WO2021029360A1 - Method for manufacturing substrate coated with electroconductive material, multi-layer material, and substrate coated with electroconductive material - Google Patents

Method for manufacturing substrate coated with electroconductive material, multi-layer material, and substrate coated with electroconductive material Download PDF

Info

Publication number
WO2021029360A1
WO2021029360A1 PCT/JP2020/030367 JP2020030367W WO2021029360A1 WO 2021029360 A1 WO2021029360 A1 WO 2021029360A1 JP 2020030367 W JP2020030367 W JP 2020030367W WO 2021029360 A1 WO2021029360 A1 WO 2021029360A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
solvent
coating
coating component
conductive
Prior art date
Application number
PCT/JP2020/030367
Other languages
French (fr)
Japanese (ja)
Inventor
慎一朗 岡本
光弘 幸田
亮平 池田
Original Assignee
大阪有機化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪有機化学工業株式会社 filed Critical 大阪有機化学工業株式会社
Priority to JP2021539273A priority Critical patent/JPWO2021029360A1/ja
Publication of WO2021029360A1 publication Critical patent/WO2021029360A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • C09D133/16Homopolymers or copolymers of esters containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form

Definitions

  • This disclosure relates to a novel conductor structure and a method for manufacturing the same. More specifically, the present disclosure relates to a method of making a substrate coated with a conductive material, the substrate or conductor produced, and certain solvents used in the production thereof.
  • the present disclosure provides a conductive material containing a desired combination of conductive components and a base material.
  • the disclosure provides, for example:
  • (Item 1) A method for producing a base material coated with a conductive material, in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material.
  • the solvent comprises the steps of forming the conductive material from the conductive component and the coating component on the substrate, and the solvent dissolves the coating component so as to allow coating, but the group.
  • (Item 1B) A method for producing a base material coated with a conductive material, in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material.
  • a method comprising a step of coating with a substrate and a step of forming the conductive material from the conductive component on the substrate and the coating component, wherein the solubility of the substrate in the solvent is smaller than the solubility of the coating component.
  • a method for producing a base material coated with a conductive material in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material. Including the step of coating with the coating component and the step of forming the conductive material from the conductive component on the base material and the coating component, the solvent dissolves the coating component, but substantially dissolves the base material. Not the way.
  • (Item 2) The method according to any one of the above items, wherein the coating component is a homopolymer containing one kind of monomer component or a copolymer containing two or three kinds of monomer components.
  • (Item 2a) The method according to any one of the above items, wherein the coating component is a copolymer.
  • (Item 2b) The method according to any one of the above items, wherein the coating component is conductive polyacetylene.
  • (Item 2c) The method according to any one of the above items, wherein both the coating component and the conductive component are conductive polyacetylene.
  • (Item 3) The method according to any one of the above items, wherein the conductive material is formed from the coating agent by heat treatment.
  • (Item 4) The method according to any one of the above items, wherein the conductive component is a metal filler.
  • the conductive component contains silver, copper, gold, aluminum, zinc, nickel, tin, and / or iron.
  • (Item 5a) The method according to any one of the above items, wherein the conductive component is silver.
  • the base material is a resin.
  • (Item 6a) The method according to the above item, wherein the base material is a polyolefin resin, a polyacrylic resin, or a polyamide resin.
  • the coating component is a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and (3-ethyloxetane-3-yl) acrylate, according to any one of the above items. the method of. (Item 15) The method according to any one of the above items, wherein the coating agent further contains a dispersant. (Item 16) The method according to any one of the above items, wherein the dispersant is 2- (2-butoxyethoxy) ethanol. (Item 17) Combination of base material, conductive material and solvent. (Item 17a) The combination according to any one of the above items, which comprises one or more of the features described in the above item.
  • the substrate according to any one of the above items, which comprises one or more of the features described in the above item.
  • the disclosure also provides, for example:
  • (Item A1a) A method for producing a base material coated with a conductive material, in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material.
  • the solvent comprises the steps of forming the conductive material from the conductive component and the coating component on the substrate, and the solvent dissolves the coating component so as to allow coating, but the group.
  • (Item A1b) A method for producing a base material coated with a conductive material, in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material.
  • a method comprising a step of coating with a substrate and a step of forming the conductive material from the conductive component on the substrate and the coating component, wherein the solubility of the substrate in the solvent is smaller than the solubility of the coating component.
  • a method for producing a base material coated with a conductive material in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material.
  • the solvent comprises the steps of coating with and the conductive component on the substrate and the step of forming the conductive material from the coating component, wherein the solvent dissolves the coating component but substantially dissolves the substrate. Not the way.
  • (Item A2a) The method according to any one of the preceding items, wherein the coating component is a homopolymer containing one monomer component or a copolymer containing two or more monomer components.
  • (Item A2b) The method according to any one of the preceding paragraphs, wherein the coating component is a homopolymer containing one monomer component or a copolymer containing two to three monomer components.
  • (Item A2c) The method according to any one of the preceding items, wherein the coating component is a copolymer.
  • (Item A2d) The method according to any one of the preceding items, wherein the coating component is conductive polyacetylene.
  • (Item A6a) The method according to any one of the preceding items, wherein the base material is a resin.
  • (Item A6b) The method according to any one of the preceding items, wherein the base material is a polyolefin resin, a polyacrylic resin, or a polyamide resin.
  • (Item A7) The method according to any one of the preceding items, wherein the solvent is a hydrocarbon solvent or an alcohol solvent.
  • (Item A8) The method according to any one of the preceding items, wherein the solvent is a hydrocarbon solvent.
  • (Item A9) The method according to any one of the preceding items, wherein the hydrocarbon solvent is hepsane, octane, limonene, or undecane or a combination thereof.
  • the coating component is a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and (3-ethyloxetane-3-yl) acrylate, according to any one of the preceding items.
  • the method described. (Item A18) The method according to any one of the preceding items, wherein the coating component is a copolymer of lauryl acrylate and 2,2,2-trifluoroethyl acrylate.
  • the coating component is a copolymer of stearyl acrylate and 2,2,2-trifluoroethyl acrylate.
  • a conductive material containing a desired combination of a conductive component and a base material can be freely produced.
  • the base material is less damaged, a high-quality conductive material can be provided.
  • conductivity is used in the usual sense in the art and means the property of conducting electricity, and the amount of physical properties thereof is called “conductivity”, and is used for a certain object (also called a conductor). It is defined as the reciprocal of resistivity (specific resistivity, also called volume resistivity in the resin field).
  • the conductivity is measured as follows. Specifically, unless otherwise specified, a measurement target (for example, a film) is cut out into a length of 0.5 cm, a width of 2.00 cm, and a thickness of 0.2 cm, and a four-terminal measurement method (for example, Loresta GP [Mitsubishi Chemical]. Analytech] can be used, but the value measured by is not limited to this).
  • firing refers to a process of molding a raw material powder, heating it, shrinking and densifying it, and obtaining a sintered body having a certain shape and strength.
  • sintering refers to a phenomenon in which raw material powder is baked and hardened at a high temperature, and although gaps are observed between the particles of the raw material powder, sintering is performed in a high temperature environment (temperature lower than the melting point). When this happens, the contact area between the particles increases, the gaps decrease, and the particles harden. The remaining gap is called a "void” or "vacancy”.
  • the "base material” refers to a material coated with a conductive material.
  • Examples include commonly available papers such as fine paper, kraft paper, crepe paper, glassin paper, polyolefins such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride, polyesters, polyamides, polyacrylics, polyurethanes, etc.
  • Examples thereof include resins such as cellophane, woven fabrics, non-woven fabrics, textile products such as fabrics, and the like, but the present disclosure is not limited to such examples.
  • the term "conductive material" refers to any material having conductivity.
  • the conductive material has a resistance of 1.0 ⁇ 10 -1 ⁇ ⁇ cm or less, usually 1.0 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less, preferably 1.0 ⁇ 10 -3 ⁇ ⁇ cm or less. It is intended for those with a rate, but is not limited to this.
  • the conductive material contains a conductive component that imparts conductivity.
  • the conductive material is usually composed of a coating component and a conductive component.
  • the "conductive component” means any component that imparts conductivity.
  • the conductive component include, but are not limited to, any metal component, a metal oxide, a metal component such as a metal carbide, carbon, a conductive organic compound, a conductive polymer, and the like.
  • the "coating component” means a component used for the purpose of covering a certain material as a coating.
  • the coating component include polymers, and specific examples include (meth) acrylic polymers, epoxy polymers, urethane polymers, fluoropolymers, polyester resins, melamine resins, silicone resins and the like.
  • coating agent refers to any drug containing a coating component, and is usually provided by dissolving the coating component and other optional components in a solvent.
  • coating agents include those containing coating components, solvents, and optionally dispersants.
  • the specific composition of each of these components is irrelevant to the essence of the present disclosure. That is, it should be noted that the range is not determined by the relationship with the specific chemical properties of each component because it is defined by the relationship with the solubility.
  • the "solvent” refers to a medium that dissolves a certain component, and examples thereof include a solvent that dissolves a conductive component, a raw material of a base material, a coating component, and the like.
  • dissolution of a coating component or the like means a phenomenon in which a substance to be dissolved dissolves in a solvent without remaining undissolved to become a uniform liquid.
  • damage of a base material or the like means that a substance such as a base material is damaged or damaged. Damage to the base material and the like includes, for example, leaving a mark after dropping the solvent on the surface of the base material, and swelling (swelling) the portion in contact with the solvent.
  • “does not damage the base material” means that "damage” does not occur or is not caused in the base material. Damage to the base material is the weight or volume of the base material after immersing the target base material in the solvent used as the target for a certain period of time (for example, 1 minute, 10 minutes, 1 hour) and then removing the solvent. It can be determined by measuring whether there is a change. Here, typically, when there is a change in weight of 1% by weight, it can be determined that the product is damaged. Alternatively, if there is a change in weight such as less than 2% by weight, less than 1% by weight, less than 0.5% by weight, or less than 0.1% by weight, it can be determined that the product is damaged.
  • the change in volume is less than 1 volume%.
  • if there is a change in weight such as less than 2% by volume, less than 1% by volume, less than 0.5% by volume, or less than 0.1% by volume, it can be determined that the product is damaged.
  • the "solubility" in a solvent means the limit amount at which a certain solute is soluble in a certain amount of solvent.
  • substantially insoluble means that a substance (for example, a base material, a resin) in a solvent is immersed for a certain period of time (for example, 1 minute, 10 minutes, 1 hour), and then the solvent is used. It means that less than 2% by weight, less than 1% by weight, less than 0.5% by weight, or less than 0.1% by weight of a substance is dissolved. Alternatively, when viewed by volume, it means that less than 2% by volume, less than 1% by volume, less than 0.5% by volume, or less than 0.1% by volume of a substance is dissolved.
  • solvent dissolves the coating component but does not substantially dissolve the substrate
  • solvent dissolves the coating component, while the solvent does not substantially dissolve the substrate.
  • the "metal-based component” is a component containing a metal atom as a component thereof in some form, and is a component derived from a metal other than a metal, for example, a metal oxide, a metal carbide, or a metal sulfide. It is a concept that includes such things.
  • the "metal component” includes a metal or an alloy.
  • the "(metal) filler” is an additive containing or composed of a metal-based component. In the present disclosure, it is used to fill (fill) the polymer network of coating components.
  • the "copolymer containing a monomer component” means a copolymer produced by polymerizing the monomer component.
  • resin includes natural resin and synthetic resin
  • natural resin means a naturally occurring substance in a plant
  • synthetic resin is synthesized by the development of organic chemistry. It means a substance that has properties similar to those of natural resin.
  • examples of resins include polyolefin resins, polyacrylic resins, polyurethane resins, and polyamide resins.
  • the polyolefin resin refers to a resin containing a polymer synthesized by using simple olefins or alkenes as a monomer (unit molecule), and examples thereof include polyethylene and polypropylene.
  • the polyacrylic resin refers to a resin containing a polymer synthesized from a monomer having an acrylic unit such as acrylic acid, an acrylic acid ester, and an acrylic acid amide, and examples thereof include polyacrylic acid, polyacrylate, and polyacrylamide. ..
  • the polyurethane resin refers to a resin containing a polymer having a urethane bond, and examples thereof include a polymerization product of a diisocyanate and a diol monomer or a triol monomer.
  • Polyamide resin is a polymer formed by binding a large number of monomers by amide bonds.
  • the "hydrocarbon-based solvent” means a compound composed of carbon and hydrogen that can be used as a solvent. Specific examples thereof include, but are not limited to, n-hexane, n-heptane, n-octane, n-undecane, benzene, toluene, xylene, cyclopentane, cyclohexane, limonene, and combinations thereof.
  • the "alcohol-based solvent” means a compound that has a carbon atom and one or more hydroxyl groups and can be used as a solvent.
  • the alcohol-based solvent is, for example, one in which the hydrogen atom of the hydrocarbon-based solvent is substituted with one or more hydroxyl groups.
  • Specific examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, 3-methoxy-3-methyl-1-butanol, octanol, 2-ethyl-1-hexanol, Examples include, but are not limited to, ethylene glycol, diethylene glycol, triethylene glycol, glycerol, and combinations thereof.
  • the "monomer” means a compound obtained by polymerizing two or more of them to form a polymer.
  • the monomers of the present disclosure include (meth) acrylic monomers, ethylene-based monomers, urethane-based monomers, amide-based monomers, ester-based monomers, ether-based monomers, imide-based monomers, amide-imide-based monomers, and carbonate-based monomers.
  • Acetal-based monomer, sulfone-based monomer, phenylene sulfide-based monomer, ether ether ketone-based monomer, silicone-based monomer, styrene-based monomer, butadiene-based monomer and AES resin, diallyl phthalate resin, ABS resin, silicone resin, etc. are formed by polymerization. Monomers can be mentioned.
  • alkyl-containing monomer that improves the solubility in a hydrocarbon solvent refers to the target alkyl-containing monomer when the solubility is tested using the target hydrocarbon solvent.
  • the “monomer for improving elasticity” means that the glass transition temperature Tg of the homopolymer measured by a thermogravimetric differential thermal analyzer (Tg-DTA) is 25 ° C. or lower, more preferably 0 ° C. or lower. It is a monomer.
  • Tg-DTA thermogravimetric differential thermal analyzer
  • the "monomer containing a chain or cyclic ether structure” is a monomer having -C-OC- as a part of the structure, and the -C-O-C- portion is a monomer. It may be a part of a chain structure or a part of a cyclic structure. Specific examples of this monomer include glycidyl acrylate, (3-ethyloxetane-3-yl) acrylate, 2-methoxyethyl acrylate, 4-hydroxybutyl vinyl ether, 2-hydroxyethyl vinyl ether (HEVE), and diethylene glycol monovinyl ether (DEVG).
  • N-propyl vinyl ether NPVE
  • isopropyl vinyl ether IPVE
  • n-butyl vinyl ether NBVE
  • isobutyl vinyl ether IBVE
  • 2-ethylhexyl vinyl ether 2-EHVE
  • cyclohexyl vinyl ether CHVE
  • 1,4-butanediol divinyl ether BDVE
  • TEGDVE 1,4-butanediol divinyl ether
  • DEGDVE 1,4-cyclohexanedimethanol divinyl ether
  • CHDVE 1,4-cyclohexanedimethanol divinyl ether
  • the "dispersant” means that solid particles in a slurry are uniformly dispersed in a dispersion medium (for example, an organic solvent or water) to reduce the viscosity and improve the stability of the slurry (aggregation and sedimentation of solid particles).
  • a dispersion medium for example, an organic solvent or water
  • Prevention ⁇ It is an additive that contributes to high concentration and improves the efficiency of the dispersion process.
  • the "kit” usually refers to a unit in which parts to be provided (for example, coating component, conductive component, solvent, instruction manual, etc.) are provided by dividing into two or more sections.
  • the form of this kit is preferred when the purpose is to provide a composition that should not be mixed and provided for stability and the like, but is preferably mixed and used immediately before use.
  • Such a kit preferably describes how to use the provided parts (eg, conductive components, coating components) or how to treat the reagents or waste liquid after use. Or it is advantageous to have instructions.
  • the kit may usually include instructions and the like that describe how to use the solvent and the like.
  • the conductive material provided in the present disclosure includes any conductive component available in the art.
  • the conductive material of the present disclosure is characterized in that the conductivity is improved by containing a composition (also referred to as a conductivity improver) for improving the conductivity provided in the present disclosure.
  • the conductive material of the present disclosure may typically contain a base material in addition to a conductive component.
  • the coating component of the present disclosure can be prepared by heating the monomer and / or by irradiating the monomer with ultraviolet rays having a specific illuminance to polymerize the monomer. Such ultraviolet irradiation can be arbitrarily set and carried out by those skilled in the art. When the coating component is prepared by polymerizing using ultraviolet rays, a drying operation for removing the solvent, which is a complicated operation, is not required, and the workability is excellent.
  • ultraviolet rays refer to electromagnetic waves having a shorter wavelength than visible light and a longer wavelength than X-rays.
  • the short wavelength end of visible light at the upper limit is 400 nm, and ultraviolet light can be defined as an electromagnetic wave having a wavelength lower than this.
  • the lower limit of the wavelength of ultraviolet rays is about 10 nm, and it is understood that electromagnetic waves having a wavelength longer than this fall into the category of ultraviolet rays.
  • the wavelength of the ultraviolet rays used in the present disclosure may be any wavelength, and an appropriate wavelength can be selected according to the intended purpose.
  • any wavelength may be used as long as it can exert an initial effect on the monomer.
  • it is of a wavelength that can be emitted by the light source used in the examples.
  • a light source of about 150 nm to 400 nm is used, preferably 300 nm to 400 nm.
  • the preferred illuminance of ultraviolet light used in this disclosure depends on the starting material.
  • the ultraviolet irradiation device is not particularly limited, and for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a black light lamp, a UV electrodeless lamp, a short arc lamp, an LED, etc. Can be mentioned.
  • a polymerization initiator When polymerizing the monomer, it is preferable to use a polymerization initiator.
  • the polymerization initiator include a thermal polymerization initiator, a photopolymerization initiator, a redox polymerization initiator, an ATRP (atomic transfer radical polymerization) initiator, an ICAR ATRP initiator, an ARGET ATRP initiator, and a RAFT (reversible addition-cleavage).
  • ATRP atomic transfer radical polymerization
  • ICAR ATRP initiator atomic transfer radical polymerization
  • ARGET ATRP initiator an ARGET ATRP initiator
  • RAFT reversible addition-cleavage
  • Examples thereof include a chain transfer polymerization) agent, an NMP (nitroxide-mediated polymerization) agent, and a polymer polymerization initiator.
  • These polymerization initiators may be used alone or in combination of two or more.
  • a photopolymerization initiator is preferable from the viewpoint of not leaving a
  • photopolymerization initiator examples include 2,4,6-trimethylbenzoyldiphenylphosphenyl oxide, 2,2'-bis (o-chlorophenyl) -4,4', 5,5'-tetraphenyl-1,1'.
  • the amount of the photopolymerization initiator is usually preferably about 0.01 part by weight to about 20 parts by weight per 100 parts by weight of all the monomers.
  • thermal polymerization initiator examples include azobisisobutyronitrile (AIBN), 2,2'-azobis (methyl isobutyrate), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2.
  • Azo-based polymerization initiators such as'-azobis (2-methylbutyronitrile) and 1,1'-azobis (cyclohexane-1-carbonitrile), peroxides such as benzoyl peroxide, potassium persulfate, and ammonium persulfate. Examples thereof include a polymerization initiator, but the present disclosure is not limited to such examples. These polymerization initiators may be used alone or in combination of two or more.
  • the amount of the thermal polymerization initiator is usually preferably about 0.01 part by weight to about 20 parts by weight per 100 parts by weight of all the monomers.
  • the resulting composite material may contain air bubbles. Since such bubbles can be the starting point of fracture, it is predicted that the impact absorption capacity can be improved while the properties such as the extensibility of the composite material may be deteriorated.
  • the bubbles contained in the composite material are not limited to those derived from the polymerization initiator, and the resin or the like contains bubbles, such as those obtained by adding a foaming agent and those obtained by removing the solvent. It may be a bubble obtained by a known method capable of this.
  • redox polymerization initiators such as hydrogen peroxide and iron (II) salt, persulfate and sodium hydrogen sulfite, and ATRP using alkyl halides under a metal catalyst.
  • RAFT reversible addition-cleavage chain transfer polymerization
  • NMP nitrogen-mediated polymerization
  • Polydimethylsiloxane unit-containing polymer azo polymerization initiator polyethylene glycol unit-containing polymer azo polymerization initiator, and other polymer polymerization initiators, but the present disclosure is not limited to these examples. .. These polymerization initiators may be used alone or in combination of two or more.
  • a chain transfer agent When polymerizing the monomer, a chain transfer agent may be used to adjust the molecular weight. Chain transfer agents can usually be used by mixing with monomers. Examples of the chain transfer agent include 2- (dodecylthiocarbonothio oil thio) -2-methylpropionic acid, 2- (dodecylthiocarbonoti oil thio) propionate, and methyl 2- (dodecylthio carbonothio oil thio)-.
  • the atmosphere for polymerizing the monomer is not particularly limited and may be the atmosphere or an inert gas such as nitrogen gas or argon gas.
  • the temperature at which the monomer is polymerized is not particularly limited, and is usually preferably about 5 to 100 ° C.
  • the time required to polymerize the monomer varies depending on the polymerization conditions and cannot be unconditionally determined. Therefore, it is arbitrary, but it is usually about 1 to 20 hours.
  • the polymerization reaction can be arbitrarily terminated when the amount of the remaining monomer is 20% by mass or less.
  • the amount of the remaining monomer can be measured by using, for example, gel permeation chromatography (GPC).
  • the coating component can be obtained by bulk polymerization of the monomers as described above.
  • the monomer is polymerized in the absence of a cross-linking agent. In another embodiment, the monomer is polymerized in the presence of a cross-linking agent.
  • the coating component is thermally polymerized or photopolymerized. In another embodiment, the coating component is thermally polymerized. In another embodiment, the coating component is photopolymerized.
  • Examples of the method for polymerizing the monomer include a massive polymerization method, a solution polymerization method, an emulsion polymerization method, a suspension polymerization method, and the like, but the present disclosure is not limited to these examples.
  • a massive polymerization method and a solution polymerization method are preferable.
  • the polymerization of the monomer can be carried out by a method such as a radical polymerization method, a living radical polymerization method, an anion polymerization method, a cationic polymerization method, an addition polymerization method, a polycondensation method, or a catalytic polymerization method.
  • the monomer when the monomer is polymerized by a solution polymerization method, for example, the monomer can be polymerized by dissolving the monomer in a solvent and adding a polymerization initiator to the solution while stirring the obtained solution.
  • the monomer can be polymerized by dissolving the initiator in a solvent and adding the monomer to the solution while stirring the obtained solution.
  • the solvent is preferably an organic solvent that is compatible with the monomer.
  • the homopolymers or copolymers contained in the conductive materials of the present disclosure use peroxide-based initiators (for example, benzoyl peroxide and azobisisobutyronitrile, and their analogs) as polymerization initiators. It is polymerized by.
  • peroxide-based initiators for example, benzoyl peroxide and azobisisobutyronitrile, and their analogs
  • the amount of the polymerization initiator is usually preferably about 0.01 part by weight to about 20 parts by weight per 100 parts by weight of all the monomers.
  • electron beam polymerization is performed by irradiating the monomer with an electron beam.
  • the monomer can be polymerized by irradiation with only an electron beam.
  • the electron beam is irradiated in the presence of a photopolymerization initiator in one embodiment and in the absence of a photopolymerization initiator in another embodiment. Both embodiments are within the scope of the present disclosure.
  • the polymerization reaction temperature and atmosphere when polymerizing the monomer are not particularly limited. Generally, the polymerization reaction temperature is about 50 ° C. to about 120 ° C.
  • the atmosphere during the polymerization reaction is preferably an inert gas atmosphere such as nitrogen gas.
  • the polymerization reaction time of the monomer varies depending on the polymerization reaction temperature and the like and cannot be unconditionally determined, but is usually about 3 to 20 hours.
  • the conductive material of the present disclosure is prepared by mixing one or more specific monomers and adding an appropriate polymerization initiator or other additive as necessary under appropriate polymerization conditions. It can be produced by polymerizing with.
  • Specify the solvent for the selected coating component The identification is realized by selecting a solvent that dissolves the coating component.
  • the selection may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
  • a base material that does not dissolve in the solvent may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
  • the following procedure can be performed.
  • (1) Determine the coating component to be used.
  • (2) The coating component is immersed in a candidate solvent, and a solvent for dissolving the coating component is specified.
  • (3) The solvent specified in (2) is dropped onto the candidate base material to specify a base material that is not damaged by the solvent.
  • (4) The coating component is dissolved in the solvent specified in (3) to prepare a coating component solution.
  • the coating component solution is dropped onto the "solvent-insoluble substrate" specified in (3), and it is confirmed that the coating component solution does not damage the substrate.
  • Examples of conductive components include natural graphite such as scaly graphite, graphite such as artificial graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and other carbon black, graphene, carbon nanotubes, and fullerene.
  • Carbon-based materials such as; conductive fibers such as carbon fiber and metal fiber; carbon fluoride; powder of metal particles such as copper, nickel, gold, tin, aluminum, zinc, iron and silver; zinc oxide, potassium titanate, etc.
  • Examples thereof include conductive whiskers; conductive metal oxides such as titanium oxide; organic conductive materials such as polyphenylene derivatives, but the present disclosure is not limited to these examples.
  • Each of these conductive components may be used alone, or two or more types may be used in combination.
  • carbon nanotubes, carbon black, graphene and metals are excellent in workability and moldability, and from the viewpoint of obtaining a conductive film having excellent flexibility and extensibility in a wide range of changes in electrical resistance. Particles are preferred, with carbon nanotubes, carbon black, graphene and silver particles being more preferred.
  • the solid content of the conductive component in the total solid content of the coating component and the conductive component cannot be unconditionally determined because it differs depending on the type of the conductive component and the like, but it is usually excellent in workability and moldability, and also From the viewpoint of obtaining a conductive film having excellent flexibility and extensibility in a wide range of rate of change in electrical resistance, it is preferably 1% by mass or more, which is excellent in workability and moldability and in a wide range of rate of change in electrical resistance. From the viewpoint of obtaining a conductive film having excellent flexibility and extensibility, it is preferably 100% by mass or less.
  • Examples of carbon nanotubes include single-wall carbon nanotubes having a hollow cylindrical structure in which one sheet of graphite (graphene sheet) is rolled into a cylinder, and multi-walls having a structure in which a plurality of single-wall carbon nanotubes having different diameters are concentrically laminated.
  • Examples thereof include carbon nanotubes, single-wall carbon nanotubes manufactured by the super-growth method, carbon nanocones having a conical and closed end of the single-wall carbon nanotubes, and carbon nanotubes containing fullerenes inside. Is not limited to such examples.
  • Each of these carbon nanotubes may be used alone, or two or more types may be used in combination.
  • multi-wall carbon nanotubes are preferable.
  • the length of the carbon nanotubes is preferably 0.1 to 1000 ⁇ m, more preferably 0.1 to 1000 ⁇ m, from the viewpoint of obtaining a conductive film having excellent workability and moldability and excellent flexibility and extensibility in a wide range of changes in electrical resistance. Is 1 to 500 ⁇ m, more preferably 1 to 90 ⁇ m.
  • the diameter of the carbon nanotubes is preferably 10 to 50 nm, more preferably 10 to 50 nm, from the viewpoint of obtaining a conductive film having excellent workability and moldability and excellent flexibility and extensibility in a wide range of changes in electrical resistance. It is 20 nm.
  • the solid content of carbon nanotubes in the total solid content of the coating component and carbon nanotubes is excellent in workability and moldability, and a conductive film having excellent flexibility and extensibility in a wide range of changes in electrical resistance is obtained. From the viewpoint, it is preferably 1% by mass or more, more preferably 1.5% by mass or more, still more preferably 2% by mass or more, excellent in workability and moldability, and flexible and flexible in a wide range of rate of change in electrical resistance. From the viewpoint of obtaining a conductive film having excellent extensibility, it is preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, and even more preferably 3.5 to 10% by mass. is there.
  • the coating agent used in the present disclosure may contain a coating component and a solvent, as well as other components for imparting other functions such as promoting coating.
  • the coating agent of the present disclosure may contain a dispersant.
  • the number of hydroxyl groups in the molecule may be 1 or more, for example, 1 to 10, preferably 1 to 5, and more preferably 1 to 3 (particularly 1 to 2).
  • the number of ether bonds in the molecule may be 1 or more, for example, 1 to 10, preferably 1 to 5, and more preferably 1 to 3 (particularly 1 to 2).
  • Specific examples of the dispersant include diethylene glycol diethylene glycol (245 ° C.), triethylene glycol (179 ° C.), tetraethylene glycol (327.3 ° C.), polyethylene glycol, cellosolves (for example).
  • Methyl cellosolve also known as ethylene glycol monomethyl ether (124.5 ° C), ethyl cellosolve (ethylene glycol monoethyl ether) (135.1 ° C), ethylene glycol monobutyl ether (171.2 ° C), ethylene glycol mono t- C 1-4 alkyl cellosolve such as butyl ether (also known as 2-t-butoxyethanol) (152 ° C.), propylene glycol mono C 1-4 alkyl ether (eg, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol) Monobutyl ether, etc.), carbitols (eg, methyl carbitol (also known as diethylene glycol monomethyl ether) (194 ° C), ethyl carbitol (200 ° C), butyl carbitol (also known as 2- (2-butoxyethoxy) ethanol) (C 1-4 alkyl carbito
  • the number of hydroxyl groups in the molecule may be 1 or more, for example, 1 to 10, preferably 1 to 5, and more preferably 1 to 3 (particularly 1 to 2). is there.
  • the number of ether bonds in the molecule may be 1 or more, and is, for example, 1 to 10, preferably 1 to 5, and more preferably 1 to 3 (particularly 1 to 2).
  • the coating agent comprises 2- (2-butoxyethoxy) ethanol.
  • the dispersant may be used to disperse the conductive component in the coating agent.
  • any base material can be used as the base material as long as the relationship between the solvent and the coating component is satisfied. That is, what kind of substrate is used as long as the solvent dissolves the coating components so that the coating is possible, but satisfies the conditions that do not damage the substrate (that is, as long as the solvent and the coating are present). May be used.
  • the relationship between the base material, the solvent, and the coating component can be observed in the above-mentioned damage, and as an alternative, the solubility of the base material in the solvent becomes smaller than the solubility of the coating component.
  • a substrate may be selected in which the coating component and the solvent are present.
  • the base material may be slightly reduced because of the degree of solubility, but it can be said that the coating is sufficiently possible in relation to the coating components. Therefore, this relationship can be used in situations where a decrease in the base material is allowed to some extent.
  • a base material in which the coating component and the solvent are present which has a relationship in which the solvent dissolves the coating component but does not substantially dissolve the base material, may be selected.
  • substantially insoluble means that a decrease in the base material is substantially observed when the object (base material) is immersed in a solvent, for example, a decrease of less than 1% by weight is observed. To be done.
  • This alternative can be said to express the presence or absence of damage by the presence or absence of solubility.
  • Identify the appropriate solvent for the provided substrate is realized by selecting a solvent that does not dissolve the base material.
  • the selection may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
  • the coating component that dissolves in the solvent may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
  • Specify the base material for the solvent The identification is realized by selecting a base material that is insoluble in the solvent. The selection may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
  • the coating component that dissolves in the solvent may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
  • examples of the base material include, but are not limited to, polyolefin, polyacrylic, polyamide, polyurethane and the like.
  • polyolefins and polyacrylics have low solubility in heptane, octane, undecane, limonene, 2-ethyl-1-hexanol, 1-octanol, 3-methoxy3-methyl-1-butanol. Therefore, for polyolefins and polyacrylics, all of the solvents listed above can be used, especially heptane, octane, undecane, limonene, 2-ethyl-1-hexanol, 1-octanol, 3-methoxy 3-methyl-1. -All butanol is considered available.
  • the conductive material of the present disclosure is suitable for, for example, sensors, wirings, electrodes, substrates, power generation elements, speakers, microphones, noise cancellers, transducers, artificial muscles, small pumps, medical instruments and the like used in actuators, industrial robots and the like. It can be suitably used as a conductive film that can be used in the above and as a raw material of the conductive film.
  • a method of applying the coating agent to a substrate for example, screen printing, gravure printing, offset printing, knife coater, slot die coater, lip coater, roll coater, flow coater, spray coater, bar coater, dipping and the like are generally used. Examples thereof include methods that can be used, but the present disclosure is not limited to such examples.
  • the coating agent When the coating agent is applied to the base material, the coating agent may be applied directly to the base material, or the coated material may be transferred onto the base material after being applied to a paper pattern or the like. By applying the coating agent in this way and then drying it, a conductive film can be formed on the base material.
  • the thickness of the coating agent to be applied to the base material varies depending on the types of the coating component and the conductive component and the like, it cannot be unconditionally determined. Therefore, the desired thickness of the conductive material to be formed on the base material can be obtained. It is preferable to make an appropriate decision accordingly.
  • the thickness of the coating agent applied to the base material is usually about 100 to 1000 ⁇ m from the viewpoint of obtaining a conductive material having excellent flexibility and extensibility in a wide range of changes in electrical resistance.
  • Examples of the method of applying the coating agent to the substrate and then drying it include hot air, far-infrared irradiation, and the like, but the present disclosure is not limited to such examples.
  • the present disclosure provides a technique for selecting a solvent according to its solubility according to the application. Therefore, the present disclosure is a method for producing a base material coated with a conductive material, and the method is a coating agent containing a conductive component, a coating component, and a solvent on a part or all of the surface of the base material. Including the step of coating with, and the step of forming the conductive material from the conductive component and the coating component on the substrate, the solvent dissolves the coating component so that it can be coated. Provided is a method that does not damage the substrate.
  • the solvent dissolves the coating component so that it can be coated, but does not damage the substrate means the following.
  • the solvent enables coating of the coating component on the substrate by dissolving the coating component, and the coating agent containing the coating component, the solvent and, if necessary, the dispersant in the coating step is the group. Does not damage the material.
  • the present disclosure provides a desired combination of conductive materials by identifying the solvent by comparing the solubility of the substrate and the coating components. Therefore, the present disclosure is a method for producing a base material coated with a conductive material, and the method is a coating agent containing a conductive component, a coating component, and a solvent on a part or all of the surface of the base material. Including the step of coating with the substrate and the step of forming the conductive material from the conductive component and the coating component on the substrate, the solubility of the substrate in the solvent is smaller than the solubility of the coating component. , Provide a method.
  • the step of coating a part or all of the surface of the base material with a coating agent containing a conductive component, a coating component, and a solvent is appropriately performed based on a technique described separately in the present specification or a known technique. be able to.
  • a coating agent containing a conductive component, a coating component, and a solvent may be applied to a part or all of the base material.
  • the step of forming the conductive material from the conductive component and the coating component on the base material can also be carried out using any method described elsewhere in the present specification or known.
  • the solubility of the base material in the solvent is smaller than the solubility of the coating component
  • the solubility of the coating component means the following. That is, when comparing the solubility of the base material in a certain solvent and the solubility of the coating component in the solvent, the former is smaller than the latter.
  • the present disclosure provides the desired combination of conductive materials by using a solvent that dissolves the coating component and substantially insoluble in the substrate. Therefore, the present disclosure is a method for producing a base material coated with a conductive material, and the method is a coating agent containing a conductive component, a coating component, and a solvent on a part or all of the surface of the base material. Including the step of coating with the substrate and the step of forming the conductive material from the conductive component on the substrate and the coating component, the solvent dissolves the coating component, but substantially the substrate. Provides a method that does not dissolve in.
  • the step of coating a part or all of the surface of the base material with a coating agent containing a conductive component, a coating component, and a solvent is appropriately performed based on a technique described separately in the present specification or a known technique. be able to.
  • a coating agent containing a conductive component, a coating component, and a solvent may be applied to a part or all of the base material.
  • the step of forming the conductive material from the conductive component and the coating component on the base material can also be carried out using any method described elsewhere in the present specification or known.
  • the solvent dissolves the coating component but does not substantially dissolve the substrate means the following. That is, the solvent enables coating of the coating component on the base material by dissolving the coating component, and the solvent is less than 2% by weight, less than 1% by weight, and 0.5% by weight of the base material. It means that it dissolves less than% or less than 0.1% by weight.
  • a step of coating a part or all of the surface of the base material with a coating agent containing a conductive component, a coating component and a solvent is carried out. Any of the techniques described herein and / or known techniques can be used in this step. In this step, the coating step may also be carried out by the method exemplified in the above-mentioned (Coating method) section.
  • a step of forming the conductive material from the conductive component and the coating component on the base material is further carried out. Any technique and / or known technique described herein can be used in this step, but the step of removing the solvent is preferred.
  • the coating component is a homopolymer containing one monomer component or a copolymer containing two to three monomer components.
  • the coating component is a copolymer.
  • the conductive material can be formed from the coating agent by heat treatment.
  • the heat treatment can be carried out by the following methods: for example, heating in an oven, heating with superheated steam, heating with microwaves, heating with infrared rays, and the like.
  • the conductive component can be a metallic component.
  • the metal can be a metal filler.
  • the metal component may preferably comprise one or more of silver, copper, gold, aluminum, zinc, nickel, tin, and / or iron, or one or more alloys thereof.
  • One preferred metal is silver, but is not limited to it.
  • the substrate comprises a resin.
  • the substrate can be a resin.
  • the resin include, but are not limited to, polyolefin resins, polyacrylic resins, and polyamide resins.
  • the solvent may be advantageous for the solvent to contain a hydrocarbon solvent.
  • the solvent can be heptane, octane, or limonene, or a combination thereof.
  • the solvent can be heptane, octane, undecane, or limonene, or a combination thereof.
  • the solvent may contain an alcohol solvent.
  • the solvent is 3-methoxy-3-methyl-1-butanol, octanol, 2-ethyl-1-hexanol or a combination thereof.
  • the first monomer component of the polymer constituting the coating component is an alkyl-containing monomer for improving the solubility in a hydrocarbon solvent.
  • the first monomer component of the monomer component may be isostearyl acrylate, stearyl acrylate or lauryl acrylate.
  • the first monomer component is an isostearyl acrylate.
  • the first monomer component is stearyl acrylate.
  • the first monomer component is lauryl acrylate.
  • the second monomer component of the polymer constituting the coating component is a monomer that improves elasticity.
  • the second monomer component of the monomer component may be acrylic acid, ethyl acrylate or 2,2,2-trifluoroethyl acrylate.
  • the second monomer component is acrylic acid, or 2,2,2-trifluoroethyl acrylate.
  • the second monomer component is acrylic acid.
  • the second monomer component is ethyl acrylate.
  • the second monomer component is 2,2,2-trifluoroethyl acrylate.
  • the third monomer component of the polymer constituting the coating component is a monomer containing a chain or cyclic ether structure.
  • the third monomer component of the monomer component is glycidyl acrylate, (3-ethyloxetane-3-yl) acrylate, 4-hydroxybutyl vinyl ether, or 2-methoxy. It can be ethyl acrylate. In one embodiment, the third monomer component is glycidyl acrylate or (3-ethyloxetane-3-yl) acrylate. In one embodiment, the third monomer component is 4-hydroxybutyl vinyl ether, or 2-methoxyethyl acrylate. In one embodiment, the third monomer component is a 4-hydroxybutyl vinyl ether.
  • the third monomer component is 2-methoxyethyl acrylate. In one preferred embodiment, the third monomer component is glycidyl acrylate. In another preferred embodiment, the third monomer component is (3-ethyloxetane-3-yl) acrylate.
  • first monomer component, second monomer component and third monomer component can be arbitrarily combined, and preferably two types (first monomer component and second monomer component) from the above specific example are used. , 2nd monomer component and 3rd monomer component, 3rd monomer component and 1st monomer component, etc.), or 3 types (1st, 2nd and 3rd monomer components) may be combined.
  • the first monomer component, the second monomer component and the third monomer component may be combined separately from monomer A, monomer B and monomer C, respectively, and two or three are the same. It may be.
  • the coating component is a copolymer of isostearyl acrylate (ISTA) and acrylic acid (AA).
  • the coating component is a copolymer of isostearyl acrylate and ethyl acrylate (EA).
  • the coating component is a copolymer of lauryl acrylate and 2,2,2-trifluoroethyl acrylate.
  • the coating component is a copolymer of stearyl acrylate and 2,2,2-trifluoroethyl acrylate.
  • the coating component is a copolymer of lauryl acrylate (LA) and ethyl acrylate.
  • the coating component is a copolymer of ethyl acrylate and Cyraplane® FM0725 (manufactured by JNC Corporation).
  • the coating component is a copolymer of ethyl acrylate and 4-hydroxybutyl vinyl ether.
  • the coating component is a copolymer of ethyl acrylate and 2-methoxyethyl acrylate.
  • the coating component is a copolymer of 2,2,2-trifluoroethyl acrylate and 2-methoxyethyl acrylate.
  • the coating component can be a copolymer of isostearyl acrylate, preferably a copolymer of isostearyl acrylate and 2,2,2-trifluoroethyl acrylate. This can be advantageous because the volume resistivity is low and the change in resistance value is small.
  • the coating component can be a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and glycidyl acrylate. This can be advantageous due to the low volume resistivity.
  • the coating component can be a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and (3-ethyloxetane-3-yl) acrylate. This can be advantageous because the volume resistivity is low and the change in resistance value is small.
  • the coating agent used in the present disclosure comprises a dispersant.
  • the dispersant can be advantageous because it disperses the conductive component sufficiently uniformly in the coating agent, resulting in a decrease in volume resistivity and resistance value change.
  • the dispersant is 2- (2-butoxyethoxy) ethanol.
  • the present disclosure provides a particular combination of a substrate, a conductive material and a solvent that can be used in the manufacturing process of the present disclosure. As long as it is used in the method of the present disclosure, it may be provided in the form of a combination of a base material and a conductive material, a combination of a conductive material and a solvent, and a combination of a solvent and a base material.
  • the present disclosure is a multilayer material having a base material and a conductive layer coated on the surface of the base material, wherein the conductive layer contains a conductive component and a coating component, and the base.
  • the material is a multi-layer material that is insoluble in a solvent that dissolves the coating component.
  • the base material, the conductive component, the coating component, and the base material to be adopted any combination described in other parts of the present specification can be used, and in those combinations, the base material is a base material. Any material can be used as long as it does not dissolve in a solvent that dissolves the coating component.
  • the "layer” means that the conductive layer is present (coated) on the entire surface of the base material, and the conductive layer is present (coated) on at least a part of the surface of the base material. good.
  • the present disclosure is a substrate coated with a conductive material, the conductive material containing a metal component and a coating component, the substrate being insoluble in a solvent that dissolves the coating component.
  • a substrate that is a thing.
  • the base material, the conductive component, the coating component, and the base material to be adopted any combination described in other parts of the present specification can be used, and in those combinations, the base material is a base material. Any material can be used as long as it does not dissolve in a solvent that dissolves the coating component.
  • Example 1 Preparation of acrylic coating component
  • an acrylic coating component was prepared.
  • Isostearyl acrylate (ISTA, 5.1 g), 2,2,2-trifluoroethyl acrylate (4.7 g, manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name Viscoat V # 3F), and 2,4 as a polymerization initiator
  • MISA Industrial Chemical Industry Co., Ltd., trade name: Irgacure TPO
  • a monomer component containing a polymerization initiator was obtained.
  • Example 2 Dissolution test of acrylic coating component
  • Example 1 When the coating component (3.00 g) obtained in Example 1 was immersed in heptane, octane, undecane, or limonene (7.00 g each) and checked to see if it was dissolved, it was found that heptane, octane, and limonene It was completely dissolved, and no unmelted residue was confirmed. The resulting coating component solution was used to make a conductive film.
  • Example 2 instead of the isostearyl acrylate and 2,2,2-trifluoroethyl acrylate in Example 1, the combination of the first monomer component and the second monomer component shown in the table below, the first monomer component and the second monomer component.
  • Each coating component was obtained according to the same method. The resulting coating component was then tested for solubility as described in Example 2. The results are shown in the table below.
  • Example 3 Determining damage to the base material due to the solvent
  • the degree of damage to the base material by the solvent that dissolves the acrylic coating component was determined.
  • Ethyl acrylate (EA, 10.00 g) and 2,4,6-trimethylbenzoyldiphenylphosphine oxide (0.10 g, manufactured by BASF, trade name Irgacure TPO) as a polymerization initiator By mixing, a monomer component containing a polymerization initiator was obtained. After injecting the obtained monomer component into a molding mold made of transparent glass (length: 100 mm, width: 100 mm, depth: 0.3 mm), the irradiation dose of the monomer component is adjusted to 0.36 mW / cm 2. Was irradiated with ultraviolet rays, and the monomer components were bulk-polymerized for 2 hours to obtain a polyacrylic resin film.
  • a reactive polyurethane resin (10.00 g, UN-9000PEP manufactured by Negami Kogyo Co., Ltd.) was dissolved in toluene (5.00 g) to obtain a resin solution.
  • a reactive polyurethane resin solution containing a polymerization initiator was obtained by mixing 0.1 g of 2-hydroxy-2 methylpropiophenone as a polymerization initiator with the obtained solution.
  • the obtained polymer solution was applied as a release film to a release polyethylene terephthalate film (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name Separator SP-PET PET-01-Bu) to form a coating film.
  • the obtained coating film was cured in an air atmosphere at an ultraviolet irradiation amount of 67 mW / cm 2 in 7 seconds ⁇ 10 passes to obtain a polyurethane resin film.
  • Example 4 Final determination of damage to the base material due to the coating component solution
  • the degree of damage to the base material due to the coating component solution was determined.
  • Example 1 The coating components obtained in Example 1 were dissolved in heptane, octane and limonene tested in Example 3 to obtain three types of coating component solutions 1, 2 and 3.
  • the degree of damage was determined in the same manner as in (4) of Example 3.
  • the polyolefin resin film was evaluated as B, and the polyacrylic resin film and the polyurethane resin film were evaluated as A.
  • the solvent is selected from heptane, octane, and limonene
  • the base resin is selected from polyacrylic resin and polyurethane resin.
  • Example 5 A method of identifying a solvent that dissolves the coating component so that it can be coated but does not damage the substrate based on the solubility parameter (SP) value).
  • the solvent to be used is selected from the solvents in which the solubility of the base material in the solvent is smaller than the solubility of the coating component.
  • SP solubility parameter
  • solubility parameter (SP) values select a substrate whose SP value is far from the solvent to be used. On the contrary, it is also possible to select a solvent whose SP value is different from that of the base material used.
  • the SP values in the table below are C.I. M. By Hansen: J.M. Paint. Tech. , 39 (505), 104-117 (1967), and Hideki Yamamoto: "SP Value Basics / Applications and Calculation Methods", Information Mechanism (2005).
  • the base resin to be used may be selected based on the SP value in the above table.
  • Example 6 When the solvent is determined first, the coating component and substrate are selected based on the solvent used.
  • Example 7 Selection of solvent based on the base material used
  • the solvent is selected based on the substrate used.
  • Example 8 Selection of coating component based on solvent selected based on base material used
  • a coating component is selected in which the solvent selected based on the substrate used is soluble.
  • Example 7 Whether or not the coating component is dissolved in the solvent selected as described in Example 7 is tested by the same method as in Example 2.
  • a coating component (polymer) having an SP value different from that of the selected solvent can also be selected. (See Table 1)
  • Example 9 Preparation of conductive film
  • a silver filler (7.20 g, manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd., trade name AgC-A) and 2- (2-butoxyethoxy) as a dispersant are added to the coating component solution (6.00 g) obtained in Example 1.
  • Ethanol (0.10 g) was mixed with Kurabo Industries' Mazel Star to obtain a coating agent.
  • the obtained coating agent was applied as a release film to a release polyethylene terephthalate film (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name Separator SP-PET PET-01-Bu) to form a coating film.
  • the obtained coating film was heated in an oven at 150 ° C. for 60 minutes to obtain a conductive film having a thickness of about 30 ⁇ m.
  • Example 10 Confirmation of volume resistivity
  • the conductive film obtained in Example 9 was cut into a length of 0.5 cm and a width of 2.00 cm, and measured by a 4-terminal method using Loresta GP (manufactured by Mitsubishi Chemical Analytech). Its volume resistivity was 0.00036 ⁇ ⁇ cm.
  • Example 11 Confirmation of resistance value change
  • the conductive film obtained in Example 9 was cut into a length of 0.5 cm and a width of 2.00 cm, and the distance between the electrodes was fixed at 1.00 cm with a digital multimeter [trade name PC773 manufactured by Sanwa Denki Keiki Co., Ltd.].
  • the pre-stretch resistance value ( ⁇ A) was measured.
  • the distance between the electrodes was set to 2.00 cm, and the resistance value ( ⁇ B) in that state was measured.
  • Example 12 Method of analyzing a polymer that dissolves in a solvent that does not damage the substrate
  • a solvent that dissolves the coating component to allow coating but does not damage the substrate is specified.
  • Example 1 Based on a substrate, a solvent that does not damage the substrate is identified by the same method as in Example 3 (4) and / or Example 5.
  • the coating component (polymer) is prepared under the same conditions except that the monomers are different.
  • the obtained coating component is immersed in the solvent to evaluate whether or not it dissolves.
  • the coating component found to be dissolved is dissolved in the solvent to obtain a coating component solution.
  • diethylene glycol monobutyl ether acetate was used to dissolve the coating component of the cycloolefin polymer.
  • Example 2 Determining Solubility When the coating component (1.00 g) obtained in Example 1 was immersed in diethylene glycol monobutyl ether acetate (9.00 g), it was dissolved in a solvent without remaining undissolved. As a result, a coating component solution was obtained.
  • Example 1 When the coating component (1.00 g) obtained in Example 1 was immersed in n-octane (9.00 g), it was dissolved in a solvent without remaining undissolved. As a result, a coating component solution was obtained.
  • Example 1 Judgment of Solubility When the coating component obtained in Example 1 was immersed in n-octane, it was dissolved in a solvent without remaining undissolved. As a result, a coating component solution was obtained.
  • Example 1 When the coating component (1.00 g) obtained in Example 1 was immersed in n-octane (9.00 g), it was dissolved in a solvent without remaining undissolved. As a result, a coating component solution was obtained.
  • Example 14 Selection of coating component (polymer) with polyolefin resin
  • an appropriate coating component is selected for the combination of the base resin and the solvent.
  • An appropriate coating component is selected for the resin-solvent combination selected in Example 7 (1).
  • Example 15 Selection of coating component (polymer) with polyacrylic resin
  • an appropriate coating component is selected for the combination of the base resin and the solvent.
  • An appropriate coating component is selected for the resin-solvent combination selected in Example 7 (2).
  • Example 16 Selection of coating component (polymer) with polyurethane resin
  • an appropriate coating component is selected for the combination of the base resin and the solvent.
  • An appropriate coating component is selected for the resin-solvent combination selected in Example 7 (3).
  • kit for sale is manufactured.
  • Example 13 (1) In the coating component solution (10.00 g) obtained in Example 13 (1), a silver filler (4.00 g, manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd., trade name: AgC-A), and 2- (2) as a dispersant. -Butoxyethoxy) ethanol (0.08 g) is mixed with Mazelstar manufactured by Kurabou Co., Ltd. to obtain a conductive material precursor.
  • a silver filler (7.20 g, manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd., trade name: AgCA), and a dispersant are added to the coating component solutions (6.00 g each) obtained in Examples 13 (2) and 13 (3).
  • 2- (2-Butoxyethoxy) ethanol (0.10 g) is mixed with Mazelstar manufactured by Kurabou Co., Ltd. to obtain a conductive material precursor.
  • the kit may include instructions showing how to use it.
  • Example 18 Production of a coated conductive material using a base material, a conductive material, and a solvent kit
  • a coated conductive material is produced using the specific combinations provided in the above-described examples.
  • the conductive material precursors obtained in Example 17 are coated on the corresponding substrates. After coating, heat in an oven at 150 ° C. for 60 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

The present disclosure provides: a method for manufacturing a substrate coated with an electroconductive material; a multi-layer material; and a substrate coated with an electroconductive material. The present disclosure pertains to a novel conductor structure and a method for manufacturing the same. More specifically, the present disclosure pertains to: a method for manufacturing a substrate that is coated with an electroconductive material; the manufactured substrate or conductor; and a specific solvent used in the manufacture thereof. The present disclosure makes it possible to freely manufacture an electroconductive material containing a desired combination of electroconductive component and substrate.

Description

導電材でコーティングされた基材を製造する方法、多層材料、および導電材でコーティングされた基材Methods for Producing Conductive Coated Substrates, Multilayer Materials, and Conductive Coated Substrates
 本開示は、新規導電体構造およびその製造法に関する。より特定すると、本開示は、導電材でコーティングされた基材を製造する方法、製造された基材または導電体、ならびに、その製造において使用される特定の溶剤に関する。 This disclosure relates to a novel conductor structure and a method for manufacturing the same. More specifically, the present disclosure relates to a method of making a substrate coated with a conductive material, the substrate or conductor produced, and certain solvents used in the production thereof.
 導電材や導電体については、種々の改良がなされてきている。しかし、現在提供されている導電材は、特定の組合せの導電成分と基材とを含むものに限定されているのが現状である(特許文献1~5)。 Various improvements have been made to conductive materials and conductors. However, at present, the conductive materials currently provided are limited to those containing a specific combination of a conductive component and a base material (Patent Documents 1 to 5).
特開2019-102719号公報Japanese Unexamined Patent Publication No. 2019-102719 国際公開第2015/099049号International Publication No. 2015/099049 国際公開第2019/039511号International Publication No. 2019/039511 国際公開第2017/163615号International Publication No. 2017/1663615 特開2017-183207号公報JP-A-2017-183207
 本開示は、所望の組合せの導電成分と基材とを含む導電材を提供する。 The present disclosure provides a conductive material containing a desired combination of conductive components and a base material.
 本開示は、例えば、以下を提供する。 The disclosure provides, for example:
(項1)導電材でコーティングされた基材を製造する方法であって、該方法は、該基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程、および該基材上の該導電成分および該コーティング成分から該導電材を形成する工程を包含し、該溶剤は、コーティングが可能なように該コーティング成分を溶解するが、該基材を損傷させない、方法。
(項1B)導電材でコーティングされた基材を製造する方法であって、該方法は、該基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程、および該基材上の該導電成分および該コーティング成分から該導電材を形成する工程を包含し、該溶剤に対する該基材の溶解度が、該コーティング成分の溶解度よりも小さい、方法。
(項1C)導電材でコーティングされた基材を製造する方法であって、該方法は、該基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程、および該基材上の該導電成分および該コーティング成分から該導電材を形成する工程を包含し、該溶剤は、該コーティング成分を溶解するが、該基材を実質的に溶解しない、方法。
(項2)前記コーティング成分は、1種のモノマー成分を含むホモポリマーまたは2~3種のモノマー成分を含むコポリマーである、上記項のいずれか一項に記載の方法。
(項2a)前記コーティング成分は、コポリマーである、上記項のいずれか一項に記載の方法。
(項2b)前記コーティング成分は、導電性ポリアセチレンである、上記項のいずれか一項に記載の方法。
(項2c)前記コーティング成分および前記導電成分は共に、導電性ポリアセチレンである、上記項のいずれか一項に記載の方法。
(項3)前記導電材が、加熱処理により前記コーティング剤から形成される、上記項のいずれか一項に記載の方法。
(項4)前記導電成分が、金属フィラーである、上記項のいずれか一項に記載の方法。
(項5)前記導電成分が、銀、銅、金、アルミニウム、亜鉛、ニッケル、錫、および/または鉄を含む、上記項のいずれか一項に記載の方法。
(項5a)前記導電成分が、銀である、上記項のいずれか一項に記載の方法。
(項6)前記基材が、樹脂である、上記項のいずれか一項に記載の方法。
(項6a)前記基材が、ポリオレフィン樹脂、ポリアクリル樹脂、またはポリアミド樹脂である、上記項に記載の方法。
(項7)前記溶剤が、炭化水素系溶媒である、上記項のいずれか一項に記載の方法。
(項8)前記炭化水素系溶媒が、ヘプサン、オクタン、もしくはリモネン、またはこれらの組合せである、上記項のいずれか一項に記載の方法。
(項9)前記モノマー成分の第1のモノマー成分が、イソステアリルアクリレートまたはラウリルアクリレートである、上記項のいずれか一項に記載の方法。
(項10)前記モノマー成分の第2のモノマー成分が、アクリル酸、エチルアクリレートまたは2,2,2-トリフルオロエチルアクリレートである、上記項のいずれか一項に記載の方法。
(項11)前記モノマー成分の第3のモノマー成分が、グリシジルアクリレートまたは(3-エチルオキセタン-3-イル)アクリレートである、上記項のいずれか一項に記載の方法。
(項12)前記コーティング成分は、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートとのコポリマーである、上記項のいずれか一項に記載の方法。(項13)前記コーティング成分は、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートとグリシジルアクリレートとのコポリマーである、上記項のいずれか一項に記載の方法。
(項14)前記コーティング成分は、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートと(3-エチルオキセタン-3-イル)アクリレートとのコポリマーである、上記項のいずれか一項に記載の方法。
(項15)前記コーティング剤が、分散剤をさらに含む、上記項のいずれか一項に記載の方法。
(項16)前記分散剤は、2-(2-ブトキシエトキシ)エタノールである、上記項のいずれか一項に記載の方法。
(項17)基材と導電材と溶剤との組合せ。
(項17a)上記項に記載の1つまたは複数の特徴を含む、上記項のいずれか一項に記載の組合せ。
(項18)基材と、前記基材の表面にコーティングされた導電層と、を有する多層材料であって、前記導電層は、導電成分とコーティング成分とを含み、前記基材は、前記コーティング成分を溶解する溶剤に溶解しないものである、多層材料。
(項19)導電材でコーティングされた基材であって、該導電材は、導電成分とコーティング成分とを含み、該基材は、該コーティング成分を溶解する溶剤に溶解しないものである、基材。
(項19a)上記項に記載の1つまたは複数の特徴を含む、上記項のいずれか一項に記載の基材。
(Item 1) A method for producing a base material coated with a conductive material, in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material. The solvent comprises the steps of forming the conductive material from the conductive component and the coating component on the substrate, and the solvent dissolves the coating component so as to allow coating, but the group. A method that does not damage the material.
(Item 1B) A method for producing a base material coated with a conductive material, in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material. A method comprising a step of coating with a substrate and a step of forming the conductive material from the conductive component on the substrate and the coating component, wherein the solubility of the substrate in the solvent is smaller than the solubility of the coating component. ..
(Item 1C) A method for producing a base material coated with a conductive material, in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material. Including the step of coating with the coating component and the step of forming the conductive material from the conductive component on the base material and the coating component, the solvent dissolves the coating component, but substantially dissolves the base material. Not the way.
(Item 2) The method according to any one of the above items, wherein the coating component is a homopolymer containing one kind of monomer component or a copolymer containing two or three kinds of monomer components.
(Item 2a) The method according to any one of the above items, wherein the coating component is a copolymer.
(Item 2b) The method according to any one of the above items, wherein the coating component is conductive polyacetylene.
(Item 2c) The method according to any one of the above items, wherein both the coating component and the conductive component are conductive polyacetylene.
(Item 3) The method according to any one of the above items, wherein the conductive material is formed from the coating agent by heat treatment.
(Item 4) The method according to any one of the above items, wherein the conductive component is a metal filler.
(Item 5) The method according to any one of the above items, wherein the conductive component contains silver, copper, gold, aluminum, zinc, nickel, tin, and / or iron.
(Item 5a) The method according to any one of the above items, wherein the conductive component is silver.
(Item 6) The method according to any one of the above items, wherein the base material is a resin.
(Item 6a) The method according to the above item, wherein the base material is a polyolefin resin, a polyacrylic resin, or a polyamide resin.
(Item 7) The method according to any one of the above items, wherein the solvent is a hydrocarbon solvent.
(Item 8) The method according to any one of the above items, wherein the hydrocarbon solvent is hepsane, octane, limonene, or a combination thereof.
(Item 9) The method according to any one of the above items, wherein the first monomer component of the monomer component is isostearyl acrylate or lauryl acrylate.
(Item 10) The method according to any one of the above items, wherein the second monomer component of the monomer component is acrylic acid, ethyl acrylate or 2,2,2-trifluoroethyl acrylate.
(Item 11) The method according to any one of the above items, wherein the third monomer component of the monomer component is glycidyl acrylate or (3-ethyloxetane-3-yl) acrylate.
(Item 12) The method according to any one of the above items, wherein the coating component is a copolymer of isostearyl acrylate and 2,2,2-trifluoroethyl acrylate. (Item 13) The method according to any one of the above items, wherein the coating component is a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and glycidyl acrylate.
(Item 14) The coating component is a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and (3-ethyloxetane-3-yl) acrylate, according to any one of the above items. the method of.
(Item 15) The method according to any one of the above items, wherein the coating agent further contains a dispersant.
(Item 16) The method according to any one of the above items, wherein the dispersant is 2- (2-butoxyethoxy) ethanol.
(Item 17) Combination of base material, conductive material and solvent.
(Item 17a) The combination according to any one of the above items, which comprises one or more of the features described in the above item.
(Item 18) A multilayer material having a base material and a conductive layer coated on the surface of the base material, the conductive layer contains a conductive component and a coating component, and the base material is the coating. A multi-layer material that is insoluble in a solvent that dissolves the components.
(Item 19) A base material coated with a conductive material, wherein the conductive material contains a conductive component and a coating component, and the base material is insoluble in a solvent that dissolves the coating component. Material.
(Item 19a) The substrate according to any one of the above items, which comprises one or more of the features described in the above item.
 本開示はまた、例えば、以下を提供する。 The disclosure also provides, for example:
(項A1a)導電材でコーティングされた基材を製造する方法であって、該方法は、該基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程、および該基材上の該導電成分および該コーティング成分から該導電材を形成する工程を包含し、該溶剤は、コーティングが可能なように該コーティング成分を溶解するが、該基材を損傷させない、方法。
(項A1b)導電材でコーティングされた基材を製造する方法であって、該方法は、該基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程、および該基材上の該導電成分および該コーティング成分から該導電材を形成する工程を包含し、該溶剤に対する該基材の溶解度が、該コーティング成分の溶解度よりも小さい、方法。
(項A1c)導電材でコーティングされた基材を製造する方法であって、該方法は、該基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程、および該基材上の該導電成分および該コーティング成分から該導電材を形成する工程を包含し、該溶剤は、該コーティング成分を溶解するが、該基材を実質的に溶解しない、方法。
(項A2a)前記コーティング成分は、1種のモノマー成分を含むホモポリマーまたは2種以上のモノマー成分を含むコポリマーである、先行する項のいずれか一項に記載の方法。
(項A2b)前記コーティング成分は、1種のモノマー成分を含むホモポリマーまたは2~3種のモノマー成分を含むコポリマーである、先行する項のいずれか一項に記載の方法。
(項A2c)前記コーティング成分は、コポリマーである、先行する項のいずれか一項に記載の方法。
(項A2d)前記コーティング成分は、導電性ポリアセチレンである、先行する項のいずれか一項に記載の方法。
(項A2e)前記コーティング成分および前記導電成分は共に、導電性ポリアセチレンである、先行する項のいずれか一項に記載の方法。
(項A3)前記導電材が、加熱処理により前記コーティング剤から形成される、先行する項のいずれか一項に記載の方法。
(項A4)前記導電成分が、金属フィラーである、先行する項のいずれか一項に記載の方法。
(項A5a)前記導電成分が、銀、銅、金、アルミニウム、亜鉛、ニッケル、錫、および/または鉄を含む、先行する項のいずれか一項に記載の方法。
(項A5b)前記導電成分が、銀である、先行する項のいずれか一項に記載の方法。
(項A6a)前記基材が、樹脂である、先行する項のいずれか一項に記載の方法。
(項A6b)前記基材が、ポリオレフィン樹脂、ポリアクリル樹脂、またはポリアミド樹脂である、先行する項のいずれか一項に記載の方法。
(項A7)前記溶剤が、炭化水素系溶媒またはアルコール系溶媒である、先行する項のいずれか一項に記載の方法。
(項A8)前記溶剤が、炭化水素系溶媒である、先行する項のいずれか一項に記載の方法。
(項A9)前記炭化水素系溶媒が、ヘプサン、オクタン、リモネン、もしくはウンデカンまたはこれらの組合せである、先行する項のいずれか一項に記載の方法。
(項A10)前記溶剤が、アルコール系溶媒である、先行する項のいずれか一項に記載の方法。
(項A11)前記アルコール系溶媒が、3-メトキシ-3-メチル-1-ブタノール、オクタノール、2-エチル-1-ヘキサノールまたはこれらの組合せである、先行する項のいずれか一項に記載の方法。
(項A12a)前記コーティング成分を構成するポリマーの第1のモノマー成分が、炭化水素系溶剤への溶解性を向上させるアルキル含有モノマーである、先行する項のいずれか一項に記載の方法。
(項A12b)前記モノマー成分の第1のモノマー成分が、イソステアリルアクリレート、ステアリルアクリレートまたはラウリルアクリレートである、先行する項のいずれか一項に記載の方法。
(項A13a)前記コーティング成分を構成するポリマーの第2のモノマー成分が、伸縮性を向上させるモノマーである、先行する項のいずれか一項に記載の方法。
(項A13b)前記モノマー成分の第2のモノマー成分が、アクリル酸、エチルアクリレートまたは2,2,2-トリフルオロエチルアクリレートである、先行する項のいずれか一項に記載の方法。
(項A13c)前記モノマー成分の第2のモノマー成分が、アクリル酸、または2,2,2-トリフルオロエチルアクリレートである、先行する項のいずれか一項に記載の方法。
(項A13d)前記モノマー成分の第2のモノマー成分が、2,2,2-トリフルオロエチルアクリレートである、先行する項のいずれか一項に記載の方法。
(項A14a)前記コーティング成分を構成するポリマーの第3のモノマー成分が、鎖状または環状エーテル構造を含有するモノマーである、先行する項のいずれか一項に記載の方法。
(項A14b)前記モノマー成分の第3のモノマー成分が、グリシジルアクリレート、(3-エチルオキセタン-3-イル)アクリレート、4-ヒドロキシブチルビニルエーテル、または2-メトキシエチルアクリレートである、先行する項のいずれか一項に記載の方法。
(項A14c)前記モノマー成分の第3のモノマー成分が、グリシジルアクリレート、または(3-エチルオキセタン-3-イル)アクリレートである、先行する項のいずれか一項に記載の方法。
(項A14d)前記モノマー成分の第3のモノマー成分が、4-ヒドロキシブチルビニルエーテル、または2-メトキシエチルアクリレートである、先行する項のいずれか一項に記載の方法。
(項A15)前記コーティング成分は、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートとのコポリマーである、先行する項のいずれか一項に記載の方法。
(項A16)前記コーティング成分は、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートとグリシジルアクリレートとのコポリマーである、先行する項のいずれか一項に記載の方法。
(項A17)前記コーティング成分は、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートと(3-エチルオキセタン-3-イル)アクリレートとのコポリマーである、先行する項のいずれか一項に記載の方法。
(項A18)前記コーティング成分は、ラウリルアクリレートと2,2,2-トリフルオロエチルアクリレートとのコポリマーである、先行する項のいずれか一項に記載の方法。
(項A19)前記コーティング成分は、ステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートとのコポリマーである、先行する項のいずれか一項に記載の方法。
(項A20)前記コーティング成分は、2,2,2-トリフルオロエチルアクリレートと2-メトキシエチルアクリレートとのコポリマーである、先行する項のいずれか一項に記載の方法。
(項A21)前記コーティング成分は、エチルアクリレートと2-メトキシエチルアクリレートとのコポリマーである、先行する項のいずれか一項に記載の方法。
(項A22)前記コーティング成分は、エチルアクリレートと4-ヒドロキシブチルビニルエーテルとのコポリマーである、先行する項のいずれか一項に記載の方法。
(項A23)前記コーティング剤が、分散剤をさらに含む、先行する項のいずれか一項に記載の方法。
(項A24)前記分散剤は、2-(2-ブトキシエトキシ)エタノールである、先行する項のいずれか一項に記載の方法。
(項A25a)基材と導電材と溶剤との組合せ。
(項A25b)先行する項に記載の1つまたは複数の特徴を含む、先行する項のいずれか一項に記載の組合せ。
(項A26)基材と、前記基材の表面にコーティングされた導電層と、を有する多層材料であって、前記導電層は、導電成分とコーティング成分とを含み、前記基材は、前記コーティング成分を溶解する溶剤に溶解しないものである、多層材料。
(項A27a)導電材でコーティングされた基材であって、該導電材は、導電成分とコーティング成分とを含み、該基材は、該コーティング成分を溶解する溶剤に溶解しないものである、基材。
(項A27b)先行する項に記載の1つまたは複数の特徴を含む、先行する項のいずれか一項に記載の基材。
(Item A1a) A method for producing a base material coated with a conductive material, in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material. The solvent comprises the steps of forming the conductive material from the conductive component and the coating component on the substrate, and the solvent dissolves the coating component so as to allow coating, but the group. A method that does not damage the material.
(Item A1b) A method for producing a base material coated with a conductive material, in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material. A method comprising a step of coating with a substrate and a step of forming the conductive material from the conductive component on the substrate and the coating component, wherein the solubility of the substrate in the solvent is smaller than the solubility of the coating component. ..
(Item A1c) A method for producing a base material coated with a conductive material, in which a coating agent containing a conductive component, a coating component, and a solvent is used on a part or all of the surface of the base material. The solvent comprises the steps of coating with and the conductive component on the substrate and the step of forming the conductive material from the coating component, wherein the solvent dissolves the coating component but substantially dissolves the substrate. Not the way.
(Item A2a) The method according to any one of the preceding items, wherein the coating component is a homopolymer containing one monomer component or a copolymer containing two or more monomer components.
(Item A2b) The method according to any one of the preceding paragraphs, wherein the coating component is a homopolymer containing one monomer component or a copolymer containing two to three monomer components.
(Item A2c) The method according to any one of the preceding items, wherein the coating component is a copolymer.
(Item A2d) The method according to any one of the preceding items, wherein the coating component is conductive polyacetylene.
(Item A2e) The method according to any one of the preceding items, wherein both the coating component and the conductive component are conductive polyacetylenes.
(Item A3) The method according to any one of the preceding items, wherein the conductive material is formed from the coating agent by heat treatment.
(Item A4) The method according to any one of the preceding items, wherein the conductive component is a metal filler.
(Item A5a) The method according to any one of the preceding items, wherein the conductive component comprises silver, copper, gold, aluminum, zinc, nickel, tin, and / or iron.
(Item A5b) The method according to any one of the preceding items, wherein the conductive component is silver.
(Item A6a) The method according to any one of the preceding items, wherein the base material is a resin.
(Item A6b) The method according to any one of the preceding items, wherein the base material is a polyolefin resin, a polyacrylic resin, or a polyamide resin.
(Item A7) The method according to any one of the preceding items, wherein the solvent is a hydrocarbon solvent or an alcohol solvent.
(Item A8) The method according to any one of the preceding items, wherein the solvent is a hydrocarbon solvent.
(Item A9) The method according to any one of the preceding items, wherein the hydrocarbon solvent is hepsane, octane, limonene, or undecane or a combination thereof.
(Item A10) The method according to any one of the preceding items, wherein the solvent is an alcohol solvent.
(Item A11) The method according to any one of the preceding items, wherein the alcohol solvent is 3-methoxy-3-methyl-1-butanol, octanol, 2-ethyl-1-hexanol or a combination thereof. ..
(Item A12a) The method according to any one of the preceding items, wherein the first monomer component of the polymer constituting the coating component is an alkyl-containing monomer that improves the solubility in a hydrocarbon solvent.
(Item A12b) The method according to any one of the preceding items, wherein the first monomer component of the monomer component is isostearyl acrylate, stearyl acrylate or lauryl acrylate.
(Item A13a) The method according to any one of the preceding items, wherein the second monomer component of the polymer constituting the coating component is a monomer that improves elasticity.
(Item A13b) The method according to any one of the preceding items, wherein the second monomer component of the monomer component is acrylic acid, ethyl acrylate or 2,2,2-trifluoroethyl acrylate.
(Item A13c) The method according to any one of the preceding items, wherein the second monomer component of the monomer component is acrylic acid or 2,2,2-trifluoroethyl acrylate.
(Item A13d) The method according to any one of the preceding items, wherein the second monomer component of the monomer component is 2,2,2-trifluoroethyl acrylate.
(Item A14a) The method according to any one of the preceding items, wherein the third monomer component of the polymer constituting the coating component is a monomer containing a chain-like or cyclic ether structure.
(Item A14b) Any of the preceding items, wherein the third monomer component of the monomer component is glycidyl acrylate, (3-ethyloxetane-3-yl) acrylate, 4-hydroxybutyl vinyl ether, or 2-methoxyethyl acrylate. The method described in item 1.
(Item A14c) The method according to any one of the preceding items, wherein the third monomer component of the monomer component is glycidyl acrylate or (3-ethyloxetane-3-yl) acrylate.
(Item A14d) The method according to any one of the preceding items, wherein the third monomer component of the monomer component is 4-hydroxybutyl vinyl ether or 2-methoxyethyl acrylate.
(Item A15) The method according to any one of the preceding items, wherein the coating component is a copolymer of isostearyl acrylate and 2,2,2-trifluoroethyl acrylate.
(Item A16) The method according to any one of the preceding items, wherein the coating component is a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and glycidyl acrylate.
(Item A17) The coating component is a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and (3-ethyloxetane-3-yl) acrylate, according to any one of the preceding items. The method described.
(Item A18) The method according to any one of the preceding items, wherein the coating component is a copolymer of lauryl acrylate and 2,2,2-trifluoroethyl acrylate.
(Item A19) The method according to any one of the preceding items, wherein the coating component is a copolymer of stearyl acrylate and 2,2,2-trifluoroethyl acrylate.
(Item A20) The method according to any one of the preceding items, wherein the coating component is a copolymer of 2,2,2-trifluoroethyl acrylate and 2-methoxyethyl acrylate.
(Item A21) The method according to any one of the preceding items, wherein the coating component is a copolymer of ethyl acrylate and 2-methoxyethyl acrylate.
(Item A22) The method according to any one of the preceding items, wherein the coating component is a copolymer of ethyl acrylate and 4-hydroxybutyl vinyl ether.
(Item A23) The method according to any one of the preceding items, wherein the coating agent further contains a dispersant.
(Item A24) The method according to any one of the preceding items, wherein the dispersant is 2- (2-butoxyethoxy) ethanol.
(Item A25a) Combination of base material, conductive material and solvent.
(Item A25b) The combination according to any one of the preceding items, comprising one or more of the features described in the preceding item.
(Item A26) A multilayer material having a base material and a conductive layer coated on the surface of the base material, the conductive layer contains a conductive component and a coating component, and the base material is the coating. A multi-layer material that is insoluble in a solvent that dissolves the components.
(Item A27a) A base material coated with a conductive material, wherein the conductive material contains a conductive component and a coating component, and the base material is insoluble in a solvent that dissolves the coating component. Material.
(Item A27b) The substrate according to any one of the preceding items, which comprises one or more of the features described in the preceding item.
 本開示において、上記1または複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供されうることが意図される。本開示のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。 In the present disclosure, it is intended that the above one or more features may be provided in a further combination in addition to the specified combinations. Further embodiments and advantages of the present disclosure will be appreciated by those skilled in the art upon reading and understanding the following detailed description as necessary.
 本開示により、所望の組合せの導電成分と基材とを含む導電材を自在に製造することができる。また、基材の損傷も少ないため、高品質の導電材を提供することができる。 According to the present disclosure, a conductive material containing a desired combination of a conductive component and a base material can be freely produced. In addition, since the base material is less damaged, a high-quality conductive material can be provided.
 以下、本開示を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用されるすべての専門用語および科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。 Hereinafter, the present disclosure will be described while showing the best form. Throughout the specification, it should be understood that the singular representation also includes its plural concept, unless otherwise stated. Therefore, it should be understood that singular articles (eg, "a", "an", "the", etc. in English) also include the concept of their plural, unless otherwise noted. It should also be understood that the terms used herein are used in the meaning commonly used in the art unless otherwise noted. Thus, unless otherwise defined, all terminology and scientific terms used herein have the same meaning as commonly understood by those skilled in the art to which this disclosure belongs. In case of conflict, this specification (including definitions) takes precedence.
 以下に本明細書において特に使用される用語の定義および/または基本的技術内容を適宜説明する。 The definitions of terms and / or basic technical contents particularly used in this specification will be described below as appropriate.
 (用語の定義)
 本明細書において、「導電性」とは、当該分野における通常の意味で使用され、電気を通す性質を意味し、その物性量を「導電率」といい、ある対象(導体ともよばれる)についての抵抗率(比抵抗、樹脂分野では体積抵抗率ともよばれる)の逆数として定義される。本明細書では、導電率(または抵抗率)は、以下のようにして測定する。具体的には、特に断らない限り、測定対象(例えば、フィルム等)を縦0.5cm×横2.00cm×厚さ0.2cmに切り出して、4端子測定法(例えば、ロレスタGP〔三菱化学アナリテック社製〕を用いることができるが、これに限定されない。)により測定された値を採用する。
(Definition of terms)
In the present specification, "conductivity" is used in the usual sense in the art and means the property of conducting electricity, and the amount of physical properties thereof is called "conductivity", and is used for a certain object (also called a conductor). It is defined as the reciprocal of resistivity (specific resistivity, also called volume resistivity in the resin field). In the present specification, the conductivity (or resistivity) is measured as follows. Specifically, unless otherwise specified, a measurement target (for example, a film) is cut out into a length of 0.5 cm, a width of 2.00 cm, and a thickness of 0.2 cm, and a four-terminal measurement method (for example, Loresta GP [Mitsubishi Chemical]. Analytech] can be used, but the value measured by is not limited to this).
 本明細書において「焼成」(firing)とは、原料粉末を成形し、加熱して、収縮、緻密化させ、一定の形状と強度をもつ焼結体を得るプロセスをいう。 In the present specification, "firing" refers to a process of molding a raw material powder, heating it, shrinking and densifying it, and obtaining a sintered body having a certain shape and strength.
 本明細書において「焼結」(sintering)とは原料粉末が高温で焼き固まる現象をいい、原料粉末の粒子間に隙間が見られるが、高温環境下(融点よりも低い温度)で焼結が起こると、粒子間の接触面積が増加して隙間が減少し、焼き固まる。残った隙間を「空隙」又は「空孔」という。 In the present specification, "sintering" refers to a phenomenon in which raw material powder is baked and hardened at a high temperature, and although gaps are observed between the particles of the raw material powder, sintering is performed in a high temperature environment (temperature lower than the melting point). When this happens, the contact area between the particles increases, the gaps decrease, and the particles harden. The remaining gap is called a "void" or "vacancy".
 本明細書において「基材」とは、導電材がコーティングされる材料を指す。その例としては、上質紙、クラフト紙、クレープ紙、グラシン紙などの一般に使用することができる紙類、ポリエチレン、ポリプロピレン、ポリスチレン、およびポリ塩化ビニルなどのポリオレフィン、ポリエステル、ポリアミド、ポリアクリル、ポリウレタン、セロファンなどの樹脂、織布、不織布、布帛などの繊維製品などが挙げられるが、本開示は、かかる例示のみに限定されるものではない。 In the present specification, the "base material" refers to a material coated with a conductive material. Examples include commonly available papers such as fine paper, kraft paper, crepe paper, glassin paper, polyolefins such as polyethylene, polypropylene, polystyrene, and polyvinyl chloride, polyesters, polyamides, polyacrylics, polyurethanes, etc. Examples thereof include resins such as cellophane, woven fabrics, non-woven fabrics, textile products such as fabrics, and the like, but the present disclosure is not limited to such examples.
 本明細書において、「導電材」とは、導電性を有する任意の材料を指す。本明細書では、導電材は、1.0×10-1Ω・cm以下、通常、1.0×10-2Ω・cm以下、好ましくは1.0×10-3Ω・cm以下の抵抗率を有するものを対象とするが、これに限定されない。導電材は、導電性を付与する導電成分を含む。代表的には、導電材は、通常コーティング成分と導電成分とを含んで構成される。 As used herein, the term "conductive material" refers to any material having conductivity. In the present specification, the conductive material has a resistance of 1.0 × 10 -1 Ω · cm or less, usually 1.0 × 10 −2 Ω · cm or less, preferably 1.0 × 10 -3 Ω · cm or less. It is intended for those with a rate, but is not limited to this. The conductive material contains a conductive component that imparts conductivity. Typically, the conductive material is usually composed of a coating component and a conductive component.
 本明細書において、「導電成分」とは、導電性を付与する任意の成分を意味する。導電成分としては、例えば、任意の金属成分、金属酸化物、金属炭化物等の金属系成分、炭素、導電性有機化合物、導電性ポリマー等を挙げることができるが、これらに限定されない。 In the present specification, the "conductive component" means any component that imparts conductivity. Examples of the conductive component include, but are not limited to, any metal component, a metal oxide, a metal component such as a metal carbide, carbon, a conductive organic compound, a conductive polymer, and the like.
 本明細書において、「コーティング成分」とは、ある素材に対して被覆として覆う目的で使用される成分をいう。コーティング成分の例としては、ポリマーが挙げられ、具体例としては、(メタ)アクリルポリマー、エポキシポリマー、ウレタンポリマー、フッ素ポリマー、ポリエステル樹脂、メラミン樹脂、シリコーン樹脂などが挙げられる。 In the present specification, the "coating component" means a component used for the purpose of covering a certain material as a coating. Examples of the coating component include polymers, and specific examples include (meth) acrylic polymers, epoxy polymers, urethane polymers, fluoropolymers, polyester resins, melamine resins, silicone resins and the like.
 本明細書において、「コーティング剤」とは、コーティング成分を含む任意の薬剤をいい、通常、コーティング成分および他の任意成分が溶剤に溶解されて提供される。コーティング剤の例としては、コーティング成分、溶剤、および必要に応じて分散剤を含むものが挙げられる。ただし、本開示の技術においては、これらの各成分の具体的な組成は本開示の本質と無関係であることが理解される。すなわち、溶解度との関係で規定されるため、具体的な各成分の化学的な特性の関係で範囲が確定するものではないことに留意がされるべきである。 As used herein, the term "coating agent" refers to any drug containing a coating component, and is usually provided by dissolving the coating component and other optional components in a solvent. Examples of coating agents include those containing coating components, solvents, and optionally dispersants. However, in the art of the present disclosure, it is understood that the specific composition of each of these components is irrelevant to the essence of the present disclosure. That is, it should be noted that the range is not determined by the relationship with the specific chemical properties of each component because it is defined by the relationship with the solubility.
 本明細書において、「溶剤」とは、ある成分を溶解させる媒体をいい、例えば、導電成分、基材の原料、コーティング成分などを溶解させる溶媒等を挙げることができる。 In the present specification, the "solvent" refers to a medium that dissolves a certain component, and examples thereof include a solvent that dissolves a conductive component, a raw material of a base material, a coating component, and the like.
 本明細書において、コーティング成分などの「溶解」とは、溶解させようとしている物質が溶け残ることなく溶剤中に溶け込んで均一な液体となる現象をいう。 In the present specification, "dissolution" of a coating component or the like means a phenomenon in which a substance to be dissolved dissolves in a solvent without remaining undissolved to become a uniform liquid.
 本明細書において、基材等の「損傷」とは、基材などの物質が損なわれたり、傷つけられたりすることを意味する。基材等の損傷には、例えば、基材の表面に溶剤を滴下したあとに跡が残ること、および溶剤が接触した部分が膨れ上がる(膨潤する)ことも含まれる。 In the present specification, "damage" of a base material or the like means that a substance such as a base material is damaged or damaged. Damage to the base material and the like includes, for example, leaving a mark after dropping the solvent on the surface of the base material, and swelling (swelling) the portion in contact with the solvent.
 本明細書において、「基材を損傷させない」とは、基材に「損傷」を生じさせない、引き起こさないことを意味する。基材の損傷は、標的として使用する溶剤に標的となる基材を一定時間(例えば1分間、10分間、1時間)にわたって浸漬した後、その溶剤を除去した後の基材の重量または体積の変化があるかどうかを測定することによって判断することができる。ここで、代表的には、1重量%の重量の変化があった場合に、損傷していると判断することができる。または、2重量%未満、1重量%未満、0.5重量%未満、または0.1重量%未満等の重量の変化があった場合に、損傷していると判断することもできる。あるいは、体積の変化が、1体積%未満であることでも判断することができる。または、2体積%未満、1体積%未満、0.5体積%未満、または0.1体積%未満等の重量の変化があった場合に、損傷していると判断することもできる。 In the present specification, "does not damage the base material" means that "damage" does not occur or is not caused in the base material. Damage to the base material is the weight or volume of the base material after immersing the target base material in the solvent used as the target for a certain period of time (for example, 1 minute, 10 minutes, 1 hour) and then removing the solvent. It can be determined by measuring whether there is a change. Here, typically, when there is a change in weight of 1% by weight, it can be determined that the product is damaged. Alternatively, if there is a change in weight such as less than 2% by weight, less than 1% by weight, less than 0.5% by weight, or less than 0.1% by weight, it can be determined that the product is damaged. Alternatively, it can also be determined that the change in volume is less than 1 volume%. Alternatively, if there is a change in weight such as less than 2% by volume, less than 1% by volume, less than 0.5% by volume, or less than 0.1% by volume, it can be determined that the product is damaged.
 本明細書において、溶剤に対する「溶解度」とは、ある溶質が一定量の溶剤に溶ける限界量をいう。 In the present specification, the "solubility" in a solvent means the limit amount at which a certain solute is soluble in a certain amount of solvent.
 本明細書において、「実質的に溶解しない」とは、溶剤にある物質(例えば、基材、樹脂)を一定時間(例えば1分間、10分間、1時間)にわたって浸漬した後、該溶剤が、ある物質の2重量%未満、1重量%未満、0.5重量%未満、または0.1重量%未満しか溶解しないことを意味する。あるいは体積で見る場合は、ある物質の2体積%未満、1体積%未満、0.5体積%未満、または0.1体積%未満しか溶解しないことを意味する。 In the present specification, "substantially insoluble" means that a substance (for example, a base material, a resin) in a solvent is immersed for a certain period of time (for example, 1 minute, 10 minutes, 1 hour), and then the solvent is used. It means that less than 2% by weight, less than 1% by weight, less than 0.5% by weight, or less than 0.1% by weight of a substance is dissolved. Alternatively, when viewed by volume, it means that less than 2% by volume, less than 1% by volume, less than 0.5% by volume, or less than 0.1% by volume of a substance is dissolved.
 本明細書において、「コーティング成分を溶解するが、基材を実質的に溶解しない」とは、溶剤が、コーティング成分を溶解する一方で、該溶剤は基材を実質的に溶解しないことを意味する。このことを確認するための明示的な手法としては、実施例に記載の方法が挙げられる。 As used herein, "dissolves the coating component but does not substantially dissolve the substrate" means that the solvent dissolves the coating component, while the solvent does not substantially dissolve the substrate. To do. As an explicit method for confirming this, the method described in the examples can be mentioned.
 本明細書において、「金属系成分」とは、金属原子をその構成要素として何らかの形式で含む成分であり、金属の他、金属に由来する成分、例えば、金属酸化物、金属炭化物、金属硫化物等を包含する概念である。 In the present specification, the "metal-based component" is a component containing a metal atom as a component thereof in some form, and is a component derived from a metal other than a metal, for example, a metal oxide, a metal carbide, or a metal sulfide. It is a concept that includes such things.
 本明細書において「金属成分」とは、金属または合金を含む。 In the present specification, the "metal component" includes a metal or an alloy.
 本明細書において、「(金属)フィラー」とは、金属系成分を含むまたは金属系成分からなる添加物である。本開示においては、コーティング成分のポリマーネットワークを埋める(充填する)ために使用される。 In the present specification, the "(metal) filler" is an additive containing or composed of a metal-based component. In the present disclosure, it is used to fill (fill) the polymer network of coating components.
 本明細書において、「モノマー成分を含むコポリマー」とは、当該モノマー成分を重合して生成されるコポリマーをいう。 In the present specification, the "copolymer containing a monomer component" means a copolymer produced by polymerizing the monomer component.
 本明細書において、「樹脂」は、天然樹脂および合成樹脂を含み、天然樹脂は、天然に植物に生じたやに状物質を意味し、合成樹脂は、有機化学の発達により合成されるようになった、天然樹脂とよく似た性質を持つ物質を意味する。樹脂の例としては、ポリオレフィン樹脂、ポリアクリル樹脂、ポリウレタン樹脂、およびポリアミド樹脂が挙げられる。ポリオレフィン樹脂は、単純なオレフィン類やアルケンをモノマー(単位分子)として合成されるポリマーを含む樹脂をいい、その例としては、ポリエチレン、ポリプロピレンなどが挙げられる。ポリアクリル樹脂は、アクリル酸、アクリル酸エステル、アクリル酸アミドなどのアクリル単位を有するモノマーから合成されるポリマーを含む樹脂をいい、その例としては、ポリアクリル酸、ポリアクリレート、ポリアクリルアミドが挙げられる。ポリウレタン樹脂は、ウレタン結合を有するポリマーを含む樹脂をいい、その例としては、ジイソシアネートとジオールモノマーまたはトリオールモノマーとの重合生成物が挙げられる。ポリアミド樹脂は、多数のモノマーがアミド結合によって結合して生成するポリマーである。 In the present specification, "resin" includes natural resin and synthetic resin, natural resin means a naturally occurring substance in a plant, and synthetic resin is synthesized by the development of organic chemistry. It means a substance that has properties similar to those of natural resin. Examples of resins include polyolefin resins, polyacrylic resins, polyurethane resins, and polyamide resins. The polyolefin resin refers to a resin containing a polymer synthesized by using simple olefins or alkenes as a monomer (unit molecule), and examples thereof include polyethylene and polypropylene. The polyacrylic resin refers to a resin containing a polymer synthesized from a monomer having an acrylic unit such as acrylic acid, an acrylic acid ester, and an acrylic acid amide, and examples thereof include polyacrylic acid, polyacrylate, and polyacrylamide. .. The polyurethane resin refers to a resin containing a polymer having a urethane bond, and examples thereof include a polymerization product of a diisocyanate and a diol monomer or a triol monomer. Polyamide resin is a polymer formed by binding a large number of monomers by amide bonds.
 本明細書において、「炭化水素系溶媒」とは、溶媒として利用可能な炭素と水素からなる化合物を意味する。その具体例としては、n-ヘキサン、n-ヘプタン、n-オクタン、n-ウンデカン、ベンゼン、トルエン、キシレン、シクロペンタン、シクロヘキサン、リモネン、およびこれらの組合せ等が挙げられるがこれらに限定されない。 In the present specification, the "hydrocarbon-based solvent" means a compound composed of carbon and hydrogen that can be used as a solvent. Specific examples thereof include, but are not limited to, n-hexane, n-heptane, n-octane, n-undecane, benzene, toluene, xylene, cyclopentane, cyclohexane, limonene, and combinations thereof.
 本明細書において、「アルコール系溶媒」とは、炭素原子と1個または複数個のヒドロキシル基を有する、溶媒として利用可能な化合物を意味する。アルコール系溶媒は、例えば、炭化水素系溶媒の水素原子が1個または複数個のヒドロキシル基で置換されたものである。具体例としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、イソブチルアルコール、3-メトキシ-3-メチル-1-ブタノール、オクタノール、2-エチル-1-ヘキサノール、エチレングリコール、ジエチレングリコール、トリエチレングリコール、グリセロール、およびこれらの組合せ等が挙げられるがこれらに限定されない。 In the present specification, the "alcohol-based solvent" means a compound that has a carbon atom and one or more hydroxyl groups and can be used as a solvent. The alcohol-based solvent is, for example, one in which the hydrogen atom of the hydrocarbon-based solvent is substituted with one or more hydroxyl groups. Specific examples include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, 3-methoxy-3-methyl-1-butanol, octanol, 2-ethyl-1-hexanol, Examples include, but are not limited to, ethylene glycol, diethylene glycol, triethylene glycol, glycerol, and combinations thereof.
 本明細書において、「モノマー」とは、それが2個以上重合してポリマーを生ずる化合物をいう。本開示のモノマーの例としては、(メタ)アクリル系モノマー、エチレン系モノマー、ウレタン系モノマー、アミド系モノマー、エステル系モノマー、エーテル系モノマー、イミド系モノマー、アミド-イミド系モノマー、カーボネート系モノマー、アセタール系モノマー、スルホン系モノマー、フェニレンスルフィド系モノマー、エーテルエーテルケトン系モノマー、シリコーン系モノマー、スチレン系モノマー、ブタジエン系モノマーおよびAES樹脂、ジアリルフタレート樹脂、ABS樹脂、もしくはシリコーン樹脂などを重合により形成するモノマーが挙げられる。 In the present specification, the "monomer" means a compound obtained by polymerizing two or more of them to form a polymer. Examples of the monomers of the present disclosure include (meth) acrylic monomers, ethylene-based monomers, urethane-based monomers, amide-based monomers, ester-based monomers, ether-based monomers, imide-based monomers, amide-imide-based monomers, and carbonate-based monomers. Acetal-based monomer, sulfone-based monomer, phenylene sulfide-based monomer, ether ether ketone-based monomer, silicone-based monomer, styrene-based monomer, butadiene-based monomer and AES resin, diallyl phthalate resin, ABS resin, silicone resin, etc. are formed by polymerization. Monomers can be mentioned.
 本明細書において、「炭化水素系溶剤への溶解性を向上させるアルキル含有モノマー」とは、対象となる炭化水素系溶剤を用いて溶解性の試験をしたときに、対象となるアルキル含有モノマーの非存在下に比べて存在させたときに、溶解性が上昇するものをいう。代表的には、C10~C18のアルキル鎖を有するモノマーがあげられるがそれらに限定されない。 In the present specification, the "alkyl-containing monomer that improves the solubility in a hydrocarbon solvent" refers to the target alkyl-containing monomer when the solubility is tested using the target hydrocarbon solvent. A substance whose solubility increases when it is present as compared with the absence. Typical examples include, but are not limited to, monomers having an alkyl chain of C10 to C18.
 本明細書において、「伸縮性を向上させるモノマー」とは、熱重量示差熱分析装置(Tg-DTA)で測定したホモポリマーのガラス転移温度Tgが25℃以下、より好ましくは0℃以下であるモノマーである。 In the present specification, the “monomer for improving elasticity” means that the glass transition temperature Tg of the homopolymer measured by a thermogravimetric differential thermal analyzer (Tg-DTA) is 25 ° C. or lower, more preferably 0 ° C. or lower. It is a monomer.
 本明細書において、「鎖状または環状エーテル構造を含有するモノマー」とは、その構造の一部として-C-O-C-を有するモノマーであり、この-C-O-C-部分は、鎖状構造の一部であっても、環状構造の一部であってもよい。このモノマーの具体例としては、グリシジルアクリレート、(3-エチルオキセタン-3-イル)アクリレート、2-メトキシエチルアクリレート、4-ヒドロキシブチルビニルエーテル、2-ヒドロキシエチルビニルエーテル(HEVE)、ジエチレングリコールモノビニルエーテル(DEGV)、n-プロピルビニルエーテル(NPVE)、イソプロピルビニルエーテル(IPVE)、n-ブチルビニルエーテル(NBVE)、イソブチルビニルエーテル(IBVE)、2-エチルヘキシルビニルエーテル(2-EHVE)、シクロヘキシルビニルエーテル(CHVE)、1,4-シクロヘキサンジメタノール モノビニルエーテル(CHMVE)、1,4-ブタンジオールジビニルエーテル(BDVE)、トリエチレングリコールジビニルエーテル(TEGDVE)、ジエチレングリコールジビニルエーテル(DEGDVE)、1,4-シクロヘキサンジメタノール ジビニルエーテル(CHDVE)が挙げられるが、これらに限定されない。 In the present specification, the "monomer containing a chain or cyclic ether structure" is a monomer having -C-OC- as a part of the structure, and the -C-O-C- portion is a monomer. It may be a part of a chain structure or a part of a cyclic structure. Specific examples of this monomer include glycidyl acrylate, (3-ethyloxetane-3-yl) acrylate, 2-methoxyethyl acrylate, 4-hydroxybutyl vinyl ether, 2-hydroxyethyl vinyl ether (HEVE), and diethylene glycol monovinyl ether (DEVG). , N-propyl vinyl ether (NPVE), isopropyl vinyl ether (IPVE), n-butyl vinyl ether (NBVE), isobutyl vinyl ether (IBVE), 2-ethylhexyl vinyl ether (2-EHVE), cyclohexyl vinyl ether (CHVE), 1,4-cyclohexane Diethanol monovinyl ether (CHMVE), 1,4-butanediol divinyl ether (BDVE), triethylene glycol divinyl ether (TEGDVE), diethylene glycol divinyl ether (DEGDVE), 1,4-cyclohexanedimethanol divinyl ether (CHDVE). However, it is not limited to these.
 本明細書において、「分散剤」とは、スラリー中の固体粒子を分散媒(例えば、有機溶媒、水)に均一に分散させ、スラリーの低粘度化・安定性向上(固体粒子の凝集・沈降防止)・高濃度化に寄与し、分散工程の効率を改善する添加剤である。 In the present specification, the "dispersant" means that solid particles in a slurry are uniformly dispersed in a dispersion medium (for example, an organic solvent or water) to reduce the viscosity and improve the stability of the slurry (aggregation and sedimentation of solid particles). Prevention) ・ It is an additive that contributes to high concentration and improves the efficiency of the dispersion process.
 本明細書において「キット」とは、通常2つ以上の区画に分けて、提供されるべき部分(例えば、コーティング成分、導電成分、溶剤、説明書など)が提供されるユニットをいう。安定性等のため、混合されて提供されるべきでなく、使用直前に混合して使用することが好ましいような組成物の提供を目的とするときに、このキットの形態は好ましい。そのようなキットは、好ましくは、提供される部分(例えば、導電成分、コーティング成分)をどのように使用するか、あるいは、試薬あるいは使用後の廃液をどのように処理すべきかを記載する指示書または説明書を備えていることが有利である。本明細書においてキットが使用される場合、キットには、通常、溶剤等の使い方などを記載した指示書などを含み得る。 In the present specification, the "kit" usually refers to a unit in which parts to be provided (for example, coating component, conductive component, solvent, instruction manual, etc.) are provided by dividing into two or more sections. The form of this kit is preferred when the purpose is to provide a composition that should not be mixed and provided for stability and the like, but is preferably mixed and used immediately before use. Such a kit preferably describes how to use the provided parts (eg, conductive components, coating components) or how to treat the reagents or waste liquid after use. Or it is advantageous to have instructions. When the kit is used in the present specification, the kit may usually include instructions and the like that describe how to use the solvent and the like.
 (導電材の基本的な説明)
 本開示において提供される導電材は、当該分野で入手可能な任意の導電成分を含む。本開示の導電材は、本開示において提供される導電率を向上させるための組成物(導電性向上剤ともいう)を含むことにより、導電率が向上されていることが特徴である。
(Basic explanation of conductive material)
The conductive material provided in the present disclosure includes any conductive component available in the art. The conductive material of the present disclosure is characterized in that the conductivity is improved by containing a composition (also referred to as a conductivity improver) for improving the conductivity provided in the present disclosure.
 本開示の導電材は、代表的に、導電成分の他、基材を含み得る。 The conductive material of the present disclosure may typically contain a base material in addition to a conductive component.
 (導電材の一般製法)
 (1)コーティング成分の製造方法
 本開示のコーティング成分は、モノマーを加熱することで、および/または、モノマーに特定の照度の紫外線を照射して重合させることにより調製できる。このような紫外線照射は当業者が任意に設定して実施することができる。コーティング成分を調製する際に、紫外線を使用して重合させて調製した場合、煩雑な操作である溶媒を除去するための乾燥操作が不要であり、作業性に優れる。
(General manufacturing method of conductive material)
(1) Method for Producing Coating Component The coating component of the present disclosure can be prepared by heating the monomer and / or by irradiating the monomer with ultraviolet rays having a specific illuminance to polymerize the monomer. Such ultraviolet irradiation can be arbitrarily set and carried out by those skilled in the art. When the coating component is prepared by polymerizing using ultraviolet rays, a drying operation for removing the solvent, which is a complicated operation, is not required, and the workability is excellent.
 ここで、紫外線とは、可視光線より波長が短く、X線より波長の長い電磁波をいう。上限の可視光の短波長端は400nmであり、紫外線はこれ以下の波長をもつ電磁波と定義され得る。紫外線の波長の下限は10nm程度であり、これより長い波長を有する電磁波であれば紫外線の範疇に入ると理解される。本開示において用いられる紫外線の波長は、どのような波長でもよく、目的に応じて適切なものを選択することができる。例えば、本開示において、モノマーに対して初期の効果を奏することができる限りどの波長のものでもよい。代表的には、実施例において使用される光源によって照射され得る波長のものである。具体的には150nm~400nm程度の光源が使用され、好ましくは300nm~400nmである。 Here, ultraviolet rays refer to electromagnetic waves having a shorter wavelength than visible light and a longer wavelength than X-rays. The short wavelength end of visible light at the upper limit is 400 nm, and ultraviolet light can be defined as an electromagnetic wave having a wavelength lower than this. The lower limit of the wavelength of ultraviolet rays is about 10 nm, and it is understood that electromagnetic waves having a wavelength longer than this fall into the category of ultraviolet rays. The wavelength of the ultraviolet rays used in the present disclosure may be any wavelength, and an appropriate wavelength can be selected according to the intended purpose. For example, in the present disclosure, any wavelength may be used as long as it can exert an initial effect on the monomer. Typically, it is of a wavelength that can be emitted by the light source used in the examples. Specifically, a light source of about 150 nm to 400 nm is used, preferably 300 nm to 400 nm.
 本開示で用いられる紫外線の好ましい照度は、出発物質により異なる。紫外線照射装置は特に限定されるものではなく、例えば、低圧水銀ランプ、中圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、ブラックライトランプ、UV無電極ランプ、ショートアークランプ、LED等が挙げられる。 The preferred illuminance of ultraviolet light used in this disclosure depends on the starting material. The ultraviolet irradiation device is not particularly limited, and for example, a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, a black light lamp, a UV electrodeless lamp, a short arc lamp, an LED, etc. Can be mentioned.
 モノマーを重合させる際には、重合開始剤を用いることが好ましい。重合開始剤としては、例えば、熱重合開始剤、光重合開始剤、レドックス重合開始剤、ATRP(原子移動ラジカル重合)開始剤、ICAR ATRP開始剤、ARGET ATRP開始剤、RAFT(可逆的付加-開裂連鎖移動重合)剤、NMP(ニトロキシドを介した重合)剤、高分子重合開始剤などが挙げられる。これらの重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの重合開始剤のなかでは、コーティング成分に熱履歴を残さないようにする観点から、光重合開始剤が好ましい。 When polymerizing the monomer, it is preferable to use a polymerization initiator. Examples of the polymerization initiator include a thermal polymerization initiator, a photopolymerization initiator, a redox polymerization initiator, an ATRP (atomic transfer radical polymerization) initiator, an ICAR ATRP initiator, an ARGET ATRP initiator, and a RAFT (reversible addition-cleavage). Examples thereof include a chain transfer polymerization) agent, an NMP (nitroxide-mediated polymerization) agent, and a polymer polymerization initiator. These polymerization initiators may be used alone or in combination of two or more. Among these polymerization initiators, a photopolymerization initiator is preferable from the viewpoint of not leaving a thermal history in the coating component.
 光重合開始剤としては、例えば、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2,2’-ビス(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,1’-ビイミダゾール、2,4,6-トリス(トリクロロメチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(p-メトキシフェニルビニル)-1,3,5-トリアジン、ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムヘキサフルオロホスフェート、4,4’-ジtert-ブチルジフェニルヨードニウムテトラフルオロボレート、4-ジエチルアミノフェニルベンゼンジアゾニウムヘキサフルオロホスフェート、ベンゾイン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-2-オン、ベンゾフェノン、チオキサントン、2,4,6-トリメチルベンゾイルジフェニルアシルホスフィンオキシド、トリフェニルブチルボレートテトラエチルアンモニウム、ジフェニル-4-フェニルチオフェニルスルホニウムヘキサフルオロホスフェート、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、フェニルグリオキシリックアシッドメチルエステル、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(o-ベンゾイルオキシム)]、ビス(η5-2,4-シクロペンタジエン-1-イル)ビス〔2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニルチタニウム〕などの光ラジカル重合開始剤、2,4,6-トリス(トリクロロメチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(p-メトキシフェニルビニル)-1,3,5-トリアジン、ジフェニルヨードニウムテトラフルオロボレート、4,4’-ジtert-ブチルジフェニルヨードニウムテトラフルオロボレート、4-ジエチルアミノフェニルベンゼンジアゾニウムヘキサフルオロホスフェート、ジフェニル-4-フェニルチオフェニルスルホニウムヘキサフルオロホスフェートなどの光カチオン開環重合開始剤などが挙げられるが、本開示は、かかる例示のみに限定されるものではない。これらの光重合開始剤は、それぞれ単独で用いてもよく、2種以上を併用してもよい。 Examples of the photopolymerization initiator include 2,4,6-trimethylbenzoyldiphenylphosphenyl oxide, 2,2'-bis (o-chlorophenyl) -4,4', 5,5'-tetraphenyl-1,1'. -Biimidazole, 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- (p-methoxyphenylvinyl) -1,3,5- Triazine, diphenyliodonium tetrafluoroborate, diphenyliodonium hexafluorophosphate, 4,4'-ditert-butyldiphenyliodonium tetrafluoroborate, 4-diethylaminophenylbenzenediazonium hexafluorophosphate, benzoin, 2-hydroxy-2-methyl-1 -Phenylpropan-2-one, benzophenone, thioxanthone, 2,4,6-trimethylbenzoyldiphenylacylphosphine oxide, triphenylbutylborate tetraethylammonium, diphenyl-4-phenylthiophenylsulfonium hexafluorophosphate, 2,2-dimethoxy- 1,2-Diphenylethane-1-one, phenylglycylic acid methyl ester, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one, bis (2,4,6) -Trimethylbenzoyl) -phenylphosphine oxide, 1,2-octanedione, 1- [4- (phenylthio) -2- (o-benzoyloxime)], bis (η5-2,4-cyclopentadiene-1-yl) Photoradical polymerization initiators such as bis [2,6-difluoro-3- (1H-pyrrole-1-yl) phenyltitanium], 2,4,6-tris (trichloromethyl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- (p-methoxyphenyl vinyl) -1,3,5-triazine, diphenyliodonium tetrafluoroborate, 4,4'-ditert-butyldiphenyliodonium tetrafluoroborate, 4 Examples thereof include photocationic ring-opening polymerization initiators such as diethylaminophenylbenzenediazonium hexafluorophosphate and diphenyl-4-phenylthiophenylsulfonium hexafluorophosphate, but the present disclosure is not limited to these examples. These photopolymerization initiators may be used alone or in combination of two or more.
 重合開始剤として光重合開始剤を用いる場合、当該光重合開始剤の量は、全モノマーの100重量部あたり、通常、約0.01重量部~約20重量部であることが好ましい。 When a photopolymerization initiator is used as the polymerization initiator, the amount of the photopolymerization initiator is usually preferably about 0.01 part by weight to about 20 parts by weight per 100 parts by weight of all the monomers.
 熱重合開始剤としては、例えば、アゾビスイソブチロニトリル(AIBN)、2,2’-アゾビス(イソ酪酸メチル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)などのアゾ系重合開始剤、過酸化ベンゾイル、過硫酸カリウム、過硫酸アンモニウムなどの過酸化物系重合開始剤などが挙げられるが、本開示は、かかる例示のみに限定されるものではない。これらの重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Examples of the thermal polymerization initiator include azobisisobutyronitrile (AIBN), 2,2'-azobis (methyl isobutyrate), 2,2'-azobis (2,4-dimethylvaleronitrile), 2,2. Azo-based polymerization initiators such as'-azobis (2-methylbutyronitrile) and 1,1'-azobis (cyclohexane-1-carbonitrile), peroxides such as benzoyl peroxide, potassium persulfate, and ammonium persulfate. Examples thereof include a polymerization initiator, but the present disclosure is not limited to such examples. These polymerization initiators may be used alone or in combination of two or more.
 重合開始剤として熱重合開始剤を用いる場合、当該熱重合開始剤の量は、全モノマーの100重量部あたり、通常、約0.01重量部~約20重量部であることが好ましい。 When a thermal polymerization initiator is used as the polymerization initiator, the amount of the thermal polymerization initiator is usually preferably about 0.01 part by weight to about 20 parts by weight per 100 parts by weight of all the monomers.
 AIBNなどの、重合反応時に窒素(N)が発生する重合開始剤を使用した場合、結果として生じる複合材は気泡を含む場合がある。このような気泡は破断の起点となりうるため、複合材の伸長性などの性質が低下するおそれがある一方で、衝撃吸収能は向上し得ることが予測される。なお、複合材に含まれる気泡は、重合開始剤に由来するものに限定されず、発泡剤を添加することで得られるものや、溶媒の除去により得られるものなど、樹脂等に気泡を含ませることができる公知の方法により得られる気泡であってよい。 When a polymerization initiator that generates nitrogen (N 2 ) during the polymerization reaction, such as AIBN, is used, the resulting composite material may contain air bubbles. Since such bubbles can be the starting point of fracture, it is predicted that the impact absorption capacity can be improved while the properties such as the extensibility of the composite material may be deteriorated. The bubbles contained in the composite material are not limited to those derived from the polymerization initiator, and the resin or the like contains bubbles, such as those obtained by adding a foaming agent and those obtained by removing the solvent. It may be a bubble obtained by a known method capable of this.
 本開示において使用可能な他の重合開始剤としては、例えば、過酸化水素と鉄(II)塩、過硫酸塩と亜硫酸水素ナトリウムなどのレドックス重合開始剤、金属触媒下でハロゲン化アルキルを用いるATRP(原子移動ラジカル重合)開始剤、金属と窒素含有配位子を用いるICAR ATRP開始剤やARGET ATRP開始剤、RAFT(可逆的付加-開裂連鎖移動重合)剤、NMP(ニトロキシドを介した重合)剤、ポリジメチルシロキサンユニット含有高分子アゾ重合開始剤、ポリエチレングリコールユニット含有高分子アゾ重合開始剤などの高分子重合開始剤などが挙げられるが、本開示は、かかる例示のみに限定されるものではない。これらの重合開始剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。 Other polymerization initiators that can be used in the present disclosure include, for example, redox polymerization initiators such as hydrogen peroxide and iron (II) salt, persulfate and sodium hydrogen sulfite, and ATRP using alkyl halides under a metal catalyst. (Atom transfer radical polymerization) initiator, ICAR ATRP initiator or ARGET ATRP initiator using metal and nitrogen-containing ligand, RAFT (reversible addition-cleavage chain transfer polymerization) agent, NMP (nitroxide-mediated polymerization) agent , Polydimethylsiloxane unit-containing polymer azo polymerization initiator, polyethylene glycol unit-containing polymer azo polymerization initiator, and other polymer polymerization initiators, but the present disclosure is not limited to these examples. .. These polymerization initiators may be used alone or in combination of two or more.
 モノマーを重合させる際には、分子量を調整するために連鎖移動剤を用いてもよい。連鎖移動剤は、通常、モノマーと混合することによって用いることができる。連鎖移動剤としては、例えば、2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロピオン酸、2-(ドデシルチオカルボノチオイルチオ)プロピオン酸、メチル2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロピオネート、2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロピオン酸3-アジド-1-プロパノールエステル、2-(ドデシルチオカルボノチオイルチオ)-2-メチルプロピオン酸ペンタフルオロフェニルエステル、ラウリルメルカプタン、ドデシルメルカプタン、チオグリセロールなどのメルカプタン基含有化合物、次亜リン酸ナトリウム、亜硫酸水素ナトリウムなどの無機塩などが挙げられるが、本開示は、かかる例示のみに限定されるものではない。これらの連鎖移動剤は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。連鎖移動剤の量は、特に限定されないが、通常、全モノマーの100重量部あたり約0.01重量部~約10重量部であればよい。 When polymerizing the monomer, a chain transfer agent may be used to adjust the molecular weight. Chain transfer agents can usually be used by mixing with monomers. Examples of the chain transfer agent include 2- (dodecylthiocarbonothio oil thio) -2-methylpropionic acid, 2- (dodecylthiocarbonoti oil thio) propionate, and methyl 2- (dodecylthio carbonothio oil thio)-. 2-Methylpropionate, 2- (dodecylthiocarbonothiolthio) -2-methylpropionate 3-azido-1-propanol ester, 2- (dodecylthiocarbonothiolthio) -2-methylpropionate pentafluoro Examples thereof include mercaptan group-containing compounds such as phenyl ester, lauryl mercaptan, dodecyl mercaptan and thioglycerol, and inorganic salts such as sodium hypophosphite and sodium hydrogen sulfite, but the present disclosure is not limited to such examples. Absent. Each of these chain transfer agents may be used alone, or two or more of them may be used in combination. The amount of the chain transfer agent is not particularly limited, but is usually about 0.01 parts by weight to about 10 parts by weight per 100 parts by weight of all the monomers.
 モノマーを重合させる際の雰囲気は、特に限定がなく、大気であってもよく、あるいは窒素ガス、アルゴンガスなどの不活性ガスであってもよい。 The atmosphere for polymerizing the monomer is not particularly limited and may be the atmosphere or an inert gas such as nitrogen gas or argon gas.
 モノマーを重合させる際の温度は、特に限定がなく、通常、5~100℃程度の温度であることが好ましい。モノマーを重合させるのに要する時間は、重合条件によって異なるので一概には決定することができないことから任意であるが、通常、1~20時間程度である。 The temperature at which the monomer is polymerized is not particularly limited, and is usually preferably about 5 to 100 ° C. The time required to polymerize the monomer varies depending on the polymerization conditions and cannot be unconditionally determined. Therefore, it is arbitrary, but it is usually about 1 to 20 hours.
 重合反応は、残存しているモノマーの量が20質量%以下になった時点で、任意に終了することができる。なお、残存しているモノマーの量は、例えば、ゲルパーミエイションクロマトグラフィー(GPC)を用いて測定することができる。 The polymerization reaction can be arbitrarily terminated when the amount of the remaining monomer is 20% by mass or less. The amount of the remaining monomer can be measured by using, for example, gel permeation chromatography (GPC).
 以上のようにしてモノマーを塊状重合させることにより、コーティング成分を得ることができる。 The coating component can be obtained by bulk polymerization of the monomers as described above.
 一実施形態において、前記モノマーが架橋剤の非存在下で重合される。別の実施形態において、前記モノマーが架橋剤の存在下で重合される。 In one embodiment, the monomer is polymerized in the absence of a cross-linking agent. In another embodiment, the monomer is polymerized in the presence of a cross-linking agent.
 一実施形態において、前記コーティング成分は熱重合または光重合されたものである。別の実施形態において、前記コーティング成分は熱重合されたものである。別の実施形態において、前記コーティング成分は光重合されたものである。 In one embodiment, the coating component is thermally polymerized or photopolymerized. In another embodiment, the coating component is thermally polymerized. In another embodiment, the coating component is photopolymerized.
 モノマーを重合させる方法としては、例えば、塊状重合法、溶液重合法、乳化重合法、懸濁重合法などが挙げられるが、本開示は、かかる例示のみに限定されるものではない。これらの重合法のなかでは、塊状重合法および溶液重合法が好ましい。 Examples of the method for polymerizing the monomer include a massive polymerization method, a solution polymerization method, an emulsion polymerization method, a suspension polymerization method, and the like, but the present disclosure is not limited to these examples. Among these polymerization methods, a massive polymerization method and a solution polymerization method are preferable.
 また、モノマーの重合は、例えば、ラジカル重合法、リビングラジカル重合法、アニオン重合法、カチオン重合法、付加重合法、重縮合法、触媒重合などの方法によって行うことができる。 Further, the polymerization of the monomer can be carried out by a method such as a radical polymerization method, a living radical polymerization method, an anion polymerization method, a cationic polymerization method, an addition polymerization method, a polycondensation method, or a catalytic polymerization method.
 モノマーを溶液重合法によって重合させる場合には、例えば、モノマーを溶媒に溶解させ、得られた溶液を攪拌しながら重合開始剤を当該溶液に添加することによってモノマーを重合させることができるほか、重合開始剤を溶媒に溶解させ、得られた溶液を撹拌しながらモノマーを当該溶液に添加することによってモノマーを重合させることができる。溶媒は、モノマーと相溶する有機溶媒であることが好ましい。 When the monomer is polymerized by a solution polymerization method, for example, the monomer can be polymerized by dissolving the monomer in a solvent and adding a polymerization initiator to the solution while stirring the obtained solution. The monomer can be polymerized by dissolving the initiator in a solvent and adding the monomer to the solution while stirring the obtained solution. The solvent is preferably an organic solvent that is compatible with the monomer.
 本開示の導電材に含まれるホモポリマーまたはコポリマーは、重合開始剤として過酸化物系の開始剤(例えば、過酸化ベンゾイル、およびアゾビスイソブチロニトリル、ならびにそれらの類似体)を使用することによって重合されたものである。 The homopolymers or copolymers contained in the conductive materials of the present disclosure use peroxide-based initiators (for example, benzoyl peroxide and azobisisobutyronitrile, and their analogs) as polymerization initiators. It is polymerized by.
 重合開始剤として上記使用可能な重合開始剤を用いる場合、当該重合開始剤の量は、全モノマーの100重量部あたり、通常、約0.01重量部~約20重量部であることが好ましい。 When the above-mentioned usable polymerization initiator is used as the polymerization initiator, the amount of the polymerization initiator is usually preferably about 0.01 part by weight to about 20 parts by weight per 100 parts by weight of all the monomers.
 一実施形態では、モノマーに電子線を照射することにより、電子線重合が行われる。一実施形態では、電子線のみの照射によってモノマーを重合させることができる。電子線重合において、電子線は、一実施形態では、光重合開始剤の存在下で照射され、別の実施形態では光重合開始剤の非存在下で照射される。いずれの実施形態も、本開示の範囲内である。 In one embodiment, electron beam polymerization is performed by irradiating the monomer with an electron beam. In one embodiment, the monomer can be polymerized by irradiation with only an electron beam. In electron beam polymerization, the electron beam is irradiated in the presence of a photopolymerization initiator in one embodiment and in the absence of a photopolymerization initiator in another embodiment. Both embodiments are within the scope of the present disclosure.
 モノマーを重合させる際の重合反応温度および雰囲気については、特に限定がない。通常、重合反応温度は、約50℃~約120℃である。重合反応時の雰囲気は、例えば、窒素ガスなどの不活性ガス雰囲気であることが好ましい。また、モノマーの重合反応時間は、重合反応温度などによって異なるので一概には決定することができないが、通常、約3~20時間である。 The polymerization reaction temperature and atmosphere when polymerizing the monomer are not particularly limited. Generally, the polymerization reaction temperature is about 50 ° C. to about 120 ° C. The atmosphere during the polymerization reaction is preferably an inert gas atmosphere such as nitrogen gas. Further, the polymerization reaction time of the monomer varies depending on the polymerization reaction temperature and the like and cannot be unconditionally determined, but is usually about 3 to 20 hours.
 (2)導電材の製造方法
 本開示の導電材は、特定のモノマーを1種または2種以上混合して、適宜の重合条件のもと、必要に応じて適宜の重合開始剤等の添加剤を用いて、重合させることにより、製造することができる。
(2) Method for Producing Conductive Material The conductive material of the present disclosure is prepared by mixing one or more specific monomers and adding an appropriate polymerization initiator or other additive as necessary under appropriate polymerization conditions. It can be produced by polymerizing with.
 (コーティング成分の説明)
 ある特定のコーティング成分が提供されたときの、本開示の条件に適合する基材および溶剤の特定については以下のとおりである。
(Explanation of coating ingredients)
The identification of substrates and solvents that meet the conditions of the present disclosure when a particular coating component is provided is as follows.
 選択したコーティング成分について、溶剤を特定する。特定は、そのコーティング成分を溶解する溶剤を選択することで実現される。選択は、文献値で特定してもよく、実際に実験してもよい。好ましくは、実際に実験することで、確認することが望ましい。 Specify the solvent for the selected coating component. The identification is realized by selecting a solvent that dissolves the coating component. The selection may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
 次に、その溶剤に溶解しない基材を選択する。選択は、文献値で特定してもよく、実際に実験してもよい。好ましくは、実際に実験することで、確認することが望ましい。 Next, select a base material that does not dissolve in the solvent. The selection may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
 文献値は以下の表を参照し得る他、C. M. Hansen著: J. Paint. Tech., 39 (505), 104-117 (1967)、山本秀樹著:“SP値基礎・応用と計算方法”、情報機構(2005)という文献を参照してもよい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Reference values can be found in the table below, as well as C.I. M. By Hansen: J.M. Paint. Tech. , 39 (505), 104-117 (1967), Hideki Yamamoto: "SP Value Basics / Applications and Calculation Methods", Information Mechanism (2005).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実際に測定して3つの成分を定める場合は、例えば、以下のような手順を行うことができる。
(1)使用するコーティング成分を決定する。
(2)前記コーティング成分を候補溶剤に浸漬し、それを溶解する溶剤を特定する。
(3)(2)で特定された溶剤を候補基材上に滴下して、該溶剤により破損しない基材を特定する。
(4)前記コーティング成分を、(3)で特定された溶剤に溶解させ、コーティング成分溶液を調製する。
(5)前記コーティング成分溶液を、(3)で特定された「溶剤により破損しない基材」上に滴下して、コーティング成分溶液が該基材を破損しないことを確認する。
When actually measuring and determining the three components, for example, the following procedure can be performed.
(1) Determine the coating component to be used.
(2) The coating component is immersed in a candidate solvent, and a solvent for dissolving the coating component is specified.
(3) The solvent specified in (2) is dropped onto the candidate base material to specify a base material that is not damaged by the solvent.
(4) The coating component is dissolved in the solvent specified in (3) to prepare a coating component solution.
(5) The coating component solution is dropped onto the "solvent-insoluble substrate" specified in (3), and it is confirmed that the coating component solution does not damage the substrate.
 (導電成分の説明)
 導電成分としては、例えば、鱗片状黒鉛などの天然黒鉛、人造黒鉛などのグラファイト、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラックなどのカーボンブラック、グラフェン、カーボンナノチューブ、フラーレンなどの炭素系材料;炭素繊維、金属繊維などの導電性繊維;フッ化カーボン;銅、ニッケル、金、錫、アルミニウム、亜鉛、鉄、銀などの金属粒子の粉末;酸化亜鉛、チタン酸カリウムなどの導電性ウィスカー;酸化チタンなどの導電性金属酸化物;ポリフェニレン誘導体などの有機導電材などが挙げられるが、本開示は、かかる例示のみに限定されるものではない。これらの導電成分は、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらの導電成分のなかでは、作業性および成形性に優れるとともに、電気抵抗の変化率の広範囲において柔軟性および伸長性に優れた導電性フィルムを得る観点から、カーボンナノチューブ、カーボンブラック、グラフェンおよび金属粒子が好ましく、カーボンナノチューブ、カーボンブラック、グラフェンおよび銀粒子がより好ましい。
(Explanation of conductive components)
Examples of conductive components include natural graphite such as scaly graphite, graphite such as artificial graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black and other carbon black, graphene, carbon nanotubes, and fullerene. Carbon-based materials such as; conductive fibers such as carbon fiber and metal fiber; carbon fluoride; powder of metal particles such as copper, nickel, gold, tin, aluminum, zinc, iron and silver; zinc oxide, potassium titanate, etc. Examples thereof include conductive whiskers; conductive metal oxides such as titanium oxide; organic conductive materials such as polyphenylene derivatives, but the present disclosure is not limited to these examples. Each of these conductive components may be used alone, or two or more types may be used in combination. Among these conductive components, carbon nanotubes, carbon black, graphene and metals are excellent in workability and moldability, and from the viewpoint of obtaining a conductive film having excellent flexibility and extensibility in a wide range of changes in electrical resistance. Particles are preferred, with carbon nanotubes, carbon black, graphene and silver particles being more preferred.
 コーティング成分および導電成分の合計固形分における導電成分の固形分の含有率は、当該導電成分の種類などによって異なるので一概には決定することができないが、通常、作業性および成形性に優れるとともに、電気抵抗の変化率の広範囲において柔軟性および伸長性に優れた導電性フィルムを得る観点から、好ましくは1質量%以上であり、作業性および成形性に優れるとともに、電気抵抗の変化率の広範囲において柔軟性および伸長性に優れた導電性フィルムを得る観点から、好ましくは100質量%以下である。 The solid content of the conductive component in the total solid content of the coating component and the conductive component cannot be unconditionally determined because it differs depending on the type of the conductive component and the like, but it is usually excellent in workability and moldability, and also From the viewpoint of obtaining a conductive film having excellent flexibility and extensibility in a wide range of rate of change in electrical resistance, it is preferably 1% by mass or more, which is excellent in workability and moldability and in a wide range of rate of change in electrical resistance. From the viewpoint of obtaining a conductive film having excellent flexibility and extensibility, it is preferably 100% by mass or less.
 カーボンナノチューブとしては、例えば、1枚のシート状グラファイト(グラフェンシート)を筒状に丸めた中空円筒構造のシングルウォールカーボンナノチューブ、直径の異なるシングルウォールカーボンナノチューブを同心円状に複数積層した構造のマルチウォールカーボンナノチューブ、スーパーグロース法により製造されるシングルウォールカーボンナノチューブ、シングルウォールカーボンナノチューブの端部が円錐状で閉じた形状のカーボンナノコーン、内部にフラーレンを内包するカーボンナノチューブなどが挙げられるが、本開示は、かかる例示のみに限定されるものではない。これらのカーボンナノチューブは、それぞれ単独で用いてもよく、2種類以上を併用してもよい。これらのカーボンナノチューブのなかでは、マルチウォールカーボンナノチューブが好ましい。 Examples of carbon nanotubes include single-wall carbon nanotubes having a hollow cylindrical structure in which one sheet of graphite (graphene sheet) is rolled into a cylinder, and multi-walls having a structure in which a plurality of single-wall carbon nanotubes having different diameters are concentrically laminated. Examples thereof include carbon nanotubes, single-wall carbon nanotubes manufactured by the super-growth method, carbon nanocones having a conical and closed end of the single-wall carbon nanotubes, and carbon nanotubes containing fullerenes inside. Is not limited to such examples. Each of these carbon nanotubes may be used alone, or two or more types may be used in combination. Among these carbon nanotubes, multi-wall carbon nanotubes are preferable.
 カーボンナノチューブの長さは、作業性および成形性に優れるとともに、電気抵抗の変化率の広範囲において柔軟性および伸長性に優れた導電性フィルムを得る観点から、好ましくは0.1~1000μm、より好ましくは1~500μmであり、さらに好ましくは1~90μmである。 The length of the carbon nanotubes is preferably 0.1 to 1000 μm, more preferably 0.1 to 1000 μm, from the viewpoint of obtaining a conductive film having excellent workability and moldability and excellent flexibility and extensibility in a wide range of changes in electrical resistance. Is 1 to 500 μm, more preferably 1 to 90 μm.
 カーボンナノチューブの直径は、作業性および成形性に優れるとともに、電気抵抗の変化率の広範囲において柔軟性および伸長性に優れた導電性フィルムを得る観点から、好ましくは10~50nm、より好ましくは10~20nmである。 The diameter of the carbon nanotubes is preferably 10 to 50 nm, more preferably 10 to 50 nm, from the viewpoint of obtaining a conductive film having excellent workability and moldability and excellent flexibility and extensibility in a wide range of changes in electrical resistance. It is 20 nm.
 コーティング成分およびカーボンナノチューブの合計固形分におけるカーボンナノチューブの固形分の含有率は、作業性および成形性に優れるとともに、電気抵抗の変化率の広範囲において柔軟性および伸長性に優れた導電性フィルムを得る観点から、好ましくは1質量%以上、より好ましくは1.5質量%以上、さらに好ましくは2質量%以上であり、作業性および成形性に優れるとともに、電気抵抗の変化率の広範囲において柔軟性および伸長性に優れた導電性フィルムを得る観点から、好ましくは25質量%以下、より好ましくは20質量%以下、さらに好ましくは15質量%以下であり、さらに一層好ましくは3.5~10質量%である。 The solid content of carbon nanotubes in the total solid content of the coating component and carbon nanotubes is excellent in workability and moldability, and a conductive film having excellent flexibility and extensibility in a wide range of changes in electrical resistance is obtained. From the viewpoint, it is preferably 1% by mass or more, more preferably 1.5% by mass or more, still more preferably 2% by mass or more, excellent in workability and moldability, and flexible and flexible in a wide range of rate of change in electrical resistance. From the viewpoint of obtaining a conductive film having excellent extensibility, it is preferably 25% by mass or less, more preferably 20% by mass or less, still more preferably 15% by mass or less, and even more preferably 3.5 to 10% by mass. is there.
 (コーティング剤の説明)
 本開示において使用されるコーティング剤は、コーティング成分と溶剤の他、コーティングを促進するなどの他の機能を与えるための他の成分を含んでいてもよい。
(Explanation of coating agent)
The coating agent used in the present disclosure may contain a coating component and a solvent, as well as other components for imparting other functions such as promoting coating.
 例えば、本開示のコーティング剤は、分散剤を含んでいてもよい。 For example, the coating agent of the present disclosure may contain a dispersant.
 本開示において使用される分散剤において、分子内のヒドロキシル基の数は1以上であればよく、例えば、1~10、好ましくは1~5、さらに好ましくは1~3(特に1~2)であり、分子内のエーテル結合の数も1以上であればよく、例えば、1~10、好ましくは1~5、さらに好ましくは1~3(特に1~2)である。分散剤(括弧内の温度は沸点を表す)の具体例としては、ジエチレングリコールジエチレングリコール(245℃)、トリエチレングリコール(179℃)、テトラエチレングリコール(327.3℃)、ポリエチレングリコール、セロソルブ類(例えば、メチルセロソルブ(別名:エチレングリコールモノメチルエーテル)(124.5℃)、エチルセロソルブ(エチレングリコールモノエチルエーテル)(135.1℃)、エチレングリコールモノブチルエーテル(171.2℃)、エチレングリコールモノt-ブチルエーテル(別名:2-t-ブトキシエタノール)(152℃)などのC1-4アルキルセロソルブ)、プロピレングリコールモノC1-4アルキルエーテル(例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテルなど)、カルビトール類(例えば、メチルカルビトール(別名:ジエチレングリコールモノメチルエーテル)(194℃)、エチルカルビトール(200℃)、ブチルカルビトール(別名:2-(2-ブトキシエトキシ)エタノール)(230.4℃)などのC1-4アルキルカルビトール)、ジプロピレングリコールモノC1-4アルキルエーテル例えば、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテルなど)、トリエチレングリコールモノアルキルエーテル類(例えば、トリエチレングリコールモノメチルエーテル(249℃)、トリエチレングリコールモノブチルエーテル(271℃)などのトリエチレングリコールモノC1-4アルキルエーテルなど)、環状エーテルアルコール(例えば、ヒドロキシテトラヒドロフラン、ヒドロキシジオキサンなど)が挙げられるが、本開示は、かかる例示のみに限定されるものではない。より好ましくは、分散剤としては、特許第6457298号の[0042]表面改質剤の欄に記載されているものが有利であり得る。例えば、この表面改質剤において、分子内のヒドロキシル基の数は1以上であればよく、例えば、1~10、好ましくは1~5、さらに好ましくは1~3(特に1~2)程度である。分子内のエーテル結合の数も1以上であればよく、例えば、1~10、好ましくは1~5、さらに好ましくは1~3(特に1~2)程度である。 In the dispersant used in the present disclosure, the number of hydroxyl groups in the molecule may be 1 or more, for example, 1 to 10, preferably 1 to 5, and more preferably 1 to 3 (particularly 1 to 2). The number of ether bonds in the molecule may be 1 or more, for example, 1 to 10, preferably 1 to 5, and more preferably 1 to 3 (particularly 1 to 2). Specific examples of the dispersant (the temperature in parentheses indicates the boiling point) include diethylene glycol diethylene glycol (245 ° C.), triethylene glycol (179 ° C.), tetraethylene glycol (327.3 ° C.), polyethylene glycol, cellosolves (for example). , Methyl cellosolve (also known as ethylene glycol monomethyl ether) (124.5 ° C), ethyl cellosolve (ethylene glycol monoethyl ether) (135.1 ° C), ethylene glycol monobutyl ether (171.2 ° C), ethylene glycol mono t- C 1-4 alkyl cellosolve such as butyl ether (also known as 2-t-butoxyethanol) (152 ° C.), propylene glycol mono C 1-4 alkyl ether (eg, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol) Monobutyl ether, etc.), carbitols (eg, methyl carbitol (also known as diethylene glycol monomethyl ether) (194 ° C), ethyl carbitol (200 ° C), butyl carbitol (also known as 2- (2-butoxyethoxy) ethanol) (C 1-4 alkyl carbitol such as (230.4 ° C.)), dipropylene glycol mono C 1-4 alkyl ether, for example, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monobutyl ether, etc.), Triethylene glycol monoalkyl ethers (eg, triethylene glycol monomethyl ether (249 ° C), triethylene glycol monobutyl ether (271 ° C) and other triethylene glycol mono C 1-4 alkyl ethers), cyclic ether alcohols (eg, eg) (Hydroxy tetrahydrofuran, hydroxydioxane, etc.), but the present disclosure is not limited to such embodiments. More preferably, as the dispersant, those described in the column of [0042] Surface modifier of Japanese Patent No. 6457298 may be advantageous. For example, in this surface modifier, the number of hydroxyl groups in the molecule may be 1 or more, for example, 1 to 10, preferably 1 to 5, and more preferably 1 to 3 (particularly 1 to 2). is there. The number of ether bonds in the molecule may be 1 or more, and is, for example, 1 to 10, preferably 1 to 5, and more preferably 1 to 3 (particularly 1 to 2).
 一つの実施形態において、コーティング剤は、2-(2-ブトキシエトキシ)エタノールを含む。 In one embodiment, the coating agent comprises 2- (2-butoxyethoxy) ethanol.
 本開示において、分散剤は、導電成分をコーティング剤中に分散させるために使用される場合がある。 In the present disclosure, the dispersant may be used to disperse the conductive component in the coating agent.
 (基材)
 本開示において、基材としては、溶剤とコーティング成分との関係を満たしている限り、どのような基材をも用いることができる。すなわち、溶剤が、コーティングが可能なようにコーティング成分を溶解するが、基材を損傷させないような条件を満たす基材である限り(すなわち、溶剤とコーティングが存在する限り)、どのような基材を用いてもよい。
(Base material)
In the present disclosure, any base material can be used as the base material as long as the relationship between the solvent and the coating component is satisfied. That is, what kind of substrate is used as long as the solvent dissolves the coating components so that the coating is possible, but satisfies the conditions that do not damage the substrate (that is, as long as the solvent and the coating are present). May be used.
 あるいは、基材と溶剤とコーティング成分との関係については、上記のような損傷で観察することができるほか、代替として、溶剤に対する基材の溶解度が、コーティング成分の溶解度よりも小さくなるような、コーティング成分と溶剤とが存在する、基材を選択してもよい。この場合、溶解度の大小で見るため、基材が少し減少することがあり得るが、コーティング成分との関係でみると、十分にコーティングが可能な関係であるといえる。従って、ある程度基材の減少が許容される局面においては、この関係が用いられ得る。 Alternatively, the relationship between the base material, the solvent, and the coating component can be observed in the above-mentioned damage, and as an alternative, the solubility of the base material in the solvent becomes smaller than the solubility of the coating component. A substrate may be selected in which the coating component and the solvent are present. In this case, the base material may be slightly reduced because of the degree of solubility, but it can be said that the coating is sufficiently possible in relation to the coating components. Therefore, this relationship can be used in situations where a decrease in the base material is allowed to some extent.
 さらに代替としては、溶剤がコーティング成分を溶解するが、基材を実質的に溶解しない関係にあるコーティング成分と溶剤とが存在する基材を選択してもよい。ここで、「実質的に溶解しない」とは、対象(基材)を溶剤に浸漬した際に基材の減少が実質的に観察されることをいい、例えば、1重量%未満の減少がみられることをいう。この代替は損傷の有無を溶解度の有無で表現したものということができる。 As a further alternative, a base material in which the coating component and the solvent are present, which has a relationship in which the solvent dissolves the coating component but does not substantially dissolve the base material, may be selected. Here, "substantially insoluble" means that a decrease in the base material is substantially observed when the object (base material) is immersed in a solvent, for example, a decrease of less than 1% by weight is observed. To be done. This alternative can be said to express the presence or absence of damage by the presence or absence of solubility.
 ある特定の基材が提供されたときの、本開示の条件に適合するコーティング成分および溶剤の特定については以下のとおりである。 The identification of coating components and solvents that meet the conditions of the present disclosure when a particular substrate is provided is as follows.
 提供された基材について、適切な溶剤を特定する。その特定は、その基材を溶解しない溶剤を選択することで実現される。選択は、文献値で特定してもよく、実際に実験してもよい。好ましくは、実際に実験することで、確認することが望ましい。 Identify the appropriate solvent for the provided substrate. The identification is realized by selecting a solvent that does not dissolve the base material. The selection may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
 次に、その溶剤に溶解するコーティング成分を選択する。選択は、文献値で特定してもよく、実際に実験してもよい。好ましくは、実際に実験することで、確認することが望ましい。 Next, select the coating component that dissolves in the solvent. The selection may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
 ある特定の溶剤が提供されたときの、本開示の条件に適合するコーティング成分および基材の特定については以下のとおりである。 The specification of the coating component and the base material that meet the conditions of the present disclosure when a specific solvent is provided is as follows.
 溶剤について、基材を特定する。特定は、その溶剤に溶解しない基材を選択することで実現される。選択は、文献値で特定してもよく、実際に実験してもよい。好ましくは、実際に実験することで、確認することが望ましい。 Specify the base material for the solvent. The identification is realized by selecting a base material that is insoluble in the solvent. The selection may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
 次に、その溶剤に溶解するコーティング成分を選択する。選択は、文献値で特定してもよく、実際に実験してもよい。好ましくは、実際に実験することで、確認することが望ましい。 Next, select the coating component that dissolves in the solvent. The selection may be specified by literature values or may be actually experimented. Preferably, it is desirable to confirm by actual experiment.
 代表的な実施形態において、基材の例としては、ポリオレフィン、ポリアクリル、ポリアミド、ポリウレタンなどが挙げられるがそれに限定されない。 In a typical embodiment, examples of the base material include, but are not limited to, polyolefin, polyacrylic, polyamide, polyurethane and the like.
 一例として、ポリオレフィンおよびポリアクリルは、ヘプタン、オクタン、ウンデカン、リモネン、2-エチル-1-ヘキサノール、1-オクタノール、3-メトキシ3-メチル-1-ブタノールに対する溶解度は低い。したがって、ポリオレフィン、ポリアクリルに関しては、上記列挙した溶媒は全て使用することができ、特にヘプタン、オクタン、ウンデカン、リモネン、2-エチル-1-ヘキサノール、1-オクタノール、3-メトキシ3-メチル-1-ブタノールすべて利用可能であると考えられる。 As an example, polyolefins and polyacrylics have low solubility in heptane, octane, undecane, limonene, 2-ethyl-1-hexanol, 1-octanol, 3-methoxy3-methyl-1-butanol. Therefore, for polyolefins and polyacrylics, all of the solvents listed above can be used, especially heptane, octane, undecane, limonene, 2-ethyl-1-hexanol, 1-octanol, 3-methoxy 3-methyl-1. -All butanol is considered available.
 (導電材の用途)
 本開示の導電材は、例えば、アクチュエータ、産業用ロボットなどに使用されるセンサ、配線、電極、基板、発電素子、スピーカー、マイクロフォン、ノイズキャンセラ、トランスデューサ、人工筋肉、小型ポンプ、医療用器具などに好適に使用することができる導電性フィルムおよび当該導電性フィルムの原料として好適に使用することができる。
(Use of conductive material)
The conductive material of the present disclosure is suitable for, for example, sensors, wirings, electrodes, substrates, power generation elements, speakers, microphones, noise cancellers, transducers, artificial muscles, small pumps, medical instruments and the like used in actuators, industrial robots and the like. It can be suitably used as a conductive film that can be used in the above and as a raw material of the conductive film.
(塗布方法)
 前記コーティング剤を基材に塗布する方法としては、例えば、スクリーン印刷、グラビア印刷、オフセット印刷、ナイフコーター、スロットダイコーター、リップコーター、ロールコーター、フローコーター、スプレーコーター、バーコーター、ディッピングなどの一般に使用することができる方法等が挙げられるが、本開示は、かかる例示のみに限定されるものではない。前記コーティング剤を基材に塗布する際には、当該コーティング剤を基材に直接塗布してもよく、あるいは離型紙などに塗布した後、この塗布物を基材上に転写させてもよい。このように前記コーティング剤を塗布した後、乾燥させることにより、基材上に導電性フィルムを形成させることができる。
(Applying method)
As a method of applying the coating agent to a substrate, for example, screen printing, gravure printing, offset printing, knife coater, slot die coater, lip coater, roll coater, flow coater, spray coater, bar coater, dipping and the like are generally used. Examples thereof include methods that can be used, but the present disclosure is not limited to such examples. When the coating agent is applied to the base material, the coating agent may be applied directly to the base material, or the coated material may be transferred onto the base material after being applied to a paper pattern or the like. By applying the coating agent in this way and then drying it, a conductive film can be formed on the base material.
 基材に塗布する前記コーティング剤の厚さは、前記コーティング成分および導電成分の種類などによって異なるので一概には決定することができないことから、基材上に形成させる導電材の所望の厚さに応じて適宜決定することが好ましい。基材に塗布する前記コーティング剤の厚さは、通常、電気抵抗の変化率の広範囲において柔軟性および伸長性に優れた導電材を得る観点から、100~1000μm程度である。 Since the thickness of the coating agent to be applied to the base material varies depending on the types of the coating component and the conductive component and the like, it cannot be unconditionally determined. Therefore, the desired thickness of the conductive material to be formed on the base material can be obtained. It is preferable to make an appropriate decision accordingly. The thickness of the coating agent applied to the base material is usually about 100 to 1000 μm from the viewpoint of obtaining a conductive material having excellent flexibility and extensibility in a wide range of changes in electrical resistance.
 前記コーティング剤を基材に塗布した後、乾燥させる方法としては、例えば、熱風、遠赤外線照射などが挙げられるが、本開示はかかる例示のみに限定されるものではない。 Examples of the method of applying the coating agent to the substrate and then drying it include hot air, far-infrared irradiation, and the like, but the present disclosure is not limited to such examples.
 (コーティングが可能なように該コーティング成分を溶解するが、該基材を損傷させない成分の特定法の説明)
(1)基材を損傷させないかの判定
 コーティング成分を溶解した試験溶剤を、試験基材上に滴下し、3分間放置する。放置後、溶剤滴下部の状態を確認し、以下の3段階で評価する。
  A:滴下面にほとんど変化なし
  B:表面に滴下液の跡が残る
  C:滴下したところが膨れ上がる(膨潤する)
 次いで、Aと評価された溶剤を用いてコーティング成分溶液の調製を検討する。
(Explanation of a method for identifying a component that dissolves the coating component so that it can be coated but does not damage the substrate)
(1) Judgment as to whether or not the base material is damaged A test solvent in which the coating component is dissolved is dropped onto the test base material and left for 3 minutes. After standing, the state of the solvent dropping part is confirmed and evaluated in the following three stages.
A: Almost no change on the dropping surface B: Traces of the dropping liquid remain on the surface C: The dropped part swells (swells)
Next, the preparation of the coating component solution is examined using the solvent evaluated as A.
(2)コーティング成分が溶剤に溶解か不溶かの判定
 コーティング成分(3.00g)を、試験溶剤(7.00g)に浸漬させ、溶解するかどうかを確認する。
(2) Judgment of whether the coating component is soluble or insoluble in the solvent The coating component (3.00 g) is immersed in the test solvent (7.00 g) to confirm whether or not it is soluble.
(3)溶剤に対する該基材の溶解度が、該コーティング成分の溶解度よりも小さいものから選択(文献値、実験)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(3) Select from those in which the solubility of the base material in a solvent is smaller than the solubility of the coating component (literature values, experiments).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 当業者は、公知の文献、技術常識などに基づいて種々のポリマー(コーティング成分または基材樹脂)および溶剤のSP値を調査し、特定することが出来る。 Those skilled in the art can investigate and specify the SP values of various polymers (coating components or base resin) and solvents based on known literature, common general technical knowledge, and the like.
 (好ましい実施形態)
 以下に本開示の好ましい実施形態を説明する。以下に提供される実施形態は、本開示のよりよい理解のために提供されるものであり、本開示の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本開示の範囲内で適宜改変を行うことができることは明らかである。また、本開示の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
(Preferable embodiment)
The preferred embodiments of the present disclosure will be described below. It is understood that the embodiments provided below are provided for a better understanding of the present disclosure and the scope of the present disclosure should not be limited to the following description. Therefore, it is clear that a person skilled in the art can make appropriate modifications within the scope of the present disclosure in consideration of the description in the present specification. It is also understood that the following embodiments of the present disclosure may be used alone or in combination.
 (導電材の製造法)
 1局面において、本開示は、溶剤を、用途に沿った溶解能により選択する技術を提供する。よって、本開示は、導電材でコーティングされた基材を製造する方法であって、該方法は、該基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程、および該基材上の該導電成分および該コーティング成分から該導電材を形成する工程を包含し、該溶剤は、コーティングが可能なように該コーティング成分を溶解するが、該基材を損傷させない、方法を提供する。
(Manufacturing method of conductive material)
In one aspect, the present disclosure provides a technique for selecting a solvent according to its solubility according to the application. Therefore, the present disclosure is a method for producing a base material coated with a conductive material, and the method is a coating agent containing a conductive component, a coating component, and a solvent on a part or all of the surface of the base material. Including the step of coating with, and the step of forming the conductive material from the conductive component and the coating component on the substrate, the solvent dissolves the coating component so that it can be coated. Provided is a method that does not damage the substrate.
 ここで、該溶剤は、コーティングが可能なように該コーティング成分を溶解するが、該基材を損傷させないとは以下をいう。 Here, the solvent dissolves the coating component so that it can be coated, but does not damage the substrate means the following.
 すなわち、該溶剤は、コーティング成分を溶解することで該基材上へのコーティング成分のコーティングを可能にするとともに、コーティング工程においてコーティング成分、溶剤および必要に応じて分散剤を含むコーティング剤は該基材を損傷させない。 That is, the solvent enables coating of the coating component on the substrate by dissolving the coating component, and the coating agent containing the coating component, the solvent and, if necessary, the dispersant in the coating step is the group. Does not damage the material.
 本開示のこの技術を提供することにより、任意の基材に、適切なコーティング剤を塗布できる技術が提供され、任意の組合せの導電材が提供される。 By providing this technique of the present disclosure, a technique capable of applying an appropriate coating agent to an arbitrary substrate is provided, and an arbitrary combination of conductive materials is provided.
 別の局面では、本開示は、溶剤を、基材とコーティング成分の溶解度の比較によって特定することで所望の組合せの導電材を提供する。したがって、本開示は、導電材でコーティングされた基材を製造する方法であって、該方法は、該基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程、および該基材上の該導電成分および該コーティング成分から該導電材を形成する工程を包含し、該溶剤に対する該基材の溶解度が、該コーティング成分の溶解度よりも小さい、方法を提供する。 In another aspect, the present disclosure provides a desired combination of conductive materials by identifying the solvent by comparing the solubility of the substrate and the coating components. Therefore, the present disclosure is a method for producing a base material coated with a conductive material, and the method is a coating agent containing a conductive component, a coating component, and a solvent on a part or all of the surface of the base material. Including the step of coating with the substrate and the step of forming the conductive material from the conductive component and the coating component on the substrate, the solubility of the substrate in the solvent is smaller than the solubility of the coating component. , Provide a method.
 基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程は、本明細書において別途説明したかまたは、公知の技術に基づいて、適宜行うことができる。例えば、適切に選択した、導電成分とコーティング成分と溶剤とを含むコーティング剤を、基材の一部またはすべてに塗布することを挙げることができる。 The step of coating a part or all of the surface of the base material with a coating agent containing a conductive component, a coating component, and a solvent is appropriately performed based on a technique described separately in the present specification or a known technique. be able to. For example, an appropriately selected coating agent containing a conductive component, a coating component, and a solvent may be applied to a part or all of the base material.
 基材上の導電成分およびコーティング成分から導電材を形成する工程もまた、本明細書において他の箇所に記載されるかまたは公知の任意の手法を用いて実施することができる。 The step of forming the conductive material from the conductive component and the coating component on the base material can also be carried out using any method described elsewhere in the present specification or known.
 本明細書において「該溶剤に対する該基材の溶解度が、該コーティング成分の溶解度よりも小さい」とは、以下をいう。すなわち、ある溶剤に対する基材の溶解度と、その溶剤に対するコーティング成分との溶解度とを比較する場合に、前者が後者よりも小さいことをいう。文献値でも比較可能であるが、好ましくは実験による確認することが有利である。 In the present specification, "the solubility of the base material in the solvent is smaller than the solubility of the coating component" means the following. That is, when comparing the solubility of the base material in a certain solvent and the solubility of the coating component in the solvent, the former is smaller than the latter. Although it is possible to compare with the literature values, it is preferable to confirm by experiment.
 本開示のこの技術を提供することにより、任意の基材に、適切なコーティング剤を塗布できる技術が提供され、任意の組合せの導電材が提供される。 By providing this technique of the present disclosure, a technique capable of applying an appropriate coating agent to an arbitrary substrate is provided, and an arbitrary combination of conductive materials is provided.
 別の局面では、本開示は、溶剤が、コーティング成分を溶解することおよび基材を実質的に溶解しないものを用いることで、所望の組合せの導電材を提供する。したがって、本開示は、導電材でコーティングされた基材を製造する方法であって、該方法は、該基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程、および
該基材上の該導電成分および該コーティング成分から該導電材を形成する工程を包含し、該溶剤は、該コーティング成分を溶解するが、該基材を実質的に溶解しない、方法を提供する。
In another aspect, the present disclosure provides the desired combination of conductive materials by using a solvent that dissolves the coating component and substantially insoluble in the substrate. Therefore, the present disclosure is a method for producing a base material coated with a conductive material, and the method is a coating agent containing a conductive component, a coating component, and a solvent on a part or all of the surface of the base material. Including the step of coating with the substrate and the step of forming the conductive material from the conductive component on the substrate and the coating component, the solvent dissolves the coating component, but substantially the substrate. Provides a method that does not dissolve in.
 基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程は、本明細書において別途説明したかまたは、公知の技術に基づいて、適宜行うことができる。例えば、適切に選択した、導電成分とコーティング成分と溶剤とを含むコーティング剤を、基材の一部またはすべてに塗布することを挙げることができる。 The step of coating a part or all of the surface of the base material with a coating agent containing a conductive component, a coating component, and a solvent is appropriately performed based on a technique described separately in the present specification or a known technique. be able to. For example, an appropriately selected coating agent containing a conductive component, a coating component, and a solvent may be applied to a part or all of the base material.
 基材上の導電成分およびコーティング成分から導電材を形成する工程もまた、本明細書において他の箇所に記載されるかまたは公知の任意の手法を用いて実施することができる。 The step of forming the conductive material from the conductive component and the coating component on the base material can also be carried out using any method described elsewhere in the present specification or known.
 該溶剤は、該コーティング成分を溶解するが、該基材を実質的に溶解しないとは、以下をいう。すなわち、該溶剤は、コーティング成分を溶解することで該基材上へのコーティング成分のコーティングを可能にするとともに、該溶剤が、基材の2重量%未満、1重量%未満、0.5重量%未満、または0.1重量%未満しか溶解しないことを意味する。 The solvent dissolves the coating component but does not substantially dissolve the substrate means the following. That is, the solvent enables coating of the coating component on the base material by dissolving the coating component, and the solvent is less than 2% by weight, less than 1% by weight, and 0.5% by weight of the base material. It means that it dissolves less than% or less than 0.1% by weight.
 本開示のこの技術を提供することにより、任意の基材に、適切なコーティング剤を塗布できる技術が提供され、任意の組合せの導電材が提供される。 By providing this technique of the present disclosure, a technique capable of applying an appropriate coating agent to an arbitrary substrate is provided, and an arbitrary combination of conductive materials is provided.
 本開示の方法では、基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程が実施される。この工程では、本明細書において記載される任意の技術および/または公知の技術を用いることができる。この工程ではまた、上述の(塗布方法)のセクションで例示した方法等によって、コーティング工程を実施してもよい。 In the method of the present disclosure, a step of coating a part or all of the surface of the base material with a coating agent containing a conductive component, a coating component and a solvent is carried out. Any of the techniques described herein and / or known techniques can be used in this step. In this step, the coating step may also be carried out by the method exemplified in the above-mentioned (Coating method) section.
 本開示の方法ではまた、さらに、基材上の該導電成分および該コーティング成分から該導電材を形成する工程が実施される。この工程では、本明細書において記載される任意の技術および/または公知の技術を用いることができるが、好ましくは溶剤を除去する工程がよい。 In the method of the present disclosure, a step of forming the conductive material from the conductive component and the coating component on the base material is further carried out. Any technique and / or known technique described herein can be used in this step, but the step of removing the solvent is preferred.
 1つの実施形態では、前記コーティング成分は、1種のモノマー成分を含むホモポリマーまたは2~3種のモノマー成分を含むコポリマーである。 In one embodiment, the coating component is a homopolymer containing one monomer component or a copolymer containing two to three monomer components.
 1つの実施形態では、前記コーティング成分は、コポリマーである。 In one embodiment, the coating component is a copolymer.
 1つの実施形態では、前記導電材が、加熱処理により前記コーティング剤から形成され得る。ここで、加熱処理は、以下の方法で行うことができる:例えば、オーブン中での加熱、過熱水蒸気による加熱、マイクロ波による加熱、赤外線による加熱等が挙げられる。 In one embodiment, the conductive material can be formed from the coating agent by heat treatment. Here, the heat treatment can be carried out by the following methods: for example, heating in an oven, heating with superheated steam, heating with microwaves, heating with infrared rays, and the like.
 好ましい実施形態では、導電成分は、金属成分であり得る。金属は、金属フィラーであり得る。金属成分は好ましくは、銀、銅、金、アルミニウム、亜鉛、ニッケル、錫、および/または鉄のうち1つまたはそれ以上あるいはそれらの合金を1種または2種以上を含み得る。1つの好ましい金属は銀であるがそれに限定されない。 In a preferred embodiment, the conductive component can be a metallic component. The metal can be a metal filler. The metal component may preferably comprise one or more of silver, copper, gold, aluminum, zinc, nickel, tin, and / or iron, or one or more alloys thereof. One preferred metal is silver, but is not limited to it.
 1つの実施形態では、基材は、樹脂を含む。あるいは基材は樹脂であり得る。樹脂としては、例えば、ポリオレフィン樹脂、ポリアクリル樹脂、またはポリアミド樹脂等を挙げることができるがこれらに限定されない。 In one embodiment, the substrate comprises a resin. Alternatively, the substrate can be a resin. Examples of the resin include, but are not limited to, polyolefin resins, polyacrylic resins, and polyamide resins.
 1つの実施形態では、溶剤は、炭化水素系溶媒を含むものが有利であり得る。好ましい実施形態では、例えば、溶剤は、ヘプタン、オクタン、もしくはリモネン、またはこれらの組合せであり得る。別の好ましい実施形態では、例えば、溶剤は、ヘプタン、オクタン、ウンデカン、もしくはリモネン、またはこれらの組合せであり得る。 In one embodiment, it may be advantageous for the solvent to contain a hydrocarbon solvent. In a preferred embodiment, for example, the solvent can be heptane, octane, or limonene, or a combination thereof. In another preferred embodiment, for example, the solvent can be heptane, octane, undecane, or limonene, or a combination thereof.
 1つの実施形態では、溶剤は、アルコール系溶媒を含むものが有利であり得る。好ましい実施形態では、例えば、溶剤は、3-メトキシ-3-メチル-1-ブタノール、オクタノール、2-エチル-1-ヘキサノールまたはこれらの組合せである。 In one embodiment, it may be advantageous for the solvent to contain an alcohol solvent. In a preferred embodiment, for example, the solvent is 3-methoxy-3-methyl-1-butanol, octanol, 2-ethyl-1-hexanol or a combination thereof.
 1つの実施形態では、コーティング成分を構成するポリマーの第1のモノマー成分が、炭化水素系溶剤への溶解性を向上させるための、アルキル含有モノマーである。 In one embodiment, the first monomer component of the polymer constituting the coating component is an alkyl-containing monomer for improving the solubility in a hydrocarbon solvent.
 具体的な実施形態では、本開示において、例えば、モノマー成分の第1のモノマー成分が、イソステアリルアクリレート、ステアリルアクリレートまたはラウリルアクリレートであり得る。
 1つの実施形態では、前記第1のモノマー成分は、イソステアリルアクリレートである。1つの実施形態では、前記第1のモノマー成分は、ステアリルアクリレートである。1つの実施形態では、前記第1のモノマー成分は、ラウリルアクリレートである。
In a specific embodiment, in the present disclosure, for example, the first monomer component of the monomer component may be isostearyl acrylate, stearyl acrylate or lauryl acrylate.
In one embodiment, the first monomer component is an isostearyl acrylate. In one embodiment, the first monomer component is stearyl acrylate. In one embodiment, the first monomer component is lauryl acrylate.
 1つの実施形態では、コーティング成分を構成するポリマーの第2のモノマー成分が、伸縮性を向上させるモノマーである。 In one embodiment, the second monomer component of the polymer constituting the coating component is a monomer that improves elasticity.
 別の具体的な実施形態では、本開示において、例えば、前記モノマー成分の第2のモノマー成分が、アクリル酸、エチルアクリレートまたは2,2,2-トリフルオロエチルアクリレートであり得る。
 1つの実施形態では、前記第2のモノマー成分は、アクリル酸、または2,2,2-トリフルオロエチルアクリレートである。1つの実施形態では、前記第2のモノマー成分は、アクリル酸である。1つの実施形態では、前記第2のモノマー成分は、エチルアクリレートである。
 好ましい実施形態では、前記第2のモノマー成分は、2,2,2-トリフルオロエチルアクリレートである。
In another specific embodiment, in the present disclosure, for example, the second monomer component of the monomer component may be acrylic acid, ethyl acrylate or 2,2,2-trifluoroethyl acrylate.
In one embodiment, the second monomer component is acrylic acid, or 2,2,2-trifluoroethyl acrylate. In one embodiment, the second monomer component is acrylic acid. In one embodiment, the second monomer component is ethyl acrylate.
In a preferred embodiment, the second monomer component is 2,2,2-trifluoroethyl acrylate.
 1つの実施形態では、コーティング成分を構成するポリマーの第3のモノマー成分が、鎖状または環状エーテル構造を含有するモノマーである。 In one embodiment, the third monomer component of the polymer constituting the coating component is a monomer containing a chain or cyclic ether structure.
 別の具体的な実施形態では、本開示において、例えば、モノマー成分の第3のモノマー成分は、グリシジルアクリレート、(3-エチルオキセタン-3-イル)アクリレート、4-ヒドロキシブチルビニルエーテル、または2-メトキシエチルアクリレートであり得る。
 1つの実施形態では、前記第3のモノマー成分は、グリシジルアクリレートまたは(3-エチルオキセタン-3-イル)アクリレートである。1つの実施形態では、前記第3のモノマー成分は、4-ヒドロキシブチルビニルエーテル、または2-メトキシエチルアクリレートである。1つの実施形態では、前記第3のモノマー成分は、4-ヒドロキシブチルビニルエーテルである。1つの実施形態では、前記第3のモノマー成分は、2-メトキシエチルアクリレートである。
 1つの好ましい実施形態では、前記第3のモノマー成分は、グリシジルアクリレートである。別の好ましい実施形態では、前記第3のモノマー成分は、(3-エチルオキセタン-3-イル)アクリレートである。
In another specific embodiment, in the present disclosure, for example, the third monomer component of the monomer component is glycidyl acrylate, (3-ethyloxetane-3-yl) acrylate, 4-hydroxybutyl vinyl ether, or 2-methoxy. It can be ethyl acrylate.
In one embodiment, the third monomer component is glycidyl acrylate or (3-ethyloxetane-3-yl) acrylate. In one embodiment, the third monomer component is 4-hydroxybutyl vinyl ether, or 2-methoxyethyl acrylate. In one embodiment, the third monomer component is a 4-hydroxybutyl vinyl ether. In one embodiment, the third monomer component is 2-methoxyethyl acrylate.
In one preferred embodiment, the third monomer component is glycidyl acrylate. In another preferred embodiment, the third monomer component is (3-ethyloxetane-3-yl) acrylate.
 これらの第1のモノマー成分、第2のモノマー成分および第3のモノマー成分は任意に組み合わせることができ、好ましくは、上記具体的な例から2種(第1のモノマー成分と第2のモノマー成分、第2のモノマー成分と第3のモノマー成分、第3のモノマー成分と第1のモノマー成分など)、あるいは3種(第1、第2および第3のモノマー成分)組み合わせてもよい。1つの実施形態では、第1のモノマー成分、第2のモノマー成分および第3のモノマー成分は、それぞれ、モノマーA、モノマーBおよびモノマーCから別々に組み合わせてもよく、2つまたは3つが同じものであってもよい。 These first monomer component, second monomer component and third monomer component can be arbitrarily combined, and preferably two types (first monomer component and second monomer component) from the above specific example are used. , 2nd monomer component and 3rd monomer component, 3rd monomer component and 1st monomer component, etc.), or 3 types (1st, 2nd and 3rd monomer components) may be combined. In one embodiment, the first monomer component, the second monomer component and the third monomer component may be combined separately from monomer A, monomer B and monomer C, respectively, and two or three are the same. It may be.
 1つの実施形態ではコーティング成分は、イソステアリルアクリレート(ISTA)とアクリル酸(AA)とのコポリマーである。 In one embodiment, the coating component is a copolymer of isostearyl acrylate (ISTA) and acrylic acid (AA).
 1つの実施形態ではコーティング成分は、イソステアリルアクリレートとエチルアクリレート(EA)とのコポリマーである。 In one embodiment, the coating component is a copolymer of isostearyl acrylate and ethyl acrylate (EA).
 1つの実施形態ではコーティング成分は、ラウリルアクリレートと2,2,2-トリフルオロエチルアクリレートとのコポリマーである。 In one embodiment, the coating component is a copolymer of lauryl acrylate and 2,2,2-trifluoroethyl acrylate.
 1つの実施形態ではコーティング成分は、ステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートとのコポリマーである。 In one embodiment, the coating component is a copolymer of stearyl acrylate and 2,2,2-trifluoroethyl acrylate.
 1つの実施形態ではコーティング成分は、ラウリルアクリレート(LA)とエチルアクリレートとのコポリマーである。 In one embodiment, the coating component is a copolymer of lauryl acrylate (LA) and ethyl acrylate.
 1つの実施形態ではコーティング成分は、エチルアクリレートとサイラプレーン(登録商標) FM0725(JNC株式会社製)とのコポリマーである。 In one embodiment, the coating component is a copolymer of ethyl acrylate and Cyraplane® FM0725 (manufactured by JNC Corporation).
 1つの実施形態ではコーティング成分は、エチルアクリレートと4-ヒドロキシブチルビニルエーテルとのコポリマーである。 In one embodiment, the coating component is a copolymer of ethyl acrylate and 4-hydroxybutyl vinyl ether.
 1つの実施形態ではコーティング成分は、エチルアクリレートと2-メトキシエチルアクリレートとのコポリマーである。 In one embodiment, the coating component is a copolymer of ethyl acrylate and 2-methoxyethyl acrylate.
 1つの実施形態ではコーティング成分は、2,2,2-トリフルオロエチルアクリレートと2-メトキシエチルアクリレートとのコポリマーである。 In one embodiment, the coating component is a copolymer of 2,2,2-trifluoroethyl acrylate and 2-methoxyethyl acrylate.
 1つの好ましい実施形態ではコーティング成分は、イソステアリルアクリレートのコポリマーであり得、好ましくは、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートとのコポリマーである。これは、体積抵抗率が低く、抵抗値変化も小さいため有利であり得る。 In one preferred embodiment, the coating component can be a copolymer of isostearyl acrylate, preferably a copolymer of isostearyl acrylate and 2,2,2-trifluoroethyl acrylate. This can be advantageous because the volume resistivity is low and the change in resistance value is small.
 1つの好ましい実施形態ではコーティング成分は、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートとグリシジルアクリレートとのコポリマーであり得る。これは、体積抵抗率が低いため有利であり得る。 In one preferred embodiment, the coating component can be a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and glycidyl acrylate. This can be advantageous due to the low volume resistivity.
 1つの好ましい実施形態ではコーティング成分は、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートと(3-エチルオキセタン-3-イル)アクリレートとのコポリマーであり得る。これは、体積抵抗率が低く、抵抗値変化も小さいため有利であり得る。 In one preferred embodiment, the coating component can be a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and (3-ethyloxetane-3-yl) acrylate. This can be advantageous because the volume resistivity is low and the change in resistance value is small.
 1つの実施形態では、本開示で使用されるコーティング剤は、分散剤を含む。 In one embodiment, the coating agent used in the present disclosure comprises a dispersant.
 分散剤は、コーティング剤中に導電成分を十分均一に分散させて、体積抵抗率および抵抗値変化の低下をもたらすため有利であり得る。 The dispersant can be advantageous because it disperses the conductive component sufficiently uniformly in the coating agent, resulting in a decrease in volume resistivity and resistance value change.
 1つの実施形態では、前記分散剤は、2-(2-ブトキシエトキシ)エタノールである。 In one embodiment, the dispersant is 2- (2-butoxyethoxy) ethanol.
 (基材と導電材と溶剤との組合せ)
 別の局面において、本開示は、本開示の製造法に使用され得る基材と導電材と溶剤との特定の組合せを提供する。本開示の方法で用いされる限り、基材と導電材との組み合わせ、導電材と溶剤との組み合わせ、溶剤と基材と組合せという形態で提供されてもよい。
(Combination of base material, conductive material and solvent)
In another aspect, the present disclosure provides a particular combination of a substrate, a conductive material and a solvent that can be used in the manufacturing process of the present disclosure. As long as it is used in the method of the present disclosure, it may be provided in the form of a combination of a base material and a conductive material, a combination of a conductive material and a solvent, and a combination of a solvent and a base material.
 (多層材料)
 別の局面において、本開示は、基材と、前記基材の表面にコーティングされた導電層と、を有する多層材料であって、前記導電層は、導電成分とコーティング成分とを含み、前記基材は、前記コーティング成分を溶解する溶剤に溶解しないものである、多層材料である。ここで、採用される基材と、導電成分と、コーティング成分と、基材とは、本明細書において他の箇所において説明した任意の組合せを用いることができ、それらの組合せは、基材は、前記コーティング成分を溶解する溶剤に溶解しないものである限り任意のものを利用することができる。
(Multilayer material)
In another aspect, the present disclosure is a multilayer material having a base material and a conductive layer coated on the surface of the base material, wherein the conductive layer contains a conductive component and a coating component, and the base. The material is a multi-layer material that is insoluble in a solvent that dissolves the coating component. Here, as the base material, the conductive component, the coating component, and the base material to be adopted, any combination described in other parts of the present specification can be used, and in those combinations, the base material is a base material. Any material can be used as long as it does not dissolve in a solvent that dissolves the coating component.
 ここで、「層」とは、基材の全面に存在する(コーティングされている)ことを意味することの他、導電層は基材の表面の少なくとも一部に存在(コーティング)していれば良い。 Here, the "layer" means that the conductive layer is present (coated) on the entire surface of the base material, and the conductive layer is present (coated) on at least a part of the surface of the base material. good.
 (導電材でコーティングされた基材)
 別の局面において、本開示は、導電材でコーティングされた基材であって、該導電材は、金属成分とコーティング成分とを含み、該基材は、該コーティング成分を溶解する溶剤に溶解しないものである、基材を提供する。ここで、採用される基材と、導電成分と、コーティング成分と、基材とは、本明細書において他の箇所において説明した任意の組合せを用いることができ、それらの組合せは、基材は、前記コーティング成分を溶解する溶剤に溶解しないものである限り任意のものを利用することができる。
(Base material coated with conductive material)
In another aspect, the present disclosure is a substrate coated with a conductive material, the conductive material containing a metal component and a coating component, the substrate being insoluble in a solvent that dissolves the coating component. Provides a substrate that is a thing. Here, as the base material, the conductive component, the coating component, and the base material to be adopted, any combination described in other parts of the present specification can be used, and in those combinations, the base material is a base material. Any material can be used as long as it does not dissolve in a solvent that dissolves the coating component.
 (注記)
 本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値の範囲内」と明記した場合、その範囲には2つの値自体も含む。
(Note)
As used herein, "or" is used when "at least one" of the matters listed in the text can be adopted. The same applies to "or". When specified as "within the range of two values" in the present specification, the range also includes the two values themselves.
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。 References such as scientific literature, patents, and patent applications cited in this specification are incorporated herein by reference in their entirety to the same extent as they are specifically described.
 以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したのではない。従って、本開示の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。 The present disclosure has been described above by showing preferred embodiments for ease of understanding. Hereinafter, the present disclosure will be described based on examples, but the above description and the following examples are provided for purposes of illustration only and not for the purpose of limiting the present disclosure. Therefore, the scope of the present disclosure is not limited to the embodiments or examples specifically described in the present specification, but is limited only by the scope of claims.
 以下に実施例を記載する。以下の実施例で用いる生物の取り扱いは、必要な場合、監督官庁で規定される基準を遵守した。試薬類は具体的には実施例中に記載した製品を使用したが、他メーカー(Sigma-Aldrich、など)の同等品でも代用可能である。 Examples are described below. The handling of organisms used in the following examples complied with the standards set by the regulatory agency, if necessary. Specifically, the products described in the examples were used as the reagents, but equivalent products of other manufacturers (Sigma-Aldrich, etc.) can be substituted.
 (実施例1:アクリル系コーティング成分の調製)
 本実施例では、アクリル系コーティング成分を調製した。
(Example 1: Preparation of acrylic coating component)
In this example, an acrylic coating component was prepared.
 イソステアリルアクリレート(ISTA、5.1g)、2,2,2-トリフルオロエチルアクリレート(4.7g、大阪有機化学工業社製、商品名ビスコートV#3F)、及び重合開始剤として2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(0.10g、BASF社製、商品名Irgacure TPO)を混合することにより、重合開始剤を含有するモノマー成分を得た。得られたモノマー成分を透明ガラス製の成形型(縦:100mm、横:100mm、深さ:2mm)内に注入した後、当該モノマー成分に照射線量が0.36mW/cmとなるように紫外線を照射し、モノマー成分を2時間塊状重合することによってコーティング成分(重合体)を得た。 Isostearyl acrylate (ISTA, 5.1 g), 2,2,2-trifluoroethyl acrylate (4.7 g, manufactured by Osaka Organic Chemical Industry Co., Ltd., trade name Viscoat V # 3F), and 2,4 as a polymerization initiator By mixing 6-trimethylbenzoyldiphenylphosphine oxide (0.10 g, manufactured by BASF, trade name: Irgacure TPO), a monomer component containing a polymerization initiator was obtained. After injecting the obtained monomer component into a molding mold made of transparent glass (length: 100 mm, width: 100 mm, depth: 2 mm), ultraviolet rays are applied to the monomer component so that the irradiation dose is 0.36 mW / cm 2. The monomer component was bulk polymerized for 2 hours to obtain a coating component (polymer).
(実施例2:アクリル系コーティング成分の溶解試験)
 本実施例では、アクリル系コーティング成分の溶解性について試験した。
(Example 2: Dissolution test of acrylic coating component)
In this example, the solubility of the acrylic coating component was tested.
 実施例1で得られたコーティング成分(3.00g)を、ヘプタン、オクタン、ウンデカン、またはリモネン(各7.00g)に浸漬させ、溶解するかどうかを確認したところ、ヘプタン、オクタン、及びリモネンに完全に溶解し、とけ残り等は確認されなかった。生じたコーティング成分溶液は、導電性フィルムの作製に使用した。 When the coating component (3.00 g) obtained in Example 1 was immersed in heptane, octane, undecane, or limonene (7.00 g each) and checked to see if it was dissolved, it was found that heptane, octane, and limonene It was completely dissolved, and no unmelted residue was confirmed. The resulting coating component solution was used to make a conductive film.
 実施例1におけるイソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートの代わりに、下表に記載の第1のモノマー成分と第2のモノマー成分の組合せ、第1のモノマー成分と第2のモノマー成分と第3のモノマー成分の組合せ、第2のモノマー成分と第3のモノマー成分の組合せ、もしくは第3のモノマー成分と第3のモノマー成分の組合せ、または1種の第3のモノマー成分を用いて、同様の方法に従って各コーティング成分を得た。
 次いで、得られたコーティング成分を実施例2に記載のとおりに溶解性について試験した。結果を下表に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Instead of the isostearyl acrylate and 2,2,2-trifluoroethyl acrylate in Example 1, the combination of the first monomer component and the second monomer component shown in the table below, the first monomer component and the second monomer component. A combination of a monomer component and a third monomer component, a combination of a second monomer component and a third monomer component, a combination of a third monomer component and a third monomer component, or one kind of a third monomer component. Each coating component was obtained according to the same method.
The resulting coating component was then tested for solubility as described in Example 2. The results are shown in the table below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(実施例3:溶剤による基材の損傷の判定)
 本実施例では、アクリル系コーティング成分を溶解する溶剤による基材の損傷の程度を判定した。
(Example 3: Determining damage to the base material due to the solvent)
In this example, the degree of damage to the base material by the solvent that dissolves the acrylic coating component was determined.
(1)ポリオレフィン樹脂フィルムの調製
 シクロオレフィンポリマー(4.00g、日本ゼオン株式会社製 ZEONOR 3300TT)をトルエン(6.00g)に溶解させ、ポリマー溶液を得た。得られたポリマー溶液を剥離フィルムとして離形ポリエチレンテレフタレートフィルム(三井化学東セロ株式会社製、商品名セパレーターSP-PET PET-01-Bu)に塗工して、塗膜を形成した。得られた塗膜を室温で1時間放置し、ポリオレフィン樹脂フィルムを得た。
(1) Preparation of Polyolefin Resin Film A cycloolefin polymer (4.00 g, ZEONOR 3300TT manufactured by Nippon Zeon Co., Ltd.) was dissolved in toluene (6.00 g) to obtain a polymer solution. The obtained polymer solution was applied as a release film to a release polyethylene terephthalate film (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name Separator SP-PET PET-01-Bu) to form a coating film. The obtained coating film was left at room temperature for 1 hour to obtain a polyolefin resin film.
(2)ポリアクリル樹脂フィルムの調製
 エチルアクリレート(EA、10.00g)、及び重合開始剤として2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(0.10g、BASF社製、商品名Irgacure TPO)を混合することにより、重合開始剤を含有するモノマー成分を得た。得られたモノマー成分を透明ガラス製の成形型(縦:100mm、横:100mm、深さ:0.3mm)内に注入した後、当該モノマー成分に照射線量が0.36mW/cmとなるように紫外線を照射し、モノマー成分を2時間塊状重合することによって、ポリアクリル樹脂フィルムを得た。
(2) Preparation of Polyacrylic Resin Film Ethyl acrylate (EA, 10.00 g) and 2,4,6-trimethylbenzoyldiphenylphosphine oxide (0.10 g, manufactured by BASF, trade name Irgacure TPO) as a polymerization initiator. By mixing, a monomer component containing a polymerization initiator was obtained. After injecting the obtained monomer component into a molding mold made of transparent glass (length: 100 mm, width: 100 mm, depth: 0.3 mm), the irradiation dose of the monomer component is adjusted to 0.36 mW / cm 2. Was irradiated with ultraviolet rays, and the monomer components were bulk-polymerized for 2 hours to obtain a polyacrylic resin film.
(3)ポリウレタン樹脂フィルムの調製
 反応性ポリウレタン樹脂(10.00g、根上工業株式会社製 UN-9000PEP)をトルエン(5.00g)に溶解させ樹脂溶液を得た。得られた溶液に重合開始剤として2-ヒドロキシ-2メチルプロピオフェノン0.1gを混合することにより重合開始剤を含む反応性ポリウレタン樹脂溶液を得た。得られたポリマー溶液を剥離フィルムとして離形ポリエチレンテレフタレートフィルム(三井化学東セロ株式会社製、商品名セパレーターSP-PET PET-01-Bu)に塗工して、塗膜を形成した。得られた塗膜を、空気雰囲気下、紫外線照射量67mW/cmにおいて7秒×10パスで硬化させ、ポリウレタン樹脂フィルムを得た。
(3) Preparation of Polyurethane Resin Film A reactive polyurethane resin (10.00 g, UN-9000PEP manufactured by Negami Kogyo Co., Ltd.) was dissolved in toluene (5.00 g) to obtain a resin solution. A reactive polyurethane resin solution containing a polymerization initiator was obtained by mixing 0.1 g of 2-hydroxy-2 methylpropiophenone as a polymerization initiator with the obtained solution. The obtained polymer solution was applied as a release film to a release polyethylene terephthalate film (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name Separator SP-PET PET-01-Bu) to form a coating film. The obtained coating film was cured in an air atmosphere at an ultraviolet irradiation amount of 67 mW / cm 2 in 7 seconds × 10 passes to obtain a polyurethane resin film.
(4)溶剤による基材の損傷の判定
 実施例2でコーティング成分を溶解したヘプタン、オクタンおよびリモネンの各々を、ポリオレフィン樹脂フィルム、ポリアクリル樹脂フィルム、またはポリウレタン樹脂フィルム上に滴下し、3分間放置した。放置後、滴下部の状態を確認し、以下の3段階で評価した。
  A:滴下面にほとんど変化なし
  B:表面に滴下液の跡が残る
  C:滴下したところが膨れ上がる(膨潤する)
 ポリオレフィン樹脂フィルムを、Bと評価し、ポリアクリル樹脂フィルムおよびポリウレタン樹脂フィルムを、Aと評価した。
(4) Determining Damage to Base Material by Solvent Each of heptane, octane and limonene in which the coating component was dissolved in Example 2 was dropped onto a polyolefin resin film, a polyacrylic resin film, or a polyurethane resin film and left for 3 minutes. did. After being left to stand, the state of the dropping portion was confirmed and evaluated in the following three stages.
A: Almost no change on the dropping surface B: Traces of the dropping liquid remain on the surface C: The dropped part swells (swells)
The polyolefin resin film was evaluated as B, and the polyacrylic resin film and the polyurethane resin film were evaluated as A.
(実施例4:コーティング成分溶液による基材の損傷の最終判定)
 本実施例では、コーティング成分溶液による基材の損傷の程度を判定した。
(Example 4: Final determination of damage to the base material due to the coating component solution)
In this example, the degree of damage to the base material due to the coating component solution was determined.
 実施例3で試験されたヘプタン、オクタンおよびリモネンに、実施例1で得られたコーティング成分をそれぞれ溶解させて、3種類のコーティング成分溶液1、2および3を得た。 The coating components obtained in Example 1 were dissolved in heptane, octane and limonene tested in Example 3 to obtain three types of coating component solutions 1, 2 and 3.
 コーティング成分溶液1、2および3のそれぞれについて、実施例3の(4)と同様に損傷の程度を判定した。成分溶液1、2および3のいずれにおいても、ポリオレフィン樹脂フィルムに対してはBと評価し、ポリアクリル樹脂フィルムおよびポリウレタン樹脂フィルムに対しては、Aと評価した。 For each of the coating component solutions 1, 2 and 3, the degree of damage was determined in the same manner as in (4) of Example 3. In each of the component solutions 1, 2 and 3, the polyolefin resin film was evaluated as B, and the polyacrylic resin film and the polyurethane resin film were evaluated as A.
 したがって、アクリル系コーティング成分が使用される場合、溶剤は、ヘプタン、オクタン、およびリモネンから選択され、基材樹脂は、ポリアクリル樹脂およびポリウレタン樹脂から選択される。 Therefore, when an acrylic coating component is used, the solvent is selected from heptane, octane, and limonene, and the base resin is selected from polyacrylic resin and polyurethane resin.
 (実施例5:コーティングが可能なように該コーティング成分を溶解するが、該基材を損傷させない溶剤を溶解パラメータ(SP)値に基づいて特定する方法)
 本実施例では、溶剤に対する該基材の溶解度が、該コーティング成分の溶解度よりも小さい溶剤から、使用する溶剤を選択する。
 当業者は、公知の文献の値または実験によってSP値を特定することが出来る。
(Example 5: A method of identifying a solvent that dissolves the coating component so that it can be coated but does not damage the substrate based on the solubility parameter (SP) value).
In this embodiment, the solvent to be used is selected from the solvents in which the solubility of the base material in the solvent is smaller than the solubility of the coating component.
One of ordinary skill in the art can identify the SP value by a value in a known document or an experiment.
 下記の溶解パラメータ(SP)値の表を参考として、使用する溶剤からSP値が離れている基材を選択する。逆に、使用する基材からSP値が離れている溶剤を選択することもできる。なお、下記の表のSP値は、C. M. Hansen著: J. Paint. Tech., 39 (505), 104-117 (1967)、および、山本秀樹著:“SP値基礎・応用と計算方法”、情報機構(2005)を参照した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
With reference to the table of solubility parameter (SP) values below, select a substrate whose SP value is far from the solvent to be used. On the contrary, it is also possible to select a solvent whose SP value is different from that of the base material used. The SP values in the table below are C.I. M. By Hansen: J.M. Paint. Tech. , 39 (505), 104-117 (1967), and Hideki Yamamoto: "SP Value Basics / Applications and Calculation Methods", Information Mechanism (2005).
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 実施例3(4)の代わりに、上記表中のSP値に基づいて、使用する基材樹脂を選択してもよい。 Instead of Example 3 (4), the base resin to be used may be selected based on the SP value in the above table.
 (実施例6:溶剤を最初に決定する場合)
 本実施例では、使用する溶剤に基づいて、コーティング成分および基材を選択する。
(Example 6: When the solvent is determined first)
In this example, the coating component and substrate are selected based on the solvent used.
 (1)使用する溶剤を決定する。
 (2)使用する溶剤が溶解するコーティング成分を選択する。
 (3)使用する溶剤が損傷させない基材を選択する。
ここで、(2)と(3)は順序が逆であってもよい。
(1) Determine the solvent to be used.
(2) Select a coating component in which the solvent to be used dissolves.
(3) Select a base material that is not damaged by the solvent used.
Here, the order of (2) and (3) may be reversed.
 (実施例7:使用する基材に基づく溶剤の選択)
 本実施例では、使用する基材に基づいて、溶剤を選択する。
(Example 7: Selection of solvent based on the base material used)
In this example, the solvent is selected based on the substrate used.
 (1)ポリオレフィン樹脂フィルムを使用する場合
 下記(1-1)または(1-2)に記載のとおりに、使用する溶剤を選択する。
 (1-1)
 実施例3の(4)と同様に、シクロオレフィンポリマー上に種々の溶媒に滴下して、損傷の程度を評価した。評価Aの溶剤は、エチレングリコールジエチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、1-ドデカノール、ジアセトンアルコール、アニリン、1,4-ブタンジオール、2-エチル-1-ヘキサノール、1-オクタノール、および3-メトキシ-3-メチル-1-ブタノールであった。(表2参照)
 (1-2)
 シクロオレフィンポリマーのSP値は9.6であるので、SP値が離れている溶剤を選択することもできる。
(1) When using a polyolefin resin film Select the solvent to be used as described in (1-1) or (1-2) below.
(1-1)
Similar to (4) of Example 3, the mixture was added dropwise to various solvents on the cycloolefin polymer to evaluate the degree of damage. The solvents of evaluation A are ethylene glycol diethyl ether, diethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether, 1-dodecanol, diacetone alcohol, aniline, 1,4-butanediol, 2-ethyl-1-hexanol, 1-octanol, and It was 3-methoxy-3-methyl-1-butanol. (See Table 2)
(1-2)
Since the SP value of the cycloolefin polymer is 9.6, it is possible to select a solvent having different SP values.
 (2)ポリアクリル樹脂フィルムを使用する場合
 下記(2-1)または(2-2)に記載のとおりに、使用する溶剤を選択する。
 (2-1)
 実施例3の(4)と同様に、ポリアクリル樹脂フィルム上に種々の溶媒に滴下して、損傷の程度を評価した。評価Aの溶剤は、n-ヘプタン、n-オクタン、1-ドデカノール、1,4-ブタンジオール、ウンデカン、2-エチル-1-ヘキサノール、および3-メトキシ-3-メチル-1-ブタノールであった。(表2参照)
 (2-2)
 アクリルゴムのSP値は9.5であるので、SP値が離れている溶剤を選択することもできる。
(2) When using a polyacrylic resin film Select the solvent to be used as described in (2-1) or (2-2) below.
(2-1)
In the same manner as in (4) of Example 3, the mixture was dropped onto a polyacrylic resin film in various solvents to evaluate the degree of damage. The solvent of evaluation A was n-heptane, n-octane, 1-dodecanol, 1,4-butanediol, undecane, 2-ethyl-1-hexanol, and 3-methoxy-3-methyl-1-butanol. .. (See Table 2)
(2-2)
Since the SP value of acrylic rubber is 9.5, it is possible to select a solvent having different SP values.
 (3)ポリウレタン樹脂フィルムを使用する場合
 下記(3-1)または(3-2)に記載のとおりに、使用する溶剤を選択する。
 (3-1)
 実施例3の(4)と同様に、ポリウレタン樹脂フィルム上に種々の溶媒に滴下して、損傷の程度を評価した。評価Aの溶剤は、n-ヘプタン、n-オクタン、1,4-ブタンジオール、ウンデカン、および3-メトキシ-3-メチル-1-ブタノールであった。(表2参照)
(3-2)
 ウレタンゴムのSP値は10であるので、SP値が離れている溶剤を選択することもできる。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
(3) When using a polyurethane resin film Select the solvent to be used as described in (3-1) or (3-2) below.
(3-1)
In the same manner as in (4) of Example 3, the polyurethane resin film was dropped onto various solvents to evaluate the degree of damage. The solvent of evaluation A was n-heptane, n-octane, 1,4-butanediol, undecane, and 3-methoxy-3-methyl-1-butanol. (See Table 2)
(3-2)
Since the SP value of urethane rubber is 10, it is also possible to select a solvent having different SP values.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 (実施例8:使用する基材に基づいて選択された溶剤に基づくコーティング成分の選択)
 本実施例では、使用する基材に基づいて選択された溶剤が溶解する、コーティング成分を選択する。
(Example 8: Selection of coating component based on solvent selected based on base material used)
In this example, a coating component is selected in which the solvent selected based on the substrate used is soluble.
(1)実施例7に記載のように選択された溶剤に、コーティング成分が溶解するかを実施例2と同様の手法で試験する。
(2)実施例7に記載のように選択された溶剤とはSP値が離れているコーティング成分(ポリマー)を選択することもできる。(表1参照)
(1) Whether or not the coating component is dissolved in the solvent selected as described in Example 7 is tested by the same method as in Example 2.
(2) As described in Example 7, a coating component (polymer) having an SP value different from that of the selected solvent can also be selected. (See Table 1)
 (実施例9:導電性フィルムの作製)
 実施例1で得られたコーティング成分溶液(6.00g)に銀フィラー(7.20g、福田金属箔粉工業社製、商品名 AgC-A)、および分散剤として2-(2-ブトキシエトキシ)エタノール(0.10g)をクラボウ社製マゼルスターにて混合して、コーティング剤を得た。得られたコーティング剤を剥離フィルムとして離形ポリエチレンテレフタレートフィルム(三井化学東セロ株式会社製、商品名セパレーターSP-PET PET-01-Bu)に塗工して、塗膜を形成した。得られた塗付膜について、オーブンにて150℃で60分間加熱し、およそ30μm厚の導電性フィルムを得た。
(Example 9: Preparation of conductive film)
A silver filler (7.20 g, manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd., trade name AgC-A) and 2- (2-butoxyethoxy) as a dispersant are added to the coating component solution (6.00 g) obtained in Example 1. Ethanol (0.10 g) was mixed with Kurabo Industries' Mazel Star to obtain a coating agent. The obtained coating agent was applied as a release film to a release polyethylene terephthalate film (manufactured by Mitsui Chemicals Tohcello Co., Ltd., trade name Separator SP-PET PET-01-Bu) to form a coating film. The obtained coating film was heated in an oven at 150 ° C. for 60 minutes to obtain a conductive film having a thickness of about 30 μm.
 (実施例10:体積抵抗率の確認)
 実施例9で得られた導電性フィルムを縦0.5cm、横2.00cmに切り出し、ロレスタGP(三菱化学アナリテック社製)を用いて4端子法で測定した。
 その体積抵抗率は、0.00036 Ω・cmであった。
(Example 10: Confirmation of volume resistivity)
The conductive film obtained in Example 9 was cut into a length of 0.5 cm and a width of 2.00 cm, and measured by a 4-terminal method using Loresta GP (manufactured by Mitsubishi Chemical Analytech).
Its volume resistivity was 0.00036 Ω · cm.
 (実施例11:抵抗値変化の確認)
 実施例9で得られた導電性フィルムを縦0.5cm、横2.00cmに切り出し、電極間距離を1.00cmに固定したデジタルマルチメータ〔三和電機計器株式会社製 商品名PC773〕にて伸張前抵抗値(ΩA)を測定した。次いで、導電性フィルムをマルチメータ電極上に固定したまま、電極間距離を2.00cmとし、その状態での抵抗値(ΩB)を測定した。抵抗値変化を、以下のように算出した。
 抵抗値変化=ΩB/ΩA
 その抵抗値変化は、5.7倍であった。
(Example 11: Confirmation of resistance value change)
The conductive film obtained in Example 9 was cut into a length of 0.5 cm and a width of 2.00 cm, and the distance between the electrodes was fixed at 1.00 cm with a digital multimeter [trade name PC773 manufactured by Sanwa Denki Keiki Co., Ltd.]. The pre-stretch resistance value (ΩA) was measured. Next, with the conductive film fixed on the multimeter electrode, the distance between the electrodes was set to 2.00 cm, and the resistance value (ΩB) in that state was measured. The change in resistance value was calculated as follows.
Resistance value change = ΩB / ΩA
The change in resistance value was 5.7 times.
 (実施例12:基材を損傷させない溶剤に溶解するポリマーを分析する方法)
 本実施例では、コーティングが可能なように該コーティング成分を溶解するが、該基材を損傷させない溶剤を特定する
(Example 12: Method of analyzing a polymer that dissolves in a solvent that does not damage the substrate)
In this example, a solvent that dissolves the coating component to allow coating but does not damage the substrate is specified.
 ある基材に基づいて、実施例3(4)および/または実施例5と同様の手法により、基材を損傷させない溶剤を特定する。
 実施例1において、モノマーが異なること以外は同じ条件で、コーティング成分(ポリマー)を調製する。得られたコーティング成分を前記溶剤に浸漬して、溶解するかどうかを評価する。
 溶解すると認められたコーティング成分を前記溶剤に溶解させて、コーティング成分溶液を得る。
Based on a substrate, a solvent that does not damage the substrate is identified by the same method as in Example 3 (4) and / or Example 5.
In Example 1, the coating component (polymer) is prepared under the same conditions except that the monomers are different. The obtained coating component is immersed in the solvent to evaluate whether or not it dissolves.
The coating component found to be dissolved is dissolved in the solvent to obtain a coating component solution.
 (実施例13:硬化樹脂に対して選択された溶剤に対するアクリル系コーティング成分の溶解性の確認)
 硬化樹脂の種類別で溶解性の実験を行う。
(Example 13: Confirmation of solubility of acrylic coating component in selected solvent for cured resin)
Perform solubility experiments for each type of cured resin.
(1)硬化樹脂:ポリオレフィン樹脂 (1) Cured resin: Polyolefin resin
 シクロオレフィンポリマーに対して評価Aの上記溶剤のうち、ジエチレングリコールモノブチルエーテルアセテートを使用して、コーティング成分を溶解させることとした。 Of the above solvents of evaluation A, diethylene glycol monobutyl ether acetate was used to dissolve the coating component of the cycloolefin polymer.
 溶解性の判定
 実施例1で得られたコーティング成分(1.00g)をジエチレングリコールモノブチルエーテルアセテート(9.00g)に浸漬させたところ、溶け残ることなく溶剤に溶解した。これにより、コーティング成分溶液を得た。
Determining Solubility When the coating component (1.00 g) obtained in Example 1 was immersed in diethylene glycol monobutyl ether acetate (9.00 g), it was dissolved in a solvent without remaining undissolved. As a result, a coating component solution was obtained.
(ポリオレフィン樹脂に対する溶解性)
 実施例3(4)と同様の手法で、得られたコーティング成分溶液を溶剤の代わりに用いて、ポリオレフィン樹脂に対する損傷を判定した。評価はAであり、樹脂基材を溶解させないコーティング成分であることを確認した。
(Solubility in polyolefin resin)
In the same manner as in Example 3 (4), the obtained coating component solution was used instead of the solvent to determine damage to the polyolefin resin. The evaluation was A, and it was confirmed that the coating component did not dissolve the resin base material.
(2)硬化樹脂:ポリアクリル樹脂 (2) Cured resin: Polyacrylic resin
 ポリアクリル樹脂フィルムに対して評価Aの溶剤のうち、n-オクタンを使用して、コーティング成分を溶解させることとした。 It was decided to dissolve the coating component by using n-octane among the solvents of evaluation A for the polyacrylic resin film.
 実施例1で得られたコーティング成分(1.00g)をn-オクタン(9.00g)に浸漬させたところ、溶け残ることなく溶剤に溶解した。これにより、コーティング成分溶液を得た。 When the coating component (1.00 g) obtained in Example 1 was immersed in n-octane (9.00 g), it was dissolved in a solvent without remaining undissolved. As a result, a coating component solution was obtained.
 溶解性の判定
 実施例1で得られたコーティング成分をn-オクタンに浸漬させたところ、溶け残ることなく溶剤に溶解した。これにより、コーティング成分溶液を得た。
Judgment of Solubility When the coating component obtained in Example 1 was immersed in n-octane, it was dissolved in a solvent without remaining undissolved. As a result, a coating component solution was obtained.
 (ポリアクリル樹脂に対する溶解性)
 実施例3(4)と同様の手法で、得られたコーティング成分溶液を溶剤の代わりに用いて、ポリアクリル樹脂に対する損傷を判定した。評価はAであり、ポリアクリル樹脂基材を溶解させないコーティング成分であることを確認した。
(Solubility in polyacrylic resin)
In the same manner as in Example 3 (4), the obtained coating component solution was used instead of the solvent to determine damage to the polyacrylic resin. The evaluation was A, and it was confirmed that the coating component did not dissolve the polyacrylic resin base material.
(3)硬化樹脂:ポリウレタン樹脂 (3) Cured resin: Polyurethane resin
 ポリウレタン樹脂フィルムに対して評価Aの溶剤のうち、n-オクタンを使用して、コーティング成分を溶解させることとした。 It was decided to dissolve the coating component by using n-octane among the solvents of evaluation A for the polyurethane resin film.
 実施例1で得られたコーティング成分(1.00g)をn-オクタン(9.00g)に浸漬させたところ、溶け残ることなく溶剤に溶解した。これにより、コーティング成分溶液を得た。 When the coating component (1.00 g) obtained in Example 1 was immersed in n-octane (9.00 g), it was dissolved in a solvent without remaining undissolved. As a result, a coating component solution was obtained.
 (ポリウレタン樹脂に対する溶解性)
 実施例3(4)と同様の手法で、得られたコーティング成分溶液を溶剤の代わりに用いて、ポリウレタン樹脂に対する損傷を判定した。評価はAであり、ポリウレタン樹脂基材を溶解させないコーティング成分であることを確認した。
(Solubility in polyurethane resin)
In the same manner as in Example 3 (4), the obtained coating component solution was used instead of the solvent to determine damage to the polyurethane resin. The evaluation was A, and it was confirmed that the coating component did not dissolve the polyurethane resin base material.
 (実施例14:ポリオレフィン樹脂での、コーティング成分(ポリマー)の選択)
 本実施例では、基材樹脂と溶剤の組合せに対して適切なコーティング成分を選択する。
(Example 14: Selection of coating component (polymer) with polyolefin resin)
In this embodiment, an appropriate coating component is selected for the combination of the base resin and the solvent.
 実施例7(1)で選択した樹脂-溶剤の組合せに対して、適切なコーティング成分を選択する。 An appropriate coating component is selected for the resin-solvent combination selected in Example 7 (1).
 (実施例15:ポリアクリル樹脂での、コーティング成分(ポリマー)の選択)
 本実施例では、基材樹脂と溶剤の組合せに対して適切なコーティング成分を選択する。
(Example 15: Selection of coating component (polymer) with polyacrylic resin)
In this embodiment, an appropriate coating component is selected for the combination of the base resin and the solvent.
 実施例7(2)で選択した樹脂-溶剤の組合せに対して、適切なコーティング成分を選択する。 An appropriate coating component is selected for the resin-solvent combination selected in Example 7 (2).
 (実施例16:ポリウレタン樹脂での、コーティング成分(ポリマー)の選択)
 本実施例では、基材樹脂と溶剤の組合せに対して適切なコーティング成分を選択する。
(Example 16: Selection of coating component (polymer) with polyurethane resin)
In this embodiment, an appropriate coating component is selected for the combination of the base resin and the solvent.
 実施例7(3)で選択した樹脂-溶剤の組合せに対して、適切なコーティング成分を選択する。 An appropriate coating component is selected for the resin-solvent combination selected in Example 7 (3).
 (実施例17:基材と導電材と溶剤のキットの製造)
 販売用キットの製造
 本実施例では、販売用キットを製造する。
(Example 17: Production of a kit of a base material, a conductive material, and a solvent)
Manufacture of kit for sale In this embodiment, a kit for sale is manufactured.
実施例13(1)で得られたコーティング成分溶液(10.00g)に、銀フィラー(4.00g、福田金属箔粉工業社製、商品名 AgC-A)、および分散剤として2-(2-ブトキシエトキシ)エタノール(0.08g)をクラボウ社製マゼルスターにて混合して、導電材前駆体を得る。 In the coating component solution (10.00 g) obtained in Example 13 (1), a silver filler (4.00 g, manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd., trade name: AgC-A), and 2- (2) as a dispersant. -Butoxyethoxy) ethanol (0.08 g) is mixed with Mazelstar manufactured by Kurabou Co., Ltd. to obtain a conductive material precursor.
 実施例13(2)、13(3)で得られたコーティング成分溶液(各6.00g)に銀フィラー(7.20g、福田金属箔粉工業社製、商品名 AgC-A)、および分散剤として2-(2-ブトキシエトキシ)エタノール(0.10g)をクラボウ社製マゼルスターにて混合して、導電材前駆体を得る。 A silver filler (7.20 g, manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd., trade name: AgCA), and a dispersant are added to the coating component solutions (6.00 g each) obtained in Examples 13 (2) and 13 (3). 2- (2-Butoxyethoxy) ethanol (0.10 g) is mixed with Mazelstar manufactured by Kurabou Co., Ltd. to obtain a conductive material precursor.
 これらの導電材前駆体と、基材とを組み合わせてパッケージングすることで、キット化する。 By packaging these conductive material precursors in combination with the base material, a kit is made.
 キットには、使い方を示す指示書などを含めてもよい。 The kit may include instructions showing how to use it.
 (実施例18:基材と導電材と溶剤のキットを用いたコーティングされた導電材の生産)
 本実施例では、上述の実施例で提供された特定の組合せを用いて、コーティングされた導電材を生産する。
(Example 18: Production of a coated conductive material using a base material, a conductive material, and a solvent kit)
In this example, a coated conductive material is produced using the specific combinations provided in the above-described examples.
 実施例17にて得られた導電材前駆体をそれぞれ対応する基材上へ塗工する。塗工後、オーブンにて150℃で60分間加熱する。 The conductive material precursors obtained in Example 17 are coated on the corresponding substrates. After coating, heat in an oven at 150 ° C. for 60 minutes.
(結果)
 上記の手順で、導電材がコーティングされた基材を生産する。
(result)
By the above procedure, a base material coated with a conductive material is produced.
 (注記)
 以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本開示は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本願は、日本国特許出願第2019-148112号(2019年8月9日出願)に対して優先権を主張するものであり、その内容は、その全体が本明細書において参考として援用される。本明細書において引用した特許、特許出願及び他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
(Note)
As described above, the present disclosure has been illustrated using the preferred embodiments of the present disclosure, but it is understood that the scope of the present disclosure should be interpreted only by the scope of claims. The present application claims priority to Japanese Patent Application No. 2019-148112 (filed on August 9, 2019), the entire contents of which are incorporated herein by reference in its entirety. The patents, patent applications and other documents cited herein should be incorporated herein by reference in their content as they are specifically described herein. Is understood.
 本開示の新規導電体構造およびその製造法を用いて、導電材でコーティングされた基材を提供することができ、導電材を必要とする産業において利用可能である。 Using the novel conductor structure and its manufacturing method of the present disclosure, it is possible to provide a base material coated with a conductive material, which can be used in an industry requiring a conductive material.

Claims (27)

  1. 導電材でコーティングされた基材を製造する方法であって、該方法は、
    該基材の表面の一部または全てを、導電成分とコーティング成分と溶剤とを含むコーティング剤を用いてコーティングする工程、および
    該基材上の該導電成分および該コーティング成分から該導電材を形成する工程を包含し、該溶剤は、コーティングが可能なように該コーティング成分を溶解するが、該基材を損傷させない、
    方法。
    A method for producing a base material coated with a conductive material, the method of which is
    A step of coating a part or all of the surface of the base material with a coating agent containing a conductive component, a coating component, and a solvent, and forming the conductive material from the conductive component and the coating component on the base material. The solvent dissolves the coating component to allow coating, but does not damage the substrate.
    Method.
  2. 前記コーティング成分は、1種のモノマー成分を含むホモポリマーまたは2種以上のモノマー成分を含むコポリマーである、請求項1に記載の方法。 The method of claim 1, wherein the coating component is a homopolymer containing one monomer component or a copolymer containing two or more monomer components.
  3. 前記導電材が、加熱処理により前記コーティング剤から形成される、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the conductive material is formed from the coating agent by heat treatment.
  4. 前記導電成分が、金属フィラーである、請求項1~3のいずれか一項に記載の方法。 The method according to any one of claims 1 to 3, wherein the conductive component is a metal filler.
  5. 前記導電成分が、銀、銅、金、アルミニウム、亜鉛、ニッケル、錫、および/または鉄を含む、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein the conductive component comprises silver, copper, gold, aluminum, zinc, nickel, tin, and / or iron.
  6. 前記基材が、樹脂である、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein the base material is a resin.
  7. 前記溶剤が、炭化水素系溶媒またはアルコール系溶媒である、請求項1~6のいずれか一項に記載の方法。 The method according to any one of claims 1 to 6, wherein the solvent is a hydrocarbon solvent or an alcohol solvent.
  8. 前記溶剤が、炭化水素系溶媒である、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the solvent is a hydrocarbon solvent.
  9. 前記炭化水素系溶媒が、ヘプサン、オクタン、リモネン、もしくはウンデカンまたはこれらの組合せである、請求項1~8のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein the hydrocarbon solvent is hepsane, octane, limonene, or undecane, or a combination thereof.
  10. 前記溶剤が、アルコール系溶媒である、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the solvent is an alcohol solvent.
  11. 前記アルコール系溶媒が、3-メトキシ-3-メチル-1-ブタノール、オクタノール、2-エチル-1-ヘキサノールまたはこれらの組合せである、請求項1~7および10のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7 and 10, wherein the alcohol solvent is 3-methoxy-3-methyl-1-butanol, octanol, 2-ethyl-1-hexanol or a combination thereof. ..
  12. 前記コーティング成分を構成するポリマーの第1のモノマー成分が、炭化水素系溶剤への溶解性を向上させるアルキル含有モノマーである、請求項1~11のいずれか一項に記載の方法。 The method according to any one of claims 1 to 11, wherein the first monomer component of the polymer constituting the coating component is an alkyl-containing monomer that improves the solubility in a hydrocarbon solvent.
  13. 前記コーティング成分を構成するポリマーの第2のモノマー成分が、伸縮性を向上させるモノマーである、請求項1~12のいずれか一項に記載の方法。 The method according to any one of claims 1 to 12, wherein the second monomer component of the polymer constituting the coating component is a monomer that improves elasticity.
  14. 前記コーティング成分を構成するポリマーの第3のモノマー成分が、鎖状または環状エーテル構造を含有するモノマーである、請求項1~13のいずれか一項に記載の方法。 The method according to any one of claims 1 to 13, wherein the third monomer component of the polymer constituting the coating component is a monomer containing a chain-like or cyclic ether structure.
  15. 前記コーティング成分は、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートとのコポリマーである、請求項1~13のいずれか一項に記載の方法。 The method according to any one of claims 1 to 13, wherein the coating component is a copolymer of isostearyl acrylate and 2,2,2-trifluoroethyl acrylate.
  16. 前記コーティング成分は、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートとグリシジルアクリレートとのコポリマーである、請求項1~13のいずれか一項に記載の方法。 The method according to any one of claims 1 to 13, wherein the coating component is a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and glycidyl acrylate.
  17. 前記コーティング成分は、イソステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートと(3-エチルオキセタン-3-イル)アクリレートとのコポリマーである、請求項1~14のいずれか一項に記載の方法。 The coating component is any one of claims 1 to 14, wherein the coating component is a copolymer of isostearyl acrylate, 2,2,2-trifluoroethyl acrylate and (3-ethyloxetane-3-yl) acrylate. Method.
  18. 前記コーティング成分は、ラウリルアクリレートと2,2,2-トリフルオロエチルアクリレートとのコポリマーである、請求項1~13のいずれか一項に記載の方法。 The method according to any one of claims 1 to 13, wherein the coating component is a copolymer of lauryl acrylate and 2,2,2-trifluoroethyl acrylate.
  19. 前記コーティング成分は、ステアリルアクリレートと2,2,2-トリフルオロエチルアクリレートとのコポリマーである、請求項1~13のいずれか一項に記載の方法。 The method according to any one of claims 1 to 13, wherein the coating component is a copolymer of stearyl acrylate and 2,2,2-trifluoroethyl acrylate.
  20. 前記コーティング成分は、2,2,2-トリフルオロエチルアクリレートと2-メトキシエチルアクリレートとのコポリマーである、請求項1~11、13および14のいずれか一項に記載の方法。 The method according to any one of claims 1 to 11, 13 and 14, wherein the coating component is a copolymer of 2,2,2-trifluoroethyl acrylate and 2-methoxyethyl acrylate.
  21. 前記コーティング成分は、エチルアクリレートと2-メトキシエチルアクリレートとのコポリマーである、請求項1~11、13および14のいずれか一項に記載の方法。 The method according to any one of claims 1 to 11, 13 and 14, wherein the coating component is a copolymer of ethyl acrylate and 2-methoxyethyl acrylate.
  22. 前記コーティング成分は、エチルアクリレートと4-ヒドロキシブチルビニルエーテルとのコポリマーである、請求項1~11、13および14のいずれか一項に記載の方法。 The method according to any one of claims 1 to 11, 13 and 14, wherein the coating component is a copolymer of ethyl acrylate and 4-hydroxybutyl vinyl ether.
  23. 前記コーティング剤が、分散剤をさらに含む、請求項1~22のいずれか一項に記載の方法。 The method according to any one of claims 1 to 22, wherein the coating agent further comprises a dispersant.
  24. 前記分散剤は、2-(2-ブトキシエトキシ)エタノールである、請求項1~23のいずれか一項に記載の方法。 The method according to any one of claims 1 to 23, wherein the dispersant is 2- (2-butoxyethoxy) ethanol.
  25. 基材と導電材と溶剤との組合せ。 Combination of base material, conductive material and solvent.
  26. 基材と、
    前記基材の表面にコーティングされた導電層と、を有する多層材料であって、
    前記導電層は、導電成分とコーティング成分とを含み、前記基材は、前記コーティング成分を溶解する溶剤に溶解しないものである、
    多層材料。
    With the base material
    A multilayer material having a conductive layer coated on the surface of the base material.
    The conductive layer contains a conductive component and a coating component, and the base material is insoluble in a solvent that dissolves the coating component.
    Multi-layer material.
  27. 導電材でコーティングされた基材であって、
    該導電材は、導電成分とコーティング成分とを含み、該基材は、該コーティング成分を溶解する溶剤に溶解しないものである、
    基材。
    A base material coated with a conductive material
    The conductive material contains a conductive component and a coating component, and the base material is insoluble in a solvent that dissolves the coating component.
    Base material.
PCT/JP2020/030367 2019-08-09 2020-08-07 Method for manufacturing substrate coated with electroconductive material, multi-layer material, and substrate coated with electroconductive material WO2021029360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021539273A JPWO2021029360A1 (en) 2019-08-09 2020-08-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019148112 2019-08-09
JP2019-148112 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029360A1 true WO2021029360A1 (en) 2021-02-18

Family

ID=74570283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030367 WO2021029360A1 (en) 2019-08-09 2020-08-07 Method for manufacturing substrate coated with electroconductive material, multi-layer material, and substrate coated with electroconductive material

Country Status (3)

Country Link
JP (1) JPWO2021029360A1 (en)
TW (1) TW202112988A (en)
WO (1) WO2021029360A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074722A1 (en) * 2021-10-27 2023-05-04 大阪有機化学工業株式会社 Composition for forming electroconductive elastomer, electroconductive elastomer, and polymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025971A (en) * 2011-07-20 2013-02-04 Sumitomo Electric Ind Ltd Conductive paste
WO2018055890A1 (en) * 2016-09-20 2018-03-29 大阪有機化学工業株式会社 (meth)acrylic conductive material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013025971A (en) * 2011-07-20 2013-02-04 Sumitomo Electric Ind Ltd Conductive paste
WO2018055890A1 (en) * 2016-09-20 2018-03-29 大阪有機化学工業株式会社 (meth)acrylic conductive material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074722A1 (en) * 2021-10-27 2023-05-04 大阪有機化学工業株式会社 Composition for forming electroconductive elastomer, electroconductive elastomer, and polymer

Also Published As

Publication number Publication date
TW202112988A (en) 2021-04-01
JPWO2021029360A1 (en) 2021-02-18

Similar Documents

Publication Publication Date Title
KR100990044B1 (en) Transparent Conductive Material and Transparent Conductor
EP3518252B1 (en) (meth)acrylic conductive material
KR101190421B1 (en) Curable composition, conductive laminate and method for producing the same, and touch panel
JP2009155570A (en) Composition containing carbon nanotube, complex with coating film comprising the same, and its manufacturing method
JP2008037919A (en) Composition comprising carbon nanotube and composite composed of the same
JP2007063481A (en) Carbon nano tube-containing curable composition and composite having cured coated film of the same
JP6176431B2 (en) Active energy ray-curable coating composition and coating agent
Loeffelmann et al. Solvent‐free inkjet printing process for the fabrication of conductive, transparent, and flexible ionic liquid‐polymer gel structures
KR20110038471A (en) Preparation method for the core-shell typed polymer particles having the controlled surface morphologies
WO2021029360A1 (en) Method for manufacturing substrate coated with electroconductive material, multi-layer material, and substrate coated with electroconductive material
JP2015120781A (en) Active energy ray-curable coating agent composition
WO2009149249A1 (en) Processes for making transparent conductive coatings
JP2011508012A (en) Adhesive tape and method for producing the same
TW202112854A (en) Novel firing temperature reducing agent for conductive material
WO2021029361A1 (en) Novel electric conductivity improving agent
WO2014156844A1 (en) Thermoplastic resin film base for optical firing, conductive circuit board using same, and method for manufacturing said conductive circuit board
Liu et al. Synthesis of novel branched UV-curable methacrylate copolymer and its application in negative photoresist
KR20220093101A (en) Photocurable resin composition for electronic devices
TW202112792A (en) Conductivity improving agent
WO2023074722A1 (en) Composition for forming electroconductive elastomer, electroconductive elastomer, and polymer
JP2005305392A (en) Method for preparing antimony-containing tin oxide particle dispersion and transparent electrically-conductive film
WO2021039187A1 (en) Transfer film, method for producing transfer film, method for producing laminate, laminate, touch panel sensor, and touch panel
JP7437306B2 (en) Composition, adhesive containing same, cured product thereof, and manufacturing method thereof
JP2015117349A (en) Active energy ray curable coating composition
TWI658329B (en) Reactive resin composition, circuit pattern and circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851570

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851570

Country of ref document: EP

Kind code of ref document: A1