WO2021029455A1 - Heavy metal ion detection method and detection sensor based on ion-imprinted polymer - Google Patents

Heavy metal ion detection method and detection sensor based on ion-imprinted polymer Download PDF

Info

Publication number
WO2021029455A1
WO2021029455A1 PCT/KR2019/010271 KR2019010271W WO2021029455A1 WO 2021029455 A1 WO2021029455 A1 WO 2021029455A1 KR 2019010271 W KR2019010271 W KR 2019010271W WO 2021029455 A1 WO2021029455 A1 WO 2021029455A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
heavy metal
imprinted polymer
metal ions
polymer
Prior art date
Application number
PCT/KR2019/010271
Other languages
French (fr)
Korean (ko)
Inventor
배선영
이예린
Original Assignee
서울여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울여자대학교 산학협력단 filed Critical 서울여자대학교 산학협력단
Publication of WO2021029455A1 publication Critical patent/WO2021029455A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/128Polymer particles coated by inorganic and non-macromolecular organic compounds
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/22Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link

Definitions

  • the present invention relates to a heavy metal ion detection method and detection sensor based on an ion-imprinted polymer, and more particularly, a color change of the colored ion-imprinted polymer after adsorbing heavy metal ions to the ion-imprinted polymer in the heavy metal ion detection sensor
  • a method for detecting heavy metal ions based on an ion imprinting polymer and a detection sensor for detecting heavy metal ions and measuring the concentration of heavy metal ions by
  • Sensors for the detection of heavy metal ions are becoming more important in various fields such as medicine, water quality, air, and food.
  • the present invention was conceived to solve the above problems, and an object of the present invention is to easily and easily detect heavy metal ions at work sites and measure the concentration of heavy metal ions without expensive detection equipment or pretreatment process. It is to provide a method and sensor for detecting heavy metal ions based on ion-imprinted polymer.
  • the method for detecting heavy metal ions based on an ion-imprinted polymer according to the present invention for achieving the above object comprises the steps of adsorbing heavy metal ions on the ion-imprinted polymer by adding a heavy metal ion sample to a heavy metal ion detection sensor based on the ion-imprinted polymer, Injecting a color developing solution into the adsorbed ion-imprinted polymer to color the ion-imprinted polymer with heavy metal ions adsorbed, detecting heavy metal ions by color change of the colored ion-imprinted polymer, and receiving an image of the colored ion-imprinted polymer The step of, measuring the RGB value of the colored ion-imprinted polymer from the received image, and calculating the concentration of heavy metal ions based on the measured RGB value.
  • the calculating of the concentration of the heavy metal ions includes calculating Euclidean distances (Eds) by correcting the measured RGB value as a reference RGB value, and the following equation based on the calculated Euclidean distance:
  • the calculated concentration of the heavy metal ions is displayed on the user terminal, or the calculated concentration of the heavy metal ions is It may further include transmitting to an external terminal.
  • the heavy metal ion is copper ion, zinc ion, cobalt ion, nickel ion, silver ion, cadmium ion, trivalent chromium ion, manganese ion, lead ion, barium ion, arsenic ion, selenium ion, antimony ion, iron ion, hexavalent It is selected from the group consisting of chromium ions and mercury ions, and the color change may appear differently depending on the type of the heavy metal ions.
  • the ion imprinted polymer is a copper ion imprinted polymer, zinc ion imprinted polymer, cobalt ion imprinted polymer, nickel ion imprinted polymer, silver ion imprinted polymer, cadmium ion imprinted polymer, trivalent chromium ion imprinted polymer, manganese ion imprinted polymer, lead ion imprinted It may be selected from the group consisting of polymers, barium ion polymers, arsenic ion polymers, selenium ion polymers, antimony ion polymers, iron ion polymers, hexavalent chromium ion polymers, and mercury ion imprinted polymers.
  • the zinc ion imprinted polymer may be formed by mixing a template ion, a monomer, a crosslinking agent, and an initiator in a molar ratio of 1: 3 or more: 13 or more: 0.04 or more.
  • the color developing solution is dithizone solution, diethyldithiocarbamate trihydrate (sodium diethyldithiocarbamate trihydrate, C 5 H 10 NNaS3H 2 O), dimethylglyoxim (CH 3 ) 2 C 2 (NOH) 2 ), zincon (C 2 0H 15 O6N 4 SNa), o-phenanthroline dihydrogen chloride (1,10-phenanthroline dihydrogen chloride, C 12 H 8 N 2 2HCl), and diphenylcarbazide (1,5- diphenylcarbazide, C 13 H 14 N 4 O) may be selected from the group consisting of.
  • the heavy metal ion detection sensor based on the ion-imprinted polymer according to the present invention for achieving the above object comprises an ion-imprinted polymer having a binding cavity for heavy metal ions, and an ion-imprinted polymer by adding a heavy metal ion sample to the heavy metal ion detection sensor
  • the heavy metal ions are adsorbed to and the color developing solution is added to the ion-imprinted polymer adsorbed with the heavy metal ions to color the ion-imprinted polymer adsorbed with the heavy metal ions, and the heavy metal ions are detected by the color change of the colored ion-imprinted polymer.
  • the RGB value of the colored ion-imprinted polymer may be measured, and the concentration of heavy metal ions may be calculated based on the measured RGB value.
  • Euclidean distances are calculated by correcting the measured RGB value as a reference RGB value, and the following equation is based on the calculated Euclidean distance.
  • the concentration of heavy metal ions can be calculated using.
  • the calculated concentration of the heavy metal ions may be displayed on the user terminal, or the calculated concentration of the heavy metal ions may be transmitted to an external terminal.
  • the zinc ion imprinted polymer may be formed by mixing a template ion, a monomer, a crosslinking agent, and an initiator in a molar ratio of 1: 3 or more: 13 or more: 0.04 or more.
  • FIG. 1 is a schematic flowchart of a method for detecting heavy metal ions based on an ion-imprinted polymer according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of a method for detecting heavy metal ions based on an ion-imprinted polymer according to another embodiment of the present invention.
  • FIG. 1 is a schematic flowchart of a method for detecting heavy metal ions based on an ion-imprinted polymer according to an embodiment of the present invention.
  • the method for detecting heavy metal ions based on an ion-imprinted polymer includes an adsorption step (S10), a color development step (S20), a detection step (S30), a receiving step (S40), and a measuring step. It may include (S50) and a concentration calculation step (S60).
  • a heavy metal ion sample may be added to a heavy metal ion detection sensor based on the ion-imprinted polymer to adsorb heavy metal ions to the ion-imprinted polymer.
  • the ion imprinting polymer in the detection sensor is different depending on the heavy metal ion to be detected.
  • Heavy metal ions to be detected include copper ions, zinc ions, cobalt ions, nickel ions, silver ions, cadmium ions, trivalent chromium ions, manganese ions, lead ions, barium ions, arsenic ions, selenium ions, antimony ions, iron ions, 6 It may be selected from the group consisting of chromium ions and mercury ions.
  • the ion imprinting polymer in the heavy metal ion detection sensor is a copper ion imprinted polymer, zinc ion imprinted polymer, cobalt ion imprinted polymer, nickel ion imprinted polymer, silver ion imprinted polymer, cadmium ion imprinted polymer, trivalent chromium ion imprinted polymer, manganese ion imprinted polymer , Lead ion imprinted polymer, barium ion polymer, arsenic ion polymer, selenium ion polymer, antimony ion polymer, iron ion polymer, hexavalent chromium ion polymer, and mercury ion imprinted polymer may be selected from the group consisting of.
  • the zinc ion imprinting polymer in the heavy metal ion detection sensor is a zinc ion imprinting polymer
  • the zinc ion imprinting polymer may be formed by mixing a template ion, a monomer, a crosslinking agent, and an initiator in a molar ratio of 1: 3 or more: 13 or more: 0.04 or more.
  • a color developing solution may be added to the ion-imprinted polymer to which heavy metal ions are adsorbed, so that the ion-imprinted polymer to which heavy metal ions are adsorbed may be colored.
  • the color developing solution is dithizone solution, diethyldithiocarbamate trihydrate (sodium diethyldithiocarbamate trihydrate, C 5 H 10 NNaS3H 2 O), dimethylglyoxim (CH 3 ) 2 C 2 (NOH) 2 ), zincon (C 2 0H 15 O6N 4 SNa), o-phenanthroline dihydrogen chloride (1,10-phenanthroline dihydrogen chloride, C 12 H 8 N 2 2HCl), and diphenylcarbazide (1,5- diphenylcarbazide, C 13 H 14 N 4 O) may be selected from the group consisting of.
  • heavy metal ions may be detected by color change of the colored ion-imprinted polymer.
  • the color change of the colored ion-imprinted polymer may be different depending on the adsorbed heavy metal.
  • Copper ions (under methanol solvent) are pale yellow, zinc ions (under methanol solvent) pink, cobalt ions (under methanol solvent) red, nickel ions (under methanol solvent) red, and silver ions (tetrahydro In a furan solvent) yellow, cadmium ions (under methanol solvent) orange, trivalent chromium ions (under methanol solvent) dark blue, manganese ions (under methanol solvent) blue-green, lead ions (methanol solvent) Lower) is orange, barium ions (under methanol solvent) are dark blue, arsenic ions (under methanol solvent) are orange, selenium ions (under methanol solvent) are dark blue, and antimony ions (under methanol solvent) are dark blue. Blue, iron ions (in methanol solvent) light yellow, hexavalent chromium ions (in methanol solvent) dark blue, and mercury ions (in benzene and chloroform solvents) orange color.
  • an image of the colored ion imprinted polymer may be received.
  • the image is photographed and formed by various devices such as a user terminal, a heavy metal ion detection sensor, and a heavy metal ion meter including the sensor, and for this purpose, the device may be provided with a photographing unit.
  • various devices such as a user terminal, a heavy metal ion detection sensor, and a heavy metal ion meter including the sensor, and for this purpose, the device may be provided with a photographing unit.
  • the present invention is not necessarily limited thereto, and in another alternative embodiment, the heavy metal ion detection sensor or the heavy metal ion measuring device equipped with the sensor does not have a photographing unit, and is photographed by the photographing unit of the user terminal.
  • the thus formed image may be received by the user terminal, the heavy metal ion detection sensor, or a heavy metal ion meter equipped with the sensor.
  • the photographing is performed under a certain brightness of lighting, and for this purpose, the device may be provided with a lighting unit capable of adjusting brightness, but the present invention is not limited thereto.
  • the RGB value of the colored ion imprinted polymer may be measured from the received image.
  • the RGB value of the colored ion-imprinted polymer may be measured through a predetermined program stored in the device or a predetermined application installed in the device.
  • the concentration of heavy metal ions may be calculated based on the measured RGB value.
  • the concentration calculation step (S60) calculating the Euclidean distances (Euclidean distances, Eds) by correcting the measured RGB value as a reference RGB value, and It may include calculating the concentration of heavy metal ions based on the Euclidean distance.
  • y is the Euclidean distance
  • x is the concentration of heavy metal ions.
  • FIG. 2 is a schematic flowchart of a method for detecting heavy metal ions based on an ion-imprinted polymer according to another embodiment of the present invention.
  • the method for detecting heavy metal ions based on an ion-imprinted polymer includes an adsorption step (S10), a color development step (S20), a detection step (S30), a reception step (S40), and a measurement. It may include a step (S50), a concentration calculation step (S60), a display step (S70) and a transmission step (S80).
  • the adsorption step (S10), the color development step (S20), the detection step (S30), the receiving step (S40), the measuring step (S50) and the concentration calculating step (S60) are described with reference to FIG. Since it is the same as, its description will be omitted.
  • the calculated concentration of heavy metal ions may be displayed on a predetermined device, such as the user terminal, the heavy metal ion detection sensor, or a heavy metal ion meter including the sensor.
  • a measured RGB value may also be displayed.
  • a display unit may be provided to output the calculated concentration of heavy metal ions.
  • the display unit forms a layered structure with the touch sensor or is integrally formed, thereby implementing a touch screen.
  • Such a touch screen may function as a user input unit providing an input interface between the user terminal and the user, and may provide an output interface between the user terminal and the user.
  • a predetermined device such as the user terminal, the heavy metal ion detection sensor, or a heavy metal ion meter including the sensor may transmit the calculated concentration of the heavy metal ion to an external terminal. More specifically, the predetermined device is equipped with a wireless communication unit (not shown), and the calculated concentration of heavy metal ions can be transmitted to an external terminal through the wireless communication unit.
  • the wireless communication unit may include one or more modules that enable wireless communication between a user terminal and a wireless communication system, between a user terminal and another terminal, or between a user terminal and a network in which an external server is located.
  • the external terminal may be a manager server that manages the concentration of heavy metal ions at each site, or may be a terminal of another user who detects heavy metal ions at different sites.
  • the transmission step (S80) is performed after the display step (S70), but the present invention is not necessarily limited thereto, and only one of the display step (S70) and the transmission step (S80) is performed. May be.
  • the heavy metal ion detection sensor based on the ion imprinted polymer according to the present invention may include an ion imprinted polymer having a binding cavity for heavy metal ions.
  • the heavy metal ions are copper ions, zinc ions, cobalt ions, nickel ions, silver ions, cadmium ions, trivalent chromium ions, manganese ions, lead ions, barium ions, arsenic ions, selenium ions, antimony ions, and iron ions.
  • Hexavalent chromium ion, and mercury ion may be selected from the group consisting of.
  • the ion imprinted polymer is a copper ion imprinted polymer, a zinc ion imprinted polymer, a cobalt ion imprinted polymer, a nickel ion imprinted polymer, a silver ion imprinted polymer, a cadmium ion imprinted polymer, a trivalent chromium ion imprinted polymer, a manganese ion imprinted polymer, and lead.
  • an ion imprinted polymer a barium ion polymer, an arsenic ion polymer, a selenium ion polymer, an antimony ion polymer, an iron ion polymer, a hexavalent chromium ion polymer, and a mercury ion imprinted polymer.
  • the zinc ion imprinted polymer may be formed by mixing a template ion, a monomer, a crosslinking agent, and an initiator in a molar ratio of 1: 3 or more: 13 or more: 0.04 or more.
  • the content of the monomer is relatively small, and thus, there is a problem in that the bonding cavities are less formed during the synthesis of the zinc ion imprinted polymer, and the adsorption selectivity for zinc ions is poor.
  • the crosslinking between the template ion-monomer conjugate does not occur strongly when synthesizing a polymer material imprinted with zinc ions, so that the physical strength decreases, and thus there is a problem that a stable cavity cannot be formed.
  • the nitrogen-purged mixture was placed in an oven at 110° C. and bulk polymerization was performed for 45 minutes. Thereby, a zinc ion imprinted polymer bulk is formed.
  • the resulting zinc ion imprinted polymer bulk was stirred with a removal solvent for 1 hour.
  • the removal solvent includes acetic acid and methanol, and acetic acid and methanol are mixed in a volume ratio of 1:9.
  • the zinc ion-imprinted polymer from which zinc ions have been removed and methanol are mixed and stirred for 12 hours.
  • the template ions were removed from the zinc ion-imprinted polymer bulk.
  • the zinc ion imprinted polymer from which the template ion has been removed is dried at 65° C. for 12 hours.
  • the remaining conditions were the same as in Preparation Example 1, except that 0.7 mmol of zinc nitrate, 2.4 mmol of 4-VP, 12 mmol of EGDMA, and 0.62 mmol of BPO were used.
  • the remaining conditions were the same as in Preparation Example 1, except that 0.04 mmol of zinc nitrate, 0.04 mmol of 4-VP, 0.4 mmol of EGDMA, and 0.0016 mmol of BPO were used.
  • Each experiment was performed by shaking 0.1 g of a zinc ion-imprinted polymer with 16 mL of a zinc standard solution for 12 hours. At the end of the experiment, the zinc ion imprinted polymer and the non-zinc ion imprinted polymer were removed from the zinc ion standard solution using a centrifuge, and the supernatant was filtered with a 0.2 ⁇ m pore size syringe filter.
  • 3 is a graph comparing the adsorption amount of zinc ions to a zinc ion imprinted polymer.
  • the zinc ion polymer produced according to Preparation Example 1 showed the highest adsorption amount of zinc ions, and the zinc ion polymer produced according to Preparation Examples 2 to 4 showed a good level of adsorption of zinc ions. Showed. On the other hand, in the case of the zinc ion polymer produced according to Preparation Example 5, it was found that the adsorption amount of zinc ions was low, so that the adsorption property to zinc ions was poor.
  • the adsorption amount (q e ) in FIG. 3 was calculated through the following equation.
  • the zinc ion-imprinted polymer colored by the dithizone solution has a pale pink color.
  • the colored zinc ion imprinted polymer was photographed using a user terminal under constant lighting.
  • the RGB value of the zinc ion imprinted polymer was measured from the captured image through a program or application installed in the user terminal.
  • the measured RGB value may be output through the display unit of the user terminal.
  • the measured RGB values were corrected to the reference RGB values to calculate Euclidean distances (Eds).
  • the reference RGB value refers to the RGB value of a zinc ion imprinted polymer adsorbing only methanol without zinc ions under the same conditions.
  • the concentration of heavy metal ions was calculated based on the calculated Euclidean distance.
  • Example 1 A standard solution of zinc ion with a concentration of 119 mg/L was used. The remaining conditions were carried out in the same manner as in Example 1.
  • Example 1 A standard solution of zinc ion at a concentration of 238 mg/L was used. The remaining conditions were carried out in the same manner as in Example 1.
  • Table 2 shows the Euclidean distance values according to the concentration of the zinc ion standard solution. The Euclidean distance was calculated over three times for the concentration of each zinc ion standard solution and averaged.
  • Zinc ion standard solution concentration (mg/L) Euclidean distance (Eds) 1 time Episode 2 3rd time Average 59 46 55 59 53 ( ⁇ 6) 119 98 109 99 102 ( ⁇ 5) 178 145 149 142 145 ( ⁇ 3) 238 178 178 175 177 ( ⁇ 1)
  • a heavy metal ion detection method and a heavy metal ion detection sensor based on an ionic polymer, an arsenic ion polymer, a selenium ion polymer, an antimony ion polymer, an iron ion polymer, a hexavalent chromium ion polymer, or a mercury ion imprinted polymer may be implemented.
  • Heavy metal ion detection method based on ion-imprinted polymer that adsorbs heavy metal ions on the ion-imprinted polymer in the heavy metal ion detection sensor, then develops color, detects heavy metal ions by color change of the colored ion-imprinted polymer, and measures the concentration of heavy metal ions And a detection sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Data Mining & Analysis (AREA)
  • Food Science & Technology (AREA)
  • Plasma & Fusion (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Software Systems (AREA)
  • Algebra (AREA)
  • Computational Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Organic Chemistry (AREA)
  • Pure & Applied Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

Disclosed are a heavy metal ion detection method and a heavy metal ion detection sensor based on an ion-imprinted polymer, the method comprising the steps of: applying a heavy metal ion sample to a heavy metal ion detection sensor based on an ion-imprinted polymer to allow heavy metal ions to be adsorbed on the ion-imprinted polymer; adding a color development solution to the ion-imprinted polymer having the heavy metal ions adsorbed thereon to subject the ion-imprinted polymer having the heavy metal ions adsorbed thereon to color development; detecting the heavy metal ions by a color change of the color-developed ion-imprinted polymer; receiving an image of the color-developed ion-imprinted polymer; measuring RGB values of the color-developed ion-imprinted polymer from the received image; and calculating the concentration of the heavy metal ions on the basis of the measured RGB values.

Description

이온 각인 고분자 기반의 중금속 이온 검출 방법 및 검출 센서Heavy metal ion detection method and detection sensor based on ion imprinted polymer
본 발명은 이온 각인 고분자 기반의 중금속 이온 검출 방법 및 검출 센서에 관한 것으로, 보다 상세하게는, 중금속 이온 검출 센서 내의 이온 각인 고분자에 중금속 이온을 흡착시킨 후 발색시키고, 발색된 이온 각인 고분자의 색 변화에 의해 중금속 이온을 검출하고, 중금속 이온의 농도를 측정하는 이온 각인 고분자 기반의 중금속 이온 검출 방법 및 검출 센서에 관한 것이다.The present invention relates to a heavy metal ion detection method and detection sensor based on an ion-imprinted polymer, and more particularly, a color change of the colored ion-imprinted polymer after adsorbing heavy metal ions to the ion-imprinted polymer in the heavy metal ion detection sensor A method for detecting heavy metal ions based on an ion imprinting polymer and a detection sensor for detecting heavy metal ions and measuring the concentration of heavy metal ions by
중금속 이온의 검출을 위한 센서는 의약분야, 수질분야, 공기분야, 식품분야 등 다양한 분야에서 그 중요성이 더욱 증대되고 있다.Sensors for the detection of heavy metal ions are becoming more important in various fields such as medicine, water quality, air, and food.
그러나, 종래 지시약을 이용한 중금속 이온 검출은 대부분 수용액 상태에서 진행되므로 분석 시료에 존재하는 방해 물질 등으로 인해 이온을 선택적으로 검출하기 어려운 문제가 있었다.However, since the detection of heavy metal ions using conventional indicators is mostly performed in an aqueous solution state, it is difficult to selectively detect ions due to interfering substances present in the analysis sample.
또한, 중금속 이온을 비색법으로 검출하기 위해서는 전처리 과정 등 복잡한 과정을 거쳐야 할 뿐만 아니라, 검출된 중금속 이온의 농도를 측정하기 위해서는 고가의 장비가 요구되어서, 검출 현장에서 작업자가 손쉽게 중금속 이온의 농도를 확인하기 어려운 문제점 있었다.In addition, in order to detect heavy metal ions by colorimetric method, not only does it require complicated processes such as pretreatment, but also expensive equipment is required to measure the concentration of detected heavy metal ions, so that the operator can easily check the concentration of heavy metal ions at the detection site. There was a problem that was difficult to do.
이에, 색 변화를 통해 중금속 이온을 현장에서 신속하고 용이하게 검출할 수 있을 뿐만 아니라, 중금속 이온의 농도도 측정할 수 있는 검출 방법 및 검출 센서에 대한 연구가 필요하다. Accordingly, there is a need for a study on a detection method and a detection sensor capable of not only detecting heavy metal ions quickly and easily in the field through color change, but also measuring the concentration of heavy metal ions.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 고가의 검출 장비나 전처리 과정 없이도, 작업 현장에서 손쉽고 용이하게 중금속 이온을 검출하고, 중금속 이온의 농도를 측정할 수 있는 이온 각인 고분자 기반의 중금속 이온 검출 방법 및 센서를 제공하는 것이다.The present invention was conceived to solve the above problems, and an object of the present invention is to easily and easily detect heavy metal ions at work sites and measure the concentration of heavy metal ions without expensive detection equipment or pretreatment process. It is to provide a method and sensor for detecting heavy metal ions based on ion-imprinted polymer.
상기 목적을 달성하기 위한 본 발명에 따른 이온 각인 고분자 기반의 중금속 이온 검출 방법은, 이온 각인 고분자 기반의 중금속 이온 검출 센서에 중금속 이온 시료를 가하여 이온 각인 고분자에 중금속 이온을 흡착시키는 단계, 중금속 이온이 흡착된 이온 각인 고분자에 발색 용액을 투입하여 중금속 이온이 흡착된 이온 각인 고분자를 발색시키는 단계, 발색된 이온 각인 고분자의 색 변화에 의해 중금속 이온을 검출하는 단계, 발색된 이온 각인 고분자의 이미지를 수신하는 단계, 수신된 이미지로부터, 발색된 이온 각인 고분자의 RGB값을 측정하는 단계, 및 측정된 RGB값을 기초로 중금속 이온의 농도를 계산하는 단계를 포함할 수 있다.The method for detecting heavy metal ions based on an ion-imprinted polymer according to the present invention for achieving the above object comprises the steps of adsorbing heavy metal ions on the ion-imprinted polymer by adding a heavy metal ion sample to a heavy metal ion detection sensor based on the ion-imprinted polymer, Injecting a color developing solution into the adsorbed ion-imprinted polymer to color the ion-imprinted polymer with heavy metal ions adsorbed, detecting heavy metal ions by color change of the colored ion-imprinted polymer, and receiving an image of the colored ion-imprinted polymer The step of, measuring the RGB value of the colored ion-imprinted polymer from the received image, and calculating the concentration of heavy metal ions based on the measured RGB value.
상기 중금속 이온의 농도를 계산하는 단계는, 상기 측정된 RGB값을 기준 RGB값으로 보정하여 유클리드 거리 (Euclidean distances, Eds)를 계산하는 단계, 및 상기 계산된 유클리드 거리를 기초로 다음의 식The calculating of the concentration of the heavy metal ions includes calculating Euclidean distances (Eds) by correcting the measured RGB value as a reference RGB value, and the following equation based on the calculated Euclidean distance:
y = 0.6997x + 15.2566y = 0.6997x + 15.2566
y: 유클리드 거리y: Euclidean distance
x: 중금속 이온의 농도(mg/L)x: concentration of heavy metal ions (mg/L)
을 이용하여 중금속 이온의 농도를 계산하는 단계를 포함할 수 있다.It may include the step of calculating the concentration of heavy metal ions using.
본 발명에 따른 이온 각인 고분자 기반의 중금속 이온 검출 방법은, 상기 중금속 이온의 농도를 계산하는 단계 후에, 상기 계산된 중금속 이온의 농도를 상기 사용자 단말에 디스플레이하거나, 또는 상기 계산된 중금속 이온의 농도를 외부 단말에 송신하는 단계를 더 포함할 수 있다. In the method for detecting heavy metal ions based on the ion-imprinted polymer according to the present invention, after the step of calculating the concentration of the heavy metal ions, the calculated concentration of the heavy metal ions is displayed on the user terminal, or the calculated concentration of the heavy metal ions is It may further include transmitting to an external terminal.
상기 중금속 이온은 구리 이온, 아연 이온, 코발트 이온, 니켈 이온, 은 이온, 카드뮴 이온, 3가크롬 이온, 망간 이온, 납 이온, 바륨 이온, 비소 이온, 셀레늄 이온, 안티몬 이온, 철 이온, 6가크롬 이온 및 수은 이온으로 이루어진 그룹으로부터 선택되고, 상기 중금속 이온의 종류에 따라 발색된 색 변화가 다르게 나타날 수 있다. The heavy metal ion is copper ion, zinc ion, cobalt ion, nickel ion, silver ion, cadmium ion, trivalent chromium ion, manganese ion, lead ion, barium ion, arsenic ion, selenium ion, antimony ion, iron ion, hexavalent It is selected from the group consisting of chromium ions and mercury ions, and the color change may appear differently depending on the type of the heavy metal ions.
상기 이온 각인 고분자는 구리 이온 각인 고분자, 아연 이온 각인 고분자, 코발트 이온 각인 고분자, 니켈 이온 각인 고분자, 은 이온 각인 고분자, 카드뮴 이온 각인 고분자, 3가크롬 이온 각인 고분자, 망간 이온 각인 고분자, 납 이온 각인 고분자, 바륨 이온 고분자, 비소 이온 고분자, 셀레늄 이온 고분자, 안티몬 이온 고분자, 철 이온 고분자, 6가크롬 이온 고분자 및 수은 이온 각인 고분자로 이루어진 그룹으로부터 선택될 수 있다. The ion imprinted polymer is a copper ion imprinted polymer, zinc ion imprinted polymer, cobalt ion imprinted polymer, nickel ion imprinted polymer, silver ion imprinted polymer, cadmium ion imprinted polymer, trivalent chromium ion imprinted polymer, manganese ion imprinted polymer, lead ion imprinted It may be selected from the group consisting of polymers, barium ion polymers, arsenic ion polymers, selenium ion polymers, antimony ion polymers, iron ion polymers, hexavalent chromium ion polymers, and mercury ion imprinted polymers.
상기 이온 각인 고분자가 아연 이온 각인 고분자인 경우, 상기 아연 이온 각인 고분자는, 주형이온, 단량체, 가교제 및 개시제가 1: 3 이상: 13 이상: 0.04 이상의 몰비로 혼합되어 형성될 수 있다. When the ion imprinted polymer is a zinc ion imprinted polymer, the zinc ion imprinted polymer may be formed by mixing a template ion, a monomer, a crosslinking agent, and an initiator in a molar ratio of 1: 3 or more: 13 or more: 0.04 or more.
상기 발색 용액은 디티존 용액, 다이에틸다이티오카르바민산나트3수화물(sodium diethyldithiocarbamate trihydrate, C5H10NNaS3H2O), 다이메틸글리옥심(dimethylglyoxim, (CH3)2C2(NOH)2), 진콘(zincon, C20H15O6N4SNa), o-페난트로린 2염산염(1,10-phenanthroline dihydrogen chloride, C12H8N22HCl), 및 다이페닐카바자이드(1,5-diphenylcarbazide, C13H14N4O)로 이루어진 그룹으로부터 선택될 수 있다.The color developing solution is dithizone solution, diethyldithiocarbamate trihydrate (sodium diethyldithiocarbamate trihydrate, C 5 H 10 NNaS3H 2 O), dimethylglyoxim (CH 3 ) 2 C 2 (NOH) 2 ), zincon (C 2 0H 15 O6N 4 SNa), o-phenanthroline dihydrogen chloride (1,10-phenanthroline dihydrogen chloride, C 12 H 8 N 2 2HCl), and diphenylcarbazide (1,5- diphenylcarbazide, C 13 H 14 N 4 O) may be selected from the group consisting of.
상기 목적을 달성하기 위한 본 발명에 따른 이온 각인 고분자 기반의 중금속 이온 검출 센서는, 중금속 이온에 대한 결합 공동을 갖는 이온 각인 고분자를 포함하고, 상기 중금속 이온 검출 센서에 중금속 이온 시료를 가하여 이온 각인 고분자에 중금속 이온을 흡착시키고, 중금속 이온이 흡착된 이온 각인 고분자에 발색 용액을 투입하여 중금속 이온이 흡착된 이온 각인 고분자를 발색시키며, 발색된 이온 각인 고분자의 색 변화에 의해 중금속 이온을 검출하고, 발색된 이온 각인 고분자의 이미지로부터, 발색된 이온 각인 고분자의 RGB값을 측정하고, 측정된 RGB값을 기초로 중금속 이온의 농도를 계산할 수 있다.The heavy metal ion detection sensor based on the ion-imprinted polymer according to the present invention for achieving the above object comprises an ion-imprinted polymer having a binding cavity for heavy metal ions, and an ion-imprinted polymer by adding a heavy metal ion sample to the heavy metal ion detection sensor The heavy metal ions are adsorbed to and the color developing solution is added to the ion-imprinted polymer adsorbed with the heavy metal ions to color the ion-imprinted polymer adsorbed with the heavy metal ions, and the heavy metal ions are detected by the color change of the colored ion-imprinted polymer. From the image of the ion-imprinted polymer, the RGB value of the colored ion-imprinted polymer may be measured, and the concentration of heavy metal ions may be calculated based on the measured RGB value.
상기 중금속 이온의 농도의 계산은, 상기 측정된 RGB값을 기준 RGB값으로 보정하여 유클리드 거리 (Euclidean distances, Eds)를 계산하고, 상기 계산된 유클리드 거리를 기초로 다음의 식In the calculation of the concentration of heavy metal ions, Euclidean distances (Eds) are calculated by correcting the measured RGB value as a reference RGB value, and the following equation is based on the calculated Euclidean distance.
y = 0.6997x + 15.2566y = 0.6997x + 15.2566
y: 유클리드 거리y: Euclidean distance
x: 중금속 이온의 농도(mg/L)x: concentration of heavy metal ions (mg/L)
을 이용하여 중금속 이온의 농도를 계산할 수 있다. The concentration of heavy metal ions can be calculated using.
상기 중금속 이온의 농도의 계산 후에, 상기 계산된 중금속 이온의 농도를 상기 사용자 단말에 디스플레이하거나, 또는 상기 계산된 중금속 이온의 농도를 외부 단말에 송신할 수 있다.After the concentration of the heavy metal ions is calculated, the calculated concentration of the heavy metal ions may be displayed on the user terminal, or the calculated concentration of the heavy metal ions may be transmitted to an external terminal.
상기 이온 각인 고분자가 아연 이온 각인 고분자인 경우, 상기 아연 이온 각인 고분자는, 주형이온, 단량체, 가교제 및 개시제가 1: 3 이상: 13 이상: 0.04 이상의 몰비로 혼합되어 형성될 수 있다.When the ion imprinted polymer is a zinc ion imprinted polymer, the zinc ion imprinted polymer may be formed by mixing a template ion, a monomer, a crosslinking agent, and an initiator in a molar ratio of 1: 3 or more: 13 or more: 0.04 or more.
본 발명에 따르면, 고가의 검출 장비나 전처리 과정 없이도, 작업 현장에서 손쉽고 용이하게 중금속 이온을 검출하고, 중금속 이온의 농도를 측정할 수 있는 이점이 있다.According to the present invention, there is an advantage of being able to easily and easily detect heavy metal ions at a work site and measure the concentration of heavy metal ions without expensive detection equipment or pretreatment processes.
도 1은 본 발명의 일 실시예에 따른 이온 각인 고분자 기반의 중금속 이온 검출 방법의 순서도를 개략적으로 도시한 것이다.1 is a schematic flowchart of a method for detecting heavy metal ions based on an ion-imprinted polymer according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 이온 각인 고분자 기반의 중금속 이온 검출 방법의 순서도를 개략적으로 도시한 것이다.2 is a schematic flowchart of a method for detecting heavy metal ions based on an ion-imprinted polymer according to another embodiment of the present invention.
도 3은 아연 이온 각인 고분자에 대한 아연 이온의 흡착량(qe)을 비교한 그래프이다.3 is a graph comparing the adsorption amount (q e ) of zinc ions to the zinc ion imprinted polymer.
도 4는 아연 이온 표준 용액의 농도에 따른 아연 이온 각인 고분자의 색 변화를 도시한 것이다.4 shows the color change of the zinc ion imprinted polymer according to the concentration of the zinc ion standard solution.
본 명세서에서 사용되는 기술적 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아님을 유의해야 한다. 또한, 본 명세서에서 사용되는 기술적 용어는 본 명세서에서 특별히 다른 의미로 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 의미로 해석되어야 하며, 과도하게 포괄적인 의미로 해석되거나, 과도하게 축소된 의미로 해석되지 않아야 한다. 또한, 본 명세서에서 사용되는 기술적인 용어가 본 발명의 사상을 정확하게 표현하지 못하는 잘못된 기술적 용어일 때에는, 당업자가 올바르게 이해할 수 있는 기술적 용어로 대체되어 이해되어야 할 것이다.It should be noted that technical terms used in the present specification are only used to describe specific embodiments, and are not intended to limit the present invention. In addition, the technical terms used in the present specification should be interpreted as generally understood by those of ordinary skill in the technical field to which the present invention belongs, unless otherwise defined in the present specification, and excessively comprehensive It should not be construed as a person or an excessively reduced meaning In addition, when a technical term used in the present specification is an incorrect technical term that does not accurately express the spirit of the present invention, it should be replaced with a technical term that can be correctly understood by those skilled in the art.
또한, 본 발명에서 사용되는 일반적인 용어는 사전에 정의되어 있는 바에 따라, 또는 전후 문맥상에 따라 해석되어야 하며, 과도하게 축소된 의미로 해석되지 않아야 한다.In addition, general terms used in the present invention should be interpreted as defined in the dictionary or according to the context before and after, and should not be interpreted as an excessively reduced meaning.
또한, 본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서 상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다.In addition, the singular expression used in the present specification includes a plurality of expressions, unless the context clearly indicates otherwise. In the present application, terms such as "consist of" or "include" should not be construed as necessarily including all of the various elements or various steps described in the specification, and some of the elements or some steps It may not be included, or it should be interpreted that it may further include additional elements or steps.
이하, 실시예를 통하여 본 발명을 좀 더 구체적으로 살펴보지만, 하기 예에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples, but the scope of the present invention is not limited to the following examples.
도 1은 본 발명의 일 실시예에 따른 이온 각인 고분자 기반의 중금속 이온 검출 방법의 순서도를 개략적으로 도시한 것이다.1 is a schematic flowchart of a method for detecting heavy metal ions based on an ion-imprinted polymer according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 이온 각인 고분자 기반의 중금속 이온 검출 방법은 흡착 단계(S10), 발색 단계(S20), 검출 단계(S30), 수신 단계(S40), 측정 단계(S50) 및 농도 계산단계(S60)를 포함할 수 있다.Referring to Figure 1, the method for detecting heavy metal ions based on an ion-imprinted polymer according to an embodiment of the present invention includes an adsorption step (S10), a color development step (S20), a detection step (S30), a receiving step (S40), and a measuring step. It may include (S50) and a concentration calculation step (S60).
상기 흡착 단계(S10)에서는, 이온 각인 고분자 기반의 중금속 이온 검출 센서에 중금속 이온 시료를 가하여 이온 각인 고분자에 중금속 이온을 흡착시킬 수 있다.In the adsorption step (S10), a heavy metal ion sample may be added to a heavy metal ion detection sensor based on the ion-imprinted polymer to adsorb heavy metal ions to the ion-imprinted polymer.
이온 각인 고분자 기반의 중금속 이온 검출 센서는 검출 대상인 중금속 이온에 따라 검출 센서 내의 이온 각인 고분자가 상이해진다.In the heavy metal ion detection sensor based on the ion imprinting polymer, the ion imprinting polymer in the detection sensor is different depending on the heavy metal ion to be detected.
검출 대상인 중금속 이온은 구리 이온, 아연 이온, 코발트 이온, 니켈 이온, 은 이온, 카드뮴 이온, 3가크롬 이온, 망간 이온, 납 이온, 바륨 이온, 비소 이온, 셀레늄 이온, 안티몬 이온, 철 이온, 6가크롬 이온 및 수은 이온으로 이루어진 그룹으로부터 선택될 수 있다.Heavy metal ions to be detected include copper ions, zinc ions, cobalt ions, nickel ions, silver ions, cadmium ions, trivalent chromium ions, manganese ions, lead ions, barium ions, arsenic ions, selenium ions, antimony ions, iron ions, 6 It may be selected from the group consisting of chromium ions and mercury ions.
중금속 이온 검출 센서 내의 이온 각인 고분자는 구리 이온 각인 고분자, 아연 이온 각인 고분자, 코발트 이온 각인 고분자, 니켈 이온 각인 고분자, 은 이온 각인 고분자, 카드뮴 이온 각인 고분자, 3가크롬 이온 각인 고분자, 망간 이온 각인 고분자, 납 이온 각인 고분자, 바륨 이온 고분자, 비소 이온 고분자, 셀레늄 이온 고분자, 안티몬 이온 고분자, 철 이온 고분자, 6가크롬 이온 고분자 및 수은 이온 각인 고분자로 이루어진 그룹으로부터 선택될 수 있다. The ion imprinting polymer in the heavy metal ion detection sensor is a copper ion imprinted polymer, zinc ion imprinted polymer, cobalt ion imprinted polymer, nickel ion imprinted polymer, silver ion imprinted polymer, cadmium ion imprinted polymer, trivalent chromium ion imprinted polymer, manganese ion imprinted polymer , Lead ion imprinted polymer, barium ion polymer, arsenic ion polymer, selenium ion polymer, antimony ion polymer, iron ion polymer, hexavalent chromium ion polymer, and mercury ion imprinted polymer may be selected from the group consisting of.
중금속 이온 검출 센서 내의 이온 각인 고분자가 아연 이온 각인 고분자인 경우, 상기 아연 이온 각인 고분자는, 주형이온, 단량체, 가교제 및 개시제가 1: 3 이상: 13 이상: 0.04 이상의 몰비로 혼합되어 형성될 수 있다.When the ion imprinting polymer in the heavy metal ion detection sensor is a zinc ion imprinting polymer, the zinc ion imprinting polymer may be formed by mixing a template ion, a monomer, a crosslinking agent, and an initiator in a molar ratio of 1: 3 or more: 13 or more: 0.04 or more. .
상기 발색 단계(S20)에서는, 중금속 이온이 흡착된 이온 각인 고분자에 발색 용액을 투입하여 중금속 이온이 흡착된 이온 각인 고분자를 발색시킬 수 있다.In the color development step (S20), a color developing solution may be added to the ion-imprinted polymer to which heavy metal ions are adsorbed, so that the ion-imprinted polymer to which heavy metal ions are adsorbed may be colored.
상기 발색 용액은 디티존 용액, 다이에틸다이티오카르바민산나트3수화물(sodium diethyldithiocarbamate trihydrate, C5H10NNaS3H2O), 다이메틸글리옥심(dimethylglyoxim, (CH3)2C2(NOH)2), 진콘(zincon, C20H15O6N4SNa), o-페난트로린 2염산염(1,10-phenanthroline dihydrogen chloride, C12H8N22HCl), 및 다이페닐카바자이드(1,5-diphenylcarbazide, C13H14N4O)로 이루어진 그룹으로부터 선택될 수 있다.The color developing solution is dithizone solution, diethyldithiocarbamate trihydrate (sodium diethyldithiocarbamate trihydrate, C 5 H 10 NNaS3H 2 O), dimethylglyoxim (CH 3 ) 2 C 2 (NOH) 2 ), zincon (C 2 0H 15 O6N 4 SNa), o-phenanthroline dihydrogen chloride (1,10-phenanthroline dihydrogen chloride, C 12 H 8 N 2 2HCl), and diphenylcarbazide (1,5- diphenylcarbazide, C 13 H 14 N 4 O) may be selected from the group consisting of.
상기 검출 단계(S30)에서는 발색된 이온 각인 고분자의 색 변화에 의해 중금속 이온을 검출할 수 있다. In the detection step S30, heavy metal ions may be detected by color change of the colored ion-imprinted polymer.
발색된 이온 각인 고분자의 색 변화는 흡착되는 중금속에 따라 상이해질 수 있다.The color change of the colored ion-imprinted polymer may be different depending on the adsorbed heavy metal.
구리 이온(메탄올 용매 하에서)은 연노랑색을, 아연 이온(메탄올 용매 하에서)은 분홍색을, 코발트 이온(메탄올 용매 하에서)은 다홍색을, 니켈 이온(메탄올 용매 하에서)은 먹색을, 은 이온(테트라히드로푸란 용매 하에서)은 노란색을, 카드뮴 이온(메탄올 용매 하에서)은 주황색을, 3가크롬 이온(메탄올 용매 하에서)은 진한 파란색을, 망간 이온(메탄올 용매 하에서)은 청 녹색을, 납 이온(메탄올 용매 하에서)은 주황색을, 바륨 이온(메탄올 용매 하에서)은 진한 파란색을, 비소 이온(메탄올 용매 하에서)은 주황색을, 셀레늄 이온(메탄올 용매 하에서)은 진한 파란색을, 안티몬 이온(메탄올 용매 하에서)은 진한 파란색을, 철 이온(메탄올 용매 하에서)은 연노란색을, 6가크롬 이온(메탄올 용매 하에서)은 진한 파란색을, 수은 이온(벤젠과 클로로포름 용매 하에서)은 주황색을 나타낸다. Copper ions (under methanol solvent) are pale yellow, zinc ions (under methanol solvent) pink, cobalt ions (under methanol solvent) red, nickel ions (under methanol solvent) red, and silver ions (tetrahydro In a furan solvent) yellow, cadmium ions (under methanol solvent) orange, trivalent chromium ions (under methanol solvent) dark blue, manganese ions (under methanol solvent) blue-green, lead ions (methanol solvent) Lower) is orange, barium ions (under methanol solvent) are dark blue, arsenic ions (under methanol solvent) are orange, selenium ions (under methanol solvent) are dark blue, and antimony ions (under methanol solvent) are dark blue. Blue, iron ions (in methanol solvent) light yellow, hexavalent chromium ions (in methanol solvent) dark blue, and mercury ions (in benzene and chloroform solvents) orange color.
이와 같이, 본 발명에 따르면, 발색된 이온 각인 고분자의 색 변화에 의해 검출 대상인 중금속 이온의 존재를 용이하게 확인할 수 있는 이점이 있다.As described above, according to the present invention, there is an advantage of being able to easily confirm the presence of heavy metal ions to be detected by color change of the colored ion-imprinted polymer.
상기 수신 단계(S40)에서는, 발색된 이온 각인 고분자의 이미지를 수신할 수 있다.In the receiving step (S40), an image of the colored ion imprinted polymer may be received.
이때, 상기 이미지는 사용자 단말, 중금속 이온 검출 센서, 및 상기 센서를 포함하는 중금속 이온 측정기 등 다양한 기기에 의해 촬영되어 형성된 것이며, 이를 위해 상기 기기에는 촬영부가 구비될 수 있다.In this case, the image is photographed and formed by various devices such as a user terminal, a heavy metal ion detection sensor, and a heavy metal ion meter including the sensor, and for this purpose, the device may be provided with a photographing unit.
그러나, 본 발명은 반드시 이에 한정되는 것은 아니며, 대안의 다른 실시예에서는, 상기 중금속 이온 검출 센서나, 상기 센서를 구비한 중금속 이온 측정기에는 촬영부가 구비되어 있지 않고, 사용자 단말의 촬영부에 의해 촬영되어 형성된 이미지를 상기 사용자 단말, 상기 중금속 이온 검출 센서, 또는 상기 센서를 구비한 중금속 이온 측정기가 수신할 수 있다. However, the present invention is not necessarily limited thereto, and in another alternative embodiment, the heavy metal ion detection sensor or the heavy metal ion measuring device equipped with the sensor does not have a photographing unit, and is photographed by the photographing unit of the user terminal. The thus formed image may be received by the user terminal, the heavy metal ion detection sensor, or a heavy metal ion meter equipped with the sensor.
또한, 일정한 조명의 밝기 하에서 촬영이 진행되는 것이 바람직하며, 이를 위해 상기 기기에는 밝기가 조절 가능한 조명부가 구비될 수 있으나, 본 발명이 반드시 이에 한정되는 것은 아니다. In addition, it is preferable that the photographing is performed under a certain brightness of lighting, and for this purpose, the device may be provided with a lighting unit capable of adjusting brightness, but the present invention is not limited thereto.
상기 측정 단계(S50)에서는, 수신된 이미지로부터, 발색된 이온 각인 고분자의 RGB값을 측정할 수 있다. 발색된 이온 각인 고분자의 RGB값은, 상기 기기에 저장되어 있는 소정의 프로그램 또는 상기 기기에 설치되어 있는 소정의 어플리케이션을 통해 측정될 수 있다. In the measuring step S50, the RGB value of the colored ion imprinted polymer may be measured from the received image. The RGB value of the colored ion-imprinted polymer may be measured through a predetermined program stored in the device or a predetermined application installed in the device.
상기 농도 계산단계(S60)에서는, 측정된 RGB값을 기초로 중금속 이온의 농도를 계산할 수 있다.In the concentration calculation step S60, the concentration of heavy metal ions may be calculated based on the measured RGB value.
상기 농도 계산단계(S60)를 보다 구체적으로 설명하면, 상기 농도 계산단계(S60)는, 측정된 RGB값을 기준 RGB값으로 보정하여 유클리드 거리 (Euclidean distances, Eds)를 계산하는 단계, 및 계산된 유클리드 거리를 기초로 중금속 이온의 농도를 계산하는 단계를 포함할 수 있다.To describe the concentration calculation step (S60) in more detail, the concentration calculation step (S60), calculating the Euclidean distances (Euclidean distances, Eds) by correcting the measured RGB value as a reference RGB value, and It may include calculating the concentration of heavy metal ions based on the Euclidean distance.
상기 계산된 유클리드 거리를 기초로 중금속 이온의 농도를 계산하는 단계에서는, 식 y = 0.6997x + 15.2566 을 이용하여 중금속 이온의 농도(mg/L)를 계산할 수 있다.In the step of calculating the concentration of heavy metal ions based on the calculated Euclidean distance, the concentration of heavy metal ions (mg/L) may be calculated using the equation y = 0.6997x + 15.2566.
이때, y는 유클리드 거리이고, x는 중금속 이온의 농도이다.Here, y is the Euclidean distance, and x is the concentration of heavy metal ions.
도 2는 본 발명의 다른 실시예에 따른 이온 각인 고분자 기반의 중금속 이온 검출 방법의 순서도를 개략적으로 도시한 것이다.2 is a schematic flowchart of a method for detecting heavy metal ions based on an ion-imprinted polymer according to another embodiment of the present invention.
도 2를 참조하면, 본 발명의 또 다른 실시예에 따른 이온 각인 고분자 기반의 중금속 이온 검출 방법은 흡착 단계(S10), 발색 단계(S20), 검출 단계(S30), 수신 단계(S40), 측정 단계(S50), 농도 계산단계(S60), 디스플레이 단계(S70) 및 송신 단계(S80)를 포함할 수 있다.Referring to Figure 2, the method for detecting heavy metal ions based on an ion-imprinted polymer according to another embodiment of the present invention includes an adsorption step (S10), a color development step (S20), a detection step (S30), a reception step (S40), and a measurement. It may include a step (S50), a concentration calculation step (S60), a display step (S70) and a transmission step (S80).
상기 흡착 단계(S10), 상기 발색 단계(S20), 상기 검출 단계(S30), 상기 수신 단계(S40), 상기 측정 단계(S50) 및 상기 농도 계산단계(S60)는 도 1을 참조하여 설명한 구성과 동일하므로 그 설명을 생략하기로 한다.The adsorption step (S10), the color development step (S20), the detection step (S30), the receiving step (S40), the measuring step (S50) and the concentration calculating step (S60) are described with reference to FIG. Since it is the same as, its description will be omitted.
상기 디스플레이 단계(S70)에서는, 계산된 중금속 이온의 농도를 상기 사용자 단말, 상기 중금속 이온 검출 센서, 또는 상기 센서를 포함하는 중금속 이온 측정기 등 소정 기기에 디스플레이할 수 있다. 또한, 상기 계산된 중금속 이온의 농도 이외에, 측정된 RGB값도 함께 디스플레이될 수 있다.In the display step S70, the calculated concentration of heavy metal ions may be displayed on a predetermined device, such as the user terminal, the heavy metal ion detection sensor, or a heavy metal ion meter including the sensor. In addition, in addition to the calculated concentration of heavy metal ions, a measured RGB value may also be displayed.
상기 사용자 단말, 상기 중금속 이온 검출 센서, 또는 상기 센서를 포함하는 중금속 이온 측정기 등 소정 기기에는, 계산된 중금속 이온의 농도가 출력될 수 있도록 디스플레이부(미도시)가 구비될 수 있다. 디스플레이부는 터치 센서와 상호 레이어 구조를 이루거나 일체형으로 형성됨으로써, 터치 스크린을 구현할 수 있다. 이러한 터치 스크린은, 사용자 단말과 사용자 사이의 입력 인터페이스를 제공하는 사용자 입력부로써 기능함과 동시에, 사용자 단말과 사용자 사이의 출력 인터페이스를 제공할 수 있다.In certain devices, such as the user terminal, the heavy metal ion detection sensor, or a heavy metal ion meter including the sensor, a display unit (not shown) may be provided to output the calculated concentration of heavy metal ions. The display unit forms a layered structure with the touch sensor or is integrally formed, thereby implementing a touch screen. Such a touch screen may function as a user input unit providing an input interface between the user terminal and the user, and may provide an output interface between the user terminal and the user.
상기 송신 단계(S80)에서는, 상기 사용자 단말, 상기 중금속 이온 검출 센서, 또는 상기 센서를 포함하는 중금속 이온 측정기 등 소정 기기가, 계산된 중금속 이온의 농도를 외부 단말에 송신할 수 있다. 보다 구체적으로는, 상기 소정 기기에는 무선 통신부(미도시)가 구비되어 있으며, 무선 통신부를 통해, 계산된 중금속 이온의 농도를 외부 단말에 송신할 수 있다. In the transmitting step (S80), a predetermined device such as the user terminal, the heavy metal ion detection sensor, or a heavy metal ion meter including the sensor may transmit the calculated concentration of the heavy metal ion to an external terminal. More specifically, the predetermined device is equipped with a wireless communication unit (not shown), and the calculated concentration of heavy metal ions can be transmitted to an external terminal through the wireless communication unit.
상기 무선 통신부는 사용자 단말과 무선 통신 시스템 사이, 사용자 단말과 다른 단말 사이, 또는 사용자 단말과 외부 서버가 위치한 네트워크 사이의 무선 통신을 가능하게 하는 하나 이상의 모듈을 포함할 수 있다.The wireless communication unit may include one or more modules that enable wireless communication between a user terminal and a wireless communication system, between a user terminal and another terminal, or between a user terminal and a network in which an external server is located.
상기 외부 단말은, 각각의 장소의 중금속 이온의 농도를 관리하는 관리자 서버이거나, 다른 현장에서 중금속 이온을 검출하는 다른 사용자의 단말일 수 있다.The external terminal may be a manager server that manages the concentration of heavy metal ions at each site, or may be a terminal of another user who detects heavy metal ions at different sites.
본 실시예에서는, 디스플레이 단계(S70) 후에 송신 단계(S80)가 수행되는 형태이나, 본 발명은 반드시 이에 한정되는 것은 아니며, 디스플레이 단계(S70) 및 송신 단계(S80) 중 하나의 단계만 수행될 수도 있다.In this embodiment, the transmission step (S80) is performed after the display step (S70), but the present invention is not necessarily limited thereto, and only one of the display step (S70) and the transmission step (S80) is performed. May be.
본 발명에 따른 이온 각인 고분자 기반의 중금속 이온 검출 센서는 중금속 이온에 대한 결합 공동을 갖는 이온 각인 고분자를 포함할 수 있다.The heavy metal ion detection sensor based on the ion imprinted polymer according to the present invention may include an ion imprinted polymer having a binding cavity for heavy metal ions.
이 때, 상기 중금속 이온은 구리 이온, 아연 이온, 코발트 이온, 니켈 이온, 은 이온, 카드뮴 이온, 3가크롬 이온, 망간 이온, 납 이온, 바륨 이온, 비소 이온, 셀레늄 이온, 안티몬 이온, 철 이온, 6가크롬 이온 및 수은 이온으로 이루어진 그룹으로부터 선택될 수 있다. At this time, the heavy metal ions are copper ions, zinc ions, cobalt ions, nickel ions, silver ions, cadmium ions, trivalent chromium ions, manganese ions, lead ions, barium ions, arsenic ions, selenium ions, antimony ions, and iron ions. , Hexavalent chromium ion, and mercury ion may be selected from the group consisting of.
이때, 상기 이온 각인 고분자는 구리 이온 각인 고분자, 아연 이온 각인 고분자, 코발트 이온 각인 고분자, 니켈 이온 각인 고분자, 은 이온 각인 고분자, 카드뮴 이온 각인 고분자, 3가크롬 이온 각인 고분자, 망간 이온 각인 고분자, 납 이온 각인 고분자, 바륨 이온 고분자, 비소 이온 고분자, 셀레늄 이온 고분자, 안티몬 이온 고분자, 철 이온 고분자, 6가크롬 이온 고분자 및 수은 이온 각인 고분자로 이루어진 그룹으로부터 선택될 수 있다.At this time, the ion imprinted polymer is a copper ion imprinted polymer, a zinc ion imprinted polymer, a cobalt ion imprinted polymer, a nickel ion imprinted polymer, a silver ion imprinted polymer, a cadmium ion imprinted polymer, a trivalent chromium ion imprinted polymer, a manganese ion imprinted polymer, and lead. It may be selected from the group consisting of an ion imprinted polymer, a barium ion polymer, an arsenic ion polymer, a selenium ion polymer, an antimony ion polymer, an iron ion polymer, a hexavalent chromium ion polymer, and a mercury ion imprinted polymer.
상기 이온 각인 고분자가 아연 이온 각인 고분자인 경우, 상기 아연 이온 각인 고분자는, 주형이온, 단량체, 가교제 및 개시제가 1: 3 이상: 13 이상: 0.04 이상의 몰비로 혼합되어 형성될 수 있다.When the ion imprinted polymer is a zinc ion imprinted polymer, the zinc ion imprinted polymer may be formed by mixing a template ion, a monomer, a crosslinking agent, and an initiator in a molar ratio of 1: 3 or more: 13 or more: 0.04 or more.
상기 단량체의 몰비가 3 보다 낮아질수록 상기 단량체의 함량이 상대적으로 작아져 아연 이온 각인 고분자 합성 시 결합 공동이 적게 형성 되고, 아연 이온에 대한 흡착 선택성이 떨어진다는 문제가 있다.As the molar ratio of the monomer is lower than 3, the content of the monomer is relatively small, and thus, there is a problem in that the bonding cavities are less formed during the synthesis of the zinc ion imprinted polymer, and the adsorption selectivity for zinc ions is poor.
상기 가교제의 몰비가 13 보다 낮아질수록 아연 이온 각인 고분자 물질 합성 시 주형이온-단량체 결합체 간의 가교결합이 강하게 일어나지 않아 물리적 강도가 떨어지며, 이로 인해 안정한 공동을 형성할 수 없다는 문제가 있다.As the molar ratio of the crosslinking agent is lower than 13, the crosslinking between the template ion-monomer conjugate does not occur strongly when synthesizing a polymer material imprinted with zinc ions, so that the physical strength decreases, and thus there is a problem that a stable cavity cannot be formed.
상기 개시제의 몰비가 0.04 보다 낮아질수록 아연 이온 각인 고분자 물질 합성 시 주형이온-단량체 결합체 간의 가교결합이 충분히 일어나지 않아 경화가 되지 않는다는 문제가 있다.When the molar ratio of the initiator is lower than 0.04, there is a problem in that the crosslinking between the template ion-monomer conjugate does not sufficiently occur when synthesizing a zinc ion-imprinted polymer material, and thus curing is not performed.
이하, 본 발명에 대한 이해를 돕기 위하여 제조예와 실시예를 기재한다. 다만, 하기 기재는 본 발명의 내용 및 효과에 관한 일 예에 해당할 뿐, 본 발명의 권리범위 및 효과가 반드시 이에 한정되는 것은 아니다.Hereinafter, preparation examples and examples will be described to aid in understanding the present invention. However, the following description only corresponds to an example of the contents and effects of the present invention, and the scope and effects of the present invention are not necessarily limited thereto.
[제조예 1][Production Example 1]
0.4 mmol의 질산 아연을 1 mL의 아세토 니트릴에 용해한 후, 4-비닐 피리딘(4-vinylpyridine, 이하 '4-VP') 1.2 mmol, 에틸렌 글리콜 디메틸아클릴레이트(ethylene glycol dimethylacrylate, 이하 'EGDMA') 6 mmol, 벤조일 퍼옥사이드(benzoyl peroxide, 이하 'BPO') 0.02 mmol을 순차적으로 첨가한다. 이후 혼합물을 20초간 질소(N2)로 퍼징한다. After dissolving 0.4 mmol of zinc nitrate in 1 mL of acetonitrile, 1.2 mmol of 4-vinylpyridine (hereinafter referred to as '4-VP'), and ethylene glycol dimethylacrylate (hereinafter referred to as'EGDMA') 6 mmol, 0.02 mmol of benzoyl peroxide (hereinafter'BPO') are sequentially added. After that, the mixture is purged with nitrogen (N 2 ) for 20 seconds.
상기 질소 퍼징된 혼합물을 110℃ 오븐에 넣고 45분 동안 벌크 중합한다. 이로써, 아연 이온 각인 고분자 벌크가 형성된다.The nitrogen-purged mixture was placed in an oven at 110° C. and bulk polymerization was performed for 45 minutes. Thereby, a zinc ion imprinted polymer bulk is formed.
상기 생성된 아연 이온 각인 고분자 벌크를 제거용제와 함께 1시간 교반시킨다. 이때 제거 용제는 아세트산 및 메탄올이 포함되며 아세트산과 메탄올은 1:9의 부피비로 혼합되어 있다. 이후 아연 이온이 제거된 아연 이온 각인 고분자와 메탄올을 혼합하여 12시간 동안 교반시킨다. 상기 제거 단계를 통해 아연 이온 각인 고분자 벌크로부터 주형이온은 제거되었다. 상기 주형이온이 제거된 아연 이온 각인 고분자를 65℃에서 12시간 동안 건조한다.The resulting zinc ion imprinted polymer bulk was stirred with a removal solvent for 1 hour. At this time, the removal solvent includes acetic acid and methanol, and acetic acid and methanol are mixed in a volume ratio of 1:9. Thereafter, the zinc ion-imprinted polymer from which zinc ions have been removed and methanol are mixed and stirred for 12 hours. Through the removal step, the template ions were removed from the zinc ion-imprinted polymer bulk. The zinc ion imprinted polymer from which the template ion has been removed is dried at 65° C. for 12 hours.
[제조예 2][Production Example 2]
재료 혼합 단계에서 EGDMA는 5 mmol를 사용한 것을 제외하고는 나머지 조건은 제조예 1과 동일하게 시행되었다.In the material mixing step, except that 5 mmol of EGDMA was used, the remaining conditions were the same as in Preparation Example 1.
[제조예 3][Production Example 3]
재료 혼합 단계에서 질산 아연은 0.7 mmol, 4-VP는 2.4 mmol, EGDMA는 12 mmol, BPO는 0.62 mmol를 사용한 것을 제외하고는 나머지 조건은 제조예 1과 동일하게 시행되었다.In the material mixing step, the remaining conditions were the same as in Preparation Example 1, except that 0.7 mmol of zinc nitrate, 2.4 mmol of 4-VP, 12 mmol of EGDMA, and 0.62 mmol of BPO were used.
[제조예 4][Production Example 4]
재료 혼합 단계에서 질산 아연은 0.7 mmol, 4-VP는 6.1 mmol, EGDMA는 12 mmol, BPO는 0.66 mmol을 사용한 것을 제외하고는, 나머지 조건은 제조예 1과 동일하게 시행되었다.In the material mixing step, except that 0.7 mmol of zinc nitrate, 6.1 mmol of 4-VP, 12 mmol of EGDMA, and 0.66 mmol of BPO were used, the remaining conditions were the same as in Preparation Example 1.
[제조예 5][Production Example 5]
재료 혼합 단계에서 질산 아연은 0.04 mmol, 4-VP는 0.04mmol, EGDMA는 0.4 mmol, BPO는 0.0016 mmol 사용한 것을 제외하고는 나머지 조건은 제조예 1과 동일하게 시행되었다. In the material mixing step, the remaining conditions were the same as in Preparation Example 1, except that 0.04 mmol of zinc nitrate, 0.04 mmol of 4-VP, 0.4 mmol of EGDMA, and 0.0016 mmol of BPO were used.
[흡착실험][Adsorption experiment]
각 실험은 0.1 g의 아연 이온 각인 고분자를 아연 표준 용액 16 mL와 12 시간 동안 진탕하여 수행하였다. 실험 종료시 아연 이온 각인 고분자와 비-아연 이온 각인 고분자를 원심 분리기를 사용하여 아연 이온 표준 용액에서 제거하고 상층액을 0.2 μm 기공 사이즈 주사기 필터로 여과했다. Each experiment was performed by shaking 0.1 g of a zinc ion-imprinted polymer with 16 mL of a zinc standard solution for 12 hours. At the end of the experiment, the zinc ion imprinted polymer and the non-zinc ion imprinted polymer were removed from the zinc ion standard solution using a centrifuge, and the supernatant was filtered with a 0.2 μm pore size syringe filter.
도 3은 아연 이온 각인 고분자에 대한 아연 이온의 흡착량을 비교한 그래프이다.3 is a graph comparing the adsorption amount of zinc ions to a zinc ion imprinted polymer.
도 3을 참조하면, 제조예 1에 따라 생성된 아연 이온 고분자에서 가장 높은 아연 이온의 흡착량을 나타냈으며, 제조예 2 내지 4에 따라 생성된 아연 이온 고분자에서도 양호한 수준의 아연 이온의 흡착량을 나타냈다. 반면, 제조예 5에 따라 생성된 아연 이온 고분자의 경우 아연 이온의 흡착량이 낮아서 아연 이온에 대한 흡착성이 떨어지는 것으로 나타났다.3, the zinc ion polymer produced according to Preparation Example 1 showed the highest adsorption amount of zinc ions, and the zinc ion polymer produced according to Preparation Examples 2 to 4 showed a good level of adsorption of zinc ions. Showed. On the other hand, in the case of the zinc ion polymer produced according to Preparation Example 5, it was found that the adsorption amount of zinc ions was low, so that the adsorption property to zinc ions was poor.
제조예 1 내지 5에서 사용된 주형이온, 단량체, 가교제, 개시제를 몰비로 환산하면 아래 표 1과 같다.When converted into a molar ratio of the template ion, monomer, crosslinking agent, and initiator used in Preparation Examples 1 to 5, they are shown in Table 1 below.
구분division 주형이온Template ion 단량체Monomer 가교제Crosslinking agent 개시제Initiator
제조예1Manufacturing Example 1 1One 33 1515 0.040.04
제조예2Manufacturing Example 2 1One 33 1313 0.040.04
제조예3Manufacturing Example 3 1One 44 1717 0.900.90
제조예4Manufacturing Example 4 1One 99 1818 0.960.96
제조예5Manufacturing Example 5 1One 1One 1010 0.040.04
도 3에서의 흡착량(qe)은 아래의 수학식을 통하여 계산되었다.The adsorption amount (q e ) in FIG. 3 was calculated through the following equation.
Figure PCTKR2019010271-appb-M000001
Figure PCTKR2019010271-appb-M000001
Figure PCTKR2019010271-appb-M000002
Figure PCTKR2019010271-appb-M000002
[실시예 1][Example 1]
제조예 1의 아연 이온 각인 고분자 0.1 g에 59 mg/L 농도의 아연 이온 표준 용액 16 mL를 넣고 진탕 배양기에서 25℃, 12시간 동안 흡착을 진행하였다. 원심분리기를 이용하여 아연 이온 각인 고분자와 아연 이온 표준 용액을 분리하였다. 분리된 아연 이온 각인 고분자는 60℃의 오븐에서 최소 5시간 동안 건조시켰다. 16 mL of a zinc ion standard solution having a concentration of 59 mg/L was added to 0.1 g of the zinc ion-imprinted polymer of Preparation Example 1, and adsorption was performed for 12 hours at 25°C in a shaking incubator. The zinc ion imprinted polymer and the zinc ion standard solution were separated using a centrifuge. The separated zinc ion imprinted polymer was dried in an oven at 60° C. for at least 5 hours.
건조된 아연 이온 각인 고분자를 식힌 뒤, 1.0 mM 농도의 디티존 용액을 8 mL 넣고 진탕 배양기에서 3시간 동안 진탕하였다. 원심분리기를 이용하여 아연 이온 각인 고분자와 디티존 용액을 분리하였다.After the dried zinc ion-imprinted polymer was cooled, 8 mL of a 1.0 mM dithizone solution was added and shaken in a shaking incubator for 3 hours. Zinc ion imprinted polymer and dithizone solution were separated using a centrifuge.
디티존 용액에 의해 발색된 아연 이온 각인 고분자는 흐린 분홍색을 띄고 있다. The zinc ion-imprinted polymer colored by the dithizone solution has a pale pink color.
발색된 아연 이온 각인 고분자를 일정한 조명 하에서 사용자 단말을 이용하여 촬영하였다. 사용자 단말에 설치되어 있는 프로그램 또는 어플리케이션을 통해 상기 촬영된 이미지로부터 아연 이온 각인 고분자의 RGB값이 측정되었다. 측정된 RGB값은 사용자 단말의 디스플레이부를 통해 출력될 수 있다. The colored zinc ion imprinted polymer was photographed using a user terminal under constant lighting. The RGB value of the zinc ion imprinted polymer was measured from the captured image through a program or application installed in the user terminal. The measured RGB value may be output through the display unit of the user terminal.
측정된 RGB값은 기준 RGB값으로 보정하여 유클리드 거리(Euclidean distances, Eds)를 계산하였다. 이때, 기준 RGB값은 동일한 조건 하에서 아연 이온 없이 메탄올만 흡착한 아연 이온 각인 고분자의 RGB값을 의미한다. The measured RGB values were corrected to the reference RGB values to calculate Euclidean distances (Eds). In this case, the reference RGB value refers to the RGB value of a zinc ion imprinted polymer adsorbing only methanol without zinc ions under the same conditions.
유클리드 거리(Eds)=
Figure PCTKR2019010271-appb-I000001
Euclidean distance (Eds)=
Figure PCTKR2019010271-appb-I000001
Rf, Gf, Bf= 아연이온 표준용액으로 흡착한 아연 이온 고분자 R, G, B 값R f , G f , B f = Zinc ion polymer R, G, B values adsorbed with zinc ion standard solution
Ri, Gi, Bi= 메탄올로 흡착한 아연 이온 고분자 R, G, B 값R i , G i , B i = Zinc ion polymer R, G, B values adsorbed with methanol
사용자 단말에 설치되어 있는 프로그램 또는 어플리케이션을 통해, 계산된 유클리드 거리를 기초로 중금속 이온의 농도가 계산되었다. Through a program or application installed in the user terminal, the concentration of heavy metal ions was calculated based on the calculated Euclidean distance.
이때, 적용되는 계산식은 다음과 같다.At this time, the applied calculation formula is as follows.
y = 0.6997x + 15.2566y = 0.6997x + 15.2566
y: 유클리드 거리y: Euclidean distance
x: 중금속 이온의 농도(mg/L) x: concentration of heavy metal ions (mg/L)
[실시예 2][Example 2]
119 mg/L 농도의 아연 이온 표준 용액을 사용하였다. 나머지 조건은 실시예 1과 동일하게 시행하였다.A standard solution of zinc ion with a concentration of 119 mg/L was used. The remaining conditions were carried out in the same manner as in Example 1.
[실시예 3][Example 3]
178 mg/L 농도의 아연 이온 표준 용액을 사용하였다. 나머지 조건은 실시예 1과 동일하게 시행하였다.A standard solution of zinc ion at a concentration of 178 mg/L was used. The remaining conditions were carried out in the same manner as in Example 1.
[실시예 4][Example 4]
238 mg/L 농도의 아연 이온 표준 용액을 사용하였다. 나머지 조건은 실시예 1과 동일하게 시행하였다.A standard solution of zinc ion at a concentration of 238 mg/L was used. The remaining conditions were carried out in the same manner as in Example 1.
도 4는 아연 이온 표준 용액의 농도에 따른 아연 이온 각인 고분자의 색 변화를 도시한 것이다.4 shows the color change of the zinc ion imprinted polymer according to the concentration of the zinc ion standard solution.
도 4를 참조하면, 0 mg/L 농도의 아연 이온 표준 용액을 사용한 경우, 아연 이온 각인 고분자의 색변화가 거의 없다. 반면, 실시예 1, 실시예 2, 실시예 3 및 실시예 4의 아연 이온 각인 고분자는 흐린 분홍색으로 발색되었으며, 아연 이온의 농도가 진할수록 흐린 분홍색의 발색이 강하게 나타났다.Referring to FIG. 4, when a zinc ion standard solution having a concentration of 0 mg/L is used, there is almost no color change of the zinc ion imprinted polymer. On the other hand, the zinc ion-imprinted polymers of Examples 1, 2, 3, and 4 exhibited a pale pink color, and the darker the zinc ion concentration, the stronger the pale pink color development.
아래 표 2는 아연 이온 표준 용액의 농도에 따른 유클리드 거리 값을 나타낸 것이다. 각 아연 이온 표준 용액의 농도에 대하여 3회에 걸쳐 유클리드 거리를 계산하였고, 이를 평균하였다.Table 2 below shows the Euclidean distance values according to the concentration of the zinc ion standard solution. The Euclidean distance was calculated over three times for the concentration of each zinc ion standard solution and averaged.
아연 이온표준 용액농도 (mg/L)Zinc ion standard solution concentration (mg/L) 유클리드 거리(Eds)Euclidean distance (Eds)
1회1 time 2회Episode 2 3회 3rd time 평균Average
5959 4646 5555 5959 53 (±6)53 (±6)
119119 9898 109109 9999 102 (±5)102 (±5)
178178 145145 149149 142142 145 (±3)145 (±3)
238238 178178 178178 175175 177 (±1)177 (±1)
상기 표 2의 수치를 바탕으로, y = 0.6997x + 15.2566 이 도출되었다.Based on the values in Table 2, y = 0.6997x + 15.2566 was derived.
y: 유클리드 거리, x: 중금속 이온의 농도 y: Euclidean distance, x: concentration of heavy metal ions
이상, 아연 이온 각인 고분자 기반의 아연 이온 검출 방법과 아연 이온 검출 센서를 설명하였으나, 본 발명은 반드시 이에 한정되는 것이 아니다.In the above, a method for detecting zinc ions based on a zinc ion imprinting polymer and a sensor for detecting zinc ions have been described, but the present invention is not limited thereto.
대안의 다른 실시예에서는, 구리 이온 각인 고분자, 코발트 이온 각인 고분자, 니켈 이온 각인 고분자, 은 이온 각인 고분자, 카드뮴 이온 각인 고분자, 3가크롬 이온 각인 고분자, 망간 이온 각인 고분자, 납 이온 각인 고분자, 바륨 이온 고분자, 비소 이온 고분자, 셀레늄 이온 고분자, 안티몬 이온 고분자, 철 이온 고분자, 6가크롬 이온 고분자 또는 수은 이온 각인 고분자 기반의 중금속 이온 검출 방법과 중금속 이온 검출 센서가 구현될 수 있다.In another alternative embodiment, copper ion imprinted polymer, cobalt ion imprinted polymer, nickel ion imprinted polymer, silver ion imprinted polymer, cadmium ion imprinted polymer, trivalent chromium ion imprinted polymer, manganese ion imprinted polymer, lead ion imprinted polymer, barium A heavy metal ion detection method and a heavy metal ion detection sensor based on an ionic polymer, an arsenic ion polymer, a selenium ion polymer, an antimony ion polymer, an iron ion polymer, a hexavalent chromium ion polymer, or a mercury ion imprinted polymer may be implemented.
이상에서는 본 발명의 특정의 바람직한 실시예에 대하여 설명하였으나, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변형은 청구 범위 기재의 범위 내에 있게 된다.In the above, specific preferred embodiments of the present invention have been described, but the present invention is not limited to the specific embodiments described above, and the technical field to which the present invention pertains without departing from the gist of the present invention claimed in the claims. Anyone of ordinary skill in the above can of course implement various modifications, as well as such modifications are within the scope of the claims.
중금속 이온 검출 센서 내의 이온 각인 고분자에 중금속 이온을 흡착시킨 후 발색시키고, 발색된 이온 각인 고분자의 색 변화에 의해 중금속 이온을 검출하고, 중금속 이온의 농도를 측정하는 이온 각인 고분자 기반의 중금속 이온 검출 방법 및 검출 센서에 적용가능하다.Heavy metal ion detection method based on ion-imprinted polymer that adsorbs heavy metal ions on the ion-imprinted polymer in the heavy metal ion detection sensor, then develops color, detects heavy metal ions by color change of the colored ion-imprinted polymer, and measures the concentration of heavy metal ions And a detection sensor.

Claims (11)

  1. 이온 각인 고분자 기반의 중금속 이온 검출 센서에 중금속 이온 시료를 가하여 이온 각인 고분자에 중금속 이온을 흡착시키는 단계;Adsorbing heavy metal ions to the ion-imprinted polymer by adding a heavy metal ion sample to a heavy metal ion detection sensor based on the ion-imprinted polymer;
    중금속 이온이 흡착된 이온 각인 고분자에 발색 용액을 투입하여 중금속 이온이 흡착된 이온 각인 고분자를 발색시키는 단계; Adding a color developing solution to the ion-imprinted polymer to which heavy metal ions are adsorbed to develop color of the ion-imprinted polymer to which heavy metal ions are adsorbed;
    발색된 이온 각인 고분자의 색 변화에 의해 중금속 이온을 검출하는 단계;Detecting heavy metal ions by color change of the colored ion-imprinted polymer;
    발색된 이온 각인 고분자의 이미지를 수신하는 단계;Receiving an image of the colored ion imprinted polymer;
    수신된 이미지로부터, 발색된 이온 각인 고분자의 RGB값을 측정하는 단계; 및Measuring the RGB value of the colored ion-imprinted polymer from the received image; And
    측정된 RGB값을 기초로 중금속 이온의 농도를 계산하는 단계;를 포함하는 것을 특징으로 하는 이온 각인 고분자 기반의 중금속 이온 검출 방법.Calculating the concentration of heavy metal ions based on the measured RGB value; A method for detecting heavy metal ions based on an ion-imprinted polymer, comprising: a.
  2. 제1 항에 있어서,The method of claim 1,
    상기 중금속 이온의 농도를 계산하는 단계는, The step of calculating the concentration of the heavy metal ions,
    상기 측정된 RGB값을 기준 RGB값으로 보정하여 유클리드 거리 (Euclidean distances, Eds)를 계산하는 단계; 및Calculating Euclidean distances (Eds) by correcting the measured RGB value to a reference RGB value; And
    상기 계산된 유클리드 거리를 기초로 다음의 식Based on the calculated Euclidean distance, the following equation
    y = 0.6997x + 15.2566y = 0.6997x + 15.2566
    y: 유클리드 거리y: Euclidean distance
    x: 중금속 이온의 농도(mg/L) x: concentration of heavy metal ions (mg/L)
    을 이용하여 중금속 이온의 농도를 계산하는 단계;를 포함하는 것을 특징으로 하는 이온 각인 고분자 기반의 중금속 이온 검출 방법.Calculating the concentration of heavy metal ions by using; ion-imprinting polymer-based heavy metal ion detection method comprising a.
  3. 제1 항에 있어서, The method of claim 1,
    상기 중금속 이온의 농도를 계산하는 단계 후에, After the step of calculating the concentration of the heavy metal ions,
    상기 계산된 중금속 이온의 농도를 상기 사용자 단말에 디스플레이하거나, 또는 상기 계산된 중금속 이온의 농도를 외부 단말에 송신하는 단계;를 더 포함하는 것을 특징으로 하는 이온 각인 고분자 기반의 중금속 이온 검출 방법.Displaying the calculated concentration of heavy metal ions on the user terminal, or transmitting the calculated concentration of heavy metal ions to an external terminal; ion-imprinted polymer-based heavy metal ion detection method further comprising.
  4. 제1 항에 있어서, The method of claim 1,
    상기 중금속 이온은 구리 이온, 아연 이온, 코발트 이온, 니켈 이온, 은 이온, 카드뮴 이온, 3가크롬 이온, 망간 이온, 납 이온, 바륨 이온, 비소 이온, 셀레늄 이온, 안티몬 이온, 철 이온, 6가크롬 이온 및 수은 이온으로 이루어진 그룹으로부터 선택되고, The heavy metal ion is copper ion, zinc ion, cobalt ion, nickel ion, silver ion, cadmium ion, trivalent chromium ion, manganese ion, lead ion, barium ion, arsenic ion, selenium ion, antimony ion, iron ion, hexavalent Selected from the group consisting of chromium ions and mercury ions,
    상기 중금속 이온의 종류에 따라 발색된 색 변화가 다르게 나타나는 것을 특징으로 하는 이온 각인 고분자 기반의 중금속 이온 검출 방법.A method for detecting heavy metal ions based on an ion-imprinted polymer, characterized in that a color change in color appears differently depending on the type of the heavy metal ions.
  5. 제1 항에 있어서, The method of claim 1,
    상기 이온 각인 고분자는 구리 이온 각인 고분자, 아연 이온 각인 고분자, 코발트 이온 각인 고분자, 니켈 이온 각인 고분자, 은 이온 각인 고분자, 카드뮴 이온 각인 고분자, 3가크롬 이온 각인 고분자, 망간 이온 각인 고분자, 납 이온 각인 고분자, 바륨 이온 고분자, 비소 이온 고분자, 셀레늄 이온 고분자, 안티몬 이온 고분자, 철 이온 고분자, 6가크롬 이온 고분자 및 수은 이온 각인 고분자로 이루어진 그룹으로부터 선택되는 것을 특징으로 하는 이온 각인 고분자 기반의 중금속 이온 검출 방법.The ion imprinted polymer is a copper ion imprinted polymer, zinc ion imprinted polymer, cobalt ion imprinted polymer, nickel ion imprinted polymer, silver ion imprinted polymer, cadmium ion imprinted polymer, trivalent chromium ion imprinted polymer, manganese ion imprinted polymer, lead ion imprinted Heavy metal ion detection based on ion-engraved polymer, characterized in that it is selected from the group consisting of polymer, barium ion polymer, arsenic ion polymer, selenium ion polymer, antimony ion polymer, iron ion polymer, hexavalent chromium ion polymer, and mercury ion imprinted polymer Way.
  6. 제1 항에 있어서, The method of claim 1,
    상기 이온 각인 고분자가 아연 이온 각인 고분자인 경우, When the ion imprinted polymer is a zinc ion imprinted polymer,
    상기 아연 이온 각인 고분자는, The zinc ion imprinted polymer,
    주형이온, 단량체, 가교제 및 개시제가 1: 3 이상: 13 이상: 0.04 이상의 몰비로 혼합되어 형성된 것을 특징으로 하는 이온 각인 고분자 기반의 중금속 이온 검출 방법.A method for detecting heavy metal ions based on an ion-imprinted polymer, characterized in that a template ion, a monomer, a crosslinking agent, and an initiator are mixed in a molar ratio of 1: 3 or more: 13 or more: 0.04 or more.
  7. 제1 항에 있어서, The method of claim 1,
    상기 발색 용액은 디티존 용액, 다이에틸다이티오카르바민산나트3수화물(sodium diethyldithiocarbamate trihydrate, C5H10NNaS3H2O), 다이메틸글리옥심(dimethylglyoxim, (CH3)2C2(NOH)2), 진콘(zincon, C20H15O6N4SNa), o-페난트로린 2염산염(1,10-phenanthroline dihydrogen chloride, C12H8N22HCl), 및 다이페닐카바자이드(1,5-diphenylcarbazide, C13H14N4O)로 이루어진 그룹으로부터 선택되는 것을 특징으로 하는 이온 각인 고분자 기반의 중금속 이온 검출 방법.The color developing solution is dithizone solution, diethyldithiocarbamate trihydrate (sodium diethyldithiocarbamate trihydrate, C 5 H 10 NNaS3H 2 O), dimethylglyoxim (CH 3 ) 2 C 2 (NOH) 2 ), zincon (C 2 0H 15 O6N 4 SNa), o-phenanthroline dihydrogen chloride (1,10-phenanthroline dihydrogen chloride, C 12 H 8 N 2 2HCl), and diphenylcarbazide (1,5- Diphenylcarbazide, C 13 H 14 N 4 O) ion-imprinted polymer-based heavy metal ion detection method, characterized in that selected from the group consisting of.
  8. 이온 각인 고분자 기반의 중금속 이온 검출 센서로서, As a heavy metal ion detection sensor based on ion imprinted polymer,
    중금속 이온에 대한 결합 공동을 갖는 이온 각인 고분자를 포함하고, It includes an ion-imprinted polymer having a binding cavity for heavy metal ions,
    상기 중금속 이온 검출 센서에 중금속 이온 시료를 가하여 이온 각인 고분자에 중금속 이온을 흡착시키고, 중금속 이온이 흡착된 이온 각인 고분자에 발색 용액을 투입하여 중금속 이온이 흡착된 이온 각인 고분자를 발색시키며, 발색된 이온 각인 고분자의 색 변화에 의해 중금속 이온을 검출하고, 발색된 이온 각인 고분자의 이미지로부터, 발색된 이온 각인 고분자의 RGB값을 측정하고, 측정된 RGB값을 기초로 중금속 이온의 농도를 계산하는 것을 특징으로 하는 이온 각인 고분자 기반의 중금속 이온 검출 센서.A heavy metal ion sample is applied to the heavy metal ion detection sensor to adsorb heavy metal ions to the ion-imprinted polymer, and a color developing solution is added to the ion-imprinted polymer adsorbed with heavy metal ions to color the ion-imprinted polymer adsorbed with heavy metal ions. It detects heavy metal ions by color change of the imprinted polymer, measures the RGB value of the colored ionic imprinted polymer from the image of the colored ionic imprinted polymer, and calculates the concentration of heavy metal ions based on the measured RGB values. Heavy metal ion detection sensor based on ion imprinted polymer.
  9. 제8 항에 있어서,The method of claim 8,
    상기 중금속 이온의 농도의 계산은, 상기 측정된 RGB값을 기준 RGB값으로 보정하여 유클리드 거리 (Euclidean distances, Eds)를 계산하고, 상기 계산된 유클리드 거리를 기초로 다음의 식In the calculation of the concentration of heavy metal ions, Euclidean distances (Eds) are calculated by correcting the measured RGB value as a reference RGB value, and the following equation is based on the calculated Euclidean distance.
    y = 0.6997x + 15.2566y = 0.6997x + 15.2566
    y: 유클리드 거리y: Euclidean distance
    x: 중금속 이온의 농도(mg/L) x: concentration of heavy metal ions (mg/L)
    을 이용하여 중금속 이온의 농도를 계산하는 것을 특징으로 하는 이온 각인 고분자 기반의 중금속 이온 검출 센서.Ion-engraved polymer-based heavy metal ion detection sensor, characterized in that to calculate the concentration of heavy metal ions using.
  10. 제8 항에 있어서, The method of claim 8,
    상기 중금속 이온의 농도의 계산 후에, 상기 계산된 중금속 이온의 농도를 상기 사용자 단말에 디스플레이하거나, 또는 상기 계산된 중금속 이온의 농도를 외부 단말에 송신하는 것을 특징으로 하는 이온 각인 고분자 기반의 중금속 이온 검출 센서.After calculation of the concentration of the heavy metal ions, the calculated concentration of the heavy metal ions is displayed on the user terminal, or the calculated concentration of the heavy metal ions is transmitted to an external terminal. sensor.
  11. 제8 항에 있어서,The method of claim 8,
    상기 이온 각인 고분자가 아연 이온 각인 고분자인 경우, When the ion imprinted polymer is a zinc ion imprinted polymer,
    상기 아연 이온 각인 고분자는, The zinc ion imprinted polymer,
    주형이온, 단량체, 가교제 및 개시제가 1: 3 이상: 13 이상: 0.04 이상의 몰비로 혼합되어 형성된 것을 특징으로 하는 이온 각인 고분자 기반의 중금속 이온 검출 센서.A heavy metal ion detection sensor based on an ion-imprinted polymer, characterized in that the template ion, the monomer, the crosslinking agent, and the initiator are mixed in a molar ratio of 1: 3 or more: 13 or more: 0.04 or more.
PCT/KR2019/010271 2019-08-12 2019-08-13 Heavy metal ion detection method and detection sensor based on ion-imprinted polymer WO2021029455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0098392 2019-08-12
KR1020190098392A KR102226449B1 (en) 2019-08-12 2019-08-12 Metal ion detection method and detection sensor based on ion imprinted polymer

Publications (1)

Publication Number Publication Date
WO2021029455A1 true WO2021029455A1 (en) 2021-02-18

Family

ID=74570646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/010271 WO2021029455A1 (en) 2019-08-12 2019-08-13 Heavy metal ion detection method and detection sensor based on ion-imprinted polymer

Country Status (2)

Country Link
KR (1) KR102226449B1 (en)
WO (1) WO2021029455A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959985A (en) * 2021-11-17 2022-01-21 南昌航空大学 Multi-channel heavy metal ion detection device based on ion imprinting micro-nano optical fiber interferometer
CN116041618A (en) * 2023-01-18 2023-05-02 广东工业大学 Cadmium ion detection material and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150046616A (en) * 2013-10-22 2015-04-30 경상대학교산학협력단 Sensors for detecting mercury ion using filter paper with chromophore and method of manufacturing the same
KR20160089208A (en) * 2015-01-19 2016-07-27 고려대학교 산학협력단 A device for detecting and separating heavy metal ions using magnetic nanoparticles and a method for detecting and separating heavy metal ions using the same
US20170045486A1 (en) * 2015-08-10 2017-02-16 National Tsing Hua University Heavy metal detecting device and the fabricating method thereof
KR20190058249A (en) * 2017-11-20 2019-05-29 주식회사 엘지화학 A device and method for qualitative and quantitative analysis of heavy metals using a rotary disc system
KR20190058821A (en) * 2017-11-22 2019-05-30 한국기술교육대학교 산학협력단 Assembled pretreatment apparatus, measurement system and method for on-site measurement of specific heavy metal contamination in soils

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101409327B1 (en) 2013-03-06 2014-06-30 인하대학교 산학협력단 Method of purification of astaxanthin in shrimp waste using MISPE-DLLME

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150046616A (en) * 2013-10-22 2015-04-30 경상대학교산학협력단 Sensors for detecting mercury ion using filter paper with chromophore and method of manufacturing the same
KR20160089208A (en) * 2015-01-19 2016-07-27 고려대학교 산학협력단 A device for detecting and separating heavy metal ions using magnetic nanoparticles and a method for detecting and separating heavy metal ions using the same
US20170045486A1 (en) * 2015-08-10 2017-02-16 National Tsing Hua University Heavy metal detecting device and the fabricating method thereof
KR20190058249A (en) * 2017-11-20 2019-05-29 주식회사 엘지화학 A device and method for qualitative and quantitative analysis of heavy metals using a rotary disc system
KR20190058821A (en) * 2017-11-22 2019-05-30 한국기술교육대학교 산학협력단 Assembled pretreatment apparatus, measurement system and method for on-site measurement of specific heavy metal contamination in soils

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113959985A (en) * 2021-11-17 2022-01-21 南昌航空大学 Multi-channel heavy metal ion detection device based on ion imprinting micro-nano optical fiber interferometer
CN113959985B (en) * 2021-11-17 2023-10-20 南昌航空大学 Multichannel heavy metal ion detection device based on ion imprinting micro-nano optical fiber interferometer
CN116041618A (en) * 2023-01-18 2023-05-02 广东工业大学 Cadmium ion detection material and preparation method and application thereof

Also Published As

Publication number Publication date
KR20210019332A (en) 2021-02-22
KR102226449B1 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
WO2021029455A1 (en) Heavy metal ion detection method and detection sensor based on ion-imprinted polymer
CN1178525C (en) Color correction apparatus for use in imaging apparatus
WO2013100581A1 (en) Method for changing tdd uplink and downlink configuration
CN106023886B (en) A kind of point-by-point bright chroma bearing calibration of LED and system
EP2696561A2 (en) Method for controlling light-emitting device in terminal equipment, apparatus thereof and terminal equipment
WO2013032041A1 (en) Method for measuring distance, height, and length using a mobile communication terminal
WO2012121562A2 (en) Method and apparatus for transmitting and receiving control information in a wireless communication system
WO2020080815A1 (en) Apparatus and method for selecting uplink based on communication state
WO2020180012A1 (en) Apparatus and method for detecting low-voltage defective battery cell
WO2021066484A1 (en) Device and method for performing urinalysis
WO2021261883A1 (en) Method for detecting hidden camera using wireless router and system thereof
WO2018062704A1 (en) Device for diagnosing colorectal cancer and method for providing colorectal cancer diagnosis information
WO2017095071A1 (en) Camera module inspection device
WO2019045386A1 (en) Apparatus and method for measuring coating characteristic of ultraviolet blocking agent
WO2024058437A1 (en) Oxygen collection system for measuring oxygen concentration
WO2015076513A1 (en) Apparatus for inspecting transmittance of printed pattern for ir sensor
CN109856154B (en) On-line detection method and device for printing quality of chip resistor based on machine vision
WO2014035050A1 (en) Image brightness adjusting method, device therefor, and stereo camera
WO2022005186A1 (en) System for testing antenna performance
WO2016028040A1 (en) Solder inspection apparatus and feedback information generation method for solder inspection apparatus
WO2013069910A1 (en) Blood glucose monitoring system having wireless communication module to which time synchronization method is applied
WO2021096167A1 (en) Underwater camera image correction system and method for inspecting bottom of ship
WO2010011091A2 (en) Apparatus and method for detecting interference in heterogeneous network of mobile communication system
TWI266060B (en) Apparatus and method for testing socket
CN214583958U (en) Atmosphere lamp detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940983

Country of ref document: EP

Kind code of ref document: A1