백질은 FGF2 보다 분자량이 크거나 같은 것을 특징으로 하는 스크리닝 방법. The screening method according to claim 1, wherein the protein capable of binding to FGF2 in step iii) has a molecular weight greater than or equal to FGF2.
  5. 제1항에 있어서, 상기 iii)의 FGF2와 결합 가능한 단백질은 플래그(FLAG), 히스티딘(Histidine), CBD, MBP, TRX 및 GST(Glutathione S-transferase)로 이루어진 군에서 선택되는 어느 하나 이상의 태그가 융합된 단백질인 것을 특징으로 하는 스크리닝 방법. The method of claim 1, wherein the protein capable of binding to FGF2 of iii) is any one or more tags selected from the group consisting of FLAG, histidine, CBD, MBP, TRX and GST (Glutathione S-transferase). A screening method, characterized in that it is a fused protein.
  6. 제1항에 있어서, 상기 단계 iii)의 FGF2와 결합 가능한 단백질은 API5 인 것을 특징으로 하는 스크리닝 방법. The method of claim 1, wherein the protein capable of binding to FGF2 in step iii) is API5.
  7. 제1항에 있어서, 상기 단계 iv)의 형광 세기를 측정하는 것은 FRET(Fluorescence Resonance Energy Transfer), BRET(Bioluminescence Resonance Energy Transfer), FP(Fluorescence Polarization), HCS(High-content Screening) 및 HTS(High Throughput Screening) 으로 이루어진 군에서 선택되는 어느 하나 이상의 방법을 이용하여 측정하는 것을 특징으로 하는 스크리닝 방법. The method of claim 1, wherein measuring the fluorescence intensity in step iv) is FRET (Fluorescence Resonance Energy Transfer), BRET (Bioluminescence Resonance Energy Transfer), FP (Fluorescence Polarization), HCS (High-content Screening), and HTS (High Throughput Screening) screening method, characterized in that the measurement using any one or more methods selected from the group consisting of.
  8. 제1항에 있어서, v) 상기 단계 iv)에서 측정한 형광 세기가, 상기 단계 iii)의 후보물질을 혼합하기 전에 비하여 50% 내지 100% 수준으로 감소한 경우 FGF2 결합 저해물질로 판단하는 단계를 추가적으로 포함하는 것을 특징으로 하는 스크리닝 방법. According to claim 1, v) If the fluorescence intensity measured in step iv) is reduced to a level of 50% to 100% compared to before mixing the candidate material of step iii), the step of determining as an FGF2 binding inhibitor is additionally performed. Screening method comprising a.
  9. 제1항의 스크리닝 방법으로 선별된 FGF2 결합 저해물질. FGF2 binding inhibitors selected by the screening method of claim 1.
  10. 제9항에 있어서, 상기 결합은 FGF2와 API5의 결합인 것을 특징으로 하는 저해물질. The inhibitor of claim 9, wherein the binding is a combination of FGF2 and API5.
  11. 제9항의 FGF2 결합 저해물질을 포함하는 항암제 내성 억제용 조성물.A composition for inhibiting anticancer drug resistance comprising the FGF2 binding inhibitor of claim 9.
PCT/KR2020/009846 2019-08-09 2020-07-27 Method for screening binding inhibiting substance of api5 and fgf2 WO2021029565A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190097467A KR102210227B1 (en) 2019-08-09 2019-08-09 Screening method for binding inhibitors of API5 and FGF2
KR10-2019-0097467 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029565A1 true WO2021029565A1 (en) 2021-02-18

Family

ID=74236560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/009846 WO2021029565A1 (en) 2019-08-09 2020-07-27 Method for screening binding inhibiting substance of api5 and fgf2

Country Status (2)

Country Link
KR (1) KR102210227B1 (en)
WO (1) WO2021029565A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150123250A (en) * 2013-03-06 2015-11-03 제넨테크, 인크. Methods of treating and preventing cancer drug resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150123250A (en) * 2013-03-06 2015-11-03 제넨테크, 인크. Methods of treating and preventing cancer drug resistance

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AHMED MENNATALLAH, LEGRAND CYRIL, YAGÜE RELIMPIO ANA, BERETTA CARLO A., MUSCHKO ALINA, WEGEHINGEL SABINE, MÜLLER HANS‐MICHAEL, SEH: "A time‐resolved live cell imaging assay to identify small molecule inhibitors of FGF2 signaling", FEBS LETTERS, vol. 593, no. 16, 28 May 2019 (2019-05-28), pages 2162 - 2176, XP055780641, ISSN: 0014-5793, DOI: 10.1002/1873-3468.13462 *
GIUSEPPE LA VENUTA, SABINE WEGEHINGEL, PETER SEHR, HANS-MICHAEL MULLER, ELENI DIMOU, JULIA P. STERINGER, MAREIKE GROTWINKEL, NIKOL: "Small Molecule Inhibitors Targeting Tec Kinase Block Unconventional Secretion of Fibroblast Growth Factor 2", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 29, no. 34, 19 August 2016 (2016-08-19), pages 17787 - 17803, XP055353975, ISSN: 0021-9258, DOI: 10.1074/jbc.M116.729384 *
HAN BYEONG-GU, KIM KYOUNG HOON, LEE SANG JAE, JEONG KYUNG-CHAE, CHO JEA-WON, NOH KYUNG HEE, KIM TAE WOO, KIM SOON-JONG, YOON HYE-J: "Helical Repeat Structure of Apoptosis Inhibitor 5 Reveals Protein-Protein Interaction Modules", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 287, no. 14, 30 March 2012 (2012-03-30), pages 10727 - 10737, XP055780634, DOI: 10.1074/jbc.M111.317594 *
SEOUNG MIN BONG , BYUNG LL LEE: "Crystallization and preliminary X-ray analysis of API5-FGF2 complex", BIO DESIGN, vol. 6, no. 4, 30 December 2018 (2018-12-30), pages 92 - 93, XP009525786, ISSN: 2288-7105 *

Also Published As

Publication number Publication date
KR102210227B1 (en) 2021-01-29

Similar Documents

Publication Publication Date Title
Sharifi et al. Deficiency of terminal ADP‐ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease
George et al. Polymorphism of brain tubulin
US7576192B2 (en) Rapid and sensitive assay for the detection and quantification of coregulators of nucleic acid binding factors
KR20010033983A (en) Enzyme-specific cleavable polynucleotide substrate and assay method
Takimoto et al. Esterification of an unnatural amino acid structurally deviating from canonical amino acids promotes its uptake and incorporation into proteins in mammalian cells
US10174358B2 (en) Assay for identification of therapeutics targeting ternary complex formation in protein synthesis
WO2010137903A2 (en) Method for screening for a drug candidate substance which inhibits target protein-protein interaction for developing a novel concept drug
EP3380841B1 (en) Autonomous sensing molecules (asm)
US20210332362A1 (en) Aptamers Against Clostridium Difficile
Pany et al. Caveolin-1 binding motif of α-hemolysin: its role in stability and pore formation
US10751359B2 (en) Nucleic acid aptamer specifically binding to avian influenza virus subtype H5 and method of detecting avian ifluenza virus subtype H5 using the same
WO2021029565A1 (en) Method for screening binding inhibiting substance of api5 and fgf2
Sakamoto et al. Supramolecular control of split-GFP reassembly by conjugation of β-cyclodextrin and coumarin units
CN111855625B (en) CA125 detection kit based on Cu-MOF and application thereof
US20010046668A1 (en) Fluorescence polarization method for determining protease activity
US20230220445A1 (en) Multiplexed immunosignal amplification using hybridization chain reaction-based method
KR102451039B1 (en) Composition for detection of biothiols comprising redox-regulating proteins
WO2018048194A1 (en) Composition and method for improving sensitivity and specificity of detection of nucleic acids using dcas9 protein and grna binding to target nucleic acid sequence
CN114409808B (en) Targeting chimeras based on nucleic acid aptamers and degradation of tau proteins
Cao et al. Molecular beacon aptamers for protein monitoring in real-time and in homogeneous solutions
US20230065495A1 (en) Multipartite and circularly permuted beta-barrel polypeptides and methods for their use
WO2018026122A1 (en) Annexin v-fluorescent dye conjugate for real-time fluorescent imaging of apoptosis, and use thereof
WO2001042497A9 (en) Monitoring oligonucleotide binding processes using chemiluminescence quenching
KR20060118547A (en) Metal ion mediated fluorescence superquenching assays, kits and reagents
KR101886788B1 (en) Method for screening Duchenne Muscular Dystrophy agents comprising detecting interactions of MG53 and Orai1

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851471

Country of ref document: EP

Kind code of ref document: A1