WO2021027516A1 - 显示面板和显示装置 - Google Patents

显示面板和显示装置 Download PDF

Info

Publication number
WO2021027516A1
WO2021027516A1 PCT/CN2020/103591 CN2020103591W WO2021027516A1 WO 2021027516 A1 WO2021027516 A1 WO 2021027516A1 CN 2020103591 W CN2020103591 W CN 2020103591W WO 2021027516 A1 WO2021027516 A1 WO 2021027516A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting
filter layer
display panel
pixel
Prior art date
Application number
PCT/CN2020/103591
Other languages
English (en)
French (fr)
Inventor
李士杰
唐晓峰
王霖
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021027516A1 publication Critical patent/WO2021027516A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • This application relates to the field of display technology, in particular to display panels and display devices.
  • color display panels have penetrated into indoor display and outdoor display applications. Due to the short viewing distance of the indoor display, and the high requirements for the display effect of the playback content, the color display panel needs to improve the color gamut and color consistency of its color display, so it is necessary to change the luminous color gamut of the display panel.
  • the main purpose of this application is to provide a display panel and a display device to change the luminous color gamut of the display panel.
  • a technical solution adopted in this application is to provide a display panel, which includes a light-emitting layer and a filter layer:
  • a light-emitting layer includes a plurality of light-emitting pixel points, and the light-emitting pixel points include at least a first light-emitting sub-pixel that emits light of a first color;
  • a filter layer arranged on the light-emitting layer, for filtering the incident light of the first color
  • the filter layer filters the wavelength range of the incident light of the first color to adjust the color coordinates of the light of the first color.
  • Another technical solution adopted in this application is to provide a display device including the above display panel.
  • the beneficial effect of the present application is that the filter layer provided on the light-emitting layer can change the wavelength range of the first color light, filter out the short wavelength of the first color light wavelength, and thereby change the first color light Color coordinates, so that the light-emitting color gamut of the display panel changes.
  • FIG. 1 is a schematic structural diagram of an embodiment of a display panel provided by the present application.
  • FIG. 2 is a schematic structural diagram of another embodiment of the display panel provided by the present application.
  • FIG. 3 is a schematic diagram of light filtering of a band-stop filter layer in another embodiment of the display panel provided by the present application.
  • FIG. 4 is a schematic diagram of the effect of providing a filter layer in the display panel in another embodiment of the display panel provided by the present application;
  • FIG. 5 is a schematic diagram of light incident on the filter layer at different angles in another embodiment of the display panel provided by the present application.
  • FIG. 6 is a schematic diagram of the relationship between light transmittance and wavelength of the filter layer under light of different incident angles in another embodiment of the display panel provided by the present application;
  • FIG. 7 is a schematic structural diagram of a light-shielding frame in another embodiment of the display panel provided by the present application.
  • FIG. 8 is a schematic structural diagram of a light-shielding frame in another embodiment of the display panel provided by the present application.
  • FIG. 9 is a schematic structural diagram of a light-shielding frame in another embodiment of the display panel provided by the present application.
  • FIG. 10 is a schematic diagram of the diffusion result of the surface microstructure diffusion film in another embodiment of the display panel provided by the present application.
  • FIG. 11 is a schematic structural diagram of another embodiment of a display panel provided by the present application.
  • FIG. 12 is a schematic diagram of light transmission in another embodiment of the display panel provided by the present application.
  • FIG. 13 is a schematic diagram of the position of glue applied by dispensing in another embodiment of the display panel provided by the present application.
  • FIG. 14 is a schematic diagram of the coating position of continuous adhesive in another embodiment of the display panel provided by the present application.
  • 15 is a schematic diagram of the structure of the light-emitting layer in another embodiment of the display panel provided by the present application.
  • 16 is a schematic flowchart of adjusting the current and light-emitting area of the first light-emitting sub-pixel in another embodiment of the display panel provided by the present application;
  • FIG. 17 is a schematic structural diagram of an embodiment of a display device provided by the present application.
  • first and second in this application are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, “multiple” means at least two, such as two, three, etc., unless otherwise specifically defined. In addition, the terms “including” and “having” and any variations thereof are intended to cover non-exclusive inclusion. For example, a process, method, system, product or device that contains a series of steps or components is not limited to the listed steps or components, but further includes steps or components not listed, or further includes Other steps or components inherent in these processes, methods, products or equipment.
  • FIG. 1 is a schematic structural diagram of an embodiment of a display panel 100 provided by the present application.
  • the display panel 100 includes a light emitting layer 110 and a filter layer 120.
  • the display panel 100 may be, but is not limited to, a light emitting diode display panel 100.
  • the light-emitting layer 110 includes a plurality of light-emitting pixel points (not labeled).
  • a plurality of light-emitting pixels may be arranged on the substrate 150.
  • the light-emitting pixel points may be arranged on the substrate 150 in a pre-array.
  • the light-emitting pixels may be electrically connected to the substrate 150.
  • the substrate 150 can be rectangular, but can also be square, circular or polygonal. In addition, the size, ratio of length and short sides, radius and other scale parameters of the substrate 150 can also be adjusted according to design requirements.
  • the substrate 150 may be a PCB circuit board or a fiberglass circuit board (FR4).
  • the substrate 150 may alternatively be composed of a base, a printed circuit, and a solder joint structure.
  • the light-emitting pixel point may include a first light-emitting sub-pixel 111 that emits light of a first color, a second light-emitting sub-pixel 112 that emits light of a second color, and a third light-emitting sub-pixel that emits light of a third color.
  • the first light-emitting sub-pixel 111 can emit light of any color among red, blue, yellow, green and other light colors.
  • the light-emitting color of the second light-emitting sub-pixel 112 is different from the light-emitting color of the first light-emitting sub-pixel 111, and the second light-emitting sub-pixel 112 can emit light of any color of red, blue, yellow, green and other light colors, wherein,
  • the light-emitting color of the third light-emitting sub-pixel 113 may be different from the light-emitting color of the first light-emitting sub-pixel 111 and the light-emitting color of the second light-emitting sub-pixel 112, and the third light-emitting sub-pixel 113 may emit red, blue, yellow, Light of any color of green and other light colors.
  • the number of the first light-emitting sub-pixel 111, the second light-emitting sub-pixel 112, and the third light-emitting sub-pixel 113 may be the same or different.
  • the number and positions of the first light-emitting sub-pixel 111, the second light-emitting sub-pixel 112, and the third light-emitting sub-pixel 113 can be adjusted according to design requirements.
  • the filter layer 120 is disposed on the light-emitting layer 110. Used to change the wavelength range of the first color light. It can be understood that the filter layer 120 can also be used to change the wavelength range of the second color light or the wavelength range of the third color light.
  • the filter layer 120 can prevent the short-wavelength light in the light emitted by the light-emitting pixel points from passing, so that the light irradiated from the filter layer 120 does not have the light of the preset wavelength.
  • the preset wavelength may have an upper limit wavelength value or a lower limit wavelength value.
  • the filter layer 120 may be a band-stop type, which directly prevents light between the lower limit wavelength value and the upper limit wavelength value from passing through.
  • the filter layer 120 disposed on the light-emitting layer 110 changes the wavelength range of the first color light, and/or the wavelength range of the second color light, and/or the third color light, that is, the incident filter
  • the wavelength range of the first color light of the layer 120 is different from the wavelength range of the first color light exiting the filter layer 120; and/or the wavelength range of the second color light entering the filter layer 120 is different from the wavelength range of the exit filter layer 120
  • the wavelength range of the second color light is different; and/or the wavelength range of the third color light entering the filter layer 120 is different from the wavelength range of the third color light exiting the filter layer 120.
  • the color coordinates of the first color light, and/or the color coordinates of the second color light, and/or the color coordinates of the third color light emitted by the display panel are adjusted.
  • the light-emitting color gamut of the display panel is improved compared with the light-emitting color gamut of the display panel without a filter layer, that is, the light-emitting color gamut of the display panel 100 is increased.
  • the first light-emitting sub-pixel 111 emits green light.
  • the filter layer 120 is located in the light path of the first light-emitting sub-pixel 111, and can be used to prevent the light of the preset wavelength range in the green light from passing through, so that the wavelength range of the green light can be changed, so that the display panel 100 emits green light.
  • the color coordinates of the light are changed, which in turn changes the color gamut of the image light emitted by the display panel 100, so that the light-emitting color gamut range of the display panel 100 with the filter layer 120 can not only cover the predetermined color gamut range, but also The color gamut of the display panel without the filter layer 120 in the prior art has been improved. As shown in FIG.
  • the chromaticity point of green light can be changed from point A to point B by setting the filter layer 120, that is, the color coordinate of the green light changes, and the light-emitting color gamut of the display panel 100 changes from the first color gamut. 1 is transformed into the second color gamut 2, and the light-emitting color gamut of the display panel 100 (ie, the second color gamut 2) can cover the predetermined color gamut 3.
  • the predetermined color gamut 3 may be sRGB color gamut, Adobe RGB color gamut, DCI-P3 color gamut, NTSC color gamut, and the like.
  • the filter layer 120 can change the wavelength range of the second color light or the wavelength range of the third color light.
  • the filter layer corresponding to this embodiment is a filter layer with a multilayer structure, which is used to trim two colors of light.
  • the filter layer includes at least two filter layers, and the first filter layer filters Part of the wavelength of the first color light transmits light in the range of other wavelengths to achieve color correction of the first color light; the second filter layer filters part of the wavelength of the second color light and transmits light in the range of other wavelengths to achieve the second Color modification of light.
  • the first color light, the second color light, and the third color light need to be color-modified display panels.
  • the corresponding filter layer includes three filter layers, and the first filter layer filters the first color light. Part of the wavelength, transmit light in the range of other wavelengths, to achieve color correction of the first color light; the second filter layer filters part of the wavelength of the second color light, and transmits light in other wavelength ranges, to achieve color correction of the second color light , The third filter layer filters part of the wavelengths of the third color light and transmits light in the range of other wavelengths to achieve color correction of the third color light.
  • the filter layer 120 may be a multilayer dielectric film.
  • the refractive index of two adjacent dielectric films may be different.
  • the multilayer dielectric film may be a band-stop dielectric film.
  • This application uses light detection and analysis to find that the multilayer dielectric film has different wavelength selectivities for light with different incident angles. For example, as shown in Fig. 5, incident light 1 is perpendicularly incident on the multilayer dielectric film, and incident light 2 obliquely incident on the multilayer dielectric film.
  • incident light 1 is perpendicularly incident on the multilayer dielectric film
  • incident light 2 obliquely incident on the multilayer dielectric film.
  • the ability of two different angles of light to pass through the multi-layer dielectric film that is, the transmittance of light at different angles on the multi-layer dielectric film
  • the light of different wavelength ranges with vertical incidence and oblique incidence is in the dielectric film. The transmittance is different.
  • the spectral distribution of the light emitted from the multilayer dielectric film can be determined by the following formula: Among them, I 0 ( ⁇ ) is the spectral distribution function of the light emitted from the multilayer dielectric film, ⁇ is the angle of the light incident on the multilayer dielectric film, ⁇ ( ⁇ ) is the proportion of light rays at different incident angles, T( ⁇ , ⁇ ) is the spectral transmittance at different incident angles, and I( ⁇ , ⁇ ) is the spectral distribution function of the light-emitting pixel before entering the multilayer dielectric film.
  • the multi-layer dielectric film is set on the light-emitting layer to prevent the light in a certain wavelength range from passing, considering that the multi-layer dielectric film has different wavelength selectivity to the incident light at different angles, the multi-layer dielectric film emits different angles
  • the wavelength range of the light may be inconsistent, that is, the color of the light from different angles emitted by the multilayer dielectric film is inconsistent, which may cause chromatic aberration problems at different viewing angles.
  • FIG. 2 is a schematic structural diagram of another embodiment of a display panel 100 provided by the present application.
  • the display panel 100 includes a light emitting layer 110, a light shielding frame 130 and a filter layer 120.
  • a light-shielding frame structure 130 is added to solve the chromatic aberration problem caused by the above-mentioned dielectric film filter layer.
  • the light shielding frame 130 added in this embodiment can also achieve the effect of preventing light crosstalk between different pixels, that is, the light emitted by different light-emitting pixels passes through the light path space enclosed by the light guide frame of the light shielding frame 130. Make one light-emitting pixel point correspond to one light guide frame.
  • a light-shielding frame 130 is provided in the display panel 100.
  • the light shielding frame 130 may be disposed between the light emitting layer 110 and the filter layer 120.
  • the light-shielding frame 130 may include a plurality of light guide frames 131, each light guide frame 131 corresponds to a light-emitting pixel point, the light guide frame 131 forms a light path space 132, and the light emitted by the light-emitting pixel points enters the dielectric film filter layer through the light path space 132 120.
  • the light shielding frame 130 is used to reduce the incident angle range of the light incident on the dielectric film filter layer 120.
  • the angle range of the light incident on the dielectric film filter layer 120 becomes smaller, so that the wavelength range filtered by the dielectric film filter layer 120 is almost
  • the luminous color gamut range of the display panel 100 can cover the predetermined color gamut range as much as possible, and can avoid occurrence Inconsistent colors (color difference) from different viewing angles.
  • the light guide frame 131 forms the inner wall of the light path space 132 to absorb the large-angle incident light of the light-emitting pixel point, and eliminate the large-angle light from the light emitted by the light-emitting pixel point, so that the light is incident on the filter layer 120.
  • the angular range of the light rays becomes smaller.
  • the angle range of the light incident on the filter layer 120 can be roughly estimated based on the height of the inner wall of the light path space 132, the position of the light guide pixel points, and the size of the light exit surface of the light path space 132.
  • the inner wall of the light path space 132 may be perpendicular to the filter layer 120, and viewed in a clockwise direction, the angle range of the light incident on the filter layer 120 at this time may be
  • d is the size of the light-emitting pixel (for example, when the light-emitting pixel is rectangular, one of the diagonal, length and width of the light-emitting pixel; when the light-emitting pixel is round, the diameter of the light-emitting pixel, etc.)
  • P is the size of the top surface of the light path space 132 (when the top surface of the light path space 132 is circular, the size of the top surface of the light path space 132 is the diameter of the circle; when the top surface of the light path space 132 is rectangular, the size of the top surface of the light path space 132 is The length/width/diagonal length of the rectangle)
  • l is the shortest distance from the light-emitting pixel point to the light-absorbing surface 133
  • h is the vertical distance from the top of the light-emitting pixel point to the top surface of the light path space 132.
  • the angle range of the light incident on the filter layer 120 at this time may be At this time, the angle range of the light incident on the filter layer 120 can also be
  • d is the size of the light-emitting pixel
  • h is the vertical distance from the light-emitting pixel to the top surface of the light path space 132 (the connecting surface of the light guide frame 131 and the filter layer 120)
  • p is the size of the top surface of the light path space 132 (light path
  • the top surface of the space 132 is circular, the size of the top surface of the light path space 132 is the diameter of the circle; when the top surface of the light path space 132 is rectangular, the size of the top surface of the light path space 132 is the length/width/diagonal length of the rectangle)
  • e is the wall thickness of the top end of the light guide frame 131 (the connection end of the light
  • the wavelength range of the light incident on the filter layer 120 can be estimated by the spectral distribution formula of the light emitted from the multilayer dielectric film. Therefore, the size of the light-shielding frame 130 and the position of the light guiding pixel can be designed according to the expected wavelength range of the light to be blocked.
  • the inner wall of the light guide frame 131 constituting the light path space 132 may be set as the light absorbing surface 133.
  • the light-absorbing surface 133 on the inner wall of the light path space 132 can absorb the light irradiated by the light-emitting pixel points to the light guide frame 131, and eliminate the large-angle light from the light emitted by the light-emitting pixel points, thereby reducing the angle of light incident on the filter layer 120 range.
  • the light-emitting pixel point may be located at the center of the side of the light path space 132 facing away from the filter layer 120.
  • the inner wall of the light guide frame 131 constituting the light path space 132 can be set as a reflective surface 134, and the slope of the reflective surface 134 gradually changes in the direction from the light emitting layer 110 to the filter layer 120. Big.
  • the light guide frame 131 constitutes the inner wall of the light path space 132, which can reflect the light incident on the inner wall of the light path space 132 from the light-emitting pixel points, and the slope of the reflective surface 134 gradually increases in the direction from the light-emitting layer 110 to the filter layer 120 Therefore, the light reflected from the inner wall of the optical path space 132 is closer to the filter layer 120, so that the light guide frame 131 with such a structure has a collimating effect on light incident at a large angle (which can reduce the impact of light incident at a large angle).
  • the light-shielding frame 130 with the reflective surface 134 only reflects light and does not absorb light, which can reduce the loss of light intensity of the light emitted by the light-emitting pixel.
  • the light-emitting pixel point may be located at the center or the peripheral position of the side of the light path space 132 facing away from the filter layer 120.
  • a lens can be arranged in the light path space 132 of the light shielding frame 130 to reduce the angle range of the light incident on the filter layer 120.
  • the set lens can collect and collimate the light emitted by the light-emitting pixel points in the optical path space 132, so that the angle range of incident on the filter layer 120 can be reduced, so as to make the color coordinate change as much as possible to be consistent with the preset, so that The light-emitting color gamut range of the display panel 100 can cover the predetermined color gamut as much as possible.
  • a light guide rod can be arranged in the light path space 132 of the light shielding frame 130 to reduce the angle range of the light incident on the filter layer 120.
  • the light emitted by the light-emitting pixel points can be transmitted in the light guide rod, and exit from the light-emitting surface of the light guide rod (the surface away from the light-emitting pixel points) to the filter layer 120, so that the light incident on the filter layer 120 can be reduced.
  • the angle range so as to make the color coordinate change degree consistent with the preset, so that the light-emitting color gamut range of the display panel 100 can cover the predetermined color gamut range as much as possible.
  • the display panel 100 may further include a diffusion film 140 provided on the filter layer 120.
  • a diffusion film 140 provided on the filter layer 120.
  • the diffusion film 140 can be matched with the light-shielding frame 130 and the multilayer dielectric film. As shown in FIG. 10, the diffusion film 140 and the light-shielding frame 130 are respectively disposed on the opposite sides of the filter layer 120, and the light-shielding frame 130 The angle range of the light incident on the multilayer dielectric film can be reduced, so that the wavelength range filtered by the filter layer 120 can be as close as possible to the preset wavelength range, and the light emitted by the filter layer 120 can be diffused through the diffusion film 140, and The light emitted by the display panel 100 is made more uniform, thereby improving the sufficiency of wavelength selection under the premise of ensuring the uniformity of the light emitted by the display panel 100.
  • the diffusion film 140 may be pasted on the filter layer 120 through an adhesive 160.
  • the projection of the glue 160 vertical filter layer 120 on the light shielding frame 130 falls on the light guide frame 131.
  • the position of the adhesive 160 between the filter layer 120 and the diffusion film 140 is the part or the edge area irradiated by the light emitted by the filter layer 120, so that the presence of the adhesive 160 will not affect the display panel 100 11, there will be a certain gap between the filter layer 120 and the diffusion film 140, the light can be emitted by the adhesive 160 after refraction, which is beneficial to improve the pixel filling rate of the screen.
  • the diffusion film 140 may be a surface microstructure diffusion film.
  • the filter layer 120 can be attached to the base surface of the diffusion film 140, and the bonding effect is good without affecting the microstructure of the diffusion film.
  • the surface microstructured diffusion film may adopt a Gaussian 80° scattering diffusion film.
  • Figure 12 is a schematic diagram of the diffusion results of incident on the surface microstructured diffusion film from different sides. It can be seen that only when light enters from the microstructured surface 141 can the 50% diffusion angle of 80 degrees be obtained. Surface incidence can only obtain a 50% diffusion angle of 38 degrees, so the filter layer 120 is connected to the microstructure surface 141 of the Gaussian 80° scattering diffusion film, and a larger 50% diffusion angle can be obtained, which is more conducive to the incident The diffusion of the light of the diffusion film 140 makes the light emitted by the diffusion film 140 more uniform.
  • the diffusion film 140 may be bonded to the filter layer 120 by non-whole surface bonding.
  • the adhesive 160 may be coated on the filter layer 120 or the diffusion film 140 by dispensing, so as to realize the adhesion of the filter layer 120 and the diffusion film 140.
  • the speed and flow rate of the glue can be adjusted during the glue dispensing process.
  • the adhesive 160 may be continuously coated on the filter layer 120 or the diffusion film 140, or the adhesive 160 may be coated by embossing transfer or exposure and development. The bonding of the filter layer 120 and the diffusion film 140 is achieved.
  • the diffusion film 140 may be a particle diffusion film.
  • the light-emitting area of the first light-emitting sub-pixel 111 can be increased to compensate for the light intensity loss of the green light caused by the light-shielding frame 130 and the filter layer 120, so that the light emitted by the filter layer 120 Green light, red light, and blue light can achieve white balance under certain conditions.
  • the light-emitting area of the first light-emitting sub-pixel 111 is larger than the light-emitting area of the second light-emitting sub-pixel 112, and the light-emitting area of the first light-emitting sub-pixel 111 is larger than that of the third light-emitting sub-pixel 113.
  • the light intensity loss of the green light caused by the light shielding frame 130 and the filter layer 120 can be compensated by increasing the light intensity of the first light-emitting sub-pixel 111.
  • the light-emitting intensity of the first light-emitting sub-pixel 111 can be increased by increasing the current for driving the first light-emitting sub-pixel 111. That is, the current for driving the first light-emitting sub-pixel 111 to emit light is n times the preset current of the first light-emitting sub-pixel 111, where n is equal to the green light intensity required to achieve white balance and the first light-emitting sub-pixel 111 The ratio of the light intensity after the light passes through the filter layer 120.
  • the light intensity loss of the green light caused by the light-shielding frame 130 and the filter layer 120 can be compensated by increasing the light-emitting intensity and light-emitting area of the first light-emitting sub-pixel 111. Please continue to refer to FIG.
  • the display area of the first light-emitting sub-pixel 111 can be increased, and then according to the green light intensity required to achieve white balance and the first
  • the ratio of the light intensity of the light emitted by the light-emitting sub-pixel 111 after passing through the filter layer 120 is used to adjust the driving current of the first light-emitting sub-pixel 111 until the driving current is less than or equal to the set current threshold.
  • the light-emitting area of the second light-emitting sub-pixel 112 and the third light-emitting sub-pixel 113 may be smaller than that of the first light-emitting sub-pixel 111, and the current driving the first light-emitting sub-pixel 111 to emit light is the first light-emitting sub-pixel 111 N times the preset current of, n is equal to the ratio of the green light intensity required to achieve white balance to the light intensity of the light emitted by the first light-emitting sub-pixel 111 after passing through the filter layer 120.
  • the light-emitting area and the driving current of the first light-emitting sub-pixel 111 can be flexibly controlled, and the driving current can be ensured not to exceed the set current threshold, and the stability of the display panel 100 can be ensured.
  • FIG. 17 is a schematic structural diagram of the display device 200 according to an embodiment of the application. As shown in FIG. 17, the display device 200 includes The display panel 100 is the display panel 100 provided by any one of the above-mentioned embodiments, and has corresponding technical features and technical effects, which will not be repeated here.
  • the display panel 100 and the display device 200 provided in the present application at least achieve the following beneficial effects:
  • the filter layer 120 disposed on the light-emitting layer 110 changes the wavelength range of the first color light, thereby changing the color coordinates of the first color light, and thus the light-emitting color gamut of the display device 200 is changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板(100)和显示装置。显示面板(100)包括发光层(110)和滤光层(120),所述发光(110)层包括多个发光像素点,所述发光像素点至少包括发出第一颜色光的第一发光子像素(111);滤光层(120),设置于所述发光层(110)上,用于对入射的所述第一颜色光进行过滤;其中所述滤光层(120)通过对入射的所述第一颜色光的波长范围进行过滤以调整所述第一颜色光的色坐标,从而使显示面板(100)的发光色域发生改变。

Description

显示面板和显示装置 技术领域
本申请涉及显示技术领域,具体涉及显示面板和显示装置。
背景技术
近些年来随着显示屏相关技术的不断成熟,彩色显示面板已经深入户内显示和户外显示应用领域。户内显示由于观看距离近,再加上播放内容对显示效果要求高,彩色显示面板需要提升其色彩显示的色域和颜色一致性,从而就需要改变显示面板的发光色域。
发明内容
本申请主要的目的是提供显示面板和显示装置,以改变显示面板的发光色域。
为达到上述目的,本申请采用的一个技术方案是提供一种显示面板,该显示面板包括发光层和滤光层:
发光层,所述发光层包括多个发光像素点,所述发光像素点至少包括发出第一颜色光的第一发光子像素;
滤光层,设置于所述发光层上,用于对入射的所述第一颜色光进行过滤;
其中所述滤光层通过对入射的所述第一颜色光的波长范围进行过滤以调整所述第一颜色光的色坐标。
为达到上述目的,本申请采用的另一个技术方案是提供一种显示装置,该显示装置包括上述的显示面板。
通过上述方案,本申请的有益效果是:设置在发光层上的滤光层可以改变第一颜色光的波长范围,滤除第一颜色光波长中的短波长,从而改变了第一颜色光的色坐标,从而使显示面板的发光色域发生改变。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请提供的显示面板一实施例的结构示意图;
图2是本申请提供的显示面板另一实施例的结构示意图;
图3是本申请提供的显示面板另一实施例中带阻型滤光层的滤光示意图;
图4是本申请提供的显示面板另一实施例中在显示面板内设置滤光层的效果示意图;
图5是本申请提供的显示面板又一实施例中不同角度的光入射到滤光层的示意图;
图6是本申请提供的显示面板又一实施例中在不同入射角度光下滤光层的透光率与波长的关系示意图;
图7是本申请提供的显示面板又一实施例中遮光架的结构示意图;
图8是本申请提供的显示面板又一实施例中遮光架的结构示意图;
图9是本申请提供的显示面板又一实施例中遮光架的结构示意图;
图10是本申请提供的显示面板又一实施例中表面微结构扩散膜扩散结果示意图;
图11是本申请提供的显示面板又一实施例的结构示意图;
图12是本申请提供的显示面板又一实施例中光线传输示意图;
图13是本申请提供的显示面板又一实施例中通过点胶方式涂覆的粘胶位置示意图;
图14是本申请提供的显示面板又一实施例中连续型粘胶的涂覆位置示意图;
图15是本申请提供的显示面板又一实施例中发光层的结构示意图;
图16是本申请提供的显示面板又一实施例中调节第一发光子像素电流和发光面积的流程示意图;
图17是本申请提供的显示装置一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。本申请的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或部件的过程、方法、系统、产品或设备,没有限定于已列出的步骤或部件,而是进一步地还包括没有列出的步骤或部件,或进一步地还包括对于这些过程、方法、产品或设备固有的其它步骤或部件。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
参阅图1,图1是本申请提供的一种显示面板100的一实施例的结构示意图。
显示面板100包括发光层110和滤光层120。
显示面板100可以是但不限于发光二极管显示面板100。
发光层110,发光层110包括多个发光像素点(图未标)。
其中,多个发光像素点可以配置于基板150上。发光像素点可以以预先的阵列排布在基板150上。发光像素点可以和基板150电连接。基 板150可以是矩形,但也可以是正方形、圆形或者多边形,除此之外,基板150的尺寸、长短边比例、半径等尺度参数亦可以根据设计需求而调整。基板150可以是PCB电路板或玻璃纤维电路板(FR4)。基板150或者可以由基底和印刷线路、焊点结构构成的。
发光像素点可以包括发出第一颜色光的第一发光子像素111、发出第二颜色光的第二发光子像素112和发出第三颜色光的第三发光子像素。
其中,第一发光子像素111可以发出红色、蓝色、黄色、绿色和其它光色中任一颜色的光。第二发光子像素112的发光颜色与第一发光子像素111发光颜色不同,并且第二发光子像素112可以发出红色、蓝色、黄色、绿色和其他光色中任一颜色的光,其中,第三发光子像素113的发光颜色可以与第一发光子像素111的发光颜色和第二发光子像素112的发光颜色都不相同,并且第三发光子像素113可以发出红色、蓝色、黄色、绿色和其他光色中任一颜色的光。第一发光子像素111、第二发光子像素112和第三发光子像素113的数目可以相同,也可以不同。第一发光子像素111、第二发光子像素112和第三发光子像素113的数目和位置可以根据设计需求而调整。
滤光层120设置于发光层110上。用于改变第一颜色光的波长范围。可以理解的是,滤光层120也可以用于改变第二颜色光的波长范围或第三颜色光的波长范围。滤光层120可以阻止发光像素点发出的光中的短波长的光通过,从而从滤光层120照射出的光中没有预设波长的光。该预设波长可以有一上限波长值,也可以有一下限波长值。可选地,如图3所示,滤光层120可以是带阻型,直接阻止下限波长值和上限波长值之间的光通过。
在此实施例中,设置在发光层110上的滤光层120改变第一颜色光的波长范围、和/或第二颜色光、和/或第三颜色光的波长范围,即射入滤光层120的第一颜色光的波长范围与射出滤光层120的第一颜色光的波长范围不同;和/或,射入滤光层120的第二颜色光的波长范围与射出滤光层120的第二颜色光的波长范围不同;和/或,射入滤光层120的第三颜色光的波长范围与射出滤光层120的第三颜色光的波长范围不同。 从而使得显示面板出射的第一颜色光的色坐标、和/或第二颜色光的色坐标、和/或第三颜色光的色坐标较有所调整。进而使得显示面板的发光色域与未设置滤光层的显示面板发光色域相比有所提升,即增大了显示面板100的发光色域。
进一步,在一具体的实施方式中,第一发光子像素111发出绿色光。滤光层120位于第一发光子像素111的出光光路,可以用于阻止绿色光波长中预设波长范围的光线通过,从而可以改变了绿色光的出射光波长范围,使得显示面板100出射的绿色光的色坐标有所改变,进而使的显示面板100出射的图像光的色域发生改变,使得增加滤光层120的显示面板100的发光色域范围不仅可覆盖预定的色域范围,而且较现有技术未设置滤光层120的显示面板的色域有所提升。如图4所示,通过设置滤光层120可以让绿色光的色度点由A点转变为B点,即绿色光的色坐标改变了,进而显示面板100的发光色域从第一色域1转变为第二色域2,并且显示面板100的发光色域(即第二色域2)能够覆盖预定色域3。其中,预定色域3可以是sRGB色域、Adobe RGB色域、DCI-P3色域、NTSC色域等。
可以理解的是,滤光层120可以改变第二颜色光的波长范围或第三颜色光的波长范围。此实施例对应的滤光层为多层结构的滤光层,在用于对两种颜色光进行修色,此时的滤光层至少包括两层滤光层,其中第一滤光层过滤第一颜色光的部分波长,透射其它波长的范围光,实现对第一颜色光的修色;第二滤光层过滤第二颜色光的部分波长,透射其它波长的范围光,实现对第二颜色光的修色。
当然对第一颜色光、第二颜色光和第三颜色光均需要修色的显示面板,此时对应的滤光层包括三层滤光层,其中第一滤光层过滤第一颜色光的部分波长,透射其它波长的范围光,实现对第一颜色光的修色;第二滤光层过滤第二颜色光的部分波长,透射其它波长的范围光,实现对第二颜色光的修色,第三滤光层过滤第三颜色光的部分波长,透射其它波长的范围光,实现对第三颜色光的修色。
在一个实施例中,滤光层120可以是多层介质膜。相邻两层介质膜 的折射率可以不相同。并且,多层介质膜可以是带阻式介质膜。
本申请利用出光检测分析发现:多层介质膜对不同入射角度的光线有着不同的波长选择性。例如,如图5所示,①号入射光线为垂直入射到多层介质膜,②号入射光线斜射到多层介质膜。两种不同角度的光线透过多层介质膜的能力(即多层介质膜上不同角度的光的透过率)如图6所示,垂直入射和斜射入射的不同波长范围光在介质膜中的透过率是不同的。其中,射出多层介质膜的光线的光谱分布可以由下式决定:
Figure PCTCN2020103591-appb-000001
其中,I 0(λ)为从多层介质膜出射的光线的光谱分布函数,θ为入射到多层介质膜的光线的角度,ρ(θ)为不同入射角光线所占的比例,T(θ,λ)是不同入射角下的光谱透过率,I(θ,λ)为发光像素点进入多层介质膜前的光谱分布函数。若将多层介质膜设置在发光层上,以阻止一定波长范围内的光通过,考虑到多层介质膜对不同角度的入射光有着不同的波长选择性,则多层介质膜出射的不同角度的光的波长范围可能不一致,即多层介质膜出射的不同角度的光的颜色不一致,即可能会引起不同视角的色差问题。
参阅图2,图2是本申请提供的一种显示面板100的另一实施例的结构示意图。
显示面板100包括发光层110、遮光架130和滤光层120。本实施例与图1的区别在于增加了遮光架结构130,以解决上述介质膜滤光层带来的色差问题。
需要说明的是,本实施例增加的遮光架130,还可以实现防止不同像素点之间光串扰的功效,即不同发光像素点出射的光通过遮光架130的导光框围成的光路空间,使得一个发光像素点对应一个导光框。
本申请在显示面板100中设置了遮光架130。遮光架130可以设置在发光层110和滤光层120之间。遮光架130可以包括多个导光框131,每一导光框131对应一发光像素点,导光框131形成光路空间132,发光像素点出射的光线经过光路空间132射入介质膜滤光层120。遮光架130用于使入射到介质膜滤光层120的光的入射角度范围变小。这样即使多层介质膜对不同角度的入射光有着不同的波长选择性,由于入射到 介质膜滤光层120的光的角度范围变小了,使得介质膜滤光层120过滤的波长范围也近乎于一致,从而避免了介质膜滤光层的滤光误差,尽量使色坐标改变程度与预先设计的一致,从而使显示面板100的发光色域范围能够尽量覆盖预定色域范围,并且可以避免出现不同视角颜色不一致(色差)的情况。
可以理解的是,可以通过导光框131构成光路空间132的内壁对发光像素点的大角度入射光线进行吸收,消除掉发光像素点出射光中的大角度光线,从而使入射到滤光层120的光线的角度范围变小。另外,可以通过光路空间132的内壁的高度、导光像素点设置的位置以及光路空间132出光面的尺寸大体估算出入射到滤光层120的光线的角度范围。例如,如图7所示,光路空间132的内壁可以与滤光层120垂直,沿顺时针方向来看,此时入射到滤光层120的光线的角度范围可为
Figure PCTCN2020103591-appb-000002
其中,d为发光像素点的尺寸(例如:发光像素点为矩形时,发光像素点的对角线和长、宽中的一种;发光像素点为圆形时,发光像素点的直径等),p为光路空间132顶面的尺寸(光路空间132顶面为圆形时,光路空间132顶面的尺寸为圆的直径;光路空间132顶面为矩形时,光路空间132顶面的尺寸为矩形的长/宽/对角线长度),l为发光像素点到吸光表面133的最近距离,h为发光像素点顶部到光路空间132顶面的垂直距离。又比如,如图8所示,发光像素点位于光路空间132背向滤光层120的一面的中心位置时,此时入射到滤光层120的光线的角度范围可为
Figure PCTCN2020103591-appb-000003
此时入射到滤光层120的光线的角度范围也可为
Figure PCTCN2020103591-appb-000004
其中,d为发光像素点的尺寸,h为发光像素点到光路空间132顶面(导光框131与滤光层120的连接面)的垂直距离,p为光路空间132顶面的尺寸(光路空间132顶面为圆形时,光路空间132顶面的尺寸为圆的直径;光路空间132顶面为矩形时,光路空间132顶面的尺寸为矩形的长/宽/对角线长度),e为导光框131顶端(导光框131与滤光层120的连接端)的壁厚。估算出入射到滤光层120的光线的角度范围后,进而可以通过 射出多层介质膜的光线的光谱分布公式可以估算出入射到滤光层120的光线的波长范围。从而可以根据预计需要阻拦的光线波长范围,设计遮光架130的尺寸以及导光像素点的位置等。
在一个实施例中,可以将导光框131构成光路空间132的内壁设为吸光表面133。光路空间132的内壁上的吸光表面133可以吸收发光像素点照射到导光框131上的光,消除掉发光像素点出射光中的大角度光线,从而减小入射到滤光层120光线的角度范围。发光像素点可以位于光路空间132背向滤光层120的一面的中心位置。
在一个实施例中,如图9所示,可以将导光框131构成光路空间132的内壁设为反光表面134,反光表面134的斜率在由发光层110到滤光层120的方向上逐渐变大。导光框131构成光路空间132的内壁可以将发光像素点的入射到光路空间132内壁的光线反射出去,并且由于反光表面134的斜率在由发光层110到滤光层120的方向上逐渐变大,从而经过光路空间132的内壁反射出的光更加趋近于与滤光层120垂直,从而如此结构的导光框131对大角度入射的光线有准直作用(可以减少大角度入射的光的角度),从而减小入射到滤光层120的角度范围;并且具有反光表面134的遮光架130只反射光并不吸收光,可以降低对发光像素点发出的光的光强损耗。其中,发光像素点可以位于光路空间132背向滤光层120的一面的中心位置或周边位置。
在一个实施例中,可以通过在遮光架130的光路空间132内设置透镜,使入射到滤光层120的光的角度范围变小。设置的透镜可以将光路空间132内发光像素点发出的光聚集并准直,这样就可以减小入射到滤光层120的角度范围,从而尽量使色坐标改变程度与预设的一致,从而使显示面板100的发光色域范围能够尽量覆盖预定色域范围。
在一个实施例中,可以通过在遮光架130的光路空间132内设置导光棒,使入射到滤光层120的光的角度范围变小。发光像素点发出的光可以在导光棒内传输,并从导光棒的出光面(远离发光像素点的面)出射到滤光层120上,这样就可以减小入射到滤光层120的角度范围,从而尽量使色坐标改变程度与预设的一致,从而使显示面板100的发光色 域范围能够尽量覆盖预定色域范围。
另外,显示面板100还可以包括设置在滤光层120上的扩散膜140。通过在滤光层120上设置扩散膜140,可以将滤光层120射出的光线扩散,并使显示面板100发出的光更加均匀。
可以理解的是,扩散膜140可以与遮光架130、多层介质膜配合,如图10所示,扩散膜140和遮光架130分别设置于滤光层120彼此相背的两侧,遮光架130可以减小入射到多层介质膜的光线的角度范围,这样可以使滤光层120过滤的波长范围尽量靠近至预设波长范围,通过扩散膜140可以将滤光层120射出的光线扩散,并使显示面板100发出的光更加均匀,从而在保证显示面板100发出的光的均匀性的前提下提高波长选择的充分性。
其中,扩散膜140可以通过粘胶160粘贴于滤光层120。粘胶160垂直滤光层120在遮光架130上的投影落在导光框131上。这样滤光层120和扩散膜140之间的粘胶160所处的位置是滤光层120出射的光线无法照射的部分或照射的边缘区域,这样粘胶160的存在就不会影响显示面板100的显示效果;并且如图11所示,滤光层120和扩散膜140之间会产生一定的间隙,光线经过折射可由粘胶160出射,有利于提高屏幕的像素填充率。
可选地,扩散膜140或者可以是表面微结构扩散膜。滤光层120可以和扩散膜140的基底面贴合,贴合效果好,又不影响扩散膜的微结构。
进一步地,表面微结构扩散膜可以采用高斯80°散射的扩散膜。如图12所示,图12为从不同的面入射到表面微结构扩散膜的扩散结果示意图,可以看出光线只有从微结构面141入射才能得到80度角的50%扩散角,而从基底面入射只能得到38度角的50%扩散角,从而滤光层120与高斯80°散射的扩散膜的微结构面141连接,可以获得更大角度的50%扩散角,更加有利于入射到扩散膜140的光的扩散,使得扩散膜140发出的光更加均匀。
但考虑到滤光层120与微结构面贴合会影响扩散膜140表面的微结构。为此,扩散膜140可以通过非整面贴合的方式与滤光层120贴合。 例如,如图13所示,可以通过点胶的方式将粘胶160涂覆在滤光层120或扩散膜140上,从而实现滤光层120和扩散膜140的贴合。并且,在点胶的过程中还可以调节点胶的速度和流量。又比如,如图14所示,粘胶160可以连续性的涂覆在滤光层120或扩散膜140上,或者可以通过压印转移或曝光显影的方式来实现粘胶160的涂覆,进而实现滤光层120和扩散膜140的贴合。
在其他实施例中,扩散膜140可以是粒子扩散膜。
可选地,如图15所示,可以通过增加第一发光子像素111的发光面积,补偿遮光架130和滤光层120造成的绿色光的光强损失,从而使滤光层120照射出的绿色光、红色光、蓝色光在一定条件下能够达到白平衡。其中,第一发光子像素111的发光面积大于第二发光子像素112的发光面积,第一发光子像素111的发光面积大于第三发光子像素113的发光面积。
可选地,可以通过增加第一发光子像素111的发光强度,补偿遮光架130和滤光层120造成的绿色光的光强损失。如图16所示,可以通过增强驱动第一发光子像素111的电流来增加第一发光子像素111的发光强度。即可以使驱动第一发光子像素111发光的电流是第一发光子像素111的预设电流的n倍,其中,n等于达到白平衡时需要的绿色光强度与第一发光子像素111发出的光透过滤光层120后的光强度的比值。
可选地,可以通过增加第一发光子像素111的发光强度和发光面积,补偿遮光架130和滤光层120造成的绿色光的光强损失。请继续参阅图16,在驱动第一发光子像素111发光的电流超过设定电流阈值时,可以增加第一发光子像素111的显示面积,然后根据达到白平衡时需要的绿色光强度与第一发光子像素111发出的光透过滤光层120后的光强度的比值来调节第一发光子像素111的驱动电流,直至驱动电流小于或等于设定电流阈值。也就是说,第二发光子像素112和第三发光子像素113的发光面积可以小于第一发光子像素111的发光面积,并且驱动第一发光子像素111发光的电流是第一发光子像素111的预设电流的n倍,n等于达到白平衡时需要的绿色光强度与第一发光子像素111发出的光透 过滤光层120后的光强度的比值。这样可以灵活调控第一发光子像素111的发光面积和驱动电流,并且保证其驱动电流不超过设定电流阈值,保证显示面板100的稳定性。
以上为本申请提供的显示面板100的实施例,本申请还提供了一种显示装置200,图17为本申请实施例的显示装置200的结构示意图,如图17所示,该显示装置200包括显示面板100,该显示面板100为上述任意一种实施例提供的显示面板100,具有相应的技术特征和技术效果,在此不再赘述。
通过上述实施例可知,本申请提供的显示面板100和显示装置200,至少实现了如下的有益效果:
设置在发光层110上的滤光层120改变第一颜色光的波长范围,从而改变了第一颜色光的色坐标,从而使显示装置200的发光色域发生改变。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (11)

  1. 一种显示面板,其特征在于,包括:
    发光层,所述发光层包括多个发光像素点,所述发光像素点至少包括发出第一颜色光的第一发光子像素;
    滤光层,设置于所述发光层上,用于对入射的所述第一颜色光进行过滤;
    其中所述滤光层通过对入射的所述第一颜色光的波长范围进行过滤以调整所述第一颜色光的色坐标。
  2. 根据权利要求1所述的显示面板,其特征在于,所述第一发光子像素发出绿色光,所述滤光层位于所述第一发光子像素的出光光路,用于阻止所述绿色光中预设波长范围的光线通过,以过滤所述绿色光波长范围中的短波长。
  3. 根据权利要求2所述的显示面板,其特征在于,所述滤光层为带阻滤光片或多层介质膜中的一种。
  4. 根据权利要求1所述的显示面板,其特征在于,所述显示面板进一步包括:
    遮光架,设置于所述发光层和所述滤光层之间;所述遮光架包括多个导光框,每一所述导光框对应一所述发光像素点,所述导光框形成光路空间,所述发光像素点射出的光线经过所述光路空间射入所述滤光层。
  5. 根据权利要求4所述的显示面板,其特征在于,所述导光框构成所述光路空间的内壁具有吸光表面。
  6. 根据权利要求4所述的显示面板,其特征在于,所述导光框构成所述光路空间的内壁具有反光表面,所述反光表面的斜率在由所述发光层到所述滤光层的方向上逐渐变大。
  7. 根据权利要求4所述的显示面板,其特征在于,所述显示面板进一步包括:
    扩散膜,设置于所述滤光层上,朝向所述滤光层的表面具有微结构;所述扩散膜与所述遮光架分别位于所述滤光层相背的两侧。
  8. 根据权利要求7所述的显示面板,其特征在于,所述扩散膜通过粘胶粘贴于所述滤光层,所述粘胶垂直所述滤光层在所述遮光架上的投影落在所述导光框上。
  9. 根据权利要求1所述的显示面板,其特征在于,所述多个发光像素点进一步包括发出第二颜色光的多个第二发光子像素和发出第三颜色光的多个第三发光子像素;所述第一发光子像素发出绿色光,所述第二发光子像素发出红色光,所述第三发光子像素发出蓝色光。
  10. 根据权利要求9所述的显示面板,其特征在于,所述第一发光子像素的发光面积大于所述第二发光子像素的发光面积,且所述第一发光子像素的发光面积大于所述第三发光子像素的发光面积。
  11. 一种显示装置,包括权利要求1-10中任一项所述的显示面板。
PCT/CN2020/103591 2019-08-12 2020-07-22 显示面板和显示装置 WO2021027516A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910740138.8A CN112397545A (zh) 2019-08-12 2019-08-12 显示面板和显示装置
CN201910740138.8 2019-08-12

Publications (1)

Publication Number Publication Date
WO2021027516A1 true WO2021027516A1 (zh) 2021-02-18

Family

ID=74569496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/103591 WO2021027516A1 (zh) 2019-08-12 2020-07-22 显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN112397545A (zh)
WO (1) WO2021027516A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571552B (zh) * 2021-07-02 2023-10-31 武汉华星光电技术有限公司 一种显示面板及显示装置
WO2024179106A1 (zh) * 2023-03-02 2024-09-06 宜宾市极米光电有限公司 投影设备及其色域调整方法、装置和电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097371B (zh) * 2021-03-31 2022-08-12 厦门天马微电子有限公司 一种显示面板及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501558A (zh) * 2006-08-09 2009-08-05 夏普株式会社 液晶显示装置
US20130050293A1 (en) * 2011-08-30 2013-02-28 Sharp Laboratories Of America, Inc. Multi-primary display with active backlight
CN103941326A (zh) * 2014-04-11 2014-07-23 广东威创视讯科技股份有限公司 一种平板显示器的导光结构及带该导光结构的平板显示器
CN105093685A (zh) * 2015-09-25 2015-11-25 京东方科技集团股份有限公司 一种显示设备
CN108807716A (zh) * 2018-08-06 2018-11-13 京东方科技集团股份有限公司 一种显示面板及显示装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024837B (zh) * 2016-06-08 2019-08-02 京东方科技集团股份有限公司 显示基板及显示装置
CN110045540A (zh) * 2019-04-30 2019-07-23 上海天马微电子有限公司 量子点彩膜基板、显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101501558A (zh) * 2006-08-09 2009-08-05 夏普株式会社 液晶显示装置
US20130050293A1 (en) * 2011-08-30 2013-02-28 Sharp Laboratories Of America, Inc. Multi-primary display with active backlight
CN103941326A (zh) * 2014-04-11 2014-07-23 广东威创视讯科技股份有限公司 一种平板显示器的导光结构及带该导光结构的平板显示器
CN105093685A (zh) * 2015-09-25 2015-11-25 京东方科技集团股份有限公司 一种显示设备
CN108807716A (zh) * 2018-08-06 2018-11-13 京东方科技集团股份有限公司 一种显示面板及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113571552B (zh) * 2021-07-02 2023-10-31 武汉华星光电技术有限公司 一种显示面板及显示装置
WO2024179106A1 (zh) * 2023-03-02 2024-09-06 宜宾市极米光电有限公司 投影设备及其色域调整方法、装置和电子设备

Also Published As

Publication number Publication date
CN112397545A (zh) 2021-02-23

Similar Documents

Publication Publication Date Title
WO2021027516A1 (zh) 显示面板和显示装置
KR101220479B1 (ko) 광학 필터, 액정 패널 및 액정 표시 장치
US8355098B2 (en) Wavelength conversion member, light source assembly including the wavelength conversion member and liquid crystal display including the light source assembly
JP4124186B2 (ja) 液晶表示装置
JP2007004104A5 (zh)
WO2019148935A1 (zh) 液晶显示面板及其制备方法、液晶显示装置
CN105425452A (zh) 背光模组及显示装置
CN106405938A (zh) 一种液晶背光模组、液晶显示设备
CN113629122A (zh) 显示面板以及显示装置
WO2023184584A1 (zh) 显示面板及显示装置
US20240027833A1 (en) Backlight module and display device
TWI405005B (zh) 顯示裝置、其製造方法及光線色彩調變方法
CN114256312A (zh) 显示面板和显示装置
CN112216209B (zh) 一种显示面板以及电子设备
US10802202B2 (en) Composite sheet and display device including the same
JP2009080153A (ja) 光学シート、表示装置及び光学シートの製造方法
CN216488064U (zh) 显示面板以及显示装置
TW201321808A (zh) 導光板模組、其製作方法及光源裝置
US10353233B2 (en) Liquid crystal display
WO2021027517A1 (zh) 发光件、显示面板和显示装置
WO2013061907A1 (ja) 表示装置
CN220326165U (zh) 一种显示基板及显示屏
JP5269861B2 (ja) 液晶表示装置
TWI840460B (zh) 濾色器lcd上的增強性量子點
JP2017181815A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852894

Country of ref document: EP

Kind code of ref document: A1