WO2021106556A1 - Wavelength converting member and method for manufacturing same, back-light unit, and image display device - Google Patents

Wavelength converting member and method for manufacturing same, back-light unit, and image display device Download PDF

Info

Publication number
WO2021106556A1
WO2021106556A1 PCT/JP2020/041943 JP2020041943W WO2021106556A1 WO 2021106556 A1 WO2021106556 A1 WO 2021106556A1 JP 2020041943 W JP2020041943 W JP 2020041943W WO 2021106556 A1 WO2021106556 A1 WO 2021106556A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wavelength conversion
meth
acrylate
metal oxide
Prior art date
Application number
PCT/JP2020/041943
Other languages
French (fr)
Japanese (ja)
Inventor
紀一 福原
里奈 伊豆
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Publication of WO2021106556A1 publication Critical patent/WO2021106556A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • the present disclosure relates to a wavelength conversion member and its manufacturing method, a backlight unit, and an image display device.
  • a backlight unit is provided in an image display device such as a liquid crystal display device.
  • the backlight unit includes a wavelength conversion member including a phosphor that emits light from a light source.
  • a wavelength conversion member including a quantum dot phosphor that emits red light and a quantum dot phosphor that emits green light when used, when the wavelength conversion member is irradiated with blue light as excitation light, the quantum dot phosphor White light can be obtained from the red light and green light emitted from the light and the blue light transmitted through the wavelength conversion member.
  • the wavelength conversion member containing a phosphor usually has a cured product obtained by curing a curable composition containing a phosphor. Further, in the wavelength conversion member containing a phosphor, at least a part of the cured product containing the phosphor may be covered with a coating material. For example, in the case of a film-shaped wavelength conversion member, a barrier film having a barrier property against oxygen may be provided on one side or both sides of the cured product containing a phosphor.
  • Patent Document 1 includes an end face sealing layer covering the end face of the wavelength conversion layer including the gas barrier layer, and the end face sealing layer is the first.
  • a wavelength conversion laminated film containing a metal layer, a resin layer, and a second metal layer in this order has been proposed.
  • the wavelength conversion laminated film described in Patent Document 1 requires steps such as metal sputtering, resin layer formation, and electroless plating at the end of the wavelength conversion layer, which is complicated. In view of this situation, a method of suppressing deterioration of the phosphor at the end of the wavelength conversion member by another novel configuration has been searched for.
  • An object of the present disclosure is to provide a novel wavelength conversion member capable of suppressing a decrease in brightness at an end, a method for manufacturing the same, and a backlight unit and an image display device using the wavelength conversion member.
  • Means for solving the above problems include the following aspects.
  • ⁇ 3> The wavelength conversion member according to ⁇ 1> or ⁇ 2>, wherein the resin layer forms the outermost surface on the side surface of the wavelength conversion layer.
  • ⁇ 4> The wavelength conversion member according to any one of ⁇ 1> to ⁇ 3>, wherein the resin layer contains a poly (meth) acrylic acid ester.
  • the protective layer covers the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer, ⁇ 1> to ⁇ 4. > The wavelength conversion member according to any one of the items.
  • ⁇ 6> A backlight unit including the wavelength conversion member according to any one of ⁇ 1> to ⁇ 5> and a light source.
  • ⁇ 7> An image display device including the backlight unit according to ⁇ 6>.
  • a metal oxide layer and a resin are formed on the side surfaces of a laminate having a wavelength conversion layer containing a phosphor and a coating material arranged on one main surface or both main surfaces of the wavelength conversion layer.
  • a method for manufacturing a wavelength conversion member which comprises a step of forming a protective layer including a layer.
  • the step of forming the protective layer includes a step of forming the metal oxide layer and a step of forming the resin layer in this order. Manufacturing method of parts.
  • ⁇ 11> The method for producing a wavelength conversion member according to any one of ⁇ 8> to ⁇ 10>, wherein the resin layer contains a poly (meth) acrylic acid ester.
  • ⁇ 12> The method for manufacturing a wavelength conversion member according to any one of ⁇ 8> to ⁇ 11>, wherein the protective layer is formed so as to cover the outer peripheral surface of the laminated body.
  • a novel wavelength conversion member capable of suppressing a decrease in brightness at an end portion and a method for manufacturing the same, and a backlight unit and an image display device using the wavelength conversion member are provided.
  • the term "process” includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
  • the numerical range indicated by using "-" in the present disclosure includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. ..
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • each component may contain a plurality of applicable substances.
  • the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified.
  • a plurality of types of particles corresponding to each component may be contained.
  • the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
  • the term "layer” or “membrane” refers to only a part of the region, in addition to the case where the layer or the membrane is formed in the entire region when the region where the layer or the membrane exists is observed. The case where it is formed is also included.
  • the term “laminated” refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
  • “(meth) acryloyl” means at least one of acryloyl and methacrylic
  • (meth) acrylic means at least one of acrylic and methacrylic
  • (meth) acrylate means at least one of acrylate and methacrylate.
  • Means, "(meth) allyl” represents at least one of allyl and methacrylic.
  • the wavelength conversion member according to the embodiment of the present disclosure includes a wavelength conversion layer containing a phosphor, a coating material arranged on one main surface or both main surfaces of the wavelength conversion layer, and the wavelength conversion layer. It has a protective layer including a metal oxide layer and a resin layer, which is arranged on the side surface of the above.
  • the wavelength conversion member of the present embodiment since the side surface of the wavelength conversion layer is protected by the protective layer, it is possible to suppress a decrease in brightness at the end portion. Further, in one aspect, the wavelength conversion member of the present embodiment tends to be excellent in moisture and heat resistance.
  • each essential or optional member included in the wavelength conversion member will be described in detail.
  • the wavelength conversion layer contains a phosphor.
  • the wavelength conversion layer may further contain a cured resin product, or may have a phosphor contained (encapsulated) in the cured resin product. Further, the wavelength conversion layer may further contain a light diffusing material.
  • the wavelength conversion layer contains a phosphor that emits light when irradiated with light from a light source.
  • the type of phosphor is not particularly limited, and examples thereof include an organic phosphor and an inorganic phosphor.
  • the organic phosphor include a naphthalimide compound and a perylene compound.
  • the inorganic phosphor include Y 3 O 3 : Eu, YVO 4 : Eu, Y 2 O 2 : Eu, 3.5 MgO / 0.5 MgF 2 , GeO 2 : Mn, (Y ⁇ Cd) BO 2 : Eu, etc.
  • Red light emitting inorganic phosphor ZnS: Cu ⁇ Al, (Zn ⁇ Cd) S: Cu ⁇ Al, ZnS: Cu ⁇ Au ⁇ Al, Zn 2 SiO 4 : Mn, ZnSiO 4 : Mn, ZnS: Ag ⁇ Cu, ( Zn ⁇ Cd) S: Cu, ZnS: Cu, GdOS: Tb, LaOS: Tb, YSiO 4 : Ce ⁇ Tb, ZnGeO 4 : Mn, GeMgAlO: Tb, SrGaS: Eu 2+ , ZnS: Cu ⁇ Co, MgO ⁇ nB 2 O 3 : Green luminescent inorganic phosphors such as Ge ⁇ Tb, LaOBr: Tb ⁇ Tm, La 2 O 2 S: Tb, ZnS: Ag, GaWO 4 , Y 2 SiO 6 : Ce, ZnS: Ag ⁇ Ga ⁇ Cl , Ca 2 B 4
  • a quantum dot phosphor is preferable from the viewpoint of excellent color reproducibility of the image display device.
  • the quantum dot phosphor is not particularly limited, and examples thereof include particles containing at least one selected from the group consisting of a group II-VI compound, a group III-V compound, a group IV-VI compound, and a group IV compound.
  • the quantum dot phosphor preferably contains a compound containing at least one selected from the group consisting of Cd and In.
  • II-VI group compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSte, HgSeS, ZnS.
  • Group III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, COLP, PLGAs, VMwareSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb , AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNAs, GaInNAs, GaInNAs, GaInNAs, GaIn
  • the quantum dot phosphor may have a core-shell structure.
  • core / shell By making the band gap of the compound constituting the shell wider than the band gap of the compound constituting the core, it is possible to further improve the quantum efficiency of the quantum dot phosphor.
  • core / shell examples include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, and CdTe / ZnS.
  • the quantum dot phosphor may have a so-called core multi-shell structure in which the shell has a multi-layer structure.
  • the quantum efficiency of the quantum dot phosphor can be further improved. Is possible.
  • the wavelength conversion layer may contain one kind of quantum dot phosphor alone, or may contain two or more kinds of quantum dot phosphors in combination. May be good.
  • Examples of a mode in which two or more types of quantum dot phosphors are contained in combination include a mode in which two or more types of quantum dot phosphors having different components but the same average particle size are contained, and a mode in which components having different average particle sizes are contained. Examples thereof include an embodiment containing two or more types of quantum dot phosphors, and an embodiment containing two or more types of quantum dot phosphors having different components and average particle diameters.
  • the emission center wavelength of the quantum dot phosphor can be changed by changing at least one selected from the group consisting of the components of the quantum dot phosphor and the average particle size.
  • the wavelength conversion layer includes a quantum dot phosphor G having an emission center wavelength in the green wavelength region of 520 nm to 560 nm and a quantum dot phosphor R having an emission center wavelength in the red wavelength region of 600 nm to 680 nm. It may be contained.
  • the wavelength conversion layer containing the quantum dot phosphor G and the quantum dot phosphor R is irradiated with excitation light in the blue wavelength range of 430 nm to 480 nm, the quantum dot phosphor G and the quantum dot phosphor R are green, respectively. Light and red light are emitted. As a result, white light can be obtained by the green light and red light emitted from the quantum dot phosphor G and the quantum dot phosphor R and the blue light transmitted through the cured product.
  • the content of the phosphor in the wavelength conversion layer is preferably, for example, 0.01% by mass to 1.0% by mass, and 0.05% by mass to 0.5% by mass, based on the entire wavelength conversion layer. Is more preferable, and 0.1% by mass to 0.5% by mass is further preferable.
  • 0.01% by mass or more with respect to the entire wavelength conversion layer a sufficient wavelength conversion function tends to be obtained, and when the content of the phosphor is 0.01% by mass or less. , The aggregation of phosphors tends to be suppressed.
  • the wavelength conversion layer may further contain a cured resin product.
  • the wavelength conversion layer may be a layer in which the above-mentioned phosphor is contained in the cured resin product.
  • the cured resin product preferably contains a sulfide structure from the viewpoint of adhesion to other members (coating material, etc.) of the cured resin product and suppression of wrinkles due to volume shrinkage during curing.
  • the cured resin composition containing a sulfide structure is obtained by curing a resin composition containing, for example, a thiol compound described later and a polymerizable compound having a carbon-carbon double bond that causes an enthiol reaction with a thiol group of the thiol compound. Obtainable.
  • the cured resin product preferably contains an alicyclic structure or an aromatic ring structure.
  • the cured resin product having an alicyclic structure or an aromatic ring structure can be obtained, for example, by curing a resin composition containing a polymer compound having an alicyclic structure or an aromatic ring structure, which will be described later.
  • the cured resin product preferably contains an alkyleneoxy group.
  • the polarity of the cured resin product increases, and non-polar oxygen tends to be difficult to dissolve in the components in the cured product.
  • the flexibility of the cured resin product tends to increase and the adhesion to the coating material tends to improve.
  • the cured resin product containing an alkyleneoxy group can be obtained, for example, by curing a resin composition containing a polymerizable compound having an alkyleneoxy group, which will be described later.
  • the wavelength conversion layer may be a cured product of a composition containing a phosphor, a polymerizable compound, and a photopolymerization initiator (hereinafter, also simply referred to as a resin composition).
  • the resin composition may contain a phosphor, a thiol compound, at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound, and a photopolymerization initiator.
  • the resin composition may optionally contain other components. Hereinafter, each component of the resin composition will be described in detail.
  • the resin composition contains a phosphor.
  • the details of the phosphor are as described above.
  • the quantum dot phosphor may be used in the state of a quantum dot phosphor dispersion liquid dispersed in a dispersion medium.
  • the dispersion medium for dispersing the quantum dot phosphor include various organic solvents, silicone compounds, and monofunctional (meth) acrylate compounds.
  • the quantum dots may be used in the state of a quantum dot phosphor dispersion liquid by using a dispersant, if necessary.
  • the organic solvent that can be used as the dispersion medium is not particularly limited as long as precipitation and aggregation of the quantum dot phosphor are not confirmed, and acetonitrile, methanol, ethanol, acetone, 1-propanol, ethyl acetate, butyl acetate, toluene, hexane and the like are not particularly limited. Can be mentioned.
  • Silicone compounds that can be used as a dispersion medium include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil; amino-modified silicone oil, epoxy-modified silicone oil, carboxy-modified silicone oil, and carbinol-modified silicone. Oil, mercapto-modified silicone oil, heterogeneous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid-modified silicone oil, fluorine-modified silicone oil, etc. Modified silicone oil and the like.
  • the monofunctional (meth) acrylate compound that can be used as a dispersion medium is not particularly limited as long as it is liquid at 25 ° C., and a monofunctional (meth) acrylate compound having an alicyclic structure (preferably isobornyl (meth)). ) Acrylate and dicyclopentanyl (meth) acrylate), methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, ethoxylated o-phenylphenol (meth) acrylate and the like.
  • dispersant used as needed examples include polyether amine (trade name: JEFFAMINE (registered trademark) M-1000, HUNTSMAN), oleic acid and the like.
  • the mass-based ratio of the quantum dot phosphor to the quantum dot phosphor dispersion liquid is preferably 1% by mass to 20% by mass, and more preferably 1% by mass to 10% by mass.
  • the content of the quantum dot phosphor dispersion liquid in the resin composition is the total amount of the resin composition when the mass-based ratio of the quantum dot phosphor to the quantum dot phosphor dispersion liquid is 1% by mass to 20% by mass. On the other hand, for example, it is preferably 1% by mass to 10% by mass, more preferably 4% by mass to 10% by mass, and further preferably 4% by mass to 7% by mass.
  • the content of the quantum dot phosphor in the resin composition is preferably, for example, 0.01% by mass to 1.0% by mass, preferably 0.05% by mass or more, based on the total amount of the resin composition. It is more preferably 0.5% by mass, and further preferably 0.1% by mass to 0.5% by mass.
  • the content of the quantum dot phosphor is 0.01% by mass or more, sufficient emission intensity tends to be obtained when the cured product is irradiated with excitation light, and the content of the quantum dot phosphor is 1.0.
  • it is mass% or less the aggregation of the quantum dot phosphor tends to be suppressed.
  • the resin composition contains a polymerizable compound.
  • the polymerizable compound contained in the resin composition is not particularly limited, and examples thereof include a thiol compound, a (meth) acrylic compound, and a (meth) allyl compound.
  • the (meth) allyl compound means a compound having a (meth) allyl group in the molecule
  • the (meth) acrylic compound means a compound having a (meth) acryloyl group in the molecule.
  • Compounds having both a (meth) allyl group and a (meth) acryloyl group in the molecule shall be classified as (meth) allyl compounds for convenience.
  • the resin composition is selected from the group consisting of a thiol compound, a (meth) acrylic compound and a (meth) allyl compound as a polymerizable compound at least. 1 type and may be included.
  • a cured product obtained by curing a resin composition containing a thiol compound as a polymerizable compound and at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound has a thiol group and ( A sulfide structure (RSR', R and R'represents an organic group) formed by an enthiol reaction with a carbon-carbon double bond of a (meth) acryloyl group or a (meth) allyl group.
  • RSR', R and R' represents an organic group formed by an enthiol reaction with a carbon-carbon double bond of a (meth) acryloyl group or a (meth) allyl group.
  • the thiol compound may be a monofunctional thiol compound having one thiol group in one molecule, or a polyfunctional thiol compound having two or more thiol groups in one molecule.
  • the thiol compound contained in the resin composition may be only one kind or two or more kinds.
  • the thiol compound may or may not have a polymerizable group other than the thiol group (for example, (meth) acryloyl group, (meth) allyl group) in the molecule.
  • a compound containing a thiol group and a polymerizable group other than the thiol group in the molecule shall be classified as a "thiol compound”.
  • the monofunctional thiol compound examples include hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanthiol, 1-decanethiol, 3-mercaptopropionic acid, methyl mercaptopropionate, methoxybutyl mercaptopropionate, and the like.
  • Examples thereof include octyl mercaptopropionate, tridecyl mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n-octyl-3-mercaptopropionate and the like.
  • polyfunctional thiol compound examples include ethylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), 1,2-.
  • the thiol compound preferably contains a polyfunctional thiol compound.
  • the ratio of the polyfunctional thiol compound to the total amount of the thiol compound is, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass.
  • the thiol compound may be in the state of a thioether oligomer that has reacted with the (meth) acrylic compound.
  • the thioether oligomer can be obtained by addition polymerization of a thiol compound and a (meth) acrylic compound in the presence of a polymerization initiator.
  • the content of the thiol compound in the resin composition is preferably, for example, 5% by mass to 80% by mass, and 15% by mass, based on the total amount of the resin composition. It is more preferably to 70% by mass, and further preferably 20% by mass to 60% by mass.
  • the content of the thiol compound is 5% by mass or more with respect to the total amount of the resin composition, the adhesion of the wavelength conversion layer to the coating material tends to be further improved, and the content of the thiol compound is the resin composition.
  • it is 80% by mass or less with respect to the total amount, the heat resistance and the moist heat resistance of the wavelength conversion layer tend to be further improved.
  • the (meth) acrylic compound may be a monofunctional (meth) acrylic compound having one (meth) acryloyl group in one molecule, and two or more (meth) acrylic compounds in one molecule. It may be a polyfunctional (meth) acrylic compound having an acryloyl group.
  • the (meth) acrylic compound contained in the resin composition may be one kind or two or more kinds.
  • the monofunctional (meth) acrylic compound examples include (meth) acrylic acid; methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isononyl (meth).
  • Alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms such as acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate; benzyl (meth) acrylate, phenoxyethyl ( A (meth) acrylate compound having an aromatic ring such as a meta) acrylate; an alkoxyalkyl (meth) acrylate such as butoxyethyl (meth) acrylate; an aminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate; Diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monobutyl ether (meth) acrylate, tetraethylene glycol monomethyl ether (meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate
  • Acrylate Polyalkylene glycol monoaryl ether (meth) acrylate such as hexaethylene glycol monophenyl ether (meth) acrylate; cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, methylene oxide-added cyclo (Meta) acrylate compound having an alicyclic structure such as decatorien (meth) acrylate; (meth) acrylate compound having a heterocycle such as (meth) acryloylmorpholine and tetrahydrofurfuryl (meth) acrylate; heptadecafluorodecyl (meth) ) Alkyl fluoride (meth) acrylates such as acrylates; 2-hydroxyethyl (meth) acrylates, 3-hydroxypropyl (meth) acrylates, 4-hydroxybutyl (meth) acrylates, trietylene N
  • N-Isopropyl (meth) acrylamide N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide and other (meth) acrylamide compounds; Be done.
  • polyfunctional (meth) acrylic compound examples include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di (meth) acrylate.
  • Polyalkylene glycol di (meth) acrylate Polyalkylene glycol di (meth) acrylate such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate; Trimethylol propantri (meth) acrylate, Trimethylol propantri with ethylene oxide (meth) Tri (meth) acrylate compounds such as meth) acrylate and tris (2-acryloyloxyethyl) isocyanurate; ethylene oxide-added pentaerythritol tetra (meth) acrylate, trimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like.
  • Tetra (meth) acrylate compounds tricyclodecanedimethanol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, 1,3-adamantan dimethanol di (meth) acrylate, hydrogenated bisphenol A (poly) ethoxydi ( Meta) acrylate, hydrogenated bisphenol A (poly) propoxydi (meth) acrylate, hydrogenated bisphenol F (poly) ethoxydi (meth) acrylate, hydrogenated bisphenol F (poly) propoxydi (meth) acrylate, hydrogenated bisphenol S (poly) Examples thereof include (meth) acrylate compounds having an alicyclic structure such as ethoxydi (meth) acrylate and hydrogenated bisphenol S (poly) propoxydi (meth) acrylate.
  • the (meth) acrylic compound is preferably a (meth) acrylate compound having an alicyclic structure or an aromatic ring structure from the viewpoint of further improving the heat resistance and moisture heat resistance of the cured product.
  • the alicyclic structure or aromatic ring structure include an isobornyl skeleton, a tricyclodecane skeleton, and a bisphenol skeleton.
  • the (meth) acrylic compound may have an alkyleneoxy group or may be a bifunctional (meth) acrylic compound having an alkyleneoxy group.
  • alkyleneoxy group for example, an alkyleneoxy group having 2 to 4 carbon atoms is preferable, an alkyleneoxy group having 2 or 3 carbon atoms is more preferable, and an alkyleneoxy group having 2 carbon atoms is further preferable.
  • the alkyleneoxy group contained in the (meth) acrylic compound may be one type or two or more types.
  • the alkyleneoxy group-containing compound may be a polyalkyleneoxy group-containing compound having a polyalkyleneoxy group containing a plurality of alkyleneoxy groups.
  • the number of alkyleneoxy groups in one molecule is preferably 2 to 30, more preferably 2 to 20, and 3 to 20. It is more preferably 10 pieces, and particularly preferably 3 to 5 pieces.
  • the (meth) acrylic compound has an alkyleneoxy group
  • it preferably has a bisphenol structure.
  • the heat resistance of the cured product tends to be more excellent.
  • the bisphenol structure include a bisphenol A structure and a bisphenol F structure, and among them, the bisphenol A structure is preferable.
  • (meth) acrylic compound having an alkyleneoxy group examples include alkoxyalkyl (meth) acrylates such as butoxyethyl (meth) acrylates; diethylene glycol monoethyl ether (meth) acrylates, triethylene glycol monobutyl ether (meth) acrylates, and the like.
  • Examples thereof include bisphenol type di (meth) acrylate compounds such as ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate, and propoxylated ethoxylated bisphenol A type di (meth) acrylate; ..
  • the alkyleneoxy group-containing compound ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate and propoxylated ethoxylated bisphenol A type di (meth) acrylate are preferable, and ethoxylated bisphenol A-type di (meth) acrylate is more preferable.
  • the content of the (meth) acrylic compound in the resin composition is, for example, 40% by mass to 90% by mass with respect to the total amount of the resin composition. It may be 50% by mass to 80% by mass.
  • the (meth) allyl compound may be a monofunctional (meth) allyl compound having one (meth) allyl group in one molecule, and two or more (meth) allyl compounds in one molecule. It may be a polyfunctional (meth) allyl compound having an allyl group.
  • the (meth) allyl compound contained in the resin composition may be only one kind or two or more kinds.
  • the (meth) allyl compound may or may not have a polymerizable group (for example, (meth) acryloyl group) other than the (meth) allyl group in the molecule.
  • a polymerizable group for example, (meth) acryloyl group
  • compounds having a polymerizable group other than the (meth) allyl group in the molecule shall be classified as "(meth) allyl compound”.
  • the monofunctional (meth) allyl compound examples include (meth) allyl acetate, (meth) allyl n-propionate, (meth) allyl benzoate, (meth) allyl phenyl acetate, (meth) allyl phenoxy acetate, and (meth). Examples thereof include allyl methyl ether and (meth) allyl glycidyl ether.
  • polyfunctional (meth) allyl compound examples include di (meth) allyl benzenedicarboxylate, di (meth) allyl cyclohexanedicarboxylate, di (meth) allylmaleate, di (meth) allyl adipate, and di (meth).
  • Examples of the (meth) allyl compound include compounds having an isocyanurate skeleton such as tri (meth) allyl isocyanurate, tri (meth) allyl cyanurate, and benzenedicarboxylic acid di (meth) from the viewpoint of heat resistance and moisture heat resistance of the cured product.
  • At least one selected from the group consisting of allyl and di (meth) allyl cyclohexanedicarboxylic acid is preferable, a compound having an isocyanurate skeleton is more preferable, and tri (meth) allyl isocyanurate is further preferable.
  • the content of the (meth) allyl compound in the resin composition is, for example, 10% by mass to 50% by mass with respect to the total amount of the resin composition. It may be 15% by mass to 45% by mass.
  • the polymerizable compound may include a thioether oligomer as a thiol compound and a (meth) allyl compound (preferably a polyfunctional (meth) allyl compound).
  • the quantum dot phosphor is a dispersion liquid dispersed in a silicone compound as a dispersion medium. It is preferably in a state.
  • the polymerizable compound is a thiol compound that is not in the form of a thioether oligomer, and a (meth) acrylic compound (preferably a polyfunctional (meth) acrylic compound, more preferably a bifunctional (meth) acrylic compound). May be included.
  • the polymerizable compound contains a thiol compound that is not in the state of a thioether oligomer and a (meth) acrylic compound and a quantum dot phosphor is used as the phosphor
  • the quantum dot phosphor is used as the dispersion medium (meth). It is preferably in the state of a dispersion liquid dispersed in an acrylic compound, preferably a monofunctional (meth) acrylic compound, and more preferably isobornyl (meth) acrylate.
  • the type of photopolymerization initiator contained in the resin composition is not particularly limited, and examples thereof include compounds that generate radicals when irradiated with active energy rays such as ultraviolet rays.
  • the photopolymerization initiator include benzophenone, N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, 4,4'-bis (dimethylamino) benzophenone (also referred to as "Michler ketone”), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexylphenylketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4- (4-) Aromatic ketone compounds such as (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propane-1-one,
  • At least one selected from the group consisting of an acylphosphine oxide compound, an aromatic ketone compound, and an oxime ester compound is preferable from the viewpoint of curability, and from the acylphosphine oxide compound and the aromatic ketone compound. At least one selected from the above group is more preferable, and an acylphosphine oxide compound is further preferable.
  • the content of the photopolymerization initiator in the resin composition is preferably, for example, 0.1% by mass to 5% by mass, preferably 0.1% by mass to 3% by mass, based on the total amount of the resin composition. It is more preferably 0.1% by mass to 1.5% by mass.
  • the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the resin composition tends to be sufficient, and when the content of the photopolymerization initiator is 5% by mass or less, the resin The influence on the hue of the composition and the decrease in storage stability tend to be suppressed.
  • the resin composition may further contain a light diffusing material.
  • the light diffusing material include titanium oxide, barium sulfate, zinc oxide, calcium carbonate and the like.
  • titanium oxide is preferable from the viewpoint of light scattering efficiency.
  • the titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide, and is preferably rutile-type titanium oxide.
  • the average particle size of the light diffusing material is preferably 0.1 ⁇ m to 1 ⁇ m, more preferably 0.2 ⁇ m to 0.8 ⁇ m, and even more preferably 0.2 ⁇ m to 0.5 ⁇ m.
  • the average particle size of the light diffusing material can be measured as follows. When the light diffusing material is contained in the resin composition, the extracted light diffusing material is dispersed in purified water containing a surfactant to obtain a dispersion liquid.
  • the value when the integration from the small diameter side is 50% ( The median diameter (D50)) is defined as the average particle size of the light diffusing material.
  • the resin composition can be obtained by diluting the resin composition with a liquid medium, precipitating the light diffusing material by centrifugation or the like, and distributing the light diffusing material.
  • the average particle size of the light diffusing material in the cured product obtained by curing the resin composition containing the light diffusing material is the equivalent circle diameter (major axis) of 50 particles by observing the particles using a scanning electron microscope.
  • the geometric mean of the minor axis) can be calculated and calculated as the arithmetic mean value.
  • the light diffusing material preferably has an organic substance layer containing an organic substance on at least a part of the surface thereof.
  • the organic substances contained in the organic substance layer include organic silane, organosiloxane, fluorosilane, organic phosphonate, organic phosphoric acid compound, organic phosphinate, organic sulfonic acid compound, carboxylic acid, carboxylic acid ester, carboxylic acid derivative, amide, and hydrocarbon.
  • the organic substance contained in the organic substance layer preferably contains a polyol, an organic silane, and the like, and more preferably contains at least one selected from the group consisting of the polyol and the organic silane.
  • organic silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, and hexadecyltriethoxysilane.
  • Examples thereof include silane, heptadecyltriethoxysilane, and octadecyltriethoxysilane.
  • organosiloxane examples include polydimethylsiloxane (PDMS) terminated with a trimethylsilyl group, polymethylhydrosiloxane (PMHS), polysiloxane induced by functionalization of PMHS with an olefin (by hydrosilylation), and the like.
  • organic phosphonates include n-octylphosphonic acid and its ester, n-decylphosphonic acid and its ester, 2-ethylhexylphosphonic acid and its ester, and camphyl phosphonic acid and its ester.
  • organic phosphoric acid compound examples include organic acidic phosphate, organic pyrophosphate, organic polyphosphate, organic metaphosphate, salts thereof and the like.
  • organic phosphinate examples include n-hexylphosphinic acid and its ester, n-octylphosphinic acid and its ester, di-n-hexylphosphinic acid and its ester, and di-n-octylphosphinic acid and its ester. Can be mentioned.
  • organic sulfonic acid compound examples include alkyl sulfonic acids such as hexyl sulfonic acid, octyl sulfonic acid, and 2-ethylhexyl sulfonic acid, these alkyl sulfonic acids, metal ions such as sodium, calcium, magnesium, aluminum, and titanium, and ammonium. Examples thereof include salts with ions and organic ammonium ions such as triethanolamine.
  • carboxylic acid include maleic acid, malonic acid, fumaric acid, benzoic acid, phthalic acid, stearic acid, oleic acid, linoleic acid and the like.
  • carboxylic acid ester examples include the above carboxylic acid, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, pentaerythritol, bisphenol A, hydroquinone, and flo.
  • Specific examples of the amide include stearic acid amide, oleic acid amide, and erucic acid amide.
  • polyolefin and its copolymer examples include a copolymer of polyethylene, polypropylene, ethylene and one or more compounds selected from propylene, butylene, vinyl acetate, acrylate, acrylamide and the like. ..
  • polyol examples include glycerol, trimethylolethane, trimethylolpropane and the like.
  • alkanolamine examples include diethanolamine and triethanolamine.
  • organic dispersant include high molecular weight organic dispersants having functional groups such as citric acid, polyacrylic acid, polymethacrylic acid, anionic, cationic, zwitterionic, and nonionic.
  • the light diffusing material may have a metal oxide layer containing a metal oxide on at least a part of the surface thereof.
  • the metal oxide contained in the metal oxide layer include silicon dioxide, aluminum oxide, zirconia, phosphoria, and boria.
  • the metal oxide layer may be one layer or two or more layers.
  • the light diffusing material has two metal oxide layers, it preferably contains a first metal oxide layer containing silicon dioxide and a second metal oxide layer containing aluminum oxide.
  • the light diffusing material has a metal oxide layer, the dispersibility of the light diffusing material in the cured product tends to be improved.
  • the metal oxide layer and the organic material layer are provided on the surface of the light diffusing material in the order of the metal oxide layer and the organic material layer.
  • the light diffusing material has an organic material layer and two metal oxide layers, a first metal oxide layer containing silicon dioxide and a second metal oxide layer containing aluminum oxide are formed on the surface of the light diffusing material. It is preferable that the organic material layer is provided in the order of the first metal oxide layer, the second metal oxide layer, and the organic material layer (the organic material layer is the outermost layer).
  • the content of the light diffusing material in the wavelength conversion layer formed by curing the resin composition is, for example, 0.1% by mass with respect to the total amount of the wavelength conversion layer. It is preferably ⁇ 1.0% by mass, more preferably 0.2% by mass to 1.0% by mass, and even more preferably 0.3% by mass to 1.0% by mass.
  • the resin composition may further contain a liquid medium.
  • the liquid medium means a medium in a liquid state at 25 ° C.
  • liquid medium examples include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, and the like.
  • Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentandione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl Ether, tetrahydrofuran, methyl tetrahydrofuran, dioxane, dimethyl dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, Diethylene glycol methyl-n-propyl ether, diethylene glycol methyl-n-butyl ether
  • Solvents methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, sec-pentanol, t-pentanol , 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, n-decanol , Se-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, cyclohexanol, methylcyclohexanol,
  • Diethylene glycol mono-n-hexyl ether Diethylene glycol mono-n-hexyl ether, triethylene glycol monoethyl ether, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, etc.
  • Glycol monoether solvent such as terpene solvent such as terpinene, terpineol, milsen, aloosimene, limonene, dipentene, pinene, carboxylic, ossimen, ferlandrene; straight silicone oil such as dimethyl silicone oil, methylphenyl silicone oil, methylhydrogen silicone oil; Amino-modified silicone oil, epoxy-modified silicone oil, cal Boxy-modified silicone oil, carbinol-modified silicone oil, mercapto-modified silicone oil, heterologous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid Modified silicone oils such as modified silicone oils and fluorine-modified silicone oils; butanoic acid, pentanoic acid, hexanoic acid, heptanic acid, octanoic acid,
  • the content of the liquid medium in the resin composition is preferably, for example, 1% by mass to 10% by mass, and 4% by mass, based on the total amount of the resin composition. It is more preferably from 10% by mass to 10% by mass, and even more preferably from 4% by mass to 7% by mass.
  • the resin composition may further contain components other than the above-mentioned components.
  • the resin composition may further contain components such as a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, an antioxidant, and a light stabilizer.
  • a polymerization inhibitor such as a silane coupling agent, a surfactant, an adhesion imparting agent, an antioxidant, and a light stabilizer.
  • the resin composition can be prepared by mixing a phosphor, a polymerizable compound, a photopolymerization initiator, and if necessary, other components by a conventional method.
  • the wavelength conversion layer may be one obtained by curing one kind of resin composition, or may be one obtained by curing two or more kinds of resin compositions.
  • the wavelength conversion layer has different emission characteristics from the first cured product layer obtained by curing the resin composition containing the first phosphor and the first phosphor.
  • a second cured product layer obtained by curing the resin composition containing the second phosphor may be laminated.
  • the average thickness of the wavelength conversion layer is not particularly limited, and is preferably, for example, 50 ⁇ m to 200 ⁇ m, more preferably 50 ⁇ m to 150 ⁇ m, and even more preferably 80 ⁇ m to 120 ⁇ m.
  • the average thickness of the wavelength conversion layer is 50 ⁇ m or more, the wavelength conversion efficiency tends to be further improved, and when the average thickness of the wavelength conversion layer is 200 ⁇ m or less, when the wavelength conversion member is applied to the backlight unit described later. In addition, there is a tendency that the backlight unit can be made thinner.
  • the average thickness of the wavelength conversion layer is obtained as, for example, an arithmetic mean value of the thicknesses of any three points measured using a micrometer.
  • the wavelength conversion layer can be obtained, for example, by forming a coating film, a molded product, or the like of a resin composition, performing a drying treatment as necessary, and then irradiating with active energy rays such as ultraviolet rays.
  • the wavelength and irradiation amount of the active energy rays can be appropriately set according to the composition of the resin composition. In one aspect, it is irradiated with ultraviolet rays having a wavelength of 280 nm ⁇ 400 nm at an irradiation amount of 100mJ / cm 2 ⁇ 5000mJ / cm 2.
  • Examples of the ultraviolet source include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and the like.
  • the coating material is arranged on one main surface of the wavelength conversion layer or on both main surfaces.
  • the "main surface” of the wavelength conversion layer represents two facing surfaces having the largest area of the wavelength conversion layer.
  • the “side surface” of the wavelength conversion layer represents a surface other than the main surface of the wavelength conversion layer. The same applies to layers other than the wavelength conversion layer included in the wavelength conversion member.
  • the “main surface” and the “side surface” may be flat or have a curved surface.
  • the covering material is preferably placed on both main surfaces of the wavelength conversion layer.
  • the material of the covering material is not particularly limited, and polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin such as polyethylene (PE) and polypropylene (PP); polyamide such as nylon; ethylene-vinyl alcohol co-weight. It may be coalescence (EVOH) or the like. From the viewpoint of availability, the material of the coating material is preferably at least one selected from the group consisting of polyethylene terephthalate and polypropylene.
  • the coating material preferably has a barrier property against at least one selected from the group consisting of oxygen and water, and more preferably has a barrier property against both oxygen and water, from the viewpoint of suppressing a decrease in the luminous efficiency of the phosphor. preferable.
  • the coating material having a barrier property against at least one selected from the group consisting of oxygen and water is not particularly limited, and examples thereof include a barrier film having a base material layer and an inorganic layer.
  • the base material layer include a base material layer formed from the above-mentioned materials.
  • Examples of the inorganic substance forming the inorganic layer include silica and alumina.
  • the method for producing the barrier film having the base material layer and the inorganic layer is not particularly limited, and examples thereof include a method of depositing an inorganic substance on one side or both sides of the base material layer.
  • the coating material is a barrier film having a base material layer and an inorganic layer
  • the method of arranging the coating material and the wavelength conversion layer in the wavelength conversion member is not particularly limited, and the inorganic layer is arranged so as to face the wavelength conversion member. Is preferable. That is, it is preferable that the inorganic layer is arranged between the base material layer and the wavelength conversion layer. As a result, the barrier function tends to be suitably exhibited.
  • Oxygen permeability of the dressing is preferably 1.0mL / (m 2 ⁇ 24h ⁇ atm) or less, more preferably 0.8mL / (m 2 ⁇ 24h ⁇ atm) or less, 0 and more preferably .6mL / (m 2 ⁇ 24h ⁇ atm) or less.
  • the oxygen permeability of the coating material can be measured using an oxygen permeability measuring device (for example, MOCON, OX-TRAN) under the conditions of a temperature of 23 ° C. and a relative humidity of 90%.
  • the water vapor permeability of the dressing for example, more that that 1 ⁇ 10 is 0 g / (m 2 ⁇ 24h ) or less preferably, 8 ⁇ 10 -1 g / ( m 2 ⁇ 24h) or less preferably, and more preferably 6 ⁇ 10 -1 g / (m 2 ⁇ 24h) or less.
  • the water vapor permeability of the coating material can be measured using a water vapor permeability measuring device (for example, MOCON, AQUATRAN) under the conditions of a temperature of 40 ° C. and a relative humidity of 100%.
  • the covering material is preferably in the form of a sheet.
  • the average thickness of the covering material is, for example, preferably 10 ⁇ m to 200 ⁇ m, more preferably 12 ⁇ m to 170 ⁇ m, and even more preferably 15 ⁇ m to 150 ⁇ m.
  • the average thickness of the covering material is obtained as, for example, an arithmetic mean value of the thicknesses of any three points measured using a micrometer.
  • the protective layer includes a metal oxide layer and a resin layer, and is arranged on the side surface of the wavelength conversion layer. Since the metal oxide is denser than the metal and is chemically stable, it is possible to satisfactorily exert the effect of suppressing the decrease in brightness at the end portion. Further, when the protective layer contains the resin layer, the decrease in brightness at the end portion of the wavelength conversion member tends to be suppressed more satisfactorily. The reason for this is not always clear, but the introduction of the resin layer alleviates the difference in the coefficient of thermal expansion between the protective layer and the wavelength conversion layer, and the expansion or contraction of the wavelength conversion member with temperature changes causes the barrier property of the metal oxide layer. It is presumed that this is because the decrease in is suppressed.
  • metal oxide contained in the metal oxide layer examples include silica, alumina, niobium oxide, cerium oxide, and titanium oxide.
  • One type of metal oxide may be used alone, or two or more types may be used in combination. Of these, it is preferable to use silica and alumina together.
  • Examples of the resin forming the resin layer include acrylic resin, urethane resin, thiol resin, fluorine resin and the like, and among them, acrylic resin is preferable.
  • examples of the acrylic resin include poly (meth) acrylic acid ester and a copolymer of (meth) acrylic acid ester and other components.
  • examples of the acrylic resin include polymethylmethacrylate (PMMA).
  • PMMA polymethylmethacrylate
  • the protective layer may be, for example, a protective layer formed by forming a metal oxide layer on a base material which is a resin layer.
  • the method for forming the metal oxide is not particularly limited, and examples thereof include an atomic layer deposition method, sputtering, a chemical vapor deposition method (CVD), a physical vapor deposition method (PVD), and a molecular beam epitaxy method (MBE).
  • CVD chemical vapor deposition method
  • PVD physical vapor deposition method
  • MBE molecular beam epitaxy method
  • the room temperature atomic layer deposition method is useful. According to the room temperature atomic layer deposition method, it is possible to better suppress the decrease in brightness at the end without deteriorating the phosphor due to heat.
  • the protective layer may include a layer other than the metal oxide layer and the resin layer.
  • the protective layer includes a metal oxide layer and a resin layer, and the metal oxide layer and the resin layer are adjacent to each other. Is preferable.
  • the protective layer may be composed of a metal oxide layer and a resin layer (that is, includes only the metal oxide and the resin layer) and may not include other layers.
  • the protective layer may be arranged on at least a part of the side surface of the wavelength conversion layer, may be arranged on the entire side surface of the wavelength conversion layer, or may be further arranged on the side surface of the wavelength conversion layer.
  • the protective layer may be arranged on a part or the whole of the side surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer.
  • the protective layer may cover the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer.
  • the outer peripheral surface of the layered member represents a surface including the main surface and the side surface of the layered member.
  • the metal oxide layer contained in the protective layer covers the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer.
  • the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer coated on the resin layer may be coated.
  • the metal oxide layer may be arranged outside the resin layer on the side surface of the wavelength conversion layer. Therefore, on the side surface of the wavelength conversion layer, the resin layer and the metal oxide layer may be arranged in this order from the wavelength conversion layer side. On the contrary, on the side surface of the wavelength conversion layer, the resin layer may be arranged outside the metal oxide layer. Therefore, on the side surface of the wavelength conversion layer, the metal oxide layer and the resin layer may be arranged in this order from the wavelength conversion layer side.
  • the metal oxide layer may form the outermost layer or the resin layer may form the outermost surface on the side surface of the wavelength conversion layer.
  • the average thickness of the protective layer is not particularly limited.
  • the average thickness of the protective layer is preferably 5 nm to 500 nm, more preferably 10 nm to 300 nm, further preferably 20 nm to 100 nm, and particularly preferably 30 nm to 90 nm.
  • the average thickness of the protective layer is 5 nm or more, the decrease in brightness tends to be suppressed more satisfactorily.
  • the average thickness of the protective layer is 500 nm or less, the manufacturing cost tends to be suppressed.
  • the thickness of the metal oxide layer in the protective layer (when the metal oxide layer contains a plurality of metal oxides, the total thickness of the metal oxide layers formed by the plurality of metal oxides) is 0. It is preferably 1 nm to 100 nm, more preferably 0.5 nm to 50 nm, and even more preferably 1 nm to 40 nm.
  • the thickness of the metal oxide layer is 0.1 nm or more, sufficient barrier properties tend to be obtained, and when the thickness of the metal oxide layer is 100 nm or less, the production cost tends to be suppressed.
  • the silica layer when the protective layer contains a silica layer and an alumina layer, is preferably 0.1 nm to 40 nm, more preferably 0.2 nm to 30 nm, and further preferably 0.3 nm to 20 nm.
  • An alumina layer of preferably 0.1 nm to 40 nm, more preferably 0.2 nm to 30 nm, still more preferably 0.3 nm to 20 nm may be contained.
  • the thickness of the resin layer is preferably 4.9 nm to 499.9 nm, more preferably 9.5 nm to 299.5 nm, further preferably 19 nm to 199.5 nm, and 30 nm to 100 nm. Is particularly preferred.
  • the average thickness of the protective layer and the average thickness of each layer in the protective layer are obtained as the arithmetic mean value of the thicknesses of any three points measured by energy dispersive X-ray analysis.
  • wavelength conversion member having the protective layer will be described with reference to the drawings, but the wavelength conversion member according to the present embodiment is not limited to the mode shown in the drawings.
  • a protective layer 15 including a metal oxide layer 13 and a resin layer 14 is arranged on a side surface of a laminate in which coating materials 12A and 12B are arranged on both main surfaces of the wavelength conversion layer 11.
  • An example of the wavelength conversion member 10 is shown.
  • the metal oxide layer 13 is arranged inside and the resin layer 14 is arranged outside, but the resin layer 14 is arranged inside and the metal oxide layer 13 is arranged outside. You may.
  • the former configuration in which the metal oxide layer 13 is arranged inside and the resin layer 14 is arranged outside is adopted, there is a tendency that the decrease in brightness at the end portion of the wavelength conversion member 10 can be suppressed more satisfactorily.
  • the metal oxide layer 13 is suitably protected by the resin layer and the physical or chemical deterioration of the metal oxide is suitably suppressed.
  • the resin layer 14 is arranged inside and the metal oxide layer 13 is arranged outside
  • the moisture and heat resistance tends to be further improved.
  • the reason for this is not clear, since the resin layer 14 is arranged inside, the strain in a high temperature environment due to the difference in the coefficient of linear expansion between the metal oxide layer 13 and the wavelength conversion member 10 can be relaxed. It is presumed that this is because the deterioration of the metal oxide layer 13 is suppressed.
  • the outer peripheral surface of the laminate in which the coating materials 12A and 12B are arranged on both main surfaces of the wavelength conversion layer 11 is covered with the protective layer 15 including the metal oxide layer 13 and the resin layer 14.
  • An example of a wavelength conversion member is shown.
  • the metal oxide layer 13 is arranged inside and the resin layer 14 is arranged outside, but the resin layer 14 is arranged inside and the metal oxide layer 13 is arranged outside. You may.
  • the former configuration in which the metal oxide layer 13 is arranged inside and the resin layer 14 is arranged outside is adopted, there is a tendency that the decrease in brightness at the end portion can be suppressed more satisfactorily.
  • the metal oxide layer 13 is suitably protected by the resin layer and the physical or chemical deterioration of the metal oxide is suitably suppressed.
  • the moisture and heat resistance tends to be further improved.
  • the resin layer 14 is arranged inside, the strain in a high temperature environment due to the difference in the coefficient of linear expansion between the metal oxide layer 13 and the wavelength conversion member 10 can be relaxed. It is presumed that this is because the deterioration of the metal oxide layer 13 is suppressed.
  • the metal oxide layer is formed by the atomic layer deposition method, as shown in FIG. 2, it is possible to relatively easily form a structure in which the outer peripheral surface of the laminate is covered with the metal oxide layer 13. ..
  • the types and average thicknesses of the coating material 12A and the coating material 12B may be the same or different, respectively.
  • a wavelength conversion layer containing a phosphor and a coating material arranged on one main surface or both main surfaces of the wavelength conversion layer are provided.
  • a step of forming a protective layer including a metal oxide layer and a resin layer on the side surface of the laminated body is included. The above-mentioned contents can be applied to the details of the wavelength conversion member.
  • the step of forming the protective layer may include a step of forming the metal oxide layer and a step of forming the resin layer in any order.
  • the step of forming the protective layer may include a step of forming the metal oxide layer and a step of forming the resin layer in this order.
  • the metal oxide layer formed so as to cover the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer? Or, it may be formed so as to cover the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer coated on the resin layer. .. In a further aspect, the protective layer may be formed to cover the outer peripheral surface of the laminate.
  • the wavelength conversion member of this embodiment can be manufactured by, for example, the following manufacturing method.
  • first coating material a film-like coating material
  • the method of applying the resin composition is not particularly limited, and examples thereof include a die coating method, a curtain coating method, an extrusion coating method, a rod coating method, and a roll coating method.
  • a film-like coating material (hereinafter, also referred to as “second coating material”) that is continuously conveyed is attached onto the coating film of the resin composition.
  • the coating film is cured and a cured product layer is formed by irradiating the active energy rays from the side of the first coating material and the second coating material that can transmit the active energy rays. If neither the first coating material nor the second coating material can transmit the active energy rays, the coating film is irradiated with the active energy rays before the second coating material is bonded, and the cured product layer is formed. May be formed. Then, by cutting out to a desired size, a laminate of the first coating material, the cured product layer, and the second coating material can be produced.
  • a protective layer including a metal oxide layer and a resin layer is formed on the side surface of the laminate produced as described above.
  • the method of forming the protective layer is not particularly limited.
  • a metal oxide layer is formed on the side surface or the outer peripheral surface of the laminate, and then a resin composition for forming a resin layer is applied to the outer peripheral surface of the metal oxide layer, and the resin composition is dried or cured as necessary.
  • the resin layer may be formed by this. Further, the resin layer may be formed on the side surface or the outer peripheral surface of the laminate first, and then the metal oxide layer may be coated on the outer peripheral surface of the resin layer.
  • Examples of the method for forming the metal oxide layer include an atomic layer deposition method, sputtering, a chemical vapor deposition method (CVD), a physical vapor deposition method (PVD), and a molecular beam epitaxy method (MBE).
  • Examples of the method for applying the resin composition for forming the resin layer include the methods exemplified as the above-mentioned method for applying the resin composition for forming the wavelength conversion layer.
  • the backlight unit includes the above-mentioned wavelength conversion member and a light source.
  • the backlight unit is preferably a multi-wavelength light source from the viewpoint of improving color reproducibility.
  • blue light having an emission center wavelength in the wavelength range of 430 nm to 480 nm and having an emission intensity peak having a half-value width of 100 nm or less, and emission center wavelength in the wavelength range of 520 nm to 560 nm.
  • the light unit can be mentioned.
  • the half-value width of the emission intensity peak means the peak width at a height of 1/2 of the peak height.
  • the emission center wavelength of the blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm.
  • the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm.
  • the emission center wavelength of the red light emitted by the backlight unit is preferably in the range of 610 nm to 640 nm.
  • the half-value width of each emission intensity peak of the blue light, green light, and red light emitted by the backlight unit is preferably 80 nm or less, preferably 50 nm or less. It is more preferably 40 nm or less, particularly preferably 30 nm or less, and extremely preferably 25 nm or less.
  • the light source of the backlight unit for example, a light source that emits blue light having a emission center wavelength in the wavelength range of 430 nm to 480 nm can be used.
  • the light source include an LED (Light Emitting Diode) and a laser.
  • the wavelength conversion member preferably includes at least a quantum dot phosphor R that emits red light and a quantum dot phosphor G that emits green light.
  • white light can be obtained from the red light and green light emitted from the wavelength conversion member and the blue light transmitted through the wavelength conversion member.
  • the light source of the backlight unit for example, a light source that emits ultraviolet light having a emission center wavelength in the wavelength range of 300 nm to 430 nm can be used.
  • the light source include LEDs and lasers.
  • the wavelength conversion member preferably includes a quantum dot phosphor B that is excited by excitation light and emits blue light, together with a quantum dot phosphor R and a quantum dot phosphor G. As a result, white light can be obtained from the red light, green light, and blue light emitted from the wavelength conversion member.
  • the backlight unit of the present embodiment may be an edge light type or a direct type.
  • FIG. 3 shows an example of a schematic configuration of an edge light type backlight unit.
  • the backlight unit 20 shown in FIG. 3 includes a light source 21 for emitting the blue light L B, a light guide plate 22 to be emitted guiding the blue light L B emitted from the light source 21, the light guide plate 22 and disposed to face
  • Wavelength conversion member 10 emits the red light L R and the green light L G part of the blue light L B as the excitation light, the red light L and R and the green light L G, the blue light was not the excitation light L B and are emitted.
  • the red light L R, the green light L G, and the blue light L B, the white light L W is emitted from the retroreflective member 23.
  • the image display device includes the backlight unit described above.
  • the image display device is not particularly limited, and examples thereof include a liquid crystal display device such as a television, a personal computer, and a mobile phone.
  • FIG. 4 shows an example of the schematic configuration of the liquid crystal display device.
  • the liquid crystal display device 30 shown in FIG. 4 includes a backlight unit 20 and a liquid crystal cell unit 31 arranged to face the backlight unit 20.
  • the liquid crystal cell unit 31 has a configuration in which the liquid crystal cell 32 is arranged between the polarizing plate 33A and the polarizing plate 33B.
  • the drive method of the liquid crystal cell 32 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, a VA (Vertical Birefringence) method, an IPS (In-Plane-Switching) method, and an OCB (Optical Birefringence) method.
  • TN Transmission Nematic
  • STN Super Twisted Nematic
  • VA Very Birefringence
  • IPS In-Plane-Switching
  • OCB Optical Birefringence
  • Example 1 [Manufacturing of wavelength conversion member] The materials shown below were mixed to prepare a resin composition.
  • Tricyclodecanedimethanol diacrylate (manufactured by Sartmer) -Pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by Evans Chemetics) -Titanium oxide powder (trade name: R-706, manufactured by The Chemours Company) -4-Hydroxy-2,2,6,6-tetramethylpiperidin-N-oxyl (trade name: LA-7RD, manufactured by ADEKA CORPORATION) ⁇ 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (trade name: TPO, manufactured by BASF Japan Ltd.) -Quantum dot dispersion (green, manufactured by Nanosys, Inc.) and quantum dot dispersion (red, manufactured by Nanosys, Inc.)
  • the obtained resin composition was applied as a coating material to the anti-matte surface of a barrier film having a thickness of 72 ⁇ m to form a coating film.
  • the same coating material as above was placed on this coating film.
  • ultraviolet rays were irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.) (irradiation amount: 1000 mJ / cm 2 ) to cure the resin composition, and coating materials were arranged on both sides of the wavelength conversion layer.
  • the wavelength conversion member of was manufactured.
  • Each wavelength conversion member obtained above was cut into a circular dimension having a diameter of 20 mm to prepare a measurement sample.
  • the obtained circular measurement sample having a diameter of 20 mm was placed on the rotating part of the spin coating device and fixed by operating the vacuum pump. 1 mL of the polymer solution was added dropwise while rotating the measurement sample at a rate of 800 rpm.
  • the polymer solution was prepared by the following method. Polymethylmethacrylate (PMMA, Tokyo Chemical Industry Co., Ltd.) in a solvent prepared by mixing acetone (manufactured by Tokyo Chemical Industry Co., Ltd.) and p-xylene (manufactured by Tokyo Chemical Industry Co., Ltd.) so as to have a mass ratio of 5: 1.
  • a polymer-coated measurement sample was placed in a vacuum chamber and evacuated with an oil rotary pump and a turbo molecular pump until the degree of vacuum reached 2 ⁇ 10 -3 Pa. At this time, the chamber was not heated in particular, and all were carried out in a room temperature environment. After introducing trimethylaluminum (TMA) into the vacuum chamber, the inside of the system was once exhausted. By this operation, a molecular layer of TMA was deposited on the entire surface and edges of the measurement sample. Subsequently, a mixed gas of water vapor and argon was introduced to oxidize the molecular layer of TMA to form an aluminum layer. By repeating these operations, an atomic layer of aluminum was deposited on the measurement sample and repeated until a predetermined thickness was reached.
  • TMA trimethylaluminum
  • ⁇ Comparative example 1> [Manufacturing of wavelength conversion member] The materials shown below were mixed to prepare a resin composition.
  • Tricyclodecanedimethanol diacrylate (manufactured by Sartmer) -Pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by Evans Chemetics) -Titanium oxide powder (trade name: R-706, manufactured by The Chemours Company) -4-Hydroxy-2,2,6,6-tetramethylpiperidin-N-oxyl (trade name: LA-7RD, manufactured by ADEKA CORPORATION) ⁇ 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (trade name: TPO, manufactured by BASF Japan Ltd.) -Quantum dot dispersion (green, manufactured by Nanosys, Inc.) and quantum dot dispersion (red, manufactured by Nanosys, Inc.)
  • the obtained resin composition was applied as a coating material to the anti-matte surface of a barrier film having a thickness of 72 ⁇ m to form a coating film.
  • the same coating material as above was placed on this coating film.
  • ultraviolet rays were irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.) (irradiation amount: 1000 mJ / cm 2 ) to cure the resin composition, and coating materials were arranged on both sides of the wavelength conversion layer.
  • the wavelength conversion member of was manufactured.
  • Each wavelength conversion member obtained above was cut into a circle with a diameter of 20 mm to prepare a measurement sample.
  • the measurement sample was placed in a vacuum chamber and evacuated with an oil rotary pump and a turbo molecular pump until the degree of vacuum reached 2 ⁇ 10 -3 Pa. At this time, the chamber was not heated in particular, and all were carried out in a room temperature environment. After introducing trimethylaluminum (TMA) into the vacuum chamber, the inside of the system was once exhausted. By this operation, a molecular layer of TMA was deposited on the entire surface and edges of the measurement sample. Subsequently, a mixed gas of water vapor and argon was introduced to oxidize the molecular layer of TMA to form an aluminum layer. By repeating these operations, an atomic layer of aluminum was deposited on the measurement sample and repeated until a predetermined thickness was reached.
  • TMA trimethylaluminum
  • ⁇ Comparative example 2> [Manufacturing of wavelength conversion member] The materials shown below were mixed to prepare a resin composition.
  • Tricyclodecanedimethanol diacrylate (manufactured by Sartmer) -Pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by Evans Chemetics) -Titanium oxide powder (trade name: R-706, manufactured by The Chemours Company) -4-Hydroxy-2,2,6,6-tetramethylpiperidin-N-oxyl (trade name: LA-7RD, manufactured by ADEKA CORPORATION) ⁇ 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (trade name: TPO, manufactured by BASF Japan Ltd.) -Quantum dot dispersion (green, manufactured by Nanosys, Inc.) and quantum dot dispersion (red, manufactured by Nanosys, Inc.)
  • the presence of the metal oxide ALD layer and buffer layer suppressed the progress of edge deterioration and achieved a high brightness maintenance rate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)

Abstract

This wavelength converting member comprises: a wavelength converting layer including a fluorescent material; a covering material disposed on one or both main surfaces of the wavelength converting layer; and a protective layer which is disposed on the side surface of the wavelength converting layer and which includes a metal oxide layer and a resin layer.

Description

波長変換部材及びその製造方法、バックライトユニット、並びに画像表示装置Wavelength conversion member and its manufacturing method, backlight unit, and image display device
 本開示は、波長変換部材及びその製造方法、バックライトユニット、並びに画像表示装置に関する。 The present disclosure relates to a wavelength conversion member and its manufacturing method, a backlight unit, and an image display device.
 液晶表示装置等の画像表示装置には、バックライトユニットが設けられる。バックライトユニットは、光源からの光で発光する蛍光体を含む波長変換部材を備える。例えば、赤色光を発光する量子ドット蛍光体及び緑色光を発光する量子ドット蛍光体を含む波長変換部材を用いる場合、波長変換部材に対して励起光としての青色光を照射すると、量子ドット蛍光体から発光された赤色光及び緑色光と、波長変換部材を透過した青色光と、により、白色光を得ることができる。  A backlight unit is provided in an image display device such as a liquid crystal display device. The backlight unit includes a wavelength conversion member including a phosphor that emits light from a light source. For example, when a wavelength conversion member including a quantum dot phosphor that emits red light and a quantum dot phosphor that emits green light is used, when the wavelength conversion member is irradiated with blue light as excitation light, the quantum dot phosphor White light can be obtained from the red light and green light emitted from the light and the blue light transmitted through the wavelength conversion member.
 蛍光体を含む波長変換部材は、通常、蛍光体を含む硬化性組成物を硬化させた硬化物を有する。また、蛍光体を含む波長変換部材では、蛍光体を含む硬化物の少なくとも一部が被覆材によって被覆される場合がある。例えば、フィルム状の波長変換部材の場合、蛍光体を含む硬化物の片面又は両面に、酸素に対するバリア性を有するバリアフィルムが設けられることがある。 The wavelength conversion member containing a phosphor usually has a cured product obtained by curing a curable composition containing a phosphor. Further, in the wavelength conversion member containing a phosphor, at least a part of the cured product containing the phosphor may be covered with a coating material. For example, in the case of a film-shaped wavelength conversion member, a barrier film having a barrier property against oxygen may be provided on one side or both sides of the cured product containing a phosphor.
 一方、蛍光体を含む硬化物の片面又は両面にバリアフィルムを設けた場合であっても、バリアフィルムで保護されていない側面から酸素が入り込み、波長変換部材の端部における輝度低下等の原因となることがあった。端面からの酸素等の侵入による蛍光体の劣化を抑制する方法として、特許文献1では、ガスバリア層を備える波長変換層の端面を覆う端面封止層を備え、当該端面封止層が第1の金属層、樹脂層及び第2の金属層をこの順で含む波長変換積層フィルムが提案されている。 On the other hand, even when the barrier film is provided on one side or both sides of the cured product containing the phosphor, oxygen enters from the side surface not protected by the barrier film, which causes a decrease in brightness at the end of the wavelength conversion member. It happened to be. As a method of suppressing deterioration of the phosphor due to the intrusion of oxygen or the like from the end face, Patent Document 1 includes an end face sealing layer covering the end face of the wavelength conversion layer including the gas barrier layer, and the end face sealing layer is the first. A wavelength conversion laminated film containing a metal layer, a resin layer, and a second metal layer in this order has been proposed.
特開2017-78773号公報JP-A-2017-78773
 しかしながら、特許文献1に記載の波長変換積層フィルムでは、波長変換層の端部における金属のスパッタリング、樹脂層形成、及び無電解メッキ等の工程を要し、煩雑である。かかる状況に鑑み、別の新規な構成により波長変換部材の端部における蛍光体の劣化を抑制する方法が探索された。 However, the wavelength conversion laminated film described in Patent Document 1 requires steps such as metal sputtering, resin layer formation, and electroless plating at the end of the wavelength conversion layer, which is complicated. In view of this situation, a method of suppressing deterioration of the phosphor at the end of the wavelength conversion member by another novel configuration has been searched for.
 本開示は、端部における輝度低下を抑制することが可能な新規の波長変換部材及びその製造方法、並びに当該波長変換部材を用いたバックライトユニット及び画像表示装置を提供することを課題とする。 An object of the present disclosure is to provide a novel wavelength conversion member capable of suppressing a decrease in brightness at an end, a method for manufacturing the same, and a backlight unit and an image display device using the wavelength conversion member.
 上記課題を解決するための手段は、以下の態様を含む。
<1> 蛍光体を含む波長変換層と、
 前記波長変換層の一方の主面上又は両方の主面上に配置される被覆材と、
 前記波長変換層の側面に配置される、金属酸化物層及び樹脂層を含む保護層と、
を有する波長変換部材。
<2> 前記波長変換層の側面において、前記樹脂層は前記金属酸化物層よりも外側に配置されている、<1>に記載の波長変換部材。
<3> 前記波長変換層の側面において、前記樹脂層は最外面を形成している、<1>又は<2>に記載の波長変換部材。
<4> 前記樹脂層が、ポリ(メタ)アクリル酸エステルを含む、<1>~<3>のいずれか1項に記載の波長変換部材。
<5> 前記保護層が、前記波長変換層の一方の主面上又は両方の主面上に前記被覆材が配置されてなる積層体の外周面を被覆している、<1>~<4>のいずれか1項に記載の波長変換部材。
<6> <1>~<5>のいずれか1項に記載の波長変換部材と、光源と、を備えるバックライトユニット。
<7> <6>に記載のバックライトユニットを備える画像表示装置。
<8> 蛍光体を含む波長変換層と、前記波長変換層の一方の主面上又は両方の主面上に配置される被覆材と、を有する積層体の側面に、金属酸化物層及び樹脂層を含む保護層を形成する工程を含む、波長変換部材の製造方法。
<9> 前記金属酸化物層は原子層堆積法により形成される、<8>に記載の波長変換部材の製造方法。
<10> 前記保護層を形成する工程が、前記金属酸化物層を形成する工程と、前記樹脂層を形成する工程と、をこの順番で含む、<8>又は<9>に記載の波長変換部材の製造方法。
<11> 前記樹脂層が、ポリ(メタ)アクリル酸エステルを含む、<8>~<10>のいずれか1項に記載の波長変換部材の製造方法。
<12> 前記保護層が、前記積層体の外周面を被覆するように形成される、<8>~<11>のいずれか1項に記載の波長変換部材の製造方法。
Means for solving the above problems include the following aspects.
<1> A wavelength conversion layer containing a phosphor and
A coating material arranged on one main surface or both main surfaces of the wavelength conversion layer,
A protective layer including a metal oxide layer and a resin layer arranged on the side surface of the wavelength conversion layer, and
Wavelength conversion member having.
<2> The wavelength conversion member according to <1>, wherein the resin layer is arranged outside the metal oxide layer on the side surface of the wavelength conversion layer.
<3> The wavelength conversion member according to <1> or <2>, wherein the resin layer forms the outermost surface on the side surface of the wavelength conversion layer.
<4> The wavelength conversion member according to any one of <1> to <3>, wherein the resin layer contains a poly (meth) acrylic acid ester.
<5> The protective layer covers the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer, <1> to <4. > The wavelength conversion member according to any one of the items.
<6> A backlight unit including the wavelength conversion member according to any one of <1> to <5> and a light source.
<7> An image display device including the backlight unit according to <6>.
<8> A metal oxide layer and a resin are formed on the side surfaces of a laminate having a wavelength conversion layer containing a phosphor and a coating material arranged on one main surface or both main surfaces of the wavelength conversion layer. A method for manufacturing a wavelength conversion member, which comprises a step of forming a protective layer including a layer.
<9> The method for manufacturing a wavelength conversion member according to <8>, wherein the metal oxide layer is formed by an atomic layer deposition method.
<10> The wavelength conversion according to <8> or <9>, wherein the step of forming the protective layer includes a step of forming the metal oxide layer and a step of forming the resin layer in this order. Manufacturing method of parts.
<11> The method for producing a wavelength conversion member according to any one of <8> to <10>, wherein the resin layer contains a poly (meth) acrylic acid ester.
<12> The method for manufacturing a wavelength conversion member according to any one of <8> to <11>, wherein the protective layer is formed so as to cover the outer peripheral surface of the laminated body.
 本開示によれば、端部における輝度低下を抑制することが可能な新規の波長変換部材及びその製造方法、並びに当該波長変換部材を用いたバックライトユニット及び画像表示装置が提供される。 According to the present disclosure, a novel wavelength conversion member capable of suppressing a decrease in brightness at an end portion and a method for manufacturing the same, and a backlight unit and an image display device using the wavelength conversion member are provided.
波長変換部材の概略構成の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the schematic structure of the wavelength conversion member. 波長変換部材の概略構成の一例を示す模式断面図である。It is a schematic cross-sectional view which shows an example of the schematic structure of the wavelength conversion member. バックライトユニットの概略構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the backlight unit. 液晶表示装置の概略構成の一例を示す図である。It is a figure which shows an example of the schematic structure of the liquid crystal display device.
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。 Hereinafter, a mode for carrying out the present invention will be described in detail. However, the present invention is not limited to the following embodiments. In the following embodiments, the components (including element steps and the like) are not essential unless otherwise specified. The same applies to the numerical values and their ranges, and does not limit the present invention.
 本開示において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「層」又は「膜」との語には、当該層又は膜が存在する領域を観察したときに、当該領域の全体に形成されている場合に加え、当該領域の一部にのみ形成されている場合も含まれる。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において「(メタ)アクリロイル」はアクリロイル及びメタクリロイルの少なくとも一方を意味し、「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を意味し、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を意味し、「(メタ)アリル」はアリル及びメタリルの少なくとも一方を表す。
 本開示において実施形態を図面を参照して説明する場合、当該実施形態の構成は図面に示された構成に限定されない。また、各図における部材の大きさは概念的なものであり、部材間の大きさの相対的な関係はこれに限定されない。また、各図面において、実質的に同じ機能を有する部材には、全図面同じ符号を付与し、重複する説明は省略する場合がある。
In the present disclosure, the term "process" includes not only a process independent of other processes but also the process if the purpose of the process is achieved even if the process cannot be clearly distinguished from the other process. ..
The numerical range indicated by using "-" in the present disclosure includes the numerical values before and after "-" as the minimum value and the maximum value, respectively.
In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. .. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, each component may contain a plurality of applicable substances. When a plurality of substances corresponding to each component are present in the composition, the content or content of each component is the total content or content of the plurality of substances present in the composition unless otherwise specified. Means quantity.
In the present disclosure, a plurality of types of particles corresponding to each component may be contained. When a plurality of particles corresponding to each component are present in the composition, the particle size of each component means a value for a mixture of the plurality of particles present in the composition unless otherwise specified.
In the present disclosure, the term "layer" or "membrane" refers to only a part of the region, in addition to the case where the layer or the membrane is formed in the entire region when the region where the layer or the membrane exists is observed. The case where it is formed is also included.
In the present disclosure, the term "laminated" refers to stacking layers, and two or more layers may be bonded or the two or more layers may be removable.
In the present disclosure, "(meth) acryloyl" means at least one of acryloyl and methacrylic, "(meth) acrylic" means at least one of acrylic and methacrylic, and "(meth) acrylate" means at least one of acrylate and methacrylate. Means, "(meth) allyl" represents at least one of allyl and methacrylic.
When the embodiment is described in the present disclosure with reference to the drawings, the configuration of the embodiment is not limited to the configuration shown in the drawings. Further, the size of the members in each figure is conceptual, and the relative relationship between the sizes of the members is not limited to this. Further, in each drawing, members having substantially the same function may be given the same reference numerals in all drawings, and duplicate description may be omitted.
≪波長変換部材≫
 本開示の一実施形態に係る波長変換部材は、蛍光体を含む波長変換層と、前記波長変換層の一方の主面上又は両方の主面上に配置される被覆材と、前記波長変換層の側面に配置される、金属酸化物層及び樹脂層を含む保護層と、を有する。本実施形態の波長変換部材は、波長変換層の側面が保護層により保護されているため、端部における輝度低下を抑制することが可能である。また、一態様においては、本実施形態の波長変換部材は耐湿熱性にも優れる傾向にある。以下、波長変換部材に含まれる必須又は任意の各部材について詳述する。
≪Wavelength conversion member≫
The wavelength conversion member according to the embodiment of the present disclosure includes a wavelength conversion layer containing a phosphor, a coating material arranged on one main surface or both main surfaces of the wavelength conversion layer, and the wavelength conversion layer. It has a protective layer including a metal oxide layer and a resin layer, which is arranged on the side surface of the above. In the wavelength conversion member of the present embodiment, since the side surface of the wavelength conversion layer is protected by the protective layer, it is possible to suppress a decrease in brightness at the end portion. Further, in one aspect, the wavelength conversion member of the present embodiment tends to be excellent in moisture and heat resistance. Hereinafter, each essential or optional member included in the wavelength conversion member will be described in detail.
<波長変換層>
 波長変換層は、蛍光体を含む。波長変換層は、樹脂硬化物をさらに含んでもよく、蛍光体が樹脂硬化物に含まれた(内包された)状態であってもよい。また、波長変換層は光拡散材をさらに含んでもよい。
<Wavelength conversion layer>
The wavelength conversion layer contains a phosphor. The wavelength conversion layer may further contain a cured resin product, or may have a phosphor contained (encapsulated) in the cured resin product. Further, the wavelength conversion layer may further contain a light diffusing material.
〔蛍光体〕
 波長変換層は、光源から光を照射されることで発光する蛍光体を含む。蛍光体の種類は特に限定されるものではなく、例えば、有機蛍光体及び無機蛍光体を挙げることができる。
 有機蛍光体としては、ナフタルイミド化合物、ペリレン化合物等が挙げられる。
 無機蛍光体としては、Y:Eu、YVO:Eu、Y:Eu、3.5MgO・0.5MgF、GeO:Mn、(Y・Cd)BO:Eu等の赤色発光無機蛍光体、ZnS:Cu・Al、(Zn・Cd)S:Cu・Al、ZnS:Cu・Au・Al、ZnSiO:Mn、ZnSiO:Mn、ZnS:Ag・Cu、(Zn・Cd)S:Cu、ZnS:Cu、GdOS:Tb、LaOS:Tb、YSiO:Ce・Tb、ZnGeO:Mn、GeMgAlO:Tb、SrGaS:Eu2+、ZnS:Cu・Co、MgO・nB:Ge・Tb、LaOBr:Tb・Tm、LaS:Tb等の緑色発光無機蛍光体、ZnS:Ag、GaWO、YSiO:Ce、ZnS:Ag・Ga・Cl、CaOCl:Eu2+、BaMgAl:Eu2+等の青色発光無機蛍光体、量子ドット蛍光体などが挙げられる。
[Phosphor]
The wavelength conversion layer contains a phosphor that emits light when irradiated with light from a light source. The type of phosphor is not particularly limited, and examples thereof include an organic phosphor and an inorganic phosphor.
Examples of the organic phosphor include a naphthalimide compound and a perylene compound.
Examples of the inorganic phosphor include Y 3 O 3 : Eu, YVO 4 : Eu, Y 2 O 2 : Eu, 3.5 MgO / 0.5 MgF 2 , GeO 2 : Mn, (Y · Cd) BO 2 : Eu, etc. Red light emitting inorganic phosphor, ZnS: Cu · Al, (Zn · Cd) S: Cu · Al, ZnS: Cu · Au · Al, Zn 2 SiO 4 : Mn, ZnSiO 4 : Mn, ZnS: Ag · Cu, ( Zn · Cd) S: Cu, ZnS: Cu, GdOS: Tb, LaOS: Tb, YSiO 4 : Ce · Tb, ZnGeO 4 : Mn, GeMgAlO: Tb, SrGaS: Eu 2+ , ZnS: Cu · Co, MgO · nB 2 O 3 : Green luminescent inorganic phosphors such as Ge · Tb, LaOBr: Tb · Tm, La 2 O 2 S: Tb, ZnS: Ag, GaWO 4 , Y 2 SiO 6 : Ce, ZnS: Ag · Ga · Cl , Ca 2 B 4 OCl: Eu 2+ , BaMgAl 4 O 3 : Eu 2+ and other blue light emitting inorganic phosphors, quantum dot phosphors and the like can be mentioned.
 蛍光体としては、画像表示装置の色再現性に優れる観点から、量子ドット蛍光体が好ましい。
 量子ドット蛍光体としては特に制限されず、II-VI族化合物、III-V族化合物、IV-VI族化合物、及びIV族化合物からなる群より選択される少なくとも1種を含む粒子が挙げられる。発光効率の観点からは、量子ドット蛍光体は、Cd及びInからなる群より選択される少なくとも一方を含む化合物を含むことが好ましい。
As the phosphor, a quantum dot phosphor is preferable from the viewpoint of excellent color reproducibility of the image display device.
The quantum dot phosphor is not particularly limited, and examples thereof include particles containing at least one selected from the group consisting of a group II-VI compound, a group III-V compound, a group IV-VI compound, and a group IV compound. From the viewpoint of luminous efficiency, the quantum dot phosphor preferably contains a compound containing at least one selected from the group consisting of Cd and In.
 II-VI族化合物の具体例としては、CdSe、CdTe、CdS、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、HgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe等が挙げられる。
 III-V族化合物の具体例としては、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等が挙げられる。
 IV-VI族化合物の具体例としては、SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe等が挙げられる。
 IV族化合物の具体例としては、Si、Ge、SiC、SiGe等が挙げられる。
Specific examples of the II-VI group compounds include CdSe, CdTe, CdS, ZnS, ZnSe, ZnTe, ZnO, HgS, HgSe, HgTe, CdSeS, CdSeTe, CdSte, ZnSeS, ZnSeTe, ZnSte, HgSeS, ZnS. , CdZnSe, CdZnTe, CdHgS, CdHgSe, CdHgTe, HgZnS, HgZnSe, HgZnTe, CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgSeTe
Specific examples of Group III-V compounds include GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb, InN, InP, InAs, InSb, COLP, PLGAs, VMwareSb, GaPAs, GaPSb, AlNP, AlNAs, AlNSb , AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP, GaAlNAs, GaAlNSb, GaAlPAs, GaAlPSb, GaInNP, GaInNAs, GaInNSb, GaInPAs, GaInNSb, GaInPAs, GaInPSb, InNAAl
Specific examples of the IV-VI group compounds include SnS, SnSe, SnTe, PbS, PbSe, PbTe, SnSeS, SnSeTe, SnSte, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, SnPbSe ..
Specific examples of the Group IV compound include Si, Ge, SiC, SiGe and the like.
 量子ドット蛍光体としては、コアシェル構造を有するものであってもよい。コアを構成する化合物のバンドギャップよりもシェルを構成する化合物のバンドギャップを広くすることで、量子ドット蛍光体の量子効率をより向上させることが可能となる。コア及びシェルの組み合わせ(コア/シェル)としては、CdSe/ZnS、InP/ZnS、PbSe/PbS、CdSe/CdS、CdTe/CdS、CdTe/ZnS等が挙げられる。 The quantum dot phosphor may have a core-shell structure. By making the band gap of the compound constituting the shell wider than the band gap of the compound constituting the core, it is possible to further improve the quantum efficiency of the quantum dot phosphor. Examples of the combination of core and shell (core / shell) include CdSe / ZnS, InP / ZnS, PbSe / PbS, CdSe / CdS, CdTe / CdS, and CdTe / ZnS.
 また、量子ドット蛍光体としては、シェルが多層構造である、いわゆるコアマルチシェル構造を有するものであってもよい。バンドギャップの広いコアにバンドギャップの狭いシェルを1層又は2層以上積層し、さらにこのシェルの上にバンドギャップの広いシェルを積層することで、量子ドット蛍光体の量子効率をさらに向上させることが可能となる。 Further, the quantum dot phosphor may have a so-called core multi-shell structure in which the shell has a multi-layer structure. By stacking one or more layers of shells with a narrow bandgap on a core with a wide bandgap, and further stacking a shell with a wide bandgap on top of this shell, the quantum efficiency of the quantum dot phosphor can be further improved. Is possible.
 波長変換層が量子ドット蛍光体を含有する場合、波長変換層は、1種類の量子ドット蛍光体を単独で含有していてもよく、2種類以上の量子ドット蛍光体を組み合わせて含有していてもよい。2種類以上の量子ドット蛍光体を組み合わせて含有する態様としては、例えば、成分は異なるものの平均粒子径を同じくする量子ドット蛍光体を2種類以上含有する態様、平均粒子径は異なるものの成分を同じくする量子ドット蛍光体を2種類以上含有する態様、並びに成分及び平均粒子径の異なる量子ドット蛍光体を2種類以上含有する態様が挙げられる。量子ドット蛍光体の成分及び平均粒子径からなる群より選択される少なくとも一方を変更することで、量子ドット蛍光体の発光中心波長を変更することができる。 When the wavelength conversion layer contains a quantum dot phosphor, the wavelength conversion layer may contain one kind of quantum dot phosphor alone, or may contain two or more kinds of quantum dot phosphors in combination. May be good. Examples of a mode in which two or more types of quantum dot phosphors are contained in combination include a mode in which two or more types of quantum dot phosphors having different components but the same average particle size are contained, and a mode in which components having different average particle sizes are contained. Examples thereof include an embodiment containing two or more types of quantum dot phosphors, and an embodiment containing two or more types of quantum dot phosphors having different components and average particle diameters. The emission center wavelength of the quantum dot phosphor can be changed by changing at least one selected from the group consisting of the components of the quantum dot phosphor and the average particle size.
 例えば、波長変換層は、520nm~560nmの緑色の波長域に発光中心波長を有する量子ドット蛍光体Gと、600nm~680nmの赤色の波長域に発光中心波長を有する量子ドット蛍光体Rと、を含有していてもよい。量子ドット蛍光体Gと量子ドット蛍光体Rとを含有する波長変換層に対して430nm~480nmの青色の波長域の励起光を照射すると、量子ドット蛍光体G及び量子ドット蛍光体Rからそれぞれ緑色光及び赤色光が発光される。その結果、量子ドット蛍光体G及び量子ドット蛍光体Rから発光される緑色光及び赤色光と、硬化物を透過する青色光と、により、白色光を得ることができる。 For example, the wavelength conversion layer includes a quantum dot phosphor G having an emission center wavelength in the green wavelength region of 520 nm to 560 nm and a quantum dot phosphor R having an emission center wavelength in the red wavelength region of 600 nm to 680 nm. It may be contained. When the wavelength conversion layer containing the quantum dot phosphor G and the quantum dot phosphor R is irradiated with excitation light in the blue wavelength range of 430 nm to 480 nm, the quantum dot phosphor G and the quantum dot phosphor R are green, respectively. Light and red light are emitted. As a result, white light can be obtained by the green light and red light emitted from the quantum dot phosphor G and the quantum dot phosphor R and the blue light transmitted through the cured product.
 波長変換層中の蛍光体の含有率は、波長変換層全体に対して、例えば、0.01質量%~1.0質量%であることが好ましく、0.05質量%~0.5質量%であることがより好ましく、0.1質量%~0.5質量%であることが更に好ましい。蛍光体の含有率が波長変換層全体に対して0.01質量%以上であると、充分な波長変換機能が得られる傾向にあり、蛍光体の含有率が0.01質量%以下であると、蛍光体の凝集が抑えられる傾向にある。 The content of the phosphor in the wavelength conversion layer is preferably, for example, 0.01% by mass to 1.0% by mass, and 0.05% by mass to 0.5% by mass, based on the entire wavelength conversion layer. Is more preferable, and 0.1% by mass to 0.5% by mass is further preferable. When the content of the phosphor is 0.01% by mass or more with respect to the entire wavelength conversion layer, a sufficient wavelength conversion function tends to be obtained, and when the content of the phosphor is 0.01% by mass or less. , The aggregation of phosphors tends to be suppressed.
〔樹脂硬化物〕
 波長変換層は、樹脂硬化物をさらに含んでもよい。波長変換層は、上述の蛍光体が樹脂硬化物に含まれた状態の層であってもよい。
[Resin cured product]
The wavelength conversion layer may further contain a cured resin product. The wavelength conversion layer may be a layer in which the above-mentioned phosphor is contained in the cured resin product.
 樹脂硬化物の他部材(被覆材等)に対する密着性、及び硬化時の体積収縮によるシワの発生の抑制の観点からは、樹脂硬化物はスルフィド構造を含有することが好ましい。スルフィド構造を含有する樹脂硬化物は、例えば、後述するチオール化合物と、当該チオール化合物のチオール基とエンチオール反応を生じる炭素炭素二重結合を有する重合性化合物と、を含む樹脂組成物を硬化させて得ることができる。 The cured resin product preferably contains a sulfide structure from the viewpoint of adhesion to other members (coating material, etc.) of the cured resin product and suppression of wrinkles due to volume shrinkage during curing. The cured resin composition containing a sulfide structure is obtained by curing a resin composition containing, for example, a thiol compound described later and a polymerizable compound having a carbon-carbon double bond that causes an enthiol reaction with a thiol group of the thiol compound. Obtainable.
 波長変換層の耐熱性及び耐湿熱性の観点からは、樹脂硬化物は脂環式構造又は芳香環構造を含有することが好ましい。脂環式構造又は芳香環構造を有する樹脂硬化物は、例えば、後述する重合性化合物として脂環式構造又は芳香環構造を有するものを含む樹脂組成物を硬化させて得ることができる。 From the viewpoint of heat resistance and moisture heat resistance of the wavelength conversion layer, the cured resin product preferably contains an alicyclic structure or an aromatic ring structure. The cured resin product having an alicyclic structure or an aromatic ring structure can be obtained, for example, by curing a resin composition containing a polymer compound having an alicyclic structure or an aromatic ring structure, which will be described later.
 蛍光体と酸素との接触を抑制する観点からは、樹脂硬化物はアルキレンオキシ基を含有することが好ましい。樹脂硬化物がアルキレンオキシ基を含有すると、樹脂硬化物の極性が増大し、非極性の酸素が硬化物中の成分に溶解しにくくなる傾向にある。また、樹脂硬化物の柔軟性が増して被覆材との密着性が向上する傾向にある。 From the viewpoint of suppressing contact between the phosphor and oxygen, the cured resin product preferably contains an alkyleneoxy group. When the cured resin product contains an alkyleneoxy group, the polarity of the cured resin product increases, and non-polar oxygen tends to be difficult to dissolve in the components in the cured product. In addition, the flexibility of the cured resin product tends to increase and the adhesion to the coating material tends to improve.
 アルキレンオキシ基を含有する樹脂硬化物は、例えば、後述する重合性化合物としてアルキレンオキシ基を有するものを含む樹脂組成物を硬化させて得ることができる。 The cured resin product containing an alkyleneoxy group can be obtained, for example, by curing a resin composition containing a polymerizable compound having an alkyleneoxy group, which will be described later.
-樹脂組成物-
 波長変換層は、蛍光体と、重合性化合物と、光重合開始剤と、を含む組成物(以下、単に樹脂組成物ともいう)の硬化物であってもよい。樹脂組成物は、蛍光体と、チオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、光重合開始剤と、を含有していてもよい。樹脂組成物は、任意でその他の成分を含有していてもよい。以下、樹脂組成物の各成分について詳述する。
-Resin composition-
The wavelength conversion layer may be a cured product of a composition containing a phosphor, a polymerizable compound, and a photopolymerization initiator (hereinafter, also simply referred to as a resin composition). The resin composition may contain a phosphor, a thiol compound, at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound, and a photopolymerization initiator. The resin composition may optionally contain other components. Hereinafter, each component of the resin composition will be described in detail.
(蛍光体)
 樹脂組成物は、蛍光体を含有する。蛍光体の詳細は、上述のとおりである。
(Phosphor)
The resin composition contains a phosphor. The details of the phosphor are as described above.
 蛍光体として量子ドット蛍光体を用いる場合、量子ドット蛍光体は、分散媒体に分散された量子ドット蛍光体分散液の状態で用いてもよい。量子ドット蛍光体を分散する分散媒体としては、各種有機溶剤、シリコーン化合物、及び単官能(メタ)アクリレート化合物が挙げられる。量子ドットは、必要に応じて分散剤を用いて量子ドット蛍光体分散液の状態で用いてもよい。 When a quantum dot phosphor is used as the phosphor, the quantum dot phosphor may be used in the state of a quantum dot phosphor dispersion liquid dispersed in a dispersion medium. Examples of the dispersion medium for dispersing the quantum dot phosphor include various organic solvents, silicone compounds, and monofunctional (meth) acrylate compounds. The quantum dots may be used in the state of a quantum dot phosphor dispersion liquid by using a dispersant, if necessary.
 分散媒体として使用可能な有機溶剤としては、量子ドット蛍光体の沈降及び凝集が確認されない限り特に制限されず、アセトニトリル、メタノール、エタノール、アセトン、1-プロパノール、酢酸エチル、酢酸ブチル、トルエン、ヘキサン等が挙げられる。 The organic solvent that can be used as the dispersion medium is not particularly limited as long as precipitation and aggregation of the quantum dot phosphor are not confirmed, and acetonitrile, methanol, ethanol, acetone, 1-propanol, ethyl acetate, butyl acetate, toluene, hexane and the like are not particularly limited. Can be mentioned.
 分散媒体として使用可能なシリコーン化合物としては、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイル;アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、フッ素変性シリコーンオイル等の変性シリコーンオイルなどが挙げられる。 Silicone compounds that can be used as a dispersion medium include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methylhydrogen silicone oil; amino-modified silicone oil, epoxy-modified silicone oil, carboxy-modified silicone oil, and carbinol-modified silicone. Oil, mercapto-modified silicone oil, heterogeneous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid-modified silicone oil, fluorine-modified silicone oil, etc. Modified silicone oil and the like.
 分散媒体として使用可能な単官能(メタ)アクリレート化合物としては、25℃において液体であれば特に限定されるものではなく、脂環式構造を有する単官能(メタ)アクリレート化合物(好ましくはイソボルニル(メタ)アクリレート、及びジシクロペンタニル(メタ)アクリレート)、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、エトキシ化o-フェニルフェノール(メタ)アクリレート等が挙げられる。 The monofunctional (meth) acrylate compound that can be used as a dispersion medium is not particularly limited as long as it is liquid at 25 ° C., and a monofunctional (meth) acrylate compound having an alicyclic structure (preferably isobornyl (meth)). ) Acrylate and dicyclopentanyl (meth) acrylate), methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, ethoxylated o-phenylphenol (meth) acrylate and the like.
 必要に応じて用いられる分散剤としては、ポリエーテルアミン(商品名:JEFFAMINE(登録商標) M-1000、HUNTSMAN社)、オレイン酸等が挙げられる。 Examples of the dispersant used as needed include polyether amine (trade name: JEFFAMINE (registered trademark) M-1000, HUNTSMAN), oleic acid and the like.
 量子ドット蛍光体分散液に占める量子ドット蛍光体の質量基準の割合は、1質量%~20質量%であることが好ましく、1質量%~10質量%であることがより好ましい。 The mass-based ratio of the quantum dot phosphor to the quantum dot phosphor dispersion liquid is preferably 1% by mass to 20% by mass, and more preferably 1% by mass to 10% by mass.
 樹脂組成物中の量子ドット蛍光体分散液の含有率は、量子ドット蛍光体分散液に占める量子ドット蛍光体の質量基準の割合が1質量%~20質量%である場合、樹脂組成物の全量に対して、例えば、1質量%~10質量%であることが好ましく、4質量%~10質量%であることがより好ましく、4質量%~7質量%であることがさらに好ましい。 The content of the quantum dot phosphor dispersion liquid in the resin composition is the total amount of the resin composition when the mass-based ratio of the quantum dot phosphor to the quantum dot phosphor dispersion liquid is 1% by mass to 20% by mass. On the other hand, for example, it is preferably 1% by mass to 10% by mass, more preferably 4% by mass to 10% by mass, and further preferably 4% by mass to 7% by mass.
 また、樹脂組成物中の量子ドット蛍光体の含有率は、樹脂組成物の全量に対して、例えば、0.01質量%~1.0質量%であることが好ましく、0.05質量%~0.5質量%であることがより好ましく、0.1質量%~0.5質量%であることがさらに好ましい。量子ドット蛍光体の含有率が0.01質量%以上であると、硬化物に励起光を照射する際に充分な発光強度が得られる傾向にあり、量子ドット蛍光体の含有率が1.0質量%以下であると、量子ドット蛍光体の凝集が抑えられる傾向にある。 The content of the quantum dot phosphor in the resin composition is preferably, for example, 0.01% by mass to 1.0% by mass, preferably 0.05% by mass or more, based on the total amount of the resin composition. It is more preferably 0.5% by mass, and further preferably 0.1% by mass to 0.5% by mass. When the content of the quantum dot phosphor is 0.01% by mass or more, sufficient emission intensity tends to be obtained when the cured product is irradiated with excitation light, and the content of the quantum dot phosphor is 1.0. When it is mass% or less, the aggregation of the quantum dot phosphor tends to be suppressed.
(重合性化合物)
 樹脂組成物は、重合性化合物を含有する。樹脂組成物に含まれる重合性化合物は特に制限されず、チオール化合物、(メタ)アクリル化合物、(メタ)アリル化合物等が挙げられる。なお、(メタ)アリル化合物は、分子中に(メタ)アリル基を有する化合物を意味し、(メタ)アクリル化合物は、分子中に(メタ)アクリロイル基を有する化合物を意味する。分子中に(メタ)アリル基及び(メタ)アクリロイル基の両方を有する化合物は、便宜上、(メタ)アリル化合物に分類するものとする。
(Polymerizable compound)
The resin composition contains a polymerizable compound. The polymerizable compound contained in the resin composition is not particularly limited, and examples thereof include a thiol compound, a (meth) acrylic compound, and a (meth) allyl compound. The (meth) allyl compound means a compound having a (meth) allyl group in the molecule, and the (meth) acrylic compound means a compound having a (meth) acryloyl group in the molecule. Compounds having both a (meth) allyl group and a (meth) acryloyl group in the molecule shall be classified as (meth) allyl compounds for convenience.
 波長変換層の他部材(被覆材等)に対する密着性の観点からは、樹脂組成物は重合性化合物としてチオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、を含んでいてもよい。重合性化合物としてチオール化合物と、(メタ)アクリル化合物及び(メタ)アリル化合物からなる群より選択される少なくとも1種と、を含む樹脂組成物を硬化して得られる硬化物は、チオール基と(メタ)アクリロイル基又は(メタ)アリル基の炭素炭素二重結合との間でエンチオール反応が進行して形成されるスルフィド構造(R-S-R’、R及びR’は有機基を表す)を含む。これにより、波長変換層と被覆材との密着性が向上する傾向にある。また、波長変換層の光学特性がより向上する傾向にある。 From the viewpoint of adhesion of the wavelength conversion layer to other members (coating material, etc.), the resin composition is selected from the group consisting of a thiol compound, a (meth) acrylic compound and a (meth) allyl compound as a polymerizable compound at least. 1 type and may be included. A cured product obtained by curing a resin composition containing a thiol compound as a polymerizable compound and at least one selected from the group consisting of a (meth) acrylic compound and a (meth) allyl compound has a thiol group and ( A sulfide structure (RSR', R and R'represents an organic group) formed by an enthiol reaction with a carbon-carbon double bond of a (meth) acryloyl group or a (meth) allyl group. Including. As a result, the adhesion between the wavelength conversion layer and the coating material tends to be improved. Further, the optical characteristics of the wavelength conversion layer tend to be further improved.
 以下、重合性化合物として用いうるチオール化合物、(メタ)アクリル化合物、及び(メタ)アリル化合物について詳述する。 Hereinafter, the thiol compound, the (meth) acrylic compound, and the (meth) allyl compound that can be used as the polymerizable compound will be described in detail.
A.チオール化合物
 チオール化合物は、1分子中に1個のチオール基を有する単官能チオール化合物であってもよく、1分子中に2個以上のチオール基を有する多官能チオール化合物であってもよい。樹脂組成物に含まれるチオール化合物は、1種のみでも2種以上であってもよい。
A. Thiol compound The thiol compound may be a monofunctional thiol compound having one thiol group in one molecule, or a polyfunctional thiol compound having two or more thiol groups in one molecule. The thiol compound contained in the resin composition may be only one kind or two or more kinds.
 チオール化合物は、分子中にチオール基以外の重合性基(例えば、(メタ)アクリロイル基、(メタ)アリル基)を有していても、有していなくてもよい。
 本開示において分子中にチオール基と、チオール基以外の重合性基を含む化合物は、「チオール化合物」に分類するものとする。
The thiol compound may or may not have a polymerizable group other than the thiol group (for example, (meth) acryloyl group, (meth) allyl group) in the molecule.
In the present disclosure, a compound containing a thiol group and a polymerizable group other than the thiol group in the molecule shall be classified as a "thiol compound".
 単官能チオール化合物の具体例としては、ヘキサンチオール、1-ヘプタンチオール、1-オクタンチオール、1-ノナンチオール、1-デカンチオール、3-メルカプトプロピオン酸、メルカプトプロピオン酸メチル、メルカプトプロピオン酸メトキシブチル、メルカプトプロピオン酸オクチル、メルカプトプロピオン酸トリデシル、2-エチルヘキシル-3-メルカプトプロピオネート、n-オクチル-3-メルカプトプロピオネート等が挙げられる。 Specific examples of the monofunctional thiol compound include hexanethiol, 1-heptanethiol, 1-octanethiol, 1-nonanthiol, 1-decanethiol, 3-mercaptopropionic acid, methyl mercaptopropionate, methoxybutyl mercaptopropionate, and the like. Examples thereof include octyl mercaptopropionate, tridecyl mercaptopropionate, 2-ethylhexyl-3-mercaptopropionate, n-octyl-3-mercaptopropionate and the like.
 多官能チオール化合物の具体例としては、エチレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトプロピオネート)、テトラエチレングリコールビス(3-メルカプトプロピオネート)、1,2-プロピレングリコールビス(3-メルカプトプロピオネート)、ジエチレングリコールビス(3-メルカプトブチレート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトブチレート)、1,8-オクタンジオールビス(3-メルカプトプロピオネート)、1,8-オクタンジオールビス(3-メルカプトブチレート)、ヘキサンジオールビスチオグリコレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、トリメチロールプロパントリス(3-メルカプトブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(2-メルカプトイソブチレート)、トリメチロールプロパントリスチオグリコレート、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールエタントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトイソブチレート)、ペンタエリスリトールテトラキス(2-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(2-メルカプトプロピオネート)、ジペンタエリスリトールヘキサキス(3-メルカプトブチレート)、ジペンタエリスリトールヘキサキス(3-メルカプトイソブチレート)、ジペンタエリスリトールヘキサキス(2-メルカプトイソブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ジペンタエリスリトールヘキサキスチオグリコレート等が挙げられる。 Specific examples of the polyfunctional thiol compound include ethylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptopropionate), tetraethylene glycol bis (3-mercaptopropionate), 1,2-. Propropylene glycol bis (3-mercaptopropionate), diethylene glycol bis (3-mercaptobutyrate), 1,4-butanediol bis (3-mercaptopropionate), 1,4-butanediol bis (3-mercaptobutyrate) Rate), 1,8-octanediol bis (3-mercaptopropionate), 1,8-octanediol bis (3-mercaptobutyrate), hexanediol bisthioglycolate, trimethylolpropanthris (3-mercaptopro) Pionate), trimethylolpropanetris (3-mercaptobutyrate), trimethylolpropanetris (3-mercaptoisobutyrate), trimethylolpropanetris (2-mercaptoisobutyrate), trimethylolpropanetristhioglycolate, Tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, trimethyl ethanetris (3-mercaptobutyrate), pentaerythritol tetrakis (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptobutyrate) ), Pentaerythritol tetrakis (3-mercaptoisobutyrate), pentaerythritol tetrakis (2-mercaptoisobutyrate), dipentaerythritol hexakis (3-mercaptopropionate), dipentaerythritol hexakis (2-mercaptopro) Pionate), dipentaerythritol hexakis (3-mercaptobutyrate), dipentaerythritol hexakis (3-mercaptoisobutyrate), dipentaerythritol hexakis (2-mercaptoisobutyrate), pentaerythritol tetrakisthioglycol Rate, dipentaerythritol hexaxthioglycolate and the like can be mentioned.
 波長変換層と被覆材との密着性、耐熱性、及び耐湿熱性をより向上させる観点からは、チオール化合物は、多官能チオール化合物を含むことが好ましい。チオール化合物の全量に対する多官能チオール化合物の割合は、例えば、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、100質量%であることがさらに好ましい。 From the viewpoint of further improving the adhesion between the wavelength conversion layer and the coating material, heat resistance, and moist heat resistance, the thiol compound preferably contains a polyfunctional thiol compound. The ratio of the polyfunctional thiol compound to the total amount of the thiol compound is, for example, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass.
 チオール化合物は、(メタ)アクリル化合物と反応したチオエーテルオリゴマーの状態であってもよい。チオエーテルオリゴマーは、チオール化合物と(メタ)アクリル化合物とを重合開始剤の存在下で付加重合させることにより得ることができる。 The thiol compound may be in the state of a thioether oligomer that has reacted with the (meth) acrylic compound. The thioether oligomer can be obtained by addition polymerization of a thiol compound and a (meth) acrylic compound in the presence of a polymerization initiator.
 樹脂組成物がチオール化合物を含有する場合、樹脂組成物中のチオール化合物の含有率は、樹脂組成物の全量に対して、例えば、5質量%~80質量%であることが好ましく、15質量%~70質量%であることがより好ましく、20質量%~60質量%であることがさらに好ましい。
 チオール化合物の含有率が樹脂組成物の全量に対して5質量%以上であると、波長変換層の被覆材との密着性がより向上する傾向にあり、チオール化合物の含有率が樹脂組成物の全量に対して80質量%以下であると、波長変換層の耐熱性及び耐湿熱性がより向上する傾向にある。
When the resin composition contains a thiol compound, the content of the thiol compound in the resin composition is preferably, for example, 5% by mass to 80% by mass, and 15% by mass, based on the total amount of the resin composition. It is more preferably to 70% by mass, and further preferably 20% by mass to 60% by mass.
When the content of the thiol compound is 5% by mass or more with respect to the total amount of the resin composition, the adhesion of the wavelength conversion layer to the coating material tends to be further improved, and the content of the thiol compound is the resin composition. When it is 80% by mass or less with respect to the total amount, the heat resistance and the moist heat resistance of the wavelength conversion layer tend to be further improved.
B.(メタ)アクリル化合物
 (メタ)アクリル化合物は、1分子中に1個の(メタ)アクリロイル基を有する単官能(メタ)アクリル化合物であってもよく、1分子中に2個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリル化合物であってもよい。樹脂組成物に含まれる(メタ)アクリル化合物は、1種でも2種以上であってもよい。
B. (Meta) Acrylic Compound The (meth) acrylic compound may be a monofunctional (meth) acrylic compound having one (meth) acryloyl group in one molecule, and two or more (meth) acrylic compounds in one molecule. It may be a polyfunctional (meth) acrylic compound having an acryloyl group. The (meth) acrylic compound contained in the resin composition may be one kind or two or more kinds.
 単官能(メタ)アクリル化合物の具体例としては、(メタ)アクリル酸;メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-オクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート等の芳香環を有する(メタ)アクリレート化合物;ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;N,N-ジメチルアミノエチル(メタ)アクリレート等のアミノアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチレンオキシド付加シクロデカトリエン(メタ)アクリレート等の脂環構造を有する(メタ)アクリレート化合物;(メタ)アクリロイルモルホリン、テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;ヘプタデカフルオロデシル(メタ)アクリレート等のフッ化アルキル(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;2-(2-(メタ)アクリロイルオキシエチルオキシ)エチルイソシアネート、2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基を有する(メタ)アクリレート化合物;テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等のポリアルキレングリコールモノ(メタ)アクリレート;(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物;などが挙げられる。 Specific examples of the monofunctional (meth) acrylic compound include (meth) acrylic acid; methyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and isononyl (meth). ) Alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms such as acrylate, n-octyl (meth) acrylate, lauryl (meth) acrylate, and stearyl (meth) acrylate; benzyl (meth) acrylate, phenoxyethyl ( A (meth) acrylate compound having an aromatic ring such as a meta) acrylate; an alkoxyalkyl (meth) acrylate such as butoxyethyl (meth) acrylate; an aminoalkyl (meth) acrylate such as N, N-dimethylaminoethyl (meth) acrylate; Diethylene glycol monoethyl ether (meth) acrylate, triethylene glycol monobutyl ether (meth) acrylate, tetraethylene glycol monomethyl ether (meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate, octaethylene glycol monomethyl ether (meth) acrylate, nona Polyalkylene glycol monoalkyl ether (meth) such as ethylene glycol monomethyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, heptapropylene glycol monomethyl ether (meth) acrylate, and tetraethylene glycol monoethyl ether (meth) acrylate. Acrylate: Polyalkylene glycol monoaryl ether (meth) acrylate such as hexaethylene glycol monophenyl ether (meth) acrylate; cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, methylene oxide-added cyclo (Meta) acrylate compound having an alicyclic structure such as decatorien (meth) acrylate; (meth) acrylate compound having a heterocycle such as (meth) acryloylmorpholine and tetrahydrofurfuryl (meth) acrylate; heptadecafluorodecyl (meth) ) Alkyl fluoride (meth) acrylates such as acrylates; 2-hydroxyethyl (meth) acrylates, 3-hydroxypropyl (meth) acrylates, 4-hydroxybutyl (meth) acrylates, trietylene Nglycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate and other (meth) acrylate compounds having hydroxyl groups; glycidyl (meth) acrylate A (meth) acrylate compound having a glycidyl group such as 2- (2- (meth) acryloyloxyethyloxy) ethyl isocyanate, a (meth) acrylate compound having an isocyanate group such as 2- (meth) acryloyloxyethyl isocyanate; tetra Polyalkylene glycol mono (meth) acrylates such as ethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) acrylate, octapropylene glycol mono (meth) acrylate; (meth) acrylamide, N, N-dimethyl (meth) acrylamide. , N-Isopropyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, 2-hydroxyethyl (meth) acrylamide and other (meth) acrylamide compounds; Be done.
 多官能(メタ)アクリル化合物の具体例としては、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;トリシクロデカンジメタノールジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、1,3-アダマンタンジメタノールジ(メタ)アクリレート、水添ビスフェノールA(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールA(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールF(ポリ)プロポキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)エトキシジ(メタ)アクリレート、水添ビスフェノールS(ポリ)プロポキシジ(メタ)アクリレート等の脂環構造を有する(メタ)アクリレート化合物などが挙げられる。 Specific examples of the polyfunctional (meth) acrylic compound include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, and 1,9-nonanediol di (meth) acrylate. Polyalkylene glycol di (meth) acrylate; Polyalkylene glycol di (meth) acrylate such as polyethylene glycol di (meth) acrylate and polypropylene glycol di (meth) acrylate; Trimethylol propantri (meth) acrylate, Trimethylol propantri with ethylene oxide (meth) Tri (meth) acrylate compounds such as meth) acrylate and tris (2-acryloyloxyethyl) isocyanurate; ethylene oxide-added pentaerythritol tetra (meth) acrylate, trimethylolpropanetetra (meth) acrylate, pentaerythritol tetra (meth) acrylate and the like. Tetra (meth) acrylate compounds; tricyclodecanedimethanol di (meth) acrylate, cyclohexanedimethanol di (meth) acrylate, 1,3-adamantan dimethanol di (meth) acrylate, hydrogenated bisphenol A (poly) ethoxydi ( Meta) acrylate, hydrogenated bisphenol A (poly) propoxydi (meth) acrylate, hydrogenated bisphenol F (poly) ethoxydi (meth) acrylate, hydrogenated bisphenol F (poly) propoxydi (meth) acrylate, hydrogenated bisphenol S (poly) Examples thereof include (meth) acrylate compounds having an alicyclic structure such as ethoxydi (meth) acrylate and hydrogenated bisphenol S (poly) propoxydi (meth) acrylate.
 (メタ)アクリル化合物は、硬化物の耐熱性及び耐湿熱性をより向上させる観点からは、脂環構造又は芳香環構造を有する(メタ)アクリレート化合物が好ましい。脂環構造又は芳香環構造としては、イソボルニル骨格、トリシクロデカン骨格、ビスフェノール骨格等が挙げられる。 The (meth) acrylic compound is preferably a (meth) acrylate compound having an alicyclic structure or an aromatic ring structure from the viewpoint of further improving the heat resistance and moisture heat resistance of the cured product. Examples of the alicyclic structure or aromatic ring structure include an isobornyl skeleton, a tricyclodecane skeleton, and a bisphenol skeleton.
 (メタ)アクリル化合物は、アルキレンオキシ基を有するものであってもよく、アルキレンオキシ基を有する2官能(メタ)アクリル化合物であってもよい。 The (meth) acrylic compound may have an alkyleneoxy group or may be a bifunctional (meth) acrylic compound having an alkyleneoxy group.
 アルキレンオキシ基としては、例えば、炭素数が2~4のアルキレンオキシ基が好ましく、炭素数が2又は3のアルキレンオキシ基がより好ましく、炭素数が2のアルキレンオキシ基がさらに好ましい。
 (メタ)アクリル化合物が有するアルキレンオキシ基は、1種でも2種以上であってもよい。
As the alkyleneoxy group, for example, an alkyleneoxy group having 2 to 4 carbon atoms is preferable, an alkyleneoxy group having 2 or 3 carbon atoms is more preferable, and an alkyleneoxy group having 2 carbon atoms is further preferable.
The alkyleneoxy group contained in the (meth) acrylic compound may be one type or two or more types.
 アルキレンオキシ基含有化合物は、複数個のアルキレンオキシ基を含むポリアルキレンオキシ基を有するポリアルキレンオキシ基含有化合物であってもよい。 The alkyleneoxy group-containing compound may be a polyalkyleneoxy group-containing compound having a polyalkyleneoxy group containing a plurality of alkyleneoxy groups.
 (メタ)アクリル化合物がアルキレンオキシ基を有する場合、一分子中のアルキレンオキシ基の数は、2個~30個であることが好ましく、2個~20個であることがより好ましく、3個~10個であることがさらに好ましく、3個~5個であることが特に好ましい。 When the (meth) acrylic compound has an alkyleneoxy group, the number of alkyleneoxy groups in one molecule is preferably 2 to 30, more preferably 2 to 20, and 3 to 20. It is more preferably 10 pieces, and particularly preferably 3 to 5 pieces.
 (メタ)アクリル化合物がアルキレンオキシ基を有する場合、ビスフェノール構造を有することが好ましい。これにより、硬化物の耐熱性がより優れる傾向にある。ビスフェノール構造としては、例えば、ビスフェノールA構造及びビスフェノールF構造が挙げられ、中でも、ビスフェノールA構造が好ましい。 When the (meth) acrylic compound has an alkyleneoxy group, it preferably has a bisphenol structure. As a result, the heat resistance of the cured product tends to be more excellent. Examples of the bisphenol structure include a bisphenol A structure and a bisphenol F structure, and among them, the bisphenol A structure is preferable.
 アルキレンオキシ基を有する(メタ)アクリル化合物の具体例としては、ブトキシエチル(メタ)アクリレート等のアルコキシアルキル(メタ)アクリレート;ジエチレングリコールモノエチルエーテル(メタ)アクリレート、トリエチレングリコールモノブチルエーテル(メタ)アクリレート、テトラエチレングリコールモノメチルエーテル(メタ)アクリレート、ヘキサエチレングリコールモノメチルエーテル(メタ)アクリレート、オクタエチレングリコールモノメチルエーテル(メタ)アクリレート、ノナエチレングリコールモノメチルエーテル(メタ)アクリレート、ジプロピレングリコールモノメチルエーテル(メタ)アクリレート、ヘプタプロピレングリコールモノメチルエーテル(メタ)アクリレート、テトラエチレングリコールモノエチルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアルキルエーテル(メタ)アクリレート;ヘキサエチレングリコールモノフェニルエーテル(メタ)アクリレート等のポリアルキレングリコールモノアリールエーテル(メタ)アクリレート;テトラヒドロフルフリル(メタ)アクリレート等の複素環を有する(メタ)アクリレート化合物;トリエチレングリコールモノ(メタ)アクリレート、テトラエチレングリコールモノ(メタ)アクリレート、ヘキサエチレングリコールモノ(メタ)アクリレート、オクタプロピレングリコールモノ(メタ)アクリレート等の水酸基を有する(メタ)アクリレート化合物;グリシジル(メタ)アクリレート等のグリシジル基を有する(メタ)アクリレート化合物;ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート等のポリアルキレングリコールジ(メタ)アクリレート;エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート等のトリ(メタ)アクリレート化合物;エチレンオキシド付加ペンタエリスリトールテトラ(メタ)アクリレート等のテトラ(メタ)アクリレート化合物;エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレート等のビスフェノール型ジ(メタ)アクリレート化合物;などが挙げられる。
 アルキレンオキシ基含有化合物としては、中でも、エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート及びプロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレートが好ましく、エトキシ化ビスフェノールA型ジ(メタ)アクリレートがより好ましい。
Specific examples of the (meth) acrylic compound having an alkyleneoxy group include alkoxyalkyl (meth) acrylates such as butoxyethyl (meth) acrylates; diethylene glycol monoethyl ether (meth) acrylates, triethylene glycol monobutyl ether (meth) acrylates, and the like. Tetraethylene glycol monomethyl ether (meth) acrylate, hexaethylene glycol monomethyl ether (meth) acrylate, octaethylene glycol monomethyl ether (meth) acrylate, nonaethylene glycol monomethyl ether (meth) acrylate, dipropylene glycol monomethyl ether (meth) acrylate, Polyalkylene glycol monoalkyl ether (meth) acrylates such as heptapropylene glycol monomethyl ether (meth) acrylates and tetraethylene glycol monoethyl ether (meth) acrylates; polyalkylene glycol monoaryls such as hexaethylene glycol monophenyl ether (meth) acrylates. Ether (meth) acrylate; (meth) acrylate compound having a heterocycle such as tetrahydrofurfuryl (meth) acrylate; triethylene glycol mono (meth) acrylate, tetraethylene glycol mono (meth) acrylate, hexaethylene glycol mono (meth) (Meta) acrylate compound having a hydroxyl group such as acrylate and octapropylene glycol mono (meth) acrylate; (meth) acrylate compound having a glycidyl group such as glycidyl (meth) acrylate; polyethylene glycol di (meth) acrylate, polypropylene glycol di ( Polyalkylene glycol di (meth) acrylates such as meta) acrylates; tri (meth) acrylate compounds such as ethylene oxide-added trimethylol propantri (meth) acrylates; tetra (meth) acrylate compounds such as ethylene oxide-added pentaerythritol tetra (meth) acrylates. Examples thereof include bisphenol type di (meth) acrylate compounds such as ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate, and propoxylated ethoxylated bisphenol A type di (meth) acrylate; ..
As the alkyleneoxy group-containing compound, ethoxylated bisphenol A type di (meth) acrylate, propoxylated bisphenol A type di (meth) acrylate and propoxylated ethoxylated bisphenol A type di (meth) acrylate are preferable, and ethoxylated bisphenol A-type di (meth) acrylate is more preferable.
 樹脂組成物が(メタ)アクリル化合物を含有する場合、樹脂組成物中の(メタ)アクリル化合物の含有率は、樹脂組成物の全量に対して、例えば、40質量%~90質量%であってもよく、50質量%~80質量%であってもよい。 When the resin composition contains a (meth) acrylic compound, the content of the (meth) acrylic compound in the resin composition is, for example, 40% by mass to 90% by mass with respect to the total amount of the resin composition. It may be 50% by mass to 80% by mass.
C.(メタ)アリル化合物
 (メタ)アリル化合物は、1分子中に1個の(メタ)アリル基を有する単官能(メタ)アリル化合物であってもよく、1分子中に2個以上の(メタ)アリル基を有する多官能(メタ)アリル化合物であってもよい。樹脂組成物に含まれる(メタ)アリル化合物は、1種のみでも2種以上であってもよい。
C. (Meta) Allyl Compound The (meth) allyl compound may be a monofunctional (meth) allyl compound having one (meth) allyl group in one molecule, and two or more (meth) allyl compounds in one molecule. It may be a polyfunctional (meth) allyl compound having an allyl group. The (meth) allyl compound contained in the resin composition may be only one kind or two or more kinds.
 (メタ)アリル化合物は、分子中に(メタ)アリル基以外の重合性基(例えば、(メタ)アクリロイル基)を有していても、有していなくてもよい。
 本開示において分子中に(メタ)アリル基以外の重合性基を有する化合物(ただし、チオール化合物を除く)は、「(メタ)アリル化合物」に分類するものとする。
The (meth) allyl compound may or may not have a polymerizable group (for example, (meth) acryloyl group) other than the (meth) allyl group in the molecule.
In the present disclosure, compounds having a polymerizable group other than the (meth) allyl group in the molecule (excluding thiol compounds) shall be classified as "(meth) allyl compound".
 単官能(メタ)アリル化合物の具体例としては、(メタ)アリルアセテート、(メタ)アリルn-プロピオネート、(メタ)アリルベンゾエート、(メタ)アリルフェニルアセテート、(メタ)アリルフェノキシアセテート、(メタ)アリルメチルエーテル、(メタ)アリルグリシジルエーテル等が挙げられる。 Specific examples of the monofunctional (meth) allyl compound include (meth) allyl acetate, (meth) allyl n-propionate, (meth) allyl benzoate, (meth) allyl phenyl acetate, (meth) allyl phenoxy acetate, and (meth). Examples thereof include allyl methyl ether and (meth) allyl glycidyl ether.
 多官能(メタ)アリル化合物の具体例としては、ベンゼンジカルボン酸ジ(メタ)アリル、シクロヘキサンジカルボン酸ジ(メタ)アリル、ジ(メタ)アリルマレエート、ジ(メタ)アリルアジペート、ジ(メタ)アリルフタレート、ジ(メタ)アリルイソフタレート、ジ(メタ)アリルテレフタレート、グリセリンジ(メタ)アリルエーテル、トリメチロールプロパンジ(メタ)アリルエーテル、ペンタエリスリトールジ(メタ)アリルエーテル、1,3-ジ(メタ)アリル-5-グリシジルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルトリメリテート、テトラ(メタ)アリルピロメリテート、1,3,4,6-テトラ(メタ)アリルグリコールウリル、1,3,4,6-テトラ(メタ)アリル-3a-メチルグリコールウリル、1,3,4,6-テトラ(メタ)アリル-3a,6a-ジメチルグリコールウリル等が挙げられる。 Specific examples of the polyfunctional (meth) allyl compound include di (meth) allyl benzenedicarboxylate, di (meth) allyl cyclohexanedicarboxylate, di (meth) allylmaleate, di (meth) allyl adipate, and di (meth). Allyl phthalate, di (meth) allyl isophthalate, di (meth) allyl terephthalate, glycerin di (meth) allyl ether, trimethylpropandi (meth) allyl ether, pentaerythritol di (meth) allyl ether, 1,3-di (Meta) allyl-5-glycidyl isocyanurate, tri (meth) allyl cyanurate, tri (meth) allyl isocyanurate, tri (meth) allyl trimellitate, tetra (meth) allyl pyromeritate, 1,3,4 , 6-Tetra (meth) allyl glycol uryl, 1,3,4,6-tetra (meth) allyl-3a-methylglycoluryl, 1,3,4,6-tetra (meth) allyl-3a, 6a-dimethyl Glycol-uryl and the like can be mentioned.
 (メタ)アリル化合物としては、硬化物の耐熱性及び耐湿熱性の観点から、トリ(メタ)アリルイソシアヌレート等のイソシアヌレート骨格を有する化合物、トリ(メタ)アリルシアヌレート、ベンゼンジカルボン酸ジ(メタ)アリル、及びシクロヘキサンジカルボン酸ジ(メタ)アリルからなる群より選択される少なくとも1種が好ましく、イソシアヌレート骨格を有する化合物がより好ましく、トリ(メタ)アリルイソシアヌレートがさらに好ましい。 Examples of the (meth) allyl compound include compounds having an isocyanurate skeleton such as tri (meth) allyl isocyanurate, tri (meth) allyl cyanurate, and benzenedicarboxylic acid di (meth) from the viewpoint of heat resistance and moisture heat resistance of the cured product. ) At least one selected from the group consisting of allyl and di (meth) allyl cyclohexanedicarboxylic acid is preferable, a compound having an isocyanurate skeleton is more preferable, and tri (meth) allyl isocyanurate is further preferable.
 樹脂組成物が(メタ)アリル化合物を含有する場合、樹脂組成物中の(メタ)アリル化合物の含有率は、樹脂組成物の全量に対して、例えば、10質量%~50質量%であってもよく、15質量%~45質量%であってもよい。 When the resin composition contains a (meth) allyl compound, the content of the (meth) allyl compound in the resin composition is, for example, 10% by mass to 50% by mass with respect to the total amount of the resin composition. It may be 15% by mass to 45% by mass.
 ある実施態様では、重合性化合物は、チオール化合物としてのチオエーテルオリゴマーと、(メタ)アリル化合物(好ましくは、多官能(メタ)アリル化合物)と、を含むものであってもよい。 In some embodiments, the polymerizable compound may include a thioether oligomer as a thiol compound and a (meth) allyl compound (preferably a polyfunctional (meth) allyl compound).
 重合性化合物がチオール化合物としてのチオエーテルオリゴマーと(メタ)アリル化合物とを含み、蛍光体として量子ドット蛍光体を使用する場合、量子ドット蛍光体は、分散媒体としてシリコーン化合物に分散された分散液の状態であることが好ましい。 When the polymerizable compound contains a thioether oligomer as a thiol compound and a (meth) allyl compound and a quantum dot phosphor is used as the phosphor, the quantum dot phosphor is a dispersion liquid dispersed in a silicone compound as a dispersion medium. It is preferably in a state.
 ある実施態様では、重合性化合物はチオール化合物としてチオエーテルオリゴマーの状態ではないものと、(メタ)アクリル化合物(好ましくは多官能(メタ)アクリル化合物、より好ましくは2官能(メタ)アクリル化合物)と、を含むものであってもよい。 In certain embodiments, the polymerizable compound is a thiol compound that is not in the form of a thioether oligomer, and a (meth) acrylic compound (preferably a polyfunctional (meth) acrylic compound, more preferably a bifunctional (meth) acrylic compound). May be included.
 重合性化合物がチオール化合物としてチオエーテルオリゴマーの状態ではないものと、(メタ)アクリル化合物と、を含み、蛍光体として量子ドット蛍光体を使用する場合、量子ドット蛍光体は、分散媒体として(メタ)アクリル化合物、好ましくは、単官能(メタ)アクリル化合物、より好ましくはイソボルニル(メタ)アクリレートに分散された分散液の状態であることが好ましい。 When the polymerizable compound contains a thiol compound that is not in the state of a thioether oligomer and a (meth) acrylic compound and a quantum dot phosphor is used as the phosphor, the quantum dot phosphor is used as the dispersion medium (meth). It is preferably in the state of a dispersion liquid dispersed in an acrylic compound, preferably a monofunctional (meth) acrylic compound, and more preferably isobornyl (meth) acrylate.
(光重合開始剤)
 樹脂組成物に含まれる光重合開始剤の種類は特に制限されず、紫外線等の活性エネルギー線の照射によりラジカルを発生する化合物が挙げられる。
(Photopolymerization initiator)
The type of photopolymerization initiator contained in the resin composition is not particularly limited, and examples thereof include compounds that generate radicals when irradiated with active energy rays such as ultraviolet rays.
 光重合開始剤の具体例としては、ベンゾフェノン、N,N’-テトラアルキル-4,4’-ジアミノベンゾフェノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパノン-1、4,4’-ビス(ジメチルアミノ)ベンゾフェノン(「ミヒラーケトン」とも称される)、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-メトキシ-4’-ジメチルアミノベンゾフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等の芳香族ケトン化合物;アルキルアントラキノン、フェナントレンキノン等のキノン化合物;ベンゾイン、アルキルベンゾイン等のベンゾイン化合物;ベンゾインアルキルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンジルジメチルケタール等のベンジル誘導体;2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(m-メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4-ジ(p-メトキシフェニル)-5-フェニルイミダゾール二量体、2-(2,4-ジメトキシフェニル)-4,5-ジフェニルイミダゾール二量体等の2,4,5-トリアリールイミダゾール二量体;9-フェニルアクリジン、1,7-(9,9’-アクリジニル)ヘプタン等のアクリジン誘導体;1,2-オクタンジオン1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)]、エタノン1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-1-(O-アセチルオキシム)等のオキシムエステル化合物;7-ジエチルアミノ-4-メチルクマリン等のクマリン化合物;2,4-ジエチルチオキサントン等のチオキサントン化合物;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド、2,4,6-トリメチルベンゾイル-フェニル-エトキシ-ホスフィンオキサイド等のアシルホスフィンオキサイド化合物;などが挙げられる。樹脂組成物は、1種類の光重合開始剤を単独で含有していてもよく、2種類以上の光重合開始剤を組み合わせて含有していてもよい。 Specific examples of the photopolymerization initiator include benzophenone, N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2-Methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanone-1, 4,4'-bis (dimethylamino) benzophenone (also referred to as "Michler ketone"), 4,4'-bis (Diethylamino) benzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 1-hydroxycyclohexylphenylketone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4- (4-) Aromatic ketone compounds such as (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propane-1-one, 2-hydroxy-2-methyl-1-phenylpropan-1-one; alkyl Kinone compounds such as anthraquinone and phenanthrenquinone; benzoin compounds such as benzoin and alkylbenzoin; benzoin ether compounds such as benzoin alkyl ether and benzoin phenyl ether; benzyl derivatives such as benzyl dimethyl ketal; 2- (o-chlorophenyl) -4,5 -Diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (m-methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2,4-di (p-methoxyphenyl) -5-phenylimidazole dimer, 2- (2,4-dimethoxyphenyl)- 2,4,5-Triarylimidazole dimer such as 4,5-diphenylimidazole dimer; aclysine derivative such as 9-phenylaclysine, 1,7- (9,9'-acrydinyl) heptane; 1,2 -Octanedione 1- [4- (Phenylthio) -2- (O-benzoyloxime)], Ethanone 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl] -1- Oxyme ester compounds such as (O-acetyloxime); coumarin compounds such as 7-diethylamino-4-methylkumarin; thioxanthone compounds such as 2,4-diethylthioxanthone; 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, 2,4,6-trimethylbenzoyl Acylphosphine oxide compounds such as -phenyl-ethoxy-phosphine oxide; and the like. The resin composition may contain one kind of photopolymerization initiator alone, or may contain two or more kinds of photopolymerization initiators in combination.
 光重合開始剤としては、硬化性の観点から、アシルホスフィンオキサイド化合物、芳香族ケトン化合物、及びオキシムエステル化合物からなる群より選択される少なくとも1種が好ましく、アシルホスフィンオキサイド化合物及び芳香族ケトン化合物からなる群より選択される少なくとも1種がより好ましく、アシルホスフィンオキサイド化合物がさらに好ましい。 As the photopolymerization initiator, at least one selected from the group consisting of an acylphosphine oxide compound, an aromatic ketone compound, and an oxime ester compound is preferable from the viewpoint of curability, and from the acylphosphine oxide compound and the aromatic ketone compound. At least one selected from the above group is more preferable, and an acylphosphine oxide compound is further preferable.
 樹脂組成物中の光重合開始剤の含有率は、樹脂組成物の全量に対して、例えば、0.1質量%~5質量%であることが好ましく、0.1質量%~3質量%であることがより好ましく、0.1質量%~1.5質量%であることがさらに好ましい。光重合開始剤の含有率が0.1質量%以上であると、樹脂組成物の感度が充分なものとなる傾向にあり、光重合開始剤の含有率が5質量%以下であると、樹脂組成物の色相への影響及び保存安定性の低下が抑えられる傾向にある。 The content of the photopolymerization initiator in the resin composition is preferably, for example, 0.1% by mass to 5% by mass, preferably 0.1% by mass to 3% by mass, based on the total amount of the resin composition. It is more preferably 0.1% by mass to 1.5% by mass. When the content of the photopolymerization initiator is 0.1% by mass or more, the sensitivity of the resin composition tends to be sufficient, and when the content of the photopolymerization initiator is 5% by mass or less, the resin The influence on the hue of the composition and the decrease in storage stability tend to be suppressed.
(光拡散材)
 光変換効率向上の観点から、樹脂組成物は、光拡散材をさらに含有していてもよい。光拡散材の具体例としては、酸化チタン、硫酸バリウム、酸化亜鉛、炭酸カルシウム等が挙げられる。これらの中でも、光散乱効率の観点から酸化チタンが好ましい。酸化チタンはルチル型酸化チタンであってもアナターゼ型酸化チタンであってもよく、ルチル型酸化チタンであることが好ましい。
(Light diffuser)
From the viewpoint of improving the light conversion efficiency, the resin composition may further contain a light diffusing material. Specific examples of the light diffusing material include titanium oxide, barium sulfate, zinc oxide, calcium carbonate and the like. Among these, titanium oxide is preferable from the viewpoint of light scattering efficiency. The titanium oxide may be rutile-type titanium oxide or anatase-type titanium oxide, and is preferably rutile-type titanium oxide.
 光拡散材の平均粒子径は、0.1μm~1μmであることが好ましく、0.2μm~0.8μmであることがより好ましく、0.2μm~0.5μmであることがさらに好ましい。
 本開示において光拡散材の平均粒子径は、以下のようにして測定することができる。
 光拡散材が樹脂組成物に含まれている場合、抽出した光拡散材を、界面活性剤を含んだ精製水に分散させ、分散液を得る。この分散液を用いてレーザー回折式粒度分布測定装置(例えば、株式会社島津製作所、SALD-3000J)で測定される体積基準の粒度分布において、小径側からの積算が50%となるときの値(メジアン径(D50))を光拡散材の平均粒子径とする。樹脂組成物から光拡散材を抽出する方法としては、例えば、樹脂組成物を液状媒体で希釈し、遠心分離処理等により光拡散材を沈澱させて分収することで得ることができる。
 光拡散材を含む樹脂組成物を硬化して得られる硬化物中における光拡散材の平均粒子径は、走査型電子顕微鏡を用いた粒子の観察により、50個の粒子について円相当径(長径と短径の幾何平均)を算出し、その算術平均値として求めることができる。
The average particle size of the light diffusing material is preferably 0.1 μm to 1 μm, more preferably 0.2 μm to 0.8 μm, and even more preferably 0.2 μm to 0.5 μm.
In the present disclosure, the average particle size of the light diffusing material can be measured as follows.
When the light diffusing material is contained in the resin composition, the extracted light diffusing material is dispersed in purified water containing a surfactant to obtain a dispersion liquid. In the volume-based particle size distribution measured by a laser diffraction type particle size distribution measuring device (for example, Shimadzu Corporation, SALD-3000J) using this dispersion, the value when the integration from the small diameter side is 50% ( The median diameter (D50)) is defined as the average particle size of the light diffusing material. As a method for extracting the light diffusing material from the resin composition, for example, the resin composition can be obtained by diluting the resin composition with a liquid medium, precipitating the light diffusing material by centrifugation or the like, and distributing the light diffusing material.
The average particle size of the light diffusing material in the cured product obtained by curing the resin composition containing the light diffusing material is the equivalent circle diameter (major axis) of 50 particles by observing the particles using a scanning electron microscope. The geometric mean of the minor axis) can be calculated and calculated as the arithmetic mean value.
 樹脂組成物中で光拡散材が凝集するのを抑制する観点から、光拡散材は、表面の少なくとも一部に有機物を含む有機物層を有することが好ましい。有機物層に含まれる有機物としては、有機シラン、オルガノシロキサン、フルオロシラン、有機ホスホネート、有機リン酸化合物、有機ホスフィネート、有機スルホン酸化合物、カルボン酸、カルボン酸エステル、カルボン酸の誘導体、アミド、炭化水素ワックス、ポリオレフィン、ポリオレフィンのコポリマー、ポリオール、ポリオールの誘導体、アルカノールアミン、アルカノールアミンの誘導体、有機分散剤等が挙げられる。
 有機物層に含まれる有機物は、ポリオール、有機シラン等を含むことが好ましく、ポリオール及び有機シランからなる群より選択される少なくとも一方を含むことがより好ましい。
 有機シランの具体例としては、オクチルトリエトキシシラン、ノニルトリエトキシシラン、デシルトリエトキシシラン、ドデシルトリエトキシシラン、トリデシルトリエトキシシラン、テトラデシルトリエトキシシラン、ペンタデシルトリエトキシシラン、ヘキサデシルトリエトキシシラン、ヘプタデシルトリエトキシシラン、オクタデシルトリエトキシシラン等が挙げられる。
 オルガノシロキサンの具体例としては、トリメチルシリル基で終端されたポリジメチルシロキサン(PDMS)、ポリメチルヒドロシロキサン(PMHS)、PMHSのオレフィンによる官能化(ヒドロシリル化による)により誘導されるポリシロキサン等が挙げられる。
 有機ホスホネートの具体例としては、例えば、n-オクチルホスホン酸及びそのエステル、n-デシルホスホン酸及びそのエステル、2-エチルヘキシルホスホン酸及びそのエステル並びにカンフィル(camphyl)ホスホン酸及びそのエステルが挙げられる。
 有機リン酸化合物の具体例としては、有機酸性ホスフェート、有機ピロホスフェート、有機ポリホスフェート、有機メタホスフェート、これらの塩等が挙げられる。
 有機ホスフィネートの具体例としては、例えば、n-ヘキシルホスフィン酸及びそのエステル、n-オクチルホスフィン酸及びそのエステル、ジ-n-ヘキシルホスフィン酸及びそのエステル並びにジ-n-オクチルホスフィン酸及びそのエステルが挙げられる。
 有機スルホン酸化合物の具体例としては、ヘキシルスルホン酸、オクチルスルホン酸、2-エチルヘキシルスルホン酸等のアルキルスルホン酸、これらアルキルスルホン酸と、ナトリウム、カルシウム、マグネシウム、アルミニウム、チタン等の金属イオン、アンモニウムイオン、トリエタノールアミン等の有機アンモニウムイオンなどとの塩が挙げられる。
 カルボン酸の具体例としては、マレイン酸、マロン酸、フマル酸、安息香酸、フタル酸、ステアリン酸、オレイン酸、リノール酸等が挙げられる。
 カルボン酸エステルの具体例としては、上記カルボン酸と、エチレングリコール、プロピレングリコール、トリメチロールプロパン、ジエタノールアミン、トリエタノールアミン、グリセロール、ヘキサントリオール、エリトリトール、マンニトール、ソルビトール、ペンタエリトリトール、ビスフェノールA、ヒドロキノン、フロログルシノール等のヒドロキシ化合物と、の反応により生成するエステル及び部分エステルが挙げられる。
 アミドの具体例としては、ステアリン酸アミド、オレイン酸アミド、エルカ酸アミド等が挙げられる。
 ポリオレフィン及びそのコポリマーの具体例としては、ポリエチレン、ポリプロピレン、エチレンと、プロピレン、ブチレン、酢酸ビニル、アクリレート、アクリルアミド等から選択される1種又は2種以上の化合物と、の共重合体などが挙げられる。
 ポリオールの具体例としては、グリセロール、トリメチロールエタン、トリメチロールプロパン等が挙げられる。
 アルカノールアミンの具体例としては、ジエタノールアミン、トリエタノールアミン等が挙げられる。
 有機分散剤の具体例としては、クエン酸、ポリアクリル酸、ポリメタクリル酸、陰イオン性、陽イオン性、双性、非イオン性等の官能基をもつ高分子有機分散剤などが挙げられる。
 樹脂組成物中における光拡散材の凝集が抑制されると、硬化物中における光拡散材の分散性が向上する傾向にある。
From the viewpoint of suppressing the aggregation of the light diffusing material in the resin composition, the light diffusing material preferably has an organic substance layer containing an organic substance on at least a part of the surface thereof. The organic substances contained in the organic substance layer include organic silane, organosiloxane, fluorosilane, organic phosphonate, organic phosphoric acid compound, organic phosphinate, organic sulfonic acid compound, carboxylic acid, carboxylic acid ester, carboxylic acid derivative, amide, and hydrocarbon. Examples thereof include waxes, polyolefins, copolymers of polyolefins, polyols, derivatives of polyols, alkanolamines, derivatives of alkanolamines, organic dispersants and the like.
The organic substance contained in the organic substance layer preferably contains a polyol, an organic silane, and the like, and more preferably contains at least one selected from the group consisting of the polyol and the organic silane.
Specific examples of organic silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, and hexadecyltriethoxysilane. Examples thereof include silane, heptadecyltriethoxysilane, and octadecyltriethoxysilane.
Specific examples of the organosiloxane include polydimethylsiloxane (PDMS) terminated with a trimethylsilyl group, polymethylhydrosiloxane (PMHS), polysiloxane induced by functionalization of PMHS with an olefin (by hydrosilylation), and the like. ..
Specific examples of organic phosphonates include n-octylphosphonic acid and its ester, n-decylphosphonic acid and its ester, 2-ethylhexylphosphonic acid and its ester, and camphyl phosphonic acid and its ester.
Specific examples of the organic phosphoric acid compound include organic acidic phosphate, organic pyrophosphate, organic polyphosphate, organic metaphosphate, salts thereof and the like.
Specific examples of the organic phosphinate include n-hexylphosphinic acid and its ester, n-octylphosphinic acid and its ester, di-n-hexylphosphinic acid and its ester, and di-n-octylphosphinic acid and its ester. Can be mentioned.
Specific examples of the organic sulfonic acid compound include alkyl sulfonic acids such as hexyl sulfonic acid, octyl sulfonic acid, and 2-ethylhexyl sulfonic acid, these alkyl sulfonic acids, metal ions such as sodium, calcium, magnesium, aluminum, and titanium, and ammonium. Examples thereof include salts with ions and organic ammonium ions such as triethanolamine.
Specific examples of the carboxylic acid include maleic acid, malonic acid, fumaric acid, benzoic acid, phthalic acid, stearic acid, oleic acid, linoleic acid and the like.
Specific examples of the carboxylic acid ester include the above carboxylic acid, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, pentaerythritol, bisphenol A, hydroquinone, and flo. Examples thereof include esters and partial esters produced by the reaction with a hydroxy compound such as loglucinol.
Specific examples of the amide include stearic acid amide, oleic acid amide, and erucic acid amide.
Specific examples of the polyolefin and its copolymer include a copolymer of polyethylene, polypropylene, ethylene and one or more compounds selected from propylene, butylene, vinyl acetate, acrylate, acrylamide and the like. ..
Specific examples of the polyol include glycerol, trimethylolethane, trimethylolpropane and the like.
Specific examples of the alkanolamine include diethanolamine and triethanolamine.
Specific examples of the organic dispersant include high molecular weight organic dispersants having functional groups such as citric acid, polyacrylic acid, polymethacrylic acid, anionic, cationic, zwitterionic, and nonionic.
When the aggregation of the light diffusing material in the resin composition is suppressed, the dispersibility of the light diffusing material in the cured product tends to be improved.
 光拡散材は、表面の少なくとも一部に金属酸化物を含む金属酸化物層を有していてもよい。金属酸化物層に含まれる金属酸化物としては、二酸化ケイ素、酸化アルミニウム、ジルコニア、ホスホリア(phosphoria)、ボリア(boria)等が挙げられる。金属酸化物層は一層であっても二層以上であってもよい。光拡散材が二層の金属酸化物層を有する場合、二酸化ケイ素を含む第一金属酸化物層及び酸化アルミニウムを含む第二金属酸化物層を含むものであることが好ましい。
 光拡散材が金属酸化物層を有することで、硬化物中における光拡散材の分散性が向上する傾向にある。
The light diffusing material may have a metal oxide layer containing a metal oxide on at least a part of the surface thereof. Examples of the metal oxide contained in the metal oxide layer include silicon dioxide, aluminum oxide, zirconia, phosphoria, and boria. The metal oxide layer may be one layer or two or more layers. When the light diffusing material has two metal oxide layers, it preferably contains a first metal oxide layer containing silicon dioxide and a second metal oxide layer containing aluminum oxide.
When the light diffusing material has a metal oxide layer, the dispersibility of the light diffusing material in the cured product tends to be improved.
 光拡散材が有機物を含む有機物層と金属酸化物層とを有する場合、光拡散材の表面に、金属酸化物層及び有機物層が、金属酸化物層及び有機物層の順に設けられることが好ましい。
 光拡散材が有機物層と二層の金属酸化物層とを有するものである場合、光拡散材の表面に、二酸化ケイ素を含む第一金属酸化物層、酸化アルミニウムを含む第二金属酸化物層及び有機物層が、第一金属酸化物層、第二金属酸化物層及び有機物層の順に設けられる(有機物層が最外層となる)ことが好ましい。
When the light diffusing material has an organic material layer containing an organic substance and a metal oxide layer, it is preferable that the metal oxide layer and the organic material layer are provided on the surface of the light diffusing material in the order of the metal oxide layer and the organic material layer.
When the light diffusing material has an organic material layer and two metal oxide layers, a first metal oxide layer containing silicon dioxide and a second metal oxide layer containing aluminum oxide are formed on the surface of the light diffusing material. It is preferable that the organic material layer is provided in the order of the first metal oxide layer, the second metal oxide layer, and the organic material layer (the organic material layer is the outermost layer).
 樹脂組成物が光拡散材を含有する場合、樹脂組成物を硬化して形成される波長変換層における光拡散材の含有率は、波長変換層の全量に対して、例えば、0.1質量%~1.0質量%であることが好ましく、0.2質量%~1.0質量%であることがより好ましく、0.3質量%~1.0質量%であることがさらに好ましい。 When the resin composition contains a light diffusing material, the content of the light diffusing material in the wavelength conversion layer formed by curing the resin composition is, for example, 0.1% by mass with respect to the total amount of the wavelength conversion layer. It is preferably ~ 1.0% by mass, more preferably 0.2% by mass to 1.0% by mass, and even more preferably 0.3% by mass to 1.0% by mass.
(液状媒体)
 樹脂組成物は、液状媒体をさらに含有していてもよい。液状媒体とは、25℃において液体の状態の媒体をいう。
(Liquid medium)
The resin composition may further contain a liquid medium. The liquid medium means a medium in a liquid state at 25 ° C.
 液状媒体の具体例としては、アセトン、メチルエチルケトン、メチル-n-プロピルケトン、メチルイソプロピルケトン、メチル-n-ブチルケトン、メチルイソブチルケトン、メチル-n-ペンチルケトン、メチル-n-ヘキシルケトン、ジエチルケトン、ジプロピルケトン、ジイソブチルケトン、トリメチルノナノン、シクロヘキサノン、シクロペンタノン、メチルシクロヘキサノン、2,4-ペンタンジオン、アセトニルアセトン等のケトン溶剤;ジエチルエーテル、メチルエチルエーテル、メチル-n-プロピルエーテル、ジイソプロピルエーテル、テトラヒドロフラン、メチルテトラヒドロフラン、ジオキサン、ジメチルジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジ-n-プロピルエーテル、エチレングリコールジ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールメチル-n-プロピルエーテル、ジエチレングリコールメチル-n-ブチルエーテル、ジエチレングリコールジ-n-プロピルエーテル、ジエチレングリコールジ-n-ブチルエーテル、ジエチレングリコールメチル-n-ヘキシルエーテル、トリエチレングリコールジメチルエーテル、トリエチレングリコールジエチルエーテル、トリエチレングリコールメチルエチルエーテル、トリエチレングリコールメチル-n-ブチルエーテル、トリエチレングリコールジ-n-ブチルエーテル、トリエチレングリコールメチル-n-ヘキシルエーテル、テトラエチレングリコールジメチルエーテル、テトラエチレングリコールジエチルエーテル、テトラエチレングリコールメチルエチルエーテル、テトラエチレングリコールメチル-n-ブチルエーテル、テトラエチレングリコールジ-n-ブチルエーテル、テトラエチレングリコールメチル-n-ヘキシルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、プロピレングリコールジ-n-プロピルエーテル、プロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールジエチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールメチル-n-ブチルエーテル、ジプロピレングリコールジ-n-プロピルエーテル、ジプロピレングリコールジ-n-ブチルエーテル、ジプロピレングリコールメチル-n-ヘキシルエーテル、トリプロピレングリコールジメチルエーテル、トリプロピレングリコールジエチルエーテル、トリプロピレングリコールメチルエチルエーテル、トリプロピレングリコールメチル-n-ブチルエーテル、トリプロピレングリコールジ-n-ブチルエーテル、トリプロピレングリコールメチル-n-ヘキシルエーテル、テトラプロピレングリコールジメチルエーテル、テトラプロピレングリコールジエチルエーテル、テトラプロピレングリコールメチルエチルエーテル、テトラプロピレングリコールメチル-n-ブチルエーテル、テトラプロピレングリコールジ-n-ブチルエーテル、テトラプロピレングリコールメチル-n-ヘキシルエーテル等のエーテル溶剤;プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等のカーボネート溶剤;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、酢酸sec-ブチル、酢酸n-ペンチル、酢酸sec-ペンチル、酢酸3-メトキシブチル、酢酸メチルペンチル、酢酸2-エチルブチル、酢酸2-エチルヘキシル、酢酸2-(2-ブトキシエトキシ)エチル、酢酸ベンジル、酢酸シクロヘキシル、酢酸メチルシクロヘキシル、酢酸ノニル、アセト酢酸メチル、アセト酢酸エチル、酢酸ジエチレングリコールメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジプロピレングリコールメチルエーテル、酢酸ジプロピレングリコールエチルエーテル、ジ酢酸グリコール、酢酸メトキシトリエチレングリコール、プロピオン酸エチル、プロピオン酸n-ブチル、プロピオン酸イソアミル、シュウ酸ジエチル、シュウ酸ジ-n-ブチル、乳酸メチル、乳酸エチル、乳酸n-ブチル、乳酸n-アミル、エチレングリコールメチルエーテルプロピオネート、エチレングリコールエチルエーテルプロピオネート、エチレングリコールメチルエーテルアセテート、エチレングリコールエチルエーテルアセテート、プロピレングリコールメチルエーテルアセテート、プロピレングリコールエチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、γ-ブチロラクトン、γ-バレロラクトン等のエステル溶剤;アセトニトリル、N-メチルピロリジノン、N-エチルピロリジノン、N-プロピルピロリジノン、N-ブチルピロリジノン、N-ヘキシルピロリジノン、N-シクロヘキシルピロリジノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等の非プロトン性極性溶剤;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、n-ペンタノール、イソペンタノール、2-メチルブタノール、sec-ペンタノール、t-ペンタノール、3-メトキシブタノール、n-ヘキサノール、2-メチルペンタノール、sec-ヘキサノール、2-エチルブタノール、sec-ヘプタノール、n-オクタノール、2-エチルヘキサノール、sec-オクタノール、n-ノニルアルコール、n-デカノール、sec-ウンデシルアルコール、トリメチルノニルアルコール、sec-テトラデシルアルコール、sec-ヘプタデシルアルコール、シクロヘキサノール、メチルシクロヘキサノール、ベンジルアルコール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール等のアルコール溶剤;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノ-n-ヘキシルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル等のグリコールモノエーテル溶剤;テルピネン、テルピネオール、ミルセン、アロオシメン、リモネン、ジペンテン、ピネン、カルボン、オシメン、フェランドレン等のテルペン溶剤;ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイル;アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシ変性シリコーンオイル、カルビノール変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸変性シリコーンオイル、フッ素変性シリコーンオイル等の変性シリコーンオイル;ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、ウンデカン酸、ドデカン酸、トリデカン酸、テトラデカン酸、ペンタデカン酸、ヘキサデカン酸、ヘプタデカン酸、オクタデカン酸、ノナデカン酸、イコサン酸、エイコセン酸等の炭素数4以上の飽和脂肪族モノカルボン酸;オレイン酸、エライジン酸、リノール酸、パルミトレイン酸等の炭素数8以上の不飽和脂肪族モノカルボン酸;などが挙げられる。樹脂組成物が液状媒体を含有する場合、樹脂組成物は、1種類の液状媒体を単独で含有していてもよく、2種類以上の液状媒体を組み合わせて含有していてもよい。 Specific examples of the liquid medium include acetone, methyl ethyl ketone, methyl-n-propyl ketone, methyl isopropyl ketone, methyl-n-butyl ketone, methyl isobutyl ketone, methyl-n-pentyl ketone, methyl-n-hexyl ketone, diethyl ketone, and the like. Ketone solvents such as dipropyl ketone, diisobutyl ketone, trimethylnonanone, cyclohexanone, cyclopentanone, methylcyclohexanone, 2,4-pentandione, acetonylacetone; diethyl ether, methyl ethyl ether, methyl-n-propyl ether, diisopropyl Ether, tetrahydrofuran, methyl tetrahydrofuran, dioxane, dimethyl dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol di-n-propyl ether, ethylene glycol di-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, Diethylene glycol methyl-n-propyl ether, diethylene glycol methyl-n-butyl ether, diethylene glycol di-n-propyl ether, diethylene glycol di-n-butyl ether, diethylene glycol methyl-n-hexyl ether, triethylene glycol dimethyl ether, triethylene glycol diethyl ether, tri Ethylene glycol methyl ethyl ether, triethylene glycol methyl-n-butyl ether, triethylene glycol di-n-butyl ether, triethylene glycol methyl-n-hexyl ether, tetraethylene glycol dimethyl ether, tetraethylene glycol diethyl ether, tetraethylene glycol methyl ethyl Ether, tetraethylene glycol methyl-n-butyl ether, tetraethylene glycol di-n-butyl ether, tetraethylene glycol methyl-n-hexyl ether, propylene glycol dimethyl ether, propylene glycol diethyl ether, propylene glycol di-n-propyl ether, propylene glycol Di-n-butyl ether, dipropylene glycol dimethyl ether, dipropylene glycol diethyl ether, dipropylene glycol methyl ethyl ether, dipropylene glycol methyl-n-butyl ether, dipropi Lenglycol di-n-propyl ether, dipropylene glycol di-n-butyl ether, dipropylene glycol methyl-n-hexyl ether, tripropylene glycol dimethyl ether, tripropylene glycol diethyl ether, tripropylene glycol methyl ethyl ether, tripropylene glycol methyl -N-butyl ether, tripropylene glycol di-n-butyl ether, tripropylene glycol methyl-n-hexyl ether, tetrapropylene glycol dimethyl ether, tetrapropylene glycol diethyl ether, tetrapropylene glycol methyl ethyl ether, tetrapropylene glycol methyl-n-butyl ether , Tetrapropylene glycol di-n-butyl ether, tetrapropylene glycol methyl-n-hexyl ether and other ether solvents; propylene carbonate, ethylene carbonate, diethyl carbonate and other carbonate solvents; methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate , N-butyl acetate, isobutyl acetate, sec-butyl acetate, n-pentyl acetate, sec-pentyl acetate, 3-methoxybutyl acetate, methylpentyl acetate, 2-ethylbutyl acetate, 2-ethylhexyl acetate, 2- (2- (2-) Butoxyethoxy) ethyl, benzyl acetate, cyclohexyl acetate, methylcyclohexyl acetate, nonyl acetate, methyl acetoacetate, ethyl acetoacetate, diethylene glycol methyl ether acetate, diethylene glycol monoethyl ether acetate, dipropylene glycol methyl ether acetate, dipropylene glycol ethyl acetate ether , Glycol diacetate, methoxytriethylene glycol acetate, ethyl propionate, n-butyl propionate, isoamyl propionate, diethyl oxalate, di-n-butyl oxalate, methyl lactate, ethyl lactate, n-butyl lactate, n lactate -Amil, ethylene glycol methyl ether propionate, ethylene glycol ethyl ether propionate, ethylene glycol methyl ether acetate, ethylene glycol ethyl ether acetate, propylene glycol methyl ether acetate, propylene glycol ethyl ether acetate, propylene glycol propyl ether acetate, γ -Ester solvents such as butyrolactone and γ-valerolactone; acetonitrile, N- Aprotonic polarities such as methylpyrrolidinone, N-ethylpyrrolidinone, N-propylpyrrolidinone, N-butylpyrrolidinone, N-hexylpyrrolidinone, N-cyclohexylpyrrolidinone, N, N-dimethylformamide, N, N-dimethylacetamide, dimethylsulfoxide, etc. Solvents: methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, sec-butanol, t-butanol, n-pentanol, isopentanol, 2-methylbutanol, sec-pentanol, t-pentanol , 3-methoxybutanol, n-hexanol, 2-methylpentanol, sec-hexanol, 2-ethylbutanol, sec-heptanol, n-octanol, 2-ethylhexanol, sec-octanol, n-nonyl alcohol, n-decanol , Se-undecyl alcohol, trimethylnonyl alcohol, sec-tetradecyl alcohol, sec-heptadecyl alcohol, cyclohexanol, methylcyclohexanol, benzyl alcohol, ethylene glycol, 1,2-propylene glycol, 1,3-butylene glycol, Alcohol solvents such as diethylene glycol, dipropylene glycol, triethylene glycol, and tripropylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monophenyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether. , Diethylene glycol mono-n-hexyl ether, triethylene glycol monoethyl ether, tetraethylene glycol mono-n-butyl ether, propylene glycol monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, etc. Glycol monoether solvent; terpene solvent such as terpinene, terpineol, milsen, aloosimene, limonene, dipentene, pinene, carboxylic, ossimen, ferlandrene; straight silicone oil such as dimethyl silicone oil, methylphenyl silicone oil, methylhydrogen silicone oil; Amino-modified silicone oil, epoxy-modified silicone oil, cal Boxy-modified silicone oil, carbinol-modified silicone oil, mercapto-modified silicone oil, heterologous functional group-modified silicone oil, polyether-modified silicone oil, methylstyryl-modified silicone oil, hydrophilic special-modified silicone oil, higher alkoxy-modified silicone oil, higher fatty acid Modified silicone oils such as modified silicone oils and fluorine-modified silicone oils; butanoic acid, pentanoic acid, hexanoic acid, heptanic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, dodecanoic acid, tridecanoic acid, tetradecanoic acid, pentadecanoic acid, Saturated aliphatic monocarboxylic acids having 4 or more carbon atoms such as hexadecanoic acid, heptadecanoic acid, octadecanoic acid, nonadecanic acid, icosanoic acid, and eicosenoic acid; Saturated aliphatic monocarboxylic acids; and the like. When the resin composition contains a liquid medium, the resin composition may contain one kind of liquid medium alone or a combination of two or more kinds of liquid media.
 樹脂組成物が液状媒体を含有する場合、樹脂組成物中の液状媒体の含有率は、樹脂組成物の全量に対して、例えば、1質量%~10質量%であることが好ましく、4質量%~10質量%であることがより好ましく、4質量%~7質量%であることがさらに好ましい。 When the resin composition contains a liquid medium, the content of the liquid medium in the resin composition is preferably, for example, 1% by mass to 10% by mass, and 4% by mass, based on the total amount of the resin composition. It is more preferably from 10% by mass to 10% by mass, and even more preferably from 4% by mass to 7% by mass.
(その他の成分)
 樹脂組成物は、上述した成分以外の成分をさらに含有していてもよい。例えば、樹脂組成物は、重合禁止剤、シランカップリング剤、界面活性剤、密着付与剤、酸化防止剤、光安定剤などの成分をさらに含有していてもよい。各成分は、1種を単独で用いても2種以上を併用してもよい。
(Other ingredients)
The resin composition may further contain components other than the above-mentioned components. For example, the resin composition may further contain components such as a polymerization inhibitor, a silane coupling agent, a surfactant, an adhesion imparting agent, an antioxidant, and a light stabilizer. Each component may be used alone or in combination of two or more.
(樹脂組成物の調製方法)
 樹脂組成物は、蛍光体、重合性化合物、光重合開始剤、及び必要に応じてその他の成分を常法により混合することで調製することができる。
(Method for preparing resin composition)
The resin composition can be prepared by mixing a phosphor, a polymerizable compound, a photopolymerization initiator, and if necessary, other components by a conventional method.
 波長変換層は、1種類の樹脂組成物を硬化したものであってもよく、2種類以上の樹脂組成物を硬化したものであってもよい。例えば、波長変換部材がフィルム状である場合、波長変換層は、第1の蛍光体を含有する樹脂組成物を硬化した第1の硬化物層と、第1の蛍光体とは発光特性が異なる第2の蛍光体を含有する樹脂組成物を硬化した第2の硬化物層と、が積層されたものであってもよい。 The wavelength conversion layer may be one obtained by curing one kind of resin composition, or may be one obtained by curing two or more kinds of resin compositions. For example, when the wavelength conversion member is in the form of a film, the wavelength conversion layer has different emission characteristics from the first cured product layer obtained by curing the resin composition containing the first phosphor and the first phosphor. A second cured product layer obtained by curing the resin composition containing the second phosphor may be laminated.
 波長変換層の平均厚みは特に制限されず、例えば、50μm~200μmであることが好ましく、50μm~150μmであることがより好ましく、80μm~120μmであることがさらに好ましい。波長変換層の平均厚みが50μm以上であると、波長変換効率がより向上する傾向にあり、波長変換層の平均厚みが200μm以下であると、後述するバックライトユニットに波長変換部材を適用した場合に、バックライトユニットをより薄型化できる傾向にある。波長変換層の平均厚みは、例えば、マイクロメータを用いて測定した任意の3箇所の厚みの算術平均値として求められる。 The average thickness of the wavelength conversion layer is not particularly limited, and is preferably, for example, 50 μm to 200 μm, more preferably 50 μm to 150 μm, and even more preferably 80 μm to 120 μm. When the average thickness of the wavelength conversion layer is 50 μm or more, the wavelength conversion efficiency tends to be further improved, and when the average thickness of the wavelength conversion layer is 200 μm or less, when the wavelength conversion member is applied to the backlight unit described later. In addition, there is a tendency that the backlight unit can be made thinner. The average thickness of the wavelength conversion layer is obtained as, for example, an arithmetic mean value of the thicknesses of any three points measured using a micrometer.
 波長変換層は、例えば、樹脂組成物の塗膜、成形体等を形成し、必要に応じて乾燥処理を行った後、紫外線等の活性エネルギー線を照射することにより得ることができる。活性エネルギー線の波長及び照射量は、樹脂組成物の組成に応じて適宜設定することができる。一態様では、280nm~400nmの波長の紫外線を100mJ/cm~5000mJ/cmの照射量で照射する。紫外線源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯等が挙げられる。 The wavelength conversion layer can be obtained, for example, by forming a coating film, a molded product, or the like of a resin composition, performing a drying treatment as necessary, and then irradiating with active energy rays such as ultraviolet rays. The wavelength and irradiation amount of the active energy rays can be appropriately set according to the composition of the resin composition. In one aspect, it is irradiated with ultraviolet rays having a wavelength of 280 nm ~ 400 nm at an irradiation amount of 100mJ / cm 2 ~ 5000mJ / cm 2. Examples of the ultraviolet source include low-pressure mercury lamps, medium-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, carbon arc lamps, metal halide lamps, xenon lamps, chemical lamps, black light lamps, microwave-excited mercury lamps, and the like.
<被覆材>
 被覆材は、波長変換層の一方の主面上又は両方の主面上に配置される。本開示において波長変換層の「主面」とは波長変換層の最も大きい面積を有する向かい合う2つの面を表す。波長変換層の「側面」とは波長変換層の主面以外の面を表す。波長変換部材に含まれる波長変換層以外の層についても同様である。「主面」及び「側面」は平面であってもよく曲面を有していてもよい。被覆材は、波長変換層の両方の主面上に配置されることが好ましい。
<Coating material>
The coating material is arranged on one main surface of the wavelength conversion layer or on both main surfaces. In the present disclosure, the "main surface" of the wavelength conversion layer represents two facing surfaces having the largest area of the wavelength conversion layer. The "side surface" of the wavelength conversion layer represents a surface other than the main surface of the wavelength conversion layer. The same applies to layers other than the wavelength conversion layer included in the wavelength conversion member. The "main surface" and the "side surface" may be flat or have a curved surface. The covering material is preferably placed on both main surfaces of the wavelength conversion layer.
 被覆材の材質は特に制限されず、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル;ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン;ナイロン等のポリアミド;エチレン-ビニルアルコール共重合体(EVOH)などであってもよい。入手容易性の観点からは、被覆材の材質はポリエチレンテレフタレート及びポリプロピレンからなる群より選択される少なくとも1つが好ましい。 The material of the covering material is not particularly limited, and polyester such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefin such as polyethylene (PE) and polypropylene (PP); polyamide such as nylon; ethylene-vinyl alcohol co-weight. It may be coalescence (EVOH) or the like. From the viewpoint of availability, the material of the coating material is preferably at least one selected from the group consisting of polyethylene terephthalate and polypropylene.
 被覆材は、蛍光体の発光効率の低下を抑える観点から、酸素及び水からなる群より選択される少なくとも一方に対するバリア性を有することが好ましく、酸素及び水の両方に対するバリア性を有することがより好ましい。酸素及び水からなる群より選択される少なくとも一方に対するバリア性を有する被覆材としては特に制限されず、基材層と無機層とを有するバリアフィルム等が挙げられる。基材層としては上述の材質から形成される基材層が挙げられる。無機層を形成する無機物としてはシリカ、アルミナ等が挙げられる。基材層と無機層とを有するバリアフィルムの作製方法は特に制限されず、例えば基材層の片面又は両面に無機物を蒸着する方法が挙げられる。 The coating material preferably has a barrier property against at least one selected from the group consisting of oxygen and water, and more preferably has a barrier property against both oxygen and water, from the viewpoint of suppressing a decrease in the luminous efficiency of the phosphor. preferable. The coating material having a barrier property against at least one selected from the group consisting of oxygen and water is not particularly limited, and examples thereof include a barrier film having a base material layer and an inorganic layer. Examples of the base material layer include a base material layer formed from the above-mentioned materials. Examples of the inorganic substance forming the inorganic layer include silica and alumina. The method for producing the barrier film having the base material layer and the inorganic layer is not particularly limited, and examples thereof include a method of depositing an inorganic substance on one side or both sides of the base material layer.
 被覆材が基材層と無機層とを有するバリアフィルムである場合、波長変換部材における被覆材と波長変換層の配置方法は特に制限されず、無機層が波長変換部材と対向する配置とすることが好ましい。すなわち無機層が基材層と波長変換層の間に配置されることが好ましい。これにより好適にバリア機能を発揮できる傾向にある。 When the coating material is a barrier film having a base material layer and an inorganic layer, the method of arranging the coating material and the wavelength conversion layer in the wavelength conversion member is not particularly limited, and the inorganic layer is arranged so as to face the wavelength conversion member. Is preferable. That is, it is preferable that the inorganic layer is arranged between the base material layer and the wavelength conversion layer. As a result, the barrier function tends to be suitably exhibited.
 被覆材の酸素透過率は、例えば、1.0mL/(m・24h・atm)以下であることが好ましく、0.8mL/(m・24h・atm)以下であることがより好ましく、0.6mL/(m・24h・atm)以下であることがさらに好ましい。被覆材の酸素透過率は、酸素透過率測定装置(例えば、MOCON社、OX-TRAN)を用いて、温度23℃かつ相対湿度90%の条件で測定することができる。 Oxygen permeability of the dressing, for example, is preferably 1.0mL / (m 2 · 24h · atm) or less, more preferably 0.8mL / (m 2 · 24h · atm) or less, 0 and more preferably .6mL / (m 2 · 24h · atm) or less. The oxygen permeability of the coating material can be measured using an oxygen permeability measuring device (for example, MOCON, OX-TRAN) under the conditions of a temperature of 23 ° C. and a relative humidity of 90%.
 また、被覆材の水蒸気透過率は、例えば、1×10g/(m・24h)以下であることが好ましく、8×10-1g/(m・24h)以下であることがより好ましく、6×10-1g/(m・24h)以下であることがさらに好ましい。被覆材の水蒸気透過率は、水蒸気透過率測定装置(例えば、MOCON社、AQUATRAN)を用いて、温度40℃かつ相対湿度100%の条件で測定することができる。 Further, the water vapor permeability of the dressing, for example, more that that 1 × 10 is 0 g / (m 2 · 24h ) or less preferably, 8 × 10 -1 g / ( m 2 · 24h) or less preferably, and more preferably 6 × 10 -1 g / (m 2 · 24h) or less. The water vapor permeability of the coating material can be measured using a water vapor permeability measuring device (for example, MOCON, AQUATRAN) under the conditions of a temperature of 40 ° C. and a relative humidity of 100%.
 被覆材はシート状であることが好ましい。被覆材の平均厚みは、例えば、10μm~200μmであることが好ましく、12μm~170μmであることがより好ましく、15μm~150μmであることがさらに好ましい。平均厚みが10μm以上であると、バリア性等の機能が充分なものとなる傾向にあり、平均厚みが200μm以下であると、光透過率の低下が抑えられる傾向にある。
 被覆材の平均厚みは、例えば、マイクロメータを用いて測定した任意の3箇所の厚みの算術平均値として求められる。
The covering material is preferably in the form of a sheet. The average thickness of the covering material is, for example, preferably 10 μm to 200 μm, more preferably 12 μm to 170 μm, and even more preferably 15 μm to 150 μm. When the average thickness is 10 μm or more, the functions such as barrier property tend to be sufficient, and when the average thickness is 200 μm or less, the decrease in light transmittance tends to be suppressed.
The average thickness of the covering material is obtained as, for example, an arithmetic mean value of the thicknesses of any three points measured using a micrometer.
<保護層>
 保護層は、金属酸化物層及び樹脂層を含み、波長変換層の側面に配置される。金属酸化物は金属に比べて緻密であり、化学的に安定であるため、端部における輝度低下の抑制効果を良好に発揮することが可能である。また、保護層が樹脂層を含むことによって、波長変換部材の端部における輝度低下をより良好に抑制することができる傾向にある。この理由は必ずしも定かではないが、樹脂層の導入により保護層と波長変換層との熱膨張係数の差が緩和され、温度変化に伴う波長変換部材の膨張又は収縮により金属酸化物層のバリア性が低下することが抑制されるためと推測される。
<Protective layer>
The protective layer includes a metal oxide layer and a resin layer, and is arranged on the side surface of the wavelength conversion layer. Since the metal oxide is denser than the metal and is chemically stable, it is possible to satisfactorily exert the effect of suppressing the decrease in brightness at the end portion. Further, when the protective layer contains the resin layer, the decrease in brightness at the end portion of the wavelength conversion member tends to be suppressed more satisfactorily. The reason for this is not always clear, but the introduction of the resin layer alleviates the difference in the coefficient of thermal expansion between the protective layer and the wavelength conversion layer, and the expansion or contraction of the wavelength conversion member with temperature changes causes the barrier property of the metal oxide layer. It is presumed that this is because the decrease in is suppressed.
 金属酸化物層に含まれる金属酸化物としては、シリカ、アルミナ、酸化ニオブ、酸化セリウム、酸化チタン等が挙げられる。金属酸化物は1種を単独で用いても2種以上を併用してもよい。なかでも、シリカとアルミナとを併用することが好ましい。 Examples of the metal oxide contained in the metal oxide layer include silica, alumina, niobium oxide, cerium oxide, and titanium oxide. One type of metal oxide may be used alone, or two or more types may be used in combination. Of these, it is preferable to use silica and alumina together.
 樹脂層を形成する樹脂としては、アクリル系樹脂、ウレタン系樹脂、チオール系樹脂、フッ素系樹脂等が挙げられ、なかでもアクリル系樹脂が好ましい。アクリル系樹脂としては、ポリ(メタ)アクリル酸エステル、(メタ)アクリル酸エステルと他の成分との共重合体等が挙げられる。アクリル系樹脂としては、例えばポリメチルメタクリレート(PMMA)が挙げられる。樹脂層を形成する樹脂は、1種を単独で用いても2種以上を併用してもよい。 Examples of the resin forming the resin layer include acrylic resin, urethane resin, thiol resin, fluorine resin and the like, and among them, acrylic resin is preferable. Examples of the acrylic resin include poly (meth) acrylic acid ester and a copolymer of (meth) acrylic acid ester and other components. Examples of the acrylic resin include polymethylmethacrylate (PMMA). As the resin forming the resin layer, one type may be used alone or two or more types may be used in combination.
 保護層は、例えば、樹脂層である基材上に金属酸化物層を形成してなる保護層であってもよい。金属酸化物の形成方法は特に制限されず、原子層堆積法、スパッタリング、化学気相成長法(CVD)、物理気相成長法(PVD)、分子線エピタキシー法(MBE)等が挙げられる。なかでも、原子層堆積法によれば、ピンホールの発生を抑制して緻密な金属酸化物層を形成することが可能であり、バリア性の観点から好ましい。また、波長変換層に含まれる蛍光体が高温により劣化しやすい性質を有する蛍光体である場合(量子ドット蛍光体等)、室温原子層堆積法が有用である。室温原子層堆積法によれば、熱により蛍光体を劣化させることなく、より良好に端部の輝度低下を抑制することができる。 The protective layer may be, for example, a protective layer formed by forming a metal oxide layer on a base material which is a resin layer. The method for forming the metal oxide is not particularly limited, and examples thereof include an atomic layer deposition method, sputtering, a chemical vapor deposition method (CVD), a physical vapor deposition method (PVD), and a molecular beam epitaxy method (MBE). Among them, according to the atomic layer deposition method, it is possible to suppress the occurrence of pinholes and form a dense metal oxide layer, which is preferable from the viewpoint of barrier properties. Further, when the phosphor contained in the wavelength conversion layer is a phosphor having a property of being easily deteriorated by high temperature (quantum dot phosphor or the like), the room temperature atomic layer deposition method is useful. According to the room temperature atomic layer deposition method, it is possible to better suppress the decrease in brightness at the end without deteriorating the phosphor due to heat.
 保護層は、金属酸化物層及び樹脂層以外の層を含んでいてもよい。波長変換部材の端部における輝度低下をより良好に抑制する観点からは、保護層は、金属酸化物層と樹脂層とを含み、金属酸化物層と樹脂層とが隣接した構成を採っていることが好ましい。また、製造の簡略化の観点からは、保護層は金属酸化物層と樹脂層とからなり(すなわち金属酸化物及び樹脂層のみを含み)他の層を含まない構成としてもよい。 The protective layer may include a layer other than the metal oxide layer and the resin layer. From the viewpoint of better suppressing the decrease in brightness at the end of the wavelength conversion member, the protective layer includes a metal oxide layer and a resin layer, and the metal oxide layer and the resin layer are adjacent to each other. Is preferable. Further, from the viewpoint of simplification of production, the protective layer may be composed of a metal oxide layer and a resin layer (that is, includes only the metal oxide and the resin layer) and may not include other layers.
 保護層は波長変換層の側面の少なくとも一部に配置されていればよく、波長変換層の側面全体に配置されていてもよく、波長変換層の側面以外にさらに配置されていてもよい。例えば、保護層は波長変換層の一方の主面上又は両方の主面上に被覆材が配置されてなる積層体の側面の一部又は全体に配置されていてもよい。さらに、保護層は、波長変換層の一方の主面上又は両方の主面上に被覆材が配置されてなる積層体の外周面を被覆していてもよい。本開示において層状の部材の外周面とは層状の部材の主面と側面とを含む面を表す。 The protective layer may be arranged on at least a part of the side surface of the wavelength conversion layer, may be arranged on the entire side surface of the wavelength conversion layer, or may be further arranged on the side surface of the wavelength conversion layer. For example, the protective layer may be arranged on a part or the whole of the side surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer. Further, the protective layer may cover the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer. In the present disclosure, the outer peripheral surface of the layered member represents a surface including the main surface and the side surface of the layered member.
 一態様において、保護層に含まれる金属酸化物層が、波長変換層の一方の主面上又は両方の主面上に被覆材が配置されてなる積層体の外周面を被覆しているか、又は樹脂層に被覆された、前記波長変換層の一方の主面上又は両方の主面上に被覆材が配置されてなる積層体の外周面を被覆していてもよい。 In one embodiment, the metal oxide layer contained in the protective layer covers the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer. The outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer coated on the resin layer may be coated.
 一態様では、波長変換層の側面において、金属酸化物層は樹脂層よりも外側に配置されていてもよい。したがって、波長変換層の側面において、波長変換層側から、樹脂層及び金属酸化物層がこの順に配置されていてもよい。逆に、波長変換層の側面において、樹脂層は金属酸化物層よりも外側に配置されていてもよい。したがって、波長変換層の側面において、波長変換層側から、金属酸化物層及び樹脂層がこの順に配置されていてもよい。さらなる一態様では、波長変換層の側面において、金属酸化物層が最外層を形成していてもよく、樹脂層が最外面を形成していてもよい。 In one aspect, the metal oxide layer may be arranged outside the resin layer on the side surface of the wavelength conversion layer. Therefore, on the side surface of the wavelength conversion layer, the resin layer and the metal oxide layer may be arranged in this order from the wavelength conversion layer side. On the contrary, on the side surface of the wavelength conversion layer, the resin layer may be arranged outside the metal oxide layer. Therefore, on the side surface of the wavelength conversion layer, the metal oxide layer and the resin layer may be arranged in this order from the wavelength conversion layer side. In a further aspect, the metal oxide layer may form the outermost layer or the resin layer may form the outermost surface on the side surface of the wavelength conversion layer.
 保護層の平均厚みは特に制限されない。例えば、保護層の平均厚みは、5nm~500nmであることが好ましく、10nm~300nmであることがより好ましく、20nm~100nmであることがさらに好ましく、30nm~90nmであることが特に好ましい。保護層の平均厚みが5nm以上であると、輝度の低下がより良好に抑制される傾向にある。保護層の平均厚みが500nm以下であると、製造コストを抑えることができる傾向にある。   The average thickness of the protective layer is not particularly limited. For example, the average thickness of the protective layer is preferably 5 nm to 500 nm, more preferably 10 nm to 300 nm, further preferably 20 nm to 100 nm, and particularly preferably 30 nm to 90 nm. When the average thickness of the protective layer is 5 nm or more, the decrease in brightness tends to be suppressed more satisfactorily. When the average thickness of the protective layer is 500 nm or less, the manufacturing cost tends to be suppressed.
 保護層中の金属酸化物層の厚み(金属酸化物層に複数の金属酸化物が含まれる場合には、当該複数の金属酸化物により形成される金属酸化物層の合計の厚み)は、0.1nm~100nmであることが好ましく、0.5nm~50nmであることがより好ましく、1nm~40nmであることがさらに好ましい。金属酸化物層の厚みが0.1nm以上であると、十分なバリア性が得られる傾向にあり、金属酸化物層の厚みが100nm以下であると、製造コストを抑えることができる傾向にある。 The thickness of the metal oxide layer in the protective layer (when the metal oxide layer contains a plurality of metal oxides, the total thickness of the metal oxide layers formed by the plurality of metal oxides) is 0. It is preferably 1 nm to 100 nm, more preferably 0.5 nm to 50 nm, and even more preferably 1 nm to 40 nm. When the thickness of the metal oxide layer is 0.1 nm or more, sufficient barrier properties tend to be obtained, and when the thickness of the metal oxide layer is 100 nm or less, the production cost tends to be suppressed.
 一態様において、保護層にシリカ層とアルミナ層とが含まれる場合には、好ましくは0.1nm~40nm、より好ましくは0.2nm~30nm、さらに好ましくは0.3nm~20nmのシリカ層と、好ましくは0.1nm~40nm、より好ましくは0.2nm~30nm、さらに好ましくは0.3nm~20nmのアルミナ層と、が含まれていてもよい。かかる構成を採ることによって、アルミナ単独を用いる場合に高湿度かつ高温度環境下でおこりうる潮解を抑制し、信頼性を向上することができる傾向にある。 In one embodiment, when the protective layer contains a silica layer and an alumina layer, the silica layer is preferably 0.1 nm to 40 nm, more preferably 0.2 nm to 30 nm, and further preferably 0.3 nm to 20 nm. An alumina layer of preferably 0.1 nm to 40 nm, more preferably 0.2 nm to 30 nm, still more preferably 0.3 nm to 20 nm may be contained. By adopting such a configuration, it tends to be possible to suppress the deliquescent that may occur in a high humidity and high temperature environment when alumina alone is used, and to improve the reliability.
 樹脂層の厚みは、4.9nm~499.9nmであることが好ましく、9.5nm~299.5nmであることがより好ましく、19nm~199.5nmであることがさらに好ましく、30nm~100nmであることが特に好ましい。 The thickness of the resin layer is preferably 4.9 nm to 499.9 nm, more preferably 9.5 nm to 299.5 nm, further preferably 19 nm to 199.5 nm, and 30 nm to 100 nm. Is particularly preferred.
 保護層の平均厚み、及び保護層中の各層の平均厚みは、エネルギー分散型X線分析を用いて測定した任意の3箇所の厚みの算術平均値として求められる。 The average thickness of the protective layer and the average thickness of each layer in the protective layer are obtained as the arithmetic mean value of the thicknesses of any three points measured by energy dispersive X-ray analysis.
 以下、図面を参照して保護層を有する波長変換部材の具体例を説明するが、本実施形態に係る波長変換部材は図面に示される態様に限定されない。 Hereinafter, a specific example of the wavelength conversion member having the protective layer will be described with reference to the drawings, but the wavelength conversion member according to the present embodiment is not limited to the mode shown in the drawings.
 図1には、波長変換層11の両主面上に被覆材12A及び12Bが配置されてなる積層体の側面に、金属酸化物層13と樹脂層14とを含む保護層15が配置されてなる波長変換部材10の例が示されている。図1では、金属酸化物層13が内側に配置され、樹脂層14が外側に配置されているが、樹脂層14が内側に配置され、金属酸化物層13が外側に配置される構成を採ってもよい。
 金属酸化物層13が内側に配置され、樹脂層14が外側に配置される前者の構成を採ると、波長変換部材10の端部における輝度低下をより良好に抑制できる傾向にある。この理由は明らかではないが、金属酸化物層13が樹脂層に好適に保護され、金属酸化物の物理的又は化学的劣化が好適に抑制されるためであると推測される。
 樹脂層14が内側に配置され、金属酸化物層13が外側に配置される後者の構成を採ると、耐湿熱性がより向上する傾向にある。この理由は明らかではないが、樹脂層14が内側に配置されることから、金属酸化物層13と波長変換部材10との線膨張係数差に由来する高温環境下でのひずみを緩和することで金属酸化物層13の劣化を抑制しているためであることが推測される。
In FIG. 1, a protective layer 15 including a metal oxide layer 13 and a resin layer 14 is arranged on a side surface of a laminate in which coating materials 12A and 12B are arranged on both main surfaces of the wavelength conversion layer 11. An example of the wavelength conversion member 10 is shown. In FIG. 1, the metal oxide layer 13 is arranged inside and the resin layer 14 is arranged outside, but the resin layer 14 is arranged inside and the metal oxide layer 13 is arranged outside. You may.
When the former configuration in which the metal oxide layer 13 is arranged inside and the resin layer 14 is arranged outside is adopted, there is a tendency that the decrease in brightness at the end portion of the wavelength conversion member 10 can be suppressed more satisfactorily. The reason for this is not clear, but it is presumed that the metal oxide layer 13 is suitably protected by the resin layer and the physical or chemical deterioration of the metal oxide is suitably suppressed.
When the latter configuration in which the resin layer 14 is arranged inside and the metal oxide layer 13 is arranged outside is adopted, the moisture and heat resistance tends to be further improved. Although the reason for this is not clear, since the resin layer 14 is arranged inside, the strain in a high temperature environment due to the difference in the coefficient of linear expansion between the metal oxide layer 13 and the wavelength conversion member 10 can be relaxed. It is presumed that this is because the deterioration of the metal oxide layer 13 is suppressed.
 図2には、波長変換層11の両主面上に被覆材12A及び12Bが配置されてなる積層体の外周面を、金属酸化物層13と樹脂層14とを含む保護層15が被覆してなる波長変換部材の例が示されている。図2では、金属酸化物層13が内側に配置され、樹脂層14が外側に配置されているが、樹脂層14が内側に配置され、金属酸化物層13が外側に配置される構成を採ってもよい。
 金属酸化物層13が内側に配置され、樹脂層14が外側に配置される前者の構成を採ると、端部における輝度低下をより良好に抑制できる傾向にある。この理由は明らかではないが、金属酸化物層13が樹脂層に好適に保護され、金属酸化物の物理的又は化学的劣化が好適に抑制されるためであると推測される。
 樹脂層14が内側に配置され、金属酸化物層13が外側に配置される後者の構成を採ると、耐湿熱性がより向上する傾向にある。この理由は明らかではないが、樹脂層14が内側に配置されることから、金属酸化物層13と波長変換部材10との線膨張係数差に由来する高温環境下でのひずみを緩和することで金属酸化物層13の劣化を抑制しているためであることが推測される。
 原子層堆積法により金属酸化物層を形成する場合、図2に示されるように、積層体の外周面を、金属酸化物層13が被覆する構成を比較的簡便に形成することが可能である。 
In FIG. 2, the outer peripheral surface of the laminate in which the coating materials 12A and 12B are arranged on both main surfaces of the wavelength conversion layer 11 is covered with the protective layer 15 including the metal oxide layer 13 and the resin layer 14. An example of a wavelength conversion member is shown. In FIG. 2, the metal oxide layer 13 is arranged inside and the resin layer 14 is arranged outside, but the resin layer 14 is arranged inside and the metal oxide layer 13 is arranged outside. You may.
When the former configuration in which the metal oxide layer 13 is arranged inside and the resin layer 14 is arranged outside is adopted, there is a tendency that the decrease in brightness at the end portion can be suppressed more satisfactorily. The reason for this is not clear, but it is presumed that the metal oxide layer 13 is suitably protected by the resin layer and the physical or chemical deterioration of the metal oxide is suitably suppressed.
When the latter configuration in which the resin layer 14 is arranged inside and the metal oxide layer 13 is arranged outside is adopted, the moisture and heat resistance tends to be further improved. Although the reason for this is not clear, since the resin layer 14 is arranged inside, the strain in a high temperature environment due to the difference in the coefficient of linear expansion between the metal oxide layer 13 and the wavelength conversion member 10 can be relaxed. It is presumed that this is because the deterioration of the metal oxide layer 13 is suppressed.
When the metal oxide layer is formed by the atomic layer deposition method, as shown in FIG. 2, it is possible to relatively easily form a structure in which the outer peripheral surface of the laminate is covered with the metal oxide layer 13. ..
 図1及び図2に示される波長変換部材において、被覆材12A及び被覆材12Bの種類及び平均厚みは、それぞれ同一であっても異なっていてもよい。 In the wavelength conversion members shown in FIGS. 1 and 2, the types and average thicknesses of the coating material 12A and the coating material 12B may be the same or different, respectively.
≪波長変換部材の製造方法≫
 本開示の一実施形態にかかる波長変換部材の製造方法は、蛍光体を含む波長変換層と、前記波長変換層の一方の主面上又は両方の主面上に配置される被覆材と、を有する積層体の側面に、金属酸化物層及び樹脂層を含む保護層を形成する工程を含む。波長変換部材の詳細は前述の内容を適用することができる。
≪Manufacturing method of wavelength conversion member≫
In the method for manufacturing a wavelength conversion member according to an embodiment of the present disclosure, a wavelength conversion layer containing a phosphor and a coating material arranged on one main surface or both main surfaces of the wavelength conversion layer are provided. A step of forming a protective layer including a metal oxide layer and a resin layer on the side surface of the laminated body is included. The above-mentioned contents can be applied to the details of the wavelength conversion member.
 前記保護層を形成する工程は、前記金属酸化物層を形成する工程と、樹脂層を形成する工程と、をいずれかの順番で含んでいてもよい。前記保護層を形成する工程は、前記金属酸化物層を形成する工程と、樹脂層を形成する工程と、をこの順番で含んでいてもよい。 The step of forming the protective layer may include a step of forming the metal oxide layer and a step of forming the resin layer in any order. The step of forming the protective layer may include a step of forming the metal oxide layer and a step of forming the resin layer in this order.
 一態様において、前記金属酸化物層は、前記波長変換層の一方の主面上又は両方の主面上に前記被覆材が配置されてなる積層体の外周面を被覆するように形成されるか、又は前記樹脂層に被覆された、前記波長変換層の一方の主面上又は両方の主面上に前記被覆材が配置されてなる積層体の外周面を被覆するように形成されてもよい。さらなる一態様において、保護層は、前記積層体の外周面を被覆するように形成されてもよい。 In one aspect, is the metal oxide layer formed so as to cover the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer? Or, it may be formed so as to cover the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer coated on the resin layer. .. In a further aspect, the protective layer may be formed to cover the outer peripheral surface of the laminate.
 本実施形態の波長変換部材は、例えば以下のような製造方法により製造することができる。まず、連続搬送されるフィルム状の被覆材(以下、「第1の被覆材」ともいう。)の表面に波長変換層形成用の樹脂組成物を付与し、塗膜を形成する。樹脂組成物の付与方法は特に制限されず、ダイコーティング法、カーテンコーティング法、エクストルージョンコーティング法、ロッドコーティング法、ロールコーティング法等が挙げられる。 The wavelength conversion member of this embodiment can be manufactured by, for example, the following manufacturing method. First, a resin composition for forming a wavelength conversion layer is applied to the surface of a film-like coating material (hereinafter, also referred to as “first coating material”) that is continuously conveyed to form a coating film. The method of applying the resin composition is not particularly limited, and examples thereof include a die coating method, a curtain coating method, an extrusion coating method, a rod coating method, and a roll coating method.
 次いで、樹脂組成物の塗膜の上に、連続搬送されるフィルム状の被覆材(以下、「第2の被覆材」ともいう。)を貼り合わせる。 Next, a film-like coating material (hereinafter, also referred to as "second coating material") that is continuously conveyed is attached onto the coating film of the resin composition.
 次いで、第1の被覆材及び第2の被覆材のうち活性エネルギー線を透過可能な被覆材側から活性エネルギー線を照射することにより、塗膜を硬化し、硬化物層を形成する。なお、第1の被覆材及び第2の被覆材のいずれも活性エネルギー線を透過可能でない場合には、第2の被覆材を貼り合わせる前に塗膜に活性エネルギー線を照射し、硬化物層を形成してもよい。その後、所望のサイズに切り出すことにより、第1の被覆材、硬化物層、及び第2の被覆材の積層体を作製することができる。 Next, the coating film is cured and a cured product layer is formed by irradiating the active energy rays from the side of the first coating material and the second coating material that can transmit the active energy rays. If neither the first coating material nor the second coating material can transmit the active energy rays, the coating film is irradiated with the active energy rays before the second coating material is bonded, and the cured product layer is formed. May be formed. Then, by cutting out to a desired size, a laminate of the first coating material, the cured product layer, and the second coating material can be produced.
 続いて、以上のように作製された積層体の側面に、金属酸化物層及び樹脂層を含む保護層を形成する。保護層を形成する方法は特に制限されない。例えば、積層体の側面又は外周面に金属酸化物層を形成し、その後に当該金属酸化物層の外周面に樹脂層形成用の樹脂組成物を付与して、必要に応じて乾燥又は硬化することによって樹脂層を形成してもよい。また、先に前記積層体の側面又は外周面に樹脂層を形成し、その後に金属酸化物層を樹脂層の外周面に被覆させてもよい。金属酸化物層の形成方法としては、原子層堆積法、スパッタリング、化学気相成長法(CVD)、物理気相成長法(PVD)、分子線エピタキシー法(MBE)等が挙げられる。樹脂層形成用の樹脂組成物の付与方法としては上述の波長変換層形成用の樹脂組成物の付与方法として例示した方法が挙げられる。 Subsequently, a protective layer including a metal oxide layer and a resin layer is formed on the side surface of the laminate produced as described above. The method of forming the protective layer is not particularly limited. For example, a metal oxide layer is formed on the side surface or the outer peripheral surface of the laminate, and then a resin composition for forming a resin layer is applied to the outer peripheral surface of the metal oxide layer, and the resin composition is dried or cured as necessary. The resin layer may be formed by this. Further, the resin layer may be formed on the side surface or the outer peripheral surface of the laminate first, and then the metal oxide layer may be coated on the outer peripheral surface of the resin layer. Examples of the method for forming the metal oxide layer include an atomic layer deposition method, sputtering, a chemical vapor deposition method (CVD), a physical vapor deposition method (PVD), and a molecular beam epitaxy method (MBE). Examples of the method for applying the resin composition for forming the resin layer include the methods exemplified as the above-mentioned method for applying the resin composition for forming the wavelength conversion layer.
≪バックライトユニット≫
 本開示の一実施形態に係るバックライトユニットは、前述の波長変換部材と光源とを備える。
≪Backlight unit≫
The backlight unit according to the embodiment of the present disclosure includes the above-mentioned wavelength conversion member and a light source.
 バックライトユニットとしては、色再現性を向上させる観点から、多波長光源化されたものが好ましい。好ましい一態様としては、430nm~480nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する青色光と、520nm~560nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する緑色光と、600nm~680nmの波長域に発光中心波長を有し、半値幅が100nm以下である発光強度ピークを有する赤色光と、を発光するバックライトユニットを挙げることができる。なお、発光強度ピークの半値幅とは、ピーク高さの1/2の高さにおけるピーク幅を意味する。 The backlight unit is preferably a multi-wavelength light source from the viewpoint of improving color reproducibility. In a preferred embodiment, blue light having an emission center wavelength in the wavelength range of 430 nm to 480 nm and having an emission intensity peak having a half-value width of 100 nm or less, and emission center wavelength in the wavelength range of 520 nm to 560 nm. A back that emits green light having an emission intensity peak having a half-value width of 100 nm or less and red light having an emission center wavelength in the wavelength range of 600 nm to 680 nm and having an emission intensity peak having a half-value width of 100 nm or less. The light unit can be mentioned. The half-value width of the emission intensity peak means the peak width at a height of 1/2 of the peak height.
 色再現性をより向上させる観点から、バックライトユニットが発光する青色光の発光中心波長は、440nm~475nmの範囲であることが好ましい。同様の観点から、バックライトユニットが発光する緑色光の発光中心波長は、520nm~545nmの範囲であることが好ましい。また、同様の観点から、バックライトユニットが発光する赤色光の発光中心波長は、610nm~640nmの範囲であることが好ましい。 From the viewpoint of further improving the color reproducibility, the emission center wavelength of the blue light emitted by the backlight unit is preferably in the range of 440 nm to 475 nm. From the same viewpoint, the emission center wavelength of the green light emitted by the backlight unit is preferably in the range of 520 nm to 545 nm. From the same viewpoint, the emission center wavelength of the red light emitted by the backlight unit is preferably in the range of 610 nm to 640 nm.
 また、色再現性をより向上させる観点から、バックライトユニットが発光する青色光、緑色光、及び赤色光の各発光強度ピークの半値幅は、いずれも80nm以下であることが好ましく、50nm以下であることがより好ましく、40nm以下であることがさらに好ましく、30nm以下であることが特に好ましく、25nm以下であることが極めて好ましい。 Further, from the viewpoint of further improving the color reproducibility, the half-value width of each emission intensity peak of the blue light, green light, and red light emitted by the backlight unit is preferably 80 nm or less, preferably 50 nm or less. It is more preferably 40 nm or less, particularly preferably 30 nm or less, and extremely preferably 25 nm or less.
 バックライトユニットの光源としては、例えば、430nm~480nmの波長域に発光中心波長を有する青色光を発光する光源を用いることができる。光源としては、例えば、LED(Light Emitting Diode)及びレーザーが挙げられる。青色光を発光する光源を用いる場合、波長変換部材は、少なくとも、赤色光を発光する量子ドット蛍光体R及び緑色光を発光する量子ドット蛍光体Gを含むことが好ましい。これにより、波長変換部材から発光される赤色光及び緑色光と、波長変換部材を透過した青色光とにより、白色光を得ることができる。 As the light source of the backlight unit, for example, a light source that emits blue light having a emission center wavelength in the wavelength range of 430 nm to 480 nm can be used. Examples of the light source include an LED (Light Emitting Diode) and a laser. When a light source that emits blue light is used, the wavelength conversion member preferably includes at least a quantum dot phosphor R that emits red light and a quantum dot phosphor G that emits green light. As a result, white light can be obtained from the red light and green light emitted from the wavelength conversion member and the blue light transmitted through the wavelength conversion member.
 また、バックライトユニットの光源としては、例えば、300nm~430nmの波長域に発光中心波長を有する紫外光を発光する光源を用いることもできる。光源としては、例えば、LED及びレーザーが挙げられる。紫外光を発光する光源を用いる場合、波長変換部材は、量子ドット蛍光体R及び量子ドット蛍光体Gとともに、励起光により励起され青色光を発光する量子ドット蛍光体Bを含むことが好ましい。これにより、波長変換部材から発光される赤色光、緑色光、及び青色光により、白色光を得ることができる。 Further, as the light source of the backlight unit, for example, a light source that emits ultraviolet light having a emission center wavelength in the wavelength range of 300 nm to 430 nm can be used. Examples of the light source include LEDs and lasers. When a light source that emits ultraviolet light is used, the wavelength conversion member preferably includes a quantum dot phosphor B that is excited by excitation light and emits blue light, together with a quantum dot phosphor R and a quantum dot phosphor G. As a result, white light can be obtained from the red light, green light, and blue light emitted from the wavelength conversion member.
 本実施形態のバックライトユニットは、エッジライト方式であっても直下型方式であってもよい。 The backlight unit of the present embodiment may be an edge light type or a direct type.
 エッジライト方式のバックライトユニットの概略構成の一例を図3に示す。 FIG. 3 shows an example of a schematic configuration of an edge light type backlight unit.
 図3に示すバックライトユニット20は、青色光Lを出射する光源21と、光源21から出射された青色光Lを導光して出射させる導光板22と、導光板22と対向配置される波長変換部材10と、波長変換部材10を介して導光板22と対向配置される再帰反射性部材23と、導光板22を介して波長変換部材10と対向配置される反射板24と、を備える。波長変換部材10は、青色光Lの一部を励起光として赤色光L及び緑色光Lを発光し、赤色光L及び緑色光Lと、励起光とならなかった青色光Lと、を出射する。この赤色光L、緑色光L、及び青色光Lにより、再帰反射性部材23から白色光Lが出射される。 The backlight unit 20 shown in FIG. 3 includes a light source 21 for emitting the blue light L B, a light guide plate 22 to be emitted guiding the blue light L B emitted from the light source 21, the light guide plate 22 and disposed to face The wavelength conversion member 10, the retroreflective member 23 which is arranged to face the light source plate 22 via the wavelength conversion member 10, and the reflector 24 which is arranged to face the wavelength conversion member 10 via the light guide plate 22. Be prepared. Wavelength conversion member 10 emits the red light L R and the green light L G part of the blue light L B as the excitation light, the red light L and R and the green light L G, the blue light was not the excitation light L B and are emitted. The red light L R, the green light L G, and the blue light L B, the white light L W is emitted from the retroreflective member 23.
≪画像表示装置≫
 本開示の一実施形態に係る画像表示装置は、上述したバックライトユニットを備える。画像表示装置としては特に制限されず、例えば、テレビ、パソコン、携帯電話等の液晶表示装置が挙げられる。
≪Image display device≫
The image display device according to the embodiment of the present disclosure includes the backlight unit described above. The image display device is not particularly limited, and examples thereof include a liquid crystal display device such as a television, a personal computer, and a mobile phone.
 液晶表示装置の概略構成の一例を図4に示す。 FIG. 4 shows an example of the schematic configuration of the liquid crystal display device.
 図4に示す液晶表示装置30は、バックライトユニット20と、バックライトユニット20と対向配置される液晶セルユニット31と、を備える。液晶セルユニット31は、液晶セル32が偏光板33Aと偏光板33Bとの間に配置された構成とされる。 The liquid crystal display device 30 shown in FIG. 4 includes a backlight unit 20 and a liquid crystal cell unit 31 arranged to face the backlight unit 20. The liquid crystal cell unit 31 has a configuration in which the liquid crystal cell 32 is arranged between the polarizing plate 33A and the polarizing plate 33B.
 液晶セル32の駆動方式は特に制限されず、TN(Twisted Nematic)方式、STN(Super Twisted Nematic)方式、VA(Vertical Alignment)方式、IPS(In-Plane-Switching)方式、OCB(Optically Compensated Birefringence)方式等が挙げられる。 The drive method of the liquid crystal cell 32 is not particularly limited, and is a TN (Twisted Nematic) method, an STN (Super Twisted Nematic) method, a VA (Vertical Birefringence) method, an IPS (In-Plane-Switching) method, and an OCB (Optical Birefringence) method. The method and the like can be mentioned.
 次に本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Next, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.
<実施例1>
〔波長変換部材の作製〕
 下記に示す材料を混合して、樹脂組成物を調製した。
・トリシクロデカンジメタノールジアクリレート(サートマー社製)
・ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(Evans Chemetics社製)
・酸化チタン粉末(商品名:R-706、ケマーズ株式会社製)
・4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル(商品名:LA-7RD、株式会社アデカ製)
・2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(商品名:TPO、BASFジャパン株式会社製)
・量子ドット分散液(緑色、Nanosys,Inc.製)及び量子ドット分散液(赤色、Nanosys,Inc.製)
<Example 1>
[Manufacturing of wavelength conversion member]
The materials shown below were mixed to prepare a resin composition.
・ Tricyclodecanedimethanol diacrylate (manufactured by Sartmer)
-Pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by Evans Chemetics)
-Titanium oxide powder (trade name: R-706, manufactured by The Chemours Company)
-4-Hydroxy-2,2,6,6-tetramethylpiperidin-N-oxyl (trade name: LA-7RD, manufactured by ADEKA CORPORATION)
・ 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (trade name: TPO, manufactured by BASF Japan Ltd.)
-Quantum dot dispersion (green, manufactured by Nanosys, Inc.) and quantum dot dispersion (red, manufactured by Nanosys, Inc.)
 得られた樹脂組成物を、被覆材として厚み72μmのバリアフィルムの反マット面に塗布して塗膜を形成した。この塗膜上に、上記と同じ被覆材を配置した。次いで、紫外線照射装置(アイグラフィックス株式会社)を用いて紫外線を照射し(照射量:1000mJ/cm)、樹脂組成物を硬化させて、波長変換層の両面に被覆材が配置された状態の波長変換部材を作製した。 The obtained resin composition was applied as a coating material to the anti-matte surface of a barrier film having a thickness of 72 μm to form a coating film. The same coating material as above was placed on this coating film. Next, ultraviolet rays were irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.) (irradiation amount: 1000 mJ / cm 2 ) to cure the resin composition, and coating materials were arranged on both sides of the wavelength conversion layer. The wavelength conversion member of was manufactured.
 上記で得られた各波長変換部材を、直径20mmの円形の寸法に裁断して測定サンプルを作製した。 Each wavelength conversion member obtained above was cut into a circular dimension having a diameter of 20 mm to prepare a measurement sample.
〔樹脂層(バッファ層)の形成〕
 得られた直径20mmの円形の測定サンプルをスピンコート装置の回転部分に設置し真空ポンプを稼働させることで固定した。毎分800回転の速さで測定サンプルを回転させながら、ポリマー溶液を1mL滴下させた。ポリマー溶液は、次の方法で調製した。アセトン(東京化成工業株式会社製)とp-キシレン(東京化成工業株式会社製)を質量比で5:1となるように混合して調製した溶媒に、ポリメチルメタクリレート(PMMA、東京化成工業株式会社製)を溶解させ、固形物が完全に消失するまで攪拌し、ポリマー溶液とした。
 ポリマー溶液の滴下後は60秒間スピンコートの回転を継続させ、その後測定サンプルを30分間静置し、溶剤を完全に蒸発させて除去した。以上はすべて窒素雰囲気化のグローブボックスで行った。
[Formation of resin layer (buffer layer)]
The obtained circular measurement sample having a diameter of 20 mm was placed on the rotating part of the spin coating device and fixed by operating the vacuum pump. 1 mL of the polymer solution was added dropwise while rotating the measurement sample at a rate of 800 rpm. The polymer solution was prepared by the following method. Polymethylmethacrylate (PMMA, Tokyo Chemical Industry Co., Ltd.) in a solvent prepared by mixing acetone (manufactured by Tokyo Chemical Industry Co., Ltd.) and p-xylene (manufactured by Tokyo Chemical Industry Co., Ltd.) so as to have a mass ratio of 5: 1. (Manufactured by the company) was dissolved and stirred until the solid matter completely disappeared to prepare a polymer solution.
After dropping the polymer solution, the spin coating was continuously rotated for 60 seconds, and then the measurement sample was allowed to stand for 30 minutes to completely evaporate and remove the solvent. All of the above was done in a nitrogen-conditioned glove box.
〔金属酸化物層の積層〕
 真空チャンバーにポリマーコーティングをした測定サンプルを入れ、真空度が2×10-3Paになるまで油回転ポンプ及びターボ分子ポンプで排気を行った。このとき、特にチャンバー内の加温はせず、全て室温環境下で行った。真空チャンバー内にトリメチルアルミニウム(TMA)を導入後、一旦系内を排気した。この操作で測定サンプルの表面及び端部全てにTMAの分子層が堆積された。続いて水蒸気とアルゴンの混合ガスを導入することで、TMAの分子層を酸化しアルミニウム層とした。これらの操作を繰り返すことで測定サンプル上にアルミニウムの原子層を堆積し、所定の厚みとなるまで繰り返した。
[Lamination of metal oxide layer]
A polymer-coated measurement sample was placed in a vacuum chamber and evacuated with an oil rotary pump and a turbo molecular pump until the degree of vacuum reached 2 × 10 -3 Pa. At this time, the chamber was not heated in particular, and all were carried out in a room temperature environment. After introducing trimethylaluminum (TMA) into the vacuum chamber, the inside of the system was once exhausted. By this operation, a molecular layer of TMA was deposited on the entire surface and edges of the measurement sample. Subsequently, a mixed gas of water vapor and argon was introduced to oxidize the molecular layer of TMA to form an aluminum layer. By repeating these operations, an atomic layer of aluminum was deposited on the measurement sample and repeated until a predetermined thickness was reached.
<比較例1>
〔波長変換部材の作製〕
 下記に示す材料を混合して、樹脂組成物を調製した。
・トリシクロデカンジメタノールジアクリレート(サートマー社製)
・ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(Evans Chemetics社製)
・酸化チタン粉末(商品名:R-706、ケマーズ株式会社製)
・4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル(商品名:LA-7RD、株式会社アデカ製)
・2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(商品名TPO、BASFジャパン株式会社製)
・量子ドット分散液(緑色、Nanosys,Inc.製)及び量子ドット分散液(赤色、Nanosys,Inc.製)
<Comparative example 1>
[Manufacturing of wavelength conversion member]
The materials shown below were mixed to prepare a resin composition.
・ Tricyclodecanedimethanol diacrylate (manufactured by Sartmer)
-Pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by Evans Chemetics)
-Titanium oxide powder (trade name: R-706, manufactured by The Chemours Company)
-4-Hydroxy-2,2,6,6-tetramethylpiperidin-N-oxyl (trade name: LA-7RD, manufactured by ADEKA CORPORATION)
・ 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (trade name: TPO, manufactured by BASF Japan Ltd.)
-Quantum dot dispersion (green, manufactured by Nanosys, Inc.) and quantum dot dispersion (red, manufactured by Nanosys, Inc.)
 得られた樹脂組成物を、被覆材として厚み72μmのバリアフィルムの反マット面に塗布して塗膜を形成した。この塗膜上に、上記と同じ被覆材を配置した。次いで、紫外線照射装置(アイグラフィックス株式会社)を用いて紫外線を照射し(照射量:1000mJ/cm)、樹脂組成物を硬化させて、波長変換層の両面に被覆材が配置された状態の波長変換部材を作製した。 The obtained resin composition was applied as a coating material to the anti-matte surface of a barrier film having a thickness of 72 μm to form a coating film. The same coating material as above was placed on this coating film. Next, ultraviolet rays were irradiated using an ultraviolet irradiation device (Igraphics Co., Ltd.) (irradiation amount: 1000 mJ / cm 2 ) to cure the resin composition, and coating materials were arranged on both sides of the wavelength conversion layer. The wavelength conversion member of was manufactured.
 上記で得られた各波長変換部材を、直径20mmの円形に裁断して測定サンプルを作製した。 Each wavelength conversion member obtained above was cut into a circle with a diameter of 20 mm to prepare a measurement sample.
〔金属酸化物層の積層〕
 真空チャンバーに測定サンプルを入れ、真空度が2×10-3Paになるまで油回転ポンプ及びターボ分子ポンプで排気を行った。このとき、特にチャンバー内の加温はせず、全て室温環境下で行った。真空チャンバー内にトリメチルアルミニウム(TMA)を導入後、一旦系内を排気した。この操作で測定サンプルの表面及び端部全てにTMAの分子層が堆積された。続いて水蒸気とアルゴンの混合ガスを導入することで、TMAの分子層を酸化しアルミニウム層とした。これらの操作を繰り返すことで測定サンプル上にアルミニウムの原子層を堆積し、所定の厚みとなるまで繰り返した。
[Lamination of metal oxide layer]
The measurement sample was placed in a vacuum chamber and evacuated with an oil rotary pump and a turbo molecular pump until the degree of vacuum reached 2 × 10 -3 Pa. At this time, the chamber was not heated in particular, and all were carried out in a room temperature environment. After introducing trimethylaluminum (TMA) into the vacuum chamber, the inside of the system was once exhausted. By this operation, a molecular layer of TMA was deposited on the entire surface and edges of the measurement sample. Subsequently, a mixed gas of water vapor and argon was introduced to oxidize the molecular layer of TMA to form an aluminum layer. By repeating these operations, an atomic layer of aluminum was deposited on the measurement sample and repeated until a predetermined thickness was reached.
<比較例2>
〔波長変換部材の作製〕
 下記に示す材料を混合して、樹脂組成物を調製した。
・トリシクロデカンジメタノールジアクリレート(サートマー社製)
・ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(Evans Chemetics社製)
・酸化チタン粉末(商品名:R-706、ケマーズ株式会社製)
・4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル(商品名:LA-7RD、株式会社アデカ製)
・2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド(商品名:TPO、BASFジャパン株式会社製)
・量子ドット分散液(緑色、Nanosys,Inc.製)及び量子ドット分散液(赤色、Nanosys,Inc.製)
<Comparative example 2>
[Manufacturing of wavelength conversion member]
The materials shown below were mixed to prepare a resin composition.
・ Tricyclodecanedimethanol diacrylate (manufactured by Sartmer)
-Pentaerythritol tetrakis (3-mercaptopropionate) (manufactured by Evans Chemetics)
-Titanium oxide powder (trade name: R-706, manufactured by The Chemours Company)
-4-Hydroxy-2,2,6,6-tetramethylpiperidin-N-oxyl (trade name: LA-7RD, manufactured by ADEKA CORPORATION)
・ 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (trade name: TPO, manufactured by BASF Japan Ltd.)
-Quantum dot dispersion (green, manufactured by Nanosys, Inc.) and quantum dot dispersion (red, manufactured by Nanosys, Inc.)
<耐湿熱試験における端部劣化及び輝度低下の評価>
 温度及び湿度を設定できる恒温槽を温度65℃、相対湿度95%に設定し、上記の測定サンプルを設置した。200時間経過後に測定サンプルを取り出し、ブラックライトを照射することで測定サンプルの端部の様子を観察した。画像解析ソフト等を用いて、測定サンプル端部の輝度が中央部の輝度の85%以下となっている部分の距離を測定し、これを端部劣化距離(mm)とした。また、200時間経過後の測定サンプル全体の輝度を測定して対初期比の値(対初期輝度維持率)を算出した。結果を表1に示す。
<Evaluation of edge deterioration and brightness reduction in moisture resistance test>
A constant temperature bath in which the temperature and humidity can be set was set to a temperature of 65 ° C. and a relative humidity of 95%, and the above measurement sample was installed. After 200 hours, the measurement sample was taken out and irradiated with black light to observe the state of the edge of the measurement sample. Using image analysis software or the like, the distance of the portion where the brightness of the edge of the measurement sample was 85% or less of the brightness of the center was measured, and this was defined as the edge deterioration distance (mm). In addition, the brightness of the entire measurement sample after 200 hours was measured to calculate the value of the ratio to the initial ratio (the maintenance rate to the initial brightness). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本検討により、金属酸化物のALD層及びバッファ層が存在することで、端部劣化の進行が抑制されるとともに、高い輝度維持率を達成することができた。 According to this study, the presence of the metal oxide ALD layer and buffer layer suppressed the progress of edge deterioration and achieved a high brightness maintenance rate.
 日本国特許出願第2019-217537号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる。
The disclosure of Japanese Patent Application No. 2019-217537 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.
10…波長変換部材
11…波長変換層
12A、12B…被覆材
13…金属酸化物層
14…樹脂層
15…保護層
20…バックライトユニット
21…光源
22…導光板
23…再帰反射性部材
24…反射板
30…液晶表示装置
31…液晶セルユニット
32…液晶セル
33A…偏光板
33B…偏光板
…青色光
…赤色光
…緑色光
…白色光
10 ... Wavelength conversion member 11 ... Wavelength conversion layer 12A, 12B ... Coating material 13 ... Metal oxide layer 14 ... Resin layer 15 ... Protective layer 20 ... Backlight unit 21 ... Light source 22 ... Light guide plate 23 ... Retroreflective member 24 ... reflector 30 ... liquid crystal display device 31 ... liquid crystal cell unit 32 ... liquid crystal cell 33A ... polarizing plate 33B ... polarizing plate L B ... blue light L R ... red light L G ... green light L W ... white light

Claims (12)

  1.  蛍光体を含む波長変換層と、
     前記波長変換層の一方の主面上又は両方の主面上に配置される被覆材と、
     前記波長変換層の側面に配置される、金属酸化物層及び樹脂層を含む保護層と、
    を有する波長変換部材。
    A wavelength conversion layer containing a phosphor and
    A coating material arranged on one main surface or both main surfaces of the wavelength conversion layer,
    A protective layer including a metal oxide layer and a resin layer arranged on the side surface of the wavelength conversion layer, and
    Wavelength conversion member having.
  2.  前記波長変換層の側面において、前記樹脂層は前記金属酸化物層よりも外側に配置されている、請求項1に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein the resin layer is arranged outside the metal oxide layer on the side surface of the wavelength conversion layer.
  3.  前記波長変換層の側面において、前記樹脂層は最外面を形成している、請求項1又は請求項2に記載の波長変換部材。 The wavelength conversion member according to claim 1 or 2, wherein the resin layer forms the outermost surface on the side surface of the wavelength conversion layer.
  4.  前記樹脂層が、ポリ(メタ)アクリル酸エステルを含む、請求項1~請求項3のいずれか1項に記載の波長変換部材。 The wavelength conversion member according to any one of claims 1 to 3, wherein the resin layer contains a poly (meth) acrylic acid ester.
  5.  前記保護層が、前記波長変換層の一方の主面上又は両方の主面上に前記被覆材が配置されてなる積層体の外周面を被覆している、請求項1~請求項4のいずれか1項に記載の波長変換部材。 Any of claims 1 to 4, wherein the protective layer covers the outer peripheral surface of the laminate in which the coating material is arranged on one main surface or both main surfaces of the wavelength conversion layer. The wavelength conversion member according to item 1.
  6.  請求項1~請求項5のいずれか1項に記載の波長変換部材と、光源と、を備えるバックライトユニット。 A backlight unit including the wavelength conversion member according to any one of claims 1 to 5 and a light source.
  7.  請求項6に記載のバックライトユニットを備える画像表示装置。 An image display device including the backlight unit according to claim 6.
  8.  蛍光体を含む波長変換層と、前記波長変換層の一方の主面上又は両方の主面上に配置される被覆材と、を有する積層体の側面に、金属酸化物層及び樹脂層を含む保護層を形成する工程を含む、波長変換部材の製造方法。 A metal oxide layer and a resin layer are included on the side surface of the laminate having a wavelength conversion layer containing a phosphor and a coating material arranged on one main surface or both main surfaces of the wavelength conversion layer. A method for manufacturing a wavelength conversion member, which comprises a step of forming a protective layer.
  9.  前記金属酸化物層は原子層堆積法により形成される、請求項8に記載の波長変換部材の製造方法。 The method for manufacturing a wavelength conversion member according to claim 8, wherein the metal oxide layer is formed by an atomic layer deposition method.
  10.  前記保護層を形成する工程が、前記金属酸化物層を形成する工程と、前記樹脂層を形成する工程と、をこの順番で含む、請求項8又は請求項9に記載の波長変換部材の製造方法。 The production of the wavelength conversion member according to claim 8 or 9, wherein the step of forming the protective layer includes a step of forming the metal oxide layer and a step of forming the resin layer in this order. Method.
  11.  前記樹脂層が、ポリ(メタ)アクリル酸エステルを含む、請求項8~請求項10のいずれか1項に記載の波長変換部材の製造方法。 The method for manufacturing a wavelength conversion member according to any one of claims 8 to 10, wherein the resin layer contains a poly (meth) acrylic acid ester.
  12.  前記保護層が、前記積層体の外周面を被覆するように形成される、請求項8~請求項11のいずれか1項に記載の波長変換部材の製造方法。 The method for manufacturing a wavelength conversion member according to any one of claims 8 to 11, wherein the protective layer is formed so as to cover the outer peripheral surface of the laminated body.
PCT/JP2020/041943 2019-11-29 2020-11-10 Wavelength converting member and method for manufacturing same, back-light unit, and image display device WO2021106556A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019217537 2019-11-29
JP2019-217537 2019-11-29

Publications (1)

Publication Number Publication Date
WO2021106556A1 true WO2021106556A1 (en) 2021-06-03

Family

ID=76130179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/041943 WO2021106556A1 (en) 2019-11-29 2020-11-10 Wavelength converting member and method for manufacturing same, back-light unit, and image display device

Country Status (1)

Country Link
WO (1) WO2021106556A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009823A1 (en) * 2022-07-08 2024-01-11 日亜化学工業株式会社 Wavelength conversion member and wavelength conversion member manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000967A (en) * 2013-06-18 2015-01-05 デクセリアルズ株式会社 Phosphor sheet
WO2017026349A1 (en) * 2015-08-12 2017-02-16 富士フイルム株式会社 Layered film
JP2017538166A (en) * 2014-12-05 2017-12-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Conversion element, optoelectronic semiconductor component, and method of manufacturing conversion element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015000967A (en) * 2013-06-18 2015-01-05 デクセリアルズ株式会社 Phosphor sheet
JP2017538166A (en) * 2014-12-05 2017-12-21 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Conversion element, optoelectronic semiconductor component, and method of manufacturing conversion element
WO2017026349A1 (en) * 2015-08-12 2017-02-16 富士フイルム株式会社 Layered film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009823A1 (en) * 2022-07-08 2024-01-11 日亜化学工業株式会社 Wavelength conversion member and wavelength conversion member manufacturing method

Similar Documents

Publication Publication Date Title
EP3767345A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186734A1 (en) Wavelength conversion member, backlight unit, image display device, curable composition and cured product
JPWO2019077752A1 (en) Backlight unit, image display device and wavelength conversion member
JPWO2019189270A1 (en) Wavelength conversion member, backlight unit, and image display device
JP2019174562A (en) Wavelength conversion member, backlight unit, and image display device
WO2021106556A1 (en) Wavelength converting member and method for manufacturing same, back-light unit, and image display device
JPWO2019189269A1 (en) Wavelength conversion member, backlight unit, and image display device
JP6702515B2 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2021029240A1 (en) Wavelength conversion material, method for producing wavelength conversion material, multilayer body, backlight unit and image display device
JP2019175952A (en) Image display device, curable composition, wavelength conversion member, and backlight unit
JP6658990B1 (en) Wavelength conversion member, backlight unit, image display device, and curable composition
WO2019189497A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
WO2019186735A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition
JP6798655B1 (en) Wavelength conversion member and its use, backlight unit, and image display device
WO2021152739A1 (en) Wavelength conversion member, backlight unit, and image display device
WO2021152738A1 (en) Wavelength conversion member, backlight unit, and image display device
WO2021152737A1 (en) Wavelength conversion member, backlight unit, and image display device
WO2022208663A1 (en) Wavelength conversion member, backlight unit, image display device, and curable composition
JP2021043462A (en) Wavelength conversion member, use thereof, backlight unit, and image display device
WO2020208754A1 (en) Wavelength conversion member, backlight unit, and image display device
WO2019186730A1 (en) Wavelength conversion member, backlight unit, image display device and curable composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20894673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: OTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08/09/2022)

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 20894673

Country of ref document: EP

Kind code of ref document: A1