WO2021029246A1 - Radio wave absorbing composition and radio wave absorbent - Google Patents

Radio wave absorbing composition and radio wave absorbent Download PDF

Info

Publication number
WO2021029246A1
WO2021029246A1 PCT/JP2020/029623 JP2020029623W WO2021029246A1 WO 2021029246 A1 WO2021029246 A1 WO 2021029246A1 JP 2020029623 W JP2020029623 W JP 2020029623W WO 2021029246 A1 WO2021029246 A1 WO 2021029246A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
radio wave
general formula
wave absorber
absorbing composition
Prior art date
Application number
PCT/JP2020/029623
Other languages
French (fr)
Japanese (ja)
Inventor
中井 義博
橋本 浩一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to JP2021539211A priority Critical patent/JP7427005B2/en
Publication of WO2021029246A1 publication Critical patent/WO2021029246A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a radio wave absorbing composition and a radio wave absorber.
  • radio wave absorber a material containing magnetic powder is known as a radio wave absorbing material. Further, examples of the radio wave absorber containing the magnetic powder include a radio wave absorber in which the magnetic powder and the binder are mixed (see Patent Documents 1 and 2).
  • an in-vehicle radar transmits radio waves and recognizes the existence of the object, the distance to the object, etc. by receiving the radio waves reflected by the object (pedestrian, vehicle, etc.). be able to.
  • the automatic driving control system of the car automatically applies the brakes to stop the car or to stop the car based on the result of the radar recognizing the object, if necessary. The speed can be controlled automatically to keep the distance.
  • the radio wave absorber with excellent vibration resistance and chemical resistance is less likely to get tired even if it receives vibration during use, and is less likely to deteriorate even if chemicals adhere to it, so it can improve radar recognition accuracy for a long period of time. You can continue to contribute. Therefore, it is desirable that the radio wave absorber has excellent vibration fatigue resistance and chemical resistance.
  • one aspect of the present invention is to provide a radio wave absorber having excellent radio wave absorption performance, vibration fatigue resistance and chemical resistance.
  • the present inventors have made a combination of a magnetic powder and a binder, that is, a substituted hexagonal ferrite powder surface-treated with a silicon-based compound, and polyester and polycarbonate. It has been newly found that a radio wave absorber having excellent radio wave absorption performance, vibration fatigue resistance and chemical resistance can be obtained by using in combination with one or more kinds of resins selected from the group consisting of It was.
  • one aspect of the present invention is A radio wave absorbing composition containing a magnetic powder and a binder.
  • the magnetic powder is a substituted hexagonal ferrite powder surface-treated with a surface treatment agent.
  • one aspect of the present invention is A radio wave absorber containing magnetic powder and a binder
  • the magnetic powder is a substituted hexagonal ferrite powder surface-treated with a surface treatment agent.
  • the surface treatment agent is a silicon-based compound
  • the binder is a radio wave absorber, which is one or more resins selected from the group consisting of polyester and polycarbonate.
  • the radio wave absorber can be a molded product obtained by molding the radio wave absorbing composition.
  • the substituted hexagonal ferrite can have a composition represented by the following general formula 1.
  • General formula 1 AFe (12-x) Al x O 19
  • A represents one or more kinds of atoms selected from the group consisting of Sr, Ba, Ca and Pb, and x satisfies 1.50 or more ⁇ x ⁇ 8.00.
  • the substituted hexagonal ferrite can be a substituted hexagonal strontium ferrite.
  • the surface treatment agent can be a silicon-based compound represented by the following general formula 2.
  • General formula 2 (XL) m- Si-Z 4-m
  • X is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an alicyclic group, a heterocyclic group, a hydroxy group, an acrylamide group, a sulfanyl group, an isocyanate group, a thiocyanate group, a ureido group, a cyano group, an acid anhydride group and an azide.
  • L is selected from the group consisting of a single bond, an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond, a thioamide bond and a sulfonyl group.
  • Ra represents a hydrogen atom or a substituent and represents Z represents a hydroxy group, an alkoxy group or an alkyl group.
  • m is an integer in the range of 1 to 3.
  • n is 1 and X can represent an alkenyl group or a heterocyclic group, or m is 2 or 3, and a plurality of Xs are contained in General Formula 2. However, each can independently represent an alkenyl group or a heterocyclic group.
  • m is 1 and X represents an acyl group, an acrylamide group or a heterocyclic group, or m is 2 or 3, and a plurality of Xs are contained in General Formula 2.
  • they can independently represent an acyl group, an acrylamide group, or a heterocyclic group.
  • the acyl group can be a (meth) acryloyl group and the heterocyclic group can be an epoxy group.
  • X can represent an epoxy group.
  • L can contain an alkylene group having 4 to 12 carbon atoms in the general formula 2.
  • the resin is selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyarylate, polycarbonate and polyester elastomer. It can be one or more kinds of resins.
  • the resin may be one or more resins selected from the group consisting of polyethylene naphthalate, polytrimethylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyarylate and polyester elastomer. it can.
  • a radio wave absorber having excellent radio wave absorbing performance, vibration fatigue resistance and chemical resistance, and a radio wave absorbing composition that can be used for producing the radio wave absorber. ..
  • Radio-absorbing composition, radio wave absorber One aspect of the present invention relates to a radio wave absorbing composition containing a magnetic powder and a binder.
  • the magnetic powder is a powder of a substituted hexagonal ferrite surface-treated with a surface treatment agent
  • the surface treatment agent is a silicon-based compound
  • the binder is One or more resins selected from the group consisting of polyester and polycarbonate.
  • one aspect of the present invention relates to a radio wave absorber containing a magnetic powder and a binder.
  • the magnetic powder is a powder of a substituted hexagonal ferrite surface-treated with a surface treatment agent
  • the surface treatment agent is a silicon-based compound
  • the binder is polyester and the binder.
  • radio wave means an electromagnetic wave having a frequency of 3 terahertz (THz) or less.
  • the radio wave absorber and the composition used in the production of the radio wave absorber have radio wave absorbing properties.
  • the radio wave absorption can be evaluated by, for example, the transmission attenuation and / or the reflection attenuation, and the higher the transmission attenuation value, the higher the reflection attenuation value, or the transmission attenuation value and the reflection attenuation. It can be said that the higher the amount value, the better the radio wave absorption.
  • binder means an aggregate of a plurality of particles.
  • the “aggregation” is not limited to the mode in which the particles constituting the set are in direct contact with each other, and also includes a mode in which a binder or the like is interposed between the particles.
  • the radio wave absorbing composition and the radio wave absorber include, as magnetic powder, a powder of a substituted hexagonal ferrite surface-treated with a surface treatment agent.
  • the substituted hexagonal ferrite powder surface-treated with the surface treatment agent can also be said to be the substituted hexagonal ferrite powder coated with the surface treatment agent.
  • the substituted hexagonal ferrite powder surface-treated with a surface treatment agent at least a part of the surface of at least a part of the particles constituting the powder is coated with the surface treatment agent.
  • the radio wave absorber contains the magnetic powder surface-treated with the surface treatment agent by analyzing the section sample cut out from the radio wave absorber by a known method.
  • the magnetic powder is collected from the radio wave absorber or the radio wave absorbing composition by a known method, and the collected magnetic powder is analyzed by a known method such as mass spectrometry or gas chromatography for confirmation. Can be done.
  • the magnetic powder is a substituted hexagonal ferrite powder surface-treated with a surface treatment agent.
  • the "hexagonal ferrite powder” refers to a magnetic powder in which a hexagonal ferrite type crystal structure is detected as the main phase by X-ray diffraction analysis.
  • the main phase refers to a structure to which the highest intensity diffraction peak belongs in the X-ray diffraction spectrum obtained by X-ray diffraction analysis.
  • the hexagonal ferrite type crystal structure contains at least iron atoms, divalent metal atoms and oxygen atoms as constituent atoms. In the unsubstituted hexagonal ferrite, the only atoms constituting the crystal structure of the hexagonal ferrite are iron atom, divalent metal atom and oxygen atom.
  • the substituted hexagonal ferrite contains one or more other atoms together with an iron atom, a divalent metal atom and an oxygen atom as atoms constituting the crystal structure of the hexagonal ferrite.
  • This one or more other atoms are usually atoms that replace a part of iron in the crystal structure of hexagonal ferrite.
  • the divalent metal atom is a metal atom that can be a divalent cation as an ion, and examples thereof include an alkaline earth metal atom such as a strontium atom, a barium atom, and a calcium atom, and a lead atom.
  • the "powder of hexagonal strontium ferrite” means that the main divalent metal atom contained in the crystal structure of hexagonal ferrite is a strontium atom.
  • the main divalent metal atom refers to the divalent metal atom that occupies the largest amount on an atomic% basis among the divalent metal atoms contained in the crystal structure of hexagonal ferrite.
  • rare earth atoms are not included in the above divalent metal atoms.
  • the "rare earth atom” in the present invention and the present specification is selected from the group consisting of a scandium atom (Sc), a yttrium atom (Y), and a lanthanoid atom.
  • the lanthanoid atoms are lanthanum atom (La), cerium atom (Ce), placeodium atom (Pr), neodymium atom (Nd), promethium atom (Pm), samarium atom (Sm), uropyum atom (Eu), gadolinium atom (Gd) ), Terbium atom (Tb), dysprosium atom (Dy), formium atom (Ho), elbium atom (Er), thulium atom (Tm), ytterbium atom (Yb), and lutetium atom (Lu).
  • La lanthanum atom
  • Ce cerium atom
  • Pr placeodium atom
  • Nd neodymium atom
  • promethium atom Pm
  • Sm samarium atom
  • Eu gadolinium atom
  • Tb Terbium atom
  • Dy dysprosium atom
  • Ho formium atom
  • Substitution type hexagonal ferrite contains one or more other atoms as well as iron atom, divalent metal atom and oxygen atom as atoms constituting the crystal structure of hexagonal ferrite.
  • Such atoms include one or more trivalent metal atoms selected from the group consisting of Al, Ga and In, and combinations of divalent and tetravalent metal atoms such as Mn and Ti, Co and Ti, Zn and Ti. be able to.
  • the substituted hexagonal ferrite can preferably be a substituted hexagonal strontium ferrite.
  • the magnetic powder can be a magnetoplumbite-type (generally referred to as "M-type") substituted hexagonal ferrite powder surface-treated with a surface treatment agent.
  • M-type magnetoplumbite-type hexagonal ferrite
  • the magnetoplumbite-type hexagonal ferrite has a composition represented by the composition formula: AFe 12 O 19 when it does not contain an atom that replaces iron.
  • A can represent at least one atom selected from the group consisting of Sr, Ba, Ca and Pb, and includes an embodiment in which two or more of these atoms are contained in an arbitrary ratio.
  • a substituted magnetoplumbite-type hexagonal ferrite in which a part of iron atoms of the magnetoplumbite-type hexagonal ferrite is replaced with an aluminum atom can be mentioned.
  • a substituted hexagonal ferrite having a composition represented by the following general formula 1 can be mentioned.
  • A represents one or more kinds of atoms (hereinafter, also referred to as “A atom”) selected from the group consisting of Sr, Ba, Ca and Pb, and may be only one kind. Two or more kinds may be contained in an arbitrary ratio, and it is preferable that only one kind is contained from the viewpoint of improving the uniformity of the composition between the particles constituting the powder. From the viewpoint of radio wave absorption performance in the high frequency band, A in the formula 1 is preferably one or more atoms selected from the group consisting of Sr, Ba and Ca, and more preferably Sr.
  • x satisfies 1.50 ⁇ x ⁇ 8.00.
  • x is 1.50 or more, more preferably 1.50 or more, further preferably 2.00 or more, and more than 2.00. Is more preferable.
  • x is 8.00 or less, preferably less than 8.00, more preferably 6.00 or less, and more preferably less than 6.00.
  • magnetoplumbite-type substituted hexagonal ferrite represented by the formula 1 include SrFe (9.58) Al (2.42) O 19 , SrFe (9.37) Al (2.63) O. 19 , SrFe (9.27) Al (2.73) O 19 , SrFe (9.85) Al (2.15) O 19 , SrFe (10.00) Al (2.00) O 19 , SrFe (9) .74) Al (2.26) O 19 , SrFe (10.44) Al (1.56) O 19 , SrFe (9.79) Al (2.21) O 19 , SrFe (9.33) Al ( 2.67) O 19 , SrFe (7.88) Al (4.12) O 19 , SrFe (7.04) Al (4.96) O 19 , SrFe (7.37) Al (4.63) O 19 , SrFe (6.25) Al (5.75) O 19 , SrFe (7.71) Al (4.29) O 19 , Sr (0.80) Ba
  • a substituted hexagonal strontium ferrite having the composition shown in Table 1 described later can also be mentioned.
  • the composition of hexagonal ferrite can be confirmed by high frequency inductively coupled plasma emission spectroscopy.
  • Specific examples of the confirmation method include the methods described in Examples described later.
  • the composition of the magnetic powder contained in the radio wave absorber can be confirmed by performing, for example, energy dispersive X-ray analysis on the exposed cross section. You can also.
  • the substituted hexagonal ferrite powder can have a single phase crystal phase and can include a plurality of crystal phases, preferably the crystal phase is a single phase, and the crystal phase is It is more preferable that the powder is a single-phase magnetoplumbite-type substituted hexagonal ferrite powder.
  • the crystal phase is a single phase
  • the case where "the crystal phase is a single phase” means that only one type of diffraction pattern showing an arbitrary crystal structure is observed in the X-ray diffraction analysis.
  • the X-ray diffraction analysis can be performed, for example, by the method described in Examples described later.
  • a plurality of crystal phases are included, two or more types of diffraction patterns showing an arbitrary crystal structure are observed in the X-ray diffraction analysis.
  • a database of the International Center for Diffraction Data can be referred to.
  • ICDD International Center for Diffraction Data
  • a magnetoplumbite-type hexagonal ferrite containing Sr refers to "00-033-1340" of the International Center for Diffraction Data (ICDD).
  • ICDD International Center for Diffraction Data
  • Examples of the method for producing the powder of the substituted hexagonal ferrite include a solid phase method and a liquid phase method.
  • the solid-phase method is a method for producing hexagonal ferrite powder by calcining a mixture obtained by mixing a plurality of solid raw materials in a dry manner.
  • the liquid phase method includes a step of using a solution.
  • the production method described below is an example, and the production method of the magnetic powder contained in the radio wave absorbing composition and the radio wave absorber is not limited to the following examples.
  • Step 1 of obtaining a precipitate from a solution containing an iron atom, at least one atom selected from the group consisting of Sr, Ba, Ca and Pb, and one or more substitution atoms that replace the iron atom.
  • Step 2 to obtain a calcined body by calcining the precipitate obtained in step 1 and Can be included.
  • each step will be described in detail.
  • a precursor of hexagonal ferrite can be obtained as a precipitate.
  • a hexagonal ferrite powder containing an aluminum atom as a substitution atom that replaces a part of an iron atom an iron atom, an A atom and an aluminum atom can be mixed in a solution.
  • the precipitate obtained in step 1 is iron hydroxide, aluminum hydroxide, a composite hydroxide of an iron atom, an aluminum atom, and an A atom, and the like.
  • the solution for obtaining the precipitate in step 1 is preferably a solution containing at least water, and more preferably an aqueous solution.
  • a precipitate can be produced by mixing an aqueous solution containing various atoms (hereinafter, also referred to as “raw material aqueous solution”) and an alkaline aqueous solution.
  • step 1 can include a step of solid-liquid separation of the precipitate.
  • the raw material aqueous solution can be, for example, an aqueous solution containing an Fe salt, an Al salt and a salt of an A atom.
  • These salts can be, for example, water-soluble inorganic acid salts such as nitrates, sulfates and chlorides.
  • Specific examples of the Fe salts, iron (III) chloride hexahydrate [FeCl 3 ⁇ 6H 2 O], iron (III) nitrate nonahydrate [Fe (NO 3) 3 ⁇ 9H 2 O ] and the like can be mentioned Be done.
  • Al salt aluminum hexahydrate [AlCl 3 ⁇ 6H 2 O] chloride, aluminum nitrate nonahydrate [Al (NO 3) 3 ⁇ 9H 2 O ] and the like.
  • the salt of the A atom can be one or more selected from the group consisting of Sr salt, Ba salt, Ca salt and Pb salt.
  • Sr salt strontium chloride hexahydrate [SrCl 2 ⁇ 6H 2 O], strontium nitrate [Sr (NO 3) 2], strontium acetate hemihydrate [Sr (CH 3 COO) 2 -0.5H 2 O] and the like.
  • Ba salt barium chloride dihydrate [BaCl 2 ⁇ 2H 2 O], barium nitrate [Ba (NO 3) 2], barium acetate [(CH 3 COO) 2 Ba] and the like.
  • Ca salt is calcium chloride dihydrate [CaCl 2 ⁇ 2H 2 O], calcium nitrate tetrahydrate [Ca (NO 3) 2 ⁇ 4H 2 O ], calcium acetate monohydrate [( CH 3 COO) 2 Ca ⁇ H 2 O] and the like.
  • Pb salt include lead (II) chloride [PbCl 2 ], lead (II) nitrate [Pb (NO 3 ) 2 ] and the like.
  • Pb salt include lead (II) chloride [PbCl 2 ], lead (II) nitrate [Pb (NO 3 ) 2 ] and the like.
  • Pb salt include lead (II) chloride [PbCl 2 ], lead (II) nitrate [Pb (NO
  • the alkaline aqueous solution examples include a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution.
  • the concentration of the alkaline aqueous solution can be, for example, 0.1 mol / L to 10 mol / L.
  • the type and concentration of the alkaline aqueous solution are not limited to the above examples as long as a precipitate can be produced.
  • the raw material aqueous solution and the alkaline aqueous solution may be simply mixed.
  • the total amount of the raw material aqueous solution and the alkaline aqueous solution may be mixed at once, or the raw material aqueous solution and the alkaline aqueous solution may be gradually mixed. Further, it may be mixed while gradually adding the other to either the raw material aqueous solution or the alkaline aqueous solution.
  • the method of mixing the raw material aqueous solution and the alkaline aqueous solution is not particularly limited, and examples thereof include a method of mixing by stirring.
  • the stirring means is not particularly limited, and general stirring means can be used.
  • the stirring time may be set to a time during which a precipitate can be formed, and can be appropriately set according to the composition of the raw material aqueous solution, the type of stirring means used, and the like.
  • the temperature (liquid temperature) when the raw material aqueous solution and the alkaline aqueous solution are mixed is preferably 100 ° C. or lower from the viewpoint of preventing bumping, and 95 ° C. from the viewpoint of satisfactorily advancing the precipitation reaction.
  • the temperature is more preferably 15 ° C. or higher and 92 ° C. or lower.
  • a general heating device, cooling device, or the like can be used as a means for adjusting the temperature.
  • the pH of the aqueous solution obtained by mixing the raw material aqueous solution and the alkaline aqueous solution at a liquid temperature of 25 ° C. is preferably in the range of 5 to 13, preferably in the range of 6 to 12, from the viewpoint of making it easier to obtain a precipitate, for example. Is more preferable.
  • the content of the substituted atom can be controlled by adjusting the pH.
  • the method is not particularly limited, and examples thereof include decantation, centrifugation, and filtration (suction filtration, pressure filtration, etc.).
  • the conditions for centrifugation are not particularly limited, and for example, centrifugation can be performed for 3 to 30 minutes at a rotation speed of 2000 rpm (revolutions per minute) or higher. Further, the centrifugation may be performed a plurality of times.
  • Step 2 is a step of calcining the precipitate obtained in Step 1.
  • the precursor of hexagonal ferrite can be converted to hexagonal ferrite by calcining the precipitate obtained in step 1.
  • Firing can be performed using a heating device.
  • the heating device is not particularly limited, and a known heating device such as an electric furnace, a firing device manufactured according to a production line, or the like can be used. Firing can be performed, for example, in an atmospheric atmosphere.
  • the firing temperature and firing time may be set within a range in which the precursor of hexagonal ferrite can be converted to hexagonal ferrite.
  • the firing temperature is, for example, preferably 900 ° C. or higher, more preferably 900 ° C.
  • the firing time is, for example, preferably in the range of 1 hour to 10 hours, and more preferably in the range of 2 hours to 6 hours.
  • the precipitate obtained in step 1 can be dried before firing.
  • the drying means is not particularly limited, and examples thereof include a dryer such as an oven.
  • the drying temperature is, for example, preferably in the range of 50 ° C. to 200 ° C., and more preferably in the range of 70 ° C. to 150 ° C.
  • the drying time is preferably in the range of, for example, 2 hours to 50 hours, and more preferably in the range of 5 hours to 30 hours.
  • the above firing temperature and drying temperature can be the internal ambient temperature of the apparatus for firing or drying.
  • the fired body obtained in the above step 2 can be a massive fired body or a powder-shaped fired body in which the precursor of hexagonal ferrite is converted to show the crystal structure of hexagonal ferrite.
  • a step of crushing the fired body can also be carried out.
  • the crushing can be performed by a known crushing means such as a mortar and pestle, a crusher (cutter mill, ball mill, bead mill, roller mill, jet mill, hammer mill, attritor, etc.).
  • the particle size of the medium is preferably in the range of 0.1 mm to 5.0 mm, and preferably in the range of 0.5 mm to 3.0 mm. More preferred.
  • media diameter is meant, in the case of spherical media, the arithmetic mean of the diameters of a plurality of randomly selected media (eg, beads).
  • a plurality of randomly selected images obtained from observation images of a transmission electron microscope (TEM; Transmission Electron Microscope) or a scanning electron microscope (SEM). It means the arithmetic average of the circle equivalent diameter of the media.
  • the material of the media include glass, alumina, steel, zirconia, and ceramics.
  • the substituted hexagonal ferrite powder is surface-treated with a surface treatment agent.
  • the surface treatment agent is a silicon-based compound.
  • the compatibility and bonding strength between the particles constituting the magnetic powder and the binder can be determined. It is presumed that the amount can be increased and the occurrence of the destruction phenomenon that occurs at the interface between the particles and the binder can be suppressed. It is considered that this makes it possible to improve the vibration fatigue resistance. Further, the interaction between the particles constituting the magnetic powder and the binder can contribute to the improvement of the chemical resistance of the radio wave absorber.
  • the combination of the above magnetic powder and the binder makes it possible to enhance the compatibility between the particles constituting the magnetic powder and the binder, so that a minute space (non-compliance) at the interface between the particles and the binder can be obtained. It is presumed that the occurrence of continuous sites) can be reduced. This is considered to contribute to suppressing the generation of cracks and the like due to the permeation of chemicals into the minute space at the interface. It is presumed that this makes it possible to improve chemical resistance.
  • the above is a speculation and does not limit the present invention.
  • the radio wave absorbing composition and the powder of the substituted hexagonal ferrite contained in the radio wave absorber are surface-treated with a silicon compound.
  • “system” means “including”.
  • the silicon-based compound can be an organic compound or an inorganic compound, and is preferably an organic compound from the viewpoint of further improving vibration fatigue resistance and chemical resistance.
  • At least a part of the groups contained in the silicon-based compound that can be used as the surface treatment agent described below may be a reactive group.
  • a reactive group is a group that can react with another group or bond and has a structure different from that before the reaction after the reaction.
  • the reactive group may be present in the post-reaction form in a state of being coated with the powder of the substituted hexagonal ferrite after the surface treatment, and such an embodiment is also included in the present invention. ..
  • silicon-based compounds suitable as surface treatment agents include silicon-based compounds represented by the following general formula 2.
  • X is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an alicyclic group, a heterocyclic group, a hydroxy group, an acrylamide group, a sulfanyl group, an isocyanate group, a thiocianate group, a ureido group, a cyano group and an acid.
  • L is selected from the group consisting of a single bond, an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond, a thioamide bond and a sulfonyl group.
  • Ra represents a hydrogen atom or a substituent.
  • Z represents a hydroxy group, an alkoxy group or an alkyl group.
  • m is an integer in the range of 1 to 3.
  • the group represented by X and the group and bond represented by L may have a substituent or may not have (that is, be unsubstituted).
  • substituents include a hydroxy group, a sulfanyl group, a thiocianate group, a ureido group, an acid anhydride group, a carboxy group, an acyl group, a carbamoyl group and the like.
  • the carbon number means the carbon number of a portion other than the substituent unless otherwise specified.
  • XL- if there is a part that can be understood as both a part contained in X and a part contained in L, such a part is interpreted as a part contained in X. It shall be.
  • the plurality of Xs contained in the general formula 2 can be the same in one form and can be different in the other form. This point is the same for L, and also for Z when "4-m" is 2 or 3.
  • X is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an alicyclic group, a heterocyclic group, a hydroxy group, an acrylamide group, a sulfanyl group, an isocyanate group, a thiocianate group, a ureido group, a cyano group and an acid.
  • the number of carbon atoms of the alkyl group, the alkenyl group, and the aryl group that can be taken as X is preferably in the range of 1 to 30, more preferably in the range of 1 to 25, and in the range of 1 to 20. It is more preferably in the range of 1 to 15.
  • the "alkyl group” shall not include a cycloalkyl group.
  • Alkyl groups include linear alkyl groups and branched alkyl groups.
  • the alicyclic group that can be taken as X may be any of a cycloalkyl group, a cycloalkenyl group and a cycloalkynyl group.
  • the number of carbon atoms of the cycloalkyl group is preferably in the range of 3 to 20, more preferably in the range of 4 to 15, and even more preferably in the range of 5 to 10.
  • the carbon number of each of the cycloalkenyl group and the cycloalkynyl group is preferably in the range of 6 to 20, more preferably in the range of 6 to 15, and further preferably in the range of 6 to 10. , 6 is more preferable.
  • the heterocycle constituting the heterocyclic group that can be taken as X may be a saturated or unsaturated aliphatic heterocycle or an aromatic heterocycle, and may be a monocyclic ring or a condensed ring. It may also be a bridge ring.
  • Examples of the hetero atom contained in the heterocycle include an oxygen atom, a nitrogen atom and a sulfur atom.
  • the number of heteroatoms contained in one heterocycle is not particularly limited, and is preferably 1 to 3, more preferably 1 or 2, for example.
  • the number of carbon atoms in the heterocycle is preferably in the range of 2 to 10, and more preferably 4 or 5.
  • the heterocycle is preferably a 3- to 7-membered ring, more preferably a 3- to 6-membered ring, and even more preferably a 3- to 5-membered ring.
  • Specific examples of the heterocycle include an epoxy ring, a 3,4-epoxycyclohexane ring, a furan ring and a thiophene ring.
  • the heterocyclic group represented by X can be an epoxy group.
  • the "epoxide group” includes an embodiment in which the heterocycle contained in this group is an epoxy ring (three-membered ring) and a ring having a structure in which an epoxy ring and a saturated hydrocarbon ring are fused. Aspects including groups shall be included. Examples of such a cyclic group include a 3,4-epoxycyclohexane ring.
  • a monovalent group having a structure of a carboxylic acid anhydride is preferable, and for example, a maleic anhydride group such as 3,4-dihydro-2,5-frangionyl and a succinic anhydride group. , Glutaric anhydride group, adipic anhydride group and citraconic anhydride group.
  • the number of carbon atoms of the acyl group that can be taken as X is preferably in the range of 1 to 40, more preferably in the range of 1 to 30, further preferably in the range of 1 to 20, and in the range of 2 to 15. Is more preferable.
  • the "acyl group” includes a formyl group, a carbamoyl group, an alkylcarbonyl group, an alkenylcarbonyl group and an arylcarbonyl group.
  • the alkenylcarbonyl group preferably includes a (meth) acryloyl group.
  • the "(meth) acryloyl group” includes an acryloyl group and a methacryloyl group.
  • the alkylene group that can be taken as L may be either a linear alkylene group or a branched alkylene group.
  • the carbon number of the alkylene group is preferably in the range of 1 to 30, more preferably in the range of 2 to 25, further preferably in the range of 3 to 20, and in the range of 4 to 12. Is more preferable.
  • Specific examples of the alkylene group include a methylene group, an ethylene group, an isopropylene group, a butylene group, a pentylene group, a cyclohexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group and an undecylene group.
  • the alkenylene group that can be taken as L may be either a linear alkenylene group or a branched alkenylene group.
  • the carbon number of the alkenylene group is preferably in the range of 2 to 20, more preferably in the range of 2 to 15, further preferably in the range of 2 to 10, and in the range of 2 to 6. Is more preferable.
  • Specific examples of the alkenylene group include an ethenylene group and a propenylene group.
  • the alkynylene group that can be taken as L may be either a linear alkynylene group or a branched alkynylene group.
  • the carbon number of the alkynylene group is preferably in the range of 2 to 20, more preferably in the range of 2 to 15, further preferably in the range of 2 to 10, and in the range of 2 to 6. Is more preferable.
  • Specific examples of the alkynylene group include an ethynylene group and a propynylene group.
  • the carbon number of the arylene group that can be taken as L is preferably in the range of 6 to 20, more preferably in the range of 6 to 15, further preferably in the range of 6 to 12, and in the range of 6 to 10. Is more preferable.
  • Specific examples of the arylene group include a phenylene group and a naphthylene group.
  • -NR a which may take as L -
  • R a of an alkyl group preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms
  • an alkenyl group preferably 2 to 12 carbon atoms, more Preferably carbon number 2-8
  • alkynyl group preferably carbon number 2-12, more preferably carbon number 2-8
  • aryl group preferably carbon number 6-20, more preferably carbon number 6-10.
  • heterocyclic groups examples of the heterocycle constituting the heterocyclic group that can be adopted as Ra include the heterocycle shown above as the heterocycle constituting the heterocyclic group that can be adopted as X, and a preferable heterocyclic group can also be adopted as X. As described for the heterocyclic group.
  • Examples of -NR a- include -NH-.
  • L is selected from the group consisting of a single bond, an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond, a thioamide bond and a sulfonyl group.
  • a divalent group consisting of a combination of two or more of these groups hereinafter, also referred to as "combined group that can be taken as L"
  • the above group constituting the combined group that can be taken as L.
  • the number of bonds is preferably in the range of 2-8, more preferably in the range of 2-6, and even more preferably in the range of 2-4.
  • the molecular weight of the combined group that can be taken as L is preferably in the range of 20 to 1000, more preferably in the range of 30 to 500, and even more preferably in the range of 40 to 200.
  • Examples of the combined group that can be taken as L include a urea bond, a thiourea bond, a carbamate group, a sulfonamide bond, an arylene group-alkylene group, an -O-alkylene group, an amide bond-alkylene group, and an -S-alkylene group.
  • Alkylene group-O-amide bond-alkylene group Alkylene group-O-amide bond-alkylene group, alkylene group-amide bond-alkylene group, alkenylene group-amide bond-alkylene group, alkylene group-ester bond-alkylene group, arylene group-ester bond-alkylene group,-( Alkylene group-O)-, alkylene group-O- (alkylene group-O) -alkylene group ("(alkylene group-O)" is a repeating unit), arylene group-sulfonyl group-O-alkylene group and ester bond -The alkylene group can be mentioned.
  • the "alkyl group” also includes a cycloalkyl group.
  • the alkyl group constituting the alkoxy group that can be taken as Z may be any of a linear alkyl group, a branched alkyl group and a cycloalkyl group, and may have a combination of these forms.
  • the alkyl group that can be taken as Z is preferably a linear alkyl group.
  • the number of carbon atoms of the alkyl group constituting the alkoxy group that can be taken as Z is preferably in the range of 1 to 15, more preferably 1 to 10, further preferably 1 to 5, and 1 or 2. Is more preferable.
  • Specific examples of the alkyl group constituting the alkoxy group include a methyl group, an ethyl group, a propyl group, a t-butyl group, a pentyl group and a cyclohexyl group.
  • Examples of the alkyl group that can be taken as Z include an alkyl group that constitutes an alkoxy group that can be taken as Z, and the preferred alkyl group is as described for the alkyl group that constitutes an alkoxy group that can be taken as Z.
  • X or L and at least one of Z may be connected to each other to form a ring.
  • the number of ring-constituting atoms in this ring is preferably in the range of 3 to 10, more preferably in the range of 4 to 8, and even more preferably in the range of 5 or 6.
  • X represents a hydrogen atom, an alicyclic group, a heterocyclic group, an acrylamide group, a hydroxy group, a sulfanyl group, a thiocianate group, an acid anhydride group, a carboxy group, an acyl group or a sulfonic acid group. ..
  • one type of L selected from the group consisting of an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond and a sulfonyl group. It is preferable to show a divalent group or bond, or a divalent group or bond formed by combining two or more of these.
  • m is 1 and X can represent an alkenyl group or a heterocyclic group.
  • m is 2 or 3 and a plurality of Xs contained in the general formula 2 can independently represent an alkenyl group or a heterocyclic group.
  • m is 1 and X can represent a (meth) acryloyl group, an acrylamide group or an epoxy group.
  • m is 2 or 3 and a plurality of Xs contained in the general formula 2 can independently represent a (meth) acryloyl group, an acrylamide group, or an epoxy group.
  • X preferably represents a (meth) acryloyl group, an acrylamide group or an epoxy group.
  • L is one divalent group or bond selected from the group consisting of an alkylene group, an alkenylene group, -O-, -NR a- , an ester bond and an amide bond, or a combination of two or more of these. It is more preferable to represent a divalent group or bond.
  • At least two of Z are preferably selected from the group consisting of an alkoxy group and a hydroxy group, and more preferably all Z is selected from the group consisting of an alkoxy group and a hydroxy group.
  • a silicon-based compound containing an epoxy group is preferable, an epoxysilane is more preferable, and an epoxysilane having a large number of carbon atoms is further preferable. It is presumed that this is because the flexibility at the interface between the surface of the magnetic powder particles and the resin described later is increased. From this point, in the general formula 2, it is preferable that X represents an epoxy group, X represents an epoxy group, and L contains an alkylene group having 4 to 12 carbon atoms.
  • silicon-based compound that can be used as a surface treatment agent examples include various compounds used in Examples described later. Moreover, the following compound can be mentioned as a specific example of the silicon-based compound which can be used as a surface treatment agent. However, the present invention is not limited to these specific examples.
  • the silicon-based compound represented by the general formula 2 also includes the salt form of the compound represented by the general formula 2.
  • the salt form include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt, and ammonium salts.
  • a silicone-based compound can be mentioned.
  • the silicone-based compound include polydimethylsiloxane, polyalkylene oxide-modified silicone, hydrogenated polysiloxane such as hydrogen-terminated polydimethylsiloxane, methylhydrosiloxane-dimethylsiloxane copolymer, and polymethylhydrosiloxane.
  • the molecular weight of the silicone compound is not particularly limited. In one form, the molecular weight of the silicone-based compound is preferably about 1 to 300,000 as a weight average molecular weight.
  • the liquid silicone compound preferably has a viscosity of 100 to 60,000 cSt (centistokes) (measurement temperature: 25 ° C.) from the viewpoint of surface treatment efficiency.
  • the polyalkylene oxide-modified silicone preferably has an alkylene oxide content in the range of 10 to 90% by mass, more preferably 20 to 80% by mass.
  • the content of the methylhydrosiloxane unit is preferably in the range of 0.1 to 100 mol%, more preferably in the range of 2 to 50 mol%.
  • the silicon-based compounds described above may be used alone or in combination of two or more at any ratio.
  • surface-treating the substituted hexagonal ferrite powder by dry-mixing or wet-mixing the silicon-based compound (surface treatment agent) with the substituted hexagonal ferrite powder, at least a part of the particles constituting the powder At least a part of the surface can be coated.
  • a known technique for surface treatment using a surface treatment agent can be adopted.
  • the amount of the surface treatment agent used in the surface treatment is preferably in the range of 0.1 to 100 parts by mass, and 0.5 to 20 parts by mass with respect to 100 parts by mass of the substituted hexagonal ferrite powder. More preferably, it is in the range.
  • the radio wave absorbing composition and the radio wave absorber include, as magnetic powder, a powder of a substituted hexagonal ferrite surface-treated with the surface treatment agent described above.
  • the filling rate of the powder of the substituted hexagonal ferrite surface-treated with the surface treatment agent is not particularly limited.
  • the filling rate can be 35% by volume or less as the volume filling rate, and can also be in the range of 15 to 35% by volume.
  • the volume filling rate can be 35% by volume or more.
  • the volume filling factor can be, for example, in the range of 35 to 60% by volume, preferably in the range of 35 to 50% by volume.
  • the volume filling rate means the volume-based content of the radio wave absorber with respect to 100% by volume of the total volume of the radio wave absorber.
  • the volume filling factor means the volume-based content of the solid content (that is, the component excluding the solvent) with respect to 100% by volume of the total volume.
  • the powder of the substituted hexagonal ferrite surface-treated with the surface treatment agent is a mixture of this powder and a resin described later. It is preferably contained in an amount of 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more based on the total mass (100% by mass).
  • the powder of the substituted hexagonal ferrite surface-treated with the surface treatment agent is the sum of this powder and the resin described later. It is preferably contained in an amount of 90% by mass or less, more preferably 80% by mass or less, and further preferably 75% by mass or less with respect to the mass (100% by mass).
  • the radio wave absorbing composition and the radio wave absorber include the magnetic powder and the binder.
  • the binder is a resin
  • the radio wave absorbing composition and the radio wave absorber include one or more resins selected from the group consisting of polyester and polycarbonate as the binder.
  • Combining the above resin containing an ester bond with a powder of a substituted hexagonal ferrite surface-treated with a silicon compound contributes to the improvement of the radio wave absorption performance, vibration fatigue resistance and chemical resistance of the radio wave absorber. obtain.
  • polyester examples include a polyester composed of a dicarboxylic acid component and a diol component, a polyester composed of a hydroxycarboxylic acid component, and the like.
  • the dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, and dimer.
  • Examples thereof include acids, maleic anhydride, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, and cyclohexanedicarboxylic acid.
  • an aliphatic glycol having 2 to 20 carbon atoms for example, ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1, Examples thereof include 6-hexanediol, decamethylene glycol, cyclohexanedimethanol, cyclohexanediol, and dimerdiol.
  • diol component examples include long-chain glycols having a molecular weight of 200 to 100,000, such as polyethylene glycol, poly 1,3-propylene glycol, poly 1,2-propylene glycol, and polytetramethylene glycol.
  • aromatic dioxy compounds such as 4,4'-dihydroxybiphenyl, hydroquinone, tert-butylhydroquinone, bisphenol A, bisphenol S, bisphenol F and the like can be mentioned.
  • examples of the diol component include these ester-forming derivatives.
  • hydroxycarboxylic acid components glycolic acid, lactic acid, hydroxypropioic acid, hydroxybutyric acid, 2-hydroxyisobutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxypivalic acid, hydroxybenzoic acid, p-hydroxybenzoic acid, 6 Examples thereof include -hydroxy-2-naphthoic acid and ester-forming derivatives thereof.
  • lactone include caprolactone, valerolactone, propiolactone, undecalactone, 1,5-oxepane-2-one and the like.
  • the polyester may be a polymer consisting of only the above components, a copolymer obtained by copolymerizing other components, and further, trimellitic acid, trimesic acid, pyromellitic acid, trimethylolpropane, glycerin, pentaerythritol.
  • the trifunctional compound component such as the above may be contained in an arbitrary amount.
  • the polyester is a polyester elastomer in one form.
  • the polyester elastomer is a copolymer composed of a high melting point polyester segment (hard segment) and a low melting point polymer segment (soft segment) having a molecular weight of 400 or more, and is preferably a block copolymer.
  • the melting point of the high melting point polyester segment (hard segment) is preferably 200 ° C. or higher (for example, 200 to 300 ° C.), and the melting point of the low melting point polymer segment (soft segment) is 80 ° C. or lower (for example, 40 to 80 ° C.). Is preferable.
  • the melting point of a hard segment is the melting point of a polymer composed only of the components of this segment.
  • the molecular weight of the low melting point polymer segment (soft segment) is preferably in the range of 400 to 6000, and more preferably in the range of 400 to 800.
  • Examples of the low melting point polymer segment (soft segment) include polyethers such as polyalkylene oxide and polylactones such as poly- ⁇ -caprolactone.
  • the "molecular weight" in the present invention and the present specification means the weight average molecular weight of the polymer component.
  • the molecular weight of polyester is not particularly limited. In one form, the lower limit of the weight average molecular weight (Mw) is preferably 5,000 or more, and preferably 10,000 or more, from the viewpoint that vibration fatigue and drug resistance tend to be developed.
  • weight average molecular weight means the molecular weight relative to the molecular weight of standard polymethyl methacrylate as analyzed by gel permeation chromatography using tetrahydrofuran as a mobile phase.
  • polyester examples include polyethylene terephthalate, polypropylene terephthalate (polytrimethylene terephthalate), polybutylene terephthalate, polycyclohexanedimethylene terephthalate, polyhexylene terephthalate, polyethylene naphthalate, polypropylene naphthalate, polybutylene naphthalate, and polybutylene sakushi.
  • polyester elastomers include Hytrel 5557 and Hytrel 7247 manufactured by Toray DuPont, and Perprene S-6001 manufactured by Toyobo Co., Ltd.
  • polyarylate is an aromatic polyester composed of a divalent phenolic compound and a dicarboxylic acid component, and may be a polymer composed of only these components or a copolymer in which other components are copolymerized.
  • the polyarylate include a polyarylate composed of an aromatic divalent phenolic compound and an aromatic dicarboxylic acid component.
  • the aromatic dicarboxylic acid component include various aromatic dicarboxylic acids exemplified above, such as terephthalic acid and isophthalic acid.
  • polycarbonate can be referred to.
  • the polyarylate is preferably composed of an equivalent mixture of 2,2-bis (4-hydroxyphenyl) propane and an aromatic dicarboxylic acid selected from the group consisting of terephthalic acid and isophthalic acid.
  • aromatic dicarboxylic acid selected from the group consisting of terephthalic acid and isophthalic acid.
  • Specific examples of commercially available polyarylates include U-polymer U-8400H manufactured by Unitika Ltd.
  • Polycarbonate is a resin containing a plurality of carbonate groups.
  • the polycarbonate include aliphatic or aromatic polycarbonate.
  • the aromatic polycarbonate include aromatic polycarbonates such as aromatic homo or copolycarbonate obtained by reacting an aromatic dihydric phenolic compound with phosgene or a carbonic acid diester.
  • aromatic dihydric phenolic compounds include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and bis (4-hydroxyphenyl) methane.
  • 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxy-3,5-diphenyl) butane, 2,2-bis (4-Hydroxy-3,5-diethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-diethylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1-phenyl- 1,1-Bis (4-hydroxyphenyl) ethane and the like can be used alone or as a mixture of two or more.
  • aromatic polycarbonate having a glass transition temperature in the range of 100 to 155 ° C. as measured by a differential calorimeter is preferred.
  • the weight average molecular weight of the polycarbonate is preferably in the range previously described for the polyester. Specific examples of commercially available polycarbonate products include Panlite LV-2225Z manufactured by Teijin Limited.
  • the resin is selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyarylate, polycarbonate and polyester elastomer. It can be one or more kinds of resins. In one form, the resin is one or more resins selected from the group consisting of polyethylene naphthalate, polytrimethylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyarylate and polyester elastomer. be able to.
  • the radio wave absorbing composition and the radio wave absorber may contain only one kind of the resin, or may contain two or more kinds of the resin in an arbitrary ratio.
  • the filling rate of the resin in the radio wave absorbing composition and the radio wave absorber is not particularly limited, and for example, the volume filling rate is preferably 65% by volume or more, preferably 65% by volume or more and 92% by volume or less. It is more preferable that there is 65% by volume or more and 85% by volume or less.
  • the filling rate means the total filling rate of the two or more kinds of resins. This point is the same for the filling rate for other components.
  • the radio wave absorbing composition and the radio wave absorber include a powder of substituted hexagonal ferrite surface-treated with a silicon compound and the resin, and may optionally contain one or more additives.
  • the additive include a dispersant, a dispersion aid, a fungicide, an antistatic agent, an antioxidant and the like.
  • the additive may have one component having two or more functions.
  • the radio wave absorbing composition and the radio wave absorber may contain a commercially available product or a product manufactured by a known method as an additive at an arbitrary filling rate.
  • the method for producing the radio wave absorbing composition and the radio wave absorber is not particularly limited.
  • the radio wave absorbing composition can be produced by a known method using the magnetic powder, the resin, and if necessary, a solvent, an additive, or the like.
  • the radio wave absorber can be a molded product obtained by molding the radio wave absorbing composition.
  • the radio wave absorbing composition can be prepared as a kneaded product by, for example, kneading a mixture of the magnetic powder, the resin, and, if necessary, a solvent, additives, and the like while heating.
  • the kneaded product can be obtained as pellets, for example.
  • a radio wave absorber (molded product) can be obtained by molding the kneaded product into a desired shape by a known molding method such as extrusion molding, press molding, injection molding, or in-mold molding.
  • the shape of the radio wave absorber is not particularly limited, and may be any shape such as a plate shape or a linear shape.
  • Platinum-shaped includes sheet-shaped and film-shaped.
  • the plate-shaped radio wave absorber can also be called a radio wave absorbing plate, a radio wave absorbing sheet, a radio wave absorbing film, or the like.
  • the radio wave absorber may be a radio wave absorber having a single composition (for example, a single-layer radio wave absorber), or may be a combination of two or more parts having different compositions (for example, a laminated body). Further, the radio wave absorber may have a planar shape, may have a three-dimensional shape, or may be a combination of a portion having a planar shape and a portion having a three-dimensional shape. Examples of the planar shape include a sheet shape and a film shape. Examples of the three-dimensional shape include a tubular shape (cylindrical shape, square tubular shape, etc.), a horn shape, a box shape (for example, at least one of the surfaces is open) and the like.
  • the thickness of the radio wave absorber is preferably 20.0 mm or less, more preferably 10.0 mm or less, and further preferably 5.0 mm or less, from the viewpoint of ease of handling. From the viewpoint of mechanical properties, the thickness is preferably 1.0 mm or more, and more preferably 2.0 mm or more.
  • the thickness means the total thickness of the radio wave absorbers constituting the laminated body.
  • the thickness of the radio wave absorber is a value measured using a digital length measuring device, and specifically, is an arithmetic mean of the measured values measured at nine randomly selected points.
  • the radio wave absorbing composition may or may not contain a solvent.
  • the solvent is not particularly limited, and examples thereof include water, an organic solvent, and a mixed solvent of water and an organic solvent.
  • the organic solvent include alcohols such as methanol, ethanol, n-propanol, i-propanol and methoxypropanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, tetrahydrofuran, acetonitrile, ethyl acetate and toluene.
  • the solvent ketones are preferable, and cyclohexanone is more preferable, from the viewpoint of drying speed.
  • the content of the solvent in the composition is not particularly limited and may be determined according to the method for producing the radio wave absorber.
  • the radio wave absorbing composition can be prepared by mixing the above components.
  • the mixing method is not particularly limited, and examples thereof include a method of mixing by stirring.
  • a known stirring device can be used.
  • examples of the stirring device include mixers such as a paddle mixer and an impeller mixer.
  • the stirring time may be set according to the type of stirring device, the composition of the radio wave absorbing composition, and the like.
  • the method for producing the radio wave absorber a method of molding the radio wave absorbing composition into a desired shape by a known molding method as exemplified above can be mentioned. Further, as another form of the method for manufacturing the radio wave absorber, a method of applying the radio wave absorbing composition to the support and manufacturing the radio wave absorber as the radio wave absorbing layer can be mentioned.
  • the support used here may be removed before the radio wave absorber is incorporated into the article to which the radio wave absorber should be imparted, or may be incorporated into the article together with the radio wave absorber without being removed.
  • the support is not particularly limited, and a known support can be used.
  • the support include metal plates (metal plates such as aluminum, zinc, and copper), glass plates, plastic sheets [polyester (polyester terephthalate, polyethylene naphthalate, polybutylene terephthalate, etc.), polyethylene (linear low density).
  • the plastic sheet is preferably biaxially stretched.
  • the shape, structure, size, etc. of the support can be appropriately selected. Examples of the shape of the support include a plate shape.
  • the structure of the support may be a single-layer structure or a laminated structure of two or more layers.
  • the size of the support can be appropriately selected according to the size of the radio wave absorber and the like.
  • the thickness of the support is usually about 0.01 mm to 10 mm, for example, from the viewpoint of handleability, it is preferably 0.02 mm to 3 mm, and more preferably 0.05 mm to 1 mm.
  • the method of applying the radio wave absorbing composition on the support is not particularly limited, and examples thereof include a method using a die coater, a knife coater, an applicator, and the like.
  • the method for drying the coating film formed by applying the radio wave absorbing composition is not particularly limited, and examples thereof include a method using a known heating device such as an oven.
  • the drying temperature and drying time are not particularly limited. As an example, the drying temperature can be in the range of 70 ° C. to 90 ° C. and the drying time can be in the range of 1 hour to 3 hours.
  • the radio wave absorber can be incorporated into various articles for which it is desired to impart radio wave absorption.
  • the plate-shaped radio wave absorber can be incorporated into an article in any form as it is or by bending it at an arbitrary portion. Further, it can be adjusted to a desired shape by injection molding or the like and incorporated into an article.
  • a radio wave absorber having excellent radio wave absorption performance is useful for improving the recognition accuracy of radar.
  • the transmission attenuation amount can be mentioned.
  • the transmission attenuation of the radio wave absorber can be 6.0 dB or more.
  • the transmission attenuation of the radio wave absorber is preferably 8.0 dB or more, more preferably 8.5 dB or more, and 9.0 dB or more. More preferably, it is more preferably 10.0 dB or more.
  • the transmission attenuation of the radio wave absorber is, for example, 15.0 dB or less, 14.5 dB or less, 14.0 dB or less, 13.5 dB or less, 13.0 dB or less, 12.5 dB or less, or 12.0 dB or less. be able to.
  • the transmission attenuation of the radio wave absorber is high. Therefore, the transmission attenuation of the radio wave absorber may exceed the value exemplified above.
  • the amount of reflection attenuation of the radio wave absorber can be, for example, 6.0 dB or more.
  • the amount of reflection attenuation of the radio wave absorber is preferably 8.0 dB or more, more preferably 8.5 dB or more, further preferably 9.0 dB or more, and 10.0 dB or more. Is more preferable.
  • the amount of reflection attenuation of the radio wave absorber is, for example, 18.0 dB or less, 17.5 dB or less, 17.0 dB or less, 16.5 dB or less, 16.0 dB or less, 15.5 dB or less, or 15.0 dB or less. be able to. However, from the viewpoint of removing or reducing unnecessary radio wave components, it is preferable that the amount of reflection attenuation of the radio wave absorber is high. Therefore, the amount of reflection attenuation of the radio wave absorber may exceed the value exemplified above.
  • the in-vehicle radar which has been attracting attention in recent years, is a radar that uses radio waves in the millimeter wave frequency band.
  • Millimeter waves are electromagnetic waves with a frequency of 30 GHz to 300 GHz.
  • the radio wave absorber preferably exhibits a transmission attenuation amount and a reflection attenuation amount in the above range with respect to the frequency of the radio wave, that is, one or more frequencies in the frequency band of 3 terahertz (THz) or less.
  • the frequency at which the radio wave absorber indicates the transmission attenuation amount and the reflection attenuation amount in the above range is a millimeter wave frequency band, that is, a frequency band of 30 GHz to 300 GHz from the viewpoint of usefulness for improving the recognition accuracy of the in-vehicle radar. It is preferably one or more frequencies in the above, more preferably one or more frequencies in the frequency band of 60 GHz to 90 GHz, and more preferably one or more frequencies in the frequency band of 75 GHz to 85 GHz. More preferred.
  • the radio wave absorber can be a radio wave absorber having a transmission attenuation amount at a frequency of 76.5 GHz and a reflection attenuation amount at a frequency of 76.5 GHz in the above range.
  • Such a radio wave absorber is suitable as a radio wave absorber to be incorporated in the front side (incoming side of radio waves incident from the outside) of the radio wave transmitting / receiving unit in the in-vehicle radar in order to reduce the side lobe of the in-vehicle millimeter-wave radar. ..
  • the "permeation attenuation" in the present invention and the present specification is defined as S-parameter S21 by measuring the S-parameters in a measurement environment with an ambient temperature of 15 to 35 ° C. with an incident angle of 0 ° by the free space method. This is the required value.
  • the "reflection attenuation amount” is a value obtained as S11 of the S parameter by the same measurement.
  • the measurement can be performed using a known vector network analyzer and horn antenna. Specific examples of the measurement method include the methods described in Examples described later.
  • the radio wave absorber a metal layer may be laminated on a surface (so-called back surface) opposite to the surface on which the radio wave is incident on the radio wave absorber.
  • a radio wave absorber is called a matched radio wave absorber.
  • the reflection attenuation characteristic can be enhanced by providing a metal layer and utilizing the phase difference absorption.
  • the radio wave absorber itself can have excellent reflection attenuation characteristics. Specifically, in one form, the radio wave absorber can exhibit a high amount of reflection attenuation regardless of the metal layer.
  • a radio wave absorber used without laminating a metal layer on the back surface is generally called a transmission type radio wave absorber.
  • the reflection attenuation tends to decrease when the transmission attenuation is increased.
  • the radio wave absorber can exhibit a high reflection attenuation amount and a high transmission attenuation amount regardless of the metal layer.
  • the term "metal layer” means a layer that contains metal and that substantially reflects radio waves. However, when the radio wave absorber containing the magnetic powder and the binder contains a metal, such a radio wave absorber does not correspond to the metal layer.
  • substantially reflecting radio waves means, for example, that 90% or more of the incident radio waves are reflected when the radio waves are incident on the radio wave absorber in a state where a metal layer is laminated on the back surface of the radio wave absorber.
  • the form of the metal layer include a metal plate and a metal foil.
  • a metal layer formed by vapor deposition on the back surface of the radio wave absorber can be mentioned.
  • the radio wave absorber can be used without providing a metal layer on the back surface. It is preferable that it can be used without a metal layer from the viewpoint of recycling the radio wave absorber and from the viewpoint of cost.
  • the quality of the radio wave absorber used by laminating a metal layer on the back surface may deteriorate due to deterioration of the metal layer, peeling of the metal layer and the radio wave absorber, and the like. It is preferable that it can be used without providing a metal layer on the back surface from the viewpoint that such quality deterioration does not occur.
  • the precursor-containing liquid was subjected to a centrifugation treatment [rotation speed: 3000 rpm, rotation time: 10 minutes] three times, and the obtained precipitate was recovered. Then, the recovered precipitate was dried in an oven having an internal ambient temperature of 80 ° C. for 12 hours to obtain a precursor powder. Next, the powder of the precursor was placed in a muffle furnace, the temperature in the furnace was set to 1100 ° C. in an air atmosphere, and the mixture was fired for 4 hours to obtain a fired product.
  • the obtained fired body was used as a crusher using a cutter mill crusher (Wonder Crusher WC-3 manufactured by Osaka Chemical Co., Ltd.), and the variable speed dial of this crusher was set to "5" (rotation speed: about 10,000 to 15,000 rpm). ) And crushed for 90 seconds. From the above, magnetic powder A-1 was obtained.
  • ⁇ Preparation of magnetic powder A-8 (unsubstituted hexagonal strontium ferrite powder)> 15.02 g of strontium carbonate [SrCO 3 ] and 90.24 g of iron oxide [Fe 2 O 3 ] were mixed and pulverized in a Menou mortar to obtain a powder of a precursor of a magnetoplumbite-type hexagonal ferrite. Next, the precursor powder was placed in a muffle furnace, the temperature inside the furnace was set to 1200 ° C. in an air atmosphere, and the mixture was fired for 4 hours to obtain a fired product.
  • the obtained fired body was used as a crusher using a cutter mill crusher (Wonder Crusher WC-3 manufactured by Osaka Chemical Co., Ltd.), and the variable speed dial of this crusher was set to "5" (rotation speed: about 10,000 to 15,000 rpm). ) And crushed for 90 seconds. From the above, powder A-8 was obtained.
  • the magnetic powders A-1 to A-8 have a magnetoplumbite-type crystal structure and do not contain a crystal structure other than the magnetoplumbite-type single-phase magnetoplumbite. It was confirmed that it was a powder of type hexagonal ferrite.
  • composition of the magnetic material constituting each of the above magnetic powders was confirmed by high-frequency inductively coupled plasma emission spectroscopy. Specifically, it was confirmed by the following method.
  • a container beaker containing 12 mg of magnetic powder and 10 mL of a hydrochloric acid aqueous solution having a concentration of 4 mol / L was held on a hot plate at a set temperature of 120 ° C. for 3 hours to obtain a solution. After adding 30 mL of pure water to the obtained solution, the mixture was filtered using a membrane filter having a filter pore size of 0.1 ⁇ m.
  • Elemental analysis of the filtrate thus obtained was performed using a high-frequency inductively coupled plasma emission spectroscopic analyzer [ICPS-8100 manufactured by Shimadzu Corporation]. Based on the results of the obtained elemental analysis, the content of each atom with respect to 100 atomic% of iron atoms was determined. Then, the composition of the magnetic material was confirmed based on the obtained content. As a result, it was confirmed that the compositions of the magnetic powders A-1 to A-7 were such that A in the general formula 1 was Sr and x was the value shown in Table 1. Further, it was confirmed that the magnetic powder A-8 had the composition of SrFe 12 O 19 (that is, it was an unsubstituted strontium ferrite).
  • the resonance frequencies of the magnetic powders A-1 to A-7 were measured by the following methods. The measurement results are shown in Table 1. (Measurement method of resonance frequency) Using each magnetic powder, a sheet sample for resonance frequency measurement was prepared by the following method. 9.0 g of magnetic powder, 1.05 g of acrylonitrile butadiene rubber (NBR) [JSR N215SL manufactured by JSR], and 6.1 g of cyclohexanone (solvent) were used with a stirrer [Awatori Rentaro ARE-310 manufactured by Shinky]. , Stirred at a rotation speed of 2000 rpm for 5 minutes and mixed to prepare a composition for preparing a sheet sample.
  • NBR acrylonitrile butadiene rubber
  • solvent a stirrer
  • the prepared composition was applied onto a glass plate (support) using an applicator to form a coating film of the above composition.
  • the formed coating film was dried in an oven having an internal atmospheric temperature of 80 ° C. for 2 hours, and then the sheet sample (thickness: 0.3 mm) was peeled off from the glass plate.
  • a vector network analyzer product name: N5225B
  • a horn antenna product name: RH12S23
  • the incident angle was set to 0 ° by the free space method.
  • the S parameter was measured with the sweep frequency set to 60 GHz to 90 GHz.
  • the peak frequency of the magnetic permeability ⁇ ′′ of the imaginary part was calculated from this S parameter using the Nicholson loss model method, and this peak frequency was used as the resonance frequency. The results are shown in Table 1.
  • ⁇ Preparation of magnetic powder R-1 surface-treated with a surface treatment agent 20 g of the magnetic powder A-1 obtained above and 0.2 g of the surface treatment agent SP-3 (allyltrimethoxysilane) were used in a cutter mill crusher (Wonder Crusher WC-3 manufactured by Osaka Chemical Co., Ltd.). Using, the variable speed dial of this crusher was set to "3" and mixed for 60 seconds. Next, the mixed powder was placed in an oven at a set temperature of 90 ° C. and dried by heating for 3 hours to obtain a magnetic powder R-1 surface-treated with a surface treatment agent.
  • a cutter mill crusher Wood Crusher WC-3 manufactured by Osaka Chemical Co., Ltd.
  • the surface treatment agents in Table 2 are the following surface treatment agents.
  • SK-1 Allyltrimethoxysilane (SIA0540.0 manufactured by Gelest)
  • SK-2 Phenethyl alcoholimethoxysilane (SIP6722.6 manufactured by Gelest)
  • SK-3 [2- (3-Cyclohexenyl) ethyl] trimethoxysilane (SIC2460.0 manufactured by Gelest)
  • SV-1 Vinyl trimethoxysilane (KBM-1003 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • SV-2 7-octenyltrimethoxysilane (KBM-1083 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • SV-3 (3-methacryloxypropyl) trimethoxysilane (SIM687.4 manufactured by Gelest)
  • SV-4 8-methacryloxyoctyltrimethoxysilane (KBM-5803 manufactured by Shin-Etsu Chemical Co., Ltd.)
  • SV-5 3-acrylamide propyl
  • Example 1 [Making a radio wave absorber] ⁇ Example 1> 3.0 g of magnetic powder R-1, 2.0 g of polyester B-1 (polyester elastomer), and 0.05 g of hindered phenol compound (Irganox 1330 manufactured by BASF) as an antioxidant, set temperature to 220 ° C. The mixture was introduced into a kneader (Laboplast Mill Micro manufactured by Toyo Seiki Co., Ltd.) and mixed, and kneaded at a rotor speed of 100 rpm for 5 minutes to obtain a massive kneaded product.
  • kneader Laboplast Mill Micro manufactured by Toyo Seiki Co., Ltd.
  • the obtained massive kneaded product was press-molded using a heating press machine (heating temperature: 190 ° C., press time: 1 minute, pressure: 20 MPa), length 10.0 cm x width 10.0 cm x thickness 2.0 mm.
  • a radio wave absorber (radio wave absorption sheet) was prepared.
  • Examples 2-36> The magnetic powder shown in Table 3 was used as the magnetic powder surface-treated with the surface treatment agent, and the same operation as in Example 1 was performed except that the polyester or polycarbonate shown in Table 3 was used. Radio wave absorption sheet) was prepared.
  • Examples 37-40> The contents of the magnetic powder and the polyester in the mixture for preparing the kneaded product of Example 1 were 60% by mass of the magnetic powder and 40% by mass of the polyester with respect to the total mass of the magnetic powder and the polyester. is there.
  • Examples 37 to 40 the same operation as in Example 1 was performed except that the contents of the magnetic powder and the polyester were changed as shown in Table 3, to prepare a radio wave absorber (radio wave absorber sheet).
  • Radio wave absorber (radio wave absorbing sheet) was produced by performing the same operation as in Example 1 except that the magnetic powder shown in Table 3 (without surface treatment) was used as the magnetic powder.
  • Example 4 The same operation as in Example 1 was performed except that the magnetic powder shown in Table 3 (unsubstituted hexagonal ferrite powder surface-treated with a surface treatment agent) was used as the magnetic powder. Radio wave absorption sheet) was prepared.
  • Radio wave absorber (radio wave absorbing sheet) was produced by performing the same operation as in Example 1 except that the magnetic powder R-29 surface-treated with the titanium compound ST-1 was used.
  • ⁇ Vibration fatigue resistance> A specimen having a length of 9.0 cm, a width of 2.6 cm, and a thickness of 2.0 mm was cut out from each sheet of Examples and Comparative Examples, and was subjected to JIS K7119-1972 using a repeated vibration fatigue tester (manufactured by Toyo Seiki Co., Ltd.).
  • a double-sided bending test is performed at a test temperature of 20 ° C., a relative humidity of 50%, a load of 10 kN, a repetition rate of 1,800 cpm (cycle per minute), and a maximum amplitude of ⁇ 8 mm. The number of times until the piece broke was determined, and the vibration fatigue resistance was evaluated according to the following criteria.
  • ⁇ Chemical resistance> A specimen of 10.0 cm in length ⁇ 1.0 cm in width ⁇ 2.0 mm in thickness was cut out from each sheet of Examples and Comparative Examples, attached to a quarter elliptical jig, and four kinds of chemicals (kerosene, diethylene glycol, ethyl cellosolve). , Brake oil (type: DOT-3)), left in an atmosphere with a temperature of 23 ° C for 17 hours, read the crack generation length L, and use the smallest L value of the four chemicals below.
  • the critical strain ⁇ was calculated by the formula of. From the calculated values, drug resistance was evaluated according to the following criteria.
  • epsilon (%) [0.03 ⁇ (1-0.0364 ⁇ L 2) -3/2 ] t [ ⁇ : Critical strain (%), t: Sample thickness (mm), L: Crack generation length (mm) (Evaluation criteria) A: Critical strain is 0.7% or more or no cracks occur B: Critical strain is 0.5% or more and less than 0.7% C: Critical strain is 0.2% or more and less than 0.5% D : Critical distortion is less than 0.2%
  • the binder in Table 3 is the following polyester or polycarbonate.
  • B-1 Polyester Elastic Polyester Elastomer (TPEE) (Toyobo Perprene P-90B)
  • B-2 Polyethylene naphthalate (PEN) (Teijin's Theonex TN8050SC)
  • B-3 Polytrimethylene terephthalate (PTT) (DuPont Solona 3301 NC010)
  • B-4 Polybutylene naphthalate (PBN) (PBN TQB-OT manufactured by Teijin Limited)
  • B-5 Polylactic acid (PLA) (Unitika's Terramac TE-7003)
  • B-6 Polybutylene succinate (PBS) (FZ71PD manufactured by Mitsubishi Chemical Corporation)
  • B-7 Polyarylate (PAR) (Unitika U Polymer U-8400H)
  • B-8 Polybutylene terephthalate (PBT) (Wintech Polymer Ltd. Juranex 2002)
  • B-9 Polyethylene terephthalate (PET) (Toyobo Biropet EMC307)
  • B-10 Poly
  • the radio wave absorbers of Examples 1 to 40 contain a substituted hexagonal ferrite powder surface-treated with a silicon compound as a magnetic powder, and contain polyester or polycarbonate as a binder.
  • the radio wave absorber of Comparative Example 2 was a substitution type hexagonal ferrite powder and polyester without surface treatment
  • the radio wave absorber of Comparative Example 3 was an unsubstituted hexagonal ferrite powder without surface treatment.
  • the radio wave absorber of Polyester and Comparative Example 4 contains an unsubstituted hexagonal ferrite powder surface-treated with a silicon-based compound and polyester.
  • the radio wave absorber of Comparative Example 5 contains a powder of substituted hexagonal ferrite surface-treated with a titanium-based compound and polyester.
  • One aspect of the present invention is useful in the technical field of performing various automatic driving controls such as automatic driving control of automobiles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

This radio wave absorbing composition includes a magnetic powder and a binder. This radio wave absorbent includes a magnetic powder and a binder. The magnetic powder is a substituted hexagonal ferrite powder, the surface of which is treated with a surface treatment agent, and the surface treatment agent is a silicon-based compound. In addition, the binder is at least one resin selected from the group consisting of polyester and polycarbonate.

Description

電波吸収性組成物および電波吸収体Radio wave absorbing composition and radio wave absorber
 本発明は、電波吸収性組成物および電波吸収体に関する、 The present invention relates to a radio wave absorbing composition and a radio wave absorber.
 電波吸収体としては、電波吸収材料として磁性粉体を含むものが知られている。また、磁性粉体を含む電波吸収体としては、磁性粉体とバインダーとを混合した電波吸収体が挙げられる(特許文献1、2参照)。 As a radio wave absorber, a material containing magnetic powder is known as a radio wave absorbing material. Further, examples of the radio wave absorber containing the magnetic powder include a radio wave absorber in which the magnetic powder and the binder are mixed (see Patent Documents 1 and 2).
特開平4-80274号公報Japanese Unexamined Patent Publication No. 4-80274 特開2012-9797号公報Japanese Unexamined Patent Publication No. 2012-9977
 近年、電波を利用する電子機器として、電波を送受信することによって対象物を認識するためのレーダーが注目されている。例えば、車載用レーダーは、電波を送信し、送信した電波が対象物(歩行者、車両等)により反射された電波を受信することによって、対象物の存在、対象物との距離等を認識することができる。自動車の自動運転制御システムは、対象物との衝突を防止するために、レーダーが対象物を認識した結果に基づき、必要に応じて、自動でブレーキを掛けて自動車を停止させたり、対象物との距離を保つために自動で速度を制御することができる。 In recent years, as an electronic device that uses radio waves, radar for recognizing an object by transmitting and receiving radio waves has attracted attention. For example, an in-vehicle radar transmits radio waves and recognizes the existence of the object, the distance to the object, etc. by receiving the radio waves reflected by the object (pedestrian, vehicle, etc.). be able to. In order to prevent collision with the object, the automatic driving control system of the car automatically applies the brakes to stop the car or to stop the car based on the result of the radar recognizing the object, if necessary. The speed can be controlled automatically to keep the distance.
 上記のようにレーダーが認識した結果に基づき各種制御を行うシステムの信頼性を高めるためには、レーダーの性能向上が望まれる。そのために、近年、レーダーの電波送受信ユニットの正面側(外部から入射する電波の入射側)に電波吸収体を設置し、認識精度を向上させることが検討され始めている。認識精度の向上のためには、電波吸収体には、優れた電波吸収性能を有することが求められる。 In order to improve the reliability of the system that performs various controls based on the results recognized by the radar as described above, it is desirable to improve the performance of the radar. Therefore, in recent years, it has begun to be studied to install a radio wave absorber on the front side (the incident side of the radio wave incident from the outside) of the radio wave transmission / reception unit of the radar to improve the recognition accuracy. In order to improve the recognition accuracy, the radio wave absorber is required to have excellent radio wave absorption performance.
 更に、優れた耐振動疲労性および薬品耐性を有する電波吸収体は、使用時等に振動を受けても疲労し難く、薬品が付着しても劣化し難いため、長期にわたりレーダーの認識精度向上に寄与し続けることができる。したがって、電波吸収体が、耐振動疲労性および薬品耐性に優れることは望ましい。 Furthermore, the radio wave absorber with excellent vibration resistance and chemical resistance is less likely to get tired even if it receives vibration during use, and is less likely to deteriorate even if chemicals adhere to it, so it can improve radar recognition accuracy for a long period of time. You can continue to contribute. Therefore, it is desirable that the radio wave absorber has excellent vibration fatigue resistance and chemical resistance.
 以上に鑑み、本発明の一態様は、電波吸収性能、耐振動疲労性および薬品耐性に優れる電波吸収体を提供することを目的とする。 In view of the above, one aspect of the present invention is to provide a radio wave absorber having excellent radio wave absorption performance, vibration fatigue resistance and chemical resistance.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、磁性粉体およびバインダーの組み合わせとして、ケイ素系化合物で表面処理された置換型六方晶フェライトの粉体と、ポリエステルおよびポリカーボネートからなる群から選択される1種以上の樹脂と、を組み合わせて使用することにより、電波吸収性能、耐振動疲労性および薬品耐性に優れる電波吸収体を得ることが可能になることを新たに見出した。 As a result of diligent studies to achieve the above object, the present inventors have made a combination of a magnetic powder and a binder, that is, a substituted hexagonal ferrite powder surface-treated with a silicon-based compound, and polyester and polycarbonate. It has been newly found that a radio wave absorber having excellent radio wave absorption performance, vibration fatigue resistance and chemical resistance can be obtained by using in combination with one or more kinds of resins selected from the group consisting of It was.
 即ち、本発明の一態様は、
 磁性粉体およびバインダーを含む電波吸収性組成物であって、
 上記磁性粉体は、表面処理剤で表面処理された置換型六方晶フェライトの粉体であり、
 上記表面処理剤は、ケイ素系化合物であり、かつ
 上記バインダーは、ポリエステルおよびポリカーボネートからなる群から選択される1種以上の樹脂である電波吸収性組成物、
 に関する。
That is, one aspect of the present invention is
A radio wave absorbing composition containing a magnetic powder and a binder.
The magnetic powder is a substituted hexagonal ferrite powder surface-treated with a surface treatment agent.
The radio wave absorbing composition, wherein the surface treatment agent is a silicon-based compound, and the binder is one or more resins selected from the group consisting of polyester and polycarbonate.
Regarding.
 また、本発明の一態様は、
 磁性粉体およびバインダーを含む電波吸収体であって、
 上記磁性粉体は、表面処理剤で表面処理された置換型六方晶フェライトの粉体であり、
 上記表面処理剤は、ケイ素系化合物であり、かつ
 上記バインダーは、ポリエステルおよびポリカーボネートからなる群から選択される1種以上の樹脂である電波吸収体、
 に関する。
Moreover, one aspect of the present invention is
A radio wave absorber containing magnetic powder and a binder,
The magnetic powder is a substituted hexagonal ferrite powder surface-treated with a surface treatment agent.
The surface treatment agent is a silicon-based compound, and the binder is a radio wave absorber, which is one or more resins selected from the group consisting of polyester and polycarbonate.
Regarding.
 一形態では、上記電波吸収体は、上記電波吸収性組成物を成形した成形品であることができる。  In one form, the radio wave absorber can be a molded product obtained by molding the radio wave absorbing composition.
 一形態では、上記置換型六方晶フェライトは、下記一般式1で表される組成を有することができる。
        一般式1:AFe(12-x)Al19
一般式1中、Aは、Sr、Ba、CaおよびPbからなる群から選ばれる1種以上の原子を表し、xは、1.50以上≦x≦8.00を満たす。
In one form, the substituted hexagonal ferrite can have a composition represented by the following general formula 1.
General formula 1: AFe (12-x) Al x O 19
In the general formula 1, A represents one or more kinds of atoms selected from the group consisting of Sr, Ba, Ca and Pb, and x satisfies 1.50 or more ≦ x ≦ 8.00.
 一形態では、上記置換型六方晶フェライトは、置換型六方晶ストロンチウムフェライトであることができる。 In one form, the substituted hexagonal ferrite can be a substituted hexagonal strontium ferrite.
 一形態では、上記表面処理剤は、下記一般式2で表されるケイ素系化合物であることができる。
        一般式2:(X-L)-Si-Z4-m
一般式2中、
Xは、水素原子、アルキル基、アルケニル基、アリール基、脂環基、複素環基、ヒドロキシ基、アクリルアミド基、スルファニル基、イソシアネート基、チオシアネート基、ウレイド基、シアノ基、酸無水物基、アジド基、カルボキシ基、アシル基、チオカルバモイル基、リン酸基、ホスファニル基、スルホン酸基またはスルファモイル基を表し、
Lは、単結合、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、-O-、-S-、-NR-、エステル結合、チオエステル結合、アミド結合、チオアミド結合およびスルホニル基からなる群から選ばれる1種の2価の基もしくは結合、またはこれらの2種以上を組合せてなる2価の基もしくは結合を表し、
は、水素原子または置換基を表し、
Zは、ヒドロキシ基、アルコキシ基またはアルキル基を表し、
mは、1~3の範囲の整数である。
In one form, the surface treatment agent can be a silicon-based compound represented by the following general formula 2.
General formula 2: (XL) m- Si-Z 4-m
In general formula 2,
X is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an alicyclic group, a heterocyclic group, a hydroxy group, an acrylamide group, a sulfanyl group, an isocyanate group, a thiocyanate group, a ureido group, a cyano group, an acid anhydride group and an azide. Represents a group, carboxy group, acyl group, thiocarbamoyl group, phosphate group, phosphanyl group, sulfonic acid group or sulfamoyl group.
L is selected from the group consisting of a single bond, an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond, a thioamide bond and a sulfonyl group. Represents one type of divalent group or bond, or a combination of two or more of these divalent groups or bonds.
Ra represents a hydrogen atom or a substituent and represents
Z represents a hydroxy group, an alkoxy group or an alkyl group.
m is an integer in the range of 1 to 3.
 一形態では、一般式2中、mが1であり、かつXがアルケニル基もしくは複素環基を表すことができ、または、mが2もしくは3であり、かつ一般式2中に複数含まれるXが、それぞれ独立にアルケニル基もしくは複素環基を表すことができる。 In one form, in General Formula 2, m is 1 and X can represent an alkenyl group or a heterocyclic group, or m is 2 or 3, and a plurality of Xs are contained in General Formula 2. However, each can independently represent an alkenyl group or a heterocyclic group.
 一形態では、一般式2中、mが1であり、かつXがアシル基、アクリルアミド基もしくは複素環基を表すか、またはmが2もしくは3であり、かつ一般式2中に複数含まれるXが、それぞれ独立にアシル基、アクリルアミド基もしくは複素環基を表すことができる。上記アシル基は(メタ)アクリロイル基であることができ、上記複素環基はエポキシ基であることができる。 In one form, in General Formula 2, m is 1 and X represents an acyl group, an acrylamide group or a heterocyclic group, or m is 2 or 3, and a plurality of Xs are contained in General Formula 2. However, they can independently represent an acyl group, an acrylamide group, or a heterocyclic group. The acyl group can be a (meth) acryloyl group and the heterocyclic group can be an epoxy group.
 一形態では、一般式2中、Xは、エポキシ基を表すことができる。 In one form, in General Formula 2, X can represent an epoxy group.
 一形態では、一般式2中、Lが炭素数4~12のアルキレン基を含むことができる。 In one form, L can contain an alkylene group having 4 to 12 carbon atoms in the general formula 2.
 一形態では、上記樹脂は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリ乳酸、ポリブチレンサクシネート、ポリアリレート、ポリカーボネートおよびポリエステルエラストマーからなる群から選択される1種以上の樹脂であることができる。 In one form, the resin is selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyarylate, polycarbonate and polyester elastomer. It can be one or more kinds of resins.
 一形態では、上記樹脂は、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリブチレンナフタレート、ポリ乳酸、ポリブチレンサクシネート、ポリアリレートおよびポリエステルエラストマーからなる群から選ばれる1種以上の樹脂であることができる。 In one form, the resin may be one or more resins selected from the group consisting of polyethylene naphthalate, polytrimethylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyarylate and polyester elastomer. it can.
 本発明の一態様によれば、電波吸収性能、耐振動疲労性および薬品耐性に優れる電波吸収体、ならびにこの電波吸収体の製造のために使用可能な電波吸収性組成物を提供することができる。 According to one aspect of the present invention, it is possible to provide a radio wave absorber having excellent radio wave absorbing performance, vibration fatigue resistance and chemical resistance, and a radio wave absorbing composition that can be used for producing the radio wave absorber. ..
[電波吸収性組成物、電波吸収体]
 本発明の一態様は、磁性粉体およびバインダーを含む電波吸収性組成物に関する。上記電波吸収性組成物において、上記磁性粉体は、表面処理剤で表面処理された置換型六方晶フェライトの粉体であり、上記表面処理剤は、ケイ素系化合物であり、かつ上記バインダーは、ポリエステルおよびポリカーボネートからなる群から選択される1種以上の樹脂である。
[Radio-absorbing composition, radio wave absorber]
One aspect of the present invention relates to a radio wave absorbing composition containing a magnetic powder and a binder. In the radio wave absorbing composition, the magnetic powder is a powder of a substituted hexagonal ferrite surface-treated with a surface treatment agent, the surface treatment agent is a silicon-based compound, and the binder is One or more resins selected from the group consisting of polyester and polycarbonate.
 また、本発明の一態様は、磁性粉体およびバインダーを含む電波吸収体に関する。上記電波吸収体において、上記磁性粉体は、表面処理剤で表面処理された置換型六方晶フェライトの粉体であり、上記表面処理剤は、ケイ素系化合物であり、かつ上記バインダーは、ポリエステルおよびポリカーボネートからなる群から選択される1種以上の樹脂である。 Further, one aspect of the present invention relates to a radio wave absorber containing a magnetic powder and a binder. In the radio wave absorber, the magnetic powder is a powder of a substituted hexagonal ferrite surface-treated with a surface treatment agent, the surface treatment agent is a silicon-based compound, and the binder is polyester and the binder. One or more resins selected from the group consisting of polycarbonate.
 本発明および本明細書において、「電波」とは、3テラヘルツ(THz)以下の周波数の電磁波をいうものとする。電波吸収体および電波吸収体の製造に使用される組成物は、電波吸収性を有する。電波吸収性は、例えば、透過減衰量および/または反射減衰量によって評価することができ、透過減衰量の値が高いほど、反射減衰量の値が高いほど、または透過減衰量の値および反射減衰量の値が高いほど、より優れた電波吸収性を有するということができる。 In the present invention and the present specification, "radio wave" means an electromagnetic wave having a frequency of 3 terahertz (THz) or less. The radio wave absorber and the composition used in the production of the radio wave absorber have radio wave absorbing properties. The radio wave absorption can be evaluated by, for example, the transmission attenuation and / or the reflection attenuation, and the higher the transmission attenuation value, the higher the reflection attenuation value, or the transmission attenuation value and the reflection attenuation. It can be said that the higher the amount value, the better the radio wave absorption.
 本発明および本明細書において、「粉体」とは、複数の粒子の集合を意味する。「集合」とは、集合を構成する粒子が直接接触している態様に限定されず、バインダー等が粒子同士の間に介在している態様も包含される。 In the present invention and the present specification, "powder" means an aggregate of a plurality of particles. The “aggregation” is not limited to the mode in which the particles constituting the set are in direct contact with each other, and also includes a mode in which a binder or the like is interposed between the particles.
 以下、上記電波吸収性組成物および上記電波吸収体について、更に詳細に説明する。 Hereinafter, the radio wave absorbing composition and the radio wave absorber will be described in more detail.
<磁性粉体>
 上記電波吸収性組成物および上記電波吸収体は、磁性粉体として、表面処理剤で表面処理された置換型六方晶フェライトの粉体を含む。表面処理剤で表面処理された置換型六方晶フェライトの粉体は、表面処理剤で被覆された置換型六方晶フェライトの粉体ということもできる。表面処理剤で表面処理された置換型六方晶フェライトの粉体は、粉体を構成する少なくとも一部の粒子の少なくとも一部の表面が、表面処理剤によって被覆されている。例えば、電波吸収体に表面処理剤で表面処理された磁性粉体が含まれていることは、電波吸収体から切り出した切片試料を公知の方法によって分析することにより確認することができる。または、電波吸収体もしくは電波吸収性組成物から公知の方法によって磁性粉体を採取し、採取された磁性粉体を、質量分析、ガスクロマトグラフィー等の公知の方法によって分析することによって確認することができる。
<Magnetic powder>
The radio wave absorbing composition and the radio wave absorber include, as magnetic powder, a powder of a substituted hexagonal ferrite surface-treated with a surface treatment agent. The substituted hexagonal ferrite powder surface-treated with the surface treatment agent can also be said to be the substituted hexagonal ferrite powder coated with the surface treatment agent. In the substituted hexagonal ferrite powder surface-treated with a surface treatment agent, at least a part of the surface of at least a part of the particles constituting the powder is coated with the surface treatment agent. For example, it can be confirmed that the radio wave absorber contains the magnetic powder surface-treated with the surface treatment agent by analyzing the section sample cut out from the radio wave absorber by a known method. Alternatively, the magnetic powder is collected from the radio wave absorber or the radio wave absorbing composition by a known method, and the collected magnetic powder is analyzed by a known method such as mass spectrometry or gas chromatography for confirmation. Can be done.
(置換型六方晶フェライトの粉体)
 上記磁性粉体は、表面処理剤で表面処理された置換型六方晶フェライトの粉体である。本発明および本明細書において、「六方晶フェライトの粉体」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される磁性粉体をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。無置換型六方晶フェライトにおいては、六方晶フェライトの結晶構造を構成する原子が、鉄原子、二価金属原子および酸素原子のみである。これに対し、置換型六方晶フェライトは、六方晶フェライトの結晶構造を構成する原子として、鉄原子、二価金属原子および酸素原子とともに、1種以上の他の原子を含む。この1種以上の他の原子は、通常、六方晶フェライトの結晶構造において鉄の一部を置換する原子である。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、「六方晶ストロンチウムフェライトの粉体」とは、六方晶フェライトの結晶構造に含まれる主な二価金属原子がストロンチウム原子であるものをいう。主な二価金属原子とは、六方晶フェライトの結晶構造に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
(Substitution type hexagonal ferrite powder)
The magnetic powder is a substituted hexagonal ferrite powder surface-treated with a surface treatment agent. In the present invention and the present specification, the "hexagonal ferrite powder" refers to a magnetic powder in which a hexagonal ferrite type crystal structure is detected as the main phase by X-ray diffraction analysis. The main phase refers to a structure to which the highest intensity diffraction peak belongs in the X-ray diffraction spectrum obtained by X-ray diffraction analysis. For example, when the highest intensity diffraction peak in the X-ray diffraction spectrum obtained by X-ray diffraction analysis belongs to the hexagonal ferrite type crystal structure, it is determined that the hexagonal ferrite type crystal structure is detected as the main phase. It shall be. When only a single structure is detected by X-ray diffraction analysis, this detected structure is used as the main phase. The hexagonal ferrite type crystal structure contains at least iron atoms, divalent metal atoms and oxygen atoms as constituent atoms. In the unsubstituted hexagonal ferrite, the only atoms constituting the crystal structure of the hexagonal ferrite are iron atom, divalent metal atom and oxygen atom. On the other hand, the substituted hexagonal ferrite contains one or more other atoms together with an iron atom, a divalent metal atom and an oxygen atom as atoms constituting the crystal structure of the hexagonal ferrite. This one or more other atoms are usually atoms that replace a part of iron in the crystal structure of hexagonal ferrite. The divalent metal atom is a metal atom that can be a divalent cation as an ion, and examples thereof include an alkaline earth metal atom such as a strontium atom, a barium atom, and a calcium atom, and a lead atom. In the present invention and the present specification, the "powder of hexagonal strontium ferrite" means that the main divalent metal atom contained in the crystal structure of hexagonal ferrite is a strontium atom. The main divalent metal atom refers to the divalent metal atom that occupies the largest amount on an atomic% basis among the divalent metal atoms contained in the crystal structure of hexagonal ferrite. However, rare earth atoms are not included in the above divalent metal atoms. The "rare earth atom" in the present invention and the present specification is selected from the group consisting of a scandium atom (Sc), a yttrium atom (Y), and a lanthanoid atom. The lanthanoid atoms are lanthanum atom (La), cerium atom (Ce), placeodium atom (Pr), neodymium atom (Nd), promethium atom (Pm), samarium atom (Sm), uropyum atom (Eu), gadolinium atom (Gd) ), Terbium atom (Tb), dysprosium atom (Dy), formium atom (Ho), elbium atom (Er), thulium atom (Tm), ytterbium atom (Yb), and lutetium atom (Lu). To.
 置換型六方晶フェライトは、六方晶フェライトの結晶構造を構成する原子として、鉄原子、二価金属原子および酸素原子とともに、1種以上の他の原子を含む。かかる原子としては、Al、GaおよびInからなる群から選ばれる1種以上の三価金属原子、MnとTi、CoとTi、ZnとTi等の二価と四価の金属原子の組み合わせを挙げることができる。置換型六方晶フェライトは、好ましくは置換型六方晶ストロンチウムフェライトであることができる。 Substitution type hexagonal ferrite contains one or more other atoms as well as iron atom, divalent metal atom and oxygen atom as atoms constituting the crystal structure of hexagonal ferrite. Examples of such atoms include one or more trivalent metal atoms selected from the group consisting of Al, Ga and In, and combinations of divalent and tetravalent metal atoms such as Mn and Ti, Co and Ti, Zn and Ti. be able to. The substituted hexagonal ferrite can preferably be a substituted hexagonal strontium ferrite.
 一形態では、上記磁性粉体は、表面処理剤で表面処理されたマグネトプランバイト型(一般に「M型」と呼ばれる。)の置換型六方晶フェライトの粉体であることができる。マグネトプランバイト型の六方晶フェライトは、鉄を置換する原子を含まない場合、組成式:AFe1219により表される組成を有する。ここでAは、Sr、Ba、CaおよびPbからなる群から選ばれる少なくとも1種の原子を表すことができ、これらの2種以上が任意の割合で含まれる態様も包含される。 In one form, the magnetic powder can be a magnetoplumbite-type (generally referred to as "M-type") substituted hexagonal ferrite powder surface-treated with a surface treatment agent. The magnetoplumbite-type hexagonal ferrite has a composition represented by the composition formula: AFe 12 O 19 when it does not contain an atom that replaces iron. Here, A can represent at least one atom selected from the group consisting of Sr, Ba, Ca and Pb, and includes an embodiment in which two or more of these atoms are contained in an arbitrary ratio.
 電波吸収性能の観点から好ましい六方晶フェライトとしては、マグネトプランバイト型の六方晶フェライトの鉄原子の一部がアルミニウム原子に置換された置換型のマグネトプランバイト型六方晶フェライトを挙げることができる。そのような六方晶フェライトの一態様としては、下記一般式1で表される組成を有する置換型六方晶フェライトを挙げることができる。 As a preferable hexagonal ferrite from the viewpoint of radio wave absorption performance, a substituted magnetoplumbite-type hexagonal ferrite in which a part of iron atoms of the magnetoplumbite-type hexagonal ferrite is replaced with an aluminum atom can be mentioned. As one aspect of such hexagonal ferrite, a substituted hexagonal ferrite having a composition represented by the following general formula 1 can be mentioned.
        一般式1:AFe(12-x)Al19 General formula 1: AFe (12-x) Al x O 19
 一般式1中、Aは、Sr、Ba、CaおよびPbからなる群から選ばれる1種以上の原子(以下、「A原子」とも記載する。)を表し、1種のみであってもよく、2種以上が任意の割合で含まれていてもよく、粉体を構成する粒子間の組成の均一性向上の観点からは1種のみであることが好ましい。
 高周波数帯域での電波吸収性能の観点からは、式1におけるAは、Sr、BaおよびCaからなる群から選ばれる1種以上の原子であることが好ましく、Srであることがより好ましい。
In the general formula 1, A represents one or more kinds of atoms (hereinafter, also referred to as “A atom”) selected from the group consisting of Sr, Ba, Ca and Pb, and may be only one kind. Two or more kinds may be contained in an arbitrary ratio, and it is preferable that only one kind is contained from the viewpoint of improving the uniformity of the composition between the particles constituting the powder.
From the viewpoint of radio wave absorption performance in the high frequency band, A in the formula 1 is preferably one or more atoms selected from the group consisting of Sr, Ba and Ca, and more preferably Sr.
 式1中、xは、1.50≦x≦8.00を満たす。高周波数帯域での電波吸収性能の観点から、xは1.50以上であり、1.50超であることがより好ましく、2.00以上であることが更に好ましく、2.00超であることが一層好ましい。また、磁気特性の観点から、xは8.00以下であり、8.00未満であることが好ましく、6.00以下であることがより好ましく、6.00未満であることがより好ましい。 In Equation 1, x satisfies 1.50 ≦ x ≦ 8.00. From the viewpoint of radio wave absorption performance in the high frequency band, x is 1.50 or more, more preferably 1.50 or more, further preferably 2.00 or more, and more than 2.00. Is more preferable. Further, from the viewpoint of magnetic characteristics, x is 8.00 or less, preferably less than 8.00, more preferably 6.00 or less, and more preferably less than 6.00.
 式1で表されるマグネトプランバイト型の置換型六方晶フェライトの具体例としては、SrFe(9.58)Al(2.42)19、SrFe(9.37)Al(2.63)19、SrFe(9.27)Al(2.73)19、SrFe(9.85)Al(2.15)19、SrFe(10.00)Al(2.00)19、SrFe(9.74)Al(2.26)19、SrFe(10.44)Al(1.56)19、SrFe(9.79)Al(2.21)19、SrFe(9.33)Al(2.67)19、SrFe(7.88)Al(4.12)19、SrFe(7.04)Al(4.96)19、SrFe(7.37)Al(4.63)19、SrFe(6.25)Al(5.75)19、SrFe(7.71)Al(4.29)19、Sr(0.80)Ba(0.10)Ca(0.10)Fe(9.83)Al(2.17)19、BaFe(9.50)Al(2.50)19、CaFe(10.00)Al(2.00)19、PbFe(9.00)Al(3.00)19等が挙げられる。また、具体例としては、後述の表1に示されている組成を有する置換型六方晶ストロンチウムフェライトも挙げられる。六方晶フェライトの組成は、高周波誘導結合プラズマ発光分光分析によって確認することができる。確認方法の具体例としては、後述の実施例に記載の方法を挙げることができる。または、電波吸収体を切断する等して断面を露出させた後、露出した断面について、例えばエネルギー分散型X線分析を行うことによって、電波吸収体に含まれる磁性粉体の組成を確認することもできる。 Specific examples of the magnetoplumbite-type substituted hexagonal ferrite represented by the formula 1 include SrFe (9.58) Al (2.42) O 19 , SrFe (9.37) Al (2.63) O. 19 , SrFe (9.27) Al (2.73) O 19 , SrFe (9.85) Al (2.15) O 19 , SrFe (10.00) Al (2.00) O 19 , SrFe (9) .74) Al (2.26) O 19 , SrFe (10.44) Al (1.56) O 19 , SrFe (9.79) Al (2.21) O 19 , SrFe (9.33) Al ( 2.67) O 19 , SrFe (7.88) Al (4.12) O 19 , SrFe (7.04) Al (4.96) O 19 , SrFe (7.37) Al (4.63) O 19 , SrFe (6.25) Al (5.75) O 19 , SrFe (7.71) Al (4.29) O 19 , Sr (0.80) Ba (0.10) Ca (0.10) Fe (9.83) Al (2.17) O 19 , BaFe (9.50) Al (2.50) O 19 , CaFe (10.00) Al (2.00) O 19 , PbFe (9.00) ) Al (3.00) O 19 and the like. Further, as a specific example, a substituted hexagonal strontium ferrite having the composition shown in Table 1 described later can also be mentioned. The composition of hexagonal ferrite can be confirmed by high frequency inductively coupled plasma emission spectroscopy. Specific examples of the confirmation method include the methods described in Examples described later. Alternatively, after exposing the cross section by cutting the radio wave absorber or the like, the composition of the magnetic powder contained in the radio wave absorber can be confirmed by performing, for example, energy dispersive X-ray analysis on the exposed cross section. You can also.
 一形態では、置換型六方晶フェライトの粉体は、結晶相が単相であることができ、複数の結晶相を含むものであることもでき、結晶相が単相であることが好ましく、結晶相が単相であるマグネトプランバイト型の置換型六方晶フェライトの粉体であることがより好ましい。
 「結晶相が単相である」場合とは、X線回折分析において、任意の結晶構造を示す回折パターンが1種類のみ観察される場合をいう。X線回折分析は、例えば、後述の実施例に記載の方法によって行うことができる。複数の結晶相が含まれる場合、X線回折分析において、任意の結晶構造を示す回折パターンが2種類以上観察される。回折パターンの帰属には、例えば、国際回折データセンター(ICDD:International Centre for Diffraction Data(登録商標))のデータベースを参照できる。例えば、Srを含むマグネトプランバイト型の六方晶フェライトの回折パターンについては、国際回折データセンター(ICDD)の「00-033-1340」を参照できる。ただし、鉄原子の一部がアルミニウム原子等の置換原子により置換されていると、ピーク位置は、置換原子を含まない場合のピーク位置からシフトする。
In one form, the substituted hexagonal ferrite powder can have a single phase crystal phase and can include a plurality of crystal phases, preferably the crystal phase is a single phase, and the crystal phase is It is more preferable that the powder is a single-phase magnetoplumbite-type substituted hexagonal ferrite powder.
The case where "the crystal phase is a single phase" means that only one type of diffraction pattern showing an arbitrary crystal structure is observed in the X-ray diffraction analysis. The X-ray diffraction analysis can be performed, for example, by the method described in Examples described later. When a plurality of crystal phases are included, two or more types of diffraction patterns showing an arbitrary crystal structure are observed in the X-ray diffraction analysis. For the attribution of the diffraction pattern, for example, a database of the International Center for Diffraction Data (ICDD) can be referred to. For example, for the diffraction pattern of a magnetoplumbite-type hexagonal ferrite containing Sr, refer to "00-033-1340" of the International Center for Diffraction Data (ICDD). However, if a part of the iron atom is substituted with a substituted atom such as an aluminum atom, the peak position shifts from the peak position when the substituted atom is not included.
(置換型六方晶フェライトの粉体の製造方法)
 置換型六方晶フェライトの粉体の製造方法としては、固相法および液相法が挙げられる。固相法は、複数の固体原料を乾式で混合して得られた混合物を焼成することによって六方晶フェライトの粉体を製造する方法である。これに対し、液相法は、溶液を使用する工程を含む。以下に、液相法での置換型六方晶フェライトの粉体の製造方法の一形態について説明する。ただし、以下に記載する製造方法は例示であって、上記電波吸収性組成物および上記電波吸収体に含まれる磁性粉体の製造方法は、下記の例示に限定されるものではない。
(Method for producing powder of substituted hexagonal ferrite)
Examples of the method for producing the powder of the substituted hexagonal ferrite include a solid phase method and a liquid phase method. The solid-phase method is a method for producing hexagonal ferrite powder by calcining a mixture obtained by mixing a plurality of solid raw materials in a dry manner. On the other hand, the liquid phase method includes a step of using a solution. Hereinafter, one form of a method for producing a powder of substituted hexagonal ferrite by the liquid phase method will be described. However, the production method described below is an example, and the production method of the magnetic powder contained in the radio wave absorbing composition and the radio wave absorber is not limited to the following examples.
 液相法の一態様は、
 鉄原子と、Sr、Ba、CaおよびPbからなる群から選ばれる少なくとも1種の原子と、鉄原子を置換する置換原子の1種以上とを含む溶液から沈殿物を得る工程1と、
 工程1により得られた沈殿物を焼成して焼成体を得る工程2と、
 を含むことができる。以下、各工程について詳細に説明する。
One aspect of the liquid phase method is
Step 1 of obtaining a precipitate from a solution containing an iron atom, at least one atom selected from the group consisting of Sr, Ba, Ca and Pb, and one or more substitution atoms that replace the iron atom.
Step 2 to obtain a calcined body by calcining the precipitate obtained in step 1 and
Can be included. Hereinafter, each step will be described in detail.
工程1
 工程1では、六方晶フェライトの前駆体を沈殿物として得ることができる。例えば、鉄原子の一部を置換する置換原子としてアルミニウム原子を含む六方晶フェライトの粉体を得るためには、鉄原子とA原子とアルミニウム原子とを溶液中で混合することができる。この場合、工程1により得られる沈殿物は、水酸化鉄、水酸化アルミニウム、鉄原子とアルミニウム原子とA原子との複合水酸化物等であると推測される。
Process 1
In step 1, a precursor of hexagonal ferrite can be obtained as a precipitate. For example, in order to obtain a hexagonal ferrite powder containing an aluminum atom as a substitution atom that replaces a part of an iron atom, an iron atom, an A atom and an aluminum atom can be mixed in a solution. In this case, it is presumed that the precipitate obtained in step 1 is iron hydroxide, aluminum hydroxide, a composite hydroxide of an iron atom, an aluminum atom, and an A atom, and the like.
 工程1において沈殿物を得るための溶液は、少なくとも水を含む溶液であることが好ましく、水溶液であることがより好ましい。例えば、各種原子を含む水溶液(以下、「原料水溶液」とも記載する。)とアルカリ水溶液とを混合することにより、沈殿物を生成することができる。また、工程1は、沈殿物を固液分離する工程を含むことができる。 The solution for obtaining the precipitate in step 1 is preferably a solution containing at least water, and more preferably an aqueous solution. For example, a precipitate can be produced by mixing an aqueous solution containing various atoms (hereinafter, also referred to as “raw material aqueous solution”) and an alkaline aqueous solution. In addition, step 1 can include a step of solid-liquid separation of the precipitate.
 原料水溶液は、例えば、Fe塩、Al塩およびA原子の塩を含む水溶液であることができる。これら塩は、例えば、硝酸塩、硫酸塩、塩化物等の水溶性の無機酸塩であることができる。
 Fe塩の具体例としては、塩化鉄(III)六水和物〔FeCl・6HO〕、硝酸鉄(III)九水和物〔Fe(NO・9HO〕等が挙げられる。
 Al塩の具体例としては、塩化アルミニウム六水和物〔AlCl・6HO〕、硝酸アルミニウム九水和物〔Al(NO・9HO〕等が挙げられる。
 A原子の塩は、Sr塩、Ba塩、Ca塩およびPb塩からなる群から選ばれる1種以上であることができる。
 Sr塩の具体例としては、塩化ストロンチウム六水和物〔SrCl・6HO〕、硝酸ストロンチウム〔Sr(NO〕、酢酸ストロンチウム0.5水和物〔Sr(CHCOO)・0.5HO〕等が挙げられる。
 Ba塩の具体例としては、塩化バリウム二水和物〔BaCl・2HO〕、硝酸バリウム〔Ba(NO〕、酢酸バリウム〔(CHCOO)Ba〕等が挙げられる。
 Ca塩の具体例としては、塩化カルシウム二水和物〔CaCl・2HO〕、硝酸カルシウム四水和物〔Ca(NO・4HO〕、酢酸カルシウム一水和物〔(CHCOO)Ca・HO〕等が挙げられる。
 Pb塩の具体例としては、塩化鉛(II)〔PbCl〕、硝酸鉛(II)〔Pb(NO〕等が挙げられる。
 ただし上記は例示であって、他の塩も使用可能である。原料水溶液を調製するための各種塩の混合比は、所望の六方晶フェライト組成に応じて決定すればよい。
The raw material aqueous solution can be, for example, an aqueous solution containing an Fe salt, an Al salt and a salt of an A atom. These salts can be, for example, water-soluble inorganic acid salts such as nitrates, sulfates and chlorides.
Specific examples of the Fe salts, iron (III) chloride hexahydrate [FeCl 3 · 6H 2 O], iron (III) nitrate nonahydrate [Fe (NO 3) 3 · 9H 2 O ] and the like can be mentioned Be done.
Specific examples of the Al salt, aluminum hexahydrate [AlCl 3 · 6H 2 O] chloride, aluminum nitrate nonahydrate [Al (NO 3) 3 · 9H 2 O ] and the like.
The salt of the A atom can be one or more selected from the group consisting of Sr salt, Ba salt, Ca salt and Pb salt.
Specific examples of the Sr salt, strontium chloride hexahydrate [SrCl 2 · 6H 2 O], strontium nitrate [Sr (NO 3) 2], strontium acetate hemihydrate [Sr (CH 3 COO) 2 -0.5H 2 O] and the like.
Specific examples of the Ba salt, barium chloride dihydrate [BaCl 2 · 2H 2 O], barium nitrate [Ba (NO 3) 2], barium acetate [(CH 3 COO) 2 Ba] and the like.
Specific examples of the Ca salt is calcium chloride dihydrate [CaCl 2 · 2H 2 O], calcium nitrate tetrahydrate [Ca (NO 3) 2 · 4H 2 O ], calcium acetate monohydrate [( CH 3 COO) 2 Ca · H 2 O] and the like.
Specific examples of the Pb salt include lead (II) chloride [PbCl 2 ], lead (II) nitrate [Pb (NO 3 ) 2 ] and the like.
However, the above is an example, and other salts can be used. The mixing ratio of various salts for preparing the raw material aqueous solution may be determined according to the desired hexagonal ferrite composition.
 アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸化カリウム水溶液等が挙げられる。アルカリ水溶液の濃度は、例えば、0.1mol/L~10mol/Lとすることができる。ただし、沈殿物を生成できればよく、アルカリ水溶液の種類および濃度は上記例示に限定されない。 Examples of the alkaline aqueous solution include a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution. The concentration of the alkaline aqueous solution can be, for example, 0.1 mol / L to 10 mol / L. However, the type and concentration of the alkaline aqueous solution are not limited to the above examples as long as a precipitate can be produced.
 原料水溶液とアルカリ水溶液とは、単に混合すればよい。原料水溶液とアルカリ水溶液とは、全量を一度に混合してもよく、原料水溶液とアルカリ水溶液とを徐々に混合してもよい。また、原料水溶液およびアルカリ水溶液のいずれか一方に、他方を徐々に添加しながら混合してもよい。原料水溶液とアルカリ水溶液とを混合する方法は、特に限定されず、例えば、撹拌により混合する方法が挙げられる。撹拌手段も特に限定されず、一般的な撹拌手段を用いることができる。撹拌時間は、沈殿物が生成できる時間に設定すればよく、原料水溶液の組成、使用する撹拌手段の種類等に応じて適宜設定できる。
 原料水溶液とアルカリ水溶液とを混合する際の温度(液温)は、例えば、突沸を防ぐ観点から、100℃以下であることが好ましく、沈殿物の生成反応を良好に進行させる観点から、95℃以下であることがより好ましく、15℃以上92℃以下であることが更に好ましい。温度を調整する手段としては、一般的な加熱装置、冷却装置等を用いることができる。原料水溶液とアルカリ水溶液との混合により得られる水溶液の液温25℃におけるpHは、例えば、沈殿物をより得やすいとの観点から、5~13の範囲であることが好ましく、6~12の範囲であることがより好ましい。pHを調整することによって置換原子の含有率を制御することができる。
The raw material aqueous solution and the alkaline aqueous solution may be simply mixed. The total amount of the raw material aqueous solution and the alkaline aqueous solution may be mixed at once, or the raw material aqueous solution and the alkaline aqueous solution may be gradually mixed. Further, it may be mixed while gradually adding the other to either the raw material aqueous solution or the alkaline aqueous solution. The method of mixing the raw material aqueous solution and the alkaline aqueous solution is not particularly limited, and examples thereof include a method of mixing by stirring. The stirring means is not particularly limited, and general stirring means can be used. The stirring time may be set to a time during which a precipitate can be formed, and can be appropriately set according to the composition of the raw material aqueous solution, the type of stirring means used, and the like.
The temperature (liquid temperature) when the raw material aqueous solution and the alkaline aqueous solution are mixed is preferably 100 ° C. or lower from the viewpoint of preventing bumping, and 95 ° C. from the viewpoint of satisfactorily advancing the precipitation reaction. The temperature is more preferably 15 ° C. or higher and 92 ° C. or lower. As a means for adjusting the temperature, a general heating device, cooling device, or the like can be used. The pH of the aqueous solution obtained by mixing the raw material aqueous solution and the alkaline aqueous solution at a liquid temperature of 25 ° C. is preferably in the range of 5 to 13, preferably in the range of 6 to 12, from the viewpoint of making it easier to obtain a precipitate, for example. Is more preferable. The content of the substituted atom can be controlled by adjusting the pH.
 沈殿物の生成後、得られた沈殿物を固液分離する場合、その方法は特に限定されず、デカンテーション、遠心分離、ろ過(吸引ろ過、加圧ろ過等)等の方法が挙げられる。例えば、固液分離を遠心分離により行う場合、遠心分離の条件は、特に限定されず、例えば、回転数2000rpm(revolutions per minute)以上で、3分間~30分間遠心分離することができる。また、遠心分離は、複数回行ってもよい。 When the obtained precipitate is solid-liquid separated after the precipitate is formed, the method is not particularly limited, and examples thereof include decantation, centrifugation, and filtration (suction filtration, pressure filtration, etc.). For example, when solid-liquid separation is performed by centrifugation, the conditions for centrifugation are not particularly limited, and for example, centrifugation can be performed for 3 to 30 minutes at a rotation speed of 2000 rpm (revolutions per minute) or higher. Further, the centrifugation may be performed a plurality of times.
工程2
 工程2は、工程1により得られた沈殿物を焼成する工程である。
 工程2では、工程1により得られた沈殿物を焼成することによって、六方晶フェライトの前駆体を六方晶フェライトに転換することができる。焼成は、加熱装置を用いて行うことができる。加熱装置は、特に限定されるものではなく、電気炉等の公知の加熱装置、製造ラインに合わせて作製した焼成装置等を用いることができる。焼成は、例えば大気雰囲気下で行うことができる。焼成温度および焼成時間は、六方晶フェライトの前駆体を六方晶フェライトに転換可能な範囲に設定すればよい。焼成温度は、例えば、900℃以上であることが好ましく、900℃~1400℃の範囲であることがより好ましく、1000℃~1200℃の範囲であることが更に好ましい。焼成時間は、例えば、1時間~10時間の範囲であることが好ましく、2時間~6時間の範囲であることがより好ましい。また、工程1により得られた沈殿物を、焼成前に乾燥させることもできる。乾燥手段は、特に限定されず、例えば、オーブン等の乾燥機が挙げられる。乾燥温度は、例えば、50℃~200℃の範囲であることが好ましく、70℃~150℃の範囲であることがより好ましい。乾燥時間は、例えば、2時間~50時間の範囲であることが好ましく、5時間~30時間の範囲であることがより好ましい。なお上記の焼成温度および乾燥温度は、焼成または乾燥を行う装置の内部雰囲気温度であることができる。
Process 2
Step 2 is a step of calcining the precipitate obtained in Step 1.
In step 2, the precursor of hexagonal ferrite can be converted to hexagonal ferrite by calcining the precipitate obtained in step 1. Firing can be performed using a heating device. The heating device is not particularly limited, and a known heating device such as an electric furnace, a firing device manufactured according to a production line, or the like can be used. Firing can be performed, for example, in an atmospheric atmosphere. The firing temperature and firing time may be set within a range in which the precursor of hexagonal ferrite can be converted to hexagonal ferrite. The firing temperature is, for example, preferably 900 ° C. or higher, more preferably 900 ° C. to 1400 ° C., and even more preferably 1000 ° C. to 1200 ° C. The firing time is, for example, preferably in the range of 1 hour to 10 hours, and more preferably in the range of 2 hours to 6 hours. In addition, the precipitate obtained in step 1 can be dried before firing. The drying means is not particularly limited, and examples thereof include a dryer such as an oven. The drying temperature is, for example, preferably in the range of 50 ° C. to 200 ° C., and more preferably in the range of 70 ° C. to 150 ° C. The drying time is preferably in the range of, for example, 2 hours to 50 hours, and more preferably in the range of 5 hours to 30 hours. The above firing temperature and drying temperature can be the internal ambient temperature of the apparatus for firing or drying.
 上記工程2によって得られる焼成体は、六方晶フェライトの前駆体が転換して六方晶フェライトの結晶構造を示す塊状の焼成体または粉体状の焼成体であることができる。更に、この焼成体を粉砕する工程を実施することもできる。粉砕は、乳鉢および乳棒、粉砕機(カッターミル、ボールミル、ビーズミル、ローラーミル、ジェットミル、ハンマーミル、アトライター等)等の公知の粉砕手段によって行うことができる。例えば、メディアを用いる粉砕の場合、メディアの粒径(所謂メディア径)は、例えば、0.1mm~5.0mmの範囲であることが好ましく、0.5mm~3.0mmの範囲であることがより好ましい。「メディア径」とは、球状メディアの場合、無作為に選択した複数個のメディア(例えば、ビーズ)の直径の算術平均を意味する。非球状メディア(例えば、非球状ビーズ)の場合、透過型電子顕微鏡(TEM;Transmission Electron Microscope)または走査型電子顕微鏡(SEM;Scanning Electron Microscope)の観察像から求められる、無作為に選択した複数個のメディアの円相当径の算術平均を意味する。メディアの材質としては、例えば、ガラス、アルミナ、スチール、ジルコニア、セラミック等を挙げることができる。また、カッターミルにより粉砕を行う場合には、粉砕する焼成体の量、使用するカッターミルのスケール等に応じて粉砕条件を決定することができる。例えば、一形態では、カッターミルの回転数は、5000~25000rpm程度とすることができる。 The fired body obtained in the above step 2 can be a massive fired body or a powder-shaped fired body in which the precursor of hexagonal ferrite is converted to show the crystal structure of hexagonal ferrite. Further, a step of crushing the fired body can also be carried out. The crushing can be performed by a known crushing means such as a mortar and pestle, a crusher (cutter mill, ball mill, bead mill, roller mill, jet mill, hammer mill, attritor, etc.). For example, in the case of pulverization using a medium, the particle size of the medium (so-called media diameter) is preferably in the range of 0.1 mm to 5.0 mm, and preferably in the range of 0.5 mm to 3.0 mm. More preferred. By "media diameter" is meant, in the case of spherical media, the arithmetic mean of the diameters of a plurality of randomly selected media (eg, beads). In the case of non-spherical media (for example, non-spherical beads), a plurality of randomly selected images obtained from observation images of a transmission electron microscope (TEM; Transmission Electron Microscope) or a scanning electron microscope (SEM). It means the arithmetic average of the circle equivalent diameter of the media. Examples of the material of the media include glass, alumina, steel, zirconia, and ceramics. When crushing with a cutter mill, the crushing conditions can be determined according to the amount of the fired body to be crushed, the scale of the cutter mill to be used, and the like. For example, in one form, the rotation speed of the cutter mill can be about 5000 to 25000 rpm.
(表面処理剤)
 上記置換型六方晶フェライトの粉体は、表面処理剤で表面処理されている。ここで表面処理剤は、ケイ素系化合物である。ケイ素系化合物で表面処理された置換型六方晶フェライトの粉体と詳細を後述する樹脂とを併用することにより、電波吸収体の電波吸収性能、耐振動疲労性および薬品耐性の向上が可能になることが、本発明者らの鋭意検討の結果、新たに見出された。
 耐振動疲労性に関しては、耐振動疲労性に優れる電波吸収体は、使用時等に振動されても疲労し難いため、長期にわたりレーダーの認識精度向上に寄与し続けることができ好ましい。磁性粉体としてのケイ素系化合物で表面処理された置換型六方晶フェライトの粉体とバインダーとしての後述の樹脂との組み合わせにより、磁性粉体を構成する粒子とバインダーとの相溶性および接合強度を高めることができ、粒子とバインダーとの界面で発生する破壊現象の発生を抑制することが可能になると推察される。これにより、耐振動疲労性の向上が可能になると考えられる。
 また、磁性粉体を構成する粒子とバインダーとの相互作用は、電波吸収体の薬品耐性の向上に寄与し得る。この相互作用に関して、上記の磁性粉体とバインダーとの組み合わせにより磁性粉体を構成する粒子とバインダーとの相溶性を高めることが可能になることによって、粒子とバインダーとの界面における微小空間(不連続部位)の発生を低減できると推察される。このことが、界面の微小空間への薬品浸透によりクラック等が発生することを抑制することに寄与すると考えられる。これにより、薬品耐性の向上が可能になると推察される。
 ただし、以上は推察であって、本発明を限定するものではない。
(Surface treatment agent)
The substituted hexagonal ferrite powder is surface-treated with a surface treatment agent. Here, the surface treatment agent is a silicon-based compound. By using a powder of substituted hexagonal ferrite surface-treated with a silicon compound and a resin whose details will be described later, it is possible to improve the radio wave absorption performance, vibration fatigue resistance and chemical resistance of the radio wave absorber. This was newly discovered as a result of diligent studies by the present inventors.
Regarding vibration fatigue resistance, a radio wave absorber having excellent vibration fatigue resistance is preferable because it does not easily get tired even if it is vibrated during use, and can continue to contribute to improving radar recognition accuracy for a long period of time. By combining a substituted hexagonal ferrite powder surface-treated with a silicon-based compound as a magnetic powder and a resin described later as a binder, the compatibility and bonding strength between the particles constituting the magnetic powder and the binder can be determined. It is presumed that the amount can be increased and the occurrence of the destruction phenomenon that occurs at the interface between the particles and the binder can be suppressed. It is considered that this makes it possible to improve the vibration fatigue resistance.
Further, the interaction between the particles constituting the magnetic powder and the binder can contribute to the improvement of the chemical resistance of the radio wave absorber. Regarding this interaction, the combination of the above magnetic powder and the binder makes it possible to enhance the compatibility between the particles constituting the magnetic powder and the binder, so that a minute space (non-compliance) at the interface between the particles and the binder can be obtained. It is presumed that the occurrence of continuous sites) can be reduced. This is considered to contribute to suppressing the generation of cracks and the like due to the permeation of chemicals into the minute space at the interface. It is presumed that this makes it possible to improve chemical resistance.
However, the above is a speculation and does not limit the present invention.
 上記電波吸収性組成物および上記電波吸収体に含まれる置換型六方晶フェライトの粉体は、ケイ素系化合物で表面処理されている。本発明および本明細書において、「系」とは、「含む」を意味する。ケイ素系化合物は、有機化合物または無機化合物であることができ、耐振動疲労性および薬品耐性の更なる向上の観点からは有機化合物であることが好ましい。 The radio wave absorbing composition and the powder of the substituted hexagonal ferrite contained in the radio wave absorber are surface-treated with a silicon compound. In the present invention and the present specification, "system" means "including". The silicon-based compound can be an organic compound or an inorganic compound, and is preferably an organic compound from the viewpoint of further improving vibration fatigue resistance and chemical resistance.
 以下に記載する表面処理剤として使用可能なケイ素系化合物に含まれる基の少なくとも一部は、反応性を有する基であり得る。反応性を有する基とは、他の基または結合と反応することができ、反応後に反応前とは異なる構造を取る基をいうものとする。表面処理剤は、表面処理後、置換型六方晶フェライトの粉末を被覆している状態で、反応性基が反応後の形態で存在することもあり、そのような態様も本発明に包含される。 At least a part of the groups contained in the silicon-based compound that can be used as the surface treatment agent described below may be a reactive group. A reactive group is a group that can react with another group or bond and has a structure different from that before the reaction after the reaction. In the surface treatment agent, the reactive group may be present in the post-reaction form in a state of being coated with the powder of the substituted hexagonal ferrite after the surface treatment, and such an embodiment is also included in the present invention. ..
ケイ素系化合物
 表面処理剤として好適なケイ素系化合物としては、下記一般式2で表されるケイ素系化合物を挙げることができる。
Silicon-based compounds Examples of silicon-based compounds suitable as surface treatment agents include silicon-based compounds represented by the following general formula 2.
        一般式2:(X-L)-Si-Z4-m General formula 2: (XL) m- Si-Z 4-m
 一般式2中、Xは、水素原子、アルキル基、アルケニル基、アリール基、脂環基、複素環基、ヒドロキシ基、アクリルアミド基、スルファニル基、イソシアネート基、チオシアネート基、ウレイド基、シアノ基、酸無水物基、アジド基、カルボキシ基、アシル基、チオカルバモイル基、リン酸基、ホスファニル基、スルホン酸基またはスルファモイル基を表す。
 Lは、単結合、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、-O-、-S-、-NR-、エステル結合、チオエステル結合、アミド結合、チオアミド結合およびスルホニル基からなる群から選ばれる1種の2価の基もしくは結合、またはこれらの2種以上を組合せてなる2価の基もしくは結合を表し、
 Rは、水素原子または置換基を表す。
 Zは、ヒドロキシ基、アルコキシ基またはアルキル基を表す。
 mは、1~3の範囲の整数である。
In the general formula 2, X is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an alicyclic group, a heterocyclic group, a hydroxy group, an acrylamide group, a sulfanyl group, an isocyanate group, a thiocianate group, a ureido group, a cyano group and an acid. Represents an anhydride group, an azide group, a carboxy group, an acyl group, a thiocarbamoyl group, a phosphoric acid group, a phosphanyl group, a sulfonic acid group or a sulfamoyl group.
L is selected from the group consisting of a single bond, an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond, a thioamide bond and a sulfonyl group. Represents one type of divalent group or bond, or a combination of two or more of these divalent groups or bonds.
Ra represents a hydrogen atom or a substituent.
Z represents a hydroxy group, an alkoxy group or an alkyl group.
m is an integer in the range of 1 to 3.
 Xで表される基ならびにLで表される基および結合は、置換基を有することもでき、有さないこと(即ち無置換であること)もできる。置換基としては、例えば、ヒドロキシ基、スルファニル基、チオシアネート基、ウレイド基、酸無水物基、カルボキシ基、アシル基、カルバモイル基等を挙げることができる。本発明および本明細書において、置換基を有する基および結合について、炭素数とは、特記しない限り、置換基以外の部分の炭素数をいうものとする。「X-L-」で表される構造において、Xに含まれる部分ともLに含まれる部分とも解することができる部分が存在する場合には、かかる部分は、Xに含まれる部分として解するものとする。 The group represented by X and the group and bond represented by L may have a substituent or may not have (that is, be unsubstituted). Examples of the substituent include a hydroxy group, a sulfanyl group, a thiocianate group, a ureido group, an acid anhydride group, a carboxy group, an acyl group, a carbamoyl group and the like. In the present invention and the present specification, with respect to a group having a substituent and a bond, the carbon number means the carbon number of a portion other than the substituent unless otherwise specified. In the structure represented by "XL-", if there is a part that can be understood as both a part contained in X and a part contained in L, such a part is interpreted as a part contained in X. It shall be.
 mが2または3である場合、一般式2に含まれる複数のXは、一形態では同一であることができ、他の一形態では異なることもできる。この点は、Lについても同様である、また、「4-m」が2または3である場合のZについても、同様である。 When m is 2 or 3, the plurality of Xs contained in the general formula 2 can be the same in one form and can be different in the other form. This point is the same for L, and also for Z when "4-m" is 2 or 3.
 以下、一般式2について、更に詳細に説明する。 The general formula 2 will be described in more detail below.
 一般式2中、Xは、水素原子、アルキル基、アルケニル基、アリール基、脂環基、複素環基、ヒドロキシ基、アクリルアミド基、スルファニル基、イソシアネート基、チオシアネート基、ウレイド基、シアノ基、酸無水物基、アジド基、カルボキシ基、アシル基、チオカルバモイル基、リン酸基、ホスファニル基、スルホン酸基またはスルファモイル基を表す。 In the general formula 2, X is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an alicyclic group, a heterocyclic group, a hydroxy group, an acrylamide group, a sulfanyl group, an isocyanate group, a thiocianate group, a ureido group, a cyano group and an acid. Represents an anhydride group, an azide group, a carboxy group, an acyl group, a thiocarbamoyl group, a phosphoric acid group, a phosphanyl group, a sulfonic acid group or a sulfamoyl group.
 Xとして採り得るアルキル基、アルケニル基およびアリール基の炭素数は、それぞれ独立に、1~30の範囲であることが好ましく、1~25の範囲であることがより好ましく、1~20の範囲であることが更に好ましく、1~15の範囲であることが一層好ましい。本発明および本明細書において、特記しない限り、「アルキル基」には、シクロアルキル基は包含されないものとする。アルキル基に、直鎖アルキル基および分岐アルキル基が包含される。 The number of carbon atoms of the alkyl group, the alkenyl group, and the aryl group that can be taken as X is preferably in the range of 1 to 30, more preferably in the range of 1 to 25, and in the range of 1 to 20. It is more preferably in the range of 1 to 15. Unless otherwise specified in the present invention and the present specification, the "alkyl group" shall not include a cycloalkyl group. Alkyl groups include linear alkyl groups and branched alkyl groups.
 Xとして採り得る脂環基は、シクロアルキル基、シクロアルケニル基およびシクロアルキニル基のいずれでもよい。シクロアルキル基の炭素数は、3~20の範囲であることが好ましく、4~15の範囲であることがより好ましく、5~10の範囲であることが更に好ましい。シクロアルケニル基およびシクロアルキニル基の炭素数は、それぞれ独立に、6~20の範囲であることが好ましく、6~15の範囲であることがより好ましく、6~10の範囲であることが更に好ましく、6であることが一層好ましい。 The alicyclic group that can be taken as X may be any of a cycloalkyl group, a cycloalkenyl group and a cycloalkynyl group. The number of carbon atoms of the cycloalkyl group is preferably in the range of 3 to 20, more preferably in the range of 4 to 15, and even more preferably in the range of 5 to 10. The carbon number of each of the cycloalkenyl group and the cycloalkynyl group is preferably in the range of 6 to 20, more preferably in the range of 6 to 15, and further preferably in the range of 6 to 10. , 6 is more preferable.
 Xとして採り得る複素環基を構成する複素環は、飽和または不飽和の脂肪族複素環でも芳香族複素環でもよく、単環でも縮合環でもよい。また、橋かけ環でもよい。複素環が有するヘテロ原子としては、例えば、酸素原子、窒素原子および硫黄原子が挙げられる。1つの複素環に含まれるヘテロ原子の数は、特に制限されず、例えば、1~3個であることが好ましく、1個または2個であることがより好ましい。複素環の炭素数は2~10の範囲であることが好ましく、4または5であることがより好ましい。複素環は3~7員環であることが好ましく、3~6員環であることがより好ましく、3~5員環であることが更に好ましい。複素環の具体例として、エポキシ環、3,4-エポキシシクロヘキサン環、フラン環およびチオフェン環が挙げられる。一形態では、Xで表される複素環基は、エポキシ基であることができる。本発明および本明細書において、「エポキシ基」には、この基に含まれる複素環がエポキシ環(3員環)である態様と、エポキシ環と飽和炭化水素環とが縮環した構造の環状基を含む態様とが包含されるものとする。かかる環状基としては、例えば、3,4-エポキシシクロヘキサン環を挙げることができる。 The heterocycle constituting the heterocyclic group that can be taken as X may be a saturated or unsaturated aliphatic heterocycle or an aromatic heterocycle, and may be a monocyclic ring or a condensed ring. It may also be a bridge ring. Examples of the hetero atom contained in the heterocycle include an oxygen atom, a nitrogen atom and a sulfur atom. The number of heteroatoms contained in one heterocycle is not particularly limited, and is preferably 1 to 3, more preferably 1 or 2, for example. The number of carbon atoms in the heterocycle is preferably in the range of 2 to 10, and more preferably 4 or 5. The heterocycle is preferably a 3- to 7-membered ring, more preferably a 3- to 6-membered ring, and even more preferably a 3- to 5-membered ring. Specific examples of the heterocycle include an epoxy ring, a 3,4-epoxycyclohexane ring, a furan ring and a thiophene ring. In one form, the heterocyclic group represented by X can be an epoxy group. In the present invention and the present specification, the "epoxide group" includes an embodiment in which the heterocycle contained in this group is an epoxy ring (three-membered ring) and a ring having a structure in which an epoxy ring and a saturated hydrocarbon ring are fused. Aspects including groups shall be included. Examples of such a cyclic group include a 3,4-epoxycyclohexane ring.
 Xとして採り得る酸無水物基としては、カルボン酸無水物の構造を有する1価の基が好ましく、例えば、3,4-ジヒドロ-2,5-フランジオニル等の無水マレイン酸基、無水コハク酸基、無水グルタル酸基、無水アジピン酸基および無水シトラコン酸基が挙げられる。 As the acid anhydride group that can be taken as X, a monovalent group having a structure of a carboxylic acid anhydride is preferable, and for example, a maleic anhydride group such as 3,4-dihydro-2,5-frangionyl and a succinic anhydride group. , Glutaric anhydride group, adipic anhydride group and citraconic anhydride group.
 Xとして採り得るアシル基の炭素数は1~40の範囲であることが好ましく、1~30の範囲であることがより好ましく、1~20の範囲であることが更に好ましく、2~15の範囲であることが一層好ましい。本発明および本明細書において、「アシル基」には、ホルミル基、カルバモイル基、アルキルカルボニル基、アルケニルカルボニル基およびアリールカルボニル基が包含される。アルケニルカルボニル基としては、好ましくは、(メタ)アクリロイル基を挙げることができる。本発明および本明細書において、「(メタ)アクリロイル基」には、アクリロイル基とメタクリロイル基とが包含される。 The number of carbon atoms of the acyl group that can be taken as X is preferably in the range of 1 to 40, more preferably in the range of 1 to 30, further preferably in the range of 1 to 20, and in the range of 2 to 15. Is more preferable. In the present invention and the present specification, the "acyl group" includes a formyl group, a carbamoyl group, an alkylcarbonyl group, an alkenylcarbonyl group and an arylcarbonyl group. The alkenylcarbonyl group preferably includes a (meth) acryloyl group. In the present invention and the present specification, the "(meth) acryloyl group" includes an acryloyl group and a methacryloyl group.
 Lとして採り得るアルキレン基は、直鎖アルキレン基および分岐アルキレン基のいずれでもよい。アルキレン基の炭素数は、1~30の範囲であることが好ましく、2~25の範囲であることがより好ましく、3~20の範囲であることが更に好ましく、4~12の範囲であることが一層好ましい。アルキレン基の具体例として、メチレン基、エチレン基、イソプロピレン基、ブチレン基、ペンチレン基、シクロへキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基およびウンデシレン基が挙げられる。 The alkylene group that can be taken as L may be either a linear alkylene group or a branched alkylene group. The carbon number of the alkylene group is preferably in the range of 1 to 30, more preferably in the range of 2 to 25, further preferably in the range of 3 to 20, and in the range of 4 to 12. Is more preferable. Specific examples of the alkylene group include a methylene group, an ethylene group, an isopropylene group, a butylene group, a pentylene group, a cyclohexylene group, a heptylene group, an octylene group, a nonylene group, a decylene group and an undecylene group.
 Lとして採り得るアルケニレン基は、直鎖アルケニレン基および分岐アルケニレン基のいずれでもよい。アルケニレン基の炭素数は、2~20の範囲であることが好ましく、2~15の範囲であることがより好ましく、2~10の範囲であることが更に好ましく、2~6の範囲であることが一層好ましい。アルケニレン基の具体例として、エテニレン基およびプロぺニレン基が挙げられる。 The alkenylene group that can be taken as L may be either a linear alkenylene group or a branched alkenylene group. The carbon number of the alkenylene group is preferably in the range of 2 to 20, more preferably in the range of 2 to 15, further preferably in the range of 2 to 10, and in the range of 2 to 6. Is more preferable. Specific examples of the alkenylene group include an ethenylene group and a propenylene group.
 Lとして採り得るアルキニレン基は、直鎖アルキニレン基および分岐アルキニレン基のいずれでもよい。アルキニレン基の炭素数は、2~20の範囲であることが好ましく、2~15の範囲であることがより好ましく、2~10の範囲であることが更に好ましく、2~6の範囲であることが一層好ましい。アルキニレン基の具体例として、エチニレン基およびプロピニレン基が挙げられる。 The alkynylene group that can be taken as L may be either a linear alkynylene group or a branched alkynylene group. The carbon number of the alkynylene group is preferably in the range of 2 to 20, more preferably in the range of 2 to 15, further preferably in the range of 2 to 10, and in the range of 2 to 6. Is more preferable. Specific examples of the alkynylene group include an ethynylene group and a propynylene group.
 Lとして採り得るアリーレン基の炭素数は6~20の範囲であることが好ましく、6~15の範囲であることがより好ましく、6~12の範囲であることが更に好ましく、6~10の範囲であることが一層好ましい。アリーレン基の具体例として、例えば、フェニレン基およびナフチレン基を挙げることができる。 The carbon number of the arylene group that can be taken as L is preferably in the range of 6 to 20, more preferably in the range of 6 to 15, further preferably in the range of 6 to 12, and in the range of 6 to 10. Is more preferable. Specific examples of the arylene group include a phenylene group and a naphthylene group.
 Lとして採り得る-NR-のRにおける置換基としては、アルキル基(好ましくは炭素数1~12、より好ましくは炭素数1~8)、アルケニル基(好ましくは炭素数2~12、より好ましくは炭素数2~8)、アルキニル基(好ましくは炭素数2~12、より好ましくは炭素数2~8)、アリール基(好ましくは炭素数6~20、より好ましくは炭素数6~10)および複素環基が挙げられる。Rとして採り得る複素環基を構成する複素環としては、Xとして採り得る複素環基を構成する複素環として先に示した複素環を挙げることができ、好ましい複素環基もXとして採り得る複素環基について記載した通りである。-NR-としては、例えば、-NH-が挙げられる。 -NR a, which may take as L - Examples of the substituent of R a of an alkyl group (preferably having 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more Preferably carbon number 2-8), alkynyl group (preferably carbon number 2-12, more preferably carbon number 2-8), aryl group (preferably carbon number 6-20, more preferably carbon number 6-10). And heterocyclic groups. Examples of the heterocycle constituting the heterocyclic group that can be adopted as Ra include the heterocycle shown above as the heterocycle constituting the heterocyclic group that can be adopted as X, and a preferable heterocyclic group can also be adopted as X. As described for the heterocyclic group. Examples of -NR a- include -NH-.
 Lが、単結合、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、-O-、-S-、-NR-、エステル結合、チオエステル結合、アミド結合、チオアミド結合およびスルホニル基からなる群から選ばれる2種以上を組合せてなる2価の基(以下、「Lとして採り得る組合わせてなる基」とも記載する。)を表す場合、Lとして採り得る組合わせてなる基を構成する上記の基および結合の数は、2~8の範囲であることが好ましく、2~6の範囲であることがより好ましく、2~4の範囲であることが更に好ましい。
 また、Lとして採り得る組合わせてなる基の分子量は、20~1000の範囲であることが好ましく、30~500の範囲であることがより好ましく、40~200の範囲であることが更に好ましい。
 Lとして採り得る組合わせてなる基としては、例えば、ウレア結合、チオウレア結合、カルバメート基、スルホンアミド結合、アリーレン基-アルキレン基、-O-アルキレン基、アミド結合-アルキレン基、-S-アルキレン基、アルキレン基-O-アミド結合-アルキレン基、アルキレン基-アミド結合-アルキレン基、アルケニレン基-アミド結合-アルキレン基、アルキレン基-エステル結合-アルキレン基、アリーレン基-エステル結合-アルキレン基、-(アルキレン基-O)-、アルキレン基-O-(アルキレン基-O)-アルキレン基(「(アルキレン基-O)」はいずれも繰り返し単位)、アリーレン基-スルホニル基-O-アルキレン基およびエステル結合-アルキレン基が挙げられる。
L is selected from the group consisting of a single bond, an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond, a thioamide bond and a sulfonyl group. When representing a divalent group consisting of a combination of two or more of these groups (hereinafter, also referred to as "combined group that can be taken as L"), the above group constituting the combined group that can be taken as L. And the number of bonds is preferably in the range of 2-8, more preferably in the range of 2-6, and even more preferably in the range of 2-4.
The molecular weight of the combined group that can be taken as L is preferably in the range of 20 to 1000, more preferably in the range of 30 to 500, and even more preferably in the range of 40 to 200.
Examples of the combined group that can be taken as L include a urea bond, a thiourea bond, a carbamate group, a sulfonamide bond, an arylene group-alkylene group, an -O-alkylene group, an amide bond-alkylene group, and an -S-alkylene group. , Alkylene group-O-amide bond-alkylene group, alkylene group-amide bond-alkylene group, alkenylene group-amide bond-alkylene group, alkylene group-ester bond-alkylene group, arylene group-ester bond-alkylene group,-( Alkylene group-O)-, alkylene group-O- (alkylene group-O) -alkylene group ("(alkylene group-O)" is a repeating unit), arylene group-sulfonyl group-O-alkylene group and ester bond -The alkylene group can be mentioned.
 Zとして採り得るアルコキシ基を構成するアルキル基に関しては、「アルキル基」には、シクロアルキル基も包含される。Zとして採り得るアルコキシ基を構成するアルキル基は、直鎖アルキル基、分岐アルキル基およびシクロアルキル基のいずれでもよく、これらの形態を組合わせて有してもよい。Zとして取り得るアルキル基は、直鎖アルキル基であることが好ましい。 Regarding the alkyl group constituting the alkoxy group that can be taken as Z, the "alkyl group" also includes a cycloalkyl group. The alkyl group constituting the alkoxy group that can be taken as Z may be any of a linear alkyl group, a branched alkyl group and a cycloalkyl group, and may have a combination of these forms. The alkyl group that can be taken as Z is preferably a linear alkyl group.
 Zとして採り得るアルコキシ基を構成するアルキル基の炭素数は、1~15の範囲であることが好ましく、1~10であることがより好ましく、1~5であることが更に好ましく、1または2であることが一層好ましい。アルコキシ基を構成するアルキル基の具体例として、メチル基、エチル基、プロピル基、t-ブチル基、ペンチル基およびシクロヘキシル基が挙げられる。 The number of carbon atoms of the alkyl group constituting the alkoxy group that can be taken as Z is preferably in the range of 1 to 15, more preferably 1 to 10, further preferably 1 to 5, and 1 or 2. Is more preferable. Specific examples of the alkyl group constituting the alkoxy group include a methyl group, an ethyl group, a propyl group, a t-butyl group, a pentyl group and a cyclohexyl group.
 Zとして採り得るアルキル基としては、Zとして採り得るアルコキシ基を構成するアルキル基を挙げることができ、好ましいアルキル基についてもZとして採り得るアルコキシ基を構成するアルキル基について記載した通りである。 Examples of the alkyl group that can be taken as Z include an alkyl group that constitutes an alkoxy group that can be taken as Z, and the preferred alkyl group is as described for the alkyl group that constitutes an alkoxy group that can be taken as Z.
 一般式2中、XまたはLと、Zの少なくともいずれか1つとは、互いに連結して環を形成してもよい。この環の環構成原子数は3~10の範囲であることが好ましく、4~8の範囲であることがより好ましく、5または6であることが更に好ましい。 In the general formula 2, X or L and at least one of Z may be connected to each other to form a ring. The number of ring-constituting atoms in this ring is preferably in the range of 3 to 10, more preferably in the range of 4 to 8, and even more preferably in the range of 5 or 6.
 一般式2中、Xが、水素原子、脂環基、複素環基、アクリルアミド基、ヒドロキシ基、スルファニル基、チオシアネート基、酸無水物基、カルボキシ基、アシル基またはスルホン酸基を示すことが好ましい。また、Lが、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、-O-、-S-、-NR-、エステル結合、チオエステル結合、アミド結合およびスルホニル基からなる群から選ばれる1種の2価の基もしくは結合、またはこれらの2種以上を組合せてなる2価の基もしくは結合を示すことが好ましい。 In the general formula 2, it is preferable that X represents a hydrogen atom, an alicyclic group, a heterocyclic group, an acrylamide group, a hydroxy group, a sulfanyl group, a thiocianate group, an acid anhydride group, a carboxy group, an acyl group or a sulfonic acid group. .. Further, one type of L selected from the group consisting of an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond and a sulfonyl group. It is preferable to show a divalent group or bond, or a divalent group or bond formed by combining two or more of these.
 一形態では、一般式2中、mが1であり、かつXがアルケニル基もしくは複素環基を表すことができる。他の一形態では、mが2もしくは3であり、かつ一般式2中に複数含まれるXが、それぞれ独立にアルケニル基もしくは複素環基を表すことができる。 In one form, in the general formula 2, m is 1 and X can represent an alkenyl group or a heterocyclic group. In the other form, m is 2 or 3, and a plurality of Xs contained in the general formula 2 can independently represent an alkenyl group or a heterocyclic group.
 また、一形態では、一般式2中、mが1であり、かつXが(メタ)アクリロイル基、アクリルアミド基もしくはエポキシ基を表すことができる。他の一形態では、mが2もしくは3であり、かつ一般式2中に複数含まれるXが、それぞれ独立に(メタ)アクリロイル基、アクリルアミド基もしくはエポキシ基を表すことができる。 Further, in one form, in the general formula 2, m is 1 and X can represent a (meth) acryloyl group, an acrylamide group or an epoxy group. In another form, m is 2 or 3, and a plurality of Xs contained in the general formula 2 can independently represent a (meth) acryloyl group, an acrylamide group, or an epoxy group.
 一形態では、一般式2中、Xが、(メタ)アクリロイル基、アクリルアミド基またはエポキシ基を示すことが好ましい。また、Lが、アルキレン基、アルケニレン基、-O-、-NR-、エステル結合およびアミド結合からなる群から選ばれる1種の2価の基もしくは結合、またはこれらの2種以上を組合せてなる2価の基もしくは結合を表すことがより好ましい。 In one form, in General Formula 2, X preferably represents a (meth) acryloyl group, an acrylamide group or an epoxy group. Further, L is one divalent group or bond selected from the group consisting of an alkylene group, an alkenylene group, -O-, -NR a- , an ester bond and an amide bond, or a combination of two or more of these. It is more preferable to represent a divalent group or bond.
 一形態では、一般式2中、Zの少なくとも2つがアルコキシ基およびヒドロキシ基からなる群から選ばれることが好ましく、Zのすべてがアルコキシ基およびヒドロキシ基からなる群から選ばれることがより好ましい。 In one form, in General Formula 2, at least two of Z are preferably selected from the group consisting of an alkoxy group and a hydroxy group, and more preferably all Z is selected from the group consisting of an alkoxy group and a hydroxy group.
 また、耐振動疲労性の更なる向上の観点からは、エポキシ基を含むケイ素系化合物が好ましく、エポキシシランがより好ましく、炭素数が多いエポキシシランが更に好ましい。これは、磁性粉体の粒子の表面と後述する樹脂との界面での柔軟性が高まるためと推察される。この点から、一般式2中、Xがエポキシ基を表すことが好ましく、Xがエポキシ基を表し、かつLが炭素数4~12のアルキレン基を含むことがより好ましい。 From the viewpoint of further improving vibration fatigue resistance, a silicon-based compound containing an epoxy group is preferable, an epoxysilane is more preferable, and an epoxysilane having a large number of carbon atoms is further preferable. It is presumed that this is because the flexibility at the interface between the surface of the magnetic powder particles and the resin described later is increased. From this point, in the general formula 2, it is preferable that X represents an epoxy group, X represents an epoxy group, and L contains an alkylene group having 4 to 12 carbon atoms.
 表面処理剤として使用され得るケイ素系化合物の具体例としては、後述の実施例で使用されている各種化合物を挙げることができる。また、表面処理剤として使用され得るケイ素系化合物の具体例としては、下記の化合物を挙げることもできる。ただし、本発明は、これら具体例に限定されるものではない。
メチルトリアセトキシシラン、
エチルトリエトキシシラン、
メチルトリエトキシシラン、
メチルトリメトキシシラン、
n-プロピルトリメトキシシラン、
イソプロピルトリメトキシシラン、
n-ヘキシルトリメトキシシラン、
n-ドデシルトリエトキシシラン、
n-オクチルトリエトキシシラン、
n-オクタデシルトリエトキシシラン、
ペンチルトリエトキシシラン、
ジアセトキシジメチルシラン、
ジエトキシジメチルシラン、
ジメトキシジメチルシラン、
ジメトキシジフェニルシラン、
ジメトキシメチルフェニルシラン、
ビニルジエトキシメチルシラン、
ビニルトリス(2-メトキシエトキシ)シラン、
p-スチリルトリエトキシシラン、
ナフチルトリメトキシシラン、
アントリルトリメトキシシラン、
ベンジルトリメトキシシラン、
3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、
ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、
3-(2-アミノエチルアミノ)プロピルジメトキシメチルシラン、
3-(2-アミノエチルアミノ)プロピルトリエトキシシラン、
3-(2-アミノエチルアミノ)プロピルトリメトキシシラン、
3-アミノプロピルジエトキシメチルシラン、
3-アミノプロピルトリエトキシシラン、
3-アミノプロピルトリメトキシシラン、
(3-メルカプトプロピル)トリエトキシシラン、
(3-メルカプトプロピル)トリメトキシシラン、
3-イソシアネートプロピルトリエトキシシラン、
3-アクリロキシプロピルトリメトキシシラン、
トリエトキシ-1H,1H,2H,2H-トリデカフルオロ-n-オクチルシラン、
2-シアノエチルトリエトキシシラン、
チエニルトリメトキシシラン、
ピリジルトリメトキシシラン、
フリルトリエトキシシラン。
Specific examples of the silicon-based compound that can be used as a surface treatment agent include various compounds used in Examples described later. Moreover, the following compound can be mentioned as a specific example of the silicon-based compound which can be used as a surface treatment agent. However, the present invention is not limited to these specific examples.
Methyltriacetoxysilane,
Ethyltriethoxysilane,
Methyltriethoxysilane,
Methyltrimethoxysilane,
n-propyltrimethoxysilane,
Isopropyltrimethoxysilane,
n-hexyltrimethoxysilane,
n-dodecyltriethoxysilane,
n-octyltriethoxysilane,
n-octadecyltriethoxysilane,
Pentyl triethoxysilane,
Diacetoxydimethylsilane,
Diethoxydimethylsilane,
Dimethoxydimethylsilane,
Dimethoxydiphenylsilane,
Dimethoxymethylphenylsilane,
Vinyl diethoxymethylsilane,
Vinyltris (2-methoxyethoxy) silane,
p-styryltriethoxysilane,
Naftyltrimethoxysilane,
Anthryltrimethoxysilane,
Benzyltrimethoxysilane,
3-Glysidyloxypropyl (dimethoxy) methylsilane,
Diethoxy (3-glycidyloxypropyl) methylsilane,
3- (2-Aminoethylamino) propyldimethoxymethylsilane,
3- (2-Aminoethylamino) propyltriethoxysilane,
3- (2-Aminoethylamino) propyltrimethoxysilane,
3-Aminopropyldiethoxymethylsilane,
3-Aminopropyltriethoxysilane,
3-Aminopropyltrimethoxysilane,
(3-Mercaptopropyl) Triethoxysilane,
(3-Mercaptopropyl) Trimethoxysilane,
3-Isocyanatepropyltriethoxysilane,
3-Acryloxypropyltrimethoxysilane,
Triethoxy-1H, 1H, 2H, 2H-tridecafluoro-n-octylsilane,
2-Cyanoethyltriethoxysilane,
Thienyltrimethoxysilane,
Pyridyltrimethoxysilane,
Frill triethoxysilane.
 本発明および本明細書において、一般式2で表されるケイ素系化合物には、一般式2で表される化合物の塩の形態も包含されるものとする。塩の形態としては、ナトリウム塩、カリウム塩等のアルカリ金属塩、マグネシウム塩等のアルカリ土類金属塩、アンモニウム塩等を挙げることができる。 In the present invention and the present specification, the silicon-based compound represented by the general formula 2 also includes the salt form of the compound represented by the general formula 2. Examples of the salt form include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt, and ammonium salts.
 また、一形態では、ケイ素系化合物としては、シリコーン系化合物を挙げることができる。シリコーン系化合物としては、ポリジメチルシロキサン、ポリアルキレンオキシド変性シリコーン、水素末端ポリジメチルシロキサン等の水素化ポリシロキサン、メチルヒドロシロキサン-ジメチルシロキサンコポリマー、ポリメチルヒドロシロキサン等を挙げることができる。シリコーン系化合物の分子量は、特に限定されるものではない。シリコーン系化合物の分子量は、一形態では、重量平均分子量として、100~30万程度であることが好ましい。液状のシリコーン系化合物としては、一形態では、表面処理効率の観点から、100~60,000cSt(センチストークス)の粘度(測定温度:25℃)のものが好ましい。ポリアルキレンオキシド変性シリコーンとしては、一形態では、アルキレンオキシド含有率が10~90質量%の範囲のものが好ましく、20~80質量%の範囲のものがより好ましい。水素化ポリシロキサンの場合、一形態では、メチルヒドロシロキサン単位の含有率が0.1~100mol%の範囲のものが好ましく、2~50mol%の範囲のものがより好ましい。 Further, in one form, as the silicon-based compound, a silicone-based compound can be mentioned. Examples of the silicone-based compound include polydimethylsiloxane, polyalkylene oxide-modified silicone, hydrogenated polysiloxane such as hydrogen-terminated polydimethylsiloxane, methylhydrosiloxane-dimethylsiloxane copolymer, and polymethylhydrosiloxane. The molecular weight of the silicone compound is not particularly limited. In one form, the molecular weight of the silicone-based compound is preferably about 1 to 300,000 as a weight average molecular weight. In one form, the liquid silicone compound preferably has a viscosity of 100 to 60,000 cSt (centistokes) (measurement temperature: 25 ° C.) from the viewpoint of surface treatment efficiency. In one form, the polyalkylene oxide-modified silicone preferably has an alkylene oxide content in the range of 10 to 90% by mass, more preferably 20 to 80% by mass. In the case of hydrogenated polysiloxane, in one form, the content of the methylhydrosiloxane unit is preferably in the range of 0.1 to 100 mol%, more preferably in the range of 2 to 50 mol%.
 以上説明したケイ素系化合物は、1種単独で使用してもよく、2種以上を任意の割合で組み合わせて使用することもできる。ケイ素系化合物(表面処理剤)を置換型六方晶フェライトの粉末と乾式混合または湿式混合することによって、置換型六方晶フェライトの粉体を表面処理し、粉体を構成する少なくとも一部の粒子の少なくとも一部の表面を被覆することができる。表面処理方法については、表面処理剤を用いる表面処理に関する公知技術を採用できる。表面処理における表面処理剤の使用量は、置換型六方晶フェライトの粉体の100質量部に対して、0.1~100質量部の範囲であることが好ましく、0.5~20質量部の範囲であることがより好ましい。 The silicon-based compounds described above may be used alone or in combination of two or more at any ratio. By surface-treating the substituted hexagonal ferrite powder by dry-mixing or wet-mixing the silicon-based compound (surface treatment agent) with the substituted hexagonal ferrite powder, at least a part of the particles constituting the powder At least a part of the surface can be coated. As the surface treatment method, a known technique for surface treatment using a surface treatment agent can be adopted. The amount of the surface treatment agent used in the surface treatment is preferably in the range of 0.1 to 100 parts by mass, and 0.5 to 20 parts by mass with respect to 100 parts by mass of the substituted hexagonal ferrite powder. More preferably, it is in the range.
 上記電波吸収性組成物および上記電波吸収体は、磁性粉体として、以上説明した表面処理剤で表面処理された置換型六方晶フェライトの粉体を含む。上記電波吸収性組成物および上記電波吸収体において、表面処理剤で表面処理された置換型六方晶フェライトの粉体の充填率は、特に限定されるものではない。例えば、上記充填率は、体積充填率として、35体積%以下であることができ、15~35体積%の範囲であることもできる。また、一形態では、上記体積充填率は、35体積%以上であることもできる。この場合、体積充填率は、例えば35~60体積%の範囲であることができ、35~50体積%の範囲であることが好ましい。体積充填率とは、電波吸収体については、電波吸収体の総体積100体積%に対する体積基準の含有量を意味する。電波吸収性組成物については、体積充填率とは、固形分(即ち溶剤を除く成分)の総体積100体積%に対する体積基準の含有量を意味する。 The radio wave absorbing composition and the radio wave absorber include, as magnetic powder, a powder of a substituted hexagonal ferrite surface-treated with the surface treatment agent described above. In the radio wave absorbing composition and the radio wave absorber, the filling rate of the powder of the substituted hexagonal ferrite surface-treated with the surface treatment agent is not particularly limited. For example, the filling rate can be 35% by volume or less as the volume filling rate, and can also be in the range of 15 to 35% by volume. Further, in one form, the volume filling rate can be 35% by volume or more. In this case, the volume filling factor can be, for example, in the range of 35 to 60% by volume, preferably in the range of 35 to 50% by volume. The volume filling rate means the volume-based content of the radio wave absorber with respect to 100% by volume of the total volume of the radio wave absorber. For the radio wave absorbing composition, the volume filling factor means the volume-based content of the solid content (that is, the component excluding the solvent) with respect to 100% by volume of the total volume.
 また、電波吸収性能の観点からは、上記電波吸収性組成物および上記電波吸収体において、表面処理剤で表面処理された置換型六方晶フェライトの粉体は、この粉体と後述する樹脂との合計質量(100質量%)に対して、10質量%以上含まれることが好ましく、30質量%以上含まれることがより好ましく、50質量%以上含まれることが更に好ましい。一方、薬品耐性の観点からは、上記電波吸収性組成物および上記電波吸収体において、表面処理剤で表面処理された置換型六方晶フェライトの粉体は、この粉体と後述する樹脂との合計質量(100質量%)に対して、90質量%以下含まれることが好ましく、80質量%以下含まれることがより好ましく、75質量%以下含まれることが更に好ましい。 From the viewpoint of radio wave absorption performance, in the radio wave absorbing composition and the radio wave absorber, the powder of the substituted hexagonal ferrite surface-treated with the surface treatment agent is a mixture of this powder and a resin described later. It is preferably contained in an amount of 10% by mass or more, more preferably 30% by mass or more, and further preferably 50% by mass or more based on the total mass (100% by mass). On the other hand, from the viewpoint of chemical resistance, in the radio wave absorbing composition and the radio wave absorber, the powder of the substituted hexagonal ferrite surface-treated with the surface treatment agent is the sum of this powder and the resin described later. It is preferably contained in an amount of 90% by mass or less, more preferably 80% by mass or less, and further preferably 75% by mass or less with respect to the mass (100% by mass).
<バインダー>
 上記電波吸収性組成物および上記電波吸収体は、上記磁性粉体とバインダーとを含む。バインダーとは樹脂であり、上記電波吸収性組成物および上記電波吸収体は、バインダーとして、ポリエステルおよびポリカーボネートからなる群から選択される1種以上の樹脂を含む。エステル結合を含む上記の樹脂を、ケイ素系化合物で表面処理された置換型六方晶フェライトの粉体と組み合わせることが、電波吸収体の電波吸収性能、耐振動疲労性および薬品耐性の向上に寄与し得る。
<Binder>
The radio wave absorbing composition and the radio wave absorber include the magnetic powder and the binder. The binder is a resin, and the radio wave absorbing composition and the radio wave absorber include one or more resins selected from the group consisting of polyester and polycarbonate as the binder. Combining the above resin containing an ester bond with a powder of a substituted hexagonal ferrite surface-treated with a silicon compound contributes to the improvement of the radio wave absorption performance, vibration fatigue resistance and chemical resistance of the radio wave absorber. obtain.
(ポリエステル)
 ポリエステルとしては、ジカルボン酸成分およびジオール成分から構成されるポリエステル、ヒドロキシカルボン酸成分から構成されるポリエステル等が挙げられる。
(polyester)
Examples of the polyester include a polyester composed of a dicarboxylic acid component and a diol component, a polyester composed of a hydroxycarboxylic acid component, and the like.
 ジカルボン酸成分としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、5-ナトリウムスルホイソフタル酸、シュウ酸、コハク酸、アジピン酸、セバシン酸、アゼライン酸、ドデカン二酸、ダイマー酸、無水マレイン酸、マレイン酸、フマール酸、イタコン酸、シトラコン酸、メサコン酸、シクロヘキサンジカルボン酸等が挙げられる。 The dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, oxalic acid, succinic acid, adipic acid, sebacic acid, azelaic acid, dodecanedioic acid, and dimer. Examples thereof include acids, maleic anhydride, maleic acid, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, and cyclohexanedicarboxylic acid.
 ジオール成分としては、炭素数2~20の脂肪族グリコール、例えば、エチレングリコール、1,3-プロパンジオール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、デカメチレングリコール、シクロヘキサンジメタノール、シクロヘキサンジオール、ダイマージオール等が挙げられる。また、ジオール成分としては、分子量200~100,000の長鎖グリコール、例えば、ポリエチレングリコール、ポリ1,3-プロピレングリコール、ポリ1,2-プロピレングリコール、ポリテトラメチレングリコール等が挙げられる。また、芳香族ジオキシ化合物、例えば、4,4’-ジヒドロキシビフェニル、ハイドロキノン、tert-ブチルハイドロキノン、ビスフェノールA、ビスフェノールS、ビスフェノールF等が挙げられる。また、ジオール成分としては、これらのエステル形成性誘導体も挙げられる。 As the diol component, an aliphatic glycol having 2 to 20 carbon atoms, for example, ethylene glycol, 1,3-propanediol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, 1, Examples thereof include 6-hexanediol, decamethylene glycol, cyclohexanedimethanol, cyclohexanediol, and dimerdiol. Examples of the diol component include long-chain glycols having a molecular weight of 200 to 100,000, such as polyethylene glycol, poly 1,3-propylene glycol, poly 1,2-propylene glycol, and polytetramethylene glycol. In addition, aromatic dioxy compounds such as 4,4'-dihydroxybiphenyl, hydroquinone, tert-butylhydroquinone, bisphenol A, bisphenol S, bisphenol F and the like can be mentioned. In addition, examples of the diol component include these ester-forming derivatives.
 ヒドロキシカルボン酸成分としては、グリコール酸、乳酸、ヒドロキシプロピオ酸、ヒドロキシ酪酸、2-ヒドロキシイソ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシピバル酸、ヒドロキシ安息香酸、p-ヒドロキシ安息香酸、6-ヒドロキシ-2-ナフトエ酸およびこれらのエステル形成性誘導体等が挙げられる。ラクトンとしては、カプロラクトン、バレロラクトン、プロピオラクトン、ウンデカラクトン、1,5-オキセパン-2-オン等が挙げられる。 As the hydroxycarboxylic acid components, glycolic acid, lactic acid, hydroxypropioic acid, hydroxybutyric acid, 2-hydroxyisobutyric acid, hydroxyvaleric acid, hydroxycaproic acid, hydroxypivalic acid, hydroxybenzoic acid, p-hydroxybenzoic acid, 6 Examples thereof include -hydroxy-2-naphthoic acid and ester-forming derivatives thereof. Examples of the lactone include caprolactone, valerolactone, propiolactone, undecalactone, 1,5-oxepane-2-one and the like.
 ポリエステルは、上記成分のみからなるポリマーであってもよく、他の成分が共重合したコポリマーであってもよく、更に、トリメリット酸、トリメシン酸、ピロメリット酸、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の3官能化合物成分を任意の量で含有していてもよい。 The polyester may be a polymer consisting of only the above components, a copolymer obtained by copolymerizing other components, and further, trimellitic acid, trimesic acid, pyromellitic acid, trimethylolpropane, glycerin, pentaerythritol. The trifunctional compound component such as the above may be contained in an arbitrary amount.
 また、ポリエステルは、一形態では、ポリエステルエラストマーであることも好ましい。ポリエステルエラストマーとは、高融点ポリエステルセグメント(ハードセグメント)と分子量400以上の低融点ポリマーセグメント(ソフトセグメント)とからなるコポリマーであり、ブロックコポリマーであることが好ましい。高融点ポリエステルセグメント(ハードセグメント)の融点は、200℃以上(例えば200~300℃)であることが好ましく、低融点ポリマーセグメント(ソフトセグメント)の融点は、80℃以下(例えば40~80℃)であることが好ましい。ハードセグメントの融点とは、このセグメントの成分のみで構成されるポリマーの融点をいう。この点は、ソフトセグメントの融点についても同様である。また、低融点ポリマーセグメント(ソフトセグメント)の分子量は、400~6000の範囲であることが好ましく、400~800の範囲であることがより好ましい。低融点ポリマーセグメント(ソフトセグメント)としては、ポリアルキレンオキシド等のポリエーテル、ポリ-ε-カプロラクトン等のポリラクトン等を挙げることができる。本発明および本明細書における「分子量」とは、ポリマー成分については、重量平均分子量をいうものとする。ポリエステルの分子量は、特に制限はない。一形態では、振動疲労性および薬品耐性が発現しやすい傾向にあるという観点から、その重量平均分子量(Mw)の下限は、5,000以上であることが好ましく、10,000以上であることがより好ましく、20,000以上であることが更に好ましい。また上限としては、一形態では、上記と同様の観点から、1,000,000以下であることが好ましく、500,000以下であることがより好ましい。本発明および本明細書において、「重量平均分子量」は、テトラヒドロフランを移動相とするゲルパーミエーションクロマトグラフィー法で分析される、標準ポリメタクリル酸メチルの分子量に対する相対的な分子量を意味する。 It is also preferable that the polyester is a polyester elastomer in one form. The polyester elastomer is a copolymer composed of a high melting point polyester segment (hard segment) and a low melting point polymer segment (soft segment) having a molecular weight of 400 or more, and is preferably a block copolymer. The melting point of the high melting point polyester segment (hard segment) is preferably 200 ° C. or higher (for example, 200 to 300 ° C.), and the melting point of the low melting point polymer segment (soft segment) is 80 ° C. or lower (for example, 40 to 80 ° C.). Is preferable. The melting point of a hard segment is the melting point of a polymer composed only of the components of this segment. This point also applies to the melting point of the soft segment. The molecular weight of the low melting point polymer segment (soft segment) is preferably in the range of 400 to 6000, and more preferably in the range of 400 to 800. Examples of the low melting point polymer segment (soft segment) include polyethers such as polyalkylene oxide and polylactones such as poly-ε-caprolactone. The "molecular weight" in the present invention and the present specification means the weight average molecular weight of the polymer component. The molecular weight of polyester is not particularly limited. In one form, the lower limit of the weight average molecular weight (Mw) is preferably 5,000 or more, and preferably 10,000 or more, from the viewpoint that vibration fatigue and drug resistance tend to be developed. More preferably, it is more preferably 20,000 or more. Further, as the upper limit, in one form, from the same viewpoint as described above, it is preferably 1,000,000 or less, and more preferably 500,000 or less. In the present invention and the present specification, "weight average molecular weight" means the molecular weight relative to the molecular weight of standard polymethyl methacrylate as analyzed by gel permeation chromatography using tetrahydrofuran as a mobile phase.
 ポリエステルの具体例としては、ポリエチレンテレフタレート、ポリプロピレンテレフタレート(ポリトリメチレンテレフタレート)、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリへキシレンテレフタレート、ポリエチレンナフタレート、ポリプロピレンナフタレート、ポリブチレンナフタレート、ポリブチレンサクシネート、ポリエチレンイソフタレート/テレフタレート、ポリプロピレンイソフタレート/テレフタレート、ポリブチレンイソフタレート/テレフタレート、ポリエチレンテレフタレート/ナフタレート、ポリプロピレンテレフタレート/ナフタレート、ポリブチレンテレフタレート/ナフタレート、ポリブチレンテレフタレート/デカンジカルボキシレート、ポリエチレンテレフタレート/シクロヘキサンジメチレンテレフタレート、ポリエーテルエステル(ポリエチレンテレフタレート/ポリエチレングリコール、ポリプロピレンテレフタレート/ポリエチレングリコール、ポリブチレンテレフタレート/ポリエチレングリコール、ポリエチレンテレフタレート/ポリテトラメチレングリコール、ポリプロピレンテレフタレート/ポリテトラメチレングリコール、ポリブチレンテレフタレート/ポリテトラメチレングリコール、ポリエチレンテレフタレート/イソフタレート/ポリテトラメチレングリコール、ポリプロピレンテレフタレート/イソフタレート/ポリテトラメチレングリコール、ポリブチレンテレフタレート/イソフタレート/ポリテトラメチレングリコール等)、ポリエチレンテレフタレート/サクシネート、ポリプロピレンテレフタレート/サクシネート、ポリブチレンテレフタレート/サクシネート、ポリエチレンテレフタレート/アジペート、ポリプロピレンテレフタレート/アジペート、ポリブチレンテレフタレート/アジペート、ポリエチレンテレフタレート/セバケート、ポリプロピレンテレフタレート/セバケート、ポリブチレンテレフタレート/セバケート、ポリエチレンテレフタレート/イソフタレート/アジペート、ポリプロピレンテレフタレート/イソフタレート/アジペート、ポリブチレンテレフタレート/イソフタレート/サクシネート、ポリブチレンテレフタレート/イソフタレート/アジペート、ポリブチレンテレフタレート/イソフタレート/セバケート、ビスフェノールA/テレフタル酸、ビスフェノールA/イソフタル酸、ビスフェノールA/テレフタル酸/イソフタル酸、ポリグリコール酸、ポリ乳酸、ポリ(3-ヒドロキシブタン酸)、ポリ(3-ヒドロキシバレリック酸)、ポリブチロラクトン、ポリカプロラクトン等が挙げられる。ポリエステルの具体例の表記における「/」は、コポリマーを表すために用いられている。 Specific examples of polyester include polyethylene terephthalate, polypropylene terephthalate (polytrimethylene terephthalate), polybutylene terephthalate, polycyclohexanedimethylene terephthalate, polyhexylene terephthalate, polyethylene naphthalate, polypropylene naphthalate, polybutylene naphthalate, and polybutylene sakushi. Nate, Polyethylene terephthalate / terephthalate, Polyethylene terephthalate / terephthalate, Polybutylene terephthalate / terephthalate, Polyethylene terephthalate / Naphthalate, Polyethylene terephthalate / Naphthalate, Polybutylene terephthalate / Naphthalate, Polybutylene terephthalate / Decandycarboxylate, Polyethylene terephthalate / Cyclohexane Dimethylene terephthalate, polyether ester (polyethylene terephthalate / polyethylene glycol, polypropylene terephthalate / polyethylene glycol, polybutylene terephthalate / polyethylene glycol, polyethylene terephthalate / polytetramethylene glycol, polypropylene terephthalate / polytetramethylene glycol, polybutylene terephthalate / polytetramethylene Glycol, polyethylene terephthalate / isophthalate / polytetramethylene glycol, polypropylene terephthalate / isophthalate / polytetramethylene glycol, polybutylene terephthalate / isophthalate / polytetramethylene glycol, etc.), polyethylene terephthalate / succinate, polypropylene terephthalate / succinate, polybutylene Terephthalate / succinate, polyethylene terephthalate / adipate, polypropylene terephthalate / adipate, polybutylene terephthalate / adipate, polyethylene terephthalate / sebacate, polypropylene terephthalate / sebacate, polybutylene terephthalate / sebacate, polyethylene terephthalate / isophthalate / adipate, polypropylene terephthalate / isophthalate / Adipate, Polyethylene terephthalate / Isophthalate / Succinate, Polybutylene terephthalate / Isophthalate / Adipate, Polybutylene terephthalate / Isophthalate / Sevacate, Bisphenol A / Terephthalic acid, Bispheno Examples thereof include lu A / isophthalic acid, bisphenol A / terephthalic acid / isophthalic acid, polyglycolic acid, polylactic acid, poly (3-hydroxybutanoic acid), poly (3-hydroxyvaleric acid), polybutyrolactone, polycaprolactone and the like. .. The "/" in the notation of specific examples of polyesters is used to represent copolymers.
 また、ポリエステルエラストマーの市販品の具体例としては、例えば、東レデュポン社製ハイトレル5557、ハイトレル7247、東洋紡社製ペルプレンS-6001等を挙げることができる。 Specific examples of commercially available polyester elastomers include Hytrel 5557 and Hytrel 7247 manufactured by Toray DuPont, and Perprene S-6001 manufactured by Toyobo Co., Ltd.
 また、ポリエステルとしては、ポリアリレートを挙げることもできる。ポリアリレートは、二価フェノール系化合物およびジカルボン酸成分から構成される芳香族ポリエステルであり、これら成分のみからなるポリマーであってもよく、他の成分が共重合したコポリマーであってもよい。ポリアリレートとしては、芳香族二価フェノール系化合物および芳香族ジカルボン酸成分から構成されるポリアリレートが挙げられる。芳香族ジカルボン酸成分としては、上記で例示した各種芳香族ジカルボン酸、例えばテレフタル酸、イソフタル酸等が挙げられる。芳香族二価フェノール系化合物については、ポリカーボネートに関する後述の記載を参照できる。ポリアリレートとしては、2,2-ビス(4-ヒドロキシフェニル)プロパンとテレフタル酸およびイソフタル酸からなる群から選ばれる芳香族ジカルボン酸との当量混合物から構成されるものが好ましい。
 ポリアリレートの市販品の具体例としては、例えば、ユニチカ社製Uポリマー U-8400Hを挙げることができる。
Further, as the polyester, polyarylate can be mentioned. The polyarylate is an aromatic polyester composed of a divalent phenolic compound and a dicarboxylic acid component, and may be a polymer composed of only these components or a copolymer in which other components are copolymerized. Examples of the polyarylate include a polyarylate composed of an aromatic divalent phenolic compound and an aromatic dicarboxylic acid component. Examples of the aromatic dicarboxylic acid component include various aromatic dicarboxylic acids exemplified above, such as terephthalic acid and isophthalic acid. For aromatic divalent phenolic compounds, the description below regarding polycarbonate can be referred to. The polyarylate is preferably composed of an equivalent mixture of 2,2-bis (4-hydroxyphenyl) propane and an aromatic dicarboxylic acid selected from the group consisting of terephthalic acid and isophthalic acid.
Specific examples of commercially available polyarylates include U-polymer U-8400H manufactured by Unitika Ltd.
(ポリカーボネート)
 ポリカーボネートは、複数のカーボネート基を含む樹脂である。ポリカーボネートとしては、脂肪族または芳香族のポリカーボネートを挙げることができる。芳香族ポリカーボネートとしては、芳香族二価フェノール系化合物とホスゲン、または炭酸ジエステルとを反応させることにより得られる芳香族ホモまたはコポリカーボネート等の芳香族ポリカーボネートが挙げられる。芳香族二価フェノール系化合物としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジフェニル)ブタン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジエチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1-フェニル-1,1-ビス(4-ヒドロキシフェニル)エタン等を1種単独または2種以上の混合物として使用することができる。一形態では、示差熱量計で測定されるガラス転移温度が100~155℃の範囲にある芳香族ポリカーボネートが好ましい。一形態では、ポリカーボネートの重量平均分子量は、ポリエステルに関して先に記載した範囲であることが好ましい。
 ポリカーボネートの市販品の具体例としては、例えば、帝人社製パンライト LV-2225Zを挙げることができる。
(Polycarbonate)
Polycarbonate is a resin containing a plurality of carbonate groups. Examples of the polycarbonate include aliphatic or aromatic polycarbonate. Examples of the aromatic polycarbonate include aromatic polycarbonates such as aromatic homo or copolycarbonate obtained by reacting an aromatic dihydric phenolic compound with phosgene or a carbonic acid diester. Examples of aromatic dihydric phenolic compounds include 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, and bis (4-hydroxyphenyl) methane. , 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2-bis (4-hydroxy-3,5-diphenyl) butane, 2,2-bis (4-Hydroxy-3,5-diethylphenyl) propane, 2,2-bis (4-hydroxy-3,5-diethylphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1-phenyl- 1,1-Bis (4-hydroxyphenyl) ethane and the like can be used alone or as a mixture of two or more. In one form, aromatic polycarbonate having a glass transition temperature in the range of 100 to 155 ° C. as measured by a differential calorimeter is preferred. In one form, the weight average molecular weight of the polycarbonate is preferably in the range previously described for the polyester.
Specific examples of commercially available polycarbonate products include Panlite LV-2225Z manufactured by Teijin Limited.
 一形態では、上記樹脂は、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリ乳酸、ポリブチレンサクシネート、ポリアリレート、ポリカーボネートおよびポリエステルエラストマーからなる群から選択される1種以上の樹脂であることができる。
 また、一形態では、上記樹脂は、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリブチレンナフタレート、ポリ乳酸、ポリブチレンサクシネート、ポリアリレートおよびポリエステルエラストマーからなる群から選ばれる1種以上の樹脂であることができる。
In one form, the resin is selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyarylate, polycarbonate and polyester elastomer. It can be one or more kinds of resins.
In one form, the resin is one or more resins selected from the group consisting of polyethylene naphthalate, polytrimethylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyarylate and polyester elastomer. be able to.
 上記電波吸収性組成物および上記電波吸収体は、上記樹脂を1種のみ含んでいてもよく、上記樹脂の2種以上を任意の割合で含んでいてもよい。上記電波吸収性組成物および上記電波吸収体における上記樹脂の充填率は、特に限定されず、例えば、体積充填率として、65体積%以上であることが好ましく、65体積%以上92体積%以下であることがより好ましく、65体積%以上85体積%以下であることが更に好ましい。上記電波吸収性組成物および上記電波吸収体が上記樹脂を2種以上含む場合、充填率とは、2種以上の樹脂の合計充填率をいうものとする。この点は、他の成分に関する充填率についても同様である。 The radio wave absorbing composition and the radio wave absorber may contain only one kind of the resin, or may contain two or more kinds of the resin in an arbitrary ratio. The filling rate of the resin in the radio wave absorbing composition and the radio wave absorber is not particularly limited, and for example, the volume filling rate is preferably 65% by volume or more, preferably 65% by volume or more and 92% by volume or less. It is more preferable that there is 65% by volume or more and 85% by volume or less. When the radio wave absorbing composition and the radio wave absorber contain two or more kinds of the above resins, the filling rate means the total filling rate of the two or more kinds of resins. This point is the same for the filling rate for other components.
<添加剤>
 上記電波吸収性組成物および上記電波吸収体は、ケイ素系化合物で表面処理された置換型六方晶フェライトの粉体および上記樹脂を含み、任意に1種以上の添加剤を含んでいてもよい。添加剤としては、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等が挙げられる。添加剤は、1つの成分が2つ以上の機能を担うものであってもよい。上記電波吸収性組成物および上記電波吸収体は、添加剤として、市販品または公知の方法で製造されるものを任意の充填率で含むことができる。
<Additives>
The radio wave absorbing composition and the radio wave absorber include a powder of substituted hexagonal ferrite surface-treated with a silicon compound and the resin, and may optionally contain one or more additives. Examples of the additive include a dispersant, a dispersion aid, a fungicide, an antistatic agent, an antioxidant and the like. The additive may have one component having two or more functions. The radio wave absorbing composition and the radio wave absorber may contain a commercially available product or a product manufactured by a known method as an additive at an arbitrary filling rate.
<電波吸収性組成物および電波吸収体の製造方法>
 上記電波吸収性組成物および上記電波吸収体の製造方法は、特に限定されない。上記電波吸収性組成物は、上記磁性粉体と、上記樹脂と、必要に応じて、溶剤、添加剤等とを用いて、公知の方法により製造できる。例えば、上記電波吸収体は、上記電波吸収性組成物を成形した成形品であることができる。上記電波吸収性組成物は、例えば、上記磁性粉体および上記樹脂、更に必要に応じて、溶剤、添加剤等を混合した混合物を、加熱しながら混練して混練物として調製することができる。混練物は、例えばペレットとして得ることができる。混練物を、押し出し成形、プレス成形、射出成形、インモールド成形等の公知の成形方法によって所望の形状に成形することにより、電波吸収体(成形品)を得ることができる。電波吸収体の形状は特に限定されず、板状、線形状等の任意の形状であることができる。「板状」には、シート状およびフィルム状が包含される。板状の電波吸収体は、電波吸収板、電波吸収シート、電波吸収フィルム等と呼ぶこともできる。上記電波吸収体は、単一組成の電波吸収体(例えば、単層の電波吸収板)であってもよく、組成が異なる2種以上の部分の組み合わせ(例えば積層体)であってもよい。また、上記電波吸収体は、平面形状を有するものであってもよく、立体形状を有するものであってもよく、平面形状を有する部分と立体形状を有する部分との組み合わせであってもよい。平面形状は、例えば、シート状、フィルム状等の形状が挙げられる。立体形状としては、例えば、筒状(円筒状、角筒状等)、ホーン状、箱状(例えば、面の少なくとも1つが開放されている)等が挙げられる。
<Manufacturing method of radio wave absorbing composition and radio wave absorber>
The method for producing the radio wave absorbing composition and the radio wave absorber is not particularly limited. The radio wave absorbing composition can be produced by a known method using the magnetic powder, the resin, and if necessary, a solvent, an additive, or the like. For example, the radio wave absorber can be a molded product obtained by molding the radio wave absorbing composition. The radio wave absorbing composition can be prepared as a kneaded product by, for example, kneading a mixture of the magnetic powder, the resin, and, if necessary, a solvent, additives, and the like while heating. The kneaded product can be obtained as pellets, for example. A radio wave absorber (molded product) can be obtained by molding the kneaded product into a desired shape by a known molding method such as extrusion molding, press molding, injection molding, or in-mold molding. The shape of the radio wave absorber is not particularly limited, and may be any shape such as a plate shape or a linear shape. "Plate-shaped" includes sheet-shaped and film-shaped. The plate-shaped radio wave absorber can also be called a radio wave absorbing plate, a radio wave absorbing sheet, a radio wave absorbing film, or the like. The radio wave absorber may be a radio wave absorber having a single composition (for example, a single-layer radio wave absorber), or may be a combination of two or more parts having different compositions (for example, a laminated body). Further, the radio wave absorber may have a planar shape, may have a three-dimensional shape, or may be a combination of a portion having a planar shape and a portion having a three-dimensional shape. Examples of the planar shape include a sheet shape and a film shape. Examples of the three-dimensional shape include a tubular shape (cylindrical shape, square tubular shape, etc.), a horn shape, a box shape (for example, at least one of the surfaces is open) and the like.
 例えば、電波吸収体の厚みは、取扱いの容易性の観点からは、20.0mm以下であることが好ましく、10.0mm以下であることがより好ましく、5.0mm以下であることが更に好ましい。機械的特性の観点からは、厚みは1.0mm以上であることが好ましく、2.0mm以上であることがより好ましい。電波吸収体の厚みを調整することにより、例えば後述の透過減衰量を制御することができる。なお電波吸収体が積層体である場合、厚みとは、積層体を構成する電波吸収体の合計厚みをいうものとする。電波吸収体の厚みは、デジタル測長機を用いて測定される値であり、具体的には、無作為に選択した9箇所において測定された測定値の算術平均である。 For example, the thickness of the radio wave absorber is preferably 20.0 mm or less, more preferably 10.0 mm or less, and further preferably 5.0 mm or less, from the viewpoint of ease of handling. From the viewpoint of mechanical properties, the thickness is preferably 1.0 mm or more, and more preferably 2.0 mm or more. By adjusting the thickness of the radio wave absorber, for example, the transmission attenuation amount described later can be controlled. When the radio wave absorber is a laminated body, the thickness means the total thickness of the radio wave absorbers constituting the laminated body. The thickness of the radio wave absorber is a value measured using a digital length measuring device, and specifically, is an arithmetic mean of the measured values measured at nine randomly selected points.
 電波吸収性組成物は、溶剤を含んでもよく、含まなくてもよい。電波吸収性組成物が溶剤を含む場合、溶剤としては、特に限定されず、例えば、水、有機溶剤、または水と有機溶剤との混合溶剤が挙げられる。
 有機溶剤としては、メタノール、エタノール、n-プロパノール、i-プロパノール、メトキシプロパノール等のアルコール類、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、アセトニトリル、酢酸エチル、トルエン等が挙げられる。これらの中でも、溶剤としては、乾燥速度の観点から、ケトン類が好ましく、シクロヘキサノンがより好ましい。電波吸収性組成物が溶剤を含む場合、組成物における溶剤の含有量は、特に限定されず、電波吸収体の製造方法に応じて決定すればよい。
The radio wave absorbing composition may or may not contain a solvent. When the radio wave absorbing composition contains a solvent, the solvent is not particularly limited, and examples thereof include water, an organic solvent, and a mixed solvent of water and an organic solvent.
Examples of the organic solvent include alcohols such as methanol, ethanol, n-propanol, i-propanol and methoxypropanol, ketones such as acetone, methyl ethyl ketone and cyclohexanone, tetrahydrofuran, acetonitrile, ethyl acetate and toluene. Among these, as the solvent, ketones are preferable, and cyclohexanone is more preferable, from the viewpoint of drying speed. When the radio wave absorbing composition contains a solvent, the content of the solvent in the composition is not particularly limited and may be determined according to the method for producing the radio wave absorber.
 上記電波吸収性組成物は、上記成分を混合することにより調製できる。混合方法は特に限定されず、例えば、撹拌により混合する方法が挙げられる。撹拌手段としては、公知の撹拌装置を用いることができる。例えば、撹拌装置としては、パドルミキサー、インペラーミキサー等のミキサーが挙げられる。撹拌時間は、撹拌装置の種類、電波吸収性組成物の組成等に応じて設定すればよい。 The radio wave absorbing composition can be prepared by mixing the above components. The mixing method is not particularly limited, and examples thereof include a method of mixing by stirring. As the stirring means, a known stirring device can be used. For example, examples of the stirring device include mixers such as a paddle mixer and an impeller mixer. The stirring time may be set according to the type of stirring device, the composition of the radio wave absorbing composition, and the like.
 上記電波吸収体の製造方法の一形態としては、先に例示したような公知の成形方法によって上記電波吸収性組成物を所望の形状に成形する方法を挙げることができる。 
 また、上記電波吸収体の製造方法の他の一形態としては、上記電波吸収性組成物を支持体に塗布し、電波吸収層として電波吸収体を製造する方法を挙げることができる。ここで使用される支持体は、電波吸収体が電波吸収性を付与すべき物品に組み込まれる前に除去されてもよく、除去せずに電波吸収体とともに物品に組み込まれてもよい。
As one form of the method for producing the radio wave absorber, a method of molding the radio wave absorbing composition into a desired shape by a known molding method as exemplified above can be mentioned.
Further, as another form of the method for manufacturing the radio wave absorber, a method of applying the radio wave absorbing composition to the support and manufacturing the radio wave absorber as the radio wave absorbing layer can be mentioned. The support used here may be removed before the radio wave absorber is incorporated into the article to which the radio wave absorber should be imparted, or may be incorporated into the article together with the radio wave absorber without being removed.
 支持体としては、特に限定されず、公知の支持体を用いることができる。支持体としては、例えば、金属板(アルミニウム、亜鉛、銅等の金属の板)、ガラス板、プラスチックシート〔ポリエステル(ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート等)、ポリエチレン(直鎖状低密度ポリエチレン、低密度ポリエチレン、高密度ポリエチレン等)、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリイミド、ポリアミド、ポリアミドイミド、ポリスルホン、ポリ塩化ビニル、ポリアクリロニトリル、ポリフェニレンスルフィド、ポリエーテルイミド、ポリエーテルスルホン、ポリビニルアセタール、アクリル樹脂等のシート〕、上記で金属板について例示した金属がラミネートされまたは蒸着されたプラスチックシート等が挙げられる。プラスチックシートは、二軸延伸されていることが好ましい。支持体の形状、構造、サイズ等は、適宜選択できる。
 支持体の形状としては、例えば、板状が挙げられる。支持体の構造は、単層構造であってもよいし、2層以上の積層構造であってもよい。支持体のサイズは、電波吸収体のサイズ等に応じて適宜選択できる。支持体の厚みは、通常、0.01mm~10mm程度であり、例えば、取り扱い性の観点から、0.02mm~3mmであることが好ましく、0.05mm~1mmであることがより好ましい。
The support is not particularly limited, and a known support can be used. Examples of the support include metal plates (metal plates such as aluminum, zinc, and copper), glass plates, plastic sheets [polyester (polyester terephthalate, polyethylene naphthalate, polybutylene terephthalate, etc.), polyethylene (linear low density). Polyethylene, low density polyethylene, high density polyethylene, etc.), polypropylene, polystyrene, polycarbonate, polyimide, polyamide, polyamideimide, polysulfone, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, polyetherimide, polyethersulfone, polyvinylacetal, acrylic resin Etc.], plastic sheets on which the metal exemplified above for the metal plate is laminated or vapor-deposited, and the like can be mentioned. The plastic sheet is preferably biaxially stretched. The shape, structure, size, etc. of the support can be appropriately selected.
Examples of the shape of the support include a plate shape. The structure of the support may be a single-layer structure or a laminated structure of two or more layers. The size of the support can be appropriately selected according to the size of the radio wave absorber and the like. The thickness of the support is usually about 0.01 mm to 10 mm, for example, from the viewpoint of handleability, it is preferably 0.02 mm to 3 mm, and more preferably 0.05 mm to 1 mm.
 支持体上に上記電波吸収性組成物を塗布する方法は、特に限定されず、例えば、ダイコーター、ナイフコーター、アプリケーター等を用いる方法が挙げられる。上記電波吸収性組成物を塗布して形成された塗布膜を乾燥させる方法は、特に限定されず、例えば、オーブン等の公知の加熱装置を用いる方法が挙げられる。乾燥温度および乾燥時間は、特に限定されない。一例としては、乾燥温度は70℃~90℃の範囲であることができ、乾燥時間は1時間~3時間の範囲であることができる。 The method of applying the radio wave absorbing composition on the support is not particularly limited, and examples thereof include a method using a die coater, a knife coater, an applicator, and the like. The method for drying the coating film formed by applying the radio wave absorbing composition is not particularly limited, and examples thereof include a method using a known heating device such as an oven. The drying temperature and drying time are not particularly limited. As an example, the drying temperature can be in the range of 70 ° C. to 90 ° C. and the drying time can be in the range of 1 hour to 3 hours.
 上記電波吸収体は、電波吸収性を付与することが望まれる各種物品に組み込むことができる。例えば、板状の電波吸収体は、そのまま、または任意の部分で湾曲させる等して任意の形態で物品に組み込むことができる。また、射出成形等により所望の形状に調整して物品に組み込むこともできる。 The radio wave absorber can be incorporated into various articles for which it is desired to impart radio wave absorption. For example, the plate-shaped radio wave absorber can be incorporated into an article in any form as it is or by bending it at an arbitrary portion. Further, it can be adjusted to a desired shape by injection molding or the like and incorporated into an article.
 優れた電波吸収性能を有する電波吸収体は、レーダーの認識精度向上のために有用である。電波吸収性能の指標の一例としては、透過減衰量を挙げることができる。例えば、上記電波吸収体の透過減衰量は、6.0dB以上であることができる。レーダーの認識精度向上のためには、レーダーの指向性を高めることが望ましい。透過減衰量が高いことは、レーダーの指向性向上に寄与し得る。レーダーの指向性の更なる向上の観点からは、上記電波吸収体の透過減衰量は、8.0dB以上であることが好ましく、8.5dB以上であることがより好ましく、9.0dB以上であることが更に好ましく、10.0dB以上であることが一層好ましい。また、上記電波吸収体の透過減衰量は、例えば、15.0dB以下、14.5dB以下、14.0dB以下、13.5dB以下、13.0dB以下、12.5dB以下または12.0dB以下であることができる。ただしレーダーの指向性向上の観点からは、電波吸収体の透過減衰量が高いことは好ましい。したがって、上記電波吸収体の透過減衰量は、上記で例示した値を上回ってもよい。
 更に、上記電波吸収体の反射減衰量は、例えば、6.0dB以上であることができる。レーダーの認識精度向上のためには、不要な電波成分を電波吸収体によって除去または低減することにより、対象物からの電波をレーダーが選択的に受信する選択性を高めることが望ましい。反射減衰量が高いことは、不要な電波成分を除去または低減することに寄与し得る。この点から、上記電波吸収体の反射減衰量は、8.0dB以上であることが好ましく、8.5dB以上であることがより好ましく、9.0dB以上であることが更に好ましく、10.0dB以上であることが一層好ましい。また、上記電波吸収体の反射減衰量は、例えば、18.0dB以下、17.5dB以下、17.0dB以下、16.5dB以下、16.0dB以下、15.5dB以下または15.0dB以下であることができる。ただし不要な電波成分を除去または低減する観点からは、電波吸収体の反射減衰量が高いことは好ましい。したがって、上記電波吸収体の反射減衰量は、上記で例示した値を上回ってもよい。
A radio wave absorber having excellent radio wave absorption performance is useful for improving the recognition accuracy of radar. As an example of the index of the radio wave absorption performance, the transmission attenuation amount can be mentioned. For example, the transmission attenuation of the radio wave absorber can be 6.0 dB or more. In order to improve the recognition accuracy of the radar, it is desirable to increase the directivity of the radar. A high transmission attenuation can contribute to improving the directivity of the radar. From the viewpoint of further improving the directivity of the radar, the transmission attenuation of the radio wave absorber is preferably 8.0 dB or more, more preferably 8.5 dB or more, and 9.0 dB or more. More preferably, it is more preferably 10.0 dB or more. The transmission attenuation of the radio wave absorber is, for example, 15.0 dB or less, 14.5 dB or less, 14.0 dB or less, 13.5 dB or less, 13.0 dB or less, 12.5 dB or less, or 12.0 dB or less. be able to. However, from the viewpoint of improving the directivity of the radar, it is preferable that the transmission attenuation of the radio wave absorber is high. Therefore, the transmission attenuation of the radio wave absorber may exceed the value exemplified above.
Further, the amount of reflection attenuation of the radio wave absorber can be, for example, 6.0 dB or more. In order to improve the recognition accuracy of the radar, it is desirable to enhance the selectivity of the radar to selectively receive the radio waves from the object by removing or reducing unnecessary radio wave components by the radio wave absorber. A high amount of reflection attenuation can contribute to removing or reducing unnecessary radio wave components. From this point, the amount of reflection attenuation of the radio wave absorber is preferably 8.0 dB or more, more preferably 8.5 dB or more, further preferably 9.0 dB or more, and 10.0 dB or more. Is more preferable. The amount of reflection attenuation of the radio wave absorber is, for example, 18.0 dB or less, 17.5 dB or less, 17.0 dB or less, 16.5 dB or less, 16.0 dB or less, 15.5 dB or less, or 15.0 dB or less. be able to. However, from the viewpoint of removing or reducing unnecessary radio wave components, it is preferable that the amount of reflection attenuation of the radio wave absorber is high. Therefore, the amount of reflection attenuation of the radio wave absorber may exceed the value exemplified above.
 ところで、近年注目されているレーダーである車載用レーダーは、ミリ波の周波数帯域の電波を利用するレーダーである。ミリ波とは、30GHz~300GHzの周波数の電磁波である。上記電波吸収体は、電波の周波数、即ち3テラヘルツ(THz)以下の周波数帯域にある1つ以上の周波数について、上記範囲の透過減衰量および反射減衰量を示すことが好ましい。上記電波吸収体が上記範囲の透過減衰量および反射減衰量を示す周波数は、車載用レーダーの認識精度向上のための有用性の観点からは、ミリ波の周波数帯域、即ち30GHz~300GHzの周波数帯域にある1つ以上の周波数であることが好ましく、60GHz~90GHzの周波数帯域にある1つ以上の周波数であることがより好ましく、75GHz~85GHzの周波数帯域にある1つ以上の周波数であることが更に好ましい。一例として、上記電波吸収体は、周波数76.5GHzにおける透過減衰量および周波数76.5GHzにおける反射減衰量が上記範囲の電波吸収体であることができる。かかる電波吸収体は、車載用のミリ波レーダーのサイドローブ低減のために、車載用レーダーにおいて、電波送受信ユニットの正面側(外部から入射する電波の入射側)に組み込む電波吸収体として好適である。 By the way, the in-vehicle radar, which has been attracting attention in recent years, is a radar that uses radio waves in the millimeter wave frequency band. Millimeter waves are electromagnetic waves with a frequency of 30 GHz to 300 GHz. The radio wave absorber preferably exhibits a transmission attenuation amount and a reflection attenuation amount in the above range with respect to the frequency of the radio wave, that is, one or more frequencies in the frequency band of 3 terahertz (THz) or less. The frequency at which the radio wave absorber indicates the transmission attenuation amount and the reflection attenuation amount in the above range is a millimeter wave frequency band, that is, a frequency band of 30 GHz to 300 GHz from the viewpoint of usefulness for improving the recognition accuracy of the in-vehicle radar. It is preferably one or more frequencies in the above, more preferably one or more frequencies in the frequency band of 60 GHz to 90 GHz, and more preferably one or more frequencies in the frequency band of 75 GHz to 85 GHz. More preferred. As an example, the radio wave absorber can be a radio wave absorber having a transmission attenuation amount at a frequency of 76.5 GHz and a reflection attenuation amount at a frequency of 76.5 GHz in the above range. Such a radio wave absorber is suitable as a radio wave absorber to be incorporated in the front side (incoming side of radio waves incident from the outside) of the radio wave transmitting / receiving unit in the in-vehicle radar in order to reduce the side lobe of the in-vehicle millimeter-wave radar. ..
 本発明および本明細書における「透過減衰量」とは、自由空間法により、入射角度を0°として、雰囲気温度15~35℃の測定環境下においてSパラメータの測定を行い、SパラメータのS21として求められる値である。「反射減衰量」とは、同様の測定により、SパラメータのS11として求められる値である。測定は、公知のベクトルネットワークアナライザおよびホーンアンテナを使用して行うことができる。測定方法の具体例としては、後述の実施例に記載の方法を挙げることができる。 The "permeation attenuation" in the present invention and the present specification is defined as S-parameter S21 by measuring the S-parameters in a measurement environment with an ambient temperature of 15 to 35 ° C. with an incident angle of 0 ° by the free space method. This is the required value. The "reflection attenuation amount" is a value obtained as S11 of the S parameter by the same measurement. The measurement can be performed using a known vector network analyzer and horn antenna. Specific examples of the measurement method include the methods described in Examples described later.
 ところで、電波吸収体については、電波吸収体に電波が入射する面とは反対の面(いわゆる裏面)に金属層を積層することが行われることがある。このような電波吸収体は、整合型電波吸収体と呼ばれる。整合型電波吸収体は、金属層を設けて位相差吸収を利用することにより反射減衰特性を高めることができる。これに対し、上記電波吸収体は、一形態では、電波吸収体そのものが優れた反射減衰特性を有することができる。詳しくは、上記電波吸収体は、一形態では、金属層に依らずに高い反射減衰量を示すことができる。裏面に金属層を積層せず使用される電波吸収体は、一般に透過型電波吸収体と呼ばれる。磁性粉体とバインダーとを含む従来の透過型電波吸収体では、一般に、透過減衰量を高めようとすると反射減衰量が低下する傾向があった。これに対し、上記電波吸収体は、一形態では、金属層に依らずに高い反射減衰量を示すことができ、かつ高い透過減衰量を示すことができる。
 本明細書に記載の「金属層」は、金属を含む層であって、電波を実質的に反射する層を意味する。ただし、磁性粉体およびバインダーを含む上記電波吸収体が金属を含む場合、そのような電波吸収体は、上記の金属層には該当しないものとする。ここで、「電波を実質的に反射する」とは、例えば、電波吸収体の裏面に金属層を積層した状態で電波吸収体に電波を入射させたときに入射した電波の90%以上を反射することを意味する。金属層の形態としては、金属板、金属箔等が挙げられる。例えば、電波吸収体の裏面に蒸着によって形成された金属層が挙げられる。上記電波吸収体は、一形態では、裏面に金属層を設けずに使用することができる。金属層なしで使用できることは、電波吸収体のリサイクルの観点およびコスト面から好ましい。また、裏面に金属層を積層して使用される電波吸収体は、金属層の劣化、金属層と電波吸収体との剥離等により品質が低下する場合がある。裏面に金属層を設けずに使用できることは、そのような品質低下を生じることがない点でも好ましい。
By the way, as for the radio wave absorber, a metal layer may be laminated on a surface (so-called back surface) opposite to the surface on which the radio wave is incident on the radio wave absorber. Such a radio wave absorber is called a matched radio wave absorber. In the matched radio wave absorber, the reflection attenuation characteristic can be enhanced by providing a metal layer and utilizing the phase difference absorption. On the other hand, in one form of the radio wave absorber, the radio wave absorber itself can have excellent reflection attenuation characteristics. Specifically, in one form, the radio wave absorber can exhibit a high amount of reflection attenuation regardless of the metal layer. A radio wave absorber used without laminating a metal layer on the back surface is generally called a transmission type radio wave absorber. In the conventional transmission type radio wave absorber containing the magnetic powder and the binder, in general, the reflection attenuation tends to decrease when the transmission attenuation is increased. On the other hand, in one form, the radio wave absorber can exhibit a high reflection attenuation amount and a high transmission attenuation amount regardless of the metal layer.
As used herein, the term "metal layer" means a layer that contains metal and that substantially reflects radio waves. However, when the radio wave absorber containing the magnetic powder and the binder contains a metal, such a radio wave absorber does not correspond to the metal layer. Here, "substantially reflecting radio waves" means, for example, that 90% or more of the incident radio waves are reflected when the radio waves are incident on the radio wave absorber in a state where a metal layer is laminated on the back surface of the radio wave absorber. Means to do. Examples of the form of the metal layer include a metal plate and a metal foil. For example, a metal layer formed by vapor deposition on the back surface of the radio wave absorber can be mentioned. In one form, the radio wave absorber can be used without providing a metal layer on the back surface. It is preferable that it can be used without a metal layer from the viewpoint of recycling the radio wave absorber and from the viewpoint of cost. Further, the quality of the radio wave absorber used by laminating a metal layer on the back surface may deteriorate due to deterioration of the metal layer, peeling of the metal layer and the radio wave absorber, and the like. It is preferable that it can be used without providing a metal layer on the back surface from the viewpoint that such quality deterioration does not occur.
 以下に、本発明を実施例に基づき説明する。ただし本発明は実施例に示す態様に限定されるものではない。以下に記載の工程および評価は、特記しない限り、雰囲気温度23℃±1℃の環境において行った。 The present invention will be described below based on examples. However, the present invention is not limited to the embodiments shown in the examples. Unless otherwise specified, the steps and evaluations described below were performed in an environment with an ambient temperature of 23 ° C. ± 1 ° C.
[磁性粉体の作製]
<磁性粉体A-1(置換型六方晶ストロンチウムフェライトの粉体)の作製>
 液温35℃に保温した蒸留水400.0gを撹拌し、撹拌中の水に、塩化鉄(III)六水和物〔FeCl・6HO〕57.0g、塩化ストロンチウム六水和物〔SrCl・6HO〕27.8gおよび塩化アルミニウム六水和物〔AlCl・6HO〕10.7gを水216.0gに溶解して調製した原料水溶液と、濃度5mol/Lの水酸化ナトリウム水溶液181.3gに水113.0gを加えて調製した溶液と、をそれぞれ10mL/minの流速にて、添加のタイミングを同じにして全量添加し、第1の液を得た。
 次いで、第1の液の液温を25℃に変更した後、この液温を保持した状態で、濃度1mol/Lの水酸化ナトリウム水溶液24.7gを添加し、第2の液を得た。得られた第2の液のpHは、9.0であった。第2の液のpHは、卓上型pHメーター(堀場製作所社製F-71)を用いて測定した。
 次いで、第2の液を15分間撹拌し、マグネトプランバイト型六方晶フェライトの前駆体となる反応生成物を含む液(前駆体含有液)を得た。
 次いで、前駆体含有液に対し、遠心分離処理〔回転数:3000rpm、回転時間:10分間〕を3回行い、得られた沈殿物を回収した。
 次いで、回収した沈殿物を内部雰囲気温度80℃のオーブン内で12時間乾燥させて、前駆体の粉体を得た。
 次いで、前駆体の粉体をマッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1100℃に設定し、4時間焼成することにより焼成体を得た。
 次いで、得られた焼成体を、粉砕機としてカッターミル粉砕機(大阪ケミカル社製ワンダークラッシャー WC-3)を使用し、この粉砕機の可変速度ダイアルを「5」(回転数:約10000~15000rpm)に設定して90秒間粉砕した。
 以上により、磁性粉体A-1を得た。
[Preparation of magnetic powder]
<Preparation of magnetic powder A-1 (powder of substituted hexagonal strontium ferrite)>
Stirred distilled water 400.0g was kept in liquid temperature 35 ° C., the water in the stirring, the iron (III) chloride hexahydrate [FeCl 3 · 6H 2 O] 57.0 g, strontium chloride hexahydrate [ a raw solution of SrCl 2 · 6H 2 O] 27.8g and aluminum hexahydrate [AlCl 3 · 6H 2 O] 10.7g chloride was prepared by dissolving in water 216.0 g, hydroxide concentration 5 mol / L A total amount of a solution prepared by adding 113.0 g of water to 181.3 g of an aqueous sodium solution was added at a flow rate of 10 mL / min at the same timing of addition to obtain a first solution.
Next, after changing the liquid temperature of the first liquid to 25 ° C., 24.7 g of a sodium hydroxide aqueous solution having a concentration of 1 mol / L was added while maintaining this liquid temperature to obtain a second liquid. The pH of the obtained second liquid was 9.0. The pH of the second liquid was measured using a desktop pH meter (F-71 manufactured by HORIBA, Ltd.).
Next, the second liquid was stirred for 15 minutes to obtain a liquid (precursor-containing liquid) containing a reaction product serving as a precursor of magnetoplumbite-type hexagonal ferrite.
Next, the precursor-containing liquid was subjected to a centrifugation treatment [rotation speed: 3000 rpm, rotation time: 10 minutes] three times, and the obtained precipitate was recovered.
Then, the recovered precipitate was dried in an oven having an internal ambient temperature of 80 ° C. for 12 hours to obtain a precursor powder.
Next, the powder of the precursor was placed in a muffle furnace, the temperature in the furnace was set to 1100 ° C. in an air atmosphere, and the mixture was fired for 4 hours to obtain a fired product.
Next, the obtained fired body was used as a crusher using a cutter mill crusher (Wonder Crusher WC-3 manufactured by Osaka Chemical Co., Ltd.), and the variable speed dial of this crusher was set to "5" (rotation speed: about 10,000 to 15,000 rpm). ) And crushed for 90 seconds.
From the above, magnetic powder A-1 was obtained.
<磁性の粉体A-2~A-7(置換型六方晶ストロンチウムフェライトの粉体)の作製>
 第2の液のpHを、後述の表1に示すpHに調整した点以外、磁性粉体A1の作製と同様の操作を行い、磁性粉体A-2~A-7を得た。
<Preparation of magnetic powders A-2 to A-7 (powder of substituted hexagonal strontium ferrite)>
The same operation as in the production of the magnetic powder A1 was carried out except that the pH of the second liquid was adjusted to the pH shown in Table 1 described later, to obtain magnetic powders A-2 to A-7.
<磁性粉体A-8(無置換型六方晶ストロンチウムフェライトの粉体)の作製>
 炭酸ストロンチウム[SrCO]15.02g、酸化鉄[Fe]90.24gをメノウ乳鉢で混合および粉砕し、マグネトプランバイト型六方晶フェライトの前駆体の粉体を得た。
 次いで、前駆体の粉体をマッフル炉の中に入れ、大気雰囲気下において、炉内の温度を1200℃に設定し、4時間焼成することにより、焼成体を得た。
 次いで、得られた焼成体を、粉砕機としてカッターミル粉砕機(大阪ケミカル社製ワンダークラッシャー WC-3)を使用し、この粉砕機の可変速度ダイアルを「5」(回転数:約10000~15000rpm)に設定して90秒間粉砕した。
 以上により、粉体A-8を得た。
<Preparation of magnetic powder A-8 (unsubstituted hexagonal strontium ferrite powder)>
15.02 g of strontium carbonate [SrCO 3 ] and 90.24 g of iron oxide [Fe 2 O 3 ] were mixed and pulverized in a Menou mortar to obtain a powder of a precursor of a magnetoplumbite-type hexagonal ferrite.
Next, the precursor powder was placed in a muffle furnace, the temperature inside the furnace was set to 1200 ° C. in an air atmosphere, and the mixture was fired for 4 hours to obtain a fired product.
Next, the obtained fired body was used as a crusher using a cutter mill crusher (Wonder Crusher WC-3 manufactured by Osaka Chemical Co., Ltd.), and the variable speed dial of this crusher was set to "5" (rotation speed: about 10,000 to 15,000 rpm). ) And crushed for 90 seconds.
From the above, powder A-8 was obtained.
<結晶構造の確認>
 上記の各磁性粉体を構成する磁性体の結晶構造を、X線回折分析により確認した。測定装置としては、粉末X線回折装置であるPANalytical社のX’Pert Proを使用した。測定条件を以下に示す。
-測定条件-
 X線源:CuKα線
〔波長:1.54Å(0.154nm)、出力:40mA、45kV〕
 スキャン範囲:20°<2θ<70°
 スキャン間隔:0.05°
 スキャンスピード:0.75°/min
<Confirmation of crystal structure>
The crystal structure of the magnetic material constituting each of the above magnetic powders was confirmed by X-ray diffraction analysis. As the measuring device, X'Pert Pro manufactured by PANalytical Co., Ltd., which is a powder X-ray diffractometer, was used. The measurement conditions are shown below.
-Measurement condition-
X-ray source: CuKα ray [wavelength: 1.54 Å (0.154 nm), output: 40 mA, 45 kV]
Scan range: 20 ° <2θ <70 °
Scan interval: 0.05 °
Scan speed: 0.75 ° / min
 上記X線回折分析の結果、磁性粉体A-1~A-8は、マグネトプランバイト型の結晶構造を有しており、マグネトプランバイト型以外の結晶構造を含まない単相のマグネトプランバイト型六方晶フェライトの粉体であることが確認された。 As a result of the above X-ray diffraction analysis, the magnetic powders A-1 to A-8 have a magnetoplumbite-type crystal structure and do not contain a crystal structure other than the magnetoplumbite-type single-phase magnetoplumbite. It was confirmed that it was a powder of type hexagonal ferrite.
<組成の確認>
 上記の各磁性粉体を構成する磁性体の組成を、高周波誘導結合プラズマ発光分光分析により確認した。具体的には、以下の方法により確認した。
 磁性粉体12mgと濃度4mol/Lの塩酸水溶液10mLとを入れた容器ビーカーを、設定温度120℃のホットプレート上に3時間保持し、溶解液を得た。得られた溶解液に純水30mLを加えた後、フィルタ孔径0.1μmのメンブレンフィルタを用いてろ過した。このようにして得られたろ液の元素分析を、高周波誘導結合プラズマ発光分光分析装置〔島津製作所社製ICPS-8100〕を用いて行った。得られた元素分析の結果に基づき、鉄原子100原子%に対する各原子の含有率を求めた。そして、得られた含有率に基づき、磁性体の組成を確認した。その結果、磁性粉体A-1~A-7の組成が、一般式1中のAがSrであり、xが表1に示す値であることが確認された。また、磁性粉体A-8については、SrFe1219の組成を有すること(即ち無置換型ストロンチウムフェライトであること)が確認された。
<Confirmation of composition>
The composition of the magnetic material constituting each of the above magnetic powders was confirmed by high-frequency inductively coupled plasma emission spectroscopy. Specifically, it was confirmed by the following method.
A container beaker containing 12 mg of magnetic powder and 10 mL of a hydrochloric acid aqueous solution having a concentration of 4 mol / L was held on a hot plate at a set temperature of 120 ° C. for 3 hours to obtain a solution. After adding 30 mL of pure water to the obtained solution, the mixture was filtered using a membrane filter having a filter pore size of 0.1 μm. Elemental analysis of the filtrate thus obtained was performed using a high-frequency inductively coupled plasma emission spectroscopic analyzer [ICPS-8100 manufactured by Shimadzu Corporation]. Based on the results of the obtained elemental analysis, the content of each atom with respect to 100 atomic% of iron atoms was determined. Then, the composition of the magnetic material was confirmed based on the obtained content. As a result, it was confirmed that the compositions of the magnetic powders A-1 to A-7 were such that A in the general formula 1 was Sr and x was the value shown in Table 1. Further, it was confirmed that the magnetic powder A-8 had the composition of SrFe 12 O 19 (that is, it was an unsubstituted strontium ferrite).
 磁性粉体A-1~A-7について、以下の方法によって共鳴周波数を測定した。測定結果を表1に示す。
(共鳴周波数の測定方法)
 各磁性粉体を使用し、以下の方法によって共鳴周波数測定用のシート試料を作製した。
 磁性粉体9.0g、アクリロニトリルブタジエンゴム(NBR)〔JSR社製JSR N215SL〕1.05g、およびシクロヘキサノン(溶剤)6.1gを、撹拌装置〔シンキー社製あわとり練太郎 ARE-310〕を用い、回転数2000rpmにて5分間撹拌し、混合することにより、シート試料作製のための組成物を調製した。
 次いで、ガラス板(支持体)上に、調製した組成物を、アプリケーターを用いて塗布して上記組成物の塗布膜を形成した。
 次いで、形成した塗布膜を、内部雰囲気温度80℃のオーブン内で2時間乾燥させた後、ガラス板からシート試料(厚み:0.3mm)を剥離した。
 以上により得られたシート試料を用いて、keysight社のベクトルネットワークアナライザ(製品名:N5225B)およびキーコム社のホーンアンテナ(製品名:RH12S23)を用い、自由空間法により、入射角度を0°とし、掃引周波数を60GHz~90GHzとして、Sパラメータを測定した。このSパラメータからニコルソンロスモデル法を用いて、虚部の透磁率μ’’のピーク周波数を算出し、このピーク周波数を共鳴周波数とした。結果を表1に示す。
The resonance frequencies of the magnetic powders A-1 to A-7 were measured by the following methods. The measurement results are shown in Table 1.
(Measurement method of resonance frequency)
Using each magnetic powder, a sheet sample for resonance frequency measurement was prepared by the following method.
9.0 g of magnetic powder, 1.05 g of acrylonitrile butadiene rubber (NBR) [JSR N215SL manufactured by JSR], and 6.1 g of cyclohexanone (solvent) were used with a stirrer [Awatori Rentaro ARE-310 manufactured by Shinky]. , Stirred at a rotation speed of 2000 rpm for 5 minutes and mixed to prepare a composition for preparing a sheet sample.
Next, the prepared composition was applied onto a glass plate (support) using an applicator to form a coating film of the above composition.
Next, the formed coating film was dried in an oven having an internal atmospheric temperature of 80 ° C. for 2 hours, and then the sheet sample (thickness: 0.3 mm) was peeled off from the glass plate.
Using the sheet sample obtained as described above, a vector network analyzer (product name: N5225B) manufactured by Keysight and a horn antenna (product name: RH12S23) manufactured by Keycom Co., Ltd. were used, and the incident angle was set to 0 ° by the free space method. The S parameter was measured with the sweep frequency set to 60 GHz to 90 GHz. The peak frequency of the magnetic permeability μ ″ of the imaginary part was calculated from this S parameter using the Nicholson loss model method, and this peak frequency was used as the resonance frequency. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果から、第2の液のpHを調整することによって、一般式1中のxの値(即ちAl含有率)を制御できることが確認できる。更に、Al含有率を制御することによって磁性粉体の共鳴周波数を制御できることも確認できる。磁性粉体は、共鳴周波数が高いほど、高周波数帯域での電波吸収性能が良好であるということができる。 From the results shown in Table 1, it can be confirmed that the value of x (that is, the Al content) in the general formula 1 can be controlled by adjusting the pH of the second liquid. Furthermore, it can be confirmed that the resonance frequency of the magnetic powder can be controlled by controlling the Al content. It can be said that the higher the resonance frequency of the magnetic powder, the better the radio wave absorption performance in the high frequency band.
<表面処理剤で表面処理された磁性粉体R-1の作製>
 上記で得られた磁性粉体A-1の20gと、表面処理剤SP-3(アリルトリメトキシシラン)の0.2gとを、カッターミル粉砕機(大阪ケミカル社製ワンダークラッシャー WC-3)を用いて、この粉砕機の可変速度ダイアルを「3」に設定し60秒間混合した。
 次いで、上記混合後の粉体を設定温度90℃のオーブンに入れ、3時間加熱乾燥させることにより、表面処理剤で表面処理された磁性粉体R-1を得た。
<Preparation of magnetic powder R-1 surface-treated with a surface treatment agent>
20 g of the magnetic powder A-1 obtained above and 0.2 g of the surface treatment agent SP-3 (allyltrimethoxysilane) were used in a cutter mill crusher (Wonder Crusher WC-3 manufactured by Osaka Chemical Co., Ltd.). Using, the variable speed dial of this crusher was set to "3" and mixed for 60 seconds.
Next, the mixed powder was placed in an oven at a set temperature of 90 ° C. and dried by heating for 3 hours to obtain a magnetic powder R-1 surface-treated with a surface treatment agent.
<表面処理剤で表面処理された磁性粉体R-2~R-29の作製>
 表2に示す磁性粉体を使用し、表2に示す表面処理剤を表2に示す使用量で使用した点以外、磁性粉体R-1の作製と同様の操作を行い、表面処理剤で表面処理された磁性粉体R-2~R-29を得た。
<Preparation of magnetic powders R-2 to R-29 surface-treated with a surface treatment agent>
Except for the fact that the magnetic powder shown in Table 2 was used and the surface treatment agent shown in Table 2 was used in the amount used shown in Table 2, the same operation as in the production of the magnetic powder R-1 was performed, and the surface treatment agent was used. Surface-treated magnetic powders R-2 to R-29 were obtained.
 上記磁性粉体R-1~R-29の詳細を、表2(表2-1~2-3)に示す。下記表に示す表面処理剤の使用量は、表面処理される磁性粉体100質量部に対する量である。 Details of the magnetic powders R-1 to R-29 are shown in Table 2 (Tables 2-1 to 2-3). The amount of the surface treatment agent used in the table below is the amount with respect to 100 parts by mass of the magnetic powder to be surface-treated.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表2中の表面処理剤は、下記表面処理剤である。 The surface treatment agents in Table 2 are the following surface treatment agents.
[表面処理剤]
 SK-1:アリルトリメトキシシラン(Gelest社製SIA0540.0)
 SK-2:フェネチルトリメトキシシラン(Gelest社製SIP6722.6)
 SK-3:[2-(3-シクロヘキセニル)エチル]トリメトキシシラン(Gelest社製SIC2460.0)
 SV-1:ビニルトリメトキシシラン(信越化学工業社製KBM-1003)
 SV-2:7-オクテニルトリメトキシシラン(信越化学工業社製KBM-1083)
 SV-3:(3-メタクリロキシプロピル)トリメトキシシラン(Gelest社製SIM6487.4)
 SV-4:8-メタクリロキシオクチルトリメトキシシラン(信越化学工業社製KBM-5803)
 SV-5:3-アクリルアミドプロピルトリメトキシシラン(Gelest社製SIA0146.0)
 SP-1:3-グリシジルプロピルトリメトキシシラン(Gelest社製SIG5840.0)
 SP-2:5,6-エポキシヘキシルトリエトキシシラン(Gelest社製SIE4675.0)
 SP-3:8-グリシドキシオクチルトリメトキシシラン(信越化学工業社製KBM-4803)
 SP-4:2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン(Gelest社製SIE4670.0)
 SI-1:ポリジメチルシロキサン(Gelest社製DMS-T21、重量平均分子量5,970)
 SI-2:ポリアルキレンオキシド変性シリコーン(Gelest社製DBE-621、エチレンオキシド含率50%、重量平均分子量2,500)
 SI-3:水素末端ポリジメチルシロキサン(Gelest社製DMS-H21、重量平均分子量6,000)
 ST-1:トリステアロイルイソプロピルチタネート(AIM社製)
[Surface treatment agent]
SK-1: Allyltrimethoxysilane (SIA0540.0 manufactured by Gelest)
SK-2: Phenethyl alcoholimethoxysilane (SIP6722.6 manufactured by Gelest)
SK-3: [2- (3-Cyclohexenyl) ethyl] trimethoxysilane (SIC2460.0 manufactured by Gelest)
SV-1: Vinyl trimethoxysilane (KBM-1003 manufactured by Shin-Etsu Chemical Co., Ltd.)
SV-2: 7-octenyltrimethoxysilane (KBM-1083 manufactured by Shin-Etsu Chemical Co., Ltd.)
SV-3: (3-methacryloxypropyl) trimethoxysilane (SIM687.4 manufactured by Gelest)
SV-4: 8-methacryloxyoctyltrimethoxysilane (KBM-5803 manufactured by Shin-Etsu Chemical Co., Ltd.)
SV-5: 3-acrylamide propyltrimethoxysilane (SIA0146.0 manufactured by Gelest)
SP-1: 3-glycidylpropyltrimethoxysilane (SIG840.0 manufactured by Gelest)
SP-2: 5,6-epoxyhexyltriethoxysilane (SIE4675.0 manufactured by Gelest)
SP-3: 8-glycidoxyoctyltrimethoxysilane (KBM-4803 manufactured by Shin-Etsu Chemical Co., Ltd.)
SP-4: 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane (SIE4670.0 manufactured by Gelest)
SI-1: Polydimethylsiloxane (DMS-T21 manufactured by Gelest, weight average molecular weight 5,970)
SI-2: Polyalkylene oxide-modified silicone (DBE-621 manufactured by Gelest, ethylene oxide content 50%, weight average molecular weight 2,500)
SI-3: Hydrogen-terminated polydimethylsiloxane (DMS-H21 manufactured by Gelest, weight average molecular weight 6,000)
ST-1: Tristearoyl isopropyl titanate (manufactured by AIM)
[電波吸収体の作製]
<実施例1>
 磁性粉体R-1を3.0g、ポリエステルB-1(ポリエステルエラストマー)2.0g、および酸化防止剤としてヒンダードフェノール化合物(BASF社製イルガノックス1330)0.05gを、設定温度を220℃とした混練機(東洋精機社製ラボプラストミル・マイクロ)に導入して混合し、ローター回転数100rpmで5分間混練を行い、塊状の混錬物を得た。
 得られた塊状の混練物を加熱プレス機を用いてプレス成形し(加熱温度:190℃、プレス時間:1分間、圧力:20MPa)、長さ10.0cm×幅10.0cm×厚み2.0mmの電波吸収体(電波吸収シート)を作製した。
[Making a radio wave absorber]
<Example 1>
3.0 g of magnetic powder R-1, 2.0 g of polyester B-1 (polyester elastomer), and 0.05 g of hindered phenol compound (Irganox 1330 manufactured by BASF) as an antioxidant, set temperature to 220 ° C. The mixture was introduced into a kneader (Laboplast Mill Micro manufactured by Toyo Seiki Co., Ltd.) and mixed, and kneaded at a rotor speed of 100 rpm for 5 minutes to obtain a massive kneaded product.
The obtained massive kneaded product was press-molded using a heating press machine (heating temperature: 190 ° C., press time: 1 minute, pressure: 20 MPa), length 10.0 cm x width 10.0 cm x thickness 2.0 mm. A radio wave absorber (radio wave absorption sheet) was prepared.
<実施例2~36>
 表面処理剤によって表面処理された磁性粉体として表3に示す磁性粉体を使用し、表3に示すポリエステルまたはポリカーボネートを使用した点以外、実施例1と同様の操作を行い、電波吸収体(電波吸収シート)を作製した。
<Examples 2-36>
The magnetic powder shown in Table 3 was used as the magnetic powder surface-treated with the surface treatment agent, and the same operation as in Example 1 was performed except that the polyester or polycarbonate shown in Table 3 was used. Radio wave absorption sheet) was prepared.
<実施例37~40>
 実施例1の混錬物調製のための混合物における磁性粉体およびポリエステルの含有量は、磁性粉体とポリエステルとの合計質量に対して、磁性粉体が60質量%、ポリエステルが40質量%である。実施例37~40では、表3に示すように磁性粉体およびポリエステルの含有量を変更した点以外、実施例1と同様の操作を行い、電波吸収体(電波吸収シート)を作製した。
<Examples 37-40>
The contents of the magnetic powder and the polyester in the mixture for preparing the kneaded product of Example 1 were 60% by mass of the magnetic powder and 40% by mass of the polyester with respect to the total mass of the magnetic powder and the polyester. is there. In Examples 37 to 40, the same operation as in Example 1 was performed except that the contents of the magnetic powder and the polyester were changed as shown in Table 3, to prepare a radio wave absorber (radio wave absorber sheet).
<比較例1>
 磁性粉体R-1を使用しなかった点以外、実施例1と同様の操作を行い、ポリエステル製シートを作製した。
<Comparative example 1>
A polyester sheet was produced by performing the same operation as in Example 1 except that the magnetic powder R-1 was not used.
<比較例2、3>
 磁性粉体として表3に示す磁性粉体(表面処理なし)を使用した点以外、実施例1と同様の操作を行い、電波吸収体(電波吸収シート)を作製した。
<Comparative Examples 2 and 3>
A radio wave absorber (radio wave absorbing sheet) was produced by performing the same operation as in Example 1 except that the magnetic powder shown in Table 3 (without surface treatment) was used as the magnetic powder.
<比較例4>
 磁性粉体として表3に示す磁性粉体(表面処理剤で表面処理された無置換型六方晶フェライトの粉体)を使用した点以外、実施例1と同様の操作を行い、電波吸収体(電波吸収シート)を作製した。
<Comparative example 4>
The same operation as in Example 1 was performed except that the magnetic powder shown in Table 3 (unsubstituted hexagonal ferrite powder surface-treated with a surface treatment agent) was used as the magnetic powder. Radio wave absorption sheet) was prepared.
<比較例5>
 チタン系化合物ST-1で表面処理された磁性粉体R-29を使用した点以外、実施例1と同様の操作を行い、電波吸収体(電波吸収シート)を作製した。
<Comparative example 5>
A radio wave absorber (radio wave absorbing sheet) was produced by performing the same operation as in Example 1 except that the magnetic powder R-29 surface-treated with the titanium compound ST-1 was used.
 上記の実施例および比較例ではそれぞれ複数のシートを作製し、各シートを下記評価に使用した。 In the above Examples and Comparative Examples, a plurality of sheets were prepared, and each sheet was used for the following evaluation.
[評価方法]
<電波吸収性能>
 以下の方法により、実施例および比較例の各シートの透過減衰量(単位:dB)および反射減衰量(単位:dB)を測定した。
 測定装置として、keysight社のベクトルネットワークアナライザ(製品名:N5225B)およびキーコム社のホーンアンテナ(製品名:RH12S23)を用い、自由空間法により、入射角度を0°とし、掃引周波数を60GHz~90GHzとして、上記の各シートの一方の平面を入射側に向けて、Sパラメータの測定を行い、76.5GHzの周波数におけるSパラメータのS21を透過減衰量とし、76.5GHzの周波数におけるSパラメータのS11を反射減衰量とした。
 測定された値から、以下の基準によって電波吸収性能を評価した。
(評価基準)
 A:透過減衰量および反射減衰量がいずれも10.0dB以上
 B:透過減衰量および反射減衰量がいずれも8.0dB以上10.0dB未満
 C:透過減衰量および反射減衰量がいずれも6.0dB以上8.0dB未満
 D:透過減衰量および反射減衰量がいずれも6.0dB未満
[Evaluation methods]
<Radio wave absorption performance>
The transmission attenuation (unit: dB) and reflection attenuation (unit: dB) of each sheet of Examples and Comparative Examples were measured by the following methods.
Using a keysight vector network analyzer (product name: N5225B) and a keycom horn antenna (product name: RH12S23) as measuring devices, the incident angle is set to 0 ° and the sweep frequency is set to 60 GHz to 90 GHz by the free space method. , One plane of each of the above sheets is directed to the incident side, the S parameter is measured, S21 of the S parameter at the frequency of 76.5 GHz is used as the transmission attenuation amount, and S11 of the S parameter at the frequency of 76.5 GHz is used. The amount of reflection attenuation was used.
From the measured values, the radio wave absorption performance was evaluated according to the following criteria.
(Evaluation criteria)
A: Transmission attenuation and reflection attenuation are both 10.0 dB or more B: Transmission attenuation and reflection attenuation are both 8.0 dB or more and less than 10.0 dB C: Transmission attenuation and reflection attenuation are both 6. 0 dB or more and less than 8.0 dB D: Both the transmission attenuation and the reflection attenuation are less than 6.0 dB.
<耐振動疲労性>
 実施例および比較例の各シートから長さ9.0cm×幅2.6cm×厚み2.0mmの試片を切り出し、繰り返し振動疲労試験機(東洋精機社製)を用いて、JIS K7119-1972に記載の両持ち曲げ試験法に準拠して、両持ち曲げ試験を、試験温度20℃、相対湿度50%、荷重10kN、繰返し数1,800cpm(cycle per minute)、最大振幅±8mmで行い、試片が破断するまでの回数を求め、以下の基準によって耐振動疲労性を評価した。
(評価基準)
 A:破断までの繰り返し振動回数が100万回以上
 B:破断までの繰り返し振動回数が20万回以上100万回未満
 C:破断までの繰り返し振動回数が1万回以上20万回未満
 D:破断までの繰り返し振動回数が1万回未満
<Vibration fatigue resistance>
A specimen having a length of 9.0 cm, a width of 2.6 cm, and a thickness of 2.0 mm was cut out from each sheet of Examples and Comparative Examples, and was subjected to JIS K7119-1972 using a repeated vibration fatigue tester (manufactured by Toyo Seiki Co., Ltd.). In accordance with the described double-sided bending test method, a double-sided bending test is performed at a test temperature of 20 ° C., a relative humidity of 50%, a load of 10 kN, a repetition rate of 1,800 cpm (cycle per minute), and a maximum amplitude of ± 8 mm. The number of times until the piece broke was determined, and the vibration fatigue resistance was evaluated according to the following criteria.
(Evaluation criteria)
A: Repeated vibration frequency until break is 1 million or more B: Repeated vibration frequency until break is 200,000 or more and less than 1 million C: Repeated vibration frequency until break is 10,000 or more and less than 200,000 times D: Break The number of repeated vibrations up to is less than 10,000
<薬品耐性>
 実施例および比較例の各シートから長さ10.0cm×幅1.0cm×厚み2.0mmの試片を切り出し、1/4楕円治具に取り付け、4種の薬品(灯油、ジエチレングリコール、エチルセロソルブ、ブレーキオイル(種類:DOT-3))を各々付着させ、温度23℃の雰囲気下に17時間放置した後、クラック発生長さLを読み取り、4種薬品のうち最も小さなL値を用いて下記の式により臨界歪みεを算出した。算出された値から、以下の基準によって薬品耐性を評価した。
 ε(%)=〔0.03×(1-0.0364×L-3/2〕t
 [ε:臨界歪み(%)、t:試料厚み(mm)、L:クラック発生長さ(mm)
(評価基準)
 A:臨界歪みが、0.7%以上、またはクラックが発生しない
 B:臨界歪みが、0.5%以上0.7%未満
 C:臨界歪みが、0.2%以上0.5%未満
 D:臨界歪みが、0.2%未満
<Chemical resistance>
A specimen of 10.0 cm in length × 1.0 cm in width × 2.0 mm in thickness was cut out from each sheet of Examples and Comparative Examples, attached to a quarter elliptical jig, and four kinds of chemicals (kerosene, diethylene glycol, ethyl cellosolve). , Brake oil (type: DOT-3)), left in an atmosphere with a temperature of 23 ° C for 17 hours, read the crack generation length L, and use the smallest L value of the four chemicals below. The critical strain ε was calculated by the formula of. From the calculated values, drug resistance was evaluated according to the following criteria.
epsilon (%) = [0.03 × (1-0.0364 × L 2) -3/2 ] t
[Ε: Critical strain (%), t: Sample thickness (mm), L: Crack generation length (mm)
(Evaluation criteria)
A: Critical strain is 0.7% or more or no cracks occur B: Critical strain is 0.5% or more and less than 0.7% C: Critical strain is 0.2% or more and less than 0.5% D : Critical distortion is less than 0.2%
 以上の結果を、表3(表3-1~3-6)に示す。 The above results are shown in Table 3 (Tables 3-1 to 3-6).
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表3中のバインダーは、下記のポリエステルまたはポリカーボネートである。 The binder in Table 3 is the following polyester or polycarbonate.
[バインダー]
 B-1:ポリエステルエラストマー(ThemoPlastic PolyEster Elastomer;TPEE)(東洋紡社製ペルプレン P-90B)
 B-2:ポリエチレンナフタレート(PEN)(帝人社製テオネックス TN8050SC)
 B-3:ポリトリメチレンテレフタレート(PTT)(デュポン社製ソロナ 3301 NC010)
 B-4:ポリブチレンナフタレート(PBN)(帝人社製PBN TQB-OT)
 B-5:ポリ乳酸(Polylactide;PLA)(ユニチカ社製テラマック TE-7003)
 B-6:ポリブチレンサクシネート(PBS)(三菱ケミカル社製FZ71PD)
 B-7:ポリアリレート(PAR)(ユニチカ社製Uポリマー U-8400H)
 B-8:ポリブチレンテレフタレート(PBT)(ウィンテックポリマー社製ジュラネックス 2002)
 B-9:ポリエチレンテレフタレート(PET)(東洋紡社製バイロペットEMC307)
 B-10:ポリカーボネート(PC)(帝人社製パンライト LV-2225Z)
[binder]
B-1: Polyester Elastic Polyester Elastomer (TPEE) (Toyobo Perprene P-90B)
B-2: Polyethylene naphthalate (PEN) (Teijin's Theonex TN8050SC)
B-3: Polytrimethylene terephthalate (PTT) (DuPont Solona 3301 NC010)
B-4: Polybutylene naphthalate (PBN) (PBN TQB-OT manufactured by Teijin Limited)
B-5: Polylactic acid (PLA) (Unitika's Terramac TE-7003)
B-6: Polybutylene succinate (PBS) (FZ71PD manufactured by Mitsubishi Chemical Corporation)
B-7: Polyarylate (PAR) (Unitika U Polymer U-8400H)
B-8: Polybutylene terephthalate (PBT) (Wintech Polymer Ltd. Juranex 2002)
B-9: Polyethylene terephthalate (PET) (Toyobo Biropet EMC307)
B-10: Polycarbonate (PC) (Teijin Panlite LV-2225Z)
 実施例1~40の電波吸収体は、磁性粉体としてケイ素系化合物で表面処理された置換型六方晶フェライトの粉体を含み、バインダーとしてポリエステルまたはポリカーボネートを含む。
 これに対し、比較例2の電波吸収体は、表面処理なしの置換型六方晶フェライトの粉体とポリエステル、比較例3の電波吸収体は表面処理なしの無置換型六方晶フェライトの粉体とポリエステル、比較例4の電波吸収体はケイ素系化合物で表面処理された無置換型六方晶フェライトの粉体とポリエステルとを含む。比較例5の電波吸収体は、チタン系化合物で表面処理された置換型六方晶フェライトの粉体とポリエステルとを含む。
 表3中の実施例1~40と比較例2~5との対比から、磁性粉体とバインダーとして、ケイ素系化合物で表面処理された置換型六方晶フェライトの粉体とポリエステルおよびポリカーボネートからなる群から選ばれるバインダーとを組み合わせることにより、電波吸収性能、耐振動疲労性および薬品耐性に優れる電波吸収体が得られることが確認できる。
The radio wave absorbers of Examples 1 to 40 contain a substituted hexagonal ferrite powder surface-treated with a silicon compound as a magnetic powder, and contain polyester or polycarbonate as a binder.
On the other hand, the radio wave absorber of Comparative Example 2 was a substitution type hexagonal ferrite powder and polyester without surface treatment, and the radio wave absorber of Comparative Example 3 was an unsubstituted hexagonal ferrite powder without surface treatment. The radio wave absorber of Polyester and Comparative Example 4 contains an unsubstituted hexagonal ferrite powder surface-treated with a silicon-based compound and polyester. The radio wave absorber of Comparative Example 5 contains a powder of substituted hexagonal ferrite surface-treated with a titanium-based compound and polyester.
From the comparison between Examples 1 to 40 and Comparative Examples 2 to 5 in Table 3, a group consisting of a substituted hexagonal ferrite powder surface-treated with a silicon-based compound as a magnetic powder and a binder, and polyester and polycarbonate. It can be confirmed that a radio wave absorber having excellent radio wave absorption performance, vibration fatigue resistance and chemical resistance can be obtained by combining with a binder selected from the above.
 本発明の一態様は、自動車の自動運転制御等の各種自動運転制御を行う技術分野において有用である。 One aspect of the present invention is useful in the technical field of performing various automatic driving controls such as automatic driving control of automobiles.

Claims (20)

  1. 磁性粉体およびバインダーを含む電波吸収性組成物であって、
    前記磁性粉体は、表面処理剤で表面処理された置換型六方晶フェライトの粉体であり、
    前記表面処理剤は、ケイ素系化合物であり、かつ
    前記バインダーは、ポリエステルおよびポリカーボネートからなる群から選択される1種以上の樹脂である電波吸収性組成物。
    A radio wave absorbing composition containing a magnetic powder and a binder.
    The magnetic powder is a substituted hexagonal ferrite powder surface-treated with a surface treatment agent.
    A radio wave absorbing composition in which the surface treatment agent is a silicon-based compound, and the binder is one or more resins selected from the group consisting of polyester and polycarbonate.
  2. 前記置換型六方晶フェライトは、下記一般式1で表される組成を有する、請求項1に記載の電波吸収性組成物;
            一般式1:AFe(12-x)Al19
    一般式1中、Aは、Sr、Ba、CaおよびPbからなる群から選ばれる1種以上の原子を表し、xは、1.50以上≦x≦8.00を満たす。
    The radio wave absorbing composition according to claim 1, wherein the substituted hexagonal ferrite has a composition represented by the following general formula 1.
    General formula 1: AFe (12-x) Al x O 19
    In the general formula 1, A represents one or more kinds of atoms selected from the group consisting of Sr, Ba, Ca and Pb, and x satisfies 1.50 or more ≦ x ≦ 8.00.
  3. 前記置換型六方晶フェライトは、置換型六方晶ストロンチウムフェライトである、請求項1または2に記載の電波吸収性組成物。 The radio wave absorbing composition according to claim 1 or 2, wherein the substituted hexagonal ferrite is a substituted hexagonal strontium ferrite.
  4. 前記表面処理剤は、下記一般式2で表されるケイ素系化合物である、請求項1~3のいずれか1項に記載の電波吸収性組成物;
            一般式2:(X-L)-Si-Z4-m
    一般式2中、
    Xは、水素原子、アルキル基、アルケニル基、アリール基、脂環基、複素環基、ヒドロキシ基、アクリルアミド基、スルファニル基、イソシアネート基、チオシアネート基、ウレイド基、シアノ基、酸無水物基、アジド基、カルボキシ基、アシル基、チオカルバモイル基、リン酸基、ホスファニル基、スルホン酸基またはスルファモイル基を表し、
    Lは、単結合、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、-O-、-S-、-NR-、エステル結合、チオエステル結合、アミド結合、チオアミド結合およびスルホニル基からなる群から選ばれる1種の2価の基もしくは結合、またはこれらの2種以上を組合せてなる2価の基もしくは結合を表し、
    は、水素原子または置換基を表し、
    Zは、ヒドロキシ基、アルコキシ基またはアルキル基を表し、
    mは、1~3の範囲の整数である。
    The radio wave absorbing composition according to any one of claims 1 to 3, wherein the surface treatment agent is a silicon-based compound represented by the following general formula 2.
    General formula 2: (XL) m- Si-Z 4-m
    In general formula 2,
    X is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an alicyclic group, a heterocyclic group, a hydroxy group, an acrylamide group, a sulfanyl group, an isocyanate group, a thiocyanate group, a ureido group, a cyano group, an acid anhydride group and an azide. Represents a group, carboxy group, acyl group, thiocarbamoyl group, phosphate group, phosphanyl group, sulfonic acid group or sulfamoyl group.
    L is selected from the group consisting of a single bond, an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond, a thioamide bond and a sulfonyl group. Represents one type of divalent group or bond, or a combination of two or more of these divalent groups or bonds.
    Ra represents a hydrogen atom or a substituent and represents
    Z represents a hydroxy group, an alkoxy group or an alkyl group.
    m is an integer in the range of 1 to 3.
  5. 一般式2中、
    mが1であり、かつXがアルケニル基もしくは複素環基を表すか、または
    mが2もしくは3であり、かつ一般式2中に複数含まれるXが、それぞれ独立にアルケニル基もしくは複素環基を表す、請求項4に記載の電波吸収性組成物。
    In general formula 2,
    m is 1 and X represents an alkenyl group or a heterocyclic group, or m is 2 or 3 and a plurality of Xs contained in the general formula 2 independently form an alkenyl group or a heterocyclic group. The radio wave absorbing composition according to claim 4.
  6. 一般式2中、
    mが1であり、かつXがアシル基、アクリルアミド基もしくは複素環基を表すか、または
    mが2もしくは3であり、かつ一般式2中に複数含まれるXが、それぞれ独立にアシル基、アクリルアミド基もしくは複素環基を表し、
    前記アシル基は(メタ)アクリロイル基であり、
    前記複素環基はエポキシ基である、請求項4に記載の電波吸収性組成物。
    In general formula 2,
    m is 1 and X represents an acyl group, an acrylamide group or a heterocyclic group, or m is 2 or 3 and a plurality of Xs contained in the general formula 2 are independently acyl groups and acrylamides, respectively. Represents a group or heterocyclic group
    The acyl group is a (meth) acryloyl group and
    The radio wave absorbing composition according to claim 4, wherein the heterocyclic group is an epoxy group.
  7. 一般式2中、Xは複素環基を表し、該複素環基はエポキシ基である、請求項4に記載の電波吸収性組成物。 The radio wave absorbing composition according to claim 4, wherein X represents a heterocyclic group in the general formula 2, and the heterocyclic group is an epoxy group.
  8. 一般式2中、Lが炭素数4~12のアルキレン基を含む、請求項7に記載の電波吸収性組成物。 The radio wave absorbing composition according to claim 7, wherein L in the general formula 2 contains an alkylene group having 4 to 12 carbon atoms.
  9. 前記樹脂が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリ乳酸、ポリブチレンサクシネート、ポリアリレート、ポリカーボネートおよびポリエステルエラストマーからなる群から選択される1種以上の樹脂である、請求項1~8のいずれか1項に記載の電波吸収性組成物。 One or more of the resins selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyallylate, polycarbonate and polyester elastomer. The radio wave absorbing composition according to any one of claims 1 to 8, which is the resin of the above.
  10. 前記樹脂が、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリブチレンナフタレート、ポリ乳酸、ポリブチレンサクシネート、ポリアリレートおよびポリエステルエラストマーからなる群から選ばれる1種以上の樹脂である、請求項1~9のいずれか1項に記載の電波吸収性組成物。 Claims 1 to 9 wherein the resin is one or more resins selected from the group consisting of polyethylene naphthalate, polytrimethylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyarylate and polyester elastomer. The radio wave absorbing composition according to any one of the above items.
  11. 磁性粉体およびバインダーを含む電波吸収体であって、
    前記磁性粉体は、表面処理剤で表面処理された置換型六方晶フェライトの粉体であり、
    前記表面処理剤は、ケイ素系化合物であり、かつ
    前記バインダーは、ポリエステルおよびポリカーボネートからなる群から選択される1種以上の樹脂である電波吸収体。
    A radio wave absorber containing magnetic powder and a binder,
    The magnetic powder is a substituted hexagonal ferrite powder surface-treated with a surface treatment agent.
    The surface treatment agent is a silicon-based compound, and the binder is a radio wave absorber which is one or more resins selected from the group consisting of polyester and polycarbonate.
  12. 前記置換型六方晶フェライトは、下記一般式1で表される組成を有する、請求項11に記載の電波吸収体;
            一般式1:AFe(12-x)Al19
    一般式1中、Aは、Sr、Ba、CaおよびPbからなる群から選ばれる1種以上の原子を表し、xは、1.50以上≦x≦8.00を満たす。
    The radio wave absorber according to claim 11, wherein the substituted hexagonal ferrite has a composition represented by the following general formula 1.
    General formula 1: AFe (12-x) Al x O 19
    In the general formula 1, A represents one or more kinds of atoms selected from the group consisting of Sr, Ba, Ca and Pb, and x satisfies 1.50 or more ≦ x ≦ 8.00.
  13. 前記置換型六方晶フェライトは、置換型六方晶ストロンチウムフェライトである、請求項11または12に記載の電波吸収体。 The radio wave absorber according to claim 11 or 12, wherein the substituted hexagonal ferrite is a substituted hexagonal strontium ferrite.
  14. 前記表面処理剤は、下記一般式2で表されるケイ素系化合物である、請求項11~13のいずれか1項に記載の電波吸収体;
            一般式2:(X-L)-Si-Z4-m
    一般式2中、
    Xは、水素原子、アルキル基、アルケニル基、アリール基、脂環基、複素環基、ヒドロキシ基、アクリルアミド基、スルファニル基、イソシアネート基、チオシアネート基、ウレイド基、シアノ基、酸無水物基、アジド基、カルボキシ基、アシル基、チオカルバモイル基、リン酸基、ホスファニル基、スルホン酸基またはスルファモイル基を表し、
    Lは、単結合、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、-O-、-S-、-NR-、エステル結合、チオエステル結合、アミド結合、チオアミド結合およびスルホニル基からなる群から選ばれる1種の2価の基もしくは結合、またはこれらの2種以上を組合せてなる2価の基もしくは結合を表し、
    は、水素原子または置換基を表し、
    Zは、ヒドロキシ基、アルコキシ基またはアルキル基を表し、
    mは、1~3の範囲の整数である。
    The radio wave absorber according to any one of claims 11 to 13, wherein the surface treatment agent is a silicon-based compound represented by the following general formula 2.
    General formula 2: (XL) m- Si-Z 4-m
    In general formula 2,
    X is a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, an alicyclic group, a heterocyclic group, a hydroxy group, an acrylamide group, a sulfanyl group, an isocyanate group, a thiocyanate group, a ureido group, a cyano group, an acid anhydride group and an azide. Represents a group, carboxy group, acyl group, thiocarbamoyl group, phosphate group, phosphanyl group, sulfonic acid group or sulfamoyl group.
    L is selected from the group consisting of a single bond, an alkylene group, an alkenylene group, an alkynylene group, an arylene group, -O-, -S-, -NR a- , an ester bond, a thioester bond, an amide bond, a thioamide bond and a sulfonyl group. Represents one type of divalent group or bond, or a combination of two or more of these divalent groups or bonds.
    Ra represents a hydrogen atom or a substituent and represents
    Z represents a hydroxy group, an alkoxy group or an alkyl group.
    m is an integer in the range of 1 to 3.
  15. 一般式2中、
    mが1であり、かつXがアルケニル基もしくは複素環基を表すか、または
    mが2もしくは3であり、かつ一般式2中に複数含まれるXが、それぞれ独立にアルケニル基もしくは複素環基を表す、請求項14に記載の電波吸収体。
    In general formula 2,
    m is 1 and X represents an alkenyl group or a heterocyclic group, or m is 2 or 3 and a plurality of Xs contained in the general formula 2 independently form an alkenyl group or a heterocyclic group. The radio wave absorber according to claim 14.
  16. 一般式2中、
    mが1であり、かつXがアシル基、アクリルアミド基もしくは複素環基を表すか、または
    mが2もしくは3であり、かつ一般式2中に複数含まれるXが、それぞれ独立にアシル基、アクリルアミド基もしくは複素環基を表し、
    前記アシル基は(メタ)アクリロイル基であり、
    前記複素環基はエポキシ基である、請求項14に記載の電波吸収体。
    In general formula 2,
    m is 1 and X represents an acyl group, an acrylamide group or a heterocyclic group, or m is 2 or 3 and a plurality of Xs contained in the general formula 2 are independently acyl groups and acrylamides, respectively. Represents a group or heterocyclic group
    The acyl group is a (meth) acryloyl group and
    The radio wave absorber according to claim 14, wherein the heterocyclic group is an epoxy group.
  17. 一般式2中、Xは複素環基を表し、該複素環基はエポキシ基である、請求項14に記載の電波吸収体。 The radio wave absorber according to claim 14, wherein in the general formula 2, X represents a heterocyclic group, and the heterocyclic group is an epoxy group.
  18. 一般式2中、Lが炭素数4~12のアルキレン基を含む、請求項17に記載の電波吸収体。 The radio wave absorber according to claim 17, wherein L in the general formula 2 contains an alkylene group having 4 to 12 carbon atoms.
  19. 前記樹脂が、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリ乳酸、ポリブチレンサクシネート、ポリアリレート、ポリカーボネートおよびポリエステルエラストマーからなる群から選択される1種以上の樹脂である、請求項11~18のいずれか1項に記載の電波吸収体。 One or more of the resins selected from the group consisting of polyethylene terephthalate, polyethylene naphthalate, polytrimethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyallylate, polycarbonate and polyester elastomer. The radio wave absorber according to any one of claims 11 to 18, which is the resin of the above.
  20. 前記樹脂が、ポリエチレンナフタレート、ポリトリメチレンテレフタレート、ポリブチレンナフタレート、ポリ乳酸、ポリブチレンサクシネート、ポリアリレートおよびポリエステルエラストマーからなる群から選ばれる1種以上の樹脂である、請求項11~19のいずれか1項に記載の電波吸収体。 Claims 11 to 19 wherein the resin is one or more resins selected from the group consisting of polyethylene naphthalate, polytrimethylene terephthalate, polybutylene naphthalate, polylactic acid, polybutylene succinate, polyarylate and polyester elastomer. The radio wave absorber according to any one of the above items.
PCT/JP2020/029623 2019-08-09 2020-08-03 Radio wave absorbing composition and radio wave absorbent WO2021029246A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021539211A JP7427005B2 (en) 2019-08-09 2020-08-03 Radio wave absorbing composition and radio wave absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019148184 2019-08-09
JP2019-148184 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029246A1 true WO2021029246A1 (en) 2021-02-18

Family

ID=74570624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029623 WO2021029246A1 (en) 2019-08-09 2020-08-03 Radio wave absorbing composition and radio wave absorbent

Country Status (2)

Country Link
JP (1) JP7427005B2 (en)
WO (1) WO2021029246A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180206A (en) * 1981-04-13 1982-11-06 Secr Defence Brit Improvement in or relative to radio wave absorptive coating
JPH11354972A (en) * 1998-06-10 1999-12-24 Tdk Corp Radio wave absorber
JP2010077198A (en) * 2008-09-24 2010-04-08 Asahi Kasei E-Materials Corp Resin composition
JP2019104954A (en) * 2017-12-11 2019-06-27 日立化成株式会社 Metal element-containing powder, and molded body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180206A (en) * 1981-04-13 1982-11-06 Secr Defence Brit Improvement in or relative to radio wave absorptive coating
JPH11354972A (en) * 1998-06-10 1999-12-24 Tdk Corp Radio wave absorber
JP2010077198A (en) * 2008-09-24 2010-04-08 Asahi Kasei E-Materials Corp Resin composition
JP2019104954A (en) * 2017-12-11 2019-06-27 日立化成株式会社 Metal element-containing powder, and molded body

Also Published As

Publication number Publication date
JPWO2021029246A1 (en) 2021-02-18
JP7427005B2 (en) 2024-02-02

Similar Documents

Publication Publication Date Title
JP7220674B2 (en) Particles of magnetoplumbite-type hexagonal ferrite, method for producing the same, and radio wave absorber
JP7427005B2 (en) Radio wave absorbing composition and radio wave absorber
JPWO2020044649A1 (en) Magnetoplanbite type hexagonal ferrite powder manufacturing method and radio wave absorber manufacturing method
WO2021029247A1 (en) Radio-wave-absorbent composition and radio wave absorber
JP7427004B2 (en) Radio wave absorbing composition and radio wave absorber
JP7473555B2 (en) Radio wave absorbing composition and radio wave absorber
JP7303871B2 (en) radio wave absorber
JP6986637B2 (en) Magnetoplanbite type hexagonal ferrite powder and its manufacturing method, and radio wave absorber
JP7170731B2 (en) Powder mixture of magnetoplumbite-type hexagonal ferrite, method for producing the same, and radio wave absorber
WO2021029249A1 (en) Electric-wave-absorbing composition and electric wave absorber
JP7303872B2 (en) radio wave absorber
WO2021065365A1 (en) Radio wave absorber and radio wave absorbing composition
JP7273953B2 (en) radio wave absorber
JP2024000811A (en) Particle, composite material, and laminate
WO2023145392A1 (en) Radio wave absorber and radio wave absorbing article
WO2022154039A1 (en) Magnetic powder for radio wave absorbers and method for producing same, radio wave absorber, radio wave absorbing article, and radio wave absorbing composition
CN116830219A (en) Magnetic powder for radio wave absorber, method for producing same, radio wave absorber, radio wave absorbing article, and radio wave absorbing composition
WO2022004321A1 (en) Radio wave absorber and radio wave absorbing article
JP2024000812A (en) Electromagnetic wave absorbing material
JP2023145469A (en) Radio wave absorber and compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852388

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539211

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852388

Country of ref document: EP

Kind code of ref document: A1