WO2021028977A1 - Wavelength conversion material, method for manufacturing wavelength conevrsion material, laminate, backlight unit, and image display device - Google Patents

Wavelength conversion material, method for manufacturing wavelength conevrsion material, laminate, backlight unit, and image display device Download PDF

Info

Publication number
WO2021028977A1
WO2021028977A1 PCT/JP2019/031689 JP2019031689W WO2021028977A1 WO 2021028977 A1 WO2021028977 A1 WO 2021028977A1 JP 2019031689 W JP2019031689 W JP 2019031689W WO 2021028977 A1 WO2021028977 A1 WO 2021028977A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
meth
conversion material
acrylate
phosphor
Prior art date
Application number
PCT/JP2019/031689
Other languages
French (fr)
Japanese (ja)
Inventor
佳歩 山口
康平 向垣内
真弓 佐藤
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to PCT/JP2019/031689 priority Critical patent/WO2021028977A1/en
Priority to PCT/JP2020/029561 priority patent/WO2021029240A1/en
Priority to TW109126515A priority patent/TW202113028A/en
Publication of WO2021028977A1 publication Critical patent/WO2021028977A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present disclosure relates to a wavelength conversion material, a method for manufacturing a wavelength conversion material, a laminate, a backlight unit, and an image display device.
  • the wavelength conversion material containing the phosphor is arranged, for example, in the backlight unit of the image display device.
  • a wavelength conversion material containing a phosphor that emits red light and a phosphor that emits green light when the wavelength conversion material is irradiated with blue light as excitation light, the red light emitted from the phosphor and White light can be obtained from green light and blue light transmitted through a wavelength conversion material.
  • the color reproducibility of displays has been expanded from 72% of the conventional NTSC (National Television System Committee) ratio to 100% of the NTSC ratio.
  • wavelength conversion materials have been mainly used for relatively large displays such as televisions, but demand for small displays such as smartphones and tablets is expected to increase in the future. Therefore, it is considered that the wavelength conversion material will be made thinner (for example, the thickness is 150 ⁇ m or less) in order to make it compatible with a small display.
  • the wavelength conversion material generally includes a wavelength conversion layer containing a phosphor and a coating material arranged on both sides thereof, and the wavelength conversion layer is formed by curing a resin composition containing a phosphor. Therefore, when the wavelength conversion material is made thinner, the rigidity is lowered, and wrinkles due to curing shrinkage of the resin composition are likely to occur, which may impair the appearance.
  • Means for solving the above problems include the following aspects.
  • a wavelength conversion material comprising a wavelength conversion layer containing a phosphor and a cured resin product and coating materials arranged on both sides of the wavelength conversion layer, from the coating material on at least one outer surface of the coating material.
  • ⁇ 3> The wavelength conversion material according to ⁇ 1> or ⁇ 2>, wherein the thickness of the coating material is 25 ⁇ m or less.
  • ⁇ 4> The thickness of the wavelength conversion material in a state where the carrier film is not arranged is 150 ⁇ m or less.
  • ⁇ 5> The wavelength conversion material according to any one of ⁇ 1> to ⁇ 4>, wherein the thickness of the carrier film is 30 ⁇ m to 150 ⁇ m.
  • ⁇ 6> The wavelength conversion material according to any one of ⁇ 1> to ⁇ 5>, wherein the wrinkle height in the state where the carrier film is not arranged is less than 3.0 mm.
  • ⁇ 11> The wavelength conversion material according to any one of ⁇ 1> to ⁇ 10>, wherein the phosphor contains a quantum dot phosphor.
  • ⁇ 12> The wavelength conversion material according to ⁇ 11>, wherein the quantum dot phosphor contains a compound containing at least one of Cd and In.
  • ⁇ 13> A resin composition layer containing a phosphor and a resin, a coating material arranged on both sides of the resin composition layer, and a carrier arranged on at least one outer surface of the coating material and peelable from the coating material.
  • ⁇ 14> Production of the wavelength conversion material according to any one of ⁇ 1> to ⁇ 12>, comprising a coating material and a carrier film arranged on one side of the coating material and removable from the coating material.
  • An image display device including the backlight unit according to ⁇ 15>.
  • a wavelength conversion material in which wrinkles are suppressed even if the thickness is thin and a method for producing the same are provided. Further, according to the present disclosure, a laminate used for manufacturing the wavelength conversion material, a backlight unit using the wavelength conversion material, and an image display device are provided.
  • the numerical range indicated by using “-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content rate or content of each component is the total content rate or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term “layer” or “membrane” refers to only a part of the region, in addition to the case where the layer or the membrane is formed in the entire region when the region where the layer or the membrane exists is observed. The case where it is formed is also included.
  • laminated refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
  • (meth) acrylate means at least one of acrylate and methacrylate
  • (meth) allyl means at least one of allyl and metaallyl
  • (meth) acrylic means acrylic and methacrylic
  • (meth) acryloyl means at least one of acryloyl and methacryloyl.
  • the wavelength conversion material of the first embodiment is a wavelength conversion material including a wavelength conversion layer containing a phosphor and a cured resin product and a coating material arranged on both sides of the wavelength conversion layer, and at least one of the coating materials. It is a wavelength conversion material in which a carrier film that can be peeled off from the coating material is arranged on the outer surface of the above.
  • a carrier film peelable from the coating material is arranged on at least one outer surface of the coating material arranged on both sides of the wavelength conversion layer.
  • the wavelength conversion material of the present disclosure includes at least a wavelength conversion layer and a coating material.
  • the wavelength conversion material including the carrier film may be referred to as a “wavelength conversion material with a carrier film”.
  • the thickness of the wavelength conversion material with a carrier film is not particularly limited, and can be set in consideration of ensuring the required rigidity, handleability, and the like. For example, it may be in the range of 100 ⁇ m to 500 ⁇ m, in the range of 150 ⁇ m to 400 ⁇ m, or in the range of 200 ⁇ m to 300 ⁇ m.
  • the thickness of the wavelength conversion material (total thickness of the wavelength conversion layer and the coating material), the more preferable.
  • it is preferably 150 ⁇ m or less, and more preferably 125 ⁇ m or less.
  • the thickness of the wavelength conversion material is preferably 50 ⁇ m or more, and more preferably 75 ⁇ m or more.
  • the thickness of the carrier film is, for example, preferably 30 ⁇ m or more, more preferably 38 ⁇ m or more, and further preferably 50 ⁇ m or more.
  • the upper limit of the thickness of the carrier film is not particularly limited. From the viewpoint of economy, for example, it is preferably 150 ⁇ m or less, more preferably 125 ⁇ m or less, and further preferably 100 ⁇ m or less.
  • the thickness is the thickness of each carrier film.
  • the carrier film includes an adhesive layer described later, the above thickness is the thickness including the adhesive layer.
  • the thickness of the coating material is preferably 25 ⁇ m or less, and more preferably 20 ⁇ m or less. From the viewpoint of sufficiently protecting the wavelength conversion layer, the thickness of the coating material is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more. The above thickness is the thickness of each of the coating materials arranged on both sides of the wavelength conversion layer.
  • the thickness of the wavelength conversion layer is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and further preferably 75 ⁇ m or less. From the viewpoint of obtaining a sufficient wavelength conversion effect, the thickness of the wavelength conversion layer is preferably 50 ⁇ m or more, more preferably 60 ⁇ m or more, and further preferably 65 ⁇ m or more.
  • the thickness of the wavelength conversion material, the wavelength conversion layer, the coating material and the carrier film can be measured by using a known means such as a micrometer and an electron microscope. If the thickness is not constant, the arithmetic mean value of the thickness at any three locations is used as the thickness.
  • the carrier film is removed when the wavelength conversion material is incorporated into an image display device or the like. Therefore, it is preferable that the peelability from the coating material is excellent.
  • the peeling force from the coating material measured under the condition of a peeling speed of 300 mm / min is preferably 0.7 N / 25 mm or less, more preferably 0.5 N / 25 mm or less, and 0. It is more preferably 4N / 25 mm or less.
  • the peeling force is a value measured as follows.
  • the wavelength conversion material is cut into a width of 25 mm, and the carrier film is peeled off from the pressure-sensitive adhesive layer using a tensile tester under an atmosphere of a peeling angle of 180 degrees, a peeling speed of 300 mm / min, and a room temperature (25 ° C.).
  • the peeling force (mN / 25 mm) at this time is measured.
  • Examples of the tensile tester include Tensilon RTA-100 (manufactured by Orientec, which is also used in Examples described later). However, other than this can be used.
  • the wavelength conversion material preferably has a wrinkle height of less than 3.0 mm, more preferably less than 1.5 mm.
  • the wrinkle height of the wavelength conversion material is a value measured by the method described in Examples described later.
  • FIG. 1 shows an example of a schematic configuration of a wavelength conversion material with a carrier film.
  • the wavelength conversion material of the present disclosure is not limited to the configuration shown in FIG.
  • the wavelength conversion material 10 with a carrier film shown in FIG. 1 includes a wavelength conversion layer 11 which is a cured product of a resin composition containing a phosphor, coating materials 12A and 12B provided on both sides of the wavelength conversion layer 11, and a coating material. It has carrier films 13A and 13B arranged on the outer surfaces of 12A and 12B.
  • the carrier films 13A and 13B are arranged on the outer surfaces of the covering materials 12A and 12B, but the carrier film may be arranged only on the outer surface of either one of the covering materials 12A and 12B.
  • the wavelength conversion material with a carrier film having the configuration shown in FIG. 1 can be manufactured by, for example, the following manufacturing method.
  • a covering material (covering material with a carrier film) in which a carrier film is arranged on one side.
  • the method of arranging the carrier film on one side of the covering material is not particularly limited.
  • the adhesive layer side of the carrier film having the adhesive layer formed on one side may be laminated on one side of the coating material.
  • the resin composition for forming the wavelength conversion layer is applied to the surface opposite to the side on which the carrier film of the coating material is arranged to form the resin composition layer.
  • Another coating material with a carrier film is arranged on the resin composition layer to obtain a laminate in which the carrier film, the coating material, the resin composition layer, the coating material, and the carrier film are arranged in this order.
  • the curing method is not particularly limited. For example, it can be carried out by irradiation with active energy rays that can transmit the carrier film and the coating material and can cure the resin contained in the resin composition layer.
  • the laminate After the curing treatment, the laminate is cut to a desired size as needed. As a result, a wavelength conversion material with a carrier film having the configuration shown in FIG. 1 can be obtained.
  • the wavelength conversion layer contains a phosphor and a cured resin product.
  • the wavelength of light incident on the wavelength conversion layer can be converted into a predetermined wavelength.
  • the wavelength conversion layer can be combined with red light and green light in which a part of the blue light incident on the wavelength conversion layer is converted by the phosphor.
  • White light can be obtained by the transmitted blue light.
  • the type of phosphor contained in the wavelength conversion layer is not particularly limited.
  • organic phosphors and inorganic phosphors can be mentioned.
  • the organic phosphor include a naphthalimide compound and a perylene compound.
  • the inorganic phosphor include Y 3 O 3 : Eu, YVO 4 : Eu, Y 2 O 2 : Eu, 3.5 MgO / 0.5 MgF 2 , GeO 2 : Mn, (Y ⁇ Cd) BO 2 : Eu, etc.
  • Red light emitting inorganic fluorescent material ZnS: Cu ⁇ Al, (Zn ⁇ Cd) S: Cu ⁇ Al, ZnS: Cu ⁇ Au ⁇ Al, Zn 2 SiO 4 : Mn, ZnSiO 4 : Mn, ZnS: Ag ⁇ Cu, ( Zn ⁇ Cd) S: Cu, ZnS: Cu, GdOS: Tb, LaOS: Tb, YSiO 4 : Ce ⁇ Tb, ZnGeO 4 : Mn, GeMgAlO: Tb, SrGaS: Eu 2+ , ZnS: Cu ⁇ Co, MgO ⁇ nB 2 O 3 : Green luminescent inorganic phosphors such as Ge ⁇ Tb, LaOBr: Tb ⁇ Tm, La 2 O 2 S: Tb, ZnS: Ag, GaWO 4 , Y 2 SiO 6 : Ce, ZnS: Ag ⁇ Ga ⁇ Cl , Ca 2 B 4 OC
  • the wavelength conversion layer contains a quantum dot phosphor as a phosphor.
  • the type of the quantum dot phosphor is not particularly limited, and examples thereof include particles containing at least one selected from the group consisting of a group II-VI compound, a group III-V compound, a group IV-VI compound, and a group IV compound. ..
  • the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
  • II-VI group compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSte, HgSeS, ZnS.
  • Group III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, COLP, PLGAs, PLACSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb , AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPA
  • the quantum dot phosphor may have a core-shell structure.
  • core / shell By making the band gap of the compound constituting the shell wider than the band gap of the compound constituting the core, it is possible to further improve the quantum efficiency of the quantum dot phosphor.
  • core / shell examples include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS and the like.
  • the quantum dot phosphor may have a so-called core multi-shell structure in which the shell has a multi-layer structure.
  • the quantum efficiency of the quantum dot phosphor can be further improved. Is possible.
  • the wavelength conversion layer may contain one type of phosphor alone or a combination of two or more types of phosphors.
  • a mode in which two or more types of phosphors are contained in combination include a mode in which two or more types of phosphors having different components but the same average particle size are contained, and a mode in which the average particle size is different but the components are the same. Examples thereof include an embodiment containing two or more types, and an embodiment containing two or more types of phosphors having different components and average particle diameters.
  • the emission center wavelength of the phosphor can be changed by changing at least one of the components of the phosphor and the average particle size.
  • the proportion of the quantum dot phosphor is preferably 50% by mass or more, more preferably 70% by mass or more, and 80% by mass of the entire phosphor. It is more preferably% or more.
  • the wavelength conversion layer contains a phosphor G having an emission center wavelength in the green wavelength region of 520 nm to 560 nm and a phosphor R having an emission center wavelength in the red wavelength region of 600 nm to 680 nm. Good.
  • the wavelength conversion layer containing the phosphor G and the phosphor R is irradiated with excitation light in the blue wavelength range of 430 nm to 480 nm, green light and red light are emitted from the phosphor G and the phosphor R, respectively. ..
  • white light can be obtained by the green light and red light emitted from the phosphor G and the phosphor R and the blue light transmitted through the cured resin product.
  • the content of the phosphor in the wavelength conversion layer is, for example, preferably 0.01% by mass to 1.0% by mass, and 0.05% by mass to 0.5% by mass of the entire wavelength conversion layer. Is more preferable, and 0.1% by mass to 0.5% by mass is further preferable.
  • the content of the phosphor is 0.01% by mass or more of the entire wavelength conversion layer, a sufficient wavelength conversion function tends to be obtained, and the content of the phosphor is 1.0% by mass or less of the entire wavelength conversion layer. If this is the case, the aggregation of the phosphor tends to be suppressed.
  • the type of the cured resin product contained in the wavelength conversion layer is not particularly limited. From the viewpoint of adhesion of the wavelength conversion layer to the coating material and suppression of wrinkles due to volume shrinkage during curing, the cured resin product preferably contains a sulfide structure.
  • a cured resin product containing a sulfide structure can be obtained by curing a resin composition containing, for example, a thiol compound and a polymerizable compound having a carbon-carbon double bond that causes an thiol group to undergo an enthiol reaction.
  • the cured resin product preferably contains an alicyclic structure or an aromatic ring structure.
  • the cured resin product having an alicyclic structure or an aromatic ring structure can be obtained, for example, by curing a resin composition containing a polymerizable compound having an alicyclic structure or an aromatic ring structure, which will be described later.
  • the cured resin product preferably contains an alkyleneoxy group.
  • the polarity of the cured resin product increases, and non-polar oxygen tends to be difficult to dissolve in the components in the cured product.
  • the flexibility of the cured resin product tends to increase and the adhesion to the coating material tends to improve.
  • the cured resin containing an alkyleneoxy group can be obtained, for example, by curing a resin composition containing a polymerizable compound having an alkyleneoxy group, which will be described later.
  • the wavelength conversion layer may further contain a light diffusing material. By including the light diffusing material, the light incident on the wavelength conversion layer can be scattered and the wavelength conversion efficiency by the phosphor can be improved.
  • the type of light diffusing material contained in the wavelength conversion layer is not particularly limited, and examples thereof include titanium oxide, barium sulfate, zinc oxide, and calcium carbonate. Among these, titanium oxide is preferable from the viewpoint of light scattering efficiency.
  • the titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide, and is preferably rutile-type titanium oxide.
  • the proportion of titanium oxide is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more of the entire light diffusing material. preferable.
  • the amount of the light diffusing material in the wavelength conversion layer is not particularly limited, and can be adjusted according to the desired wavelength conversion efficiency, light transmittance, and the like.
  • the content of the light diffusing material is preferably 0.1% by mass to 10.0% by mass, more preferably 1.0% by mass to 7.5% by mass, and 2% by mass of the entire wavelength conversion layer. It is more preferably 0.0% by mass to 5.0% by mass.
  • the average particle size of the light diffusing material is preferably 0.1 ⁇ m to 1 ⁇ m, more preferably 0.2 ⁇ m to 0.8 ⁇ m, and even more preferably 0.2 ⁇ m to 0.5 ⁇ m.
  • the average particle size of the light diffusing material can be measured as follows.
  • the light diffusing material (extracted light diffusing material when contained in the wavelength conversion layer or the resin composition described later) is dispersed in purified water containing a surfactant to obtain a dispersion liquid.
  • a laser diffraction type particle size distribution measuring device for example, Shimadzu Corporation, SALD-3000J
  • the median diameter (D50) is defined as the average particle size (volume average particle size) of the light diffusing material.
  • the resin composition can be obtained by diluting the resin composition with a liquid medium and precipitating the light diffusing material by centrifugation or the like to distribute the light diffusing material.
  • the cross section of the wavelength conversion layer is observed by observing the particles using a scanning electron microscope, and the geometry equivalent to a circle (major axis and minor axis geometry) is observed for 50 particles. The average) may be calculated, and the value obtained as the arithmetic mean value may be used as the average particle size.
  • the light diffusing material preferably has an organic substance layer containing an organic substance on at least a part of the surface thereof.
  • the organic substances contained in the organic substance layer include organic silane, organosiloxane, fluorosilane, organic phosphonate, organic phosphoric acid compound, organic phosphinate, organic sulfonic acid compound, carboxylic acid, carboxylic acid ester, carboxylic acid derivative, amide, and hydrocarbon. Examples thereof include waxes, polyolefins, copolymers of polyolefins, polyols, derivatives of polyols, alkanolamines, derivatives of alkanolamines, organic dispersants and the like.
  • the organic substance contained in the organic substance layer preferably contains a polyol, an organic silane, or the like, and more preferably contains at least one of the polyol or the organic silane.
  • organic silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, and hexadecyltriethoxysilane.
  • organosiloxane examples include polydimethylsiloxane (PDMS) terminated with a trimethylsilyl group, polymethylhydrosiloxane (PMHS), polysiloxane induced by functionalization of PMHS with an olefin (by hydrosilylation), and the like. ..
  • organic phosphonates include n-octylphosphonic acid and its ester, n-decylphosphonic acid and its ester, 2-ethylhexylphosphonic acid and its ester, and camphyl phosphonic acid and its ester.
  • organic phosphoric acid compound include organic acidic phosphate, organic pyrophosphate, organic polyphosphate, organic metaphosphate, salts thereof and the like.
  • organic phosphinate examples include n-hexylphosphinic acid and its ester, n-octylphosphinic acid and its ester, di-n-hexylphosphinic acid and its ester, and di-n-octylphosphinic acid and its ester.
  • organic sulfonic acid compound examples include alkyl sulfonic acids such as hexyl sulfonic acid, octyl sulfonic acid, and 2-ethylhexyl sulfonic acid, these alkyl sulfonic acids, metal ions such as sodium, calcium, magnesium, aluminum, and titanium, and ammonium.
  • Examples thereof include salts with ions and organic ammonium ions such as triethanolamine.
  • Specific examples of the carboxylic acid include maleic acid, malonic acid, fumaric acid, benzoic acid, phthalic acid, stearic acid, oleic acid, linoleic acid and the like.
  • Specific examples of the carboxylic acid ester include the above carboxylic acid, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, pentaerythritol, bisphenol A, hydroquinone, and flo.
  • esters and partial esters produced by reaction with a hydroxy compound such as loglucinol include esters and partial esters produced by reaction with a hydroxy compound such as loglucinol.
  • Specific examples of the amide include stearic acid amide, oleic acid amide, and erucic acid amide.
  • Specific examples of the polyolefin and its copolymer include a copolymer of polyethylene, polypropylene, ethylene and one or more compounds selected from propylene, butylene, vinyl acetate, acrylate, acrylamide and the like.
  • Specific examples of the polyol include glycerol, trimethylolethane, trimethylolpropane and the like.
  • Specific examples of alkanolamines include diethanolamine and triethanolamine.
  • Specific examples of the organic dispersant include high molecular weight organic dispersants having functional groups such as citric acid, polyacrylic acid, polymethacrylic acid, anionic, cationic, bidirectional and nonionic
  • the light diffusing material may have an oxide layer containing an oxide in at least a part of the surface.
  • the oxide contained in the oxide layer include silicon dioxide, aluminum oxide, zirconia, phosphoria, and boria.
  • the oxide layer may be one layer or two or more layers.
  • the light diffusing material has two oxide layers, it preferably contains a first oxide layer containing silicon dioxide and a second oxide layer containing aluminum oxide.
  • the light diffusing material has an organic material layer containing an organic substance and an oxide layer
  • the light diffusing material has an organic material layer and two oxide layers
  • a first oxide layer containing silicon dioxide, a second oxide layer containing aluminum oxide, and an organic material layer are formed on the surface of the light diffusing material.
  • the first oxide layer, the second oxide layer and the organic layer are provided in this order (the organic layer is the outermost layer).
  • the wavelength conversion layer may be a cured product of a composition (hereinafter, also simply referred to as a resin composition) containing a phosphor, a polymerizable compound, a photopolymerization initiator, and if necessary, a light diffusing material. Good.
  • the resin composition preferably contains, as the polymerizable compound, a thiol compound and at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound.
  • the resin composition may optionally contain other components.
  • the details of the phosphor contained in the resin composition are as described above.
  • the phosphor may be used in the state of a phosphor dispersion liquid dispersed in a dispersion medium.
  • the dispersion medium for dispersing the phosphor include various organic solvents, silicone compounds, and monofunctional (meth) acrylate compounds.
  • the fluorescent substance may be used in the state of a fluorescent substance dispersion liquid by using a dispersant, if necessary.
  • the organic solvent that can be used as the dispersion medium is not particularly limited unless precipitation and aggregation of the phosphor are confirmed, and acetonitrile, methanol, ethanol, acetone, 1-propanol, ethyl acetate, butyl acetate, toluene, etc. Examples include hexane.
  • Silicone compounds that can be used as a dispersion medium include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil; amino-modified silicone oil, epoxy-modified silicone oil, carboxy-modified silicone oil, and carbinol-modified silicone. Oil, mercapto-modified silicone oil, heterogeneous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid-modified silicone oil, fluorine-modified silicone oil, etc. Modified silicone oil and the like.
  • the monofunctional (meth) acrylate compound that can be used as a dispersion medium is not particularly limited as long as it is liquid at room temperature (25 ° C.), and is a monofunctional (meth) acrylate compound having an alicyclic structure (preferably isobornyl).
  • (Meta) acrylate and dicyclopentanyl (meth) acrylate), methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, ethoxylated o-phenylphenol (meth) acrylate and the like can be mentioned.
  • dispersant used as needed examples include polyether amines (JEFFAMIN M-1000, HUNTSMAN) and the like.
  • the mass-based ratio of the phosphor to the phosphor dispersion is preferably 1% by mass to 20% by mass, and more preferably 1% by mass to 10% by mass.
  • the content of the phosphor dispersion liquid in the resin composition is, for example, relative to the total amount of the resin composition when the mass-based ratio of the phosphor to the phosphor dispersion liquid is 1% by mass to 20% by mass. It is preferably 1% by mass to 10% by mass, more preferably 4% by mass to 10% by mass, and further preferably 4% by mass to 7% by mass.
  • the content of the phosphor in the resin composition is preferably, for example, 0.01% by mass to 1.0% by mass, and 0.05% by mass to 0% by mass, based on the total amount of the resin composition. It is more preferably 5% by mass, and even more preferably 0.1% by mass to 0.5% by mass.
  • the content of the phosphor When the content of the phosphor is 0.01% by mass or more, sufficient emission intensity tends to be obtained when the cured product is irradiated with excitation light, and when the content of the phosphor is 1.0% by mass or less. If there is, the aggregation of the phosphor tends to be suppressed.
  • the resin composition contains a polymerizable compound.
  • the polymerizable compound contained in the resin composition is not particularly limited, and examples thereof include a thiol compound, a (meth) acrylic compound, and a (meth) allyl compound.
  • the (meth) allyl compound means a compound having a (meth) allyl group in the molecule
  • the (meth) acrylic compound means a compound having a (meth) acryloyl group in the molecule.
  • Compounds having both a (meth) allyl group and a (meth) acryloyl group in the molecule shall be classified as (meth) allyl compounds for convenience.
  • the resin composition comprises a thiol compound as a polymerizable compound and at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound. It is preferable to include it.
  • a cured product obtained by curing a resin composition containing a thiol compound as a polymerizable compound and at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound has a thiol group and ( A sulfide structure (RSR', R and R'represents an organic group) formed by an entthiol reaction with a carbon-carbon double bond of a meta) acryloyl group or a (meth) allyl group.
  • RSR', R and R' represents an organic group formed by an entthiol reaction with a carbon-carbon double bond of a meta) acryloyl group or a (meth) allyl group.
  • the thiol compound may be a monofunctional thiol compound having one thiol group in one molecule, or a polyfunctional thiol compound having two or more thiol groups in one molecule.
  • the thiol compound contained in the resin composition may be only one kind or two or more kinds.
  • the thiol compound may or may not have a polymerizable group other than the thiol group (for example, (meth) acryloyl group, (meth) allyl group) in the molecule.
  • a compound containing a thiol group and a polymerizable group other than the thiol group in the molecule shall be classified as a "thiol compound”.
  • the monofunctional thiol compound examples include hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanthiol, 1-decanethiol, 3-mercaptopropionic acid, methyl mercaptopropionate, and methoxybutyl mercaptopropionate.
  • Examples thereof include octyl mercaptopropionate, tridecyl mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n-octyl-3-mercaptopropionate and the like.
  • polyfunctional thiol compound examples include ethylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), 1,2-.
  • the thiol compound preferably contains a polyfunctional thiol compound from the viewpoint of further improving the adhesion, heat resistance, and moist heat resistance of the wavelength conversion layer to the coating material.
  • the ratio of the polyfunctional thiol compound to the total amount of the thiol compound is, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass.
  • the thiol compound may be in the state of a thioether oligomer that has reacted with the (meth) acrylic compound.
  • the thioether oligomer can be obtained by addition polymerization of a thiol compound and a (meth) acrylic compound in the presence of a polymerization initiator.
  • the content of the thiol compound in the resin composition is preferably, for example, 5% by mass to 80% by mass, and 15% by mass, based on the total amount of the resin composition. It is more preferably to 70% by mass, and further preferably 20% by mass to 60% by mass.
  • the content of the thiol compound is 5% by mass or more, the adhesion of the wavelength conversion layer to the coating material tends to be further improved, and when the content of the thiol compound is 80% by mass or less, the heat resistance of the wavelength conversion layer tends to be improved. The properties and moisture heat resistance tend to be further improved.
  • the (meth) acrylic compound may be a monofunctional (meth) acrylic compound having one (meth) acryloyl group in one molecule, and two or more (meth) acrylic compounds in one molecule. It may be a polyfunctional (meth) acrylic compound having an acryloyl group.
  • the (meth) acrylic compound contained in the resin composition may be one kind or two or more kinds.
  • the monofunctional (meth) acrylic compound examples include (meth) acrylic acid; methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isononyl (meth).
  • Alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms such as acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate; benzyl (meth) acrylate, phenoxyethyl ( A (meth) acrylate compound having an aromatic ring such as a meta) acrylate; an alkoxyalkyl (meth) acrylate such as butoxyethyl (meth) acrylate; an aminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate; Diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monobutyl ether (meth) acrylate, tetraethylene glycol monomethyl ether (meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate
  • N-Isopropyl (meth) acrylamide N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide and other (meth) acrylamide compounds; Be done.
  • polyfunctional (meth) acrylic compound examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di (meth) acrylate.
  • Polyalkylene glycol di (meth) acrylate Polyalkylene glycol di (meth) acrylate such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate; Trimethylol propantri (meth) acrylate, Trimethylol propantri with ethylene oxide (meth) Tri (meth) acrylate compounds such as meth) acrylate and tris (2-acryloyloxyethyl) isocyanurate; ethylene oxide-added pentaerythritol tetra (meth) acrylate, trimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like.
  • Tetra (meth) acrylate compounds tricyclodecanedimethanol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, 1,3-adamantan dimethanol di (meth) acrylate, hydrogenated bisphenol A (poly) ethoxydi ( Meta) acrylate, hydrogenated bisphenol A (poly) propoxydi (meth) acrylate, hydrogenated bisphenol F (poly) ethoxydi (meth) acrylate, hydrogenated bisphenol F (poly) propoxydi (meth) acrylate, hydrogenated bisphenol S (poly) Examples thereof include (meth) acrylate compounds having an alicyclic structure such as ethoxydi (meth) acrylate and hydrogenated bisphenol S (poly) propoxydi (meth) acrylate.
  • the (meth) acrylic compound is preferably a (meth) acrylate compound having an alicyclic structure or an aromatic ring structure from the viewpoint of further improving the heat resistance and moisture heat resistance of the cured product.
  • the alicyclic structure or aromatic ring structure include an isobornyl skeleton, a tricyclodecane skeleton, and a bisphenol skeleton.
  • the (meth) acrylic compound may be one having an alkyleneoxy group or a bifunctional (meth) acrylic compound having an alkyleneoxy group.
  • alkyleneoxy group for example, an alkyleneoxy group having 2 to 4 carbon atoms is preferable, an alkyleneoxy group having 2 or 3 carbon atoms is more preferable, and an alkyleneoxy group having 2 carbon atoms is further preferable.
  • the alkyleneoxy group contained in the (meth) acrylic compound may be one type or two or more types.
  • the alkyleneoxy group-containing compound may be a polyalkyleneoxy group-containing compound having a polyalkyleneoxy group containing a plurality of alkyleneoxy groups.
  • the number of alkyleneoxy groups in one molecule is preferably 2 to 30, more preferably 2 to 20, and 3 to 20.
  • the number is more preferably 10, and particularly preferably 3 to 5.
  • the (meth) acrylic compound When the (meth) acrylic compound has an alkyleneoxy group, it preferably has a bisphenol structure. As a result, the heat resistance of the cured product tends to be superior.
  • the bisphenol structure include a bisphenol A structure and a bisphenol F structure, and among them, the bisphenol A structure is preferable.
  • (meth) acrylic compound having an alkyleneoxy group examples include alkoxyalkyl (meth) acrylates such as butoxyethyl (meth) acrylate; diethylene glycol monoethyl ether (meth) acrylate, and triethylene glycol monobutyl ether (meth) acrylate.
  • alkoxyalkyl (meth) acrylates such as butoxyethyl (meth) acrylate; diethylene glycol monoethyl ether (meth) acrylate, and triethylene glycol monobutyl ether (meth) acrylate.
  • Examples thereof include bisphenol type di (meth) acrylate compounds such as ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate, and propoxylated ethoxylated bisphenol A type di (meth) acrylate; ..
  • the alkyleneoxy group-containing compound ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate and propoxylated ethoxylated bisphenol A type di (meth) acrylate are preferable, and ethoxylated bisphenol Type A di (meth) acrylate is more preferred.
  • the content of the (meth) acrylic compound in the resin composition is, for example, 40% by mass to 90% by mass with respect to the total amount of the resin composition. It may be 50% by mass to 80% by mass.
  • the (meth) allyl compound may be a monofunctional (meth) allyl compound having one (meth) allyl group in one molecule, and two or more (meth) allyl compounds in one molecule. It may be a polyfunctional (meth) allyl compound having an allyl group.
  • the (meth) allyl compound contained in the resin composition may be only one kind or two or more kinds.
  • the (meth) allyl compound may or may not have a polymerizable group (for example, (meth) acryloyl group) other than the (meth) allyl group in the molecule.
  • a polymerizable group for example, (meth) acryloyl group
  • compounds having a polymerizable group other than the (meth) allyl group in the molecule shall be classified as "(meth) allyl compound”.
  • the monofunctional (meth) allyl compound examples include (meth) allyl acetate, (meth) allyl n-propionate, (meth) allyl benzoate, (meth) allyl phenyl acetate, (meth) allyl phenoxy acetate, and (meth). Examples thereof include allyl methyl ether and (meth) allyl glycidyl ether.
  • polyfunctional (meth) allyl compound examples include di (meth) allyl benzenedicarboxylate, di (meth) allyl cyclohexanedicarboxylate, di (meth) allylmaleate, di (meth) allyl adipate, and di (meth).
  • Examples of the (meth) allyl compound include compounds having an isocyanurate skeleton such as tri (meth) allyl isocyanurate, tri (meth) allyl cyanurate, and benzenedicarboxylic acid di (meth) from the viewpoint of heat resistance and moisture heat resistance of the cured product.
  • At least one selected from the group consisting of allyl and di (meth) allyl cyclohexanedicarboxylic acid is preferable, a compound having an isocyanurate skeleton is more preferable, and tri (meth) allyl isocyanurate is further preferable.
  • the content of the (meth) allyl compound in the resin composition is, for example, 10% by mass to 50% by mass with respect to the total amount of the resin composition. It may be 15% by mass to 45% by mass.
  • the polymerizable compound may include a thioether oligomer as a thiol compound and a (meth) allyl compound (preferably a polyfunctional (meth) allyl compound).
  • the phosphor may be in the state of a dispersion liquid dispersed in a silicone compound as a dispersion medium. preferable.
  • the polymerizable compound comprises a thiol compound that is not in the form of a thioether oligomer and a (meth) acrylic compound (preferably a polyfunctional (meth) acrylic compound, more preferably a bifunctional (meth) acrylic compound). It may include.
  • the quantum dot phosphor is a (meth) acrylic as a dispersion medium. It is preferably in the state of a compound, preferably a monofunctional (meth) acrylic compound, more preferably a dispersion dispersed in isobornyl (meth) acrylate.
  • the type of photopolymerization initiator contained in the resin composition is not particularly limited, and examples thereof include compounds that generate radicals when irradiated with active energy rays such as ultraviolet rays.
  • the photopolymerization initiator include benzophenone, N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, 4,4'-bis (dimethylamino) benzophenone (also referred to as "Michler ketone”), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexylphenylketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4- (4-) Aromatic ketone compounds such as (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propane-1-one,
  • the photopolymerization initiator is preferably at least one selected from the group consisting of an acylphosphine oxide compound, an aromatic ketone compound, and an oxime ester compound, from the acylphosphine oxide compound and the aromatic ketone compound. At least one selected from the above group is more preferable, and an acylphosphine oxide compound is further preferable.
  • the content of the photopolymerization initiator in the resin composition is preferably, for example, 0.1% by mass to 5% by mass, preferably 0.1% by mass to 3% by mass, based on the total amount of the resin composition. It is more preferably 0.1% by mass to 1.5% by mass.
  • the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the resin composition tends to be sufficient, and when the content of the photopolymerization initiator is 5% by mass or less, the resin The influence on the hue of the composition and the decrease in storage stability tend to be suppressed.
  • Light diffuser The details of the light diffusing material contained in the resin composition are as described above.
  • the resin composition may further contain components other than the above-mentioned components.
  • the resin composition may further contain components such as a solvent, a dispersion medium, a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, and an antioxidant.
  • a solvent such as a solvent, a dispersion medium, a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, and an antioxidant.
  • a solvent such as a solvent, a dispersion medium, a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, and an antioxidant.
  • the resin composition can be prepared by mixing a phosphor, a polymerizable compound, a photopolymerization initiator, and if necessary, other components by a conventional method.
  • the wavelength conversion layer may be one obtained by curing one kind of resin composition, or may be one obtained by curing two or more kinds of resin compositions.
  • the wavelength conversion layer has different emission characteristics from the first cured product layer obtained by curing the resin composition containing the first phosphor and the first phosphor.
  • a resin composition containing a second phosphor may be laminated with a second cured product layer obtained by curing the resin composition.
  • the wavelength conversion layer preferably has a loss tangent (tan ⁇ ) of 0.4 to 1.5 measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. by dynamic viscoelasticity measurement. It is more preferably 0.4 to 1.2, and even more preferably 0.4 to 0.6.
  • the loss tangent (tan ⁇ ) of the wavelength conversion layer can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the wavelength conversion layer preferably has a glass transition temperature (Tg) of 85 ° C. or higher, more preferably 85 ° C. to 160 ° C., and 90 ° C., from the viewpoint of further improving adhesion, heat resistance, and moist heat resistance. It is more preferably ° C. to 120 ° C.
  • the glass transition temperature (Tg) of the wavelength conversion layer can be measured under the condition of a frequency of 10 Hz using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the wavelength conversion layer has a storage elastic modulus of 1 ⁇ 10 7 Pa to 1 ⁇ 10 10 Pa measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. from the viewpoint of further improving adhesion, heat resistance, and moisture heat resistance. It is preferably 5 ⁇ 10 7 Pa to 1 ⁇ 10 10 Pa, more preferably 5 ⁇ 10 7 Pa to 5 ⁇ 10 9 Pa.
  • the storage elastic modulus of the cured resin can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
  • the wavelength conversion layer can be obtained, for example, by forming a coating film, a molded product, or the like of a resin composition, performing a drying treatment as necessary, and then irradiating with active energy rays such as ultraviolet rays.
  • the wavelength and irradiation amount of the active energy rays can be appropriately set according to the composition of the resin composition. In one aspect, it is irradiated with ultraviolet rays having a wavelength of 280 nm ⁇ 400 nm at an irradiation amount of 100mJ / cm 2 ⁇ 5000mJ / cm 2.
  • Examples of the ultraviolet source include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and the like.
  • the covering material is arranged on both sides of the wavelength conversion layer. As a result, the invasion of water, oxygen, etc. into the wavelength conversion layer is suppressed, and the deterioration of the wavelength conversion layer is suppressed. In addition, appropriate rigidity is imparted to the wavelength conversion material to improve handleability.
  • the material of the covering material is not particularly limited, and polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin such as polyethylene (PE) and polypropylene (PP), polyamide such as nylon, and ethylene-vinyl alcohol co-weight. It may be coalescence (EVOH) or the like. From the viewpoint of availability, polyethylene terephthalate is preferable as the material of the covering material.
  • the covering material may be one provided with a barrier layer for strengthening the barrier function against water, oxygen, etc. (barrier film).
  • a barrier layer for strengthening the barrier function against water, oxygen, etc.
  • the barrier layer include an inorganic layer containing an inorganic substance such as alumina and silica.
  • the covering material has a barrier layer, it is preferable that the barrier layer is arranged on the side in contact with the wavelength conversion layer.
  • Oxygen permeability of the dressing is preferably 1.0mL / (m 2 ⁇ 24h ⁇ atm) or less, more preferably 0.8mL / (m 2 ⁇ 24h ⁇ atm) or less, 0 and more preferably .6mL / (m 2 ⁇ 24h ⁇ atm) or less.
  • the oxygen permeability of the coating material can be measured using an oxygen permeability measuring device (for example, MOCON, OX-TRAN) under the conditions of a temperature of 23 ° C. and a relative humidity of 90%.
  • the water vapor permeability of the dressing for example, more that that 1 ⁇ 10 is 0 g / (m 2 ⁇ 24h ) or less preferably, 8 ⁇ 10 -1 g / ( m 2 ⁇ 24h) or less preferably, and more preferably 6 ⁇ 10 -1 g / (m 2 ⁇ 24h) or less.
  • the water vapor permeability of the coating material can be measured using a water vapor permeability measuring device (for example, MOCON, AQUATRAN) under the conditions of a temperature of 40 ° C. and a relative humidity of 100%.
  • the material of the carrier film is not particularly limited.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefins such as polyethylene (PE) and polypropylene (PP), polyamides such as nylon, ethylene-vinyl alcohol copolymers (EVOH) and the like. May be good. From the viewpoint of availability, polyethylene terephthalate is preferable as the material of the covering material.
  • the carrier film has an adhesive layer on the surface in contact with the coating material.
  • the adhesive layer preferably contains a pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and a urethane-based pressure-sensitive adhesive, and more preferably contains an acrylic-based pressure-sensitive adhesive.
  • the thickness of the adhesive layer is not particularly limited, and may be in the range of, for example, 1 ⁇ m to 10 ⁇ m.
  • the wavelength conversion material of the second embodiment includes a wavelength conversion layer containing a phosphor and a cured resin product, and coating materials arranged on both sides of the wavelength conversion layer, and the total thickness of the wavelength conversion layer and the coating material. It is a wavelength conversion material having a wavelength of 150 ⁇ m or less.
  • the details and preferred embodiments of the wavelength conversion material, wavelength conversion layer and coating material of the second embodiment are the same as the details and preferred embodiments of the wavelength conversion material, wavelength conversion layer and coating material of the first embodiment.
  • a carrier film may be arranged on at least one outer surface of the covering material.
  • the details and preferred embodiments of the carrier film are the same as the details and preferred embodiments of the carrier film included in the wavelength conversion material of the first embodiment.
  • a resin composition layer containing a phosphor and a resin, a coating material arranged on both sides of the resin composition layer, and at least one outer surface of the coating material are arranged.
  • a method for producing a wavelength conversion material comprising a step of preparing a laminate including a carrier film peelable from the coating material and a step of curing the resin composition layer of the laminate.
  • the resin composition is cured with the carrier film arranged on at least one outer surface of the covering material. Therefore, even if the thickness of the wavelength conversion material is thin, the generation of wrinkles due to volume shrinkage during curing of the resin composition is suppressed, and a wavelength conversion material having a good appearance can be produced.
  • the step of preparing the laminate including the resin composition layer, the coating material, and the carrier film is not particularly limited.
  • the resin composition may be applied onto a coating material on which a carrier film is arranged on one side to form a resin composition layer, and another coating material may be arranged on the resin composition layer.
  • the method of arranging the carrier film on one side of the covering material is not particularly limited.
  • the adhesive layer side of the carrier film having the adhesive layer may be laminated on the coating material.
  • the method of curing the resin composition layer is not particularly limited.
  • the resin composition layer may be irradiated with active energy rays that are transparent to the coating material and the carrier film and can be cured.
  • the above method may be a method for producing the wavelength conversion material of the present disclosure. That is, the details and preferred embodiments of the wavelength converting material produced by the above method may be the same as the details and preferred embodiments of the wavelength converting material of the present disclosure.
  • the laminate of the present disclosure is a laminate that includes a coating material and a carrier film that is arranged on one side of the coating material and can be peeled off from the coating material, and is used in the production of the wavelength conversion material described above.
  • the laminate is used in the production of the wavelength conversion material of the present disclosure.
  • the carrier film By arranging the carrier film on one side of the covering material, it is possible to suppress the occurrence of wrinkles in the manufacturing process of the wavelength conversion material. Further, by removing the carrier film from the coating material at an arbitrary time after the manufacturing process, a wavelength conversion material having a thin thickness can be obtained.
  • the details and preferred embodiments of the coating material and carrier film constituting the laminate are the same as the details and preferred embodiments of the coating material and carrier film constituting the wavelength conversion material described above.
  • the backlight unit of the present disclosure includes a light source and a wavelength conversion material of the present disclosure.
  • the backlight unit is preferably a multi-wavelength light source from the viewpoint of improving color reproducibility.
  • blue light having an emission center wavelength in the wavelength range of 430 nm to 480 nm and having an emission intensity peak having a half-value width of 100 nm or less, and emission center wavelength in the wavelength range of 520 nm to 560 nm.
  • the light unit can be mentioned.
  • the half-value width of the emission intensity peak means the peak width at a height of 1/2 of the peak height.
  • the emission center wavelength of the blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm.
  • the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm.
  • the emission center wavelength of the red light emitted by the backlight unit is preferably in the range of 610 nm to 640 nm.
  • the half-value width of each emission intensity peak of the blue light, green light, and red light emitted by the backlight unit is preferably 80 nm or less, preferably 50 nm or less. It is more preferably 40 nm or less, particularly preferably 30 nm or less, and extremely preferably 25 nm or less.
  • the light source of the backlight unit for example, a light source that emits blue light having a emission center wavelength in the wavelength range of 430 nm to 480 nm can be used.
  • the light source include an LED (Light Emitting Diode) and a laser.
  • the wavelength conversion material preferably contains at least a phosphor R that emits red light and a phosphor G that emits green light. As a result, white light can be obtained from the red light and green light emitted from the wavelength conversion material and the blue light transmitted through the wavelength conversion material.
  • the light source of the backlight unit for example, a light source that emits ultraviolet light having a emission center wavelength in the wavelength range of 300 nm to 430 nm can be used.
  • the light source include LEDs and lasers.
  • the wavelength conversion material preferably contains a phosphor B that is excited by excitation light and emits blue light, together with the phosphor R and the phosphor G. As a result, white light can be obtained from the red light, green light, and blue light emitted from the wavelength conversion material.
  • the backlight unit of the present disclosure may be an edge light type or a direct type.
  • FIG. 2 shows an example of a schematic configuration of an edge light type backlight unit.
  • the backlight unit 20 shown in FIG. 2 includes a light source 21 for emitting the blue light L B, a light guide plate 22 to be emitted guiding the blue light L B emitted from the light source 21, the light guide plate 22 and disposed to face
  • the wavelength conversion material 10 is provided with a retroreflective member 23 arranged to face the light source plate 22 via the wavelength conversion material 10, and a reflection plate 24 arranged to face the wavelength conversion material 10 via the light guide plate 22. ..
  • Wavelength converting material 10 emits the red light L R and the green light L G part of the blue light L B as the excitation light, the red light L and R and the green light L G, the blue light was not the excitation light L B is emitted.
  • the red light L R, the green light L G, and the blue light L B, the white light L W is emitted from the retroreflective member 23.
  • the image display device of the present disclosure includes the backlight unit of the present disclosure described above.
  • the image display device is not particularly limited, and examples thereof include a liquid crystal display device.
  • FIG. 3 shows an example of the schematic configuration of the liquid crystal display device.
  • the liquid crystal display device 30 shown in FIG. 3 includes a backlight unit 20 and a liquid crystal cell unit 31 arranged to face the backlight unit 20.
  • the liquid crystal cell unit 31 has a configuration in which the liquid crystal cell 32 is arranged between the polarizing plate 33A and the polarizing plate 33B.
  • the drive method of the liquid crystal cell 32 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, a VA (Virtical Birefringence) method, an IPS (In-Plane-Switching) method, an OCB (Optical Reference) method.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Virtual Birefringence
  • IPS In-Plane-Switching
  • OCB Optical Reference
  • a resin composition for forming a wavelength conversion layer was prepared by mixing each component shown in Table 1 in a blending amount (unit: parts by mass) shown in the same table.
  • polyfunctional acrylic compound tricyclodecanedimethanol diacrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd., A-DCP) was used.
  • polyfunctional thiol compound pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by SC Organic Chemistry Co., Ltd., PEMP) was used.
  • photopolymerization initiator 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (IRGACURE TPO manufactured by BASF) was used.
  • light diffusing material titanium oxide (manufactured by The Chemours Company, Typure R-706, volume average particle size 0.36 ⁇ m) was used.
  • quantum dot phosphor examples include a Gen3.5 QDC dispersion (core / shell: CdSe / ZnS, peak wavelength 532 nm) dispersion (Nanosys, Gen3.5 QD Concentrate) as a quantum dot phosphor G that emits green light.
  • Gen3.5 QDC dispersion core / shell: InP / ZnS, peak wavelength 628 nm
  • Gen3.5 QD Concentrate manufactured by Nanosys
  • a pressure-sensitive adhesive composition was prepared by blending 100 parts by mass of a pressure-sensitive adhesive, 15.0 parts by mass of a cross-linking agent, 0.1 parts by mass of a catalyst, and 100 parts by mass of a solvent (toluene) and stirring with a disper.
  • an acrylic pressure-sensitive adhesive copolymer of butyl acrylate (BA) and 4-hydroxybutyl acrylate (4HBA), solid content 24% by mass
  • BA butyl acrylate
  • 4HBA 4-hydroxybutyl acrylate
  • a tin-based catalyst trade name "KS-1200A-1", Kyodo Yakuhin Co., Ltd.
  • polyfunctional isocyanate trade name "Coronate HL”, solid content 75% by mass, Tosoh Corporation, trimethylolpropane / hexamethylene diisocyanate trimer adduct 75% ethyl acetate solution, isocyanate in one molecule The number of bases: 3) was used.
  • the pressure-sensitive adhesive composition was applied to one side of a PET base material (A4300, double-sided easy-adhesive treatment, Toyobo Co., Ltd.) having the thickness shown in Table 2 below, dried at 100 ° C. for 1 minute, and had a thickness of 5 ⁇ m after drying.
  • a carrier film having an adhesive layer formed on one side was produced.
  • the adhesive layer side of the carrier film was laminated on the surface of the coating material having the thickness shown in Table 2 (PET base material having a barrier layer on one side, Dai Nippon Printing Co., Ltd.) on the side opposite to the surface on which the barrier layer was formed.
  • a covering material with a carrier film was produced.
  • the peeling force of the carrier film from the coating material of the produced coating material with a carrier film was measured by the method described above. The results are shown in Table 2.
  • a resin composition for a wavelength conversion layer was applied to a surface opposite to the side on which the carrier film of the prepared coating material with a carrier film was arranged to form a coating film.
  • the surface opposite to the side on which the carrier film of the coating material with another carrier film is arranged is bonded, and ultraviolet rays are irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.) (irradiation amount: 1000 mJ). / Cm 2 ) and the resin composition was cured to prepare a wavelength conversion material with a carrier film.
  • Table 2 shows the thickness of the wavelength conversion material and the thickness of the wavelength conversion layer in the state where the carrier film is peeled off from the wavelength conversion material with the carrier film, respectively.
  • a wavelength conversion layer of Comparative Example was produced in the same manner as in Example except that a covering material to which the carrier film was not laminated was used.
  • the wavelength conversion materials of Examples 1 to 3 using the coating material with a carrier film as the coating material suppress the occurrence of wrinkles even when the thickness of the wavelength conversion material is thin (100 ⁇ m). Was there. Further, the thicker the carrier film, the more effectively the occurrence of wrinkles was suppressed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Liquid Crystal (AREA)
  • Optical Filters (AREA)
  • Planar Illumination Modules (AREA)
  • Luminescent Compositions (AREA)

Abstract

Provided is a wavelength conversion material comprising: a wavelength conversion layer having a fluorescent body and a resin hardener; and covering materials disposed on both sides of the wavelength conversion layer, wherein a carrier film is disposed on an outer surface of at least one of the covering materials and is enabled to be peeled from said at least one of the covering materials.

Description

波長変換材、波長変換材の製造方法、積層体、バックライトユニット、及び画像表示装置Wavelength conversion material, manufacturing method of wavelength conversion material, laminate, backlight unit, and image display device
 本開示は、波長変換材、波長変換材の製造方法、積層体、バックライトユニット、及び画像表示装置に関する。 The present disclosure relates to a wavelength conversion material, a method for manufacturing a wavelength conversion material, a laminate, a backlight unit, and an image display device.
 近年、液晶表示装置等の画像表示装置の分野において、ディスプレイの色再現性を向上させることが求められている。色再現性を向上させる手段として、例えば、特許文献1及び特許文献2に記載されているような蛍光体を含む波長変換材が注目を集めている。 In recent years, in the field of image display devices such as liquid crystal display devices, it has been required to improve the color reproducibility of displays. As a means for improving color reproducibility, for example, a wavelength conversion material containing a phosphor as described in Patent Document 1 and Patent Document 2 is attracting attention.
 蛍光体を含む波長変換材は、例えば、画像表示装置のバックライトユニットに配置される。赤色光を発光する蛍光体と緑色光を発光する蛍光体とを含む波長変換材を用いる場合、波長変換材に対して励起光としての青色光を照射すると、蛍光体から発光された赤色光及び緑色光と、波長変換材を透過した青色光とにより、白色光を得ることができる。蛍光体を含む波長変換材の開発により、ディスプレイの色再現性は、従来のNTSC(National Television System Committee)比72%からNTSC比100%へと拡大している。 The wavelength conversion material containing the phosphor is arranged, for example, in the backlight unit of the image display device. When a wavelength conversion material containing a phosphor that emits red light and a phosphor that emits green light is used, when the wavelength conversion material is irradiated with blue light as excitation light, the red light emitted from the phosphor and White light can be obtained from green light and blue light transmitted through a wavelength conversion material. With the development of wavelength conversion materials containing phosphors, the color reproducibility of displays has been expanded from 72% of the conventional NTSC (National Television System Committee) ratio to 100% of the NTSC ratio.
特表2013-544018号公報Special Table 2013-544018 国際公開第2016/052625号International Publication No. 2016/05/2625
 これまでの波長変換材はテレビ等の比較的大型ディスプレイが主な用途であったが、今後はスマートフォン、タブレット等の小型ディスプレイへの需要の増大が予想される。したがって、波長変換材を小型ディスプレイに対応させるための薄型化(例えば、厚み150μm以下)が進むと考えられる。 Until now, wavelength conversion materials have been mainly used for relatively large displays such as televisions, but demand for small displays such as smartphones and tablets is expected to increase in the future. Therefore, it is considered that the wavelength conversion material will be made thinner (for example, the thickness is 150 μm or less) in order to make it compatible with a small display.
 波長変換材は一般に、蛍光体を含む波長変換層と、その両側に配置される被覆材とを備え、波長変換層は蛍光体を含む樹脂組成物を硬化させて形成される。このため、波長変換材が薄型化すると剛性が低下し、樹脂組成物の硬化収縮に伴うシワが発生しやすくなって外観が損なわれるおそれがある。 The wavelength conversion material generally includes a wavelength conversion layer containing a phosphor and a coating material arranged on both sides thereof, and the wavelength conversion layer is formed by curing a resin composition containing a phosphor. Therefore, when the wavelength conversion material is made thinner, the rigidity is lowered, and wrinkles due to curing shrinkage of the resin composition are likely to occur, which may impair the appearance.
 上記事情に鑑み、本開示は、厚みが薄くてもシワの発生が抑制される波長変換材及びその製造方法を提供することを課題とする。また本開示は、この波長変換材の製造に用いる積層体並びにこの波長変換材を用いたバックライトユニット及び画像表示装置を提供することを課題とする。 In view of the above circumstances, it is an object of the present disclosure to provide a wavelength conversion material in which wrinkles are suppressed even if the thickness is thin, and a method for producing the same. Another object of the present disclosure is to provide a laminate used for manufacturing the wavelength conversion material, a backlight unit using the wavelength conversion material, and an image display device.
 上記課題を解決するための手段は、以下の態様を含む。
<1>蛍光体及び樹脂硬化物を含む波長変換層と、前記波長変換層の両側に配置される被覆材とを備える波長変換材であり、前記被覆材の少なくとも一方の外面に前記被覆材から剥離可能なキャリアフィルムが配置された状態である、波長変換材。
<2>前記キャリアフィルムの、剥離速度300mm/分の条件で測定される前記被覆材からの剥離力が0.7N/25mm以下である、<1>に記載の波長変換材。
<3>前記被覆材の厚みが25μm以下である、<1>又は<2>に記載の波長変換材
<4>前記キャリアフィルムが配置されていない状態の前記波長変換材の厚みが150μm以下である、<1>~<3>のいずれか1項に記載の波長変換材。
<5>前記キャリアフィルムの厚みが30μm~150μmである、<1>~<4>のいずれか1項に記載の波長変換材。
<6>前記キャリアフィルムが配置されていない状態のシワ高さが3.0mm未満である、<1>~<5>のいずれか1項に記載の波長変換材。
<7>蛍光体及び樹脂硬化物を含む波長変換層と、前記波長変換層の両側に配置される被覆材とを備え、前記波長変換層及び前記被覆材の合計厚みが150μm以下である、波長変換材。
<8>シワ高さが3.0mm未満である、<7>に記載の波長変換材。
<9>フィルム状である、<1>~<8>のいずれか1項に記載の波長変換材。
<10>画像表示用である、<1>~<9>のいずれか1項に記載の波長変換材。
<11>前記蛍光体が量子ドット蛍光体を含む、<1>~<10>のいずれか1項に記載の波長変換材。
<12>前記量子ドット蛍光体がCd又はInの少なくとも一方を含む化合物を含む、<11>に記載の波長変換材。
<13>蛍光体及び樹脂を含む樹脂組成物層と、前記樹脂組成物層の両側に配置される被覆材と、前記被覆材の少なくとも一方の外面に配置され、前記被覆材から剥離可能なキャリアフィルムと、を備える積層体を準備する工程と、
 前記積層体の前記樹脂組成物層を硬化させる工程と、を備える、波長変換材の製造方法。
<14>被覆材と、前記被覆材の片面に配置され、前記被覆材から剥離可能なキャリアフィルムと、を備え、<1>~<12>のいずれか1項に記載の波長変換材の製造に用いられる、積層体。
<15><1>~<13>のいずれか1項に記載の波長変換材と、光源と、を備えるバックライトユニット。
<16><15>に記載のバックライトユニットを備える画像表示装置。
Means for solving the above problems include the following aspects.
<1> A wavelength conversion material comprising a wavelength conversion layer containing a phosphor and a cured resin product and coating materials arranged on both sides of the wavelength conversion layer, from the coating material on at least one outer surface of the coating material. A wavelength conversion material in which a peelable carrier film is placed.
<2> The wavelength conversion material according to <1>, wherein the peeling force of the carrier film from the coating material measured under the condition of a peeling speed of 300 mm / min is 0.7 N / 25 mm or less.
<3> The wavelength conversion material according to <1> or <2>, wherein the thickness of the coating material is 25 μm or less. <4> The thickness of the wavelength conversion material in a state where the carrier film is not arranged is 150 μm or less. The wavelength conversion material according to any one of <1> to <3>.
<5> The wavelength conversion material according to any one of <1> to <4>, wherein the thickness of the carrier film is 30 μm to 150 μm.
<6> The wavelength conversion material according to any one of <1> to <5>, wherein the wrinkle height in the state where the carrier film is not arranged is less than 3.0 mm.
<7> A wavelength that includes a wavelength conversion layer containing a phosphor and a cured resin, and coating materials arranged on both sides of the wavelength conversion layer, and the total thickness of the wavelength conversion layer and the coating material is 150 μm or less. Conversion material.
<8> The wavelength conversion material according to <7>, wherein the wrinkle height is less than 3.0 mm.
<9> The wavelength conversion material according to any one of <1> to <8>, which is in the form of a film.
<10> The wavelength conversion material according to any one of <1> to <9>, which is used for displaying an image.
<11> The wavelength conversion material according to any one of <1> to <10>, wherein the phosphor contains a quantum dot phosphor.
<12> The wavelength conversion material according to <11>, wherein the quantum dot phosphor contains a compound containing at least one of Cd and In.
<13> A resin composition layer containing a phosphor and a resin, a coating material arranged on both sides of the resin composition layer, and a carrier arranged on at least one outer surface of the coating material and peelable from the coating material. The process of preparing the laminate with the film and
A method for producing a wavelength conversion material, comprising a step of curing the resin composition layer of the laminate.
<14> Production of the wavelength conversion material according to any one of <1> to <12>, comprising a coating material and a carrier film arranged on one side of the coating material and removable from the coating material. Laminated body used for.
<15> A backlight unit including the wavelength conversion material according to any one of <1> to <13> and a light source.
<16> An image display device including the backlight unit according to <15>.
 本開示によれば、厚みが薄くてもシワの発生が抑制される波長変換材及びその製造方法が提供される。また本開示によれば、この波長変換材の製造に用いる積層体並びにこの波長変換材を用いたバックライトユニット及び画像表示装置が提供される。 According to the present disclosure, a wavelength conversion material in which wrinkles are suppressed even if the thickness is thin and a method for producing the same are provided. Further, according to the present disclosure, a laminate used for manufacturing the wavelength conversion material, a backlight unit using the wavelength conversion material, and an image display device are provided.
波長変換材の概略構成の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the schematic structure of the wavelength conversion material. バックライトユニットの概略構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the backlight unit. 液晶表示装置の概略構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the liquid crystal display device.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, a mode for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit the present invention.
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含んでいてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「(メタ)アクリレート」とはアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アリル」とはアリルとメタアリルの少なくとも一方を意味し、「(メタ)アクリル」とはアクリル及びメタクリルの少なくとも一方を表し、「(メタ)アクリロイル」とは、アクリロイル及びメタクリロイルの少なくとも一方を意味する。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、各図面において、実質的に同じ機能を有する部材には、全図面同じ符号を付与し、重複する説明は省略する場合がある。
In the present disclosure, the numerical range indicated by using "-" includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content rate or content of each component is the total content rate or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of types of particles corresponding to each component may be contained. When a plurality of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, the term "layer" or "membrane" refers to only a part of the region, in addition to the case where the layer or the membrane is formed in the entire region when the region where the layer or the membrane exists is observed. The case where it is formed is also included.
In the present disclosure, the term "laminated" refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
In the present disclosure, "(meth) acrylate" means at least one of acrylate and methacrylate, "(meth) allyl" means at least one of allyl and metaallyl, and "(meth) acrylic" means acrylic and methacrylic. And "(meth) acryloyl" means at least one of acryloyl and methacryloyl.
When the embodiment is described in the present disclosure with reference to the drawings, the configuration of the embodiment is not limited to the configuration shown in the drawings. Further, the size of the members in each figure is conceptual, and the relative relationship between the sizes of the members is not limited to this. Further, in each drawing, members having substantially the same function may be given the same reference numerals in all drawings, and duplicate description may be omitted.
≪波長変換材(第1実施形態)≫
 第1実施形態の波長変換材は、蛍光体及び樹脂硬化物を含む波長変換層と、前記波長変換層の両側に配置される被覆材とを備える波長変換材であり、前記被覆材の少なくとも一方の外面に前記被覆材から剥離可能なキャリアフィルムが配置された状態である、波長変換材である。
<< Wavelength converter (first embodiment) >>
The wavelength conversion material of the first embodiment is a wavelength conversion material including a wavelength conversion layer containing a phosphor and a cured resin product and a coating material arranged on both sides of the wavelength conversion layer, and at least one of the coating materials. It is a wavelength conversion material in which a carrier film that can be peeled off from the coating material is arranged on the outer surface of the above.
 上記構成の波長変換材は、波長変換層の両側に配置される被覆材の少なくとも一方の外面に、被覆材から剥離可能なキャリアフィルムが配置されている。キャリアフィルムが配置されていることで、被覆材自体の厚みが薄くても充分な剛性が確保される。その結果、樹脂組成物の硬化時の体積収縮によるシワの発生が生じにくく、良好な外観が保たれる。さらに、キャリアフィルムは被覆材から剥離可能であるため、画像表示装置等に組み込まれる際にキャリアフィルムを除去して波長変換材の厚みを低減することができる。 In the wavelength conversion material having the above configuration, a carrier film peelable from the coating material is arranged on at least one outer surface of the coating material arranged on both sides of the wavelength conversion layer. By arranging the carrier film, sufficient rigidity is ensured even if the thickness of the covering material itself is thin. As a result, wrinkles are less likely to occur due to volume shrinkage during curing of the resin composition, and a good appearance is maintained. Further, since the carrier film can be peeled off from the coating material, the carrier film can be removed when the carrier film is incorporated into an image display device or the like to reduce the thickness of the wavelength conversion material.
 本開示の波長変換材は、波長変換層と、被覆材とを少なくとも備える。以下では、キャリアフィルムを含めた状態の波長変換材を「キャリアフィルム付き波長変換材」と称する場合がある。 The wavelength conversion material of the present disclosure includes at least a wavelength conversion layer and a coating material. Hereinafter, the wavelength conversion material including the carrier film may be referred to as a “wavelength conversion material with a carrier film”.
 キャリアフィルム付き波長変換材の厚みは特に制限されず、必要な剛性の確保、取り扱い性等に鑑みて設定できる。例えば、100μm~500μmの範囲内であってもよく、150μm~400μmの範囲内であってもよく、200μm~300μmの範囲内であってもよい。 The thickness of the wavelength conversion material with a carrier film is not particularly limited, and can be set in consideration of ensuring the required rigidity, handleability, and the like. For example, it may be in the range of 100 μm to 500 μm, in the range of 150 μm to 400 μm, or in the range of 200 μm to 300 μm.
 小型ディスプレイへの対応の観点からは、波長変換材の厚み(波長変換層及び被覆材の合計厚み)は小さいほど好ましい。例えば、150μm以下であることが好ましく、125μm以下であることがより好ましい。一方、充分な波長変換機能を得る観点からは、波長変換材の厚みは50μm以上であることが好ましく、75μm以上であることがより好ましい。 From the viewpoint of compatibility with small displays, the smaller the thickness of the wavelength conversion material (total thickness of the wavelength conversion layer and the coating material), the more preferable. For example, it is preferably 150 μm or less, and more preferably 125 μm or less. On the other hand, from the viewpoint of obtaining a sufficient wavelength conversion function, the thickness of the wavelength conversion material is preferably 50 μm or more, and more preferably 75 μm or more.
 波長変換材の薄型化とシワの発生抑制とを両立させる観点からは、キャリアフィルムは厚いほど好ましい。キャリアフィルムの厚みは、例えば、30μm以上であることが好ましく、38μm以上であることがより好ましく、50μm以上であることがさらに好ましい。キャリアフィルムの厚みの上限値は特に制限されない。経済性の観点からは、例えば、150μm以下であることが好ましく、125μm以下であることがより好ましく、100μm以下であることがさらに好ましい。
 キャリアフィルムが両方の被覆材の外面に配置されている場合、上記厚みはそれぞれのキャリアフィルムの厚みである。キャリアフィルムが後述する粘着層を備える場合、上記厚みは粘着層を含めた厚みである。
From the viewpoint of achieving both thinning of the wavelength conversion material and suppression of wrinkles, a thicker carrier film is preferable. The thickness of the carrier film is, for example, preferably 30 μm or more, more preferably 38 μm or more, and further preferably 50 μm or more. The upper limit of the thickness of the carrier film is not particularly limited. From the viewpoint of economy, for example, it is preferably 150 μm or less, more preferably 125 μm or less, and further preferably 100 μm or less.
When the carrier films are arranged on the outer surfaces of both coatings, the thickness is the thickness of each carrier film. When the carrier film includes an adhesive layer described later, the above thickness is the thickness including the adhesive layer.
 波長変換材の薄型化の観点からは、被覆材の厚みは25μm以下であることが好ましく、20μm以下であることがより好ましい。波長変換層を充分に保護する観点からは、被覆材の厚みは5μm以上であることが好ましく、10μm以上であることがより好ましい。
 上記厚みは、波長変換層の両側に配置される被覆材のそれぞれの厚みである。
From the viewpoint of reducing the thickness of the wavelength conversion material, the thickness of the coating material is preferably 25 μm or less, and more preferably 20 μm or less. From the viewpoint of sufficiently protecting the wavelength conversion layer, the thickness of the coating material is preferably 5 μm or more, and more preferably 10 μm or more.
The above thickness is the thickness of each of the coating materials arranged on both sides of the wavelength conversion layer.
 波長変換材の薄型化の観点からは、波長変換層の厚みは100μm以下であることが好ましく、80μm以下であることがより好ましく、75μm以下であることがさらに好ましい。充分な波長変換効果を得る観点からは、波長変換層の厚みは50μm以上であることが好ましく、60μm以上であることがより好ましく、65μm以上であることがさらに好ましい。 From the viewpoint of reducing the thickness of the wavelength conversion material, the thickness of the wavelength conversion layer is preferably 100 μm or less, more preferably 80 μm or less, and further preferably 75 μm or less. From the viewpoint of obtaining a sufficient wavelength conversion effect, the thickness of the wavelength conversion layer is preferably 50 μm or more, more preferably 60 μm or more, and further preferably 65 μm or more.
 波長変換材、波長変換層、被覆材及びキャリアフィルムの厚みは、マイクロメータ、電子顕微鏡等の公知の手段を用いて測定できる。厚みが一定でない場合は、任意の3箇所の厚みの算術平均値を厚みとする。 The thickness of the wavelength conversion material, the wavelength conversion layer, the coating material and the carrier film can be measured by using a known means such as a micrometer and an electron microscope. If the thickness is not constant, the arithmetic mean value of the thickness at any three locations is used as the thickness.
 キャリアフィルムは、波長変換材を画像表示装置等に組み込む際には除去される。このため、被覆材からの剥離性に優れていることが好ましい。具体的には、剥離速度300mm/分の条件で測定される被覆材からの剥離力が0.7N/25mm以下であることが好ましく、0.5N/25mm以下であることがより好ましく、0.4N/25mm以下であることがさらに好ましい。 The carrier film is removed when the wavelength conversion material is incorporated into an image display device or the like. Therefore, it is preferable that the peelability from the coating material is excellent. Specifically, the peeling force from the coating material measured under the condition of a peeling speed of 300 mm / min is preferably 0.7 N / 25 mm or less, more preferably 0.5 N / 25 mm or less, and 0. It is more preferably 4N / 25 mm or less.
 上記剥離力は、下記のようにして測定される値である。
 波長変換材を25mm幅に切断し、剥離角度180度、剥離速度300mm/分、室温(25℃)雰囲気下で引っ張り試験機を用いて、粘着剤層からキャリアフィルムを引き剥がす。このときの剥離力(mN/25mm)を測定する。
 引張試験機としては、テンシロンRTA-100(オリエンテック製、後述する実施例でも使用)等が挙げられる。ただし、これ以外のものでも使用することができる。
The peeling force is a value measured as follows.
The wavelength conversion material is cut into a width of 25 mm, and the carrier film is peeled off from the pressure-sensitive adhesive layer using a tensile tester under an atmosphere of a peeling angle of 180 degrees, a peeling speed of 300 mm / min, and a room temperature (25 ° C.). The peeling force (mN / 25 mm) at this time is measured.
Examples of the tensile tester include Tensilon RTA-100 (manufactured by Orientec, which is also used in Examples described later). However, other than this can be used.
 波長変換材は、シワ高さが3.0mm未満であることが好ましく、1.5mm未満であることがより好ましい。シワ高さが3.0mm未満であると、シワの発生が充分に抑制されており、波長変換材の外観が充分に良好であると判断できる。波長変換材のシワ高さは、後述する実施例に記載した方法で測定される値である。 The wavelength conversion material preferably has a wrinkle height of less than 3.0 mm, more preferably less than 1.5 mm. When the wrinkle height is less than 3.0 mm, the occurrence of wrinkles is sufficiently suppressed, and it can be judged that the appearance of the wavelength conversion material is sufficiently good. The wrinkle height of the wavelength conversion material is a value measured by the method described in Examples described later.
 キャリアフィルム付き波長変換材の概略構成の一例を図1に示す。但し、本開示の波長変換材は図1の構成に限定されるものではない。 FIG. 1 shows an example of a schematic configuration of a wavelength conversion material with a carrier film. However, the wavelength conversion material of the present disclosure is not limited to the configuration shown in FIG.
 図1に示すキャリアフィルム付き波長変換材10は、蛍光体を含む樹脂組成物の硬化物である波長変換層11と、波長変換層11の両面に設けられた被覆材12A及び12Bと、被覆材12A及び12Bの外面に配置されたキャリアフィルム13A及び13Bと、を有する。 The wavelength conversion material 10 with a carrier film shown in FIG. 1 includes a wavelength conversion layer 11 which is a cured product of a resin composition containing a phosphor, coating materials 12A and 12B provided on both sides of the wavelength conversion layer 11, and a coating material. It has carrier films 13A and 13B arranged on the outer surfaces of 12A and 12B.
 図1に示す構成では、被覆材12A及び12Bの外面にキャリアフィルム13A及び13Bが配置されているが、被覆材12A及び12Bのいずれか一方の外面にのみキャリアフィルムが配置されてもよい。 In the configuration shown in FIG. 1, the carrier films 13A and 13B are arranged on the outer surfaces of the covering materials 12A and 12B, but the carrier film may be arranged only on the outer surface of either one of the covering materials 12A and 12B.
 図1に示す構成のキャリアフィルム付き波長変換材は、例えば、以下のような製造方法により製造することができる。 The wavelength conversion material with a carrier film having the configuration shown in FIG. 1 can be manufactured by, for example, the following manufacturing method.
 まず、片面にキャリアフィルムが配置された状態の被覆材(キャリアフィルム付き被覆材)を準備する。被覆材の片面にキャリアフィルムを配置する方法は特に制限されない。例えば、片面に粘着層が形成されたキャリアフィルムの粘着層側を被覆材の片面にラミネートしてもよい。 First, prepare a covering material (covering material with a carrier film) in which a carrier film is arranged on one side. The method of arranging the carrier film on one side of the covering material is not particularly limited. For example, the adhesive layer side of the carrier film having the adhesive layer formed on one side may be laminated on one side of the coating material.
 次いで、被覆材のキャリアフィルムが配置された側と逆側の面に、波長変換層を形成するための樹脂組成物を塗布し、樹脂組成物層を形成する。この樹脂組成物層の上にもう一つのキャリアフィルム付き被覆材を配置して、キャリアフィルム、被覆材、樹脂組成物層、被覆材、キャリアフィルムがこの順に配置された積層体を得る。 Next, the resin composition for forming the wavelength conversion layer is applied to the surface opposite to the side on which the carrier film of the coating material is arranged to form the resin composition layer. Another coating material with a carrier film is arranged on the resin composition layer to obtain a laminate in which the carrier film, the coating material, the resin composition layer, the coating material, and the carrier film are arranged in this order.
 次いで、樹脂組成物層の硬化処理を行う。硬化処理の方法は特に制限されない。例えば、キャリアフィルム及び被覆材を透過可能であり、かつ樹脂組成物層に含まれる樹脂を硬化可能である活性エネルギー線の照射により行うことができる。 Next, the resin composition layer is cured. The curing method is not particularly limited. For example, it can be carried out by irradiation with active energy rays that can transmit the carrier film and the coating material and can cure the resin contained in the resin composition layer.
 キャリアフィルムが被覆材の外面に配置された状態で樹脂組成物層の硬化処理を行うことで、被覆材の厚みが薄くても樹脂組成物層の硬化時の収縮に伴うシワの発生が効果的に抑制される。 By performing the curing treatment of the resin composition layer while the carrier film is arranged on the outer surface of the coating material, it is effective to generate wrinkles due to shrinkage of the resin composition layer during curing even if the coating material is thin. Is suppressed.
 硬化処理後、必要に応じて積層体を所望のサイズに切断する。これにより、図1に示す構成のキャリアフィルム付き波長変換材が得られる。 After the curing treatment, the laminate is cut to a desired size as needed. As a result, a wavelength conversion material with a carrier film having the configuration shown in FIG. 1 can be obtained.
<波長変換層>
 波長変換層は、蛍光体及び樹脂硬化物を含む。波長変換層に含まれる蛍光体の種類を選択することで、波長変換層に入射した光の波長を所定の波長に変換することができる。例えば、青色光を赤色光及び緑色光に変換する蛍光体をそれぞれ含むことで、波長変換層に入射した青色光の一部が蛍光体により変換された赤色光及び緑色光と、波長変換層を透過した青色光とにより、白色光を得ることができる。
<Wavelength conversion layer>
The wavelength conversion layer contains a phosphor and a cured resin product. By selecting the type of phosphor contained in the wavelength conversion layer, the wavelength of light incident on the wavelength conversion layer can be converted into a predetermined wavelength. For example, by including phosphors that convert blue light into red light and green light, the wavelength conversion layer can be combined with red light and green light in which a part of the blue light incident on the wavelength conversion layer is converted by the phosphor. White light can be obtained by the transmitted blue light.
(蛍光体)
 波長変換層に含まれる蛍光体の種類は特に限定されない。例えば、有機蛍光体及び無機蛍光体を挙げることができる。
 有機蛍光体としては、ナフタルイミド化合物、ペリレン化合物等が挙げられる。
 無機蛍光体としては、Y:Eu、YVO:Eu、Y:Eu、3.5MgO・0.5MgF、GeO:Mn、(Y・Cd)BO:Eu等の赤色発光無機蛍光体、ZnS:Cu・Al、(Zn・Cd)S:Cu・Al、ZnS:Cu・Au・Al、ZnSiO:Mn、ZnSiO:Mn、ZnS:Ag・Cu、(Zn・Cd)S:Cu、ZnS:Cu、GdOS:Tb、LaOS:Tb、YSiO:Ce・Tb、ZnGeO:Mn、GeMgAlO:Tb、SrGaS:Eu2+、ZnS:Cu・Co、MgO・nB:Ge・Tb、LaOBr:Tb・Tm、LaS:Tb等の緑色発光無機蛍光体、ZnS:Ag、GaWO、YSiO:Ce、ZnS:Ag・Ga・Cl、CaOCl:Eu2+、BaMgAl:Eu2+等の青色発光無機蛍光体、量子ドット蛍光体などが挙げられる。
(Fluorescent material)
The type of phosphor contained in the wavelength conversion layer is not particularly limited. For example, organic phosphors and inorganic phosphors can be mentioned.
Examples of the organic phosphor include a naphthalimide compound and a perylene compound.
Examples of the inorganic phosphor include Y 3 O 3 : Eu, YVO 4 : Eu, Y 2 O 2 : Eu, 3.5 MgO / 0.5 MgF 2 , GeO 2 : Mn, (Y · Cd) BO 2 : Eu, etc. Red light emitting inorganic fluorescent material, ZnS: Cu · Al, (Zn · Cd) S: Cu · Al, ZnS: Cu · Au · Al, Zn 2 SiO 4 : Mn, ZnSiO 4 : Mn, ZnS: Ag · Cu, ( Zn · Cd) S: Cu, ZnS: Cu, GdOS: Tb, LaOS: Tb, YSiO 4 : Ce · Tb, ZnGeO 4 : Mn, GeMgAlO: Tb, SrGaS: Eu 2+ , ZnS: Cu · Co, MgO · nB 2 O 3 : Green luminescent inorganic phosphors such as Ge · Tb, LaOBr: Tb · Tm, La 2 O 2 S: Tb, ZnS: Ag, GaWO 4 , Y 2 SiO 6 : Ce, ZnS: Ag · Ga · Cl , Ca 2 B 4 OCl: Eu 2+ , BaMgAl 4 O 3 : Eu 2+ and other blue light emitting inorganic phosphors, quantum dot phosphors and the like.
 画像表示装置の色再現性の観点からは、波長変換層は蛍光体として量子ドット蛍光体を含むことが好ましい。量子ドット蛍光体の種類は特に制限されず、II-VI族化合物、III-V族化合物、IV-VI族化合物、及びIV族化合物からなる群より選択される少なくとも1種を含む粒子が挙げられる。発光効率の観点からは、量子ドット蛍光体は、Cd及びInの少なくとも一方を含む化合物を含むことが好ましい。 From the viewpoint of color reproducibility of the image display device, it is preferable that the wavelength conversion layer contains a quantum dot phosphor as a phosphor. The type of the quantum dot phosphor is not particularly limited, and examples thereof include particles containing at least one selected from the group consisting of a group II-VI compound, a group III-V compound, a group IV-VI compound, and a group IV compound. .. From the viewpoint of luminous efficiency, the quantum dot phosphor preferably contains a compound containing at least one of Cd and In.
 II-VI族化合物の具体例としては、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等が挙げられる。
 III-V族化合物の具体例としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等が挙げられる。
 IV-VI族化合物の具体例としては、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe等が挙げられる。
 IV族化合物の具体例としては、Si、Ge、SiC、SiGe等が挙げられる。
Specific examples of the II-VI group compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSte, HgSeS, ZnS. , CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSe, CdHgSe, CdHgSe, CdHgSe
Specific examples of Group III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, COLP, PLGAs, PLACSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb , AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInNSb, GaInPAs, GaInPSb, AlInPAs, GaInPSb, InAl
Specific examples of the IV-VI group compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSte, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbSne, SnPbSe, SnPbSe ..
Specific examples of the Group IV compound include Si, Ge, SiC, and SiGe.
 量子ドット蛍光体は、コアシェル構造を有するものであってもよい。コアを構成する化合物のバンドギャップよりもシェルを構成する化合物のバンドギャップを広くすることで、量子ドット蛍光体の量子効率をより向上させることが可能となる。コア及びシェルの組み合わせ(コア/シェル)としては、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等が挙げられる。 The quantum dot phosphor may have a core-shell structure. By making the band gap of the compound constituting the shell wider than the band gap of the compound constituting the core, it is possible to further improve the quantum efficiency of the quantum dot phosphor. Examples of the combination of core and shell (core / shell) include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, CdTe / ZnS and the like.
 量子ドット蛍光体は、シェルが多層構造である、いわゆるコアマルチシェル構造を有するものであってもよい。バンドギャップの広いコアにバンドギャップの狭いシェルを1層又は2層以上積層し、さらにこのシェルの上にバンドギャップの広いシェルを積層することで、量子ドット蛍光体の量子効率をさらに向上させることが可能となる。 The quantum dot phosphor may have a so-called core multi-shell structure in which the shell has a multi-layer structure. By stacking one or more layers of shells with a narrow bandgap on a core with a wide bandgap, and further stacking a shell with a wide bandgap on top of this shell, the quantum efficiency of the quantum dot phosphor can be further improved. Is possible.
 波長変換層が蛍光体を含有する場合、波長変換層は、1種類の蛍光体を単独で含有していてもよく、2種類以上の蛍光体を組み合わせて含有していてもよい。2種類以上の蛍光体を組み合わせて含有する態様としては、例えば、成分は異なるものの平均粒子径を同じくする蛍光体を2種類以上含有する態様、平均粒子径は異なるものの成分を同じくする蛍光体を2種類以上含有する態様、並びに成分及び平均粒子径の異なる蛍光体を2種類以上含有する態様が挙げられる。蛍光体の成分及び平均粒子径の少なくとも一方を変更することで、蛍光体の発光中心波長を変更することができる。 When the wavelength conversion layer contains a phosphor, the wavelength conversion layer may contain one type of phosphor alone or a combination of two or more types of phosphors. Examples of a mode in which two or more types of phosphors are contained in combination include a mode in which two or more types of phosphors having different components but the same average particle size are contained, and a mode in which the average particle size is different but the components are the same. Examples thereof include an embodiment containing two or more types, and an embodiment containing two or more types of phosphors having different components and average particle diameters. The emission center wavelength of the phosphor can be changed by changing at least one of the components of the phosphor and the average particle size.
 波長変換層が蛍光体として量子ドット蛍光体を含有する場合、量子ドット蛍光体の割合は蛍光体全体の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。 When the wavelength conversion layer contains a quantum dot phosphor as a phosphor, the proportion of the quantum dot phosphor is preferably 50% by mass or more, more preferably 70% by mass or more, and 80% by mass of the entire phosphor. It is more preferably% or more.
 例えば、波長変換層は、520nm~560nmの緑色の波長域に発光中心波長を有する蛍光体Gと、600nm~680nmの赤色の波長域に発光中心波長を有する蛍光体Rとを含有していてもよい。蛍光体Gと蛍光体Rとを含有する波長変換層に対して430nm~480nmの青色の波長域の励起光を照射すると、蛍光体G及び蛍光体Rからそれぞれ緑色光及び赤色光が発光される。その結果、蛍光体G及び蛍光体Rから発光される緑色光及び赤色光と、樹脂硬化物を透過する青色光とにより、白色光を得ることができる。 For example, even if the wavelength conversion layer contains a phosphor G having an emission center wavelength in the green wavelength region of 520 nm to 560 nm and a phosphor R having an emission center wavelength in the red wavelength region of 600 nm to 680 nm. Good. When the wavelength conversion layer containing the phosphor G and the phosphor R is irradiated with excitation light in the blue wavelength range of 430 nm to 480 nm, green light and red light are emitted from the phosphor G and the phosphor R, respectively. .. As a result, white light can be obtained by the green light and red light emitted from the phosphor G and the phosphor R and the blue light transmitted through the cured resin product.
 波長変換層中の蛍光体の含有率は、例えば、波長変換層全体の0.01質量%~1.0質量%であることが好ましく、0.05質量%~0.5質量%であることがより好ましく、0.1質量%~0.5質量%であることがさらに好ましい。蛍光体の含有率が波長変換層全体の0.01質量%以上であると、充分な波長変換機能が得られる傾向にあり、蛍光体の含有率が波長変換層全体の1.0質量%以下であると、蛍光体の凝集が抑えられる傾向にある。 The content of the phosphor in the wavelength conversion layer is, for example, preferably 0.01% by mass to 1.0% by mass, and 0.05% by mass to 0.5% by mass of the entire wavelength conversion layer. Is more preferable, and 0.1% by mass to 0.5% by mass is further preferable. When the content of the phosphor is 0.01% by mass or more of the entire wavelength conversion layer, a sufficient wavelength conversion function tends to be obtained, and the content of the phosphor is 1.0% by mass or less of the entire wavelength conversion layer. If this is the case, the aggregation of the phosphor tends to be suppressed.
(樹脂硬化物)
 波長変換層に含まれる樹脂硬化物の種類は、特に制限されない。波長変換層の被覆材に対する密着性及び硬化時の体積収縮によるシワの発生の抑制の観点からは、樹脂硬化物はスルフィド構造を含有することが好ましい。スルフィド構造を含有する樹脂硬化物は、例えば、チオール化合物と、チオール基とエンチオール反応を生じる炭素炭素二重結合を有する重合性化合物と、を含む樹脂組成物を硬化させて得ることができる。
(Resin cured product)
The type of the cured resin product contained in the wavelength conversion layer is not particularly limited. From the viewpoint of adhesion of the wavelength conversion layer to the coating material and suppression of wrinkles due to volume shrinkage during curing, the cured resin product preferably contains a sulfide structure. A cured resin product containing a sulfide structure can be obtained by curing a resin composition containing, for example, a thiol compound and a polymerizable compound having a carbon-carbon double bond that causes an thiol group to undergo an enthiol reaction.
 波長変換層の耐熱性及び耐湿熱性の観点からは、樹脂硬化物は脂環構造又は芳香環構造を含有することが好ましい。脂環構造又は芳香環構造を有する樹脂硬化物は、例えば、後述する重合性化合物として脂環構造又は芳香環構造を有するものを含む樹脂組成物を硬化させて得ることができる。 From the viewpoint of heat resistance and moisture heat resistance of the wavelength conversion layer, the cured resin product preferably contains an alicyclic structure or an aromatic ring structure. The cured resin product having an alicyclic structure or an aromatic ring structure can be obtained, for example, by curing a resin composition containing a polymerizable compound having an alicyclic structure or an aromatic ring structure, which will be described later.
 蛍光体と酸素との接触を抑制する観点からは、樹脂硬化物はアルキレンオキシ基を含有することが好ましい。樹脂硬化物がアルキレンオキシ基を含有すると、樹脂硬化物の極性が増大し、非極性の酸素が硬化物中の成分に溶解しにくくなる傾向にある。また、樹脂硬化物の柔軟性が増して被覆材との密着性が向上する傾向にある。 From the viewpoint of suppressing contact between the phosphor and oxygen, the cured resin product preferably contains an alkyleneoxy group. When the cured resin product contains an alkyleneoxy group, the polarity of the cured resin product increases, and non-polar oxygen tends to be difficult to dissolve in the components in the cured product. In addition, the flexibility of the cured resin product tends to increase and the adhesion to the coating material tends to improve.
 アルキレンオキシ基を含有する樹脂硬化物は、例えば、後述する重合性化合物としてアルキレンオキシ基を有するものを含む樹脂組成物を硬化させて得ることができる。 The cured resin containing an alkyleneoxy group can be obtained, for example, by curing a resin composition containing a polymerizable compound having an alkyleneoxy group, which will be described later.
(光拡散材)
 波長変換層は、光拡散材をさらに含んでもよい。光拡散材を含むことで、波長変換層に入射した光を散乱させ、蛍光体による波長変換効率を向上させることができる。
(Light diffuser)
The wavelength conversion layer may further contain a light diffusing material. By including the light diffusing material, the light incident on the wavelength conversion layer can be scattered and the wavelength conversion efficiency by the phosphor can be improved.
 波長変換層に含まれる光拡散材の種類は特に制限されず、酸化チタン、硫酸バリウム、酸化亜鉛、炭酸カルシウム等が挙げられる。これらの中でも、光散乱効率の観点からは、酸化チタンが好ましい。酸化チタンはルチル型酸化チタンであってもアナターゼ型酸化チタンであってもよく、ルチル型酸化チタンであることが好ましい。 The type of light diffusing material contained in the wavelength conversion layer is not particularly limited, and examples thereof include titanium oxide, barium sulfate, zinc oxide, and calcium carbonate. Among these, titanium oxide is preferable from the viewpoint of light scattering efficiency. The titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide, and is preferably rutile-type titanium oxide.
 光拡散材が酸化チタンを含む場合、酸化チタンの割合は光拡散材全体の50質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。 When the light diffusing material contains titanium oxide, the proportion of titanium oxide is preferably 50% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more of the entire light diffusing material. preferable.
 波長変換層中の光拡散材の量は特に制限されず、所望の波長変換効率、光透過率等に応じて調節できる。例えば、光拡散材の含有率は波長変換層全体の0.1質量%~10.0質量%であることが好ましく、1.0質量%~7.5質量%であることがより好ましく、2.0質量%~5.0質量%であることがさらに好ましい。 The amount of the light diffusing material in the wavelength conversion layer is not particularly limited, and can be adjusted according to the desired wavelength conversion efficiency, light transmittance, and the like. For example, the content of the light diffusing material is preferably 0.1% by mass to 10.0% by mass, more preferably 1.0% by mass to 7.5% by mass, and 2% by mass of the entire wavelength conversion layer. It is more preferably 0.0% by mass to 5.0% by mass.
 光拡散材の平均粒子径は、0.1μm~1μmであることが好ましく、0.2μm~0.8μmであることがより好ましく、0.2μm~0.5μmであることがさらに好ましい。 The average particle size of the light diffusing material is preferably 0.1 μm to 1 μm, more preferably 0.2 μm to 0.8 μm, and even more preferably 0.2 μm to 0.5 μm.
 本開示において光拡散材の平均粒子径は、以下のようにして測定することができる。
 光拡散材(波長変換層又は後述する樹脂組成物に含まれている場合は、抽出した光拡散材)を、界面活性剤を含んだ精製水に分散させ、分散液を得る。この分散液を用いてレーザー回折式粒度分布測定装置(例えば、株式会社島津製作所、SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))を光拡散材の平均粒子径(体積平均粒子径)とする。樹脂組成物から光拡散材を抽出する方法としては、例えば、樹脂組成物を液状媒体で希釈し、遠心分離処理等により光拡散材を沈澱させて分収することで得ることができる。
 光拡散材が波長変換層に含まれた状態である場合は、波長変換層の断面を走査型電子顕微鏡を用いた粒子の観察により、50個の粒子について円相当径(長径と短径の幾何平均)を算出し、その算術平均値として求められる値を平均粒子径としてもよい。
In the present disclosure, the average particle size of the light diffusing material can be measured as follows.
The light diffusing material (extracted light diffusing material when contained in the wavelength conversion layer or the resin composition described later) is dispersed in purified water containing a surfactant to obtain a dispersion liquid. In the volume-based particle size distribution measured by a laser diffraction type particle size distribution measuring device (for example, Shimadzu Corporation, SALD-3000J) using this dispersion, the value when the integration from the small diameter side is 50% ( The median diameter (D50)) is defined as the average particle size (volume average particle size) of the light diffusing material. As a method for extracting the light diffusing material from the resin composition, for example, the resin composition can be obtained by diluting the resin composition with a liquid medium and precipitating the light diffusing material by centrifugation or the like to distribute the light diffusing material.
When the light diffusing material is contained in the wavelength conversion layer, the cross section of the wavelength conversion layer is observed by observing the particles using a scanning electron microscope, and the geometry equivalent to a circle (major axis and minor axis geometry) is observed for 50 particles. The average) may be calculated, and the value obtained as the arithmetic mean value may be used as the average particle size.
 波長変換層中での分散性を向上する観点からは、光拡散材は、表面の少なくとも一部に有機物を含む有機物層を有することが好ましい。有機物層に含まれる有機物としては、有機シラン、オルガノシロキサン、フルオロシラン、有機ホスホネート、有機リン酸化合物、有機ホスフィネート、有機スルホン酸化合物、カルボン酸、カルボン酸エステル、カルボン酸の誘導体、アミド、炭化水素ワックス、ポリオレフィン、ポリオレフィンのコポリマー、ポリオール、ポリオールの誘導体、アルカノールアミン、アルカノールアミンの誘導体、有機分散剤等が挙げられる。
 有機物層に含まれる有機物は、ポリオール、有機シラン等を含むことが好ましく、ポリオール又は有機シランの少なくとも一方を含むことがより好ましい。
 有機シランの具体例としては、オクチルトリエトキシシラン、ノニルトリエトキシシラン、デシルトリエトキシシラン、ドデシルトリエトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリエトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリエトキシシラン等が挙げられる。
 オルガノシロキサンの具体例としては、トリメチルシリル基で終端されたポリジメチルシロキサン(PDMS)、ポリメチルヒドロシロキサン(PMHS)、PMHSのオレフィンによる官能化(ヒドロシリル化による)により誘導されるポリシロキサン等が挙げられる。
 有機ホスホネートの具体例としては、例えば、n-オクチルホスホン酸及びそのエステル、n-デシルホスホン酸及びそのエステル、2-エチルヘキシルホスホン酸及びそのエステル並びにカンフィル(camphyl)ホスホン酸及びそのエステルが挙げられる。
 有機リン酸化合物の具体例としては、有機酸性ホスフェート、有機ピロホスフェート、有機ポリホスフェート、有機メタホスフェート、これらの塩等が挙げられる。
 有機ホスフィネートの具体例としては、例えば、n-ヘキシルホスフィン酸及びそのエステル、n-オクチルホスフィン酸及びそのエステル、ジ-n-ヘキシルホスフィン酸及びそのエステル並びにジ-n-オクチルホスフィン酸及びそのエステルが挙げられる。
 有機スルホン酸化合物の具体例としては、ヘキシルスルホン酸、オクチルスルホン酸、2-エチルヘキシルスルホン酸等のアルキルスルホン酸、これらアルキルスルホン酸と、ナトリウム、カルシウム、マグネシウム、アルミニウム、チタン等の金属イオン、アンモニウムイオン、トリエタノールアミン等の有機アンモニウムイオンなどとの塩が挙げられる。
 カルボン酸の具体例としては、マレイン酸、マロン酸、フマル酸、安息香酸、フタル酸、ステアリン酸、オレイン酸、リノール酸等が挙げられる。
 カルボン酸エステルの具体例としては、上記カルボン酸と、エチレングリコール、プロピレングリコール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、グリセロール、ヘキサントリオール、エリトリトール、マンニトール、ソルビトール、ペンタエリトリトール、ビスフェノールA、ヒドロキノン、フロログルシノール等のヒドロキシ化合物との反応により生成するエステル及び部分エステルが挙げられる。
 アミドの具体例としては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等が挙げられる。
 ポリオレフィン及びそのコポリマーの具体例としては、ポリエチレン、ポリプロピレン、エチレンと、プロピレン、ブチレン、酢酸ビニル、アクリレート、アクリルアミド等から選択される1種又は2種以上の化合物との共重合体などが挙げられる。
 ポリオールの具体例としては、グリセロール、トリメチロールエタン、トリメチロールプロパン等が挙げられる。
 アルカノールアミンの具体例としては、ジエタノールアミン、トリエタノールアミン等が挙げられる。
 有機分散剤の具体例としては、クエン酸、ポリアクリル酸、ポリメタクリル酸、陰イオン性、陽イオン性、双性、非イオン性等の官能基をもつ高分子有機分散剤などが挙げられる。
From the viewpoint of improving the dispersibility in the wavelength conversion layer, the light diffusing material preferably has an organic substance layer containing an organic substance on at least a part of the surface thereof. The organic substances contained in the organic substance layer include organic silane, organosiloxane, fluorosilane, organic phosphonate, organic phosphoric acid compound, organic phosphinate, organic sulfonic acid compound, carboxylic acid, carboxylic acid ester, carboxylic acid derivative, amide, and hydrocarbon. Examples thereof include waxes, polyolefins, copolymers of polyolefins, polyols, derivatives of polyols, alkanolamines, derivatives of alkanolamines, organic dispersants and the like.
The organic substance contained in the organic substance layer preferably contains a polyol, an organic silane, or the like, and more preferably contains at least one of the polyol or the organic silane.
Specific examples of organic silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, and hexadecyltriethoxysilane. Examples thereof include silane, heptadecyltriethoxysilane, and octadecyltriethoxysilane.
Specific examples of the organosiloxane include polydimethylsiloxane (PDMS) terminated with a trimethylsilyl group, polymethylhydrosiloxane (PMHS), polysiloxane induced by functionalization of PMHS with an olefin (by hydrosilylation), and the like. ..
Specific examples of organic phosphonates include n-octylphosphonic acid and its ester, n-decylphosphonic acid and its ester, 2-ethylhexylphosphonic acid and its ester, and camphyl phosphonic acid and its ester.
Specific examples of the organic phosphoric acid compound include organic acidic phosphate, organic pyrophosphate, organic polyphosphate, organic metaphosphate, salts thereof and the like.
Specific examples of the organic phosphinate include n-hexylphosphinic acid and its ester, n-octylphosphinic acid and its ester, di-n-hexylphosphinic acid and its ester, and di-n-octylphosphinic acid and its ester. Can be mentioned.
Specific examples of the organic sulfonic acid compound include alkyl sulfonic acids such as hexyl sulfonic acid, octyl sulfonic acid, and 2-ethylhexyl sulfonic acid, these alkyl sulfonic acids, metal ions such as sodium, calcium, magnesium, aluminum, and titanium, and ammonium. Examples thereof include salts with ions and organic ammonium ions such as triethanolamine.
Specific examples of the carboxylic acid include maleic acid, malonic acid, fumaric acid, benzoic acid, phthalic acid, stearic acid, oleic acid, linoleic acid and the like.
Specific examples of the carboxylic acid ester include the above carboxylic acid, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, pentaerythritol, bisphenol A, hydroquinone, and flo. Examples thereof include esters and partial esters produced by reaction with a hydroxy compound such as loglucinol.
Specific examples of the amide include stearic acid amide, oleic acid amide, and erucic acid amide.
Specific examples of the polyolefin and its copolymer include a copolymer of polyethylene, polypropylene, ethylene and one or more compounds selected from propylene, butylene, vinyl acetate, acrylate, acrylamide and the like.
Specific examples of the polyol include glycerol, trimethylolethane, trimethylolpropane and the like.
Specific examples of alkanolamines include diethanolamine and triethanolamine.
Specific examples of the organic dispersant include high molecular weight organic dispersants having functional groups such as citric acid, polyacrylic acid, polymethacrylic acid, anionic, cationic, bidirectional and nonionic.
 波長変換層中での分散性の向上の観点からは、光拡散材は、表面の少なくとも一部に酸化物を含む酸化物層を有していてもよい。酸化物層に含まれる酸化物としては、二酸化ケイ素、酸化アルミニウム、ジルコニア、ホスホリア(phosphoria)、ボリア(boria)等が挙げられる。酸化物層は一層であっても二層以上であってもよい。光拡散材が二層の酸化物層を有する場合、二酸化ケイ素を含む第一酸化物層及び酸化アルミニウムを含む第二酸化物層を含むものであることが好ましい。 From the viewpoint of improving the dispersibility in the wavelength conversion layer, the light diffusing material may have an oxide layer containing an oxide in at least a part of the surface. Examples of the oxide contained in the oxide layer include silicon dioxide, aluminum oxide, zirconia, phosphoria, and boria. The oxide layer may be one layer or two or more layers. When the light diffusing material has two oxide layers, it preferably contains a first oxide layer containing silicon dioxide and a second oxide layer containing aluminum oxide.
 光拡散材が有機物を含む有機物層と酸化物層とを有する場合、光拡散材の表面に、酸化物層及び有機物層が、酸化物層及び有機物層の順に設けられることが好ましい。
 光拡散材が有機物層と二層の酸化物層とを有するものである場合、光拡散材の表面に、二酸化ケイ素を含む第一酸化物層、酸化アルミニウムを含む第二酸化物層及び有機物層が、第一酸化物層、第二酸化物層及び有機物層の順に設けられる(有機物層が最外層となる)ことが好ましい。
When the light diffusing material has an organic material layer containing an organic substance and an oxide layer, it is preferable that the oxide layer and the organic material layer are provided on the surface of the light diffusing material in the order of the oxide layer and the organic material layer.
When the light diffusing material has an organic material layer and two oxide layers, a first oxide layer containing silicon dioxide, a second oxide layer containing aluminum oxide, and an organic material layer are formed on the surface of the light diffusing material. , The first oxide layer, the second oxide layer and the organic layer are provided in this order (the organic layer is the outermost layer).
 波長変換層は、蛍光体と、重合性化合物と、光重合開始剤と、必要に応じて光拡散材と、を含む組成物(以下、単に樹脂組成物ともいう)の硬化物であってもよい。樹脂組成物は、重合性化合物として、チオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、を含有することが好ましい。樹脂組成物は、任意でその他の成分を含有していてもよい。 The wavelength conversion layer may be a cured product of a composition (hereinafter, also simply referred to as a resin composition) containing a phosphor, a polymerizable compound, a photopolymerization initiator, and if necessary, a light diffusing material. Good. The resin composition preferably contains, as the polymerizable compound, a thiol compound and at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound. The resin composition may optionally contain other components.
(蛍光体)
 樹脂組成物に含まれる蛍光体の詳細は、上述のとおりである。蛍光体は、分散媒体に分散された蛍光体分散液の状態で用いてもよい。蛍光体を分散する分散媒体としては、各種有機溶剤、シリコーン化合物、及び単官能(メタ)アクリレート化合物が挙げられる。蛍光体は、必要に応じて分散剤を用いて蛍光体分散液の状態で用いてもよい。
(Fluorescent material)
The details of the phosphor contained in the resin composition are as described above. The phosphor may be used in the state of a phosphor dispersion liquid dispersed in a dispersion medium. Examples of the dispersion medium for dispersing the phosphor include various organic solvents, silicone compounds, and monofunctional (meth) acrylate compounds. The fluorescent substance may be used in the state of a fluorescent substance dispersion liquid by using a dispersant, if necessary.
 分散媒体として使用可能な有機溶剤としては、蛍光体の沈降及び凝集が確認されなければ特に限定されるものではなく、アセトニトリル、メタノール、エタノール、アセトン、1-プロパノール、酢酸エチル、酢酸ブチル、トルエン、ヘキサン等が挙げられる。 The organic solvent that can be used as the dispersion medium is not particularly limited unless precipitation and aggregation of the phosphor are confirmed, and acetonitrile, methanol, ethanol, acetone, 1-propanol, ethyl acetate, butyl acetate, toluene, etc. Examples include hexane.
 分散媒体として使用可能なシリコーン化合物としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイル;アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、フッ素変性シリコーンオイル等の変性シリコーンオイルなどが挙げられる。 Silicone compounds that can be used as a dispersion medium include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil; amino-modified silicone oil, epoxy-modified silicone oil, carboxy-modified silicone oil, and carbinol-modified silicone. Oil, mercapto-modified silicone oil, heterogeneous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid-modified silicone oil, fluorine-modified silicone oil, etc. Modified silicone oil and the like.
 分散媒体として使用可能な単官能(メタ)アクリレート化合物としては、室温(25℃)において液体であれば特に限定されるものではなく、脂環構造を有する単官能(メタ)アクリレート化合物(好ましくはイソボルニル(メタ)アクリレート、及びジシクロペンタニル(メタ)アクリレート)、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、エトキシ化o-フェニルフェノール(メタ)アクリレート等が挙げられる。 The monofunctional (meth) acrylate compound that can be used as a dispersion medium is not particularly limited as long as it is liquid at room temperature (25 ° C.), and is a monofunctional (meth) acrylate compound having an alicyclic structure (preferably isobornyl). (Meta) acrylate and dicyclopentanyl (meth) acrylate), methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, ethoxylated o-phenylphenol (meth) acrylate and the like can be mentioned.
 必要に応じて用いられる分散剤としては、ポリエーテルアミン(JEFFAMINE M-1000、HUNTSMAN社)等が挙げられる。 Examples of the dispersant used as needed include polyether amines (JEFFAMIN M-1000, HUNTSMAN) and the like.
 蛍光体分散液に占める蛍光体の質量基準の割合は、1質量%~20質量%であることが好ましく、1質量%~10質量%であることがより好ましい。 The mass-based ratio of the phosphor to the phosphor dispersion is preferably 1% by mass to 20% by mass, and more preferably 1% by mass to 10% by mass.
 樹脂組成物中の蛍光体分散液の含有率は、蛍光体分散液に占める蛍光体の質量基準の割合が1質量%~20質量%である場合、樹脂組成物の全量に対して、例えば、1質量%~10質量%であることが好ましく、4質量%~10質量%であることがより好ましく、4質量%~7質量%であることがさらに好ましい。
 また、樹脂組成物中の蛍光体の含有率は、樹脂組成物の全量に対して、例えば、0.01質量%~1.0質量%であることが好ましく、0.05質量%~0.5質量%であることがより好ましく、0.1質量%~0.5質量%であることがさらに好ましい。蛍光体の含有率が0.01質量%以上であると、硬化物に励起光を照射する際に充分な発光強度が得られる傾向にあり、蛍光体の含有率が1.0質量%以下であると、蛍光体の凝集が抑えられる傾向にある。
The content of the phosphor dispersion liquid in the resin composition is, for example, relative to the total amount of the resin composition when the mass-based ratio of the phosphor to the phosphor dispersion liquid is 1% by mass to 20% by mass. It is preferably 1% by mass to 10% by mass, more preferably 4% by mass to 10% by mass, and further preferably 4% by mass to 7% by mass.
The content of the phosphor in the resin composition is preferably, for example, 0.01% by mass to 1.0% by mass, and 0.05% by mass to 0% by mass, based on the total amount of the resin composition. It is more preferably 5% by mass, and even more preferably 0.1% by mass to 0.5% by mass. When the content of the phosphor is 0.01% by mass or more, sufficient emission intensity tends to be obtained when the cured product is irradiated with excitation light, and when the content of the phosphor is 1.0% by mass or less. If there is, the aggregation of the phosphor tends to be suppressed.
(重合性化合物)
 樹脂組成物は、重合性化合物を含有する。樹脂組成物に含まれる重合性化合物は特に制限されず、チオール化合物、(メタ)アクリル化合物、(メタ)アリル化合物等が挙げられる。なお、(メタ)アリル化合物は、分子中に(メタ)アリル基を有する化合物を意味し、(メタ)アクリル化合物は、分子中に(メタ)アクリロイル基を有する化合物を意味する。分子中に(メタ)アリル基及び(メタ)アクリロイル基の両方を有する化合物は、便宜上、(メタ)アリル化合物に分類するものとする。
(Polymerizable compound)
The resin composition contains a polymerizable compound. The polymerizable compound contained in the resin composition is not particularly limited, and examples thereof include a thiol compound, a (meth) acrylic compound, and a (meth) allyl compound. The (meth) allyl compound means a compound having a (meth) allyl group in the molecule, and the (meth) acrylic compound means a compound having a (meth) acryloyl group in the molecule. Compounds having both a (meth) allyl group and a (meth) acryloyl group in the molecule shall be classified as (meth) allyl compounds for convenience.
 波長変換層の被覆材に対する密着性の観点からは、樹脂組成物は重合性化合物としてチオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、を含むことが好ましい。 From the viewpoint of adhesion of the wavelength conversion layer to the coating material, the resin composition comprises a thiol compound as a polymerizable compound and at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound. It is preferable to include it.
 重合性化合物としてチオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、を含む樹脂組成物を硬化して得られる硬化物は、チオール基と(メタ)アクリロイル基又は(メタ)アリル基の炭素炭素二重結合との間でエンチオール反応が進行して形成されるスルフィド構造(R-S-R’、R及びR’は有機基を表す)を含む。これにより、波長変換層の被覆材に対する密着性が向上する傾向にある。また、波長変換層の光学特性がより向上する傾向にある。
 以下、チオール化合物、(メタ)アクリル化合物、及び(メタ)アリル化合物について詳述する。
A cured product obtained by curing a resin composition containing a thiol compound as a polymerizable compound and at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound has a thiol group and ( A sulfide structure (RSR', R and R'represents an organic group) formed by an entthiol reaction with a carbon-carbon double bond of a meta) acryloyl group or a (meth) allyl group. Including. As a result, the adhesion of the wavelength conversion layer to the coating material tends to be improved. Further, the optical characteristics of the wavelength conversion layer tend to be further improved.
Hereinafter, the thiol compound, the (meth) acrylic compound, and the (meth) allyl compound will be described in detail.
A.チオール化合物
 チオール化合物は、1分子中に1個のチオール基を有する単官能チオール化合物であってもよく、1分子中に2個以上のチオール基を有する多官能チオール化合物であってもよい。樹脂組成物に含まれるチオール化合物は、1種のみでも2種以上であってもよい。
A. Thiol compound The thiol compound may be a monofunctional thiol compound having one thiol group in one molecule, or a polyfunctional thiol compound having two or more thiol groups in one molecule. The thiol compound contained in the resin composition may be only one kind or two or more kinds.
 チオール化合物は、分子中にチオール基以外の重合性基(例えば、(メタ)アクリロイル基、(メタ)アリル基)を有していても、有していなくてもよい。
 本開示において分子中にチオール基と、チオール基以外の重合性基を含む化合物は、「チオール化合物」に分類するものとする。
The thiol compound may or may not have a polymerizable group other than the thiol group (for example, (meth) acryloyl group, (meth) allyl group) in the molecule.
In the present disclosure, a compound containing a thiol group and a polymerizable group other than the thiol group in the molecule shall be classified as a "thiol compound".
 単官能チオール化合物の具体例としては、ヘキサンチオール、1-ヘプタンチオール、1-オクタンチオール、1-ノナンチオール、1-デカンチオール、3-メルカプトプロピオン酸、メルカプトプロピオン酸メチル、メルカプトプロピオン酸メトキシブチル、メルカプトプロピオン酸オクチル、メルカプトプロピオン酸トリデシル、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート等が挙げられる。 Specific examples of the monofunctional thiol compound include hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanthiol, 1-decanethiol, 3-mercaptopropionic acid, methyl mercaptopropionate, and methoxybutyl mercaptopropionate. Examples thereof include octyl mercaptopropionate, tridecyl mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n-octyl-3-mercaptopropionate and the like.
 多官能チオール化合物の具体例としては、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,2-プロピレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトブチレート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトブチレート)、1,8-オクタンジオールビス(3-メルカプトプロピオネート)、1,8-オクタンジオールビス(3-メルカプトブチレート)、ヘキサンジオールビスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリスチオグリコレート、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサキスチオグリコレート等が挙げられる。 Specific examples of the polyfunctional thiol compound include ethylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), 1,2-. Propropylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptobutyrate), 1,4-butanediol bis (3-mercaptopropionate), 1,4-butanediol bis (3-mercaptobutyrate) Rate), 1,8-octanediol bis (3-mercaptopropionate), 1,8-octanediol bis (3-mercaptobutyrate), hexanediol bisthioglycolate, trimetylolpropanthris (3-mercaptopro) Pionate), trimethylolpropanetris (3-mercaptobutyrate), trimethylolpropanetris (3-mercaptoisobutyrate), trimethylolpropanetris (2-mercaptoisobutyrate), trimethylolpropanetristhioglycolate, Tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, trimethyl ethanetris (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate) ), Pentaerythritol tetrakis (3-mercaptoisobutyrate), pentaerythritol tetrakis (2-mercaptoisobutyrate), dipentaerythritol hexakis (3-mercaptopropionate), dipentaerythritol hexakis (2-mercaptopro) Pionate), dipentaerythritol hexakis (3-mercaptobutyrate), dipentaerythritol hexakis (3-mercaptoisobutyrate), dipentaerythritol hexakis (2-mercaptoisobutyrate), pentaerythritol tetrakisthioglycol Rate, dipentaerythritol hexaxthioglycolate and the like can be mentioned.
 波長変換層の被覆材に対する密着性、耐熱性、及び耐湿熱性をより向上させる観点からは、チオール化合物は、多官能チオール化合物を含むことが好ましい。チオール化合物の全量に対する多官能チオール化合物の割合は、例えば、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることがさらに好ましい。 The thiol compound preferably contains a polyfunctional thiol compound from the viewpoint of further improving the adhesion, heat resistance, and moist heat resistance of the wavelength conversion layer to the coating material. The ratio of the polyfunctional thiol compound to the total amount of the thiol compound is, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass.
 チオール化合物は、(メタ)アクリル化合物と反応したチオエーテルオリゴマーの状態であってもよい。チオエーテルオリゴマーは、チオール化合物と(メタ)アクリル化合物とを重合開始剤の存在下で付加重合させることにより得ることができる。 The thiol compound may be in the state of a thioether oligomer that has reacted with the (meth) acrylic compound. The thioether oligomer can be obtained by addition polymerization of a thiol compound and a (meth) acrylic compound in the presence of a polymerization initiator.
 樹脂組成物がチオール化合物を含有する場合、樹脂組成物中のチオール化合物の含有率は、樹脂組成物の全量に対して、例えば、5質量%~80質量%であることが好ましく、15質量%~70質量%であることがより好ましく、20質量%~60質量%であることがさらに好ましい。
 チオール化合物の含有率が5質量%以上であると、波長変換層の被覆材に対する密着性がより向上する傾向にあり、チオール化合物の含有率が80質量%以下であると、波長変換層の耐熱性及び耐湿熱性がより向上する傾向にある。
When the resin composition contains a thiol compound, the content of the thiol compound in the resin composition is preferably, for example, 5% by mass to 80% by mass, and 15% by mass, based on the total amount of the resin composition. It is more preferably to 70% by mass, and further preferably 20% by mass to 60% by mass.
When the content of the thiol compound is 5% by mass or more, the adhesion of the wavelength conversion layer to the coating material tends to be further improved, and when the content of the thiol compound is 80% by mass or less, the heat resistance of the wavelength conversion layer tends to be improved. The properties and moisture heat resistance tend to be further improved.
B.(メタ)アクリル化合物
 (メタ)アクリル化合物は、1分子中に1個の(メタ)アクリロイル基を有する単官能(メタ)アクリル化合物であってもよく、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリル化合物であってもよい。樹脂組成物に含まれる(メタ)アクリル化合物は、1種でも2種以上であってもよい。
B. (Meta) Acrylic Compound The (meth) acrylic compound may be a monofunctional (meth) acrylic compound having one (meth) acryloyl group in one molecule, and two or more (meth) acrylic compounds in one molecule. It may be a polyfunctional (meth) acrylic compound having an acryloyl group. The (meth) acrylic compound contained in the resin composition may be one kind or two or more kinds.
 単官能(メタ)アクリル化合物の具体例としては、(メタ)アクリル酸;メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香環を有する(メタ)アクリレート化合物;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する(メタ)アクリレート化合物;(メタ)アクリロイルモルホリン、テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;ヘプタデカフルオロデシル(メタ)アクリレート等のフッ化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基を有する(メタ)アクリレート化合物;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物;などが挙げられる。 Specific examples of the monofunctional (meth) acrylic compound include (meth) acrylic acid; methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isononyl (meth). ) Alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms such as acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate; benzyl (meth) acrylate, phenoxyethyl ( A (meth) acrylate compound having an aromatic ring such as a meta) acrylate; an alkoxyalkyl (meth) acrylate such as butoxyethyl (meth) acrylate; an aminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate; Diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monobutyl ether (meth) acrylate, tetraethylene glycol monomethyl ether (meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate, octaethylene glycol monomethyl ether (meth) acrylate, nona Polyalkylene glycol monoalkyl ether (meth) such as ethylene glycol monomethyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, heptapropylene glycol monomethyl ether (meth) acrylate, and tetraethylene glycol monoethyl ether (meth) acrylate. Acrylate; Polyalkylene glycol monoaryl ether (meth) acrylate such as hexaethylene glycol monophenyl ether (meth) acrylate; Cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, methylene oxide-added cyclo (Meta) acrylate compound having an alicyclic structure such as decatorien (meth) acrylate; (meth) acrylate compound having a heterocycle such as (meth) acryloylmorpholine and tetrahydrofurfuryl (meth) acrylate; heptadecafluorodecyl (meth) ) Alkyl fluoride (meth) acrylate such as acrylate; 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, trietylene Nglycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate and other (meth) acrylate compounds having hydroxyl groups; glycidyl (meth) acrylate A (meth) acrylate compound having a glycidyl group such as 2- (2- (meth) acryloyloxyethyloxy) ethyl isocyanate, a (meth) acrylate compound having an isocyanate group such as 2- (meth) acryloyloxyethyl isocyanate; tetra Polyalkylene glycol mono (meth) acrylates such as ethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide. , N-Isopropyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide and other (meth) acrylamide compounds; Be done.
 多官能(メタ)アクリル化合物の具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;トリシクロデカンジメタノールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、水添ビスフェノールA(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールA(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)プロポキシジ(メタ)アクリレート等の脂環構造を有する(メタ)アクリレート化合物などが挙げられる。 Specific examples of the polyfunctional (meth) acrylic compound include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di (meth) acrylate. Polyalkylene glycol di (meth) acrylate; Polyalkylene glycol di (meth) acrylate such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate; Trimethylol propantri (meth) acrylate, Trimethylol propantri with ethylene oxide (meth) Tri (meth) acrylate compounds such as meth) acrylate and tris (2-acryloyloxyethyl) isocyanurate; ethylene oxide-added pentaerythritol tetra (meth) acrylate, trimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like. Tetra (meth) acrylate compounds; tricyclodecanedimethanol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, 1,3-adamantan dimethanol di (meth) acrylate, hydrogenated bisphenol A (poly) ethoxydi ( Meta) acrylate, hydrogenated bisphenol A (poly) propoxydi (meth) acrylate, hydrogenated bisphenol F (poly) ethoxydi (meth) acrylate, hydrogenated bisphenol F (poly) propoxydi (meth) acrylate, hydrogenated bisphenol S (poly) Examples thereof include (meth) acrylate compounds having an alicyclic structure such as ethoxydi (meth) acrylate and hydrogenated bisphenol S (poly) propoxydi (meth) acrylate.
 (メタ)アクリル化合物は、硬化物の耐熱性及び耐湿熱性をより向上させる観点からは、脂環構造又は芳香環構造を有する(メタ)アクリレート化合物が好ましい。脂環構造又は芳香環構造としては、イソボルニル骨格、トリシクロデカン骨格、ビスフェノール骨格等が挙げられる。 The (meth) acrylic compound is preferably a (meth) acrylate compound having an alicyclic structure or an aromatic ring structure from the viewpoint of further improving the heat resistance and moisture heat resistance of the cured product. Examples of the alicyclic structure or aromatic ring structure include an isobornyl skeleton, a tricyclodecane skeleton, and a bisphenol skeleton.
 (メタ)アクリル化合物は、アルキレンオキシ基を有するものであってもよく、アルキレンオキシ基を有する2官能(メタ)アクリル化合物であってもよい。 The (meth) acrylic compound may be one having an alkyleneoxy group or a bifunctional (meth) acrylic compound having an alkyleneoxy group.
 アルキレンオキシ基としては、例えば、炭素数が2~4のアルキレンオキシ基が好ましく、炭素数が2又は3のアルキレンオキシ基がより好ましく、炭素数が2のアルキレンオキシ基がさらに好ましい。
 (メタ)アクリル化合物が有するアルキレンオキシ基は、1種でも2種以上であってもよい。
As the alkyleneoxy group, for example, an alkyleneoxy group having 2 to 4 carbon atoms is preferable, an alkyleneoxy group having 2 or 3 carbon atoms is more preferable, and an alkyleneoxy group having 2 carbon atoms is further preferable.
The alkyleneoxy group contained in the (meth) acrylic compound may be one type or two or more types.
 アルキレンオキシ基含有化合物は、複数個のアルキレンオキシ基を含むポリアルキレンオキシ基を有するポリアルキレンオキシ基含有化合物であってもよい。 The alkyleneoxy group-containing compound may be a polyalkyleneoxy group-containing compound having a polyalkyleneoxy group containing a plurality of alkyleneoxy groups.
 (メタ)アクリル化合物がアルキレンオキシ基を有する場合、一分子中のアルキレンオキシ基の数は、2個~30個であることが好ましく、2個~20個であることがより好ましく、3個~10個であることがさらに好ましく、3個~5個であることが特に好ましい。 When the (meth) acrylic compound has an alkyleneoxy group, the number of alkyleneoxy groups in one molecule is preferably 2 to 30, more preferably 2 to 20, and 3 to 20. The number is more preferably 10, and particularly preferably 3 to 5.
 (メタ)アクリル化合物がアルキレンオキシ基を有する場合、ビスフェノール構造を有することが好ましい。これにより、硬化物の耐熱性により優れる傾向にある。ビスフェノール構造としては、例えば、ビスフェノールA構造及びビスフェノールF構造が挙げられ、中でも、ビスフェノールA構造が好ましい。 When the (meth) acrylic compound has an alkyleneoxy group, it preferably has a bisphenol structure. As a result, the heat resistance of the cured product tends to be superior. Examples of the bisphenol structure include a bisphenol A structure and a bisphenol F structure, and among them, the bisphenol A structure is preferable.
 アルキレンオキシ基を有する(メタ)アクリル化合物の具体例としては、ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレート等のビスフェノール型ジ(メタ)アクリレート化合物;などが挙げられる。
 アルキレンオキシ基含有化合物としては、中でも、エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート及びプロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレートが好ましく、エトキシ化ビスフェノールA型ジ(メタ)アクリレートがより好ましい。
Specific examples of the (meth) acrylic compound having an alkyleneoxy group include alkoxyalkyl (meth) acrylates such as butoxyethyl (meth) acrylate; diethylene glycol monoethyl ether (meth) acrylate, and triethylene glycol monobutyl ether (meth) acrylate. Tetraethylene glycol monomethyl ether (meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate, octaethylene glycol monomethyl ether (meth) acrylate, nonaethylene glycol monomethyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, Polyalkylene glycol monoalkyl ether (meth) acrylates such as heptapropylene glycol monomethyl ether (meth) acrylates and tetraethylene glycol monoethyl ether (meth) acrylates; polyalkylene glycol monoaryls such as hexaethylene glycol monophenyl ether (meth) acrylates. Ether (meth) acrylate; (meth) acrylate compound having a heterocycle such as tetrahydrofurfuryl (meth) acrylate; triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) (Meta) acrylate compound having a hydroxyl group such as acrylate and octapropylene glycol mono (meth) acrylate; (meth) acrylate compound having a glycidyl group such as glycidyl (meth) acrylate; Polyethylene glycol di (meth) acrylate, polypropylene glycol di ( Polyalkylene glycol di (meth) acrylates such as meta) acrylates; tri (meth) acrylate compounds such as ethylene oxide-added trimethylol propantri (meth) acrylates; tetra (meth) acrylate compounds such as ethylene oxide-added pentaerythritol tetra (meth) acrylates. Examples thereof include bisphenol type di (meth) acrylate compounds such as ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate, and propoxylated ethoxylated bisphenol A type di (meth) acrylate; ..
As the alkyleneoxy group-containing compound, ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate and propoxylated ethoxylated bisphenol A type di (meth) acrylate are preferable, and ethoxylated bisphenol Type A di (meth) acrylate is more preferred.
 樹脂組成物が(メタ)アクリル化合物を含有する場合、樹脂組成物中の(メタ)アクリル化合物の含有率は、樹脂組成物の全量に対して、例えば、40質量%~90質量%であってもよく、50質量%~80質量%であってもよい。 When the resin composition contains a (meth) acrylic compound, the content of the (meth) acrylic compound in the resin composition is, for example, 40% by mass to 90% by mass with respect to the total amount of the resin composition. It may be 50% by mass to 80% by mass.
C.(メタ)アリル化合物
 (メタ)アリル化合物は、1分子中に1個の(メタ)アリル基を有する単官能(メタ)アリル化合物であってもよく、1分子中に2個以上の(メタ)アリル基を有する多官能(メタ)アリル化合物であってもよい。樹脂組成物に含まれる(メタ)アリル化合物は、1種のみでも2種以上であってもよい。
C. (Meta) Allyl Compound The (meth) allyl compound may be a monofunctional (meth) allyl compound having one (meth) allyl group in one molecule, and two or more (meth) allyl compounds in one molecule. It may be a polyfunctional (meth) allyl compound having an allyl group. The (meth) allyl compound contained in the resin composition may be only one kind or two or more kinds.
 (メタ)アリル化合物は、分子中に(メタ)アリル基以外の重合性基(例えば、(メタ)アクリロイル基)を有していても、有していなくてもよい。
 本開示において分子中に(メタ)アリル基以外の重合性基を有する化合物(ただし、チオール化合物を除く)は、「(メタ)アリル化合物」に分類するものとする。
The (meth) allyl compound may or may not have a polymerizable group (for example, (meth) acryloyl group) other than the (meth) allyl group in the molecule.
In the present disclosure, compounds having a polymerizable group other than the (meth) allyl group in the molecule (excluding thiol compounds) shall be classified as "(meth) allyl compound".
 単官能(メタ)アリル化合物の具体例としては、(メタ)アリルアセテート、(メタ)アリルn-プロピオネート、(メタ)アリルベンゾエート、(メタ)アリルフェニルアセテート、(メタ)アリルフェノキシアセテート、(メタ)アリルメチルエーテル、(メタ)アリルグリシジルエーテル等が挙げられる。 Specific examples of the monofunctional (meth) allyl compound include (meth) allyl acetate, (meth) allyl n-propionate, (meth) allyl benzoate, (meth) allyl phenyl acetate, (meth) allyl phenoxy acetate, and (meth). Examples thereof include allyl methyl ether and (meth) allyl glycidyl ether.
 多官能(メタ)アリル化合物の具体例としては、ベンゼンジカルボン酸ジ(メタ)アリル、シクロヘキサンジカルボン酸ジ(メタ)アリル、ジ(メタ)アリルマレエート、ジ(メタ)アリルアジペート、ジ(メタ)アリルフタレート、ジ(メタ)アリルイソフタレート、ジ(メタ)アリルテレフタレート、グリセリンジ(メタ)アリルエーテル、トリメチロールプロパンジ(メタ)アリルエーテル、ペンタエリスリトールジ(メタ)アリルエーテル、1,3-ジ(メタ)アリル-5-グリシジルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルトリメリテート、テトラ(メタ)アリルピロメリテート、1,3,4,6-テトラ(メタ)アリルグリコールウリル、1,3,4,6-テトラ(メタ)アリル-3a-メチルグリコールウリル、1,3,4,6-テトラ(メタ)アリル-3a,6a-ジメチルグリコールウリル等が挙げられる。 Specific examples of the polyfunctional (meth) allyl compound include di (meth) allyl benzenedicarboxylate, di (meth) allyl cyclohexanedicarboxylate, di (meth) allylmaleate, di (meth) allyl adipate, and di (meth). Allyl phthalate, di (meth) allyl isophthalate, di (meth) allyl terephthalate, glycerin di (meth) allyl ether, trimethylpropandi (meth) allyl ether, pentaerythritol di (meth) allyl ether, 1,3-di (Meta) allyl-5-glycidyl isocyanurate, tri (meth) allyl cyanurate, tri (meth) allyl isocyanurate, tri (meth) allyl trimellitate, tetra (meth) allyl pyromeritate, 1, 3, 4 , 6-Tetra (meth) allyl glycol uryl, 1,3,4,6-tetra (meth) allyl-3a-methylglycoluryl, 1,3,4,6-tetra (meth) allyl-3a, 6a-dimethyl Glycol-uryl and the like can be mentioned.
 (メタ)アリル化合物としては、硬化物の耐熱性及び耐湿熱性の観点から、トリ(メタ)アリルイソシアヌレート等のイソシアヌレート骨格を有する化合物、トリ(メタ)アリルシアヌレート、ベンゼンジカルボン酸ジ(メタ)アリル、及びシクロヘキサンジカルボン酸ジ(メタ)アリルからなる群より選択される少なくとも1種が好ましく、イソシアヌレート骨格を有する化合物がより好ましく、トリ(メタ)アリルイソシアヌレートがさらに好ましい。 Examples of the (meth) allyl compound include compounds having an isocyanurate skeleton such as tri (meth) allyl isocyanurate, tri (meth) allyl cyanurate, and benzenedicarboxylic acid di (meth) from the viewpoint of heat resistance and moisture heat resistance of the cured product. ) At least one selected from the group consisting of allyl and di (meth) allyl cyclohexanedicarboxylic acid is preferable, a compound having an isocyanurate skeleton is more preferable, and tri (meth) allyl isocyanurate is further preferable.
 樹脂組成物が(メタ)アリル化合物を含有する場合、樹脂組成物中の(メタ)アリル化合物の含有率は、樹脂組成物の全量に対して、例えば、10質量%~50質量%であってもよく、15質量%~45質量%であってもよい。 When the resin composition contains a (meth) allyl compound, the content of the (meth) allyl compound in the resin composition is, for example, 10% by mass to 50% by mass with respect to the total amount of the resin composition. It may be 15% by mass to 45% by mass.
 ある実施態様では、重合性化合物はチオール化合物としてチオエーテルオリゴマーと、(メタ)アリル化合物(好ましくは、多官能(メタ)アリル化合物)とを含むものであってもよい。 In some embodiments, the polymerizable compound may include a thioether oligomer as a thiol compound and a (meth) allyl compound (preferably a polyfunctional (meth) allyl compound).
 重合性化合物がチオール化合物としてチオエーテルオリゴマーと(メタ)アリル化合物とを含み、蛍光体として蛍光体を使用する場合、蛍光体は、分散媒体としてシリコーン化合物に分散された分散液の状態であることが好ましい。 When the polymerizable compound contains a thioether oligomer and a (meth) allyl compound as a thiol compound and a phosphor is used as a phosphor, the phosphor may be in the state of a dispersion liquid dispersed in a silicone compound as a dispersion medium. preferable.
 ある実施態様では、重合性化合物はチオール化合物としてチオエーテルオリゴマーの状態ではないものと、(メタ)アクリル化合物(好ましくは多官能(メタ)アクリル化合物、より好ましくは2官能(メタ)アクリル化合物)とを含むものであってもよい。 In some embodiments, the polymerizable compound comprises a thiol compound that is not in the form of a thioether oligomer and a (meth) acrylic compound (preferably a polyfunctional (meth) acrylic compound, more preferably a bifunctional (meth) acrylic compound). It may include.
 重合性化合物がチオール化合物としてチオエーテルオリゴマーの状態ではないものと、(メタ)アクリル化合物とを含み、蛍光体として量子ドット蛍光体を使用する場合、量子ドット蛍光体は、分散媒体として(メタ)アクリル化合物、好ましくは、単官能(メタ)アクリル化合物、より好ましくはイソボルニル(メタ)アクリレートに分散された分散液の状態であることが好ましい。 When the polymerizable compound contains a thiol compound that is not in the state of a thioether oligomer and a (meth) acrylic compound and a quantum dot phosphor is used as the phosphor, the quantum dot phosphor is a (meth) acrylic as a dispersion medium. It is preferably in the state of a compound, preferably a monofunctional (meth) acrylic compound, more preferably a dispersion dispersed in isobornyl (meth) acrylate.
(光重合開始剤)
 樹脂組成物に含まれる光重合開始剤の種類は特に制限されず、紫外線等の活性エネルギー線の照射によりラジカルを発生する化合物が挙げられる。
(Photopolymerization initiator)
The type of photopolymerization initiator contained in the resin composition is not particularly limited, and examples thereof include compounds that generate radicals when irradiated with active energy rays such as ultraviolet rays.
 光重合開始剤の具体例としては、ベンゾフェノン、N,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(「ミヒラーケトン」とも称される)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の芳香族ケトン化合物;アルキルアントラキノン、フェナントレンキノン等のキノン化合物;ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンゾインアルキルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル化合物;7-ジエチルアミノ-4-メチルクマリン等のクマリン化合物;2,4-ジエチルチオキサントン等のチオキサントン化合物;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニル-エトキシ-ホスフィンオキサイド等のアシルホスフィンオキサイド化合物;などが挙げられる。樹脂組成物は、1種類の光重合開始剤を単独で含有していてもよく、2種類以上の光重合開始剤を組み合わせて含有していてもよい。 Specific examples of the photopolymerization initiator include benzophenone, N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, 4,4'-bis (dimethylamino) benzophenone (also referred to as "Michler ketone"), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexylphenylketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4- (4-) Aromatic ketone compounds such as (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one; alkyl Kinone compounds such as anthraquinone and phenanthrenquinone; benzoin compounds such as benzoin and alkylbenzoin; benzoin ether compounds such as benzoin alkyl ether and benzoin phenyl ether; benzyl derivatives such as benzyl dimethyl ketal; 2- (o-chlorophenyl) -4,5 -Diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4-di (p-methoxyphenyl) -5-phenylimidazole dimer, 2- (2,4-dimethoxyphenyl)- 2,4,5-Triarylimidazole dimer such as 4,5-diphenylimidazole dimer; aclysine derivatives such as 9-phenylacidine, 1,7- (9,9'-acrydinyl) heptane; 1,2 -Octanedione 1- [4- (phenylthio) -2- (O-benzoyloxime)], ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl] -1- Oxime ester compounds such as (O-acetyloxime); coumarin compounds such as 7-diethylamino-4-methylcoumarin; thioxanthone compounds such as 2,4-diethylthioxanthone; 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 2,4,6-trimethylbenzoyl Acylphosphine oxide compounds such as -phenyl-ethoxy-phosphine oxide; and the like. The resin composition may contain one kind of photopolymerization initiator alone, or may contain two or more kinds of photopolymerization initiators in combination.
 光重合開始剤としては、硬化性の観点から、アシルホスフィンオキサイド化合物、芳香族ケトン化合物、及びオキシムエステル化合物からなる群より選択される少なくとも1種が好ましく、アシルホスフィンオキサイド化合物及び芳香族ケトン化合物からなる群より選択される少なくとも1種がより好ましく、アシルホスフィンオキサイド化合物がさらに好ましい。 From the viewpoint of curability, the photopolymerization initiator is preferably at least one selected from the group consisting of an acylphosphine oxide compound, an aromatic ketone compound, and an oxime ester compound, from the acylphosphine oxide compound and the aromatic ketone compound. At least one selected from the above group is more preferable, and an acylphosphine oxide compound is further preferable.
 樹脂組成物中の光重合開始剤の含有率は、樹脂組成物の全量に対して、例えば、0.1質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましく、0.1質量%~1.5質量%であることがさらに好ましい。光重合開始剤の含有率が0.1質量%以上であると、樹脂組成物の感度が充分なものとなる傾向にあり、光重合開始剤の含有率が5質量%以下であると、樹脂組成物の色相への影響及び保存安定性の低下が抑えられる傾向にある。 The content of the photopolymerization initiator in the resin composition is preferably, for example, 0.1% by mass to 5% by mass, preferably 0.1% by mass to 3% by mass, based on the total amount of the resin composition. It is more preferably 0.1% by mass to 1.5% by mass. When the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the resin composition tends to be sufficient, and when the content of the photopolymerization initiator is 5% by mass or less, the resin The influence on the hue of the composition and the decrease in storage stability tend to be suppressed.
(光拡散材)
 樹脂組成物に含まれる光拡散材の詳細は、上述したとおりである。
(Light diffuser)
The details of the light diffusing material contained in the resin composition are as described above.
(その他の成分)
 樹脂組成物は、上述した成分以外の成分をさらに含有していてもよい。例えば、樹脂組成物は、溶媒、分散媒、重合禁止剤、シランカップリング剤、界面活性剤、密着付与剤、酸化防止剤などの成分をさらに含有していてもよい。各成分は、1種を単独で用いても2種以上を併用してもよい。
(Other ingredients)
The resin composition may further contain components other than the above-mentioned components. For example, the resin composition may further contain components such as a solvent, a dispersion medium, a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, and an antioxidant. As for each component, one type may be used alone or two or more types may be used in combination.
(樹脂組成物の調製方法)
 樹脂組成物は、蛍光体、重合性化合物、光重合開始剤、及び必要に応じてその他の成分を常法により混合することで調製することができる。
(Method for preparing resin composition)
The resin composition can be prepared by mixing a phosphor, a polymerizable compound, a photopolymerization initiator, and if necessary, other components by a conventional method.
 波長変換層は、1種類の樹脂組成物を硬化したものであってもよく、2種類以上の樹脂組成物を硬化したものであってもよい。例えば、波長変換材がフィルム状である場合、波長変換層は、第1の蛍光体を含有する樹脂組成物を硬化した第1の硬化物層と、第1の蛍光体とは発光特性が異なる第2の蛍光体を含有する樹脂組成物を硬化した第2の硬化物層とが積層されたものであってもよい。 The wavelength conversion layer may be one obtained by curing one kind of resin composition, or may be one obtained by curing two or more kinds of resin compositions. For example, when the wavelength conversion material is in the form of a film, the wavelength conversion layer has different emission characteristics from the first cured product layer obtained by curing the resin composition containing the first phosphor and the first phosphor. A resin composition containing a second phosphor may be laminated with a second cured product layer obtained by curing the resin composition.
 波長変換層は、密着性をより向上させる観点から、動的粘弾性測定により周波数10Hzかつ温度25℃の条件で測定した損失正接(tanδ)が0.4~1.5であることが好ましく、0.4~1.2であることがより好ましく、0.4~0.6であることがさらに好ましい。波長変換層の損失正接(tanδ)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。 From the viewpoint of further improving the adhesion, the wavelength conversion layer preferably has a loss tangent (tan δ) of 0.4 to 1.5 measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. by dynamic viscoelasticity measurement. It is more preferably 0.4 to 1.2, and even more preferably 0.4 to 0.6. The loss tangent (tan δ) of the wavelength conversion layer can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
 波長変換層は、密着性、耐熱性、及び耐湿熱性をより向上させる観点から、ガラス転移温度(Tg)が85℃以上であることが好ましく、85℃~160℃であることがより好ましく、90℃~120℃であることがさらに好ましい。波長変換層のガラス転移温度(Tg)は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて、周波数10Hzの条件で測定することができる。 The wavelength conversion layer preferably has a glass transition temperature (Tg) of 85 ° C. or higher, more preferably 85 ° C. to 160 ° C., and 90 ° C., from the viewpoint of further improving adhesion, heat resistance, and moist heat resistance. It is more preferably ° C. to 120 ° C. The glass transition temperature (Tg) of the wavelength conversion layer can be measured under the condition of a frequency of 10 Hz using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
 また、波長変換層は、密着性、耐熱性、及び耐湿熱性をより向上させる観点から、周波数10Hzかつ温度25℃の条件で測定した貯蔵弾性率が1×10Pa~1×1010Paであることが好ましく、5×10Pa~1×1010Paであることがより好ましく、5×10Pa~5×10Paであることがさらに好ましい。樹脂硬化物の貯蔵弾性率は、動的粘弾性測定装置(例えば、Rheometric Scientific社、Solid Analyzer RSA-III)を用いて測定することができる。 The wavelength conversion layer has a storage elastic modulus of 1 × 10 7 Pa to 1 × 10 10 Pa measured under the conditions of a frequency of 10 Hz and a temperature of 25 ° C. from the viewpoint of further improving adhesion, heat resistance, and moisture heat resistance. It is preferably 5 × 10 7 Pa to 1 × 10 10 Pa, more preferably 5 × 10 7 Pa to 5 × 10 9 Pa. The storage elastic modulus of the cured resin can be measured using a dynamic viscoelasticity measuring device (for example, Rheometric Scientific, Solid Analyzer RSA-III).
 波長変換層は、例えば、樹脂組成物の塗膜、成形体等を形成し、必要に応じて乾燥処理を行った後、紫外線等の活性エネルギー線を照射することにより得ることができる。活性エネルギー線の波長及び照射量は、樹脂組成物の組成に応じて適宜設定することができる。一態様では、280nm~400nmの波長の紫外線を100mJ/cm~5000mJ/cmの照射量で照射する。紫外線源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯等が挙げられる。 The wavelength conversion layer can be obtained, for example, by forming a coating film, a molded product, or the like of a resin composition, performing a drying treatment as necessary, and then irradiating with active energy rays such as ultraviolet rays. The wavelength and irradiation amount of the active energy rays can be appropriately set according to the composition of the resin composition. In one aspect, it is irradiated with ultraviolet rays having a wavelength of 280 nm ~ 400 nm at an irradiation amount of 100mJ / cm 2 ~ 5000mJ / cm 2. Examples of the ultraviolet source include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and the like.
<被覆材>
 被覆材は、波長変換層の両側に配置される。これにより、波長変換層への水分、酸素等の侵入を抑制して波長変換層の劣化が抑制される。また、波長変換材に適度な剛性が付与されて取り扱い性が向上する。
<Coating material>
The covering material is arranged on both sides of the wavelength conversion layer. As a result, the invasion of water, oxygen, etc. into the wavelength conversion layer is suppressed, and the deterioration of the wavelength conversion layer is suppressed. In addition, appropriate rigidity is imparted to the wavelength conversion material to improve handleability.
 被覆材の材質は特に制限されず、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ナイロン等のポリアミド、エチレン-ビニルアルコール共重合体(EVOH)などであってもよい。入手容易性の観点からは、被覆材の材質はポリエチレンテレフタレートが好ましい。 The material of the covering material is not particularly limited, and polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefin such as polyethylene (PE) and polypropylene (PP), polyamide such as nylon, and ethylene-vinyl alcohol co-weight. It may be coalescence (EVOH) or the like. From the viewpoint of availability, polyethylene terephthalate is preferable as the material of the covering material.
 被覆材は、水、酸素等に対するバリア機能を強化するためのバリア層を備えたもの(バリアフィルム)であってもよい。バリア層としては、アルミナ、シリカ等の無機物を含む無機層が挙げられる。被覆材がバリア層を有する場合、波長変換層と接する側にバリア層が配置されることが好ましい。 The covering material may be one provided with a barrier layer for strengthening the barrier function against water, oxygen, etc. (barrier film). Examples of the barrier layer include an inorganic layer containing an inorganic substance such as alumina and silica. When the covering material has a barrier layer, it is preferable that the barrier layer is arranged on the side in contact with the wavelength conversion layer.
 被覆材の酸素透過率は、例えば、1.0mL/(m・24h・atm)以下であることが好ましく、0.8mL/(m・24h・atm)以下であることがより好ましく、0.6mL/(m・24h・atm)以下であることがさらに好ましい。被覆材の酸素透過率は、酸素透過率測定装置(例えば、MOCON社、OX-TRAN)を用いて、温度23℃かつ相対湿度90%の条件で測定することができる。 Oxygen permeability of the dressing, for example, is preferably 1.0mL / (m 2 · 24h · atm) or less, more preferably 0.8mL / (m 2 · 24h · atm) or less, 0 and more preferably .6mL / (m 2 · 24h · atm) or less. The oxygen permeability of the coating material can be measured using an oxygen permeability measuring device (for example, MOCON, OX-TRAN) under the conditions of a temperature of 23 ° C. and a relative humidity of 90%.
 また、被覆材の水蒸気透過率は、例えば、1×10g/(m・24h)以下であることが好ましく、8×10-1g/(m・24h)以下であることがより好ましく、6×10-1g/(m・24h)以下であることがさらに好ましい。被覆材の水蒸気透過率は、水蒸気透過率測定装置(例えば、MOCON社、AQUATRAN)を用いて、温度40℃かつ相対湿度100%の条件で測定することができる。 Further, the water vapor permeability of the dressing, for example, more that that 1 × 10 is 0 g / (m 2 · 24h ) or less preferably, 8 × 10 -1 g / ( m 2 · 24h) or less preferably, and more preferably 6 × 10 -1 g / (m 2 · 24h) or less. The water vapor permeability of the coating material can be measured using a water vapor permeability measuring device (for example, MOCON, AQUATRAN) under the conditions of a temperature of 40 ° C. and a relative humidity of 100%.
<キャリアフィルム>
 キャリアフィルムの材質は、特に制限されない。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ナイロン等のポリアミド、エチレン-ビニルアルコール共重合体(EVOH)などであってもよい。入手容易性の観点からは、被覆材の材質はポリエチレンテレフタレートが好ましい。
<Carrier film>
The material of the carrier film is not particularly limited. For example, polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyolefins such as polyethylene (PE) and polypropylene (PP), polyamides such as nylon, ethylene-vinyl alcohol copolymers (EVOH) and the like. May be good. From the viewpoint of availability, polyethylene terephthalate is preferable as the material of the covering material.
 被覆材に対する密着性を確保する観点からは、キャリアフィルムは被覆材と接する側の面に粘着層を備えていることが好ましい。粘着層はアクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤等の粘着剤を含むことが好ましく、中でもアクリル系粘着剤を含むことが好ましい。粘着層の厚みは特に制限されず、例えば、1μm~10μmの範囲であってもよい。 From the viewpoint of ensuring adhesion to the coating material, it is preferable that the carrier film has an adhesive layer on the surface in contact with the coating material. The adhesive layer preferably contains a pressure-sensitive adhesive such as an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, and a urethane-based pressure-sensitive adhesive, and more preferably contains an acrylic-based pressure-sensitive adhesive. The thickness of the adhesive layer is not particularly limited, and may be in the range of, for example, 1 μm to 10 μm.
≪波長変換材(第2実施形態)≫
 第2実施形態の波長変換材は、蛍光体及び樹脂硬化物を含む波長変換層と、前記波長変換層の両側に配置される被覆材とを備え、前記波長変換層及び前記被覆材の合計厚みが150μm以下である、波長変換材である。
<< Wavelength converter (second embodiment) >>
The wavelength conversion material of the second embodiment includes a wavelength conversion layer containing a phosphor and a cured resin product, and coating materials arranged on both sides of the wavelength conversion layer, and the total thickness of the wavelength conversion layer and the coating material. It is a wavelength conversion material having a wavelength of 150 μm or less.
 第2実施形態の波長変換材、波長変換層及び被覆材の詳細及び好ましい態様は、第1実施形態の波長変換材、波長変換層及び被覆材の詳細及び好ましい態様と同様である。 The details and preferred embodiments of the wavelength conversion material, wavelength conversion layer and coating material of the second embodiment are the same as the details and preferred embodiments of the wavelength conversion material, wavelength conversion layer and coating material of the first embodiment.
 第2実施形態の波長変換材は、被覆材の少なくとも一方の外面にキャリアフィルムが配置されていてもよい。キャリアフィルムの詳細及び好ましい態様は、第1実施形態の波長変換材が備えるキャリアフィルムの詳細及び好ましい態様と同様である。 In the wavelength conversion material of the second embodiment, a carrier film may be arranged on at least one outer surface of the covering material. The details and preferred embodiments of the carrier film are the same as the details and preferred embodiments of the carrier film included in the wavelength conversion material of the first embodiment.
≪波長変換材の製造方法≫
 本開示の波長変換材の製造方法は、蛍光体及び樹脂を含む樹脂組成物層と、前記樹脂組成物層の両側に配置される被覆材と、前記被覆材の少なくとも一方の外面に配置され、前記被覆材から剥離可能なキャリアフィルムと、を備える積層体を準備する工程と、前記積層体の前記樹脂組成物層を硬化させる工程と、を備える、波長変換材の製造方法である。
≪Manufacturing method of wavelength conversion material≫
In the method for producing a wavelength conversion material of the present disclosure, a resin composition layer containing a phosphor and a resin, a coating material arranged on both sides of the resin composition layer, and at least one outer surface of the coating material are arranged. A method for producing a wavelength conversion material, comprising a step of preparing a laminate including a carrier film peelable from the coating material and a step of curing the resin composition layer of the laminate.
 上記方法では、被覆材の少なくとも一方の外面にキャリアフィルムが配置された状態で樹脂組成物の硬化処理が行われる。このため、波長変換材の厚みが薄くても樹脂組成物の硬化時の体積収縮に伴うシワの発生が抑制され、外観の良好な波長変換材を製造することができる。 In the above method, the resin composition is cured with the carrier film arranged on at least one outer surface of the covering material. Therefore, even if the thickness of the wavelength conversion material is thin, the generation of wrinkles due to volume shrinkage during curing of the resin composition is suppressed, and a wavelength conversion material having a good appearance can be produced.
 上記方法において、樹脂組成物層と、被覆材と、キャリアフィルムとを備える積層体を準備する工程は、特に制限されない。
 例えば、片面にキャリアフィルムが配置された被覆材の上に樹脂組成物を塗布して樹脂組成物層を形成し、別の被覆材を樹脂組成物層の上に配置してもよい。
In the above method, the step of preparing the laminate including the resin composition layer, the coating material, and the carrier film is not particularly limited.
For example, the resin composition may be applied onto a coating material on which a carrier film is arranged on one side to form a resin composition layer, and another coating material may be arranged on the resin composition layer.
 被覆材の片面にキャリアフィルムを配置する方法は、特に制限されない。例えば、粘着層を有するキャリアフィルムの粘着層側を被覆材にラミネートして形成してもよい。 The method of arranging the carrier film on one side of the covering material is not particularly limited. For example, the adhesive layer side of the carrier film having the adhesive layer may be laminated on the coating material.
 上記方法において、樹脂組成物層を硬化させる方法は、特に制限されない。例えば、被覆材及びキャリアフィルムを透過可能で、かつ樹脂組成物層を硬化可能な活性エネルギー線を照射して行ってもよい。 In the above method, the method of curing the resin composition layer is not particularly limited. For example, the resin composition layer may be irradiated with active energy rays that are transparent to the coating material and the carrier film and can be cured.
 上記方法は、本開示の波長変換材を製造する方法であってもよい。すなわち上記方法により製造される波長変換材の詳細及び好ましい態様は、本開示の波長変換材の詳細及び好ましい態様と同様であってもよい。 The above method may be a method for producing the wavelength conversion material of the present disclosure. That is, the details and preferred embodiments of the wavelength converting material produced by the above method may be the same as the details and preferred embodiments of the wavelength converting material of the present disclosure.
≪積層体≫
 本開示の積層体は、被覆材と、前記被覆材の片面に配置され、前記被覆材から剥離可能なキャリアフィルムと、を備え、上述した波長変換材の製造に用いられる、積層体である。
≪Laminated body≫
The laminate of the present disclosure is a laminate that includes a coating material and a carrier film that is arranged on one side of the coating material and can be peeled off from the coating material, and is used in the production of the wavelength conversion material described above.
 上記積層体は、本開示の波長変換材の製造に用いられる。被覆材の片面にキャリアフィルムが配置されていることで、波長変換材の製造工程におけるシワの発生を抑制できる。また、製造工程後の任意の時点でキャリアフィルムを被覆材から除去することで、厚みの薄い波長変換材が得られる。 The laminate is used in the production of the wavelength conversion material of the present disclosure. By arranging the carrier film on one side of the covering material, it is possible to suppress the occurrence of wrinkles in the manufacturing process of the wavelength conversion material. Further, by removing the carrier film from the coating material at an arbitrary time after the manufacturing process, a wavelength conversion material having a thin thickness can be obtained.
 積層体を構成する被覆材及びキャリアフィルムの詳細及び好ましい態様は、上述した波長変換材を構成する被覆材及びキャリアフィルムの詳細及び好ましい態様と同様である。 The details and preferred embodiments of the coating material and carrier film constituting the laminate are the same as the details and preferred embodiments of the coating material and carrier film constituting the wavelength conversion material described above.
≪バックライトユニット≫
 本開示のバックライトユニットは、光源と、本開示の波長変換材と、を有する。
≪Backlight unit≫
The backlight unit of the present disclosure includes a light source and a wavelength conversion material of the present disclosure.
 バックライトユニットとしては、色再現性を向上させる観点から、多波長光源化されたものが好ましい。好ましい一態様としては、430nm~480nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する青色光と、520nm~560nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する緑色光と、600nm~680nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する赤色光と、を発光するバックライトユニットを挙げることができる。なお、発光強度ピークの半値幅とは、ピーク高さの1/2の高さにおけるピーク幅を意味する。 The backlight unit is preferably a multi-wavelength light source from the viewpoint of improving color reproducibility. In a preferred embodiment, blue light having an emission center wavelength in the wavelength range of 430 nm to 480 nm and having an emission intensity peak having a half-value width of 100 nm or less, and emission center wavelength in the wavelength range of 520 nm to 560 nm. A back that emits green light having an emission intensity peak having a half-value width of 100 nm or less and red light having an emission center wavelength in the wavelength range of 600 nm to 680 nm and having an emission intensity peak having a half-value width of 100 nm or less. The light unit can be mentioned. The half-value width of the emission intensity peak means the peak width at a height of 1/2 of the peak height.
 色再現性をより向上させる観点から、バックライトユニットが発光する青色光の発光中心波長は、440nm~475nmの範囲であることが好ましい。同様の観点から、バックライトユニットが発光する緑色光の発光中心波長は、520nm~545nmの範囲であることが好ましい。また、同様の観点から、バックライトユニットが発光する赤色光の発光中心波長は、610nm~640nmの範囲であることが好ましい。 From the viewpoint of further improving the color reproducibility, the emission center wavelength of the blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm. From the same viewpoint, the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm. From the same viewpoint, the emission center wavelength of the red light emitted by the backlight unit is preferably in the range of 610 nm to 640 nm.
 また、色再現性をより向上させる観点から、バックライトユニットが発光する青色光、緑色光、及び赤色光の各発光強度ピークの半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることがさらに好ましく、30nm以下であることが特に好ましく、25nm以下であることが極めて好ましい。 Further, from the viewpoint of further improving the color reproducibility, the half-value width of each emission intensity peak of the blue light, green light, and red light emitted by the backlight unit is preferably 80 nm or less, preferably 50 nm or less. It is more preferably 40 nm or less, particularly preferably 30 nm or less, and extremely preferably 25 nm or less.
 バックライトユニットの光源としては、例えば、430nm~480nmの波長域に発光中心波長を有する青色光を発光する光源を用いることができる。光源としては、例えば、LED(Light Emitting Diode)及びレーザーが挙げられる。青色光を発光する光源を用いる場合、波長変換材は、少なくとも、赤色光を発光する蛍光体R及び緑色光を発光する蛍光体Gを含むことが好ましい。これにより、波長変換材から発光される赤色光及び緑色光と、波長変換材を透過した青色光とにより、白色光を得ることができる。 As the light source of the backlight unit, for example, a light source that emits blue light having a emission center wavelength in the wavelength range of 430 nm to 480 nm can be used. Examples of the light source include an LED (Light Emitting Diode) and a laser. When a light source that emits blue light is used, the wavelength conversion material preferably contains at least a phosphor R that emits red light and a phosphor G that emits green light. As a result, white light can be obtained from the red light and green light emitted from the wavelength conversion material and the blue light transmitted through the wavelength conversion material.
 また、バックライトユニットの光源としては、例えば、300nm~430nmの波長域に発光中心波長を有する紫外光を発光する光源を用いることもできる。光源としては、例えば、LED及びレーザーが挙げられる。紫外光を発光する光源を用いる場合、波長変換材は、蛍光体R及び蛍光体Gとともに、励起光により励起され青色光を発光する蛍光体Bを含むことが好ましい。これにより、波長変換材から発光される赤色光、緑色光、及び青色光により、白色光を得ることができる。 Further, as the light source of the backlight unit, for example, a light source that emits ultraviolet light having a emission center wavelength in the wavelength range of 300 nm to 430 nm can be used. Examples of the light source include LEDs and lasers. When a light source that emits ultraviolet light is used, the wavelength conversion material preferably contains a phosphor B that is excited by excitation light and emits blue light, together with the phosphor R and the phosphor G. As a result, white light can be obtained from the red light, green light, and blue light emitted from the wavelength conversion material.
 本開示のバックライトユニットは、エッジライト方式であっても直下型方式であってもよい。エッジライト方式のバックライトユニットの概略構成の一例を図2に示す。図2に示すバックライトユニット20は、青色光Lを出射する光源21と、光源21から出射された青色光Lを導光して出射させる導光板22と、導光板22と対向配置される波長変換材10と、波長変換材10を介して導光板22と対向配置される再帰反射性部材23と、導光板22を介して波長変換材10と対向配置される反射板24とを備える。波長変換材10は、青色光Lの一部を励起光として赤色光L及び緑色光Lを発光し、赤色光L及び緑色光Lと、励起光とならなかった青色光Lとを出射する。この赤色光L、緑色光L、及び青色光Lにより、再帰反射性部材23から白色光Lが出射される。 The backlight unit of the present disclosure may be an edge light type or a direct type. FIG. 2 shows an example of a schematic configuration of an edge light type backlight unit. The backlight unit 20 shown in FIG. 2 includes a light source 21 for emitting the blue light L B, a light guide plate 22 to be emitted guiding the blue light L B emitted from the light source 21, the light guide plate 22 and disposed to face The wavelength conversion material 10 is provided with a retroreflective member 23 arranged to face the light source plate 22 via the wavelength conversion material 10, and a reflection plate 24 arranged to face the wavelength conversion material 10 via the light guide plate 22. .. Wavelength converting material 10 emits the red light L R and the green light L G part of the blue light L B as the excitation light, the red light L and R and the green light L G, the blue light was not the excitation light L B is emitted. The red light L R, the green light L G, and the blue light L B, the white light L W is emitted from the retroreflective member 23.
≪画像表示装置≫
 本開示の画像表示装置は、上述した本開示のバックライトユニットを備える。画像表示装置としては特に制限されず、例えば、液晶表示装置が挙げられる。
≪Image display device≫
The image display device of the present disclosure includes the backlight unit of the present disclosure described above. The image display device is not particularly limited, and examples thereof include a liquid crystal display device.
 液晶表示装置の概略構成の一例を図3に示す。図3に示す液晶表示装置30は、バックライトユニット20と、バックライトユニット20と対向配置される液晶セルユニット31とを備える。液晶セルユニット31は、液晶セル32が偏光板33Aと偏光板33Bとの間に配置された構成とされる。 FIG. 3 shows an example of the schematic configuration of the liquid crystal display device. The liquid crystal display device 30 shown in FIG. 3 includes a backlight unit 20 and a liquid crystal cell unit 31 arranged to face the backlight unit 20. The liquid crystal cell unit 31 has a configuration in which the liquid crystal cell 32 is arranged between the polarizing plate 33A and the polarizing plate 33B.
 液晶セル32の駆動方式は特に制限されず、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Virtical Alignment)方式、IPS(In-Plane-Switching)方式、OCB(Optically Compensated Birefringence)方式等が挙げられる。 The drive method of the liquid crystal cell 32 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, a VA (Virtical Birefringence) method, an IPS (In-Plane-Switching) method, an OCB (Optical Reference) method. The method and the like can be mentioned.
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
(波長変換層用樹脂組成物の調製)
 表1に示す各成分を同表に示す配合量(単位:質量部)で混合することにより、波長変換層を形成するための樹脂組成物を調製した。
(Preparation of resin composition for wavelength conversion layer)
A resin composition for forming a wavelength conversion layer was prepared by mixing each component shown in Table 1 in a blending amount (unit: parts by mass) shown in the same table.
 多官能アクリル化合物としては、トリシクロデカンジメタノールジアクリレート(新中村化学社製、A-DCP)を用いた。
 多官能チオール化合物としては、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(SC有機化学社製、PEMP)を用いた。
 光重合開始剤としては、2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(BASF社製、IRGACURE TPO)を用いた。また光拡散材としては、酸化チタン(Chemours社製、タイピュア R-706、体積平均粒子径0.36μm)を用いた。
 量子ドット蛍光体としては、緑色光を発する量子ドット蛍光体GとしてGen3.5QDC分散液(コア/シェル:CdSe/ZnS、ピーク波長532nm)分散液(Nanosys社製、Gen3.5 QD Concentrate)と、赤色光を発する量子ドット蛍光体RとしてGen3.5QDC分散液(コア/シェル:InP/ZnS、ピーク波長628nm)分散液(Nanosys社製、Gen3.5 QD Concentrate)とを用いた。
As the polyfunctional acrylic compound, tricyclodecanedimethanol diacrylate (manufactured by Shin-Nakamura Chemical Industry Co., Ltd., A-DCP) was used.
As the polyfunctional thiol compound, pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by SC Organic Chemistry Co., Ltd., PEMP) was used.
As the photopolymerization initiator, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (IRGACURE TPO manufactured by BASF) was used. As the light diffusing material, titanium oxide (manufactured by The Chemours Company, Typure R-706, volume average particle size 0.36 μm) was used.
Examples of the quantum dot phosphor include a Gen3.5 QDC dispersion (core / shell: CdSe / ZnS, peak wavelength 532 nm) dispersion (Nanosys, Gen3.5 QD Concentrate) as a quantum dot phosphor G that emits green light. A Gen3.5 QDC dispersion (core / shell: InP / ZnS, peak wavelength 628 nm) dispersion (Gen3.5 QD Concentrate, manufactured by Nanosys) was used as the quantum dot phosphor R that emits red light.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(キャリアフィルム付き被覆材の作製)
 粘着剤100質量部と、架橋剤15.0質量部と、触媒0.1質量部と、溶剤(トルエン)100質量部とを配合し、ディスパーで撹拌して、粘着剤組成物を調製した。
(Preparation of coating material with carrier film)
A pressure-sensitive adhesive composition was prepared by blending 100 parts by mass of a pressure-sensitive adhesive, 15.0 parts by mass of a cross-linking agent, 0.1 parts by mass of a catalyst, and 100 parts by mass of a solvent (toluene) and stirring with a disper.
 粘着剤としては、アクリル系粘着剤(ブチルアクリレート(BA)と4-ヒドロキシブチルアクリレート(4HBA)の共重合物、固形分24質量%)を用いた。
 触媒としては、スズ系触媒(商品名「KS-1200A-1」、共同薬品株式会社)を用いた。
 架橋剤としては、多官能イソシアネート(商品名「コロネートHL」、固形分75質量%、東ソー株式会社、トリメチロールプロパン/ヘキサメチレンジイソシアネート3量体付加物の75%酢酸エチル溶液、1分子中のイソシアネート基数:3個)を用いた。
As the pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive (copolymer of butyl acrylate (BA) and 4-hydroxybutyl acrylate (4HBA), solid content 24% by mass) was used.
As the catalyst, a tin-based catalyst (trade name "KS-1200A-1", Kyodo Yakuhin Co., Ltd.) was used.
As the cross-linking agent, polyfunctional isocyanate (trade name "Coronate HL", solid content 75% by mass, Tosoh Corporation, trimethylolpropane / hexamethylene diisocyanate trimer adduct 75% ethyl acetate solution, isocyanate in one molecule The number of bases: 3) was used.
 粘着剤組成物を、下記表2に示す厚みのPET基材(A4300、両面易接着処理、東洋紡株式会社)の片面に塗布し、100℃、1分で乾燥し、乾燥後の厚みが5μmとなるように調整して、片面に粘着層が形成されたキャリアフィルムを作製した。
 次いで、表2に示す厚みの被覆材(片面にバリア層を有するPET基材、大日本印刷株式会社)のバリア層が形成された面と逆側の面に、キャリアフィルムの粘着層側をラミネートして、キャリアフィルム付き被覆材を作製した。
 作製したキャリアフィルム付き被覆材におけるキャリアフィルムの被覆材からの剥離力を、上述した方法で測定した。結果を表2に示す。
The pressure-sensitive adhesive composition was applied to one side of a PET base material (A4300, double-sided easy-adhesive treatment, Toyobo Co., Ltd.) having the thickness shown in Table 2 below, dried at 100 ° C. for 1 minute, and had a thickness of 5 μm after drying. A carrier film having an adhesive layer formed on one side was produced.
Next, the adhesive layer side of the carrier film was laminated on the surface of the coating material having the thickness shown in Table 2 (PET base material having a barrier layer on one side, Dai Nippon Printing Co., Ltd.) on the side opposite to the surface on which the barrier layer was formed. Then, a covering material with a carrier film was produced.
The peeling force of the carrier film from the coating material of the produced coating material with a carrier film was measured by the method described above. The results are shown in Table 2.
(波長変換材の作製)
 作製したキャリアフィルム付き被覆材のキャリアフィルムが配置された側と逆の面に、波長変換層用樹脂組成物を塗布して塗膜を形成した。この塗膜上に、別のキャリアフィルム付き被覆材のキャリアフィルムが配置された側と逆の面を貼り合わせ、紫外線照射装置(アイグラフィックス株式会社)を用いて紫外線を照射(照射量:1000mJ/cm)して樹脂組成物を硬化させて、キャリアフィルム付き波長変換材を作製した。キャリアフィルム付き波長変換材からキャリアフィルムを剥離した状態の波長変換材の厚みと波長変換層の厚みをそれぞれ表2に示す。
 あわせて、キャリアフィルムがラミネートされていない被覆材を使用したこと以外は実施例と同様にして比較例の波長変換層を作製した。
(Manufacturing of wavelength conversion material)
A resin composition for a wavelength conversion layer was applied to a surface opposite to the side on which the carrier film of the prepared coating material with a carrier film was arranged to form a coating film. On this coating film, the surface opposite to the side on which the carrier film of the coating material with another carrier film is arranged is bonded, and ultraviolet rays are irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.) (irradiation amount: 1000 mJ). / Cm 2 ) and the resin composition was cured to prepare a wavelength conversion material with a carrier film. Table 2 shows the thickness of the wavelength conversion material and the thickness of the wavelength conversion layer in the state where the carrier film is peeled off from the wavelength conversion material with the carrier film, respectively.
At the same time, a wavelength conversion layer of Comparative Example was produced in the same manner as in Example except that a covering material to which the carrier film was not laminated was used.
(シワ発生の評価)
 キャリアフィルムを剥離した波長変換材(A4サイズ)を平坦な台の上に置き、シワの有無、及びシワが発生した場合はその高さ(シワが発生した箇所における波長変換材の表面と台との最長距離)を測定した。そして以下の評価基準に従い、シワ発生の状態を評価した。
(Evaluation of wrinkle occurrence)
Place the wavelength conversion material (A4 size) from which the carrier film has been peeled off on a flat table, and check the presence or absence of wrinkles and the height of the wrinkles (the surface and table of the wavelength conversion material at the place where the wrinkles occur). The longest distance) was measured. Then, the state of wrinkles was evaluated according to the following evaluation criteria.
 A:シワの発生なし
 B:シワ高さが1.5mm未満
 C:シワ高さが1.5mm以上3.0mm未満
 D:シワ高さが3.0mm以上
A: No wrinkles B: Wrinkle height less than 1.5 mm C: Wrinkle height 1.5 mm or more and less than 3.0 mm D: Wrinkle height 3.0 mm or more
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、被覆材としてキャリアフィルム付き被覆材を使用した実施例1~3の波長変換材は、波長変換材の厚みが薄い(100μm)状態であってもシワの発生が抑制されていた。また、キャリアフィルムが厚いほどシワの発生が効果的に抑制されていた。
 キャリアフィルムがラミネートされていない被覆材を使用し、かつ実施例と同じ厚みとした比較例1の波長変換材は、シワの発生が著しかった。比較例1~3の結果から、キャリアフィルムを用いずにシワの発生の抑制と波長変換材の厚み低減を達成することは困難であることがわかった。
As shown in Table 2, the wavelength conversion materials of Examples 1 to 3 using the coating material with a carrier film as the coating material suppress the occurrence of wrinkles even when the thickness of the wavelength conversion material is thin (100 μm). Was there. Further, the thicker the carrier film, the more effectively the occurrence of wrinkles was suppressed.
The wavelength conversion material of Comparative Example 1 in which the covering material to which the carrier film was not laminated was used and the thickness was the same as that of the example showed remarkable wrinkles. From the results of Comparative Examples 1 to 3, it was found that it is difficult to suppress the occurrence of wrinkles and reduce the thickness of the wavelength conversion material without using a carrier film.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (16)

  1.  蛍光体及び樹脂硬化物を含む波長変換層と、前記波長変換層の両側に配置される被覆材とを備える波長変換材であり、前記被覆材の少なくとも一方の外面に前記被覆材から剥離可能なキャリアフィルムが配置された状態である、波長変換材。 A wavelength conversion material comprising a wavelength conversion layer containing a phosphor and a cured resin product and coating materials arranged on both sides of the wavelength conversion layer, and can be peeled off from the coating material on at least one outer surface of the coating material. A wavelength conversion material in which a carrier film is placed.
  2.  前記キャリアフィルムの、剥離速度300mm/分の条件で測定される前記被覆材からの剥離力が0.7N/25mm以下である、請求項1に記載の波長変換材。 The wavelength conversion material according to claim 1, wherein the peeling force of the carrier film from the coating material measured under the condition of a peeling speed of 300 mm / min is 0.7 N / 25 mm or less.
  3.  前記被覆材の厚みが25μm以下である、請求項1又は請求項2に記載の波長変換材 The wavelength conversion material according to claim 1 or 2, wherein the thickness of the covering material is 25 μm or less.
  4.  前記キャリアフィルムが配置されていない状態の前記波長変換材の厚みが150μm以下である、請求項1~請求項3のいずれか1項に記載の波長変換材。 The wavelength conversion material according to any one of claims 1 to 3, wherein the thickness of the wavelength conversion material in a state where the carrier film is not arranged is 150 μm or less.
  5.  前記キャリアフィルムの厚みが30μm~150μmである、請求項1~請求項4のいずれか1項に記載の波長変換材。 The wavelength conversion material according to any one of claims 1 to 4, wherein the thickness of the carrier film is 30 μm to 150 μm.
  6.  前記キャリアフィルムが配置されていない状態のシワ高さが3.0mm未満である、請求項1~請求項5のいずれか1項に記載の波長変換材。 The wavelength conversion material according to any one of claims 1 to 5, wherein the wrinkle height in the state where the carrier film is not arranged is less than 3.0 mm.
  7.  蛍光体及び樹脂硬化物を含む波長変換層と、前記波長変換層の両側に配置される被覆材とを備え、前記波長変換層及び前記被覆材の合計厚みが150μm以下である、波長変換材。 A wavelength conversion material comprising a wavelength conversion layer containing a phosphor and a cured resin product and coating materials arranged on both sides of the wavelength conversion layer, and the total thickness of the wavelength conversion layer and the coating material is 150 μm or less.
  8.  シワ高さが3.0mm未満である、請求項7に記載の波長変換材。 The wavelength conversion material according to claim 7, wherein the wrinkle height is less than 3.0 mm.
  9.  フィルム状である、請求項1~請求項8のいずれか1項に記載の波長変換材。 The wavelength conversion material according to any one of claims 1 to 8, which is in the form of a film.
  10.  画像表示用である、請求項1~請求項9のいずれか1項に記載の波長変換材。 The wavelength conversion material according to any one of claims 1 to 9, which is for displaying an image.
  11.  前記蛍光体が量子ドット蛍光体を含む、請求項1~請求項10のいずれか1項に記載の波長変換材。 The wavelength conversion material according to any one of claims 1 to 10, wherein the phosphor contains a quantum dot phosphor.
  12.  前記量子ドット蛍光体がCd又はInの少なくとも一方を含む化合物を含む、請求項11に記載の波長変換材。 The wavelength conversion material according to claim 11, wherein the quantum dot phosphor contains a compound containing at least one of Cd and In.
  13.  蛍光体及び樹脂を含む樹脂組成物層と、前記樹脂組成物層の両側に配置される被覆材と、前記被覆材の少なくとも一方の外面に配置され、前記被覆材から剥離可能なキャリアフィルムと、を備える積層体を準備する工程と、
     前記積層体の前記樹脂組成物層を硬化させる工程と、を備える、波長変換材の製造方法。
    A resin composition layer containing a phosphor and a resin, a coating material arranged on both sides of the resin composition layer, and a carrier film arranged on at least one outer surface of the coating material and peelable from the coating material. And the process of preparing a laminate
    A method for producing a wavelength conversion material, comprising a step of curing the resin composition layer of the laminate.
  14.  被覆材と、前記被覆材の片面に配置され、前記被覆材から剥離可能なキャリアフィルムと、を備え、請求項1~請求項12のいずれか1項に記載の波長変換材の製造に用いられる、積層体。 It is used for producing the wavelength conversion material according to any one of claims 1 to 12, comprising a coating material and a carrier film arranged on one side of the coating material and peelable from the coating material. , Laminated body.
  15.  請求項1~請求項13のいずれか1項に記載の波長変換材と、光源と、を備えるバックライトユニット。 A backlight unit including the wavelength conversion material according to any one of claims 1 to 13 and a light source.
  16.  請求項15に記載のバックライトユニットを備える画像表示装置。 An image display device including the backlight unit according to claim 15.
PCT/JP2019/031689 2019-08-09 2019-08-09 Wavelength conversion material, method for manufacturing wavelength conevrsion material, laminate, backlight unit, and image display device WO2021028977A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2019/031689 WO2021028977A1 (en) 2019-08-09 2019-08-09 Wavelength conversion material, method for manufacturing wavelength conevrsion material, laminate, backlight unit, and image display device
PCT/JP2020/029561 WO2021029240A1 (en) 2019-08-09 2020-07-31 Wavelength conversion material, method for producing wavelength conversion material, multilayer body, backlight unit and image display device
TW109126515A TW202113028A (en) 2019-08-09 2020-08-05 Wavelength conversion member, method of producing wavelength conversion member, laminate, backlight unit, and image display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031689 WO2021028977A1 (en) 2019-08-09 2019-08-09 Wavelength conversion material, method for manufacturing wavelength conevrsion material, laminate, backlight unit, and image display device

Publications (1)

Publication Number Publication Date
WO2021028977A1 true WO2021028977A1 (en) 2021-02-18

Family

ID=74569463

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/031689 WO2021028977A1 (en) 2019-08-09 2019-08-09 Wavelength conversion material, method for manufacturing wavelength conevrsion material, laminate, backlight unit, and image display device
PCT/JP2020/029561 WO2021029240A1 (en) 2019-08-09 2020-07-31 Wavelength conversion material, method for producing wavelength conversion material, multilayer body, backlight unit and image display device

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029561 WO2021029240A1 (en) 2019-08-09 2020-07-31 Wavelength conversion material, method for producing wavelength conversion material, multilayer body, backlight unit and image display device

Country Status (2)

Country Link
TW (1) TW202113028A (en)
WO (2) WO2021028977A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114141933B (en) * 2021-11-16 2023-08-01 武汉华星光电半导体显示技术有限公司 Quantum dot film, display backboard and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017215A (en) * 2005-07-06 2007-01-25 Fujifilm Holdings Corp Manufacturing method of radiographic image conversion panel
JP2015008266A (en) * 2013-05-31 2015-01-15 三菱樹脂株式会社 Method for producing phosphor-containing silicone sheet
WO2016052625A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Backlight unit, liquid crystal display device, wavelength conversion member, and photocurable composition
US20160161066A1 (en) * 2014-12-08 2016-06-09 Lg Electronics Inc. Method for preparing quantum dot-polymer complex, quantum dot-polymer complex, light conversion film, backlight unit and display device having the same
WO2018043237A1 (en) * 2016-09-05 2018-03-08 東レ株式会社 Color conversion composition, color conversion sheet, light emitting body comprising same, lighting device, backlight unit and display
JP2018041860A (en) * 2016-09-08 2018-03-15 日東電工株式会社 Wavelength conversion sheet, sheet covering element, and optical semiconductor device
WO2019077752A1 (en) * 2017-10-20 2019-04-25 日立化成株式会社 Backlight unit, image display device, and wavelength conversion member

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007017215A (en) * 2005-07-06 2007-01-25 Fujifilm Holdings Corp Manufacturing method of radiographic image conversion panel
JP2015008266A (en) * 2013-05-31 2015-01-15 三菱樹脂株式会社 Method for producing phosphor-containing silicone sheet
WO2016052625A1 (en) * 2014-09-30 2016-04-07 富士フイルム株式会社 Backlight unit, liquid crystal display device, wavelength conversion member, and photocurable composition
US20160161066A1 (en) * 2014-12-08 2016-06-09 Lg Electronics Inc. Method for preparing quantum dot-polymer complex, quantum dot-polymer complex, light conversion film, backlight unit and display device having the same
WO2018043237A1 (en) * 2016-09-05 2018-03-08 東レ株式会社 Color conversion composition, color conversion sheet, light emitting body comprising same, lighting device, backlight unit and display
JP2018041860A (en) * 2016-09-08 2018-03-15 日東電工株式会社 Wavelength conversion sheet, sheet covering element, and optical semiconductor device
WO2019077752A1 (en) * 2017-10-20 2019-04-25 日立化成株式会社 Backlight unit, image display device, and wavelength conversion member

Also Published As

Publication number Publication date
WO2021029240A1 (en) 2021-02-18
TW202113028A (en) 2021-04-01

Similar Documents

Publication Publication Date Title
EP3767345A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2019189270A1 (en) Wavelength conversion member, backlight unit and image display device
KR20200064073A (en) Wavelength conversion member, backlight unit, image display device, resin composition for wavelength conversion, and cured resin for wavelength conversion
JP2019174562A (en) Wavelength conversion member, backlight unit, and image display device
WO2021029240A1 (en) Wavelength conversion material, method for producing wavelength conversion material, multilayer body, backlight unit and image display device
WO2019189269A1 (en) Wavelength conversion member, backlight unit and image display device
US10960651B2 (en) Laminate, wavelength conversion member, backlight unit, and image display device
WO2019186728A1 (en) Wavelength conversion member, backlight unit and image display device
WO2021106556A1 (en) Wavelength converting member and method for manufacturing same, back-light unit, and image display device
JP6702515B2 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2019189497A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2019189496A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186735A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2020208754A1 (en) Wavelength conversion member, backlight unit, and image display device
WO2021152739A1 (en) Wavelength conversion member, backlight unit, and image display device
WO2021152738A1 (en) Wavelength conversion member, backlight unit, and image display device
WO2021152737A1 (en) Wavelength conversion member, backlight unit, and image display device
JP2020196264A (en) Laminate, wavelength conversion member, backlight unit and image display device
WO2020250414A1 (en) Wavelength conversion member, use therefor, backlight unit, and image display device
WO2019186730A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP