WO2021029078A1 - 端末 - Google Patents

端末 Download PDF

Info

Publication number
WO2021029078A1
WO2021029078A1 PCT/JP2019/032079 JP2019032079W WO2021029078A1 WO 2021029078 A1 WO2021029078 A1 WO 2021029078A1 JP 2019032079 W JP2019032079 W JP 2019032079W WO 2021029078 A1 WO2021029078 A1 WO 2021029078A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
received
state
cell
reception
Prior art date
Application number
PCT/JP2019/032079
Other languages
English (en)
French (fr)
Inventor
卓馬 高田
高橋 秀明
大將 梅田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/032079 priority Critical patent/WO2021029078A1/ja
Priority to US17/635,212 priority patent/US20220295300A1/en
Publication of WO2021029078A1 publication Critical patent/WO2021029078A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Definitions

  • the present invention relates to a terminal that transmits and receives radio signals, and more particularly to a terminal that can use a plurality of reception beams.
  • LTE Long Term Evolution
  • NR New Radio
  • NG Next Generation
  • the terminal (User Equipment, UE) also forms a radio wave directivity pattern and increases / decreases the antenna gain in a specific direction. Beamforming to make it is assumed.
  • Radio Resource Management such as cell quality measurement using reference signal (RS) and wireless link monitoring (RLM)
  • RS reference signal
  • RLM wireless link monitoring
  • the terminal User Equipment, UE determines the direction of a single received beam. It is premised that the measurement is performed while sequentially switching and searching for a direction in which the reception characteristics of the received beam are good (Non-Patent Document 1).
  • FR2 when performing carrier aggregation (CA) in which a plurality of component carriers (CCs) are bundled and used, all CCs can operate appropriately so that a terminal having the above-mentioned receiving beam control capability can operate appropriately. It is assumed that the data is transmitted from the same direction (same location), and FR2 only specifies Intra-band CA.
  • CA carrier aggregation
  • Inter-band CA Since Release 16 and later, the application of Inter-band CA is also being considered for FR2, and it is expected that multiple CCs will be transmitted from different directions (different locations).
  • the terminal needs to control a plurality of received beams independently and direct each received beam in a different direction.
  • the present invention has been made in view of such a situation, and realizes efficient operation such as measurement even when a plurality of received beams are independently controlled and each received beam is directed in a different direction.
  • the purpose is to provide a terminal to obtain.
  • a receiving unit radio receiving unit 220 that receives a radio signal via a receiving beam and a second state in which the receiving beam is placed in a first state or the control of the receiving beam is different from that of the first state.
  • a control unit control unit 250 that controls the state is provided, and the control unit directs at least one of the received beams toward the serving cell when controlling the received beam to the second state and executing the setting related to the secondary cell.
  • a terminal UE200 that directs the other received beam in a direction different from that of the serving cell.
  • One aspect of the present disclosure is a second state in which the receiving unit (radio receiving unit 220) that receives a radio signal via the receiving beam and the receiving beam are in the first state, or the control of the receiving beam is different from that of the first state.
  • a control unit (control unit 250) that controls a state is provided, and when the control unit controls the received beam to the second state and executes a setting related to a secondary cell in a specific frequency range, the plurality of received beams Is a terminal (UE200) that executes measurements related to the above settings using the above.
  • One aspect of the present disclosure is a receiving unit (radio receiving unit 220) that receives a radio signal including a component carrier via a receiving beam, and the receiving beam in a first state, or the first state and the receiving beam.
  • a control unit (control unit 250) that controls the second state with different controls is provided, the control unit controls the received beam to the second state, and at least one of the received beams is provided to each of the component carriers. It is a pointing terminal (UE200).
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a diagram showing an example of receiving a reference signal (RS) using a single reception beam by the UE 200.
  • FIG. 3 is a diagram showing an operation example of carrier aggregation using a single received beam by the UE 200.
  • FIG. 4 is a diagram showing an example of a symbol pattern in which data channels and control channels can be transmitted / received and cannot be transmitted / received.
  • FIG. 5 is a functional block configuration diagram of the UE 200.
  • FIG. 6 is a schematic operation flow of the UE 200 according to the operation example 1.
  • FIG. 7 is a schematic operation flow of the UE 200 according to the operation example 2.
  • FIG. 8 is a schematic operation flow of the UE 200 according to the operation example 3.
  • FIG. 6 is a schematic operation flow of the UE 200 according to the operation example 1.
  • FIG. 7 is a schematic operation flow of the UE 200 according to the operation example 2.
  • FIG. 8 is a schematic
  • FIG. 9A is a diagram showing a mounting example of the UE200 antenna panel corresponding to the pattern 1.
  • FIG. 9B is a diagram showing a mounting example of the UE200 antenna panel corresponding to the pattern 2.
  • FIG. 9C is a diagram showing a mounting example of the UE200 antenna panel corresponding to the pattern 3.
  • FIG. 10A is a diagram showing a control example (No. 1) of a received beam by a UE 200 equipped with a plurality of antenna panels.
  • FIG. 10B is a diagram showing a control example (No. 2) of the received beam by the UE 200 equipped with a plurality of antenna panels.
  • FIG. 11 is a diagram showing an example of the hardware configuration of the UE 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system that complies with 5G New Radio (NR), and includes the Next Generation-Radio Access Network 20 (hereinafter, NG-RAN20, and user terminal 200 (hereinafter, UE200)). ..
  • NR 5G New Radio
  • NG-RAN20 Next Generation-Radio Access Network
  • UE200 user terminal 200
  • NG-RAN20 includes radio base stations 100A and 100B (hereinafter, gNB100A and gNB100B).
  • the specific configuration of the wireless communication system 10 including the number of gNBs and UEs is not limited to the example shown in FIG.
  • NG-RAN20 actually includes multiple NG-RAN Nodes, specifically gNB (or ng-eNB), and is connected to a core network (5GC, not shown) according to 5G.
  • NG-RAN20 and 5GC may be simply expressed as a network.
  • GNB100A, 100B are wireless base stations that comply with 5G, and execute wireless communication according to UE200 and 5G.
  • gNB100A, 100B and UE200 are Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements, and carrier aggregation (CA) that uses multiple component carriers (CC) in a bundle. ), And dual connectivity (DC) that communicates between the UE and multiple NG-RAN Nodes at the same time.
  • Massive MIMO that generates a beam with higher directivity by controlling radio signals transmitted from multiple antenna elements
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • the gNB100A and 100B can apply the corresponding reception beam to the UE200 by notifying the transmission beam information applied at the time of downlink channel (channel definition will be described later) transmission.
  • the UE 200 can use a single receiving beam, but can independently control two or more receiving beams and direct them in different directions.
  • the beamforming may be either analog beamforming in which directivity is formed by phase control of a plurality of antenna elements (RF devices), or digital beamforming in which phase control is performed in the baseband.
  • RF devices antenna elements
  • FIG. 2 shows an example of receiving a reference signal (RS) using a single reception beam by the UE 200.
  • RS Reference Signal
  • FR Frequency Range
  • RRM Radio Resource Management
  • UE200 is the direction of a single reception beam. Is sequentially switched from Rx # 1 to Rx # n, and RS (for example, SSB (SS / PBCH Block)) to be measured is measured while searching for a direction in which the reception characteristics of the received beam are good.
  • RS for example, SSB (SS / PBCH Block)
  • the number of RSs received in each Rx period is three, and the UE 200 is testing a total of n received beams having different directivity directions.
  • FIG. 3 shows an operation example of carrier aggregation using a single received beam by UE200.
  • each CC (CC1 to CC4) transmitted from gNB100A is within the same frequency band so that UE200 that sequentially switches the direction of a single received beam can operate properly.
  • Release 15 specifies only Intra-band CA, and all CCs are transmitted from the same direction, specifically, the same location (which can be rephrased as the same radio base station and the same cell). Is a prerequisite.
  • the UE 200 can independently control a plurality of received beams and direct them in different directions, so that more flexible cell detection, measurement, wireless link monitoring (monitoring), beam management, and so on. And CA / DC operation can be realized.
  • time division multiplexing (TDD) is applied, so only synchronized networks are assumed.
  • UE200 is premised on forming a single received beam by analog beamforming. Therefore, regardless of whether the UE200 supports the ability to simultaneously receive different numerologies (SubCarrierSpacing: may be read as SCS, etc.), the SSB symbol to be measured and one symbol before and after the SSB symbol are used for data. Channels and control channels cannot be transmitted or received.
  • the symbol may be read as an Orthogonal Frequency Division Multiplexing (OFDM) symbol, a resource block (RB), or the like.
  • OFDM Orthogonal Frequency Division Multiplexing
  • FIG. 4 shows an example of a symbol pattern in which data channels and control channels can be transmitted and received and cannot be transmitted and received.
  • a 120 kHz SCS is used in the serving cell, and a 240 kHz SCS is used in the cell to be measured. Therefore, in the cell to be measured, one symbol period (symbol length) is halved.
  • the data channel and the control channel cannot be transmitted / received between the symbols of the serving cell corresponding to SSB # 1 to 3 of the cell to be measured and the symbols before and after that. As described above, there are restrictions on scheduling when detecting cells.
  • the UE 200 can correctly receive data and control signals via the serving cell even when the UE 200 forms a single reception beam by analog beamforming.
  • a plurality of received beams can be independently controlled and directed in different directions, so that such scheduling restrictions may not be necessary.
  • FIG. 5 is a functional block configuration diagram of the UE 200.
  • the wireless transmitter 210 transmits an uplink signal (UL signal) according to NR.
  • the wireless receiver 220 receives the downlink signal (DL signal) according to the NR.
  • the wireless transmission unit 210 and the wireless reception unit 220 execute wireless communication via a control channel or a data channel.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), PBCH (Physical Broadcast Channel), and the like.
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the reference signals include Demodulation reference signal (DMRS), Sounding Reference Signal (SRS), Phase Tracking Reference Signal (PTRS), Channel State Information-Reference Signal (CSI-RS), RadioLink Monitoring-Reference Signal (RLM-). RS) and Beam Failure Detection-Reference Signal (BFD-RS) are included.
  • DMRS Demodulation reference signal
  • SRS Sounding Reference Signal
  • PTRS Phase Tracking Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • RLM- RadioLink Monitoring-Reference Signal
  • RS Beam Failure Detection-Reference Signal
  • BFD-RS Beam Failure Detection-Reference Signal
  • the signal may also include channel and reference signals.
  • the data may mean data transmitted via a data channel.
  • the wireless receiving unit 220 constitutes a receiving unit that receives a wireless signal via the receiving beam (RX # 1 to Rx # n in FIG. 2). Further, the radio receiving unit 220 constitutes a receiving unit that receives a radio signal (DL signal) including a component carrier (CC) via the receiving beam. That is, the UE 200 can also execute wireless communication by transmitting and receiving a plurality of carriers at the same time.
  • DL signal radio signal
  • CC component carrier
  • the radio signal referred to here may mean all or a part of the signal transmitted from the transmitting antenna of the gNB100A (or gNB100B) in the air, or a signal included in a specific cell (or cell group). May mean all or part of.
  • the cell detection unit 230 executes detection processing for cells in which the UE 200 is located and surrounding cells.
  • the area cell may be called a serving cell depending on the own cell or the connection state of UE200.
  • the peripheral cell may be called a neighboring cell (of its own cell), an adjacent cell, or the like.
  • the cell detection unit 230 detects the cell ID or the like based on the SSB or the like transmitted from the cell.
  • the monitoring and measuring unit 240 executes wireless link monitoring and processing related to measurement in each layer.
  • Radiolink monitoring corresponds to the radiolink monitoring specified in 3GPP TS38.133.
  • the RLM may include the following monitoring:
  • the monitoring measurement unit 240 monitors the DL radio link quality based on the set reference signal of the RLM-RS resource in order to detect the DL radio link quality of PCell and PSCell.
  • the configured RLM-RS resource may be all SSB, all CSI-RS, or a mixture of SSB and CSI-RS.
  • the monitoring and measuring unit 240 does not need to execute RLM outside the active DL BWP (Bandwidth part).
  • the monitoring measurement unit 240 executes various measurements especially for the upper layer, specifically, the layer 3 (L3) in the present embodiment.
  • the monitoring and measuring unit 240 executes Reference Signal Received Power (RSRP) measurement (L3-RSRP) and the like.
  • RSRPQ Reference Signal Received Quality
  • SINR Signal-to-Interference plus Noise power Ratio
  • the control unit 250 controls each functional block constituting the UE 200.
  • the control unit 250 executes control regarding a plurality of received beams.
  • control unit 250 can independently control two or more received beams. Independent control as used herein includes directing each of the received beams in different directions at the same time. For example, as shown in Rx # 1 and Rx # n shown in FIG. 2, the direction in which the reception beam of Rx # 1 is directed and the direction in which the reception beam of Rx # n is directed are physically different. As a result, the UE 200 can simultaneously receive DL signals arriving from different locations (directions), specifically gNBs (cells).
  • control unit 250 can also control the state in which a single or a plurality of received beams are directed in the same direction, as in the case of Release 15. That is, the control unit 250 can control a state in which the reception beam is directed in the same direction (first state) or a state in which the reception beams are directed in different directions at the same time (second state).
  • control unit 250 can control the received beam to the first state or the second state in which the control of the received beam is different from that of the first state.
  • the upper layer may mean a layer (L3 or higher) higher than L1 (PHY) and L2 (Medium Access Control (MAC), Radio Link Control (RLC), etc.).
  • L3 Layer 3 or higher
  • MAC Medium Access Control
  • RLC Radio Link Control
  • control unit 250 controls the received beams to be directed in different directions at the same time (second state)
  • cell detection or measurement for the upper layer (L3) (L3 measurement) and wireless link monitoring (RLM) or beam detection may be performed at the same time.
  • the beam detection may include at least one of Candidate Beam Detection (CBD) or Beam Failure Detection (BFD).
  • CBD Candidate Beam Detection
  • BFD Beam Failure Detection
  • control unit 250 controls the received beams to be directed in different directions at the same time (second state), cell detection, measurement in the upper layer or wireless link monitoring (RLM), and channel transmission / reception are performed. May be executed at the same time.
  • the channel referred to here may include the control channel and the data channel described above. Specifically, PUCCH / PUSCH / SRS or PDCCH / PDSCH / TRS (Tracking Reference Signal) / CSI-RS for CQI (Channel Quality Indicator) may be included.
  • PUCCH / PUSCH / SRS or PDCCH / PDSCH / TRS (Tracking Reference Signal) / CSI-RS for CQI (Channel Quality Indicator) may be included.
  • control unit 250 controls each of the received beams to be directed in different directions at the same time (second state)
  • the control unit 250 is used for each of the plurality of reference signals (RLM-RS) for wireless link monitoring (RLM). You may direct different receive beams.
  • control unit 250 controls each of the received beams to be directed in different directions at the same time (second state)
  • the control unit 250 uses a plurality of received beams at the same time and receives using the SSB. Can perform power measurements.
  • SSB is an abbreviation for SS (Synchronization Signal) / PBCH Block, but it may be called a synchronization signal block or may be interpreted as a kind of reference signal (RS).
  • the received power measurement may mean Reference Signal Received Power (RSRP), that is, the received power of the reference signal.
  • RSRP Reference Signal Received Power
  • L1-RSRP measurement RSRP measurement in layer 1 based on SSB.
  • control unit 250 controls the received beams to be directed in different directions at the same time (second state)
  • the control unit 250 receives the reference signal for channel state information, specifically, CSI-RS.
  • Power measurements may be performed on multiple component carriers (CCs) at the same time.
  • control unit 250 controls the received beams to be directed in different directions at the same time (second state)
  • the channel transmission / reception and the received power measurement may be executed at the same time.
  • the channel referred to here may include PUCCH / PUSCH / SRS or PDCCH / PDSCH / TRS / CSI-RS for CQI.
  • the received power measurement executed at the same time as the channel transmission / reception may be the L1-RSRP measurement using SSB or the L1-RSRP measurement using CSI-RS.
  • control unit 250 controls each of the received beams to be directed in different directions at the same time (second state)
  • the control unit 250 uses a plurality of received beams at the same time and uses a reference signal (BFD) for beam fault detection (BFD). Measurements using BFD-RS) may be performed.
  • BFD reference signal
  • BFD-RS beam fault detection
  • BFD-RS may be either SSB or CSI-RS set as BFD-RS.
  • control unit 250 controls the received beams to be directed in different directions at the same time (second state)
  • the measurement using BFD-RS and the channel transmission / reception may be executed at the same time.
  • the channel referred to here may also include PUCCH / PUSCH / SRS or PDCCH / PDSCH / TRS / CSI-RS for CQI.
  • the control unit 250 controls at least one reception beam when the reception beams are controlled to be directed in different directions at the same time (second state) and the settings related to the secondary cell are executed. May be directed at the serving cell and the other receiving beam may be directed at a different direction than the serving cell.
  • the secondary cell may include at least one of PSCell and Secondary Cell (SCell).
  • the serving cell may include at least one of PCell and PSCell.
  • the serving cell may simply be interpreted as the cell to which the UE200 is connected, but more strictly speaking, in the case of a RadioResourceControl (RRC) _CONNECTED UE that is not configured with carrier aggregation (CA), the primary cell.
  • RRC RadioResourceControl
  • CA carrier aggregation
  • the serving cell may be interpreted to represent a set of one or more cells including the primary cell and all secondary cells.
  • control unit 250 controls the received beams to be directed to different directions at the same time (second state) and executes the setting related to the secondary cell in a specific frequency range (for example, FR2), a plurality of units are used.
  • the received beam may be used to make measurements on the setting.
  • the settings related to the secondary cell may include at least one of SCell addition (SCell addition) and SCell activation (SCell activation).
  • the measurement related to the setting may include at least one of the measurement for the upper layer (L3) (L3 measurement) and the measurement at L1 (L1-RSRP measurement).
  • control unit 250 may control the received beams to be directed in different directions at the same time (second state), and may direct at least one received beam to each of the component carriers (CC).
  • a plurality of reception beams may be directed to one CC, and when a plurality of CCs are transmitted from different locations (assuming Inter-band CA), the plurality of reception beams are directed in different directions. You may turn to.
  • the UE200 uses a single reception beam, for example, the following increase in the measurement time of the UE200 or restrictions on operation occur.
  • RLM-RS RS that can be set is SSB or CSI-RS, but here refers to SSB
  • SSB SSB for L3 measurement
  • actual measurement timing is SMTC (SSB based RRM) If the settings) are duplicated by Measurement Timing Configuration window), only one of them can be executed.
  • the direction of the received beam is different between the SSB for L3 measurement and other channels (PUCCH / PUSCH / SRS or PDCCH / PDSCH / TRS / CSI-RS for CQI), it is necessary to switch the received beam. Data and the like cannot be transmitted or received between the symbols before and after the SSB to be measured (as explained in FIG. 4).
  • each CC is the same even if it is an Inter-band that straddles multiple bands (frequency bands). There is a constraint that must be sent from the location (direction).
  • a terminal (UE) that can independently direct multiple received beams in different directions is required.
  • This operation example targets a terminal (UE) that can independently control multiple (two or more) received beams and is directed in different directions, and measures delay and measurement method when performing measurement for any of the following. Or, clarify the scheduling constraints.
  • the operation example also includes an operation during carrier aggregation (CA) or dual connectivity (DC) by a terminal (UE) capable of independently directing a plurality of received beams in different directions.
  • CA carrier aggregation
  • DC dual connectivity
  • FIG. 6 is a schematic operation flow of the UE 200 according to the operation example 1.
  • the UE 200 can shorten the time related to cell detection and / or L3 measurement when a plurality of received beams can be controlled independently (S10, S20).
  • the UE 200 may shorten the Cell detection / L3 measurement time of its own cell and / or its surrounding cells more than usual.
  • the normal state here is the case of using a single received beam, that is, the case of Release 15.
  • the UE200 is supposed to switch the received beam eight times for measurement, but when a plurality of received beams (for example, two) are directed in different directions at the same time, a total of 4 You only have to try receiving the number of times, and the measurement time is halved.
  • a plurality of received beams are simultaneously directed in different directions to perform measurement, but after a certain period of time (for example, after one sample is measured), only the received beam in the direction in which a strong beam can be detected is detected. May be used to turn off the other receiving beam and continue the measurement.
  • the UE 200 may simultaneously execute Cell detection / L3 measurement of its own cell and / or peripheral cells and SSB-based or CSI-RS based RadioLink Monitoring in its own cell, or CBD and / or BFD. ..
  • SMTC which may be interpreted as the execution timing of Cell detection / L3 measurement notified from the network
  • RLM-RS overlap
  • the scaling factor specified by assuming the above-mentioned constraints such as K layer1_measurement specified in Chapter 9 of 3GPP TS38.133 may be set to 1.
  • UE200 has Cell detection / L3 measurement of cells and / or peripheral cells, RLM in its own cell, and channel transmission / reception in its own cell (PUCCH / PUSCH / SRS, or PDCCH / PDSCH / TRS / CSI-RS for). CQI) may be executed at the same time.
  • the UE 200 executes all operations between the operations without switching the received beam.
  • the UE200 may direct a different reception beam to each set RLM-RS with respect to the RLM in its own cell. As a result, the occurrence of wireless link failure (RLF) can be suppressed.
  • RLM wireless link failure
  • the UE200 executes cell detection and measurement operations adapted to the use of such a plurality of received beams (S30).
  • FIG. 7 is a schematic operation flow of the UE 200 according to the operation example 2.
  • the UE 200 can perform RSRP measurement at L1, specifically L1-RSRP measurement, by using the plurality of received beams at the same time (S110). , S120). The UE 200 can also perform BFD and / or CBD using multiple received beams simultaneously (S130).
  • the UE200 may execute SSB-based L1-RSRP measurement using a plurality of received beams at the same time.
  • the number of reception beam switching may be reduced from 8 times (for example, half 4 times).
  • the UE200 will emit one receive beam for each CC. It may be directed and measured at the same time (in this case, the received beam is switched 8 times for each CC).
  • UE200 may execute CSI-RS based L1-RSRP measurement for multiple CCs at the same time.
  • CSI-RS based L1-RSRP measurement is specified on the assumption that the received beam is not shaken (switched). This is because it is assumed that the basic SSB and QCL (Quasi Co-Location) Type-D settings are used. In each CC, it is assumed that CSI-RS associated with SSB with QCL Type-D set is used, and measurement can be performed at the same time without shaking the received beam.
  • Pseudo-collocation (QCL) Type D is a type of QCL regulation that indicates the relationship between two signals regarding radio parameters, as defined in Chapter 3GPP 38.214 5.1.5, and is defined as a Spatial Rx parameter.
  • the UE200 simultaneously executes channel (PUCCH / PUSCH / SRS or PDCCH / PDSCH / TRS / CSI-RS for CQI) transmission / reception and L1-RSRP measurement (either SSB or CSI-RS based). You may. As a result, the scheduling constraint can be eliminated.
  • the UE 200 may perform measurements using BFD-RS with respect to BFD and / or CBD using a plurality of received beams at the same time. For example, in the case of SSB-based measurement, when the UE200 directs a plurality of received beams (for example, two) in different directions at the same time, it is sufficient to try reception four times for each received beam, and the measurement time. Is halved.
  • the UE200 may simultaneously execute BFD-RS and channel (PUCCH / PUSCH / SRS, or PDCCH / PDSCH / TRS / CSI-RS for CQI) transmission / reception in its own cell.
  • PFD-RS and channel PDCCH / PDSCH / TRS / CSI-RS for CQI
  • L1-RSRP measurement / reporting measures the value of L1-RSRP for each RS (transmission beam of each radio base station) set in the radio resource control layer (RRC).
  • RRC radio resource control layer
  • the measurement period specifies, for each reporting, how many samples immediately before the L1-RSRP measurement should be completed, and in consideration of the number of samples and the scaling factor, as follows. (See 3GPP TS38.133, TS38.214).
  • Operation example 3 (Operation at CA / DC) Operation example 3 relates to the operation at the time of CA / DC.
  • FIG. 8 is a schematic operation flow of the UE 200 according to the operation example 3.
  • the UE 200 can direct at least one received beam toward the serving cell when a plurality of received beams can be controlled independently and when CA or DC is executed (S210 to S230).
  • the UE200 can also direct other receive beams in a different direction than the serving cell (S240).
  • the UE200 can operate as follows with respect to the SCell in FR2 activation delay and / or the PSCell addition delay for NR-NR DC in FR2.
  • the UE200 When the serving cell is set to FR2, the UE200 directs at least one receive beam to the serving cell's PCell / PSCell when performing PSCell addition or SCell addition / activation, and the other receive beams are in different directions ( It may be directed to a different CC).
  • the UE200 will send at least one to each CC. It may be assumed that one receiving beam is directed and each receiving beam is switched eight times.
  • the number of switchings in each CC may be scaled by the reception beam to reduce the number of times.
  • the UE200 when multiple CCs are transmitted from the same location, the UE200 reduces the number of times the received beam is switched in various measurements (L3 measurement or L1-RSRP measurement) required for SCell activation of the FR2, and reduces the measurement time. It may be shortened.
  • the UE200 uses a plurality of received beams at the same time to receive beams in various measurements (L3 measurement or L1-RSRP measurement) required in the FR2 SCell addition / activation.
  • the number of switchings may be reduced to shorten the measurement time.
  • UE200 May direct one receive beam and switch each receive beam eight times.
  • the number of switchings in each CC may be scaled by the reception beam to reduce the number of times.
  • the UE 200 may notify the network as UE capability (capacity information) regarding the number of received beams that can be controlled at the same time.
  • the notification timing may be before the start of control of a plurality of received beams, or may be the start timing.
  • the number of antenna panels mounted on the UE200 or the number of controllable beams may be notified, or may be notified for each band (frequency band).
  • whether or not to control a plurality of received beams at the same time may be switched depending on the situation. For example, in the FR2 Inter-band CA, a plurality of received beams may be used at the same time, and in other cases, only a single received beam may be used as before.
  • the received beam used for the measurement may be diverted (a single received beam is used).
  • the network may notify the switching of the received beam.
  • the application of the above-mentioned operation example may be divided into cases based on the reception beam forming method (number of antenna panels, etc.) of the UE 200.
  • the cases may be divided into the following three patterns.
  • FIG. 9A shows a mounting example of a UE200 antenna panel corresponding to pattern 1.
  • the UE 200 is equipped with two antenna panels, specifically, two antenna panels 205A, and the antenna panel 205A corresponds to one band (Band A).
  • the antenna panels 205A and 205B are schematically shown, and the size and mounting position are different from the actual ones.
  • FIG. 9B shows a mounting example of the UE200 antenna panel corresponding to pattern 2.
  • the UE 200 is equipped with an antenna panel 205A and an antenna panel 205B, and the antenna panels 205A and 205B correspond to different bands (Band A and B).
  • FIG. 9C shows a mounting example of the UE200 antenna panel corresponding to pattern 3.
  • the UE 200 is equipped with the antenna panel 206, and the antenna panel 206 corresponds to a plurality of bands (Band A, B).
  • the scheduling constraint may be resolved by executing L3 measurement of an adjacent cell while continuing data transmission / reception in the serving cell.
  • the operation related to reception beam switching is the same as Release 15.
  • the scheduling constraint may be resolved by executing L3 measurement of an adjacent cell while continuing data transmission / reception in the serving cell.
  • the operation related to the switching of the received beam is the same as that of Release 15.
  • 10A and 10B show an example of controlling a received beam by a UE 200 equipped with a plurality of antenna panels.
  • FIG. 10A is an example of an Inter-band CA in which two CCs are used, and the UE 200 is equipped with antenna panels 205A and 205B corresponding to different bands. As shown in FIG. 10A, the UE 200 uses the antenna panels 205A and 205B to direct the receiving beam in different directions and execute the CA. At the time of measurement, each received beam is shaken (switched) a total of 8 times.
  • FIG. 10B is an example of an Intra-band CA in which two CCs are used, and the UE 200 is equipped with two antenna panels 205A corresponding to the same band. As shown in FIG. 10B, the UE 200 uses two antenna panels 205A to direct the receiving beam in different directions. FIG. 10B shows an example of measuring four times using each antenna panel 205A. That is, the UE 200 can try to receive with two receiving beams in one measurement.
  • the following action / effect can be obtained. Specifically, regarding cell detection, upper layer (L3) measurement, and RLM, when the UE200 controls the received beams to be directed in different directions at the same time (second state), the received beams are directed in the same direction. At least one of the cell detection time and the measurement time in the upper layer can be shortened as compared with the case of controlling to the pointing state (first state).
  • UE200 can execute cell detection or L3 measurement and RLM or beam detection (BFD) at the same time.
  • the UE200 can simultaneously perform cell detection, L3 measurement or RLM, and channel transmission / reception, and can direct different receive beams to each of the RLM-RSs.
  • UE200 can execute received power measurement (RSRP measurement) using SSB by using multiple received beams at the same time.
  • RSRP measurement received power measurement
  • the UE200 can simultaneously execute reception power measurement using CSI-RS for multiple CCs, and can also execute channel transmission / reception and reception power measurement at the same time. Further, the UE 200 can simultaneously perform measurement using BFD-RS by using a plurality of received beams at the same time, and can simultaneously perform measurement using BFD-RS and channel transmission / reception.
  • the UE200 can direct at least one receiving beam toward the serving cell and the other receiving beam in a different direction from the serving cell when executing the settings related to the secondary cell.
  • the UE200 when the UE200 executes a setting related to a secondary cell in a specific frequency range (for example, FR2), the UE200 can perform a measurement related to the setting using a plurality of received beams. In addition, the UE 200 can also direct at least one receive beam to each of the CCs.
  • a specific frequency range for example, FR2
  • FR2 the operation in FR2 has been mainly described, but all or a part of the above-mentioned operation examples 1 to 3 is applied to other frequency ranges (FR) as long as beamforming is applied. May be done.
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by using two or more physically or logically separated devices). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption.
  • broadcasting notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but only these.
  • a functional block that makes transmission function is called a transmitting unit or a transmitter.
  • the method of realizing each is not particularly limited.
  • FIG. 11 is a diagram showing an example of the hardware configuration of the UE 200.
  • the UE 200 may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • the functional block of UE200 (see FIG. 5) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the UE 200 is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002 to control the communication by the communication device 1004 and the memory 1002. And by controlling at least one of reading and writing of data in the storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be composed of a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of memory 1002 and storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • Communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), and a Field Programmable Gate Array (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI), upper layer signaling (eg, RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block)). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling may also be referred to as an RRC message, for example, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobile Broadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next generation systems extended based on them.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in the present disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with a terminal are performed by the base station and other network nodes other than the base station (for example, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer).
  • Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table.
  • the input / output information can be overwritten, updated, or added.
  • the output information may be deleted.
  • the input information may be transmitted to another device.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells (also called sectors). When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head: RRH).
  • a base station subsystem eg, a small indoor base station (Remote Radio)
  • Communication services can also be provided by Head: RRH).
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless, depending on the trader. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same applies hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the function of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further consist of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, wireless frame configuration, transmission / reception.
  • SCS SubCarrier Spacing
  • TTI transmission time interval
  • At least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. Slots may be unit of time based on numerology.
  • OFDM Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may also be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • long TTIs eg, normal TTIs, subframes, etc.
  • short TTIs eg, shortened TTIs, etc.
  • TTI length the TTI length of long TTIs and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs include a physical resource block (Physical RB: PRB), a sub-carrier group (Sub-Carrier Group: SCG), a resource element group (Resource Element Group: REG), a PRB pair, an RB pair, etc. May be called.
  • Physical RB Physical RB: PRB
  • Sub-Carrier Group: SCG sub-carrier Group: SCG
  • REG resource element group
  • PRB pair an RB pair, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth, etc.) may also represent a subset of consecutive common resource blocks (RBs) for a neurology in a carrier.
  • RBs common resource blocks
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements, and each other. It can include the presence of one or more intermediate elements between two “connected” or “combined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain.
  • Electromagnetic energies with wavelengths in the microwave and light (both visible and invisible) regions can be considered to be “connected” or “coupled” to each other.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applicable standard.
  • RS Reference Signal
  • Pilot pilot
  • references to elements using designations such as “first”, “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. (Accessing) (for example, accessing data in memory) may be regarded as “judgment” or “decision”.
  • judgment and “decision” mean that “resolving”, “selecting”, “choosing”, “establishing”, “comparing”, etc. are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include that some action is regarded as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming”, “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Radio communication system 20 NG-RAN 100A, 100B gNB 200 UE 205A, 205B, 206 Antenna panel 210 Wireless transmitter 220 Wireless receiver 230 Cell detector 240 Monitoring measurement unit 250 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

UEは、受信ビームを介して無線信号を受信する。UEは、受信ビームを第1状態、または第1状態と受信ビームの制御が異なる第2状態に制御する。UEは、受信ビームを第2状態に制御し、セカンダリーセルに関する設定を実行する場合、少なくとも1つの受信ビームをサービングセルに向け、他の受信ビームをサービングセルと異なる方向に向ける。

Description

端末
 本発明は、無線信号を送受信する端末に関し、特に、複数の受信ビームを用いることができる端末に関する。
 3rd Generation Partnership Project(3GPP)は、Long Term Evolution(LTE)を仕様化し、LTEのさらなる高速化を目的としてLTE-Advanced(以下、LTE-Advancedを含めてLTEという)、さらに、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)の仕様化も進められている。
 3GPPのRelease 15では、Frequency Range(FR)2(24.25 GHz~52.6 GHz)を用いる場合、端末(User Equipment, UE)でも、電波の指向性パターンを形成し、特定方向に対するアンテナ利得を増加/減少させるビームフォーミングが想定されている。
 また、参照信号(RS)を用いたセル品質測定、及び無線リンクモニタリング(RLM)など、FR2のRadio Resource Management(RRM)では、端末(User Equipment, UE)は、単一の受信ビームの方向を順次切り替え、受信ビームの受信特性が良好となる方向をサーチしながら測定を実行することが前提となっている(非特許文献1)。
 また、FR2において、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)を実行する場合、上述したような受信ビームの制御能力を有する端末が適切に動作できるように、全てのCCが同一方向(同一場所)から送信されることが前提となっており、FR2では、Intra-band CAのみが規定されている。
3GPP TS 38.133 V15.6.0, 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Requirements for support of radio resource management(Release 15)、3GPP、2019年6月
 Release 16以降では、FR2でもInter-band CAの適用も検討されており、異なる方向(異なる場所)から複数のCCが送信されることが想定される。
 このような環境に対応するためには、端末は、複数の受信ビームを独立に制御し、各受信ビームを別方向に向けることが必要となると想定される。
 しかしながら、Release 15の仕様に従った場合、上述したセル品質測定及びRLMなどにおいて、必ずしも効率的な端末の動作にならない。
 そこで、本発明は、このような状況に鑑みてなされたものであり、複数の受信ビームを独立に制御し、各受信ビームを別方向に向ける場合でも、測定などの効率的な動作を実現し得る端末の提供を目的とする。
 本開示の一態様は、受信ビームを介して無線信号を受信する受信部(無線受信部220)と、前記受信ビームを第1状態、または前記第1状態と前記受信ビームの制御が異なる第2状態に制御する制御部(制御部250)を備え、前記制御部は、前記受信ビームを前記第2状態に制御し、セカンダリーセルに関する設定を実行する場合、少なくとも1つの前記受信ビームをサービングセルに向け、他の前記受信ビームを前記サービングセルと異なる方向に向ける端末(UE200)である。
 本開示の一態様は、受信ビームを介して無線信号を受信する受信部(無線受信部220)と、前記受信ビームを第1状態、または前記第1状態と前記受信ビームの制御が異なる第2状態に制御する制御部(制御部250)を備え、前記制御部は、前記受信ビームを前記第2状態に制御し、特定の周波数レンジにおいてセカンダリーセルに関する設定を実行する場合、複数の前記受信ビームを用いて前記設定に関する測定を実行する端末(UE200)である。
 本開示の一態様は、受信ビームを介して、コンポーネントキャリアを含む無線信号を受信する受信部(無線受信部220)と、前記受信ビームを第1状態、または前記第1状態と前記受信ビームの制御が異なる第2状態に制御する制御部(制御部250)を備え、前記制御部は、前記受信ビームを前記第2状態に制御し、前記コンポーネントキャリアのそれぞれに、少なくとも1つの前記受信ビームを向ける端末(UE200)である。
図1は、無線通信システム10の全体概略構成図である。 図2は、UE200による単一の受信ビームを用いた参照信号(RS)の受信例を示す図である。 図3は、UE200による単一の受信ビームを用いたキャリアアグリゲーションの動作例を示す図である。 図4は、データチャネル及び制御チャネルの送受信が可能、不可能なシンボルのパターン例を示す図である。 図5は、UE200の機能ブロック構成図である。 図6は、動作例1に係るUE200の概略動作フローである。 図7は、動作例2に係るUE200の概略動作フローである。 図8は、動作例3に係るUE200の概略動作フローである。 図9Aは、パターン1に対応するUE200のアンテナパネルの搭載例を示す図である。 図9Bは、パターン2に対応するUE200のアンテナパネルの搭載例を示す図である。 図9Cは、パターン3に対応するUE200のアンテナパネルの搭載例を示す図である。 図10Aは、複数のアンテナパネルを搭載したUE200による受信ビームの制御例(その1)を示す図である。 図10Bは、複数のアンテナパネルを搭載したUE200による受信ビームの制御例(その2)を示す図である。 図11は、UE200のハードウェア構成の一例を示す図である。
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、5G New Radio(NR)に従った無線通信システムであり、Next Generation-Radio Access Network 20(以下、NG-RAN20、及びユーザ端末200(User Equipment 200、以下、UE200)を含む。
 NG-RAN20は、無線基地局100A, 100B(以下、gNB100A, gNB100B)を含む。なお、gNB及びUEの数を含む無線通信システム10の具体的な構成は、図1に示した例に限定されない。
 NG-RAN20は、実際には複数のNG-RAN Node、具体的には、gNB(またはng-eNB)を含み、5Gに従ったコアネットワーク(5GC、不図示)と接続される。なお、NG-RAN20及び5GCは、単にネットワークと表現されてもよい。
 gNB100A, 100Bは、5Gに従った無線基地局であり、UE200と5Gに従った無線通信を実行する。gNB100A, 100B及びUE200は、複数のアンテナ素子から送信される無線信号を制御することによって、より指向性の高いビームを生成するMassive MIMO、複数のコンポーネントキャリア(CC)を束ねて用いるキャリアアグリゲーション(CA)、及びUEと複数のNG-RAN Nodeそれぞれとの間において同時に通信を行うデュアルコネクティビティ(DC)などに対応することができる。
 gNB100A, 100Bは、下りチャネル(チャネルの定義について後述する)送信時に適用した送信ビーム情報を通知することによって、UE200は対応した受信ビームを適用することが可能である。本実施形態では、UE200は、単一の受信ビームを用いることもできるが、2つ以上の複数の受信ビームを独立に制御でき、別方向に向けることができる。
 なお、ビームフォーミングは、複数のアンテナ素子(RF装置)の位相制御によって指向性を形成するアナログビームフォーミング、或いはベースバンドにおいて位相制御するデジタルビームフォーミングの何れでもよい。
 図2は、UE200による単一の受信ビームを用いた参照信号(RS)の受信例を示す。Frequency Range(FR)2(24.25 GHz~52.6 GHz)を用いる場合、3GPP Release 15(以下、適宜、Release 15と省略する)のRadio Resource Management(RRM)では、UE200は、単一の受信ビームの方向を順次Rx#1~Rx#nに切り替え、受信ビームの受信特性が良好となる方向をサーチしながら測定対象となるRS(例えば、SSB(SS/PBCH Block))の測定を実行する。図2に示す例では、それぞれのRx期間において受信するRS数は3つであり、UE200は、指向する方向が異なる合計nの受信ビームを試している。
 図3は、UE200による単一の受信ビームを用いたキャリアアグリゲーションの動作例を示す。Release 15では、FR2においてCAが実行される場合、単一の受信ビームの方向を順次切り替えるUE200が適切に動作できるように、gNB100Aから送信される各CC(CC1~CC4)は、同一周波数帯内に割り当てられる。つまり、Release 15では、Intra-band CAのみが規定されており、全てのCCが、同一方向、具体的には、同一場所(同一無線基地局、同一セルと言い換えてよい)から送信されることが前提となっている。
 本実施形態では、上述したように、UE200は、複数の受信ビームを独立に制御でき、別方向に向けることができるため、より柔軟なセル検出、測定、無線リンクモニタリング(監視)、ビーム管理、及びCA/DC動作を実現し得る。
 また、FR2では、時分割復信(TDD)が適用されるため、同期しているネットワークのみが想定されている。さらに、Release 15では、UE200は、FR2を用いる場合、アナログビームフォーミングによる単一の受信ビームを形成することが前提となっている。このため、UE200が、異なるニューメロロジー(SubCarrier Spacing:SCSなどと読み替えてよい)を同時受信できる能力のサポート有無に関わらず、測定対象のSSBシンボルと、当該SSBシンボルの前後1シンボルでは、データチャネル及び制御チャネルの送受信ができない。なお、シンボルとは、Orthogonal Frequency Division Multiplexing(OFDM)シンボル、或いはリソースブロック(RB)などと読み替えられてもよい。
 図4は、データチャネル及び制御チャネルの送受信が可能、不可能なシンボルのパターン例を示す。図4に示す例では、サービングセルにおいて120kHzのSCSが用いられ、測定対象のセルにおいて240kHzのSCSが用いられている。このため、測定対象のセルでは、1シンボル期間(シンボル長)が半分となっている。
 図4に示すように、測定対象のセルのSSB#1~3と対応するサービングセルのシンボル、及びその前後1シンボルでは、データチャネル及び制御チャネルの送受信ができない。このように、セル検出に際して、スケジューリングに制約がある。
 このようなスケジューリングの制約を設けることによって、UE200がアナログビームフォーミングによる単一の受信ビームを形成する場合でも、UE200は、サービングセルを介してデータ及び制御信号を正しく受信できる。なお、本実施形態では、後述するように、複数の受信ビームを独立に制御でき、別方向に向けることができるため、このようなスケジューリングの制約が不要となり得る。
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、UE200の機能ブロック構成について説明する。図5は、UE200の機能ブロック構成図である。
 無線送信部210は、NRに従った上りリンク信号(UL信号)を送信する。無線受信部220は、NRに従った下りリンク信号(DL信号)を受信する。
 具体的には、無線送信部210及び無線受信部220は、制御チャネルまたはデータチャネルを介して無線通信を実行する。
 制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、PRACH(Physical Random Access Channel)、及びPBCH(Physical Broadcast Channel)などが含まれる。
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。
 なお、参照信号には、Demodulation reference signal(DMRS)、Sounding Reference Signal(SRS)、Phase Tracking Reference Signal (PTRS)、Channel State Information-Reference Signal(CSI-RS)、Radio Link Monitoring-Reference Signal(RLM-RS)、及びBeam Failure Detection-Reference Signal (BFD-RS)が含まれる。また、信号には、チャネル及び参照信号が含まれ得る。また、データとは、データチャネルを介して送信されるデータを意味してよい。
 本実施形態では、無線受信部220は、受信ビーム(図2のRX#1~Rx#n)を介して無線信号を受信する受信部を構成する。また、無線受信部220は、受信ビームを介して、コンポーネントキャリア(CC)を含む無線信号(DL信号)を受信する受信部を構成する。つまり、UE200は、複数のキャリアを同時に送受信することによっても無線通信を実行できる。
 なお、ここでいう無線信号とは、gNB100A(またはgNB100B)の送信アンテナから空中に送出される信号の全てまたは一部を意味してもよいし、特定のセル(またはセルグループ)に含まれる信号の全てまたは一部を意味してもよい。
 セル検出部230は、UE200が在圏するセル及び周辺セルの検出処理を実行する。なお、在圏セルは、自セル、或いはUE200の接続状態によってサービングセルと呼ばれてもよい。また、周辺セルは、(自セルの)近隣セルまたは隣接セルなどと呼ばれてもよい。
 具体的には、セル検出部230は、当該セルから送信されるSSBなどに基づいてセルIDなどを検出する。
 監視測定部240は、無線リンクモニタリング、及び各レイヤにおける測定に関する処理を実行する。無線リンクモニタリング(RLM)は、3GPP TS38.133において規定される無線リンクの監視と対応する。具体的には、RLMには、以下の監視が含まれてもよい。
  ・スタンドアロンのNR、NR-NR Dual Connectivity(NR-DC)及びNR-E-UTRA Dual Connectivity(NE-DC)運用モードのPrimary Cell(PCell)
  ・NR-DC及びE-UTRA-NR Dual Connectivity(EN-DC)運用モードのPrimary SCell(PSCell)
 監視測定部240は、PCell及びPSCellのDL無線リンク品質を検出するため、設定されたRLM-RSリソースの参照信号に基づいて、DLの無線リンク品質を監視する。設定されたRLM-RSリソースは、全てのSSB、全てのCSI-RS、またはSSBとCSI-RSの混合でもよい。なお、監視測定部240は、アクティブなDL BWP(Bandwidth part)外において、RLMを実行する必要はない。
 また、監視測定部240は、特に、本実施形態では、上位レイヤ、具体的には、レイヤ3(L3)向けに各種測定を実行する。例えば、監視測定部240は、Reference Signal Received Power(RSRP)の測定(L3-RSRP)などを実行する。なお、Reference Signal Received Quality(RSRQ)またはSignal-to-Interference plus Noise power Ratio(SINR)が含まれてもよい。
 制御部250は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部250は、複数の受信ビームに関する制御を実行する。
 具体的には、制御部250は、2つ以上の複数の受信ビームを独立に制御できる。ここでいう独立に制御とは、受信ビームそれぞれを、同時期に別の方向に向けることを含む。例えば、図2に示すRx#1及びRx#nのように、Rx#1の受信ビームが指向する方向と、Rx#nの受信ビームが指向する方向とは、物理的に異なっている。これにより、UE200は、異なる場所(方向)、具体的には、gNB(セル)から到来するDL信号を同時に受信できる。
 また、制御部250は、Release 15と同様に、単一または複数の受信ビームを同一方向に向ける状態に制御することもできる。つまり、制御部250は、受信ビームを同一方向に向ける状態(第1状態)、または受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御することができる。
 すなわち、制御部250は、受信ビームを第1状態、または第1状態と受信ビームの制御が異なる第2状態に制御できる。
 (2.1)セル検出、上位レイヤ(L3)測定及びRLM関連
 制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御する場合、受信ビームを同一方向に向ける状態(第1状態)に制御する場合よりも、セル検出時間及び上位レイヤでの測定時間の少なくとも何れかを短くできる。
 ここでは、上位レイヤとは、L1(PHY)及びL2(Medium Access Control (MAC), Radio Link Control (RLC)など)よりも上位のレイヤ(L3以上)を意味してよい。
 また、制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御する場合、セル検出または上位レイヤ(L3)向けの測定(L3 measurement)と、無線リンクモニタリング(RLM)またはビームに関する検出とを同時に実行してもよい。
 ビームに関する検出には、Candidate Beam Detection(CBD)またはBeam Failure Detection(BFD)の少なくとも何れかが含まれてもよい。Candidate Beam Detectionは、ビーム障害の復旧(BFR)に用い得るビームの検出であり、BFDは、ビーム障害の検出である。
 また、制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御する場合、セル検出、上位レイヤでの測定または無線リンクモニタリング(RLM)と、チャネル送受信とを同時に実行してよい。
 ここでいうチャネルには、上述した制御チャネル及びデータチャネルが含まれてもよい。具体的には、PUCCH/PUSCH/SRS、またはPDCCH/PDSCH/TRS(Tracking Reference Signal)/CSI-RS for CQI (Channel Quality Indicator)が含まれてもよい。
 また、制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御する場合、無線リンクモニタリング(RLM)用の複数の参照信号(RLM-RS)それぞれに対して、異なる受信ビームを向けてもよい。
 なお、セル検出、上位レイヤ(L3)測定及びRLMに関する具体的な動作例については、さらに後述する。
 (2.2)ビーム管理関連
 制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御する場合、複数の受信ビームを同時に用いて、SSBを用いた受信電力測定を実行できる。
 なお、SSBは、上述したように、SS(Synchronization Signal)/PBCH Blockの略であるが、同期信号ブロックと呼ばれてよいし、参照信号(RS)の一種と解釈されてもよい。
 具体的には、受信電力測定とは、Reference Signal Received Power(RSRP)、つまり、参照信号の受信電力を意味してよい。具体的には、上述したように、SSBをベースとしたレイヤ1におけるRSRP測定(L1-RSRP measurement)を意味する。
 また、制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御する場合、チャネル状態情報用の参照信号、具体的には、CSI-RSを用いた受信電力測定を、複数のコンポーネントキャリア(CC)に対して同時に実行してよい。
 また、制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御する場合、チャネル送受信と、受信電力測定とを同時に実行してもよい。
 ここでいうチャネルには、上述したように、PUCCH/PUSCH/SRS、またはPDCCH/PDSCH/TRS/CSI-RS for CQIが含まれてもよい。
 また、チャネル送受信と同時に実行される受信電力測定は、SSBを用いるL1-RSRP measurementでもよいし、CSI-RSを用いるL1-RSRP measurementでもよい。
 また、制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御する場合、複数の受信ビームを同時に用いて、ビーム障害検出(BFD)用の参照信号(BFD-RS)を用いた測定を実行してもよい。
 なお、BFD-RSは、BFD-RSとして設定されたSSBまたはCSI-RSの何れかであってもよい。
 また、制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御する場合、BFD-RSを用いた測定と、チャネル送受信とを同時に実行してもよい。
 ここでいうチャネルにも、PUCCH/PUSCH/SRS、またはPDCCH/PDSCH/TRS/CSI-RS for CQIが含まれてもよい。
 なお、ビーム管理に関する具体的な動作例については、さらに後述する。
 (2.3)CA/DC関連
 制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御し、セカンダリーセルに関する設定を実行する場合、少なくとも1つの受信ビームをサービングセルに向け、他の受信ビームをサービングセルと異なる方向に向けてもよい。
 ここで、セカンダリーセルには、PSCell及びSecondary Cell(SCell)の少なくとも何れかが含まれてよい。また、サービングセルには、PCell及びPSCellの少なくとも何れかが含まれてもよい。
 また、サービングセルとは、単にUE200が接続中のセルと解釈されてもよいが、もう少し厳密には、キャリアアグリゲーション(CA)とともに構成されていないRadio Resource Control (RRC)_CONNECTEDのUEの場合、プライマリセルを構成するサービングセルは1つだけである。CAを用いて構成されたRRC_CONNECTEDのUEの場合、サービングセルは、プライマリセルと全てのセカンダリーセルとを含む1つまたは複数のセルのセットを示すと解釈されてもよい。
 また、制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御し、特定の周波数レンジ(例えば、FR2)においてセカンダリーセルに関する設定を実行する場合、複数の受信ビームを用いて当該設定に関する測定を実行してもよい。
 セカンダリーセルに関する設定には、SCellの追加(SCell addition)及びSCellの有効化(SCell activation)の少なくとも何れかが含まれてもよい。
 また、当該設定に関する測定には、上位レイヤ(L3)向けの測定(L3 measurement)及びL1での測定(L1-RSRP measurement)の少なくも何れかが含まれてよい。
 また、制御部250は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御し、コンポーネントキャリア(CC)のそれぞれに、少なくとも1つの受信ビームを向けてもよい。
 つまり、1つのCCに対して、複数の受信ビームが向けられてもよいし、複数のCCが異なる場所から送信される場合(Inter-band CAを想定)には、複数の受信ビームを異なる方向に向けてもよい。
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、FR2における複数の受信ビームの独立制御に伴うUE200の無線リソース管理(RRM)に関する動作について説明する。
 (3.1)課題
 まず、Release 15のように、UE200が単一の受信ビームを用いる場合におけるRRM関連の課題について説明する。
 UE200が単一の受信ビームを用いる場合、例えば、以下のようなUE200の測定時間の増加、或いは動作の制約が発生する。
  ・FR2のL3 measurement(RSRP/RSRQ/SINR)を実行する場合、測定誤差規定を満たすために必要な測定サンプル数が3であることに加え、受信ビームの切り替えを8回実行することが想定されるため、計24サンプルの測定が必要である。
 なお、FR1の場合、測定誤差規定を満たすために必要なサンプル数は5であるため、約5倍の差がある。
  ・FR2の無線リンクモニタリングに関して、RLM-RS(設定できるRSは、SSBまたはCSI-RSであるが、ここではSSBを指す)と、L3 measurement用のSSB(実際の測定タイミングはSMTC(SSB based RRM Measurement Timing Configuration window)によって設定)が重複すると、何れか一方しか実行できない。
 これは、隣接セルのL3 measurementと自セルのRLM-RSとでは、受信ビームの方向が異なるためである。なお、FR1の場合、このような状態は想定されないため、RLM-RSとL3 measurement用のSSBとを用いた処理を同時に実行し得る。
  ・L3 measurement用のSSBと、その他のチャネル(PUCCH/PUSCH/SRS、またはPDCCH/PDSCH/TRS/CSI-RS for CQI)とでは、受信ビームの方向が異なるため、受信ビームの切り替えが必要となり、測定対象SSBの前後シンボルにおいてデータなどの送受信が不可となる(図4において説明したとおり)。
 なお、FR1の場合、このような状態は想定されないため、当該シンボルにおいてもデータなどの送受信が可能である。
  ・FR2におけるInter-band CA/DCをサポートする場合、一度に向けられる受信ビームが、一方向を前提としたままでは、複数バンド(周波数帯)を跨ぐInter-bandであっても各CCを同一場所(方向)から送信しなければならない制約が生じる。
 つまり、Inter-band CA/DCをサポートするためには、複数の受信ビームを独立して異なる方向に向けることが可能な端末(UE)が求められる。
 (3.2)動作例
 以下では、上述したような課題を解消し得る動作例について説明する。具体的には、UE200が複数(2つ以上)の受信ビームを独立に別方向へ向けられることを想定したUE200のRRMに関する動作例について説明する。このような動作例によって、測定時間の短縮などによる効率的な測定、及び無線基地局(gNB)またはアンテナの置局上の制約解消を実現する。
 本動作例は、複数(2つ以上)の受信ビームを独立に制御でき、別方向へ向けられる端末(UE)を対象とし、以下に挙げる何れかに関する測定を実行する場合における測定遅延、測定方法、或いはスケジューリング制約を明確化する。
  ・Cell detection/L3 measurement
  ・Radio link monitoring(RLM)
  ・Beam management
  ・L1-RSRP measurement/report
  ・Beam Failure Detection(BFD)/Candidate Beam Detection(CBD)
 また、本動作例は、複数の受信ビームを独立して異なる方向に向けることができる端末(UE)によるキャリアアグリゲーション(CA)またはデュアルコネクティビティ(DC)時の動作も含む。
 (3.2.1)動作例1(Cell detection/L3 measurement/RLM関連)
 動作例1は、Cell detection、L3 measurement及びRLMに関連する。図6は、動作例1に係るUE200の概略動作フローである。
 図6に示すように、UE200は、複数の受信ビームを独立に制御可能な場合、セル検出及び/またはL3 measurementに関する時間を短縮できる(S10, S20)。
 具体的には、UE200は、自セル及び/または周辺セルのCell detection/L3 measurement時間を通常よりも短縮してもよい。ここでいう通常とは、単一の受信ビームを用いる場合、つまり、Release 15の場合である。
 例えば、Release 15の場合、上述したように、UE200は、受信ビームを8回切り替えて測定する想定であるが、複数の受信ビーム(例えば、2つ)を同時に別方向へ向けられる場合、合計4回の受信を試せばよいことになり、測定時間が半減する。
 或いは、測定動作の開始当初は複数の受信ビームを同時に別方向へ向けて測定を実行するが、一定時間後(例えば、1サンプル測定後)には、強いビームを検知できた方向の受信ビームのみを用い、他の受信ビームをオフして測定を継続してもよい。
 また、UE200は、自セル及び/または周辺セルのCell detection/L3 measurementと、自セルでのSSB-basedまたはCSI-RS based Radio Link Monitoring、若しくはCBD及び/またはBFDとを同時に実行してもよい。
 具体的には、Release 15では、SMTC(ネットワークから通知されるCell detection/L3 measurementの実行タイミングと解釈されてもよい)と、RLM-RSとが重複した場合、何れか一方しか実行できなかったが、複数の受信ビームを同時に別方向へ向けられる場合、両方の測定を同時に実行してもよい。
 より具体的には、3GPP TS38.133の9章において規定されているKlayer1_measurementなど、上述した制約を想定して規定されたスケーリングファクターを1としてもよい。
 また、UE200は、セル及び/または周辺セルのCell detection/L3 measurement、及び自セルでのRLMと、自セルでのチャネル送受信(PUCCH/PUSCH/SRS、またはPDCCH/PDSCH/TRS/CSI-RS for CQI)を同時に実行してもよい。
 具体的には、UE200は、当該動作間において、受信ビームを切り替えることなく、全ての動作を実行する。
 これにより、L3 measurement用のSSBと、チャネル送受信が衝突した際に生じるSSBとその前後1シンボル上でのスケジューリング制約が解消される。また、RLM-RS(SSBまたはCSI-RS)とチャネル送受信が衝突した際に生じるRLM-RSのシンボル上でのスケジューリング制約も解消される。
 また、UE200は、自セルでのRLMに関して、設定された各RLM-RSに対して異なる受信ビームを向けてもよい。これにより、無線リンク障害(RLF)の発生を抑制し得る。
 UE200は、このような複数の受信ビームを用いる場合に適応したセル検出及び測定動作を実行する(S30)。
 (3.2.2)動作例2(Beam management関連)
 動作例2は、Beam managementに関連する。図7は、動作例2に係るUE200の概略動作フローである。
 図7に示すように、UE200は、複数の受信ビームを独立に制御可能な場合、複数の受信ビームを同時に用いて、L1におけるRSRP測定、具体的には、L1-RSRP measurementを実行できる(S110, S120)。また、UE200は、複数の受信ビームを同時に用いて、BFD及び/またはCBDを実行できる(S130)。
 具体的には、UE200は、複数受信ビームを同時に用いて、SSB-based L1-RSRP measurementを実行してもよい。
 例えば、FR2において、サービングセルが1つ、またはIntra-band CAにおいて全てのCCが同一場所から送信されている場合、受信ビームの切り替えの回数を8回から減らしてもよい(例えば、半分の4回とする)。
 また、FR2内でのInter-band CAまたはInter-band DC、またはIntra-band/Inter-bandに関わらず、異なる場所からCCが送信されている場合、UE200は、CC毎に1つの受信ビームを向け、同時に測定できるようしてもよい(この場合、各CC向けに受信ビームを8回切り替える)。
 また、UE200は、CSI-RS based L1-RSRP measurementを、複数CCに対して同時に実行してもよい。
 なお、CSI-RS based L1-RSRP measurementでは、受信ビームを振らない(切り替えない)想定で規定されている。基本SSBと、QCL(Quasi Co-Location) Type-D設定とする想定であるためである。各CCにおいて、QCL Type-Dが設定されたSSBと対応付けられたCSI-RSを用いる想定であり、受信ビームは振らずに同時に測定を実行できる。擬似コロケーション(QCL) Type Dは、3GPP 38.214 5.1.5章に規定されている、2つの信号間の無線パラメータに関する関係性を示すQCL規定の一種であり、Spatial Rx parameterと定義されている。
 また、UE200は、チャネル(PUCCH/PUSCH/SRS、またはPDCCH/PDSCH/TRS/CSI-RS for CQI)送受信と、L1-RSRP measurement(SSB, CSI-RS basedの何れでもよい)とを同時に実行してもよい。これにより、スケジューリング制約を解消し得る。
 また、UE200は、BFD及び/またはCBDに関して、複数の受信ビームを同時に用いて、BFD-RSを用いた測定を実行してもよい。例えば、SSB-based measurementであれば、UE200は、複数の受信ビーム(例えば、2つ)を同時に別方向へ向ける場合、1つの受信ビームあたり4回ずつ受信を試せばよいことになり、測定時間が半減する。
 また、UE200は、BFD-RSと、自セルでのチャネル(PUCCH/PUSCH/SRS、またはPDCCH/PDSCH/TRS/CSI-RS for CQI)送受信とを同時に実行してもよい。これにより、スケジューリング制約を解消し得る。
 なお、L1-RSRP measurement/reportingは、無線リソース制御レイヤ(RRC)において設定された各RS(各無線基地局の送信ビーム)に対するL1-RSRPの値を測定するものである。
 測定周期(Measurement period)は、各レポーティングに対して、直前何サンプル以内でL1-RSRP測定を完了する必要があるかを規定するとともに、サンプル数及びスケーリングファクターを考慮して、次のように規定されている(3GPP TS38.133, TS38.214参照)。
  ・(FR1の場合): M × P × SSB/CSI-RS周期
  ・(FR2の場合): M × N × P × SSB/CSI-RS周期
    ・M:L1-RSRP reportingの測定に用いるサンプル数
    ・P:SMTC及びMGとの重複を考慮したスケーリングファクター
    ・N:UEの受信ビーム切替を考慮したスケーリングファクター
 表1及び表2は、条件とサンプル数M, NとによるMeasurement periodの設定例を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (3.2.3)動作例3(CA/DC時の動作)
 動作例3は、CA/DC時の動作に関連する。図8は、動作例3に係るUE200の概略動作フローである。
 図8に示すように、UE200は、複数の受信ビームを独立に制御可能な場合、かつ、CAまたはDCを実行する場合、少なくとも1つの受信ビームをサービングセルに向けることができる(S210~S230)。また、UE200は、他の受信ビームをサービングセルと異なる方向に向けることができる(S240)。
 具体的には、UE200は、SCell in FR2 activation delay及び/またはPSCell addition delay for NR-NR DC in FR2に関して、以下のように動作できる。
 サービングセルがFR2に設定されている場合、UE200は、PSCell addition、またはSCell addition/activationを実行する際、少なくとも1つの受信ビームをサービングセルのPCell/PSCellへ向け、それ以外の受信ビームは、異なる方向(異なるCC)に向けてもよい。
 具体的には、FR2のInter-band CAを含む、CCが異なる場所から送信される場合(既に受信ビームの切り替え回数が1回を想定している規定を除く)、UE200は、各CCに少なくとも1つ受信ビームを向け、それぞれ受信ビームを8回切り替えると想定してもよい。
 なお、同時受信ビーム数が3つ以上の場合、各CCでの切り替え回数を受信ビームによってスケーリングし、当該回を減らしてもよい。
 また、複数のCCが同一場所から送信される場合、UE200は、当該FR2のSCell activationにおいて、必要となる各種測定(L3 measurementまたはL1-RSRP measurement)における受信ビームの切り替え回数を減らし、測定時間を短縮してもよい。
 一方、サービングセルがFR2に設定されていない場合、UE200は、複数の受信ビームを同時に用いることによって、当該FR2 SCell addition/activationにおいて、必要となる各種測定(L3 measurementまたはL1-RSRP measurement)における受信ビームの切り替え回数を減らし、測定時間を短縮してもよい。
 また、CA及びDC時における測定に関しても、FR2のInter-band CAを含む、CCが異なる場所から送信される場合(既に受信ビームの切り替え回数が1回を想定している規定を除く)、UE200は、1つ受信ビームを向け、それぞれ受信ビームを8回切り替えると想定してもよい。
 なお、同時受信ビーム数が3つ以上の場合、各CCでの切り替え回数を受信ビームによってスケーリングし、当該回を減らしてもよい。
 (3.3)その他
 上述した動作例1~3以外に、複数の受信ビームの独立制御に関して、さらに以下のような動作が適用されてもよい。
 具体的には、同時に制御可能な受信ビームの数に関して、UE200は、UE capability(能力情報)として、ネットワークに通知してもよい。通知のタイミングは、複数の受信ビームの制御開始前でもよいし、開始のタイミングでもよい。
 例えば、UE200が搭載するアンテナパネル数、または制御可能ビーム数が通知されてもよく、またバンド(周波数帯)毎に通知されてもよい。
 また、複数の受信ビームを同時に制御するか否かは、状況に応じて切り替えられてもよい。例えば、FR2のInter-band CAでは複数の受信ビームを同時に用い、それ以外の場合は従来どおり、単一の受信ビームのみをもちいてもよい。
 或いは、UE200は、直前に測定済みであるセルまたはビームを対象した測定を実行する場合、当該測定に用いた受信ビームを流用してもよい(単一の受信ビームを用いる)。また、ネットワークから受信ビームの切り替えが通知されてもよい。
 また、上述した動作例の適用は、UE200の受信ビーム形成方法(アンテナパネル数など)に基づいて場合分けされてもよい。
 例えば、以下の3つのパターンに場合分けされてもよい。
  ・(パターン1):2アンテナパネル搭載、1バンドあたり2つ以上の受信ビームを形成
  ・(パターン2):2アンテナパネル搭載、1バンドあたり1つの受信ビームを形成
  ・(パターン3):1アンテナパネル搭載、複数バンドの受信ビームを形成
 図9Aは、パターン1に対応するUE200のアンテナパネルの搭載例を示す。図9Aに示すように、UE200は、2つのアンテナパネル、具体的には、2つのアンテナパネル205Aを搭載し、アンテナパネル205Aは、1バンド(Band A)に対応する。なお、アンテナパネル205A, 205Bは、模式的に示したものであり、サイズ及び搭載位置は、実際と異なることに留意されたい。
 図9Bは、パターン2に対応するUE200のアンテナパネルの搭載例を示す。図9Bに示すように、UE200は、アンテナパネル205A及びアンテナパネル205Bを搭載し、アンテナパネル205A, 205Bは、異なるバンド(Band A, B)に対応する。
 図9Cは、パターン3に対応するUE200のアンテナパネルの搭載例を示す。図9Cに示すように、UE200は、アンテナパネル206を搭載し、アンテナパネル206は、複数のバンド(Band A, B)に対応する。
 パターン1のUE200の場合、上述した動作例1~3の全てが適用されてよい。
 パターン2のUE200の場合、上述した動作例1~3の一部が適用される。例えば、サービングセルでのデータ送受信を継続しながら、隣接セルのL3 measurementを実行することによって、スケジューリング制約を解消してもよい。一方、受信ビームの切り替え数については、Release 15と変わらないため、受信ビームの切り替えに関する動作については、Release 15と同様とする。
 パターン3のUE200の場合も、上述した動作例1~3の一部が適用される。例えば、サービングセルでのデータ送受信を継続しながら、隣接セルのL3 measurementを実行することによって、スケジューリング制約を解消してもよい。一方、受信ビームの切り替えに関する動作については、Release 15と同様とする。
 図10A及び図10Bは、複数のアンテナパネルを搭載したUE200による受信ビームの制御例を示す。
 具体的には、図10Aは、2つのCCが用いられるInter-band CAの例であり、UE200は、異なるバンドに対応したアンテナパネル205A, 205Bを搭載する。図10Aに示すように、UE200は、アンテナパネル205A, 205Bを用いて異なる方向に受信ビームを向け、CAを実行する。測定時には、各受信ビームを合計8回振る(切り替える)。
 図10Bは、2つのCCが用いられるIntra-band CAの例であり、UE200は、同一のバンドに対応した2つのアンテナパネル205Aを搭載する。図10Bに示すように、UE200は、2つのアンテナパネル205Aを用いて、異なる方向に受信ビームを向ける。図10Bでは、各アンテナパネル205Aを用いて4回測定する例が示されている。つまり、UE200は、1回の測定において、2つの受信ビームによる受信を試すことができる。
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、セル検出、上位レイヤ(L3)測定及びRLMに関して、UE200は、受信ビームそれぞれを同時期に別の方向に向ける状態(第2状態)に制御する場合、受信ビームを同一方向に向ける状態(第1状態)に制御する場合よりも、セル検出時間及び上位レイヤでの測定時間の少なくとも何れかを短くできる。
 また、UE200は、セル検出またはL3 measurementと、RLMまたはビームに関する検出(BFD)とを同時に実行できる。さらに、UE200は、セル検出、L3 measurementまたはRLMと、チャネル送受信とを同時に実行すること、及びRLM-RSそれぞれに対して、異なる受信ビームを向けることもできる。
 このようなUE200の動作によって、セル検出及び上位レイヤでの測定処理を効率化し得る。
 ビーム管理に関して、UE200は、複数の受信ビームを同時に用いて、SSBを用いた受信電力測定(RSRP測定)を実行できる。
 また、UE200は、CSI-RSを用いた受信電力測定を、複数CCに対して同時に実行でき、チャネル送受信と、受信電力測定とを同時に実行することもできる。さらに、UE200は、複数の受信ビームを同時に用いて、BFD-RSを用いた測定を実行すること、及びBFD-RSを用いた測定と、チャネル送受信とを同時に実行することもできる。
 このようなUE200の動作によって、スケジューリング制約が解消でき、測定処理を効率化し得る。
 CA/DCに関して、UE200は、セカンダリーセルに関する設定を実行する場合、少なくとも1つの受信ビームをサービングセルに向け、他の受信ビームをサービングセルと異なる方向に向けることができる。
 また、UE200は、特定の周波数レンジ(例えば、FR2)においてセカンダリーセルに関する設定を実行する場合、複数の受信ビームを用いて当該設定に関する測定を実行できる。さらに、UE200は、CCのそれぞれに、少なくとも1つの受信ビームを向けることもできる。
 このようなUE200の動作によって、CA/DCに関する設定及び測定処理を効率化し得る。
 すなわち、上述した動作例1~3に対応したUE200によれば、複数の受信ビームを独立に制御し、各受信ビームを別方向に向ける場合でも、測定などの効率的な動作を実現し得る。
 (5)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
 例えば、上述した実施形態では、FR2での動作について主に説明したが、上述した動作例1~3の全てまたは一部は、ビームフォーミングが適用される限り、他の周波数レンジ(FR)に適用されてもよい。
 また、上述した実施形態の説明に用いたブロック構成図(図5)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。
 さらに、上述したUE200は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、UE200のハードウェア構成の一例を示す図である。図11に示すように、UE200は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 UE200の機能ブロック(図5参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。
 また、UE200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor: DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。
サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
 10 無線通信システム
 20 NG-RAN
 100A, 100B gNB
 200 UE
 205A, 205B, 206 アンテナパネル
 210 無線送信部
 220 無線受信部
 230 セル検出部
 240 監視測定部
 250 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 

Claims (3)

  1.  受信ビームを介して無線信号を受信する受信部と、
     前記受信ビームを第1状態、または前記第1状態と前記受信ビームの制御が異なる第2状態に制御する制御部を備え、
     前記制御部は、前記受信ビームを前記第2状態に制御し、セカンダリーセルに関する設定を実行する場合、少なくとも1つの前記受信ビームをサービングセルに向け、他の前記受信ビームを前記サービングセルと異なる方向に向ける端末。
  2.  受信ビームを介して無線信号を受信する受信部と、
     前記受信ビームを第1状態、または前記第1状態と前記受信ビームの制御が異なる第2状態に制御する制御部を備え、
     前記制御部は、前記受信ビームを前記第2状態に制御し、特定の周波数レンジにおいてセカンダリーセルに関する設定を実行する場合、複数の前記受信ビームを用いて前記設定に関する測定を実行する端末。
  3.  受信ビームを介して、コンポーネントキャリアを含む無線信号を受信する受信部と、
     前記受信ビームを第1状態、または前記第1状態と前記受信ビームの制御が異なる第2状態に制御する制御部を備え、
     前記制御部は、前記受信ビームを前記第2状態に制御し、前記コンポーネントキャリアのそれぞれに、少なくとも1つの前記受信ビームを向ける端末。
     
PCT/JP2019/032079 2019-08-15 2019-08-15 端末 WO2021029078A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/032079 WO2021029078A1 (ja) 2019-08-15 2019-08-15 端末
US17/635,212 US20220295300A1 (en) 2019-08-15 2019-08-15 Terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/032079 WO2021029078A1 (ja) 2019-08-15 2019-08-15 端末

Publications (1)

Publication Number Publication Date
WO2021029078A1 true WO2021029078A1 (ja) 2021-02-18

Family

ID=74570987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/032079 WO2021029078A1 (ja) 2019-08-15 2019-08-15 端末

Country Status (2)

Country Link
US (1) US20220295300A1 (ja)
WO (1) WO2021029078A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021159345A1 (en) * 2020-02-12 2021-08-19 Apple Inc. Mechanisms of searcher number exchange for cell detection and measurement in new radio (nr)
WO2022082590A1 (en) * 2020-10-22 2022-04-28 Apple Inc. Systems and methods for handling collisions between aperiodic channel state information reference signal (ap-csi-rs) and periodic reference signal (rs) measurements
US11751014B2 (en) * 2021-03-19 2023-09-05 Nokia Technologies Oy Long term evolution (LTE) positioning protocol (LPP) enhancements for latency control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128185A1 (ja) * 2017-01-06 2018-07-12 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128185A1 (ja) * 2017-01-06 2018-07-12 株式会社Nttドコモ ユーザ端末及び無線通信方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CMCC: "Enhancements on multi-beam operation", 3GPP TSG RAN WG1 #97 R1-1906522, 17 May 2019 (2019-05-17), XP051727972 *
NOKIA ET AL.: "Enhancements on Multi-beam Operation", 3GPP TSG RAN WG1 #97 RL-1907317, 17 May 2019 (2019-05-17), XP051728756 *
NTT: "Discussion on multi-beam enhancement", 3GPP TSG RAN WG1 #97 R1-1906225, 17 May 2019 (2019-05-17), XP051727679 *

Also Published As

Publication number Publication date
US20220295300A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
JPWO2020008649A1 (ja) ユーザ端末及び無線通信方法
KR20210142099A (ko) 유저장치 및 기지국장치
WO2021029078A1 (ja) 端末
WO2021029077A1 (ja) 端末
JPWO2020016938A1 (ja) 端末、無線通信方法、基地局及びシステム
JPWO2020035954A1 (ja) ユーザ端末及び無線通信方法
WO2021001946A1 (ja) 端末
JP2024015342A (ja) 端末及び通信方法
WO2021199356A1 (ja) 端末、無線通信方法及び基地局
JP7285324B2 (ja) 端末、通信システム、及び通信方法
JP7217291B2 (ja) 端末及び通信方法
WO2021192306A1 (ja) 端末
WO2021199357A1 (ja) 端末、無線通信方法及び基地局
WO2021199200A1 (ja) 端末
WO2021149256A1 (ja) 端末
WO2021019695A1 (ja) 端末
WO2021019698A1 (ja) 端末
WO2021074951A1 (ja) 端末
WO2020188830A1 (ja) ユーザ装置及び基地局装置
WO2021029073A1 (ja) 端末
JPWO2020035953A1 (ja) ユーザ端末及び無線通信方法
JPWO2020008648A1 (ja) ユーザ端末
WO2022029986A1 (ja) 端末及び通信方法
JP7427687B2 (ja) 端末、通信システム、及び通信方法
WO2022085094A1 (ja) 端末及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941201

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP