WO2021029256A1 - Information processing device, information processing method, and program - Google Patents

Information processing device, information processing method, and program Download PDF

Info

Publication number
WO2021029256A1
WO2021029256A1 PCT/JP2020/029699 JP2020029699W WO2021029256A1 WO 2021029256 A1 WO2021029256 A1 WO 2021029256A1 JP 2020029699 W JP2020029699 W JP 2020029699W WO 2021029256 A1 WO2021029256 A1 WO 2021029256A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
display
indicator
processing device
orientation
Prior art date
Application number
PCT/JP2020/029699
Other languages
French (fr)
Japanese (ja)
Inventor
貴光 後藤
西堀 一彦
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2021029256A1 publication Critical patent/WO2021029256A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • G09G5/37Details of the operation on graphic patterns
    • G09G5/377Details of the operation on graphic patterns for mixing or overlaying two or more graphic patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/361Reproducing mixed stereoscopic images; Reproducing mixed monoscopic and stereoscopic images, e.g. a stereoscopic image overlay window on a monoscopic image background
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking

Definitions

  • This technology relates to information processing devices, information processing methods, and programs used for input operations.
  • Non-Patent Document 1 describes a pen-type input device (stylus) whose tip expands and contracts.
  • a telescopic shaft is housed inside the grip.
  • the stylus is also equipped with an acceleration sensor and a magnetic sensor for calculating its orientation. For example, when the shaft is pressed against the surface of a touch screen, a virtual stylus is drawn in the digital space inside the screen along the axis of the actual stylus. This makes it possible to perform a three-dimensional input operation on an object in the digital space.
  • the purpose of this technology is to provide an information processing device, an information processing method, and a program capable of realizing an intuitive input operation for a stereoscopic image.
  • the information processing apparatus includes a detection unit and a display control unit.
  • the detection unit detects the position and orientation of the indicator based on the image of the indicator used by the user.
  • the display control unit causes the display space of the stereoscopic display device to display an instruction object representing a virtual insertion portion of the indicator with respect to the display space, based on the position and orientation of the indicator.
  • the position and orientation of the indicator are detected from the image of the indicator used by the user. Based on this detection result, the virtual insertion portion of the indicator into the display space of the stereoscopic display device is displayed as an instruction object. As a result, it becomes possible to easily operate the instruction object in the display space by using the indicator, and it is possible to realize an intuitive input operation for the stereoscopic image.
  • the display control unit may calculate a virtual insertion amount of the indicator into the display space based on the position and orientation of the indicator, and control the display of the instruction object according to the insertion amount. ..
  • the display control unit may control the display of the instruction object so that the length of the instruction object is proportional to the insertion amount.
  • the stereoscopic display device may have a display panel for displaying a stereoscopic image.
  • the display space may be a virtual space with the display panel as a boundary.
  • the detection unit may detect the position and orientation of the indicator with respect to the display panel.
  • the indicator may expand and contract in one direction in response to pressing.
  • the display control unit may calculate the amount of expansion and contraction of the indicator in response to the contact between the display panel and the indicator as a virtual insertion amount of the indicator into the display space.
  • the display control unit may display the instruction object starting from the contact position between the display panel and the indicator in the display space.
  • the stereoscopic display device may have an imaging unit directed to the observation range of the display panel.
  • the detection unit may detect the position and orientation of the indicator used by the user in the observation range based on the image of the observation range captured by the imaging unit.
  • the detection unit may detect the viewpoint of the user who observes the display panel based on the image of the observation range captured by the imaging unit.
  • the display control unit may display the stereoscopic image according to the viewpoint of the user.
  • the indicator may have a marker portion.
  • the detection unit may detect the position and orientation of the marker unit as the position and orientation of the indicator.
  • the indicator may have a tip portion directed at the target and a grip portion connected to the tip portion.
  • the marker portion may be connected to the side opposite to the side to which the tip portion of the grip portion is connected.
  • the display control unit may display a target object to be an input operation using the indicator in the display space.
  • the display control unit may set the type of the instruction object according to the type of the target object.
  • the display control unit may control the display of the target object according to the contact between the target object and the instruction object.
  • the indicator may have a sensation presenting unit that presents a skin sensation to the user.
  • the information processing device may further include a sensory control unit that controls the sensory presentation unit in response to contact between the target object and the instruction object.
  • the sensation presenting unit may present at least one of vibration sensation and thermal sensation.
  • the sensory control unit may control the sensory presentation unit according to at least one of the type of the target object, the type of the instruction object, or the amount of contact between the target object and the instruction object.
  • the information processing method is an information processing method executed by a computer system, and includes detecting the position and orientation of the indicator based on an image of the indicator used by the user. Based on the position and orientation of the indicator, an instruction object representing a virtual insertion portion of the indicator with respect to the display space is displayed in the display space of the stereoscopic display device.
  • a program causes a computer system to perform the following steps.
  • FIG. 1 is a schematic diagram for explaining an outline of the present technology.
  • the present technology can realize an input operation for the stereoscopic image 10 displayed by the stereoscopic display device 100, and can provide feedback according to the input operation.
  • FIG. 1A is a schematic diagram showing a state before the input operation of the user 1 is performed on the stereoscopic image 10
  • FIG. 1B is a schematic diagram showing a state in which the input operation of the user 1 is performed.
  • 1A and 1B schematically show a user 1 observing a stereoscopic image 10 (rabbit object) displayed by the stereoscopic display device 100.
  • the three-dimensional display device 100 is a device that three-dimensionally displays content or the like to be viewed.
  • the stereoscopic display device 100 performs stereoscopic display (stereoscopic stereoscopic vision) using binocular parallax by displaying, for example, an image for the right eye and an image for the left eye.
  • stereoscopic display stereoscopic stereoscopic vision
  • the user 1 observing the stereoscopic display device 100 can perceive the target content as a stereoscopic image 10 having a depth.
  • the space in which the stereoscopic image 10 is displayed will be referred to as the display space 11 of the stereoscopic display device 100.
  • the display space 11 is, for example, a three-dimensional virtual space that extends in the vertical direction, the horizontal direction, and the depth direction. Therefore, the stereoscopic image 10 can be said to be a virtual object that is stereoscopically displayed in the display space 11.
  • the stereoscopic image 10 is displayed by the display panel 20 of the stereoscopic display device 100.
  • a display panel 20 arranged obliquely with respect to the horizontal direction (vertical direction) is schematically illustrated as a shaded area.
  • the display panel 20 is a display that displays an image for the right eye and an image for the left eye on the right eye (right viewpoint) and the left eye (left viewpoint) of the user 1, respectively.
  • the user 1 can perceive the stereoscopic image 10 simply by looking at the display panel 20.
  • the stereoscopic display device 100 is a naked-eye stereoscopic display device that displays the stereoscopic image 10 to the user 1 in the state of the naked eye without using a glasses-type device or the like. Further, in the stereoscopic display device 100, the position of the viewpoint 2 of the user 1 is tracked by using a camera 21 (for example, a monocular RGB camera) arranged in the vicinity of the display panel 20, and the right according to the position of the viewpoint 2 of the user 1. An eye image and a left eye image are generated. As a result, even when the position of the viewpoint 2 is moved, it is possible to perceive the stereoscopic image 10 (rabbit object or the like) seen from the position of the viewpoint 2 after the movement.
  • a camera 21 for example, a monocular RGB camera
  • the display space 11 of the stereoscopic display device 100 is a virtual space whose boundary is the display panel 20.
  • FIG. 1A schematically illustrates a rabbit object (stereoscopic image 10) displayed in the display space 11 inside the display panel 20.
  • the rabbit object is an example of the target object 14.
  • the target object 14 is an object (stereoscopic image 10) that is the target of the input operation of the user 1.
  • the pointing device 40 is used for the input operation on the target object 14.
  • the pointing device 40 is a rod-shaped device configured to be expandable and contractible (see FIG. 2).
  • the user 1 who has grasped the pointing device 40 can perform an input operation on the target object 14 by operating the tip of the pointing device 40 so as to approach the target object 14.
  • the pointing device 40 is provided with a marker 41 for detecting the position and orientation thereof.
  • FIG. 1A schematically illustrates the pointing device 40 used by the user 1.
  • the pointing device 40 corresponds to an indicator.
  • the marker 41 corresponds to a marker portion.
  • FIG. 1B shows how the user 1 uses the pointing device 40 to perform an input operation on the rabbit object, which is the target object 14. It is assumed that the user 1 brings the tip of the pointing device 40 close to the target object 14. At this time, the camera 21 captures a two-dimensional image of the marker 41 of the pointing device 40, and the three-dimensional position and orientation of the marker 41 are estimated based on the captured two-dimensional image. As a result, the position and orientation of the pointing device 40, that is, from which position to which direction the pointing device 40 is directed is estimated.
  • the virtual pointer 15 is displayed in the display space 11 in the display panel 20.
  • the virtual pointer 15 is a stereoscopic image 10 displayed in the display space 11, and is a virtual object representing a virtual insertion portion of the pointing device 40 in the display space 11.
  • the virtual pointer 15 corresponds to an instruction object.
  • the virtual pointer 15 corresponds to the insertion amount (expansion / contraction amount) of the pointing device 40 from the contact point between the pointing device 40 and the display panel 20 along the direction in which the pointing device 40 is directed. It is displayed so that it is the length. That is, it can be said that the virtual pointer 15 is an object in which the pointing device 40 used by the user 1 in the real space is extended to the virtual space (display space 11) and displayed.
  • the pointing device 40 For example, if the pointing device 40 is moved while the pointing device 40 is in contact with the display panel 20, the contact point moves and the virtual pointer 15 moves. Further, when the orientation of the pointing device 40 is changed, the orientation of the virtual pointer 15 changes along the orientation of the pointing device 40. Further, when the insertion amount (expansion / contraction amount) of the pointing device 40 is changed, the length of the virtual pointer 15 changes. Therefore, the user 1 can intuitively operate the virtual pointer 15 in the virtual space (display space 11) by operating the pointing device 40 which is an object in the real space.
  • the rabbit object which is the target object 14
  • the rabbit object is displayed so as to look in the direction in which the virtual pointer 15 is in contact.
  • the pointing device 40 is equipped with a vibration presenting unit (see FIG. 2) that generates vibration. For example, when the virtual pointer 15 and the target object 14 come into contact with each other, vibration of a predetermined vibration pattern is presented via the vibration presenting unit. As a result, the user 1 can perceive the sensation of contact with the target object 14 as vibration. By vibrating the pointing device 40 in this way, it is possible to feed back to the user 1 the feeling as if the object object 14 which is the stereoscopic image 10 was actually touched.
  • the operation of bringing the virtual pointer 15 into contact with the target object 14 is an example of an input operation for the target object 14 by the user 1.
  • the display of the target object 14 changes according to the contact with the virtual pointer 15, and the feeling of contact is fed back to the user 1 as vibration.
  • the user 1 can perform an intuitive input operation on the target object 14 displayed by the stereoscopic display device 100 by using the existing pointing device 40.
  • vibration is fed back according to the state of operation, it is possible to provide an experience as if the operation is being applied to a real object.
  • FIG. 2 is a schematic view showing a configuration example of the pointing device 40.
  • 2A and 2B schematically show a state in which the pointing device 40 is extended and a state in which the pointing device 40 is contracted.
  • the pointing device 40 has an expansion / contraction portion 42, a grip portion 43, and a marker 41. Further, inside the pointing device 40, a communication unit 44 and a vibration presentation unit 45 are provided.
  • the telescopic portion 42 has a rod-shaped structure extending in one direction as a whole, and is a portion directed to the target. One end of the telescopic portion 42 is connected to the grip portion 43, and the other end is a tip 46 directed at the target.
  • the direction in which the telescopic portion 42 extends is referred to as an axial direction.
  • the telescopic portion 42 corresponds to the tip portion directed to the target, and the axial direction corresponds to one direction.
  • the telescopic portion 42 is configured to contract in the axial direction when the tip 46 is pushed.
  • the telescopic portion 42 for example, a telescopic structure in which a plurality of cylinders arranged in a nested manner along the axial direction expand and contract is used.
  • the stretchable portion may be configured using any stretchable structure.
  • the grip portion 43 is a tubular longitudinal member connected to the telescopic portion 42, and is a portion gripped by the user 1 who uses the pointing device 40.
  • the outermost cylinder in the telescopic portion 42 of the telescopic structure is used as the grip portion 43.
  • the marker 41 has a plurality of detection points 47 used for detecting the position and orientation.
  • the position and orientation of the marker 41 can be detected from the positional relationship of each detection point 47 displayed in the image obtained by capturing the marker 41.
  • the marker 41 is typically provided with three or more detection points 47.
  • the detection point 47 for example, a vertex of a solid, a coloring point or a light emitting point having different colors from each other is used.
  • the marker 41 is connected to the side opposite to the side to which the telescopic portion 42 of the grip portion 43 is connected. That is, the marker 41 is provided at the end opposite to the tip 46 directed to the target. This makes it possible to properly detect the marker 41.
  • the marker 41 on the pentagon is schematically illustrated. In this case, for example, each vertex of the pentagon becomes the detection point 47.
  • the specific configuration of the marker 41 is not limited.
  • the communication unit 44 and the vibration presentation unit 45 are provided inside, for example, the grip unit 43 (or the marker 41).
  • the communication unit 44 is a communication module for communicating with other devices, and communicates with, for example, the stereoscopic display device 100.
  • a wireless LAN (Local Area Network) module such as WiFi or a communication module for short-range wireless communication such as Bluetooth (registered trademark) is used.
  • the vibration presenting unit 45 presents the vibration sensation to the user 1.
  • a vibration element such as a voice coil motor, a linear actuator, an eccentric motor, and a piezo element is used.
  • the vibration presenting unit 45 when the vibration presenting unit 45 generates vibration based on a predetermined vibration signal, the vibration sensation corresponding to the vibration signal is presented to the user 1 via the grip unit 43. This makes it possible for the user 1 to perceive various tactile sensations (haptics).
  • the vibration presenting unit 45 functions as a sensation presenting unit that presents a skin sensation to the user.
  • a sensation presenting unit for presenting a thermal sensation to the user 1 may be mounted.
  • the heat presenting unit for example, a heater element, a Peltier element, or the like is used. By installing a heat presenting unit, it is possible to present a hot sensation or a cold sensation.
  • the pointing device 40 may be equipped with an element (sensory presentation unit) capable of presenting any skin sensation such as tactile sensation, heat sensation, and force sensation.
  • FIG. 2B shows a state in which the pointing device 40 is pressed against the display panel 20 and contracted.
  • the telescopic portion 42 contracts when the tip 46 is pushed by the display panel 20.
  • the cylinders provided on the tip 46 side of the telescopic portion 42 are pushed toward the grip portion 43 in order from the side closer to the tip 46.
  • FIG. 2B schematically shows a cylinder pushed toward the grip portion 43 side.
  • the telescopic portion 42 is provided with a restoring mechanism (not shown) that generates a restoring force that pushes back the tip 46 when the tip 46 is pushed.
  • the specific configuration of the restoration mechanism is not limited, and for example, an elastic body such as a spring or rubber, a pressure cylinder, or the like is used.
  • the tip 46 of the telescopic portion 42 is pushed back and extended by the restoring mechanism. Therefore, while the tip 46 is pressed against the object (for example, the display panel 20), the telescopic portion 42 is contracted, but when the tip 46 is not pressed, the telescopic portion 42 is as shown in FIG. 2A. It returns to the stretched state.
  • the pointing device 40 can be expanded and contracted in the axial direction in response to pressing. That is, the pointing device 40 is configured such that when it comes into contact with the display panel 20, the tip portion is reduced by the expansion / contraction mechanism (expansion / contraction portion). As will be described later, the expansion / contraction amount of the pointing device 40 is used for display control of the virtual pointer 15 as a virtual insertion amount of the pointing device 40 into the display panel 20. For example, the reduced tip is displayed as the virtual pointer 15. As a result, an intuitive input operation as if the pointing device 40 is inserted as it is into the display space 11 in the display panel 20 becomes possible. In addition, input can be intuitively added to the target object 14 localized on the back side of the surface of the display panel 20 via the virtual pointer 15.
  • FIG. 3 is a block diagram showing a functional configuration example of the three-dimensional display device 100.
  • the stereoscopic display device 100 includes a display panel 20, a camera 21, a speaker 22, an operation unit 23, an I / F (interface) unit 24, a communication unit 25, and a storage unit 26 described with reference to FIG. , And a controller 27.
  • the display panel 20 displays the stereoscopic image 10. Specifically, the right eye image and the left eye image capable of stereoscopic stereoscopic viewing are displayed on the right eye and the left eye of the user 1, respectively.
  • the display panel 20 emits light rays forming an image for the right eye toward a certain direction of the right eye, and emits light rays forming an image for the left eye toward a certain direction of the left eye. This makes it possible to give the user 1 binocular parallax to perceive the stereoscopic image 10.
  • the light rays for perceiving the stereoscopic image 10 (right eye image and left eye image) are emitted toward a predetermined observation range set in front of the display panel 20. Therefore, it can be said that the display panel 20 is a device that allows the user 1 who observes the display panel 20 from the observation range to perceive the stereoscopic image 10.
  • the display panel 20 is, for example, a rectangular panel in a plan view. In the present embodiment, the display panel 20 is arranged at an angle when viewed from the user 1 so that the pair of sides are parallel to the horizontal direction. Since the surface of the display panel 20 is arranged at an angle in this way, the user 1 can observe the stereoscopic image 10 from the horizontal direction and the vertical direction, and the observation range is expanded.
  • the method of the display panel 20 is not limited. For example, a parallax barrier method in which a shielding plate is provided for each set of display pixels to separate light rays incident on each eye, a lenticular lens method in which the emission direction is controlled for each display pixel, and the like are used. Further, a light ray reproduction type display or the like may be used. In addition, any method capable of stereoscopic display with the naked eye may be adopted.
  • the camera 21 is arranged toward the observation range of the display panel 20.
  • the camera 21 is arranged at the center of the upper end of the display panel 20 so as to capture the space (observation range) in front of the display panel 20 arranged diagonally.
  • the camera 21 corresponds to an imaging unit.
  • the camera 21 is typically a monocular RGB camera capable of capturing color moving and still images. The present technology can be applied even when a plurality of cameras 21 such as a stereo camera 21 are used.
  • a digital camera including an image sensor such as a CMOS (Complementary Metal-Oxide Semiconductor) sensor or a CCD (Charge Coupled Device) sensor can be used.
  • any configuration may be adopted.
  • the speaker 22 can output various sounds.
  • the specific configuration of the speaker 22 is not limited.
  • the operation unit 23 is an operation device that performs physical operations such as a keyboard and a mouse.
  • the I / F unit 24 is an interface to which other devices and various cables are connected, such as a USB (Universal Serial Bus) terminal and an HDMI (registered trademark) (High-Definition Multimedia Interface) terminal.
  • the communication unit 25 is a communication module for communicating with another device, and communicates with, for example, the pointing device 40.
  • a wireless LAN module such as WiFi
  • a communication module for short-range wireless communication such as Bluetooth (registered trademark) is used.
  • the storage unit 26 is a non-volatile storage device, and for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like is used.
  • the object library 28 is stored in the storage unit 26.
  • the object library 28 is, for example, a library in which the virtual pointer 15 and the design data of the object to be the target object 14 are stored. For example, when displaying the virtual pointer 15, the target object 14, or the like, the design data stored in the object library 28 is appropriately read out.
  • the storage unit 26 stores a control program 29 for controlling the overall operation of the stereoscopic display device 100.
  • the control program 29 includes a program related to the present technology. The method of installing the control program 29 on the stereoscopic display device 100 is not limited.
  • the installation may be executed via various recording media, or the program may be installed via the Internet or the like.
  • the type of recording medium on which the program according to the present technology is recorded is not limited, and any computer-readable recording medium may be used.
  • any recording medium for recording data non-temporarily may be used.
  • the controller 27 controls the operation of each block included in the stereoscopic display device 100.
  • the controller 27 has hardware necessary for configuring a computer, such as a processor such as a CPU or GPU and a memory such as ROM or RAM.
  • the information processing method according to the present technology is executed by loading and executing the control program (program according to the present technology) 29 recorded in the storage unit 26 by the CPU or the like into the RAM.
  • the controller 27 corresponds to an information processing device.
  • the specific configuration of the controller 27 is not limited, and any hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit) may be used.
  • the CPU of the controller 27 or the like executes the program according to the present embodiment to perform the image acquisition unit 30, the viewpoint detection unit 31, the pointer detection unit 32, the display control unit 33, and the vibration control as functional blocks. Part 34 is realized. Then, the information processing method according to the present embodiment is executed by these functional blocks. In addition, in order to realize each functional block, dedicated hardware such as an IC (integrated circuit) may be appropriately used. In the present embodiment, the viewpoint detection unit 31 and the pointer detection unit 32 function as detection units.
  • the image acquisition unit 30 acquires an image of the observation range captured by the camera 21 (hereinafter, simply referred to as an captured image). For example, the camera 21 reads the captured images generated at a predetermined frame rate.
  • the captured image acquired by the image acquisition unit 30 is output to the viewpoint detection unit 31 and the pointer detection unit 32, which will be described later, respectively.
  • the viewpoint detection unit 31 detects the viewpoint 2 of the user 1 who observes the display panel 20 based on the captured image captured by the camera 21. More specifically, the viewpoint detection unit 31 detects the position of the viewpoint 2 of the user 1. For example, the face recognition of the user 1 observing the display panel 20 is executed, and the three-dimensional coordinates of the viewpoint position of the user 1 in the observation range are calculated.
  • the method for detecting the viewpoint 2 is not limited, and for example, a viewpoint estimation process using machine learning or the like, or a viewpoint detection using pattern matching or the like may be executed.
  • the pointer detection unit 32 detects the position and orientation of the pointing device 40 based on the image of the pointing device 40 used by the user 1. As described above, since the pointing device 40 is provided with the marker 41 for detecting the position and orientation, it is possible to easily detect the position and orientation of the pointing device 40 from the two-dimensional image. As the position of the pointing device 40, a three-dimensional position in a predetermined coordinate system is detected. Further, as the posture of the pointing device 40, an angle parameter representing the direction of the pointing device 40 (axial direction) in a predetermined coordinate system is detected. The method of detecting the position and orientation of the pointing device 40 (marker 41) will be described in detail later.
  • the observation image read by the image acquisition unit 30 is used as the image of the pointing device 40. That is, the pointer detection unit 32 detects the position and orientation of the pointing device 40 used by the user 1 in the observation range based on the captured image captured by the camera 21. That is, it can be said that the stereoscopic display device 100 detects the position and orientation of the pointing device 40 used by the user 1 by using the camera 21 that tracks the viewpoint 2 of the user 1. As a result, it is possible to detect the position and orientation of the pointing device 40 without adding a special sensor or the like, and it is possible to reduce the cost of the device or the like.
  • the case is not limited to the case where the camera 21 for viewpoint detection is used, and for example, an image obtained by the pointing device 40 by another imaging device may be used. Further, both the camera 21 for viewpoint detection and the image captured by another imaging device may be used. As a result, it is possible to improve the detection accuracy of the position and orientation and expand the detection range.
  • the display control unit 33 displays the stereoscopic image 10 according to the viewpoint 2 of the user 1.
  • the object displayed as the stereoscopic image 10 includes the target object 14 and the virtual pointer 15.
  • the display control unit 33 calculates the direction in which the object is observed based on the position of the viewpoint 2 of the user 1 detected by the viewpoint detection unit 31.
  • a parallax image (right eye image and left eye image) for displaying the object viewed from the calculated direction as a stereoscopic image 10 is generated, and the image data of the parallax image is output to the display panel 20.
  • the viewpoint 2 of the user 1 changes, it is possible to perceive the stereoscopic image 10 of the object viewed from that direction.
  • the display control unit 33 causes the display space 11 of the stereoscopic display device 100 to display the target object 14 that is the target of the input operation using the pointing device 40.
  • the display control unit 33 causes the display space 11 of the stereoscopic display device 100 to display the target object 14 that is the target of the input operation using the pointing device 40.
  • the display control unit 33 causes the display space 11 of the stereoscopic display device 100 to display the target object 14 that is the target of the input operation using the pointing device 40.
  • the display control unit 33 causes the display space 11 of the stereoscopic display device 100 to display the target object 14 that is the target of the input operation using the pointing device 40.
  • the display control unit 33 causes the display space 11 of the stereoscopic display device 100 to display the target object 14 that is the target of the input operation using the pointing device 40.
  • a parallax image for displaying the rabbit object as a stereoscopic image 10 is generated and output to the display panel 20.
  • the display control unit 33 causes the display space 11 of the stereoscopic display device 100 to display a virtual pointer 15 representing a virtual insertion portion of the pointing device 40 with respect to the display space 11 based on the position and orientation of the pointing device 40. More specifically, display parameters such as the position, posture, and length of the virtual pointer 15 are calculated based on the position and orientation of the pointing device 40 detected by the pointer detection unit 32. Based on this display parameter, a parallax image for displaying the virtual pointer 15 viewed from the viewpoint 2 of the user 1 as a stereoscopic image 10 is generated and output to the display panel 20. The target object 14 and the virtual pointer 15 are generated by using the design data stored in the object library 28.
  • the vibration control unit 34 controls the vibration presentation unit 45 provided in the pointing device 40 in response to the contact between the target object 14 and the virtual pointer 15. For example, when the target object 14 and the virtual pointer 15 come into contact with each other, the vibration control unit 34 generates a predetermined vibration signal and outputs it to the vibration presenting unit 45 via the communication units 25 and 44. As a result, at the timing when the virtual pointer 15 comes into contact with the target object 14, the user 1 holding the pointing device 40 is presented with a predetermined vibration sensation. If a heat presentation unit or the like is provided in addition to the vibration presentation unit 45, a heat control unit or the like that controls the heat presentation unit may be configured.
  • the heat control unit generates a control signal for controlling the temperature of the heat presentation unit and the like in response to the contact between the target object 14 and the virtual pointer 15. This makes it possible to present the user 1 with a predetermined thermal sensation.
  • the vibration control unit 34 heat presentation unit corresponds to the sensory control unit.
  • FIG. 4 is a flowchart showing an example of the information processing method according to the present embodiment.
  • FIG. 5 is a schematic diagram for explaining the arrangement relationship between the display panel 20 and the pointing device 40.
  • the display processing of the virtual pointer 15 will be described with reference to FIGS. 4 and 5.
  • the display control unit 33 calculates the virtual insertion amount of the pointing device 40 into the display space 11 based on the position and orientation of the pointing device 40. Then, the display of the virtual pointer 15 is controlled according to the calculated insertion amount.
  • the virtual insertion amount is the length at which the user 1 pushes the pointing device 40 into the display panel 20, and is the amount of expansion and contraction of the pointing device 40, as described with reference to FIG. 1B. The larger the expansion / contraction amount, the longer the length of the virtual pointer 15. For example, the user 1 operates the grip portion 43 so that the tip 46 of the pointing device 40 is brought closer to the target object 14. At this time, a virtual pointer 15 that moves in conjunction with the pointing device 40 is displayed inside the display panel 20.
  • the user 1 can bring the virtual pointer 15 closer to or in contact with a desired point on the target object 14 by adjusting the position and orientation of the pointing device 40 and the virtual pointer 15 which is an extension thereof. ..
  • the target object 14 displayed in the display space 11 is displayed by the visual information of the real or virtual displayed pointers (pointing device 40 and virtual pointer 15) according to the state of the pointer.
  • An input operation that gives input is realized.
  • a specific description will be given.
  • FIG. 5A is a perspective view showing a user 1 who performs an input operation on the stereoscopic display device 100 (display panel 20).
  • FIG. 5B is a top view of the display panel 20 when viewed from the front.
  • FIG. 5C is a side view of the display panel 20 when viewed from the side.
  • the horizontal and vertical directions of the image (captured image) in the observation range captured by the camera 21 are defined as the x direction and the y direction, respectively.
  • the coordinate system set based on the position of the camera 21 is referred to as a camera coordinate system.
  • the camera coordinate system is, for example, a coordinate system represented by two-dimensional coordinates (x, y) and the z direction orthogonal to the two-dimensional coordinates, and the position of the camera 21 is set as the origin.
  • the horizontal direction (horizontal direction) of the display panel 20 is the X direction
  • the vertical direction of the display panel 20 is the Y direction.
  • the direction orthogonal to the surface (XY plane) of the display panel 20 is defined as the Z direction.
  • the coordinate system represented by the X direction, the Y direction, and the Z direction is described as a display coordinate system (X, Y, Z). Further, as shown in FIG.
  • the rotation angle with the X direction as the rotation axis is defined as ⁇
  • the rotation angle with the Y direction as the rotation axis is ⁇
  • the rotation angle with the Z direction as the rotation axis is described as ⁇ . Therefore, the position and orientation in the display coordinate system are represented by (X, Y, Z, ⁇ , ⁇ , ⁇ ).
  • the display coordinate system will be used as the world coordinates in the stereoscopic display device 100. For example, when displaying the stereoscopic image 10 (target object 14 or virtual pointer 15), it is assumed that the position and orientation in the display coordinate system are calculated.
  • the position of the marker 41 (pointing device 40) in the display coordinate system is described as M (X M , Y M , Z M ), and the axial direction of the pointing device 40 and the surface (XY surface) of the display panel 20 are defined.
  • the intersection is described as D (X D , Y D , 0), and the contact point between the virtual pointer 15 and the target object 14 is described as O (X obj , Y obj , Z obj ).
  • the intersection D is the contact position between the display panel 20 and the pointing device 40.
  • 5A to 5C show the marker position M, the intersection D, and the contact point O, respectively.
  • the pointer detection unit 32 first detects the marker 41 from the captured image captured by the camera 21 (step 101). Image recognition processing using, for example, feature point detection, template matching, or the like is used to detect the marker 41.
  • the method for detecting the marker 41 is not limited, and the marker 41 may be detected by using, for example, machine learning.
  • the pointer detection unit 32 determines whether or not the marker 41 has been detected (step 102). If the marker 41 is not detected (No in step 102), step 101 is executed again, and the detection process of the marker 41 is executed for the next image. When the marker 41 is detected (Yes in step 102), the pointer detection unit 32 executes a process of estimating the position and orientation of the marker 41 (step 103).
  • the position and orientation of the marker 41 is used as the position and orientation of the pointing device 40. That is, the pointer detection unit 32 detects the position / orientation of the marker 41 as the position / orientation of the pointing device 40. By using the marker 41, it is possible to estimate the position and orientation of the pointing device 40 with high accuracy. The position and orientation of the pointing device 40 may be calculated by appropriately converting the position and orientation of the marker 41.
  • the two-dimensional coordinates (x i , y i ) of each detection point 47 of the marker 41 in the captured image are calculated.
  • i is an index representing each detection point 47.
  • These two-dimensional coordinates are coordinates in which the three-dimensional coordinates of the detection point 47 in the real space are projected (transparent projection conversion) in the captured image by being imaged by the camera 21.
  • the internal parameter is a parameter that changes according to zoom and the like, and includes, for example, a parameter that represents the principal point (typically the center of the image) of the captured image and a parameter that represents the focal length corresponding to each pixel.
  • the external parameter is a parameter that changes according to the position and orientation of the camera 21, and includes, for example, a matrix element of a simultaneous transformation matrix of translation and rotation in fluoroscopic projection transformation. These parameter values are pre-calibrated with reference to, for example, the display coordinate system and stored in the storage unit 26.
  • the translation and rotation vectors of the marker 41 appearing in the two-dimensional image (captured image) are derived by using the solution of the PNP problem.
  • the two-dimensional coordinates (x i, y i) of each detection point 47 when converted into three-dimensional coordinates, in the actual marker 41 The translation vector and the rotation vector of the marker 41 are calculated so as to satisfy the three-dimensional arrangement relationship of each detection point 47.
  • vectors (x c , y c , z c , ⁇ c , ⁇ c , ⁇ c ) representing the position and orientation of the marker 41 in the camera coordinate system are calculated.
  • the pointer detection unit 32 converts the position and orientation of the marker 41 in the camera coordinate system calculated in step 103 into the position and orientation of the display coordinate system (step 104).
  • a transformation matrix set according to the arrangement relationship between the camera 21 and the display panel 20 is used for the transformation of the coordinate system.
  • the vector representing the position and orientation of the marker 41 is converted into a vector (X M , Y M , Z M , ⁇ M , ⁇ M , ⁇ M ) in the display coordinate system by the transformation matrix.
  • the vector representing the position and orientation of the marker 41 in the display coordinate system is the position and orientation of the pointing device 40.
  • the pointer detection unit 32 detects the position and orientation of the pointing device 40 in the display coordinate system, that is, the position and orientation of the pointing device 40 with respect to the display panel 20.
  • FIG. 6 is a schematic view showing an example of a method of calculating the position and orientation of the pointing device 40.
  • FIG. 6 shows the position M of the marker 41 (pointing device 40) in the display coordinate system (X, Y, Z) with the intersection D between the axial direction of the pointing device 40 and the display panel 20 as the origin. ..
  • the pointer detection unit 32 calculates the intersection D between the pointing device 40 and the display panel 20 (step 105).
  • the position M (X M , Y M , Z M ) of the marker 41 and the rotation angle ⁇ ( ⁇ M , ⁇ M , ⁇ M ) of the marker 41 in the display coordinate system are calculated in step 104 and are known values. is there.
  • the X and Y coordinates of the intersection D are set as X D and Y D
  • the Z coordinate (Z M ) of the marker 41 is represented by using the position M and the rotation angle ⁇ of the marker 41.
  • the Z coordinate of the marker 41 is represented by the following equation using, for example, the length (X M ⁇ X D ) in the X direction from the intersection D to the position M of the marker 41.
  • the Z coordinate of the marker 41 is expressed by the following equation using, for example, the length in the Y direction (Y M ⁇ Y D ) from the intersection D to the position M of the marker 41.
  • the Z coordinate (Z M ) of the marker 41 in the display coordinate system is described by two methods as the height seen from the XY plane.
  • the left side of the equation (4) includes the X coordinate (X D ) of the intersection D to be calculated. Therefore, by modifying equation (4) for X D , the following equation is obtained.
  • the X coordinate (X D ) and Y coordinate (Y D ) of the intersection D are the positions M (X M , Y M , Z) of the marker M that have already been calculated. M), and the rotation angle of the marker 41 ( ⁇ M, can be expressed using phi M). That is, the intersection D between the axial direction of the pointing device 40 and the surface of the display panel 20 is represented as follows.
  • the pointer detection unit 32 calculates the X coordinate and the Y coordinate of the intersection D in the display coordinate system according to the equation (7).
  • the intersection D may be calculated by using another method without being limited to the above method.
  • the display control unit 33 calculates the length of the pointing device 40 (step 106).
  • the length of the pointing device 40 is, for example, the length from the position of the tip 46 to the position M of the marker 41.
  • the position of the tip 46 changes due to expansion and contraction.
  • the length from the tip 46 to the marker 41 in the non-contact state in which the pointing device 40 is not shrunk is described as the reference length d.
  • the length of the pointing device 40 is the reference length d.
  • the telescopic portion 42 expands and contracts, so that the length of the pointing device 40 is equal to or less than the reference length d.
  • the length of the current pointing device 40 is calculated based on the distance MD from the intersection D to the marker position M.
  • the distance MD is expressed by the following equation using the coordinates of the intersection D calculated by the equation (7) and the position M of the marker 41.
  • the length of the pointing device 40 becomes the reference length.
  • the length of the pointing device 40 is the distance MD.
  • step 107 it is determined whether or not the pointing device 40 and the display panel 20 are in contact with each other (step 107). Specifically, using the reference length d as a threshold value, it is determined whether or not the distance MD is equal to or less than the reference length d. This is a determination as to whether or not the current length of the pointing device 40 is shorter than the length of the pointing device 40 in the non-contact state (the original length of the pointing device 40). When the distance MD is longer than the reference length d (MD> d), it is determined that the pointing device 40 is not in contact with the display panel 20 (No in step 107). In this case, the processes after step 101 are executed for the next image.
  • the reference length d as a threshold value
  • the process of drawing the virtual pointer 15 is executed according to the length (distance MD) of the pointing device 40 (step 108).
  • FIG. 7 is a schematic diagram showing a display example of the virtual pointer 15. On the left and right sides of FIG. 7, a pointing device 40 in a non-contact state and a pointing device 40 that has shrunk in contact with the display panel 20 are schematically illustrated.
  • the display control unit 33 calculates a virtual insertion amount into the display panel 20 (display space 11) of the pointing device 40, which is the length of the virtual pointer 15.
  • the expansion / contraction amount ⁇ of the pointing device 40 in response to the contact between the display panel 20 and the pointing device 40 is calculated as a virtual insertion amount of the pointing device 40 into the display space 11.
  • the pointing device 40 shrinks by the amount that the tip 46 is pressed against the display panel 20.
  • the expansion / contraction amount ⁇ at this time is calculated as a virtual insertion amount of the pointing device 40 into the display panel 20 (display space 11).
  • the display control unit 33 generates a virtual pointer 15 based on the expansion / contraction amount ⁇ , the posture of the pointing device 40, and the contact position (intersection point D) with the display panel 20.
  • the virtual pointer 15 is generated based on, for example, the design data stored in the object library 28.
  • the display control unit 33 displays the virtual pointer 15 starting from the contact position (intersection D) between the display panel 20 and the pointing device 40 in the display space 11. For example, as shown on the right side of FIGS. 1B and 7, the virtual pointer 15 is displayed so as to extend from the intersection D where the pointing device 40 contacts the display panel 20 to the display space 11.
  • the display control unit 33 displays the virtual pointer 15 along the axial direction of the pointing device 40. That is, the virtual pointer 15 that extends and displays the pointing device 40 in the direction in which the pointing device 40 is directed is displayed in the display space 11. As a result, it is possible to realize a display as if the pointing device 40 is inserted into a virtual display space, and an intuitive input operation is possible.
  • the display of the virtual pointer 15 is controlled so that the length of the virtual pointer 15 is proportional to the expansion / contraction amount ⁇ .
  • a virtual pointer 15 having the same length as the expansion / contraction amount ⁇ is displayed in the display space 11.
  • the proportional coefficient between the length of the virtual pointer 15 and the expansion / contraction amount ⁇ is 1, and the offset or the like is not set.
  • a virtual pointer 15 having a length obtained by adding a predetermined offset to the expansion / contraction amount ⁇ may be displayed.
  • the virtual pointer 15 is an object longer (or shorter) than the expansion / contraction amount ⁇ .
  • the length of the virtual pointer 15 is set in proportion to the expansion / contraction amount ⁇ .
  • the proportional coefficient between the length of the virtual pointer 15 and the expansion / contraction amount ⁇ may be appropriately set.
  • a proportional coefficient of 1 or more may be set.
  • a proportional coefficient smaller than 1 may be set.
  • the operation amount of the user 1 can be reduced, and for example, fine input operations can be easily performed.
  • the proportional coefficient and the offset it is possible to display the virtual pointer 15 that is linearly linked to the operation of the user 1, and it is possible to perform an intuitive input operation.
  • the display control unit 33 draws the virtual pointer 15 according to the difference (expansion / contraction amount ⁇ ).
  • step 109 it is determined whether or not the virtual pointer 15 and the target object 14 are in contact with each other. For example, whether or not a part (tip, side surface, etc.) of the virtual pointer 15 is in contact with the target object 14 is determined based on the coordinate values of the display coordinates.
  • step 108 is executed and the drawing of the virtual pointer 15 is continued.
  • the processing after step 101 may be executed again.
  • the display control unit 33 executes a process of changing the drawing of the target object 14 (step 110).
  • the process of changing the drawing of the target object 14 is a process of displaying the reaction (interaction) of the operation of the virtual pointer 15 with respect to the target object 14.
  • This process is executed according to, for example, the contact position and the contact amount with the virtual pointer 15.
  • the contact amount is, for example, an amount representing the degree to which the virtual pointer 15 interferes with the target object 14, and is expressed using, for example, the amount of penetration of the virtual pointer 15 into the coordinate space inside the target object 14.
  • the type of interaction with the target object 14 is not limited. For example, there is a process of deforming the target object 14 itself, such as denting the contact position with which the virtual pointer 15 is in contact according to the contact amount of the virtual pointer 15.
  • a process of changing the position of the target object 14, such as moving the target object 14 or changing the direction of the target object 14, may be executed in response to the contact of the virtual pointer 15.
  • the movement amount and the rotation amount of the target object 14 are appropriately calculated according to the contact position, the contact amount, and the like.
  • a process of drawing the target object 14 so as to make a predetermined reaction according to the contact may be executed.
  • the process of looking back at the rabbit object described with reference to FIG. 1 is a process of drawing a reaction in response to contact with the virtual pointer 15.
  • the display control unit 33 controls the display of the target object 14 according to the contact between the target object 14 and the virtual pointer 15. This makes it possible to present various interactions according to input operations (touching, poking, hitting, cutting, pushing, etc.) with respect to the target object 14.
  • the vibration control unit 34 executes a feedback process for presenting vibration to the user 1 (step 111). For example, the vibration control unit 34 generates a vibration signal according to the content and the like, and outputs the vibration signal to the vibration presenting unit 45 mounted on the pointing device 40. As a result, the pointing device 40 generates vibration in response to the vibration signal, and the user 1 is presented with a tactile sensation.
  • the vibration control unit 34 controls the vibration presentation unit 45 according to at least one of the type of the target object 14, the type of the virtual pointer 15, or the contact amount between the target object 14 and the virtual pointer 15. .
  • vibration signals that present various vibration sensations are generated according to the types of the target object 14 and the virtual pointer 15. Further, the intensity of these vibration sensations is adjusted according to the contact amount.
  • the method of controlling the vibration presenting unit 45, the method of generating a vibration signal, and the like are not limited.
  • the skin sensation is fed back to the user 1 through the pointing device 40. As a result, it is possible to present a feeling of being in contact with an existing object, and it is possible to improve the operability of the input operation.
  • FIGS. 1B and 7 described above a rod-shaped virtual pointer 15 that is simply an extension of the pointing device 40 has been described as an example.
  • the shape of the virtual pointer 15 and the like are not limited, and any design can be applied according to the use case.
  • a knife-shaped object may be used as the virtual pointer 15. In this case, it is possible to perform an operation of disconnecting the target object 14 using the virtual pointer 15. Further, an object having a pointed tip may be used. In this case, it is possible to perform an operation of stabbing the target object 14.
  • an object having a tip shaped like a brush or a brush may be used. In this case, it is possible to paint the target object 14 or to draw a picture or a character. Further, an object having a tip in the shape of a tool such as a screwdriver or a spanner may be used. In this case, the operation of assembling or disassembling the target object 14 becomes possible. Further, by using a plurality of pointing devices at the same time, it may be possible to perform an operation such as pinching the target object 14 with chopsticks. Also, by using a plurality of devices, it is possible to use a plurality of tools at the same time in the display space. Further, for example, the type of the virtual pointer 15 may be set according to the type of the target object 14.
  • the virtual pointer 15 in the shape of a knife, fork, or the like is automatically displayed.
  • the pointing device 40 is used to input to the human body or the affected part (target object 14) displayed in three dimensions.
  • the virtual pointer 15 displays an object of a medical instrument such as a scalpel or forceps.
  • a predetermined vibration is presented via the device. This makes it possible to simulate surgery.
  • Other examples of use include architecture, model design, and work. In this case, a model, a part (target object 14), or the like is three-dimensionally displayed, and a virtual pointer 15 that imitates a tool or the like for precision machining is used.
  • the pointing device 40 can be used for intuitive operation, it is possible to perform a complicated input operation on the object to be processed or assembled.
  • the input interface using the pointing device 40 and the virtual pointer 15 can also be used as a communication tool. For example, it is possible to perform interactive communication with a person in a remote place by using a plurality of stereoscopic display devices 100. In this case, for example, it is possible to intuitively operate each other on a shared object displayed in three dimensions.
  • a target object 14 virtual pet
  • a target object 14 virtual pet
  • the user 1 can come into contact with the virtual pet virtually displayed through the pointing device 40 and experience the breeding of the pet.
  • the scope of application of this technology is not limited to the above-mentioned examples, and can be applied to various scenes such as amusement, education, and product development.
  • the position and orientation of the pointing device 40 are detected from the image of the pointing device 40 used by the user 1. Based on this detection result, the virtual insertion portion of the pointing device 40 into the display space 11 of the stereoscopic display device 100 is displayed as a virtual pointer 15. As a result, the virtual pointer 15 in the display space 11 can be easily operated by using the pointing device 40, and an intuitive input operation for the stereoscopic image 10 can be realized.
  • the pointing device 40 by operating the pointing device 40 so as to bring it into direct contact with the target object 14, it is possible to perform an input operation on the target object 14 via the virtual pointer 15. In this way, it is possible to operate a virtual object as it is using a real device, and it is possible to demonstrate high usability.
  • the virtual pointer 15 comes into contact with the target object 14, sensory feedback is performed by the vibration presenting unit 45 or the like. This makes it possible to provide a virtual experience as if operating a real object.
  • a method of performing an input operation in the depth direction there is a method of detecting the position and orientation of an input device using a sensor.
  • a method of calculating the position and orientation of the input device by using a touch sensor mounted on the display, a posture sensor mounted on the input device, or the like can be considered. In such a method, it is necessary to use a special sensor, which may lead to an increase in equipment cost.
  • the image of the pointing device 40 is captured by using the camera 21 provided in the stereoscopic display device 100. From this image, the position and orientation of the pointing device 40 are calculated, and the display control of the virtual pointer 15 and the like is performed. As described above, in the present embodiment, the display processing of the virtual pointer 15 can be performed without providing a touch sensor, a position / orientation sensor, or the like. As a result, the cost of the device can be sufficiently suppressed. In particular, in a type of device such as the stereoscopic display device 100 described above that displays a stereoscopic image according to the viewpoint 2 of the user 1, a camera 21 for tracking the viewpoint 2 is often provided. By using such a camera 21, it is possible to easily implement the display processing of the virtual pointer 15.
  • the virtual pointer is displayed so that its length is proportional to the amount of expansion and contraction of the pointing device (the amount of virtual insertion into the display panel).
  • the virtual pointer may be controlled non-linearly with respect to the amount of expansion and contraction. For example, control may be performed such that the larger the expansion / contraction amount, that is, the larger the amount of pushing the pointing device, the larger the rate of increasing the length of the virtual pointer.
  • the virtual pointer may be displayed along a direction different from the axial direction of the pointing device. This makes it possible to perform complicated input operations in a comfortable posture.
  • a stereoscopic display device that performs stereoscopic display with the naked eye has been described.
  • a glasses-type stereoscopic display device that displays a stereoscopic image using a glasses-type device such as polarized glasses or liquid crystal shutter glasses may be used.
  • the user wears a glasses-type device for perceiving a parallax image and observes the display panel. Even in this case, it is possible to display the virtual pointer according to the amount of expansion and contraction of the pointing device.
  • the present technology can also be applied when stereoscopic display is performed using a head-mounted display (HMD) or the like.
  • the pointing device does not need to expand or contract.
  • HMD head-mounted display
  • the pointing device does not need to expand or contract.
  • an HMD capable of AR display it is possible to display a stereoscopic image (right eye image and left eye image) by superimposing it on the field of view in front of the user.
  • the range of the field of view in which the stereoscopic image is displayed is the display space of the HMD.
  • the image of the pointing device is captured by using a front camera or the like mounted on the HMD. Suppose the user brings the tip of the pointing device closer to the target object.
  • the virtual pointer is displayed by superimposing it on the pointing device that has entered the user's field of view (display space). This enables intuitive input operations via the virtual pointer. Further, for example, when a boundary surface is set in the display space and the pointing device exceeds the boundary surface, a virtual pointer having a length corresponding to the insertion amount is displayed. For example, such a process may be executed.
  • the type of device that performs stereoscopic display is not limited.
  • this technology can also adopt the following configurations.
  • a detection unit that detects the position and orientation of the indicator based on the image of the indicator used by the user, and An information processing device including a display control unit that displays an instruction object representing a virtual insertion portion of the indicator in the display space in the display space of the stereoscopic display device based on the position and orientation of the indicator.
  • the information processing device according to (1) The display control unit calculates a virtual insertion amount of the indicator into the display space based on the position and orientation of the indicator, and controls the display of the instruction object according to the insertion amount. .. (3) The information processing device according to (2).
  • the display control unit is an information processing device that controls the display of the instruction object so that the length of the instruction object is proportional to the insertion amount.
  • the stereoscopic display device has a display panel for displaying a stereoscopic image.
  • the display space is a virtual space with the display panel as a boundary.
  • the detection unit is an information processing device that detects the position and orientation of the indicator with respect to the display panel.
  • the indicator can be expanded and contracted in one direction in response to pressure.
  • the display control unit is an information processing device that calculates the amount of expansion and contraction of the indicator in response to contact between the display panel and the indicator as a virtual insertion amount of the indicator into the display space.
  • the information processing device is an information processing device that displays the instruction object starting from the contact position between the display panel and the indicator in the display space.
  • the information processing apparatus according to any one of (4) to (6).
  • the stereoscopic display device has an image pickup unit directed to an observation range of the display panel.
  • the detection unit is an information processing device that detects the position and orientation of the indicator used by the user in the observation range based on the image of the observation range captured by the imaging unit.
  • the information processing apparatus according to (7).
  • the detection unit detects the viewpoint of the user who observes the display panel based on the image of the observation range captured by the imaging unit.
  • the display control unit is an information processing device that displays the stereoscopic image according to the viewpoint of the user.
  • the information processing apparatus has a marker portion and has a marker portion.
  • the detection unit is an information processing device that detects the position and orientation of the marker unit as the position and orientation of the indicator.
  • the indicator has a tip that is directed at the object and a grip that is connected to the tip.
  • the marker portion is an information processing device connected to a side opposite to the side to which the tip portion of the grip portion is connected.
  • the display control unit is an information processing device that displays a target object that is a target of an input operation using the indicator in the display space. (12) The information processing apparatus according to (11).
  • the display control unit is an information processing device that sets the type of the instruction object according to the type of the target object. (13) The information processing device according to (11) or (12). The display control unit is an information processing device that controls the display of the target object in response to contact between the target object and the instruction object. (14) The information processing apparatus according to any one of (11) to (13).
  • the indicator has a sensation presenting portion that presents a skin sensation to the user. Further, an information processing device including a sensory control unit that controls the sensory presentation unit in response to contact between the target object and the instruction object. (15) The information processing apparatus according to (14).
  • the sensation presenting unit is an information processing device that presents at least one of a vibration sensation and a heat sensation. (16) The information processing apparatus according to (14) or (15).
  • the sensory control unit is an information processing device that controls the sensory presentation unit according to at least one of the type of the target object, the type of the instruction object, or the amount of contact between the target object and the instruction object.
  • the position and orientation of the indicator are detected based on the image of the indicator used by the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Position Input By Displaying (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

In order to achieve the purpose of the invention, an information processing device according to one embodiment of the present technology comprises a detection unit and a display control unit. The detection unit detects, on the basis of an image of an indication tool used by a user, the position/orientation of the indication tool. The display control unit displays, in a display space of a stereoscopic display device and on the basis of the position/orientation of the indication tool, an indication object which represents a virtual insertion portion of the indication tool with respect to the display space.

Description

情報処理装置、情報処理方法、及びプログラムInformation processing equipment, information processing methods, and programs
 本技術は、入力操作に用いられる情報処理装置、情報処理方法、及びプログラムに関する。 This technology relates to information processing devices, information processing methods, and programs used for input operations.
 非特許文献1には、先端が伸縮するペン型の入力装置(スタイラス)が記載されている。このスタイラスでは、グリップの内側に伸縮可能なシャフトが収納される。またスタイラスには、その向きを計算するための加速度センサ及び磁気センサが搭載される。例えばタッチスクリーンの表面にシャフトを押し付けると、スクリーン内のデジタル空間に実際のスタイラスの軸に沿って仮想的なスタイラスが描画される。これにより、デジタル空間内のオブジェクトに対して3次元的な入力操作を行うことが可能となっている。 Non-Patent Document 1 describes a pen-type input device (stylus) whose tip expands and contracts. In this stylus, a telescopic shaft is housed inside the grip. The stylus is also equipped with an acceleration sensor and a magnetic sensor for calculating its orientation. For example, when the shaft is pressed against the surface of a touch screen, a virtual stylus is drawn in the digital space inside the screen along the axis of the actual stylus. This makes it possible to perform a three-dimensional input operation on an object in the digital space.
 近年では、観察者に立体像を知覚させる立体表示を行う技術が開発されており、立体像に対する直感的な入力操作を実現する技術が求められている。 In recent years, a technique for performing a stereoscopic display that allows an observer to perceive a stereoscopic image has been developed, and a technique for realizing an intuitive input operation for the stereoscopic image is required.
 以上のような事情に鑑み、本技術の目的は、立体像に対する直感的な入力操作を実現することが可能な情報処理装置、情報処理方法、及びプログラムを提供することにある。 In view of the above circumstances, the purpose of this technology is to provide an information processing device, an information processing method, and a program capable of realizing an intuitive input operation for a stereoscopic image.
 上記目的を達成するため、本技術の一形態に係る情報処理装置は、検出部と、表示制御部とを具備する。
 前記検出部は、ユーザが使用する指示具の画像に基づいて、前記指示具の位置姿勢を検出する。
 前記表示制御部は、前記指示具の位置姿勢に基づいて、立体表示装置の表示空間に、前記表示空間に対する前記指示具の仮想的な挿入部分を表す指示オブジェクトを表示させる。
In order to achieve the above object, the information processing apparatus according to one embodiment of the present technology includes a detection unit and a display control unit.
The detection unit detects the position and orientation of the indicator based on the image of the indicator used by the user.
The display control unit causes the display space of the stereoscopic display device to display an instruction object representing a virtual insertion portion of the indicator with respect to the display space, based on the position and orientation of the indicator.
 この情報処理装置では、ユーザが使用する指示具の画像から指示具の位置姿勢が検出される。この検出結果をもとに、立体表示装置の表示空間に対する指示具の仮想的な挿入部分が、指示オブジェクトとして表示される。これにより、指示具を使用して表示空間内の指示オブジェクトを容易に操作することが可能となり、立体像に対する直感的な入力操作を実現することが可能となる。 In this information processing device, the position and orientation of the indicator are detected from the image of the indicator used by the user. Based on this detection result, the virtual insertion portion of the indicator into the display space of the stereoscopic display device is displayed as an instruction object. As a result, it becomes possible to easily operate the instruction object in the display space by using the indicator, and it is possible to realize an intuitive input operation for the stereoscopic image.
 前記表示制御部は、前記指示具の位置姿勢に基づいて、前記表示空間に対する前記指示具の仮想的な挿入量を算出し、前記挿入量に応じて前記指示オブジェクトの表示を制御してもよい。 The display control unit may calculate a virtual insertion amount of the indicator into the display space based on the position and orientation of the indicator, and control the display of the instruction object according to the insertion amount. ..
 前記表示制御部は、前記指示オブジェクトの長さが前記挿入量に比例するように、前記指示オブジェクトの表示を制御してもよい。 The display control unit may control the display of the instruction object so that the length of the instruction object is proportional to the insertion amount.
 前記立体表示装置は、立体像を表示する表示パネルを有してもよい。この場合、前記表示空間は、前記表示パネルを境界とする仮想空間であってもよい。また、前記検出部は、前記表示パネルに対する前記指示具の位置姿勢を検出してもよい。 The stereoscopic display device may have a display panel for displaying a stereoscopic image. In this case, the display space may be a virtual space with the display panel as a boundary. Further, the detection unit may detect the position and orientation of the indicator with respect to the display panel.
 前記指示具は、押圧に応じて一方向に伸縮可能であってもよい。この場合、前記表示制御部は、前記表示パネルと前記指示具との接触に応じた前記指示具の伸縮量を、前記表示空間に対する前記指示具の仮想的な挿入量として算出してもよい。 The indicator may expand and contract in one direction in response to pressing. In this case, the display control unit may calculate the amount of expansion and contraction of the indicator in response to the contact between the display panel and the indicator as a virtual insertion amount of the indicator into the display space.
 前記表示制御部は、前記表示空間に、前記表示パネルと前記指示具との接触位置を起点とする前記指示オブジェクトを表示させてもよい。 The display control unit may display the instruction object starting from the contact position between the display panel and the indicator in the display space.
 前記立体表示装置は、前記表示パネルの観察範囲に向けられた撮像部を有してもよい。この場合、前記検出部は、前記撮像部により撮像された前記観察範囲の画像に基づいて、前記観察範囲で前記ユーザが使用する前記指示具の位置姿勢を検出してもよい。 The stereoscopic display device may have an imaging unit directed to the observation range of the display panel. In this case, the detection unit may detect the position and orientation of the indicator used by the user in the observation range based on the image of the observation range captured by the imaging unit.
 前記検出部は、前記撮像部により撮像された前記観察範囲の画像に基づいて、前記表示パネルを観察する前記ユーザの視点を検出してもよい。この場合、前記表示制御部は、前記ユーザの視点に応じた前記立体像を表示させてもよい。 The detection unit may detect the viewpoint of the user who observes the display panel based on the image of the observation range captured by the imaging unit. In this case, the display control unit may display the stereoscopic image according to the viewpoint of the user.
 前記指示具は、マーカ部を有してもよい。この場合、前記検出部は、前記指示具の位置姿勢として、前記マーカ部の位置姿勢を検出してもよい。 The indicator may have a marker portion. In this case, the detection unit may detect the position and orientation of the marker unit as the position and orientation of the indicator.
 前記指示具は、対象に向けられる先端部と、前記先端部に接続された把持部とを有してもよい。この場合、前記マーカ部は、前記把持部の前記先端部が接続される側とは反対側に接続されてもよい。 The indicator may have a tip portion directed at the target and a grip portion connected to the tip portion. In this case, the marker portion may be connected to the side opposite to the side to which the tip portion of the grip portion is connected.
 前記表示制御部は、前記表示空間に、前記指示具を使用した入力操作の対象となる対象オブジェクトを表示させてもよい。 The display control unit may display a target object to be an input operation using the indicator in the display space.
 前記表示制御部は、前記対象オブジェクトの種類に合わせて、前記指示オブジェクトの種類を設定してもよい。 The display control unit may set the type of the instruction object according to the type of the target object.
 前記表示制御部は、前記対象オブジェクトと前記指示オブジェクトとの接触に応じて前記対象オブジェクトの表示を制御してもよい。 The display control unit may control the display of the target object according to the contact between the target object and the instruction object.
 前記指示具は、前記ユーザに皮膚感覚を提示する感覚提示部を有してもよい。この場合、前記情報処理装置は、さらに、前記対象オブジェクトと前記指示オブジェクトとの接触に応じて、前記感覚提示部を制御する感覚制御部を具備してもよい。 The indicator may have a sensation presenting unit that presents a skin sensation to the user. In this case, the information processing device may further include a sensory control unit that controls the sensory presentation unit in response to contact between the target object and the instruction object.
 前記感覚提示部は、振動感覚又は熱感覚の少なくとも一方を提示してもよい。 The sensation presenting unit may present at least one of vibration sensation and thermal sensation.
 前記感覚制御部は、前記対象オブジェクトの種類、前記指示オブジェクトの種類、又は前記対象オブジェクトと前記指示オブジェクトとの接触量の少なくとも1つに応じて、前記感覚提示部を制御してもよい。 The sensory control unit may control the sensory presentation unit according to at least one of the type of the target object, the type of the instruction object, or the amount of contact between the target object and the instruction object.
 本技術の一形態に係る情報処理方法は、コンピュータシステムにより実行される情報処理方法であって、ユーザが使用する指示具の画像に基づいて、前記指示具の位置姿勢を検出することを含む。
 前記指示具の位置姿勢に基づいて、立体表示装置の表示空間に、前記表示空間に対する前記指示具の仮想的な挿入部分を表す指示オブジェクトを表示させる。
The information processing method according to one embodiment of the present technology is an information processing method executed by a computer system, and includes detecting the position and orientation of the indicator based on an image of the indicator used by the user.
Based on the position and orientation of the indicator, an instruction object representing a virtual insertion portion of the indicator with respect to the display space is displayed in the display space of the stereoscopic display device.
 本技術の一形態に係るプログラムは、コンピュータシステムに以下のステップを実行させる。
 ユーザが使用する指示具の画像に基づいて、前記指示具の位置姿勢を検出するステップ。
 前記指示具の位置姿勢に基づいて、立体表示装置の表示空間に、前記表示空間に対する前記指示具の仮想的な挿入部分を表す指示オブジェクトを表示させるステップ。
A program according to a form of the present technology causes a computer system to perform the following steps.
A step of detecting the position and orientation of the indicator based on the image of the indicator used by the user.
A step of displaying an instruction object representing a virtual insertion portion of the indicator in the display space in the display space of the stereoscopic display device based on the position and orientation of the indicator.
本技術の概要を説明するための模式図である。It is a schematic diagram for demonstrating the outline of this technique. ポインティングデバイスの構成例を示す模式図である。It is a schematic diagram which shows the configuration example of a pointing device. 立体表示装置の機能的な構成例を示すブロック図である。It is a block diagram which shows the functional configuration example of a stereoscopic display device. 本実施形態に係る情報処理方法の一例を示すフローチャートである。It is a flowchart which shows an example of the information processing method which concerns on this Embodiment. 表示パネルとポインティングデバイスとの配置関係を説明するための模式図である。It is a schematic diagram for demonstrating the arrangement relation between a display panel and a pointing device. ポインティングデバイスの位置姿勢の算出方法の一例を示す模式図である。It is a schematic diagram which shows an example of the calculation method of the position and orientation of a pointing device. 仮想ポインタの表示例を示す模式図である。It is a schematic diagram which shows the display example of a virtual pointer.
 以下、本技術に係る実施形態を、図面を参照しながら説明する。 Hereinafter, embodiments relating to the present technology will be described with reference to the drawings.
 [本技術の概要]
 図1は、本技術の概要を説明するための模式図である。
 本技術は、立体表示装置100が表示する立体像10に対する入力操作を実現し、入力操作に応じたフィードバックを提供することが可能である。
 図1Aは、立体像10に対するユーザ1の入力操作が行われる前の状態を示す模式図であり、図1Bは、ユーザ1の入力操作が行われている状態を示す模式図である。図1A及び図1Bには、立体表示装置100により表示された立体像10(ウサギのオブジェクト)を観察するユーザ1が模式的に図示されている。
[Outline of this technology]
FIG. 1 is a schematic diagram for explaining an outline of the present technology.
The present technology can realize an input operation for the stereoscopic image 10 displayed by the stereoscopic display device 100, and can provide feedback according to the input operation.
FIG. 1A is a schematic diagram showing a state before the input operation of the user 1 is performed on the stereoscopic image 10, and FIG. 1B is a schematic diagram showing a state in which the input operation of the user 1 is performed. 1A and 1B schematically show a user 1 observing a stereoscopic image 10 (rabbit object) displayed by the stereoscopic display device 100.
 立体表示装置100は、視聴対象となるコンテンツ等を立体的に表示する装置である。立体表示装置100は、例えば右眼用画像及び左眼用画像を表示することで両眼視差を利用した立体表示(ステレオ立体視)を行う。これにより立体表示装置100を観察するユーザ1は、対象となるコンテンツを奥行のある立体像10として知覚することが可能となる。
 以下では、立体像10が表示される空間を立体表示装置100の表示空間11と記載する。表示空間11は、例えば縦方向、横方向、及び奥行方向に広がる3次元的な仮想空間である。従って立体像10は、表示空間11内に立体的に表示される仮想オブジェクトと言える。
The three-dimensional display device 100 is a device that three-dimensionally displays content or the like to be viewed. The stereoscopic display device 100 performs stereoscopic display (stereoscopic stereoscopic vision) using binocular parallax by displaying, for example, an image for the right eye and an image for the left eye. As a result, the user 1 observing the stereoscopic display device 100 can perceive the target content as a stereoscopic image 10 having a depth.
In the following, the space in which the stereoscopic image 10 is displayed will be referred to as the display space 11 of the stereoscopic display device 100. The display space 11 is, for example, a three-dimensional virtual space that extends in the vertical direction, the horizontal direction, and the depth direction. Therefore, the stereoscopic image 10 can be said to be a virtual object that is stereoscopically displayed in the display space 11.
 本実施形態では、立体表示装置100の表示パネル20により立体像10が表示される。図1Aには、水平方向(垂直方向)に対して斜めに配置された表示パネル20が斜線の領域として模式的に図示されている。
 表示パネル20は、ユーザ1の右眼(右視点)及び左眼(左視点)に、右眼用画像及び左眼用画像をそれぞれ表示するディスプレイである。
 これにより、ユーザ1は、表示パネル20を見るだけで立体像10を知覚することが可能となる。このように、立体表示装置100は、メガネ型の装置等を用いることなく、裸眼の状態でユーザ1に立体像10を表示する裸眼立体表示装置である。
 また立体表示装置100では、表示パネル20の近傍に配置されたカメラ21(例えば単眼のRGBカメラ)を用いてユーザ1の視点2の位置がトラッキングされ、ユーザ1の視点2の位置に応じた右眼用画像及び左眼用画像が生成される。
 これにより、視点2の位置が移動した場合であっても、移動後の視点2の位置から見た立体像10(ウサギのオブジェクト等)を知覚させることが可能である。
In the present embodiment, the stereoscopic image 10 is displayed by the display panel 20 of the stereoscopic display device 100. In FIG. 1A, a display panel 20 arranged obliquely with respect to the horizontal direction (vertical direction) is schematically illustrated as a shaded area.
The display panel 20 is a display that displays an image for the right eye and an image for the left eye on the right eye (right viewpoint) and the left eye (left viewpoint) of the user 1, respectively.
As a result, the user 1 can perceive the stereoscopic image 10 simply by looking at the display panel 20. As described above, the stereoscopic display device 100 is a naked-eye stereoscopic display device that displays the stereoscopic image 10 to the user 1 in the state of the naked eye without using a glasses-type device or the like.
Further, in the stereoscopic display device 100, the position of the viewpoint 2 of the user 1 is tracked by using a camera 21 (for example, a monocular RGB camera) arranged in the vicinity of the display panel 20, and the right according to the position of the viewpoint 2 of the user 1. An eye image and a left eye image are generated.
As a result, even when the position of the viewpoint 2 is moved, it is possible to perceive the stereoscopic image 10 (rabbit object or the like) seen from the position of the viewpoint 2 after the movement.
 立体表示装置100では、例えば表示パネル20を挟んでユーザ1とは反対側の空間に立体像10が知覚されるように、右眼用画像及び左眼用画像が生成される。すなわち、立体像10は、ユーザ1から見て表示パネル20の内側の空間に表示される。このように、本実施形態では、立体表示装置100の表示空間11は、表示パネル20を境界とする仮想空間である。
 図1Aには、表示パネル20の内側の表示空間11に表示されたウサギのオブジェクト(立体像10)が模式的に図示されている。本実施形態では、このウサギのオブジェクトは、対象オブジェクト14の一例である。本開示において、対象オブジェクト14とは、ユーザ1の入力操作の対象となるオブジェクト(立体像10)である。
In the stereoscopic display device 100, for example, an image for the right eye and an image for the left eye are generated so that the stereoscopic image 10 is perceived in the space on the opposite side of the display panel 20 from the user 1. That is, the stereoscopic image 10 is displayed in the space inside the display panel 20 when viewed from the user 1. As described above, in the present embodiment, the display space 11 of the stereoscopic display device 100 is a virtual space whose boundary is the display panel 20.
FIG. 1A schematically illustrates a rabbit object (stereoscopic image 10) displayed in the display space 11 inside the display panel 20. In this embodiment, the rabbit object is an example of the target object 14. In the present disclosure, the target object 14 is an object (stereoscopic image 10) that is the target of the input operation of the user 1.
 対象オブジェクト14に対する入力操作には、ポインティングデバイス40が用いられる。ポインティングデバイス40は、伸縮可能に構成された棒状の器具である(図2参照)。
 例えば、ポインティングデバイス40を掴んだユーザ1は、ポインティングデバイス40の先端を対象オブジェクト14に接近させるように操作することで、対象オブジェクト14に対する入力操作を行うことが可能である。
 またポインティングデバイス40には、その位置姿勢を検出するためのマーカ41が設けられる。図1Aには、ユーザ1が使用するポインティングデバイス40が模式的に図示されている。本実施形態では、ポインティングデバイス40は、指示具に相当する。またマーカ41は、マーカ部に相当する。
The pointing device 40 is used for the input operation on the target object 14. The pointing device 40 is a rod-shaped device configured to be expandable and contractible (see FIG. 2).
For example, the user 1 who has grasped the pointing device 40 can perform an input operation on the target object 14 by operating the tip of the pointing device 40 so as to approach the target object 14.
Further, the pointing device 40 is provided with a marker 41 for detecting the position and orientation thereof. FIG. 1A schematically illustrates the pointing device 40 used by the user 1. In this embodiment, the pointing device 40 corresponds to an indicator. The marker 41 corresponds to a marker portion.
 図1Bには、ユーザ1がポインティングデバイス40を使用して、対象オブジェクト14であるウサギのオブジェクトに入力操作を行っている様子が示されている。
 ユーザ1がポインティングデバイス40の先端を対象オブジェクト14に接近させるとする。このとき、カメラ21によりポインティングデバイス40のマーカ41の2次元画像が撮像され、撮像された2次元画像をもとに、マーカ41の3次元の位置姿勢が推定される。これにより、ポインティングデバイス40の位置姿勢、すなわちポインティングデバイス40がどの位置からどの方向に向けられているかが推定される。
FIG. 1B shows how the user 1 uses the pointing device 40 to perform an input operation on the rabbit object, which is the target object 14.
It is assumed that the user 1 brings the tip of the pointing device 40 close to the target object 14. At this time, the camera 21 captures a two-dimensional image of the marker 41 of the pointing device 40, and the three-dimensional position and orientation of the marker 41 are estimated based on the captured two-dimensional image. As a result, the position and orientation of the pointing device 40, that is, from which position to which direction the pointing device 40 is directed is estimated.
 ポインティングデバイス40の先端が表示パネル20に接触し、ユーザ1がさらにポインティングデバイス40を押し込むと、ポインティングデバイス40が縮んでその長さは短くなる。
 このとき、表示パネル20内の表示空間11には、仮想ポインタ15が表示される。仮想ポインタ15は、表示空間11に表示される立体像10であり、表示空間11に対するポインティングデバイス40の仮想的な挿入部分を表す仮想オブジェクトである。本実施形態では、仮想ポインタ15は、指示オブジェクトに相当する。
 図1Bに示すように、仮想ポインタ15は、ポインティングデバイス40と表示パネル20との接触点から、ポインティングデバイス40が向けられた方向に沿って、ポインティングデバイス40の挿入量(伸縮量)に応じた長さとなるように表示される。すなわち、仮想ポインタ15は、実空間でユーザ1が使用するポインティングデバイス40を、仮想空間(表示空間11)に延長して表示したオブジェクトであると言える。
When the tip of the pointing device 40 comes into contact with the display panel 20 and the user 1 further pushes the pointing device 40, the pointing device 40 shrinks and its length becomes shorter.
At this time, the virtual pointer 15 is displayed in the display space 11 in the display panel 20. The virtual pointer 15 is a stereoscopic image 10 displayed in the display space 11, and is a virtual object representing a virtual insertion portion of the pointing device 40 in the display space 11. In this embodiment, the virtual pointer 15 corresponds to an instruction object.
As shown in FIG. 1B, the virtual pointer 15 corresponds to the insertion amount (expansion / contraction amount) of the pointing device 40 from the contact point between the pointing device 40 and the display panel 20 along the direction in which the pointing device 40 is directed. It is displayed so that it is the length. That is, it can be said that the virtual pointer 15 is an object in which the pointing device 40 used by the user 1 in the real space is extended to the virtual space (display space 11) and displayed.
 例えば、ポインティングデバイス40が表示パネル20に接触した状態で、ポインティングデバイス40を移動すると、接触点が移動し仮想ポインタ15が移動する。またポインティングデバイス40の向きを変えると、ポインティングデバイス40の向きに沿って仮想ポインタ15の向きが変化する。またポインティングデバイス40の挿入量(伸縮量)を変化させると、仮想ポインタ15の長さが変化する。
 従って、ユーザ1は実空間上の物体であるポインティングデバイス40を操作することで、仮想空間(表示空間11)内の仮想ポインタ15を直感的に操作することが可能である。
For example, if the pointing device 40 is moved while the pointing device 40 is in contact with the display panel 20, the contact point moves and the virtual pointer 15 moves. Further, when the orientation of the pointing device 40 is changed, the orientation of the virtual pointer 15 changes along the orientation of the pointing device 40. Further, when the insertion amount (expansion / contraction amount) of the pointing device 40 is changed, the length of the virtual pointer 15 changes.
Therefore, the user 1 can intuitively operate the virtual pointer 15 in the virtual space (display space 11) by operating the pointing device 40 which is an object in the real space.
 ユーザ1がポインティングデバイス40を操作して、仮想ポインタ15が対象オブジェクト14と接触した場合、例えば対象オブジェクト14の状態を変化させる処理が実行される。図1Bに示す例では、対象オブジェクト14であるウサギのオブジェクトが、仮想ポインタ15が接触した方向を見るように表示される。
 これにより、あたかもポインティングデバイス40を使って、表示空間11内のウサギ(対象オブジェクト14)を反応させたかのような仮想体験をユーザ1に提供することが可能となる。すなわち、表示空間11内の対象オブジェクト14とユーザ1とのインタラクションを実現することが可能である。
When the user 1 operates the pointing device 40 and the virtual pointer 15 comes into contact with the target object 14, for example, a process of changing the state of the target object 14 is executed. In the example shown in FIG. 1B, the rabbit object, which is the target object 14, is displayed so as to look in the direction in which the virtual pointer 15 is in contact.
As a result, it is possible to provide the user 1 with a virtual experience as if the rabbit (target object 14) in the display space 11 was reacted by using the pointing device 40. That is, it is possible to realize the interaction between the target object 14 in the display space 11 and the user 1.
 また、後述するように、ポインティングデバイス40には、振動を発生させる振動提示部(図2参照)が搭載される。例えば仮想ポインタ15と対象オブジェクト14とが接触した場合には、振動提示部を介して所定の振動パターンの振動が提示される。
 これにより、ユーザ1は、対象オブジェクト14と接触した感覚等を振動として知覚することが可能となる。このように、ポインティングデバイス40が振動することで、立体像10である対象オブジェクト14に実際に接触したかのような感覚を、ユーザ1にフィードバックすることが可能である。
Further, as will be described later, the pointing device 40 is equipped with a vibration presenting unit (see FIG. 2) that generates vibration. For example, when the virtual pointer 15 and the target object 14 come into contact with each other, vibration of a predetermined vibration pattern is presented via the vibration presenting unit.
As a result, the user 1 can perceive the sensation of contact with the target object 14 as vibration. By vibrating the pointing device 40 in this way, it is possible to feed back to the user 1 the feeling as if the object object 14 which is the stereoscopic image 10 was actually touched.
 仮想ポインタ15を対象オブジェクト14に接触させる操作は、ユーザ1による対象オブジェクト14に対する入力操作の一例である。この操作では、仮想ポインタ15との接触に応じて対象オブジェクト14の表示が変化し、接触した感覚が振動としてユーザ1にフィードバックされる。
 このように、ユーザ1は、実在するポインティングデバイス40を用いて、立体表示装置100が表示した対象オブジェクト14に対する直観的な入力操作を行うことが可能である。また操作の状態に合わせて、振動がフィードバックされるため、実在の物体に操作を加えているかのような体験を提供することが可能である。
The operation of bringing the virtual pointer 15 into contact with the target object 14 is an example of an input operation for the target object 14 by the user 1. In this operation, the display of the target object 14 changes according to the contact with the virtual pointer 15, and the feeling of contact is fed back to the user 1 as vibration.
In this way, the user 1 can perform an intuitive input operation on the target object 14 displayed by the stereoscopic display device 100 by using the existing pointing device 40. In addition, since vibration is fed back according to the state of operation, it is possible to provide an experience as if the operation is being applied to a real object.
 [ポインティングデバイスの構成例]
 図2は、ポインティングデバイス40の構成例を示す模式図である。図2A及び図2Bには、ポインティングデバイス40が伸びた状態と縮んだ状態とがそれぞれ模式的に図示されている。
 まず図2Aを参照して、ポインティングデバイス40の構成について説明する。
 ポインティングデバイス40は、伸縮部42と、把持部43と、マーカ41とを有する。またポインティングデバイス40の内部には、通信部44と、振動提示部45とが設けられる。
[Pointing device configuration example]
FIG. 2 is a schematic view showing a configuration example of the pointing device 40. 2A and 2B schematically show a state in which the pointing device 40 is extended and a state in which the pointing device 40 is contracted.
First, the configuration of the pointing device 40 will be described with reference to FIG. 2A.
The pointing device 40 has an expansion / contraction portion 42, a grip portion 43, and a marker 41. Further, inside the pointing device 40, a communication unit 44 and a vibration presentation unit 45 are provided.
 伸縮部42は、全体として一方向に延在する棒形状の構造を有し、対象に向けられる部分である。伸縮部42の一方の端は、把持部43に接続され、他方の端は、対象に向けられる先端46となる。以下では、伸縮部42が延在する方向を、軸方向と記載する。本実施形態では、伸縮部42は、対象に向けられる先端部に相当し、軸方向は、一方向に相当する。
 伸縮部42は、先端46が押されると軸方向に縮むように構成される。伸縮部42としては、例えば、軸方向に沿って入れ子状に配置された複数の筒が伸び縮みするテレスコピック構造等が用いられる。この他、任意の伸縮構造を用いて伸縮部が構成されてよい。
 把持部43は、伸縮部42に接続された筒状の長手部材であり、ポインティングデバイス40を使用するユーザ1が掴む部分である。例えば、テレスコピック構造の伸縮部42において最も外側に配置された筒が、把持部43として用いられる。
 マーカ41は、位置姿勢の検出に用いられる複数の検出ポイント47を有する。例えばマーカ41を撮像した画像に映る各検出ポイント47の位置関係から、マーカ41(ポインティングデバイス40)の位置姿勢が検出可能である。
 マーカ41には、典型的には3以上の検出ポイント47が設けられる。検出ポイント47としては、例えば立体の頂点や、互いに色の異なる彩色点や発光点等が用いられる。
 本実施形態では、マーカ41は、把持部43の伸縮部42が接続される側とは反対側に接続される。すなわち、マーカ41は、対象に向けられる先端46とは反対側の端部に設けられる。これにより、マーカ41を適正に検出することが可能である。
 図2に示す例では、5角形上のマーカ41が模式的に図示されている。この場合、例えば5角形の各頂点が検出ポイント47となる。マーカ41の具体的な構成は、限定されない。
The telescopic portion 42 has a rod-shaped structure extending in one direction as a whole, and is a portion directed to the target. One end of the telescopic portion 42 is connected to the grip portion 43, and the other end is a tip 46 directed at the target. Hereinafter, the direction in which the telescopic portion 42 extends is referred to as an axial direction. In the present embodiment, the telescopic portion 42 corresponds to the tip portion directed to the target, and the axial direction corresponds to one direction.
The telescopic portion 42 is configured to contract in the axial direction when the tip 46 is pushed. As the telescopic portion 42, for example, a telescopic structure in which a plurality of cylinders arranged in a nested manner along the axial direction expand and contract is used. In addition, the stretchable portion may be configured using any stretchable structure.
The grip portion 43 is a tubular longitudinal member connected to the telescopic portion 42, and is a portion gripped by the user 1 who uses the pointing device 40. For example, the outermost cylinder in the telescopic portion 42 of the telescopic structure is used as the grip portion 43.
The marker 41 has a plurality of detection points 47 used for detecting the position and orientation. For example, the position and orientation of the marker 41 (pointing device 40) can be detected from the positional relationship of each detection point 47 displayed in the image obtained by capturing the marker 41.
The marker 41 is typically provided with three or more detection points 47. As the detection point 47, for example, a vertex of a solid, a coloring point or a light emitting point having different colors from each other is used.
In the present embodiment, the marker 41 is connected to the side opposite to the side to which the telescopic portion 42 of the grip portion 43 is connected. That is, the marker 41 is provided at the end opposite to the tip 46 directed to the target. This makes it possible to properly detect the marker 41.
In the example shown in FIG. 2, the marker 41 on the pentagon is schematically illustrated. In this case, for example, each vertex of the pentagon becomes the detection point 47. The specific configuration of the marker 41 is not limited.
 通信部44及び振動提示部45は、例えば把持部43(又はマーカ41)の内部に設けられる。
 通信部44は、他のデバイスと通信するための通信モジュールであり、例えば立体表示装置100との通信を行う。通信部44としては、例えばWiFi等の無線LAN(Local Area Network)モジュールや、Bluetooth(登録商標)等の近距離無線通信用の通信モジュールが用いられる。
 振動提示部45は、ユーザ1に振動感覚を提示する。振動提示部45としては、例えばボイスコイルモータ、リニアアクチュエータ、偏心モータ、及びピエゾ素子等の振動素子が用いられる。
 例えば振動提示部45が、所定の振動信号に基づいて振動を発生することで、振動信号に応じた振動感覚が把持部43を介してユーザ1に提示される。これにより、ユーザ1に様々な触覚(ハプティクス)を知覚させることが可能となる。本実施形態では、振動提示部45は、ユーザに皮膚感覚を提示する感覚提示部として機能する。
 なお、振動提示部45の他に、ユーザ1に熱感覚を提示する感覚提示部(熱提示部)等が搭載されてもよい。熱提示部としては、例えばヒータ素子やペルチェ素子等が用いられる。熱提示部を搭載することで、熱い感覚や冷たい感覚を提示することが可能となる。
 この他、ポインティングデバイス40には、触覚、熱覚、力覚等の任意の皮膚感覚を提示可能な素子(感覚提示部)が搭載されてよい。
The communication unit 44 and the vibration presentation unit 45 are provided inside, for example, the grip unit 43 (or the marker 41).
The communication unit 44 is a communication module for communicating with other devices, and communicates with, for example, the stereoscopic display device 100. As the communication unit 44, for example, a wireless LAN (Local Area Network) module such as WiFi or a communication module for short-range wireless communication such as Bluetooth (registered trademark) is used.
The vibration presenting unit 45 presents the vibration sensation to the user 1. As the vibration presenting unit 45, for example, a vibration element such as a voice coil motor, a linear actuator, an eccentric motor, and a piezo element is used.
For example, when the vibration presenting unit 45 generates vibration based on a predetermined vibration signal, the vibration sensation corresponding to the vibration signal is presented to the user 1 via the grip unit 43. This makes it possible for the user 1 to perceive various tactile sensations (haptics). In the present embodiment, the vibration presenting unit 45 functions as a sensation presenting unit that presents a skin sensation to the user.
In addition to the vibration presenting unit 45, a sensation presenting unit (heat presenting unit) for presenting a thermal sensation to the user 1 may be mounted. As the heat presenting unit, for example, a heater element, a Peltier element, or the like is used. By installing a heat presenting unit, it is possible to present a hot sensation or a cold sensation.
In addition, the pointing device 40 may be equipped with an element (sensory presentation unit) capable of presenting any skin sensation such as tactile sensation, heat sensation, and force sensation.
 図2Bには、ポインティングデバイス40が表示パネル20に押し付けられて縮んだ状態が示されている。例えば、ユーザ1が把持部43を掴んだ状態で、先端46を表示パネル20に押し付けるとする。この場合、伸縮部42は、表示パネル20に先端46が押されて縮むことになる。
 例えば、テレスコピック構造では、伸縮部42の先端46側に設けられた筒が、先端46に近い方から順番に把持部43側に押し込まれる。図2Bには、把持部43側に押し込まれた筒が、模式的に図示されている。
FIG. 2B shows a state in which the pointing device 40 is pressed against the display panel 20 and contracted. For example, suppose that the user 1 presses the tip 46 against the display panel 20 while grasping the grip portion 43. In this case, the telescopic portion 42 contracts when the tip 46 is pushed by the display panel 20.
For example, in the telescopic structure, the cylinders provided on the tip 46 side of the telescopic portion 42 are pushed toward the grip portion 43 in order from the side closer to the tip 46. FIG. 2B schematically shows a cylinder pushed toward the grip portion 43 side.
 また伸縮部42には、先端46が押された場合に、先端46を押し戻す復元力を発生する復元機構(図示省略)が設けられる。復元機構の具体的な構成は限定されず、例えば、ばねやゴム等の弾性体、あるいは圧力シリンダー等が用いられる。
 例えば、表示パネル20から把持部43が離れる方向に操作された場合、伸縮部42は、復元機構により先端46が押し戻されて伸びることになる。従って、先端46が物体(例えば表示パネル20)に押しつけられている間は、伸縮部42は縮んでいるが、先端46が押し付けられていない状態では、伸縮部42は、図2Aに示すような伸びた状態に戻る。
Further, the telescopic portion 42 is provided with a restoring mechanism (not shown) that generates a restoring force that pushes back the tip 46 when the tip 46 is pushed. The specific configuration of the restoration mechanism is not limited, and for example, an elastic body such as a spring or rubber, a pressure cylinder, or the like is used.
For example, when the grip portion 43 is operated in a direction away from the display panel 20, the tip 46 of the telescopic portion 42 is pushed back and extended by the restoring mechanism. Therefore, while the tip 46 is pressed against the object (for example, the display panel 20), the telescopic portion 42 is contracted, but when the tip 46 is not pressed, the telescopic portion 42 is as shown in FIG. 2A. It returns to the stretched state.
 このように、ポインティングデバイス40は、押圧に応じて軸方向に伸縮可能である。すなわちポインティングデバイス40は、表示パネル20と接触した場合に、伸縮機構(伸縮部)により先端部分が縮小するように構成される。
 後述するように、ポインティングデバイス40の伸縮量は、表示パネル20に対するポインティングデバイス40の仮想的な挿入量として、仮想ポインタ15の表示制御に用いられる。例えば先端の縮小した分が仮想ポインタ15として表示される。
 これにより、表示パネル20内の表示空間11に対して、ポインティングデバイス40をそのまま挿入しているかのような直感的な入力操作が可能となる。また表示パネル20の表面より奥側に定位している対象オブジェクト14に対しても、仮想ポインタ15を介して直感的に入力を加えることができる。
In this way, the pointing device 40 can be expanded and contracted in the axial direction in response to pressing. That is, the pointing device 40 is configured such that when it comes into contact with the display panel 20, the tip portion is reduced by the expansion / contraction mechanism (expansion / contraction portion).
As will be described later, the expansion / contraction amount of the pointing device 40 is used for display control of the virtual pointer 15 as a virtual insertion amount of the pointing device 40 into the display panel 20. For example, the reduced tip is displayed as the virtual pointer 15.
As a result, an intuitive input operation as if the pointing device 40 is inserted as it is into the display space 11 in the display panel 20 becomes possible. In addition, input can be intuitively added to the target object 14 localized on the back side of the surface of the display panel 20 via the virtual pointer 15.
 [立体表示装置の構成例]
 図3は、立体表示装置100の機能的な構成例を示すブロック図である。
 立体表示装置100は、図1を参照して説明した表示パネル20及びカメラ21と、スピーカ22と、操作部23と、I/F(インタフェース)部24と、通信部25と、記憶部26と、コントローラ27とを有する。
[Configuration example of stereoscopic display device]
FIG. 3 is a block diagram showing a functional configuration example of the three-dimensional display device 100.
The stereoscopic display device 100 includes a display panel 20, a camera 21, a speaker 22, an operation unit 23, an I / F (interface) unit 24, a communication unit 25, and a storage unit 26 described with reference to FIG. , And a controller 27.
 表示パネル20は、立体像10を表示する。具体的には、ユーザ1の右眼及び左眼に対して、ステレオ立体視が可能な右眼用画像及び左眼用画像をそれぞれ表示する。
 例えば表示パネル20は、右眼のある方向に向けて右眼用画像を構成する光線を出射し、左眼のある方向に向けて左眼用画像を構成する光線を出射する。これにより、ユーザ1に両眼視差を与えて立体像10を知覚させることが可能である。
 また、立体像10(右眼用画像及び左眼用画像)を知覚させる光線は、表示パネル20の正面に設定された所定の観察範囲に向けて出射される。従って、表示パネル20は、観察範囲から表示パネル20を観察するユーザ1に、立体像10を知覚させる装置であると言える。
The display panel 20 displays the stereoscopic image 10. Specifically, the right eye image and the left eye image capable of stereoscopic stereoscopic viewing are displayed on the right eye and the left eye of the user 1, respectively.
For example, the display panel 20 emits light rays forming an image for the right eye toward a certain direction of the right eye, and emits light rays forming an image for the left eye toward a certain direction of the left eye. This makes it possible to give the user 1 binocular parallax to perceive the stereoscopic image 10.
Further, the light rays for perceiving the stereoscopic image 10 (right eye image and left eye image) are emitted toward a predetermined observation range set in front of the display panel 20. Therefore, it can be said that the display panel 20 is a device that allows the user 1 who observes the display panel 20 from the observation range to perceive the stereoscopic image 10.
 表示パネル20は、例えば平面視で矩形状のパネルである。本実施形態では、表示パネル20は、一対の辺が水平方向と平行となるように、ユーザ1から見て傾けて配置される。このように、表示パネル20の表面が傾けて配置されるため、ユーザ1は水平方向及び垂直方向から立体像10を観察するといったことが可能であり、観察範囲が拡大される。
 表示パネル20の方式等は限定されない。例えば1組の表示画素ごとに遮蔽板を設けて各眼に入射する光線を分けるパララックスバリア方式や、表示画素ごとに出射方向を制御するレンチキュラーレンズ方式等が用いられる。また光線再生型のディスプレイ等が用いられてもよい。この他、裸眼での立体表示が可能な任意の方式が採用されてよい。
The display panel 20 is, for example, a rectangular panel in a plan view. In the present embodiment, the display panel 20 is arranged at an angle when viewed from the user 1 so that the pair of sides are parallel to the horizontal direction. Since the surface of the display panel 20 is arranged at an angle in this way, the user 1 can observe the stereoscopic image 10 from the horizontal direction and the vertical direction, and the observation range is expanded.
The method of the display panel 20 is not limited. For example, a parallax barrier method in which a shielding plate is provided for each set of display pixels to separate light rays incident on each eye, a lenticular lens method in which the emission direction is controlled for each display pixel, and the like are used. Further, a light ray reproduction type display or the like may be used. In addition, any method capable of stereoscopic display with the naked eye may be adopted.
 カメラ21は、表示パネル20の観察範囲に向けて配置される。図1に示す例では、カメラ21は、斜めに配置された表示パネル20の正面の空間(観察範囲)を撮影するように、表示パネル20の上端中央に配置される。本実施形態では、カメラ21は、撮像部に相当する。
 カメラ21は、典型的には、カラーの動画像及び静止画像を撮影可能な単眼のRGBカメラである。なお、ステレオカメラ21等の複数のカメラ21が用いられる場合であっても本技術は適用可能である。
 カメラ21としては、CMOS(Complementary Metal-Oxide Semiconductor)センサやCCD(Charge Coupled Device)センサ等のイメージセンサを備えるデジタルカメラを用いることが可能である。その他、任意の構成が採用されてよい。
The camera 21 is arranged toward the observation range of the display panel 20. In the example shown in FIG. 1, the camera 21 is arranged at the center of the upper end of the display panel 20 so as to capture the space (observation range) in front of the display panel 20 arranged diagonally. In this embodiment, the camera 21 corresponds to an imaging unit.
The camera 21 is typically a monocular RGB camera capable of capturing color moving and still images. The present technology can be applied even when a plurality of cameras 21 such as a stereo camera 21 are used.
As the camera 21, a digital camera including an image sensor such as a CMOS (Complementary Metal-Oxide Semiconductor) sensor or a CCD (Charge Coupled Device) sensor can be used. In addition, any configuration may be adopted.
 スピーカ22は、種々の音を出力可能である。スピーカ22の具体的な構成は限定されない。
 操作部23は、例えばキーボードやマウス等の物理的な操作を行う操作装置である。
 I/F部24は、例えばUSB(Universal Serial Bus)端子やHDMI(登録商標)(High-Definition Multimedia Interface)端子等の、他のデバイスや種々のケーブルが接続されるインタフェースである。
 通信部25は、他のデバイスと通信するための通信モジュールであり、例えばポインティングデバイス40との通信を行う。通信部25としては、例えばWiFi等の無線LANモジュールや、Bluetooth(登録商標)等の近距離無線通信用の通信モジュールが用いられる。
The speaker 22 can output various sounds. The specific configuration of the speaker 22 is not limited.
The operation unit 23 is an operation device that performs physical operations such as a keyboard and a mouse.
The I / F unit 24 is an interface to which other devices and various cables are connected, such as a USB (Universal Serial Bus) terminal and an HDMI (registered trademark) (High-Definition Multimedia Interface) terminal.
The communication unit 25 is a communication module for communicating with another device, and communicates with, for example, the pointing device 40. As the communication unit 25, for example, a wireless LAN module such as WiFi or a communication module for short-range wireless communication such as Bluetooth (registered trademark) is used.
 記憶部26は、不揮発性の記憶デバイスであり、例えばHDD(Hard Disk Drive)やSSD(Solid State Drive)等が用いられる。
 記憶部26には、オブジェクトライブラリ28が記憶される。オブジェクトライブラリ28は、例えば仮想ポインタ15や、対象オブジェクト14となるオブジェクトのデザインデータが格納されたライブラリである。例えば仮想ポインタ15や対象オブジェクト14等を表示する際には、オブジェクトライブラリ28に格納されたデザインデータが適宜読み出される。
 また記憶部26には、立体表示装置100の全体の動作を制御するための制御プログラム29が記憶される。制御プログラム29は、本技術に係るプログラムを含む。
 制御プログラム29を、立体表示装置100にインストールする方法は限定されない。例えば、種々の記録媒体を介してインストールが実行されてもよいし、インターネット等を介してプログラムのインストールが実行されてもよい。
 なお、本技術に係るプログラムが記録される記録媒体の種類等は限定されず、コンピュータが読み取り可能な任意の記録媒体が用いられてよい。例えば非一時的にデータを記録する任意の記録媒体が用いられてよい。
The storage unit 26 is a non-volatile storage device, and for example, an HDD (Hard Disk Drive), an SSD (Solid State Drive), or the like is used.
The object library 28 is stored in the storage unit 26. The object library 28 is, for example, a library in which the virtual pointer 15 and the design data of the object to be the target object 14 are stored. For example, when displaying the virtual pointer 15, the target object 14, or the like, the design data stored in the object library 28 is appropriately read out.
Further, the storage unit 26 stores a control program 29 for controlling the overall operation of the stereoscopic display device 100. The control program 29 includes a program related to the present technology.
The method of installing the control program 29 on the stereoscopic display device 100 is not limited. For example, the installation may be executed via various recording media, or the program may be installed via the Internet or the like.
The type of recording medium on which the program according to the present technology is recorded is not limited, and any computer-readable recording medium may be used. For example, any recording medium for recording data non-temporarily may be used.
 コントローラ27は、立体表示装置100が有する各ブロックの動作を制御する。コントローラ27は、例えばCPUやGPU等のプロセッサ、ROMやRAM等のメモリ等の、コンピュータの構成に必要なハードウェアを有する。CPU等が記憶部26に記録されている制御プログラム(本技術に係るプログラム)29をRAMにロードして実行することにより、本技術に係る情報処理方法が実行される。本実施形態では、コントローラ27は、情報処理装置に相当する。
 コントローラ27の具体的な構成は限定されず、例えばFPGA(Field Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)等の任意のハードウェアが用いられてもよい。
The controller 27 controls the operation of each block included in the stereoscopic display device 100. The controller 27 has hardware necessary for configuring a computer, such as a processor such as a CPU or GPU and a memory such as ROM or RAM. The information processing method according to the present technology is executed by loading and executing the control program (program according to the present technology) 29 recorded in the storage unit 26 by the CPU or the like into the RAM. In this embodiment, the controller 27 corresponds to an information processing device.
The specific configuration of the controller 27 is not limited, and any hardware such as FPGA (Field Programmable Gate Array) and ASIC (Application Specific Integrated Circuit) may be used.
 本実施形態では、コントローラ27のCPU等が本実施形態に係るプログラムを実行することで、機能ブロックとして、画像取得部30、視点検出部31、ポインタ検出部32、表示制御部33、及び振動制御部34が実現される。そしてこれらの機能ブロックにより、本実施形態に係る情報処理方法が実行される。
 なお各機能ブロックを実現するために、IC(集積回路)等の専用のハードウェアが適宜用いられてもよい。
 本実施形態では、視点検出部31及びポインタ検出部32は、検出部として機能する。
In the present embodiment, the CPU of the controller 27 or the like executes the program according to the present embodiment to perform the image acquisition unit 30, the viewpoint detection unit 31, the pointer detection unit 32, the display control unit 33, and the vibration control as functional blocks. Part 34 is realized. Then, the information processing method according to the present embodiment is executed by these functional blocks.
In addition, in order to realize each functional block, dedicated hardware such as an IC (integrated circuit) may be appropriately used.
In the present embodiment, the viewpoint detection unit 31 and the pointer detection unit 32 function as detection units.
 画像取得部30は、カメラ21により撮像された観察範囲の画像(以下では、単に撮像画像と記載する)を取得する。例えば、カメラ21により、所定のフレームレートで生成された撮像画像が、それぞれ読み込まれる。画像取得部30により取得された撮像画像は、後述する視点検出部31及びポインタ検出部32にそれぞれ出力される。 The image acquisition unit 30 acquires an image of the observation range captured by the camera 21 (hereinafter, simply referred to as an captured image). For example, the camera 21 reads the captured images generated at a predetermined frame rate. The captured image acquired by the image acquisition unit 30 is output to the viewpoint detection unit 31 and the pointer detection unit 32, which will be described later, respectively.
 視点検出部31は、カメラ21により撮像された撮像画像に基づいて、表示パネル20を観察するユーザ1の視点2を検出する。より詳しくは、視点検出部31は、ユーザ1の視点2の位置を検出する。
 例えば、表示パネル20を観察しているユーザ1の顔認識等が実行され、観察範囲におけるユーザ1の視点位置の3次元座標等が算出される。視点2を検出する方法は限定されず、例えば機械学習等を用いた視点の推定処理や、パターンマッチング等を用いた視点検出が実行されてよい。
The viewpoint detection unit 31 detects the viewpoint 2 of the user 1 who observes the display panel 20 based on the captured image captured by the camera 21. More specifically, the viewpoint detection unit 31 detects the position of the viewpoint 2 of the user 1.
For example, the face recognition of the user 1 observing the display panel 20 is executed, and the three-dimensional coordinates of the viewpoint position of the user 1 in the observation range are calculated. The method for detecting the viewpoint 2 is not limited, and for example, a viewpoint estimation process using machine learning or the like, or a viewpoint detection using pattern matching or the like may be executed.
 ポインタ検出部32は、ユーザ1が使用するポインティングデバイス40の画像に基づいて、ポインティングデバイス40の位置姿勢を検出する。
 上記したように、ポインティングデバイス40には、位置姿勢を検出するためのマーカ41が設けられるため、2次元の画像からポインティングデバイス40の位置姿勢を容易に検出することが可能である。
 ポインティングデバイス40の位置としては、所定の座標系における3次元位置が検出される。またポインティングデバイス40の姿勢としては、所定の座標系におけるポインティングデバイス40(軸方向)の向きを表す角度パラメータが検出される。ポインティングデバイス40(マーカ41)の位置姿勢を検出する方法については、後に詳しく説明する。
The pointer detection unit 32 detects the position and orientation of the pointing device 40 based on the image of the pointing device 40 used by the user 1.
As described above, since the pointing device 40 is provided with the marker 41 for detecting the position and orientation, it is possible to easily detect the position and orientation of the pointing device 40 from the two-dimensional image.
As the position of the pointing device 40, a three-dimensional position in a predetermined coordinate system is detected. Further, as the posture of the pointing device 40, an angle parameter representing the direction of the pointing device 40 (axial direction) in a predetermined coordinate system is detected. The method of detecting the position and orientation of the pointing device 40 (marker 41) will be described in detail later.
 本実施形態では、ポインティングデバイス40の画像として、画像取得部30により読み込まれた観察画像が用いられる。すなわち、ポインタ検出部32は、カメラ21により撮像された撮像画像に基づいて、観察範囲でユーザ1が使用するポインティングデバイス40の位置姿勢を検出する。
 つまり、立体表示装置100では、ユーザ1の視点2をトラッキングするカメラ21を利用して、ユーザ1が使用するポインティングデバイス40の位置姿勢が検出されるとも言える。これにより、特殊なセンサ等を追加することなく、ポインティングデバイス40の位置姿勢を検出することが可能となり、装置のコスト等を抑えることが可能である。
 なお、視点検出用のカメラ21を用いる場合に限定されず、例えば他の撮像装置によりポインティングデバイス40が撮像された画像等が用いられてもよい。また視点検出用のカメラ21と、他の撮像装置とが撮像した画像の両方が用いられてもよい。これにより、位置姿勢の検出精度を向上させることや、検出範囲を拡大することが可能である。
In the present embodiment, the observation image read by the image acquisition unit 30 is used as the image of the pointing device 40. That is, the pointer detection unit 32 detects the position and orientation of the pointing device 40 used by the user 1 in the observation range based on the captured image captured by the camera 21.
That is, it can be said that the stereoscopic display device 100 detects the position and orientation of the pointing device 40 used by the user 1 by using the camera 21 that tracks the viewpoint 2 of the user 1. As a result, it is possible to detect the position and orientation of the pointing device 40 without adding a special sensor or the like, and it is possible to reduce the cost of the device or the like.
The case is not limited to the case where the camera 21 for viewpoint detection is used, and for example, an image obtained by the pointing device 40 by another imaging device may be used. Further, both the camera 21 for viewpoint detection and the image captured by another imaging device may be used. As a result, it is possible to improve the detection accuracy of the position and orientation and expand the detection range.
 表示制御部33は、ユーザ1の視点2に応じた立体像10を表示させる。図1を参照して説明したように、立体像10として表示されるオブジェクトには、対象オブジェクト14と、仮想ポインタ15とが含まれる。
 例えば、表示制御部33は、視点検出部31により検出されたユーザ1の視点2の位置に基づいて、オブジェクトが観察される方向を算出する。そして算出された方向から見たオブジェクトを立体像10として表示するための視差画像(右眼用画像及び左眼用画像)を生成し、視差画像の画像データを表示パネル20に出力する。
 これにより、ユーザ1の視点2が変化した場合であっても、その方向から見たオブジェクトの立体像10を知覚させることが可能となる。
The display control unit 33 displays the stereoscopic image 10 according to the viewpoint 2 of the user 1. As described with reference to FIG. 1, the object displayed as the stereoscopic image 10 includes the target object 14 and the virtual pointer 15.
For example, the display control unit 33 calculates the direction in which the object is observed based on the position of the viewpoint 2 of the user 1 detected by the viewpoint detection unit 31. Then, a parallax image (right eye image and left eye image) for displaying the object viewed from the calculated direction as a stereoscopic image 10 is generated, and the image data of the parallax image is output to the display panel 20.
As a result, even when the viewpoint 2 of the user 1 changes, it is possible to perceive the stereoscopic image 10 of the object viewed from that direction.
 具体的には、表示制御部33は、立体表示装置100の表示空間11に、ポインティングデバイス40を使用した入力操作の対象となる対象オブジェクト14を表示させる。例えば、ウサギのオブジェクト(図1参照)を表示するコンテンツが実行されている場合には、ウサギのオブジェクトを立体像10として表示する視差画像が生成され、表示パネル20に出力される。 Specifically, the display control unit 33 causes the display space 11 of the stereoscopic display device 100 to display the target object 14 that is the target of the input operation using the pointing device 40. For example, when the content for displaying the rabbit object (see FIG. 1) is executed, a parallax image for displaying the rabbit object as a stereoscopic image 10 is generated and output to the display panel 20.
 表示制御部33は、ポインティングデバイス40の位置姿勢に基づいて、立体表示装置100の表示空間11に、表示空間11に対するポインティングデバイス40の仮想的な挿入部分を表す仮想ポインタ15を表示させる。
 より詳しくは、ポインタ検出部32により検出されたポインティングデバイス40の位置姿勢に基づいて、仮想ポインタ15の位置、姿勢、長さ等の表示パラメータが算出される。この表示パラメータに基づいて、ユーザ1の視点2から見た仮想ポインタ15を立体像10として表示する視差画像が生成され、表示パネル20に出力される。
 なお対象オブジェクト14及び仮想ポインタ15となるオブジェクトは、オブジェクトライブラリ28に格納されたデザインデータを用いて生成される。
The display control unit 33 causes the display space 11 of the stereoscopic display device 100 to display a virtual pointer 15 representing a virtual insertion portion of the pointing device 40 with respect to the display space 11 based on the position and orientation of the pointing device 40.
More specifically, display parameters such as the position, posture, and length of the virtual pointer 15 are calculated based on the position and orientation of the pointing device 40 detected by the pointer detection unit 32. Based on this display parameter, a parallax image for displaying the virtual pointer 15 viewed from the viewpoint 2 of the user 1 as a stereoscopic image 10 is generated and output to the display panel 20.
The target object 14 and the virtual pointer 15 are generated by using the design data stored in the object library 28.
 振動制御部34は、対象オブジェクト14と仮想ポインタ15との接触に応じて、ポインティングデバイス40に設けられた振動提示部45を制御する。
 例えば、振動制御部34は、対象オブジェクト14と仮想ポインタ15とが接触した場合に、所定の振動信号を生成し、通信部25及び44を介して、振動提示部45に出力する。この結果、対象オブジェクト14に仮想ポインタ15が接触したタイミングで、ポインティングデバイス40を掴んでいるユーザ1に所定の振動感覚が提示される。
 なお、振動提示部45の他に、熱提示部等が設けられている場合には、熱提示部を制御する熱制御部等が構成されてもよい。この場合、熱制御部は、対象オブジェクト14と仮想ポインタ15との接触に応じて、熱提示部の温度等を制御する制御信号を生成する。これにより、ユーザ1に所定の熱感覚を提示することが可能である。
 本実施形態では、振動制御部34(熱提示部)は、感覚制御部に相当する。
The vibration control unit 34 controls the vibration presentation unit 45 provided in the pointing device 40 in response to the contact between the target object 14 and the virtual pointer 15.
For example, when the target object 14 and the virtual pointer 15 come into contact with each other, the vibration control unit 34 generates a predetermined vibration signal and outputs it to the vibration presenting unit 45 via the communication units 25 and 44. As a result, at the timing when the virtual pointer 15 comes into contact with the target object 14, the user 1 holding the pointing device 40 is presented with a predetermined vibration sensation.
If a heat presentation unit or the like is provided in addition to the vibration presentation unit 45, a heat control unit or the like that controls the heat presentation unit may be configured. In this case, the heat control unit generates a control signal for controlling the temperature of the heat presentation unit and the like in response to the contact between the target object 14 and the virtual pointer 15. This makes it possible to present the user 1 with a predetermined thermal sensation.
In the present embodiment, the vibration control unit 34 (heat presentation unit) corresponds to the sensory control unit.
 [仮想ポインタの表示処理]
 図4は、本実施形態に係る情報処理方法の一例を示すフローチャートである。図5は、表示パネル20とポインティングデバイス40との配置関係を説明するための模式図である。以下では、図4及び図5を参照して、仮想ポインタ15の表示処理について説明する。
[Virtual pointer display processing]
FIG. 4 is a flowchart showing an example of the information processing method according to the present embodiment. FIG. 5 is a schematic diagram for explaining the arrangement relationship between the display panel 20 and the pointing device 40. Hereinafter, the display processing of the virtual pointer 15 will be described with reference to FIGS. 4 and 5.
 本実施形態では、表示制御部33により、ポインティングデバイス40の位置姿勢に基づいて、表示空間11に対するポインティングデバイス40の仮想的な挿入量が算出される。そして、算出された挿入量に応じて仮想ポインタ15の表示が制御される。
 仮想的な挿入量とは、図1Bを参照して説明したように、ユーザ1が表示パネル20にポインティングデバイス40を押し込んだ長さであり、ポインティングデバイス40の伸縮量である。この伸縮量が大きいほど、仮想ポインタ15の長さは長くなる。
 例えばユーザ1により、ポインティングデバイス40の先端46を対象オブジェクト14に近づけるように把持部43が操作される。このとき、表示パネル20の内側には、ポインティングデバイス40と連動して動く仮想ポインタ15が表示される。従って、ユーザ1は、ポインティングデバイス40及びその延長である仮想ポインタ15の位置や向きを調整することで、対象オブジェクト14上の所望のポイントに仮想ポインタ15を接近、あるいは接触させることが可能となる。
 このように、立体表示装置100では、ポインタの状態に応じて、実在のあるいは仮想表示されたポインタ(ポインティングデバイス40及び仮想ポインタ15)の視覚情報により、表示空間11に表示された対象オブジェクト14に入力を与える入力操作が実現される。以下、具体的に説明する。
In the present embodiment, the display control unit 33 calculates the virtual insertion amount of the pointing device 40 into the display space 11 based on the position and orientation of the pointing device 40. Then, the display of the virtual pointer 15 is controlled according to the calculated insertion amount.
The virtual insertion amount is the length at which the user 1 pushes the pointing device 40 into the display panel 20, and is the amount of expansion and contraction of the pointing device 40, as described with reference to FIG. 1B. The larger the expansion / contraction amount, the longer the length of the virtual pointer 15.
For example, the user 1 operates the grip portion 43 so that the tip 46 of the pointing device 40 is brought closer to the target object 14. At this time, a virtual pointer 15 that moves in conjunction with the pointing device 40 is displayed inside the display panel 20. Therefore, the user 1 can bring the virtual pointer 15 closer to or in contact with a desired point on the target object 14 by adjusting the position and orientation of the pointing device 40 and the virtual pointer 15 which is an extension thereof. ..
As described above, in the stereoscopic display device 100, the target object 14 displayed in the display space 11 is displayed by the visual information of the real or virtual displayed pointers (pointing device 40 and virtual pointer 15) according to the state of the pointer. An input operation that gives input is realized. Hereinafter, a specific description will be given.
 図5Aは、立体表示装置100(表示パネル20)に入力操作を行うユーザ1を示す斜視図である。図5Bは、表示パネル20の正面から見た場合の上面図である。図5Cは、表示パネル20を側面から見た場合の側面図である。
 以下では、カメラ21により撮像される観察範囲の画像(撮像画像)の横方向及び縦方向を、それぞれx方向及びy方向とする。またカメラ21の位置を基準に設定された座標系を、カメラ座標系と記載する。カメラ座標系は、例えば2次元座標(x,y)とそれに直交するz方向とで表される座標系であり、カメラ21の位置が原点に設定される。
 また、表示パネル20の横方向(水平方向)をX方向とし、表示パネル20の縦方向をY方向とする。また表示パネル20の表面(XY面)に直交する方向をZ方向とする。また、X方向、Y方向、及びZ方向により表される座標系を、ディスプレイ座標系(X,Y,Z)と記載する。
 また図5Aに示すように、X方向を回転軸とする回転角をθとし、Y方向を回転軸とする回転角をφとし、Z方向を回転軸とする回転角をωと記載する。従って、ディスプレイ座標系における位置姿勢は、(X,Y,Z,θ,φ,ω)により表さる。
 以下では、ディスプレイ座標系を立体表示装置100における世界座標として用いる。例えば立体像10(対象オブジェクト14や仮想ポインタ15)を表示する際には、ディスプレイ座標系での位置姿勢が算出されるものとする。
 また、ディスプレイ座標系における、マーカ41(ポインティングデバイス40)の位置をM(XM,YM,ZM)と記載し、ポインティングデバイス40の軸方向と表示パネル20の表面(XY面)との交点をD(XD,YD,0)と記載し、仮想ポインタ15と対象オブジェクト14の接触点をO(Xobj,Yobj,Zobj)と記載する。
 なお、ポインティングデバイス40が表示パネル20と接触している場合には、交点Dは、表示パネル20とポインティングデバイス40との接触位置となる。図5A~図Cには、マーカ位置M、交点D、及び接触点Oがそれぞれ図示されている。
FIG. 5A is a perspective view showing a user 1 who performs an input operation on the stereoscopic display device 100 (display panel 20). FIG. 5B is a top view of the display panel 20 when viewed from the front. FIG. 5C is a side view of the display panel 20 when viewed from the side.
In the following, the horizontal and vertical directions of the image (captured image) in the observation range captured by the camera 21 are defined as the x direction and the y direction, respectively. Further, the coordinate system set based on the position of the camera 21 is referred to as a camera coordinate system. The camera coordinate system is, for example, a coordinate system represented by two-dimensional coordinates (x, y) and the z direction orthogonal to the two-dimensional coordinates, and the position of the camera 21 is set as the origin.
Further, the horizontal direction (horizontal direction) of the display panel 20 is the X direction, and the vertical direction of the display panel 20 is the Y direction. Further, the direction orthogonal to the surface (XY plane) of the display panel 20 is defined as the Z direction. Further, the coordinate system represented by the X direction, the Y direction, and the Z direction is described as a display coordinate system (X, Y, Z).
Further, as shown in FIG. 5A, the rotation angle with the X direction as the rotation axis is defined as θ, the rotation angle with the Y direction as the rotation axis is φ, and the rotation angle with the Z direction as the rotation axis is described as ω. Therefore, the position and orientation in the display coordinate system are represented by (X, Y, Z, θ, φ, ω).
In the following, the display coordinate system will be used as the world coordinates in the stereoscopic display device 100. For example, when displaying the stereoscopic image 10 (target object 14 or virtual pointer 15), it is assumed that the position and orientation in the display coordinate system are calculated.
Further, the position of the marker 41 (pointing device 40) in the display coordinate system is described as M (X M , Y M , Z M ), and the axial direction of the pointing device 40 and the surface (XY surface) of the display panel 20 are defined. The intersection is described as D (X D , Y D , 0), and the contact point between the virtual pointer 15 and the target object 14 is described as O (X obj , Y obj , Z obj ).
When the pointing device 40 is in contact with the display panel 20, the intersection D is the contact position between the display panel 20 and the pointing device 40. 5A to 5C show the marker position M, the intersection D, and the contact point O, respectively.
 図4に示すように、まずポインタ検出部32により、カメラ21により撮像された撮像画像からマーカ41が検出される(ステップ101)。マーカ41の検出には、例えば特徴点検出やテンプレートマッチング等を用いた画像認識処理が用いられる。マーカ41を検出する方法は限定されず、例えば機械学習等を用いてマーカ41が検出されてもよい。
 ポインタ検出部32により、マーカ41が検出されたか否かが判定される(ステップ102)。マーカ41が検出されていない場合(ステップ102のNo)、ステップ101が再度実行され、次の画像についてマーカ41の検出処理が実行される。マーカ41が検出された場合(ステップ102のYes)、ポインタ検出部32により、マーカ41の位置姿勢を推定する処理が実行される(ステップ103)。
 本実施形態では、マーカ41の位置姿勢が、ポインティングデバイス40の位置姿勢として用いられる。すなわち、ポインタ検出部32は、ポインティングデバイス40の位置姿勢として、マーカ41の位置姿勢を検出する。マーカ41を用いることで、ポインティングデバイス40の位置姿勢を高精度に推定することが可能である。なお、マーカ41の位置姿勢を適宜変換してポインティングデバイス40の位置姿勢が算出されてもよい。
As shown in FIG. 4, the pointer detection unit 32 first detects the marker 41 from the captured image captured by the camera 21 (step 101). Image recognition processing using, for example, feature point detection, template matching, or the like is used to detect the marker 41. The method for detecting the marker 41 is not limited, and the marker 41 may be detected by using, for example, machine learning.
The pointer detection unit 32 determines whether or not the marker 41 has been detected (step 102). If the marker 41 is not detected (No in step 102), step 101 is executed again, and the detection process of the marker 41 is executed for the next image. When the marker 41 is detected (Yes in step 102), the pointer detection unit 32 executes a process of estimating the position and orientation of the marker 41 (step 103).
In the present embodiment, the position and orientation of the marker 41 is used as the position and orientation of the pointing device 40. That is, the pointer detection unit 32 detects the position / orientation of the marker 41 as the position / orientation of the pointing device 40. By using the marker 41, it is possible to estimate the position and orientation of the pointing device 40 with high accuracy. The position and orientation of the pointing device 40 may be calculated by appropriately converting the position and orientation of the marker 41.
 例えば撮像画像内のマーカ41の各検出ポイント47の2次元座標(xi,yi)が算出される。ここでiは、各検出ポイント47を表すインデックスである。これらの2次元座標は、実空間における検出ポイント47の3次元座標が、カメラ21により撮像されることで撮像画像内に射影(透視投影変換)された座標である。
 ここで、カメラ21の内部パラメータ及び外部パラメータは、予めキャリブレーションされているものとする。内部パラメータは、ズーム等に応じて変化するパラメータであり、例えば撮像画像の主点(典型的には画像中心)を表すパラメータと、各画素に対応する焦点距離を表すパラメータとを含む。また外部パラメータは、カメラ21の位置及び向きに応じて変化するパラメータであり、例えば透視投影変換における並進及び回転の同時変換行列の行列要素を含む。これらのパラメータ値は、例えばディスプレイ座標系を基準として予め較正され、記憶部26に記憶される。
For example, the two-dimensional coordinates (x i , y i ) of each detection point 47 of the marker 41 in the captured image are calculated. Here, i is an index representing each detection point 47. These two-dimensional coordinates are coordinates in which the three-dimensional coordinates of the detection point 47 in the real space are projected (transparent projection conversion) in the captured image by being imaged by the camera 21.
Here, it is assumed that the internal parameters and the external parameters of the camera 21 have been calibrated in advance. The internal parameter is a parameter that changes according to zoom and the like, and includes, for example, a parameter that represents the principal point (typically the center of the image) of the captured image and a parameter that represents the focal length corresponding to each pixel. The external parameter is a parameter that changes according to the position and orientation of the camera 21, and includes, for example, a matrix element of a simultaneous transformation matrix of translation and rotation in fluoroscopic projection transformation. These parameter values are pre-calibrated with reference to, for example, the display coordinate system and stored in the storage unit 26.
 マーカ41の位置姿勢の推定では、例えばPNP問題の解法を用いて、2次元画像(撮像画像)に映るマーカ41の並進及び回転ベクトルが導出される。例えば、カメラ21の内部パラメータ及び外部パラメータで記述される変換行列を用いて、各検出ポイント47の2次元座標(xi,yi)を3次元座標に変換した場合に、実際のマーカ41における各検出ポイント47の3次元的な配置関係を満たすような、マーカ41の並進ベクトル及び回転ベクトルが算出される。
 本実施形態では、まずカメラ座標系におけるマーカ41の位置姿勢を表すベクトル(xc,yc,zc,θc,φc,ωc)が算出される。
In the estimation of the position and orientation of the marker 41, for example, the translation and rotation vectors of the marker 41 appearing in the two-dimensional image (captured image) are derived by using the solution of the PNP problem. For example, using the transformation matrix described in internal parameters and external parameters of the camera 21, the two-dimensional coordinates (x i, y i) of each detection point 47 when converted into three-dimensional coordinates, in the actual marker 41 The translation vector and the rotation vector of the marker 41 are calculated so as to satisfy the three-dimensional arrangement relationship of each detection point 47.
In the present embodiment, first, vectors (x c , y c , z c , θ c , φ c , ω c ) representing the position and orientation of the marker 41 in the camera coordinate system are calculated.
 次にポインタ検出部32により、ステップ103で算出されたカメラ座標系におけるマーカ41の位置姿勢が、ディスプレイ座標系の位置姿勢に変換される(ステップ104)。座標系の変換には、例えばカメラ21と表示パネル20との配置関係に応じて設定された変換行列が用いられる。マーカ41の位置姿勢を表すベクトルは、変換行列により、ディスプレイ座標系におけるベクトル(XM,YM,ZM,θM,φM,ωM)に変換される。
 このディスプレイ座標系におけるマーカ41の位置姿勢を表すベクトルが、ポインティングデバイス40の位置姿勢となる。このように、ポインタ検出部32は、ディスプレイ座標系におけるポインティングデバイス40の位置姿勢、すなわち表示パネル20に対するポインティングデバイス40の位置姿勢を検出する。
Next, the pointer detection unit 32 converts the position and orientation of the marker 41 in the camera coordinate system calculated in step 103 into the position and orientation of the display coordinate system (step 104). For the transformation of the coordinate system, for example, a transformation matrix set according to the arrangement relationship between the camera 21 and the display panel 20 is used. The vector representing the position and orientation of the marker 41 is converted into a vector (X M , Y M , Z M , θ M , φ M , ω M ) in the display coordinate system by the transformation matrix.
The vector representing the position and orientation of the marker 41 in the display coordinate system is the position and orientation of the pointing device 40. In this way, the pointer detection unit 32 detects the position and orientation of the pointing device 40 in the display coordinate system, that is, the position and orientation of the pointing device 40 with respect to the display panel 20.
 図6は、ポインティングデバイス40の位置姿勢の算出方法の一例を示す模式図である。図6には、ポインティングデバイス40の軸方向と表示パネル20との交点Dを原点として、ディスプレイ座標系(X,Y,Z)における、マーカ41(ポインティングデバイス40)の位置Mが図示されている。 FIG. 6 is a schematic view showing an example of a method of calculating the position and orientation of the pointing device 40. FIG. 6 shows the position M of the marker 41 (pointing device 40) in the display coordinate system (X, Y, Z) with the intersection D between the axial direction of the pointing device 40 and the display panel 20 as the origin. ..
 まず、ポインタ検出部32により、ポインティングデバイス40と表示パネル20との交点Dが算出される(ステップ105)。
 ディスプレイ座標系における、マーカ41の位置M(XM,YM,ZM)、及びマーカ41の回転角Ω(θM,φM,ωM)は、ステップ104で算出され、既知の値である。ここでは、これらの位置M及び回転角Ω(マーカ41の位置姿勢)から、ポインティングデバイス40の軸方向と表示パネル20の表面(Z=0)との交点D(XD,YD,0)を算出する方法について説明する。
First, the pointer detection unit 32 calculates the intersection D between the pointing device 40 and the display panel 20 (step 105).
The position M (X M , Y M , Z M ) of the marker 41 and the rotation angle Ω (θ M , φ M , ω M ) of the marker 41 in the display coordinate system are calculated in step 104 and are known values. is there. Here, from these positions M and the rotation angle Ω (position and orientation of the marker 41), the intersection D (X D , Y D , 0) between the axial direction of the pointing device 40 and the surface (Z = 0) of the display panel 20. The method of calculating is described.
 まず、交点DのX座標及びY座標を、XD及びYDとして、マーカ41の位置M及び回転角Ωを用いて、マーカ41のZ座標(ZM)を表す。マーカ41のZ座標は、例えば交点Dから見たマーカ41の位置MまでのX方向の長さ(XM-XD)を用いて、以下の式で表される。 First, the X and Y coordinates of the intersection D are set as X D and Y D , and the Z coordinate (Z M ) of the marker 41 is represented by using the position M and the rotation angle Ω of the marker 41. The Z coordinate of the marker 41 is represented by the following equation using, for example, the length (X M − X D ) in the X direction from the intersection D to the position M of the marker 41.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 同様に、マーカ41のZ座標は、例えば交点Dから見たマーカ41の位置MまでのY方向の長さ(YM-YD)を用いて、以下の式で表される。 Similarly, the Z coordinate of the marker 41 is expressed by the following equation using, for example, the length in the Y direction (Y M − Y D ) from the intersection D to the position M of the marker 41.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このように、ディスプレイ座標系におけるマーカ41のZ座標(ZM)は、XY面から見た高さとして、2通りの方法で記述される。 As described above, the Z coordinate (Z M ) of the marker 41 in the display coordinate system is described by two methods as the height seen from the XY plane.
 (1)式の両辺を2乗すると、ZMについて以下の式が得られる。 By squared both sides of equation (1), the following equation is obtained for Z M.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 交点Dから見たマーカ41の位置MまでのX方向の長さ(XM-XD)について(3)式を変形すると、以下の式が得られる。 By modifying the equation (3) with respect to the length (X M − X D ) in the X direction from the intersection D to the position M of the marker 41, the following equation is obtained.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 (4)式の左辺には、算出対象である交点DのX座標(XD)が含まれる。従って、XDについて(4)式を変形すると、以下の式が得られる。 The left side of the equation (4) includes the X coordinate (X D ) of the intersection D to be calculated. Therefore, by modifying equation (4) for X D , the following equation is obtained.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 同様に、(2)式に対して、算出対象である交点DのY座標(YD)について式変形を行うと、YDは以下の式で表される。 Similarly, when the Y coordinate (Y D ) of the intersection D, which is the calculation target, is transformed from the equation (2), Y D is expressed by the following equation.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 (5)式及び(6)式に示すように、交点DのX座標(XD)及びY座標(YD)は、既に算出されているマーカMの位置M(XM,YM,ZM)、及びマーカ41の回転角(θM,φM)を用いて表すことが可能である。すなわち、ポインティングデバイス40の軸方向と表示パネル20の表面との交点Dは、以下のように表される。 As shown in Eqs. (5) and (6), the X coordinate (X D ) and Y coordinate (Y D ) of the intersection D are the positions M (X M , Y M , Z) of the marker M that have already been calculated. M), and the rotation angle of the marker 41 (θ M, can be expressed using phi M). That is, the intersection D between the axial direction of the pointing device 40 and the surface of the display panel 20 is represented as follows.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ポインタ検出部32は、(7)式に従って、ディスプレイ座標系における交点DのX座標及びY座標を算出する。なお、上記した方法に限定されず、他の方法を用いて交点Dが算出されてもよい。 The pointer detection unit 32 calculates the X coordinate and the Y coordinate of the intersection D in the display coordinate system according to the equation (7). The intersection D may be calculated by using another method without being limited to the above method.
 交点Dが算出されると、表示制御部33により、ポインティングデバイス40の長さが算出される(ステップ106)。ポインティングデバイス40の長さとは、例えば先端46の位置からマーカ41の位置Mまでの長さである。なお先端46の位置は伸縮により変化する。以下では、ポインティングデバイス40が縮んでいない非接触状態での先端46からマーカ41までの長さを基準長dと記載する。
 例えば、ポインティングデバイス40が表示パネル20に接触していない状態では、ポインティングデバイス40の長さは基準長dとなる。これに対し、ポインティングデバイス40が表示パネル20に接触している場合には、伸縮部42が伸縮するため、ポインティングデバイス40の長さは基準長d以下となる。
 本実施形態では、交点Dからマーカの位置Mまでの距離MDに基づいて、現在のポインティングデバイス40の長さが算出される。距離MDは、(7)式で算出された交点Dの座標と、マーカ41の位置Mを用いて、以下の式で表される。
When the intersection D is calculated, the display control unit 33 calculates the length of the pointing device 40 (step 106). The length of the pointing device 40 is, for example, the length from the position of the tip 46 to the position M of the marker 41. The position of the tip 46 changes due to expansion and contraction. In the following, the length from the tip 46 to the marker 41 in the non-contact state in which the pointing device 40 is not shrunk is described as the reference length d.
For example, when the pointing device 40 is not in contact with the display panel 20, the length of the pointing device 40 is the reference length d. On the other hand, when the pointing device 40 is in contact with the display panel 20, the telescopic portion 42 expands and contracts, so that the length of the pointing device 40 is equal to or less than the reference length d.
In the present embodiment, the length of the current pointing device 40 is calculated based on the distance MD from the intersection D to the marker position M. The distance MD is expressed by the following equation using the coordinates of the intersection D calculated by the equation (7) and the position M of the marker 41.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 距離MDが、基準長dよりも長い場合には、ポインティングデバイス40の長さは基準長となる。また距離MDが、基準長d以下である場合には、ポインティングデバイス40の長さは距離MDとなる。 When the distance MD is longer than the reference length d, the length of the pointing device 40 becomes the reference length. When the distance MD is equal to or less than the reference length d, the length of the pointing device 40 is the distance MD.
 (8)式で算出された距離MDに基づいて、ポインティングデバイス40と表示パネル20とが接触したか否かが判定される(ステップ107)。具体的には、基準長dを閾値として、距離MDが基準長d以下であるか否かが判定される。これは、現在のポインティングデバイス40の長さが、非接触状態でのポインティングデバイス40の長さ(本来のポインティングデバイス40の長さ)よりも短いか否かの判定である。
 距離MDが基準長dよりも長い場合(MD>d)、ポインティングデバイス40は表示パネル20に接触していないと判定される(ステップ107のNo)。この場合、次の画像についてステップ101以降の処理が実行される。
 距離MDが基準長d以下である場合(MD≦d)、ポインティングデバイス40は表示パネル20に接触していると判定される(ステップ107のYes)。この場合、ポインティングデバイス40の長さ(距離MD)に応じて、仮想ポインタ15を描画する処理が実行される(ステップ108)。
Based on the distance MD calculated by the equation (8), it is determined whether or not the pointing device 40 and the display panel 20 are in contact with each other (step 107). Specifically, using the reference length d as a threshold value, it is determined whether or not the distance MD is equal to or less than the reference length d. This is a determination as to whether or not the current length of the pointing device 40 is shorter than the length of the pointing device 40 in the non-contact state (the original length of the pointing device 40).
When the distance MD is longer than the reference length d (MD> d), it is determined that the pointing device 40 is not in contact with the display panel 20 (No in step 107). In this case, the processes after step 101 are executed for the next image.
When the distance MD is equal to or less than the reference length d (MD ≦ d), it is determined that the pointing device 40 is in contact with the display panel 20 (Yes in step 107). In this case, the process of drawing the virtual pointer 15 is executed according to the length (distance MD) of the pointing device 40 (step 108).
 図7は、仮想ポインタ15の表示例を示す模式図である。図7の左側及び右側には、非接触状態でのポインティングデバイス40と、表示パネル20に接触して縮んだポインティングデバイス40とが模式的に図示されている。 FIG. 7 is a schematic diagram showing a display example of the virtual pointer 15. On the left and right sides of FIG. 7, a pointing device 40 in a non-contact state and a pointing device 40 that has shrunk in contact with the display panel 20 are schematically illustrated.
 まず表示制御部33により、仮想ポインタ15の長さとなる、ポインティングデバイス40の表示パネル20(表示空間11)に対する仮想的な挿入量が算出される。本実施形態では、表示パネル20とポインティングデバイス40との接触に応じたポインティングデバイス40の伸縮量Δが、表示空間11に対するポインティングデバイス40の仮想的な挿入量として算出される。
 図7の右側に示すように、ポインティングデバイス40は、先端46を表示パネル20に押し付けた分だけ縮む。この時の伸縮量Δが、表示パネル20(表示空間11)に対するポインティングデバイス40の仮想的な挿入量として算出される。
 伸縮量Δは、基準長dから、現在のポインティングデバイス40の長さである距離MDを差し引いた値(Δ=d-MD)である。
 表示制御部33では、この伸縮量Δと、ポインティングデバイス40の姿勢と、表示パネル20との接触位置(交点D)とに基づいて、仮想ポインタ15が生成される。以下、仮想ポインタ15の位置、向き、長さについて説明する。
 なお仮想ポインタ15は、例えばオブジェクトライブラリ28に格納されたデザインデータに基づいて生成される。
First, the display control unit 33 calculates a virtual insertion amount into the display panel 20 (display space 11) of the pointing device 40, which is the length of the virtual pointer 15. In the present embodiment, the expansion / contraction amount Δ of the pointing device 40 in response to the contact between the display panel 20 and the pointing device 40 is calculated as a virtual insertion amount of the pointing device 40 into the display space 11.
As shown on the right side of FIG. 7, the pointing device 40 shrinks by the amount that the tip 46 is pressed against the display panel 20. The expansion / contraction amount Δ at this time is calculated as a virtual insertion amount of the pointing device 40 into the display panel 20 (display space 11).
The expansion / contraction amount Δ is a value (Δ = d−MD) obtained by subtracting the distance MD, which is the length of the current pointing device 40, from the reference length d.
The display control unit 33 generates a virtual pointer 15 based on the expansion / contraction amount Δ, the posture of the pointing device 40, and the contact position (intersection point D) with the display panel 20. Hereinafter, the position, orientation, and length of the virtual pointer 15 will be described.
The virtual pointer 15 is generated based on, for example, the design data stored in the object library 28.
 表示制御部33は、表示空間11に、表示パネル20とポインティングデバイス40との接触位置(交点D)を起点とする仮想ポインタ15を表示させる。例えば、図1Bや図7の右側に示すように、仮想ポインタ15は、ポインティングデバイス40が表示パネル20に接触した交点Dから表示空間11に延びるように表示される。 The display control unit 33 displays the virtual pointer 15 starting from the contact position (intersection D) between the display panel 20 and the pointing device 40 in the display space 11. For example, as shown on the right side of FIGS. 1B and 7, the virtual pointer 15 is displayed so as to extend from the intersection D where the pointing device 40 contacts the display panel 20 to the display space 11.
 また表示制御部33は、ポインティングデバイス40の軸方向に沿って仮想ポインタ15を表示させる。すなわち、表示空間11には、ポインティングデバイス40が向けられた方向に、ポインティングデバイス40を延長して表示する仮想ポインタ15が表示されることになる。
 これにより、あたかもポインティングデバイス40を仮想的な表示空間に挿入したかのような表示を実現することが可能となり、直観的な入力操作が可能となる。
Further, the display control unit 33 displays the virtual pointer 15 along the axial direction of the pointing device 40. That is, the virtual pointer 15 that extends and displays the pointing device 40 in the direction in which the pointing device 40 is directed is displayed in the display space 11.
As a result, it is possible to realize a display as if the pointing device 40 is inserted into a virtual display space, and an intuitive input operation is possible.
 本実施形態では、仮想ポインタ15の長さが伸縮量Δに比例するように、仮想ポインタ15の表示が制御される。例えば、図7の右側に示すように、伸縮量Δと同じ長さの仮想ポインタ15が表示空間11に表示される。この場合、仮想ポインタ15の長さと伸縮量Δとの比例係数は1であり、またオフセット等は設定されない。
 また例えば、伸縮量Δに所定のオフセットを加えた長さの仮想ポインタ15が表示されてもよい。この場合、仮想ポインタ15は、伸縮量Δよりも長い(あるいは短い)オブジェクトとなる。なおオフセットを加えた場合であっても、仮想ポインタ15の長さは、伸縮量Δに比例して設定される。
 仮想ポインタ15の長さと伸縮量Δとの比例係数は適宜設定されてよい。例えば1以上の比例係数が設定されてもよい。これにより、ユーザ1の操作量(伸縮量Δ)を増幅することが可能となり、例えばポインティングデバイス40の伸縮量Δの最大値を超える深さに配置されたオブジェクト等に入力操作を行うことが可能である。
 また例えば1より小さい比例係数が設定されてもよい。これにより、ユーザ1の操作量を縮小することが可能となり、例えば細かい入力操作等を容易に行うことが可能となる。いずれにしても、比例係数やオフセットを適宜設定することで、ユーザ1の操作と線形に連動する仮想ポインタ15を表示することが可能となり、直観的な入力操作を行うことが可能となる。
 このように、表示制御部33は、ポインティングデバイス40の長さが本来の長さ(基準長d)よりも短い場合には、その差分(伸縮量Δ)に応じた仮想ポインタ15を描画する。
In the present embodiment, the display of the virtual pointer 15 is controlled so that the length of the virtual pointer 15 is proportional to the expansion / contraction amount Δ. For example, as shown on the right side of FIG. 7, a virtual pointer 15 having the same length as the expansion / contraction amount Δ is displayed in the display space 11. In this case, the proportional coefficient between the length of the virtual pointer 15 and the expansion / contraction amount Δ is 1, and the offset or the like is not set.
Further, for example, a virtual pointer 15 having a length obtained by adding a predetermined offset to the expansion / contraction amount Δ may be displayed. In this case, the virtual pointer 15 is an object longer (or shorter) than the expansion / contraction amount Δ. Even when an offset is added, the length of the virtual pointer 15 is set in proportion to the expansion / contraction amount Δ.
The proportional coefficient between the length of the virtual pointer 15 and the expansion / contraction amount Δ may be appropriately set. For example, a proportional coefficient of 1 or more may be set. As a result, it is possible to amplify the operation amount (expansion / contraction amount Δ) of the user 1, and for example, it is possible to perform an input operation on an object or the like arranged at a depth exceeding the maximum value of the expansion / contraction amount Δ of the pointing device 40. Is.
Further, for example, a proportional coefficient smaller than 1 may be set. As a result, the operation amount of the user 1 can be reduced, and for example, fine input operations can be easily performed. In any case, by appropriately setting the proportional coefficient and the offset, it is possible to display the virtual pointer 15 that is linearly linked to the operation of the user 1, and it is possible to perform an intuitive input operation.
In this way, when the length of the pointing device 40 is shorter than the original length (reference length d), the display control unit 33 draws the virtual pointer 15 according to the difference (expansion / contraction amount Δ).
 仮想ポインタ15が描画されると、仮想ポインタ15と対象オブジェクト14とが接触したか否かが判定される(ステップ109)。例えば仮想ポインタ15の一部(先端や側面等)が対象オブジェクト14に接触しているかどうかが、ディスプレイ座標の座標値に基づいて判定される。
 仮想ポインタ15と対象オブジェクト14とが接触していないと判定された場合(ステップ109のNo)、ステップ108が実行され仮想ポインタ15の描画が続行される。なお、ステップ108に代えて、ステップ101以降の処理が再度実行されてもよい。
 仮想ポインタ15と対象オブジェクト14とが接触していると判定された場合(ステップ109のYes)、表示制御部33により、対象オブジェクト14の描画を変更する処理が実行される(ステップ110)。
When the virtual pointer 15 is drawn, it is determined whether or not the virtual pointer 15 and the target object 14 are in contact with each other (step 109). For example, whether or not a part (tip, side surface, etc.) of the virtual pointer 15 is in contact with the target object 14 is determined based on the coordinate values of the display coordinates.
When it is determined that the virtual pointer 15 and the target object 14 are not in contact with each other (No in step 109), step 108 is executed and the drawing of the virtual pointer 15 is continued. In addition, instead of step 108, the processing after step 101 may be executed again.
When it is determined that the virtual pointer 15 and the target object 14 are in contact with each other (Yes in step 109), the display control unit 33 executes a process of changing the drawing of the target object 14 (step 110).
 対象オブジェクト14の描画を変更する処理は、対象オブジェクト14に対する仮想ポインタ15の操作による反応(インタラクション)を表示する処理であると言える。この処理は、例えば仮想ポインタ15との接触位置や接触量に応じて実行される。
 ここで接触量とは、例えば、仮想ポインタ15が対象オブジェクト14に干渉する度合いを表す量であり、例えば対象オブジェクト14の内側の座標空間に対する仮想ポインタ15の侵入量等を用いて表される。
 対象オブジェクト14に対するインタラクションの種類は限定されない。例えば仮想ポインタ15が接触した接触位置を、仮想ポインタ15の接触量に応じてへこませるといった、対象オブジェクト14自体を変形させる処理が挙げられる。
 また例えば、仮想ポインタ15の接触に応じて、対象オブジェクト14を移動する、あるいは対象オブジェクト14の向きを変えるといった、対象オブジェクト14の位置を変更する処理が実行されてもよい。この場合、対象オブジェクト14の移動量や回転量は、接触位置及び接触量等に応じて適宜算出される。
 また、対象オブジェクト14が、接触に応じた所定の反応をするように描画を行う処理が実行されてもよい。例えば図1を参照して説明したウサギのオブジェクトが振り返る処理は、仮想ポインタ15との接触に応じた反応を描画する処理である。
 このように、本実施形態では、表示制御部33により、対象オブジェクト14と仮想ポインタ15との接触に応じて対象オブジェクト14の表示が制御される。これにより、対象オブジェクト14に対する入力操作(触れる、つつく、たたく、切る、押す等)に応じた様々なインタラクションを提示することが可能となる。
It can be said that the process of changing the drawing of the target object 14 is a process of displaying the reaction (interaction) of the operation of the virtual pointer 15 with respect to the target object 14. This process is executed according to, for example, the contact position and the contact amount with the virtual pointer 15.
Here, the contact amount is, for example, an amount representing the degree to which the virtual pointer 15 interferes with the target object 14, and is expressed using, for example, the amount of penetration of the virtual pointer 15 into the coordinate space inside the target object 14.
The type of interaction with the target object 14 is not limited. For example, there is a process of deforming the target object 14 itself, such as denting the contact position with which the virtual pointer 15 is in contact according to the contact amount of the virtual pointer 15.
Further, for example, a process of changing the position of the target object 14, such as moving the target object 14 or changing the direction of the target object 14, may be executed in response to the contact of the virtual pointer 15. In this case, the movement amount and the rotation amount of the target object 14 are appropriately calculated according to the contact position, the contact amount, and the like.
Further, a process of drawing the target object 14 so as to make a predetermined reaction according to the contact may be executed. For example, the process of looking back at the rabbit object described with reference to FIG. 1 is a process of drawing a reaction in response to contact with the virtual pointer 15.
As described above, in the present embodiment, the display control unit 33 controls the display of the target object 14 according to the contact between the target object 14 and the virtual pointer 15. This makes it possible to present various interactions according to input operations (touching, poking, hitting, cutting, pushing, etc.) with respect to the target object 14.
 対象オブジェクト14の描画が変更されると、振動制御部34により、ユーザ1に振動を提示するフィードバック処理が実行される(ステップ111)。
 例えば振動制御部34は、コンテンツの内容等に応じた振動信号を生成し、ポインティングデバイス40に搭載された振動提示部45に出力する。これにより、ポインティングデバイス40では振動信号に応じた振動が発生し、ユーザ1に対して触覚が提示される。
When the drawing of the target object 14 is changed, the vibration control unit 34 executes a feedback process for presenting vibration to the user 1 (step 111).
For example, the vibration control unit 34 generates a vibration signal according to the content and the like, and outputs the vibration signal to the vibration presenting unit 45 mounted on the pointing device 40. As a result, the pointing device 40 generates vibration in response to the vibration signal, and the user 1 is presented with a tactile sensation.
 本実施形態では、振動制御部34は、対象オブジェクト14の種類、仮想ポインタ15の種類、又は対象オブジェクト14と仮想ポインタ15との接触量の少なくとも1つに応じて、振動提示部45を制御する。
 例えば対象オブジェクト14や仮想ポインタ15の種類に合わせて、様々な振動感覚を提示する振動信号が生成される。またこれらの振動感覚の強度等が接触量に応じて調整される。この他、振動提示部45を制御する方法、振動信号を生成する方法等は限定されない。
 このように、本実施形態では、ポインティングデバイス40を通じてユーザ1に皮膚感覚がフィードバックされる。これにより、実在する物体に接触したような感覚等を提示することが可能となり、入力操作の操作性を向上することが可能となる。
In the present embodiment, the vibration control unit 34 controls the vibration presentation unit 45 according to at least one of the type of the target object 14, the type of the virtual pointer 15, or the contact amount between the target object 14 and the virtual pointer 15. ..
For example, vibration signals that present various vibration sensations are generated according to the types of the target object 14 and the virtual pointer 15. Further, the intensity of these vibration sensations is adjusted according to the contact amount. In addition, the method of controlling the vibration presenting unit 45, the method of generating a vibration signal, and the like are not limited.
As described above, in the present embodiment, the skin sensation is fed back to the user 1 through the pointing device 40. As a result, it is possible to present a feeling of being in contact with an existing object, and it is possible to improve the operability of the input operation.
 [適用例]
 以下では、ポインティングデバイス40を使用した、立体表示装置100における入力操作の適用例について説明する。
 上記した図1Bや図7等では、ポインティングデバイス40を単に延長した棒状の仮想ポインタ15を例に説明した。仮想ポインタ15の形状等は限定されず、ユースケースに応じて、任意のデザインを適用することが可能である。
 例えば仮想ポインタ15として刃物状のオブジェクトが用いられてもよい。この場合、仮想ポインタ15を用いて対象オブジェクト14を切断する操作を行うことが可能である。
 また先端の尖った形状のオブジェクトが用いられてもよい。この場合、対象オブジェクト14を刺す操作を行うことが可能である。
 また先端がブラシや筆のような形状のオブジェクトが用いられてもよい。この場合、対象オブジェクト14に色を塗る、あるいは絵や文字を描く操作を行うことが可能である。
 また先端がドライバーやスパナ等の工具の形状のオブジェクトが用いられてもよい。この場合、対象オブジェクト14を組み立てるあるいは分解するとった操作が可能となる。
 また複数のポインティングデバイスを同時に使用することで、対象オブジェクト14を箸でつまむような操作が可能であってもよい。また複数のデバイスを用いることで、表示空間において複数の道具を同時に使用するといったことも可能である。
 また例えば、対象オブジェクト14の種類に合わせて、仮想ポインタ15の種類が設定されてもよい。例えば食べ物の形状をした対象オブジェクト14が表示されている場合に、ナイフやフォーク等の形状をもった仮想ポインタ15が自動的に表示される。
 あるいは、立体表示装置100上に、複数の仮想ポインタ15のオブジェクト候補を選択可能に表示して、ユーザ1が選択するといったことも可能である。
[Application example]
Hereinafter, an application example of an input operation in the stereoscopic display device 100 using the pointing device 40 will be described.
In FIGS. 1B and 7 described above, a rod-shaped virtual pointer 15 that is simply an extension of the pointing device 40 has been described as an example. The shape of the virtual pointer 15 and the like are not limited, and any design can be applied according to the use case.
For example, a knife-shaped object may be used as the virtual pointer 15. In this case, it is possible to perform an operation of disconnecting the target object 14 using the virtual pointer 15.
Further, an object having a pointed tip may be used. In this case, it is possible to perform an operation of stabbing the target object 14.
Further, an object having a tip shaped like a brush or a brush may be used. In this case, it is possible to paint the target object 14 or to draw a picture or a character.
Further, an object having a tip in the shape of a tool such as a screwdriver or a spanner may be used. In this case, the operation of assembling or disassembling the target object 14 becomes possible.
Further, by using a plurality of pointing devices at the same time, it may be possible to perform an operation such as pinching the target object 14 with chopsticks. Also, by using a plurality of devices, it is possible to use a plurality of tools at the same time in the display space.
Further, for example, the type of the virtual pointer 15 may be set according to the type of the target object 14. For example, when the target object 14 in the shape of food is displayed, the virtual pointer 15 in the shape of a knife, fork, or the like is automatically displayed.
Alternatively, it is also possible to display the object candidates of the plurality of virtual pointers 15 on the stereoscopic display device 100 so as to be selectable, and the user 1 can select the objects.
 ポインティングデバイス40を用いた入力操作の用途の一例として、医療の実習が挙げられる。例えば立体表示した、人体や患部(対象オブジェクト14)に対して、ポインティングデバイス40を用いて入力を行う。この時、仮想ポインタ15としては、メスや鉗子等の医療器具のオブジェクトを表示する。またユーザ1が患部を切断する等の操作を行うと、デバイスを介して所定の振動が提示される。これにより、手術のシミュレーションを行うことが可能である。
 また他の使用例として、建築や模型の設計、工作等が挙げられる。この場合、模型や部品(対象オブジェクト14)等が立体表示され、精密加工用の工具等に模した仮想ポインタ15が用いられる。本実施形態では、ポインティングデバイス40を用いて直感的な操作が可能であるため、加工や組み立ての対象となるオブジェクトに複雑な入力操作を行うことが可能である。
As an example of the application of the input operation using the pointing device 40, medical training can be mentioned. For example, the pointing device 40 is used to input to the human body or the affected part (target object 14) displayed in three dimensions. At this time, the virtual pointer 15 displays an object of a medical instrument such as a scalpel or forceps. Further, when the user 1 performs an operation such as cutting the affected portion, a predetermined vibration is presented via the device. This makes it possible to simulate surgery.
Other examples of use include architecture, model design, and work. In this case, a model, a part (target object 14), or the like is three-dimensionally displayed, and a virtual pointer 15 that imitates a tool or the like for precision machining is used. In the present embodiment, since the pointing device 40 can be used for intuitive operation, it is possible to perform a complicated input operation on the object to be processed or assembled.
 またポインティングデバイス40及び仮想ポインタ15を用いた入力インタフェースは、コミュニケーションツールとして用いることも可能である。
 例えば複数台の立体表示装置100を用いて、遠隔地にいる人とインタラクティブなコミュニケーションを行うといったことが可能である。この場合、例えば立体表示された共有オブジェクト等に対して、お互いに直感的な操作を行うといったことが可能となる。
 また犬や猫あるいはウサギ等のペットとなるような対象オブジェクト14(バーチャルペット)が立体表示される。これにより、ユーザ1はポインティングデバイス40を通じて仮想的に表示されたバーチャルペットと触れ合うことや、ペットの飼育を体験することが可能となる。
 本技術の適用範囲は、上記した例に限定されるものではなく、この他、アミューズメント、教育、製品開発等の様々なシーンに適用することが可能である。
The input interface using the pointing device 40 and the virtual pointer 15 can also be used as a communication tool.
For example, it is possible to perform interactive communication with a person in a remote place by using a plurality of stereoscopic display devices 100. In this case, for example, it is possible to intuitively operate each other on a shared object displayed in three dimensions.
In addition, a target object 14 (virtual pet) that becomes a pet such as a dog, a cat, or a rabbit is three-dimensionally displayed. As a result, the user 1 can come into contact with the virtual pet virtually displayed through the pointing device 40 and experience the breeding of the pet.
The scope of application of this technology is not limited to the above-mentioned examples, and can be applied to various scenes such as amusement, education, and product development.
 以上、本実施形態に係る情報処理装置では、ユーザ1が使用するポインティングデバイス40の画像からポインティングデバイス40の位置姿勢が検出される。この検出結果をもとに、立体表示装置100の表示空間11に対するポインティングデバイス40の仮想的な挿入部分が、仮想ポインタ15として表示される。これにより、ポインティングデバイス40を使用して表示空間11内の仮想ポインタ15を容易に操作することが可能となり、立体像10に対する直感的な入力操作を実現することが可能となる。 As described above, in the information processing apparatus according to the present embodiment, the position and orientation of the pointing device 40 are detected from the image of the pointing device 40 used by the user 1. Based on this detection result, the virtual insertion portion of the pointing device 40 into the display space 11 of the stereoscopic display device 100 is displayed as a virtual pointer 15. As a result, the virtual pointer 15 in the display space 11 can be easily operated by using the pointing device 40, and an intuitive input operation for the stereoscopic image 10 can be realized.
 本実施形態では、ポインティングデバイス40を対象オブジェクト14に直接接触させるように操作することで、仮想ポインタ15を介した対象オブジェクト14に対する入力操作が可能である。このように実在のデバイスを用いて、仮想的なオブジェクトをそのまま操作することが可能であり、高いユーザビリティを発揮することが可能となる。
 また仮想ポインタ15が対象オブジェクト14に接触した場合には、振動提示部45等により感覚フィードバックが行われる。これにより、実在する物体を操作しているような仮想体験を提供することが可能となる。
In the present embodiment, by operating the pointing device 40 so as to bring it into direct contact with the target object 14, it is possible to perform an input operation on the target object 14 via the virtual pointer 15. In this way, it is possible to operate a virtual object as it is using a real device, and it is possible to demonstrate high usability.
When the virtual pointer 15 comes into contact with the target object 14, sensory feedback is performed by the vibration presenting unit 45 or the like. This makes it possible to provide a virtual experience as if operating a real object.
 例えば奥行方向に対する入力操作を行う方法として、入力デバイスの位置や姿勢を、センサを用いて検出する方法が挙げられる。例えばディスプレイに搭載されたタッチセンサや、入力デバイスに搭載された姿勢センサ等を用いて、入力デバイスの位置姿勢を算出する方法が考えられる。このような方法では、特殊なセンサを用いる必要があり、装置コストの増大を招く恐れがある。 For example, as a method of performing an input operation in the depth direction, there is a method of detecting the position and orientation of an input device using a sensor. For example, a method of calculating the position and orientation of the input device by using a touch sensor mounted on the display, a posture sensor mounted on the input device, or the like can be considered. In such a method, it is necessary to use a special sensor, which may lead to an increase in equipment cost.
 本実施形態では、立体表示装置100に設けられたカメラ21を利用して、ポインティングデバイス40の画像が撮像される。この画像から、ポインティングデバイス40の位置姿勢が算出され、仮想ポインタ15等の表示制御が行われる。このように、本実施形態では、タッチセンサや位置姿勢センサ等を設けることなく、仮想ポインタ15の表示処理が可能である。これにより、装置のコストを十分に抑制することが可能である。
 特に、上記した立体表示装置100のように、ユーザ1の視点2に合わせて立体像を表示するタイプの装置では、視点2をトラッキングするためのカメラ21が設けられることが多い。このようなカメラ21を利用することで、仮想ポインタ15の表示処理を容易に実装することが可能である。
In the present embodiment, the image of the pointing device 40 is captured by using the camera 21 provided in the stereoscopic display device 100. From this image, the position and orientation of the pointing device 40 are calculated, and the display control of the virtual pointer 15 and the like is performed. As described above, in the present embodiment, the display processing of the virtual pointer 15 can be performed without providing a touch sensor, a position / orientation sensor, or the like. As a result, the cost of the device can be sufficiently suppressed.
In particular, in a type of device such as the stereoscopic display device 100 described above that displays a stereoscopic image according to the viewpoint 2 of the user 1, a camera 21 for tracking the viewpoint 2 is often provided. By using such a camera 21, it is possible to easily implement the display processing of the virtual pointer 15.
 <その他の実施形態>
 本技術は、以上説明した実施形態に限定されず、他の種々の実施形態を実現することができる。
<Other Embodiments>
The present technology is not limited to the embodiments described above, and various other embodiments can be realized.
 上記では、仮想ポインタは、その長さがポインティングデバイスの伸縮量(表示パネルに対する仮想的な挿入量)に比例するように表示された。これに限定されず、例えば仮想ポインタが伸縮量に対して非線形に制御されてもよい。
 例えば、伸縮量が大きいほど、すなわちポインティングデバイスを押し込む量が多いほど、仮想ポインタの長さを増やす割合を大きくするといった制御が行われてもよい。これにより、例えばポインティングデバイスを最後まで押し込むことなく、深い位置に定位するオブジェクトに仮想ポインタを接触させることが可能であり、ユーザの操作性を向上することが可能である。
 またポインティングデバイスの軸方向とは異なる方向に沿って仮想ポインタが表示されてもよい。これにより複雑な入力操作を楽な姿勢で行うことが可能となる。
In the above, the virtual pointer is displayed so that its length is proportional to the amount of expansion and contraction of the pointing device (the amount of virtual insertion into the display panel). Not limited to this, for example, the virtual pointer may be controlled non-linearly with respect to the amount of expansion and contraction.
For example, control may be performed such that the larger the expansion / contraction amount, that is, the larger the amount of pushing the pointing device, the larger the rate of increasing the length of the virtual pointer. As a result, for example, it is possible to bring the virtual pointer into contact with an object localized at a deep position without pushing the pointing device to the end, and it is possible to improve the operability of the user.
Further, the virtual pointer may be displayed along a direction different from the axial direction of the pointing device. This makes it possible to perform complicated input operations in a comfortable posture.
 上記の実施形態では、裸眼立体表示を行う立体表示装置について説明した。これに限定されず、偏光メガネや液晶シャッターメガネ等のメガネ型の装置を用いて立体像を表示するメガネ式の立体表示装置が用いられてもよい。
 メガネ式の立体表示装置では、ユーザは、視差画像を知覚するためのメガネ型の装置を装着して、表示パネルを観察する。この場合であっても、ポインティングデバイスの伸縮量に応じて、仮想ポインタを表示させることが可能である。
In the above embodiment, a stereoscopic display device that performs stereoscopic display with the naked eye has been described. Not limited to this, a glasses-type stereoscopic display device that displays a stereoscopic image using a glasses-type device such as polarized glasses or liquid crystal shutter glasses may be used.
In the glasses-type stereoscopic display device, the user wears a glasses-type device for perceiving a parallax image and observes the display panel. Even in this case, it is possible to display the virtual pointer according to the amount of expansion and contraction of the pointing device.
 また、ヘッドマウントディスプレイ(HMD)等を用いて立体表示が行われる場合にも、本技術は適用可能である。この場合、ポインティングデバイスは伸縮する必要はない。
 例えばAR表示が可能なHMDでは、ユーザの前方の視界に重畳して、立体像(右眼用画像及び左眼用画像)を表示することが可能である。この場合、立体像が表示される視界の範囲がHMDの表示空間となる。またポインティングデバイスの画像は、HMDに搭載された前方カメラ等用いて撮像される。
 ユーザがポインティングデバイスの先端を対象オブジェクトに接近させるとする。この場合、ユーザの視界(表示空間)に侵入したポインティングデバイスに重畳して、仮想ポインタが表示される。これにより、仮想ポインタを介した直感的な入力操作が可能となる。また例えば、表示空間に境界面が設定され、ポインティングデバイスが境界面を超えた場合に、その挿入量に応じた長さの仮想ポインタが表示される。例えばこのような処理が実行されてもよい。
 この他、立体表示を行う装置の種類等は限定されない。
The present technology can also be applied when stereoscopic display is performed using a head-mounted display (HMD) or the like. In this case, the pointing device does not need to expand or contract.
For example, in an HMD capable of AR display, it is possible to display a stereoscopic image (right eye image and left eye image) by superimposing it on the field of view in front of the user. In this case, the range of the field of view in which the stereoscopic image is displayed is the display space of the HMD. The image of the pointing device is captured by using a front camera or the like mounted on the HMD.
Suppose the user brings the tip of the pointing device closer to the target object. In this case, the virtual pointer is displayed by superimposing it on the pointing device that has entered the user's field of view (display space). This enables intuitive input operations via the virtual pointer. Further, for example, when a boundary surface is set in the display space and the pointing device exceeds the boundary surface, a virtual pointer having a length corresponding to the insertion amount is displayed. For example, such a process may be executed.
In addition, the type of device that performs stereoscopic display is not limited.
 本開示において、「中心」「中央」「均一」「等しい」「同じ」「直交」「平行」「対称」「延在」「軸方向」「円柱形状」「円筒形状」「リング形状」「円環形状」等の、形状、サイズ、位置関係、状態等を規定する概念は、「実質的に中心」「実質的に中央」「実質的に均一」「実質的に等しい」「実質的に同じ」「実質的に直交」「実質的に平行」「実質的に対称」「実質的に延在」「実質的に軸方向」「実質的に円柱形状」「実質的に円筒形状」「実質的にリング形状」「実質的に円環形状」等を含む概念とする。 In the present disclosure, "center", "center", "uniform", "equal", "same", "orthogonal", "parallel", "symmetrical", "extended", "axial", "cylindrical", "cylindrical", "ring", and "circle". Concepts that define shape, size, positional relationship, state, etc., such as "ring shape," are "substantially centered," "substantially centered," "substantially uniform," "substantially equal," and "substantially the same." "Substantially orthogonal" "substantially parallel" "substantially symmetric" "substantially extending" "substantially axial" "substantially cylindrical" "substantially cylindrical" "substantially cylindrical" The concept includes a ring shape, a substantially ring shape, and the like.
 例えば「完全に中心」「完全に中央」「完全に均一」「完全に等しい」「完全に同じ」「完全に直交」「完全に平行」「完全に対称」「完全に延在」「完全に軸方向」「完全に円柱形状」「完全に円筒形状」「完全にリング形状」「完全に円環形状」等を基準とした所定の範囲(例えば±10%の範囲)に含まれる状態も含まれる。 For example, "perfectly centered", "perfectly centered", "perfectly uniform", "perfectly equal", "perfectly identical", "perfectly orthogonal", "perfectly parallel", "perfectly symmetric", "perfectly extending", "perfectly extending" Includes states included in a predetermined range (for example, ± 10% range) based on "axial direction", "completely cylindrical shape", "completely cylindrical shape", "completely ring shape", "completely annular shape", etc. Is done.
 以上説明した本技術に係る特徴部分のうち、少なくとも2つの特徴部分を組み合わせることも可能である。すなわち各実施形態で説明した種々の特徴部分は、各実施形態の区別なく、任意に組み合わされてもよい。また上記で記載した種々の効果は、あくまで例示であって限定されるものではなく、また他の効果が発揮されてもよい。 It is also possible to combine at least two feature parts among the feature parts related to the present technology described above. That is, the various feature portions described in each embodiment may be arbitrarily combined without distinction between the respective embodiments. Further, the various effects described above are merely examples and are not limited, and other effects may be exhibited.
 なお、本技術は以下のような構成も採ることができる。
(1)ユーザが使用する指示具の画像に基づいて、前記指示具の位置姿勢を検出する検出部と、
 前記指示具の位置姿勢に基づいて、立体表示装置の表示空間に、前記表示空間に対する前記指示具の仮想的な挿入部分を表す指示オブジェクトを表示させる表示制御部と
 を具備する情報処理装置。
(2)(1)に記載の情報処理装置であって、
 前記表示制御部は、前記指示具の位置姿勢に基づいて、前記表示空間に対する前記指示具の仮想的な挿入量を算出し、前記挿入量に応じて前記指示オブジェクトの表示を制御する
 情報処理装置。
(3)(2)に記載の情報処理装置であって、
 前記表示制御部は、前記指示オブジェクトの長さが前記挿入量に比例するように、前記指示オブジェクトの表示を制御する
 情報処理装置。
(4)(1)から(3)のうちいずれか1つに記載の情報処理装置であって、
 前記立体表示装置は、立体像を表示する表示パネルを有し、
 前記表示空間は、前記表示パネルを境界とする仮想空間であり、
 前記検出部は、前記表示パネルに対する前記指示具の位置姿勢を検出する
 情報処理装置。
(5)(4)に記載の情報処理装置であって、
 前記指示具は、押圧に応じて一方向に伸縮可能であり、
 前記表示制御部は、前記表示パネルと前記指示具との接触に応じた前記指示具の伸縮量を、前記表示空間に対する前記指示具の仮想的な挿入量として算出する
 情報処理装置。
(6)(4)又は(5)に記載の情報処理装置であって、
 前記表示制御部は、前記表示空間に、前記表示パネルと前記指示具との接触位置を起点とする前記指示オブジェクトを表示させる
 情報処理装置。
(7)(4)から(6)のうちいずれか1つに記載の情報処理装置であって、
 前記立体表示装置は、前記表示パネルの観察範囲に向けられた撮像部を有し、
 前記検出部は、前記撮像部により撮像された前記観察範囲の画像に基づいて、前記観察範囲で前記ユーザが使用する前記指示具の位置姿勢を検出する
 情報処理装置。
(8)(7)に記載の情報処理装置であって、
 前記検出部は、前記撮像部により撮像された前記観察範囲の画像に基づいて、前記表示パネルを観察する前記ユーザの視点を検出し、
 前記表示制御部は、前記ユーザの視点に応じた前記立体像を表示させる
 情報処理装置。
(9)(1)から(8)のうちいずれか1つに記載の情報処理装置であって、
 前記指示具は、マーカ部を有し、
 前記検出部は、前記指示具の位置姿勢として、前記マーカ部の位置姿勢を検出する
 情報処理装置。
(10)(9)に記載の情報処理装置であって、
 前記指示具は、対象に向けられる先端部と、前記先端部に接続された把持部とを有し、
 前記マーカ部は、前記把持部の前記先端部が接続される側とは反対側に接続される
 情報処理装置。
(11)(1)から(10)のうちいずれか1つに記載の情報処理装置であって、
 前記表示制御部は、前記表示空間に、前記指示具を使用した入力操作の対象となる対象オブジェクトを表示させる
 情報処理装置。
(12)(11)に記載の情報処理装置であって、
 前記表示制御部は、前記対象オブジェクトの種類に合わせて、前記指示オブジェクトの種類を設定する
 情報処理装置。
(13)(11)又は(12)に記載の情報処理装置であって、
 前記表示制御部は、前記対象オブジェクトと前記指示オブジェクトとの接触に応じて前記対象オブジェクトの表示を制御する
 情報処理装置。
(14)(11)から(13)のうちいずれか1つに記載の情報処理装置であって、
 前記指示具は、前記ユーザに皮膚感覚を提示する感覚提示部を有し、
 さらに、前記対象オブジェクトと前記指示オブジェクトとの接触に応じて、前記感覚提示部を制御する感覚制御部を具備する
 情報処理装置。
(15)(14)に記載の情報処理装置であって、
 前記感覚提示部は、振動感覚又は熱感覚の少なくとも一方を提示する
 情報処理装置。
(16)(14)又は(15)に記載の情報処理装置であって、
 前記感覚制御部は、前記対象オブジェクトの種類、前記指示オブジェクトの種類、又は前記対象オブジェクトと前記指示オブジェクトとの接触量の少なくとも1つに応じて、前記感覚提示部を制御する
 情報処理装置。
(17)ユーザが使用する指示具の画像に基づいて、前記指示具の位置姿勢を検出し、
 前記指示具の位置姿勢に基づいて、立体表示装置の表示空間に、前記表示空間に対する前記指示具の仮想的な挿入部分を表す指示オブジェクトを表示させる
 ことをコンピュータシステムが実行する情報処理方法。
(18)ユーザが使用する指示具の画像に基づいて、前記指示具の位置姿勢を検出するステップと、
 前記指示具の位置姿勢に基づいて、立体表示装置の表示空間に、前記表示空間に対する前記指示具の仮想的な挿入部分を表す指示オブジェクトを表示させるステップと
 をコンピュータシステムに実行させるプログラム。
In addition, this technology can also adopt the following configurations.
(1) A detection unit that detects the position and orientation of the indicator based on the image of the indicator used by the user, and
An information processing device including a display control unit that displays an instruction object representing a virtual insertion portion of the indicator in the display space in the display space of the stereoscopic display device based on the position and orientation of the indicator.
(2) The information processing device according to (1).
The display control unit calculates a virtual insertion amount of the indicator into the display space based on the position and orientation of the indicator, and controls the display of the instruction object according to the insertion amount. ..
(3) The information processing device according to (2).
The display control unit is an information processing device that controls the display of the instruction object so that the length of the instruction object is proportional to the insertion amount.
(4) The information processing device according to any one of (1) to (3).
The stereoscopic display device has a display panel for displaying a stereoscopic image.
The display space is a virtual space with the display panel as a boundary.
The detection unit is an information processing device that detects the position and orientation of the indicator with respect to the display panel.
(5) The information processing device according to (4).
The indicator can be expanded and contracted in one direction in response to pressure.
The display control unit is an information processing device that calculates the amount of expansion and contraction of the indicator in response to contact between the display panel and the indicator as a virtual insertion amount of the indicator into the display space.
(6) The information processing device according to (4) or (5).
The display control unit is an information processing device that displays the instruction object starting from the contact position between the display panel and the indicator in the display space.
(7) The information processing apparatus according to any one of (4) to (6).
The stereoscopic display device has an image pickup unit directed to an observation range of the display panel.
The detection unit is an information processing device that detects the position and orientation of the indicator used by the user in the observation range based on the image of the observation range captured by the imaging unit.
(8) The information processing apparatus according to (7).
The detection unit detects the viewpoint of the user who observes the display panel based on the image of the observation range captured by the imaging unit.
The display control unit is an information processing device that displays the stereoscopic image according to the viewpoint of the user.
(9) The information processing apparatus according to any one of (1) to (8).
The indicator has a marker portion and has a marker portion.
The detection unit is an information processing device that detects the position and orientation of the marker unit as the position and orientation of the indicator.
(10) The information processing apparatus according to (9).
The indicator has a tip that is directed at the object and a grip that is connected to the tip.
The marker portion is an information processing device connected to a side opposite to the side to which the tip portion of the grip portion is connected.
(11) The information processing apparatus according to any one of (1) to (10).
The display control unit is an information processing device that displays a target object that is a target of an input operation using the indicator in the display space.
(12) The information processing apparatus according to (11).
The display control unit is an information processing device that sets the type of the instruction object according to the type of the target object.
(13) The information processing device according to (11) or (12).
The display control unit is an information processing device that controls the display of the target object in response to contact between the target object and the instruction object.
(14) The information processing apparatus according to any one of (11) to (13).
The indicator has a sensation presenting portion that presents a skin sensation to the user.
Further, an information processing device including a sensory control unit that controls the sensory presentation unit in response to contact between the target object and the instruction object.
(15) The information processing apparatus according to (14).
The sensation presenting unit is an information processing device that presents at least one of a vibration sensation and a heat sensation.
(16) The information processing apparatus according to (14) or (15).
The sensory control unit is an information processing device that controls the sensory presentation unit according to at least one of the type of the target object, the type of the instruction object, or the amount of contact between the target object and the instruction object.
(17) The position and orientation of the indicator are detected based on the image of the indicator used by the user.
An information processing method in which a computer system executes an instruction object representing a virtual insertion portion of the indicator to the display space in the display space of the stereoscopic display device based on the position and orientation of the indicator.
(18) A step of detecting the position and orientation of the indicator based on an image of the indicator used by the user, and
A program that causes a computer system to perform a step of displaying an instruction object representing a virtual insertion portion of the indicator in the display space in the display space of the stereoscopic display device based on the position and orientation of the indicator.
 1…ユーザ
 2…視点
 10…立体像
 11…表示空間
 14…対象オブジェクト
 15…仮想ポインタ
 20…表示パネル
 21…カメラ
 27…コントローラ
 31…視点検出部
 32…ポインタ検出部
 33…表示制御部
 34…振動制御部
 40…ポインティングデバイス
 41…マーカ
 45…振動提示部
 100…立体表示装置
1 ... User 2 ... Viewpoint 10 ... Stereoscopic image 11 ... Display space 14 ... Target object 15 ... Virtual pointer 20 ... Display panel 21 ... Camera 27 ... Controller 31 ... Viewpoint detection unit 32 ... Pointer detection unit 33 ... Display control unit 34 ... Vibration Control unit 40 ... Pointing device 41 ... Marker 45 ... Vibration presentation unit 100 ... Three-dimensional display device

Claims (18)

  1.  ユーザが使用する指示具の画像に基づいて、前記指示具の位置姿勢を検出する検出部と、
     前記指示具の位置姿勢に基づいて、立体表示装置の表示空間に、前記表示空間に対する前記指示具の仮想的な挿入部分を表す指示オブジェクトを表示させる表示制御部と
     を具備する情報処理装置。
    A detection unit that detects the position and orientation of the indicator based on the image of the indicator used by the user, and
    An information processing device including a display control unit that displays an instruction object representing a virtual insertion portion of the indicator in the display space in the display space of the stereoscopic display device based on the position and orientation of the indicator.
  2.  請求項1に記載の情報処理装置であって、
     前記表示制御部は、前記指示具の位置姿勢に基づいて、前記表示空間に対する前記指示具の仮想的な挿入量を算出し、前記挿入量に応じて前記指示オブジェクトの表示を制御する
     情報処理装置。
    The information processing device according to claim 1.
    The display control unit calculates a virtual insertion amount of the indicator into the display space based on the position and orientation of the indicator, and controls the display of the instruction object according to the insertion amount. ..
  3.  請求項2に記載の情報処理装置であって、
     前記表示制御部は、前記指示オブジェクトの長さが前記挿入量に比例するように、前記指示オブジェクトの表示を制御する
     情報処理装置。
    The information processing device according to claim 2.
    The display control unit is an information processing device that controls the display of the instruction object so that the length of the instruction object is proportional to the insertion amount.
  4.  請求項1に記載の情報処理装置であって、
     前記立体表示装置は、立体像を表示する表示パネルを有し、
     前記表示空間は、前記表示パネルを境界とする仮想空間であり、
     前記検出部は、前記表示パネルに対する前記指示具の位置姿勢を検出する
     情報処理装置。
    The information processing device according to claim 1.
    The stereoscopic display device has a display panel for displaying a stereoscopic image.
    The display space is a virtual space with the display panel as a boundary.
    The detection unit is an information processing device that detects the position and orientation of the indicator with respect to the display panel.
  5.  請求項4に記載の情報処理装置であって、
     前記指示具は、押圧に応じて一方向に伸縮可能であり、
     前記表示制御部は、前記表示パネルと前記指示具との接触に応じた前記指示具の伸縮量を、前記表示空間に対する前記指示具の仮想的な挿入量として算出する
     情報処理装置。
    The information processing device according to claim 4.
    The indicator can be expanded and contracted in one direction in response to pressure.
    The display control unit is an information processing device that calculates the amount of expansion and contraction of the indicator in response to contact between the display panel and the indicator as a virtual insertion amount of the indicator into the display space.
  6.  請求項4に記載の情報処理装置であって、
     前記表示制御部は、前記表示空間に、前記表示パネルと前記指示具との接触位置を起点とする前記指示オブジェクトを表示させる
     情報処理装置。
    The information processing device according to claim 4.
    The display control unit is an information processing device that displays the instruction object starting from the contact position between the display panel and the indicator in the display space.
  7.  請求項4に記載の情報処理装置であって、
     前記立体表示装置は、前記表示パネルの観察範囲に向けられた撮像部を有し、
     前記検出部は、前記撮像部により撮像された前記観察範囲の画像に基づいて、前記観察範囲で前記ユーザが使用する前記指示具の位置姿勢を検出する
     情報処理装置。
    The information processing device according to claim 4.
    The stereoscopic display device has an image pickup unit directed to an observation range of the display panel.
    The detection unit is an information processing device that detects the position and orientation of the indicator used by the user in the observation range based on the image of the observation range captured by the imaging unit.
  8.  請求項7に記載の情報処理装置であって、
     前記検出部は、前記撮像部により撮像された前記観察範囲の画像に基づいて、前記表示パネルを観察する前記ユーザの視点を検出し、
     前記表示制御部は、前記ユーザの視点に応じた前記立体像を表示させる
     情報処理装置。
    The information processing device according to claim 7.
    The detection unit detects the viewpoint of the user who observes the display panel based on the image of the observation range captured by the imaging unit.
    The display control unit is an information processing device that displays the stereoscopic image according to the viewpoint of the user.
  9.  請求項1に記載の情報処理装置であって、
     前記指示具は、マーカ部を有し、
     前記検出部は、前記指示具の位置姿勢として、前記マーカ部の位置姿勢を検出する
     情報処理装置。
    The information processing device according to claim 1.
    The indicator has a marker portion and has a marker portion.
    The detection unit is an information processing device that detects the position and orientation of the marker unit as the position and orientation of the indicator.
  10.  請求項9に記載の情報処理装置であって、
     前記指示具は、対象に向けられる先端部と、前記先端部に接続された把持部とを有し、
     前記マーカ部は、前記把持部の前記先端部が接続される側とは反対側に接続される
     情報処理装置。
    The information processing device according to claim 9.
    The indicator has a tip that is directed at the object and a grip that is connected to the tip.
    The marker portion is an information processing device connected to a side opposite to the side to which the tip portion of the grip portion is connected.
  11.  請求項1に記載の情報処理装置であって、
     前記表示制御部は、前記表示空間に、前記指示具を使用した入力操作の対象となる対象オブジェクトを表示させる
     情報処理装置。
    The information processing device according to claim 1.
    The display control unit is an information processing device that displays a target object that is a target of an input operation using the indicator in the display space.
  12.  請求項11に記載の情報処理装置であって、
     前記表示制御部は、前記対象オブジェクトの種類に合わせて、前記指示オブジェクトの種類を設定する
     情報処理装置。
    The information processing device according to claim 11.
    The display control unit is an information processing device that sets the type of the instruction object according to the type of the target object.
  13.  請求項11に記載の情報処理装置であって、
     前記表示制御部は、前記対象オブジェクトと前記指示オブジェクトとの接触に応じて前記対象オブジェクトの表示を制御する
     情報処理装置。
    The information processing device according to claim 11.
    The display control unit is an information processing device that controls the display of the target object in response to contact between the target object and the instruction object.
  14.  請求項11に記載の情報処理装置であって、
     前記指示具は、前記ユーザに皮膚感覚を提示する感覚提示部を有し、
     さらに、前記対象オブジェクトと前記指示オブジェクトとの接触に応じて、前記感覚提示部を制御する感覚制御部を具備する
     情報処理装置。
    The information processing device according to claim 11.
    The indicator has a sensation presenting portion that presents a skin sensation to the user.
    Further, an information processing device including a sensory control unit that controls the sensory presentation unit in response to contact between the target object and the instruction object.
  15.  請求項14に記載の情報処理装置であって、
     前記感覚提示部は、振動感覚又は熱感覚の少なくとも一方を提示する
     情報処理装置。
    The information processing apparatus according to claim 14.
    The sensation presenting unit is an information processing device that presents at least one of a vibration sensation and a heat sensation.
  16.  請求項14に記載の情報処理装置であって、
     前記感覚制御部は、前記対象オブジェクトの種類、前記指示オブジェクトの種類、又は前記対象オブジェクトと前記指示オブジェクトとの接触量の少なくとも1つに応じて、前記感覚提示部を制御する
     情報処理装置。
    The information processing apparatus according to claim 14.
    The sensory control unit is an information processing device that controls the sensory presentation unit according to at least one of the type of the target object, the type of the instruction object, or the amount of contact between the target object and the instruction object.
  17.  ユーザが使用する指示具の画像に基づいて、前記指示具の位置姿勢を検出し、
     前記指示具の位置姿勢に基づいて、立体表示装置の表示空間に、前記表示空間に対する前記指示具の仮想的な挿入部分を表す指示オブジェクトを表示させる
     ことをコンピュータシステムが実行する情報処理方法。
    The position and orientation of the indicator are detected based on the image of the indicator used by the user.
    An information processing method in which a computer system executes an instruction object representing a virtual insertion portion of the indicator to the display space in the display space of the stereoscopic display device based on the position and orientation of the indicator.
  18.  ユーザが使用する指示具の画像に基づいて、前記指示具の位置姿勢を検出するステップと、
     前記指示具の位置姿勢に基づいて、立体表示装置の表示空間に、前記表示空間に対する前記指示具の仮想的な挿入部分を表す指示オブジェクトを表示させるステップと
     をコンピュータシステムに実行させるプログラム。
    A step of detecting the position and orientation of the indicator based on the image of the indicator used by the user, and
    A program that causes a computer system to perform a step of displaying an instruction object representing a virtual insertion portion of the indicator in the display space in the display space of the stereoscopic display device based on the position and orientation of the indicator.
PCT/JP2020/029699 2019-08-13 2020-08-03 Information processing device, information processing method, and program WO2021029256A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-148558 2019-08-13
JP2019148558 2019-08-13

Publications (1)

Publication Number Publication Date
WO2021029256A1 true WO2021029256A1 (en) 2021-02-18

Family

ID=74569567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029699 WO2021029256A1 (en) 2019-08-13 2020-08-03 Information processing device, information processing method, and program

Country Status (1)

Country Link
WO (1) WO2021029256A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230350A1 (en) * 2021-04-28 2022-11-03 ソニーグループ株式会社 Information processing device, information processing method, and program
WO2023195301A1 (en) * 2022-04-04 2023-10-12 ソニーグループ株式会社 Display control device, display control method, and display control program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085590A (en) * 2001-09-13 2003-03-20 Nippon Telegr & Teleph Corp <Ntt> Method and device for operating 3d information operating program, and recording medium therefor
JP2011087848A (en) * 2009-10-26 2011-05-06 Mega Chips Corp Game device
JP2013097805A (en) * 2011-11-03 2013-05-20 Optoelectronics Co Ltd Shenzhen Super Multi Three-dimensional interactive system and three-dimensional interactive method
JP2018018309A (en) * 2016-07-28 2018-02-01 キヤノン株式会社 Information processing device, information processing method and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003085590A (en) * 2001-09-13 2003-03-20 Nippon Telegr & Teleph Corp <Ntt> Method and device for operating 3d information operating program, and recording medium therefor
JP2011087848A (en) * 2009-10-26 2011-05-06 Mega Chips Corp Game device
JP2013097805A (en) * 2011-11-03 2013-05-20 Optoelectronics Co Ltd Shenzhen Super Multi Three-dimensional interactive system and three-dimensional interactive method
JP2018018309A (en) * 2016-07-28 2018-02-01 キヤノン株式会社 Information processing device, information processing method and program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022230350A1 (en) * 2021-04-28 2022-11-03 ソニーグループ株式会社 Information processing device, information processing method, and program
WO2023195301A1 (en) * 2022-04-04 2023-10-12 ソニーグループ株式会社 Display control device, display control method, and display control program

Similar Documents

Publication Publication Date Title
EP2755194B1 (en) 3d virtual training system and method
US10007351B2 (en) Three-dimensional user interface device and three-dimensional operation processing method
KR101171660B1 (en) Pointing device of augmented reality
US20130154913A1 (en) Systems and methods for a gaze and gesture interface
KR101666561B1 (en) System and Method for obtaining Subspace in Augmented Space
KR101518727B1 (en) A stereoscopic interaction system and stereoscopic interaction method
JP2009276996A (en) Information processing apparatus, and information processing method
KR20140010616A (en) Apparatus and method for processing manipulation of 3d virtual object
WO2016205046A1 (en) Three-dimensional user input
WO2013028268A1 (en) Method and system for use in providing three dimensional user interface
CN114641251A (en) Surgical virtual reality user interface
KR101892735B1 (en) Apparatus and Method for Intuitive Interaction
KR102147430B1 (en) virtual multi-touch interaction apparatus and method
WO2021029256A1 (en) Information processing device, information processing method, and program
JP6344530B2 (en) Input device, input method, and program
CN111273766B (en) Method, apparatus and system for generating an affordance linked to a simulated reality representation of an item
CN114647317A (en) Remote touch detection enabled by a peripheral device
JP5863984B2 (en) User interface device and user interface method
EP3599539B1 (en) Rendering objects in virtual views
KR101288590B1 (en) Apparatus and method for motion control using infrared radiation camera
Aspin et al. Augmenting the CAVE: An initial study into close focused, inward looking, exploration in IPT systems
US11403830B2 (en) Image processing device, image processing method, and program
KR20080055622A (en) Ergonomic human computer interface
US11086505B2 (en) Program, information processing device, and control method for the same
TWI571767B (en) Rear-screen three-dimension interactive system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20851696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20851696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP