WO2021027292A1 - 一种顶板变形高精度监测预警系统及方法 - Google Patents

一种顶板变形高精度监测预警系统及方法 Download PDF

Info

Publication number
WO2021027292A1
WO2021027292A1 PCT/CN2020/082848 CN2020082848W WO2021027292A1 WO 2021027292 A1 WO2021027292 A1 WO 2021027292A1 CN 2020082848 W CN2020082848 W CN 2020082848W WO 2021027292 A1 WO2021027292 A1 WO 2021027292A1
Authority
WO
WIPO (PCT)
Prior art keywords
explosion
deformation
monitoring
proof
optical fiber
Prior art date
Application number
PCT/CN2020/082848
Other languages
English (en)
French (fr)
Inventor
郭伟耀
张巍
赵同彬
谭云亮
李玉蓉
Original Assignee
山东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东科技大学 filed Critical 山东科技大学
Priority to ZA2021/00041A priority Critical patent/ZA202100041B/en
Publication of WO2021027292A1 publication Critical patent/WO2021027292A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • E21F17/185Rock-pressure control devices with or without alarm devices; Alarm devices in case of roof subsidence
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0093Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object

Definitions

  • the invention relates to the technical field of roadway deformation monitoring and early warning, in particular to a high-precision monitoring and early warning system for roof deformation of a roadway or tunnel, and a monitoring and early warning method.
  • the monitoring methods for roof deformation of roadways and tunnels generally use total station and level measurement as well as traditional manual measurement methods, that is, drill holes in the vertical direction of the middle of the roadway, tunnel roof and bottom plate, install wooden piles, short anchor rods, and test nails. , Manual measurement and recording by staff.
  • the traditional manual measurement method is limited by the influence of the position of the measurement point, and is mainly suitable for the uniform deformation of the surface of the surrounding rock of a regular roadway; when manual recording is limited to a certain section of the roadway, the overall measurement cannot be achieved; it is easy for workers to record data in time and accuracy.
  • the above problems have brought many difficulties to the measurement of roadway and tunnel roof settlement.
  • a fiber optic sensor is a sensor that converts the state of the measured object into a measurable light signal.
  • the working principle of the optical fiber sensor is to send the light beam incident from the light source to the modulator through the optical fiber, and interact with the external measured parameters in the modulator to make the optical properties of light such as light intensity, wavelength, frequency, phase, polarization state, etc. It changes and becomes a modulated optical signal, which is then sent to the optoelectronic device through the optical fiber, and the measured parameter is obtained after the demodulator.
  • optical fiber sensors use light as the carrier of sensitive information and optical fibers as the medium for transmitting sensitive information.
  • optical fiber and optical measurement has the characteristics of optical fiber and optical measurement, good electrical insulation performance, strong anti-electromagnetic interference ability, non-invasive, high sensitivity , It is easy to realize the remote monitoring of the measured signal, corrosion-resistant, explosion-proof, and the optical path is flexible, which is convenient for connection with the computer.
  • Distributed optical fiber sensors can realize real-time measurement of roadway and tunnel roof deformation, accurately measure the deformation of roadway and tunnel roof at any position at one time, and carry out early warning processing of the deformation.
  • Chinese patent CN108680139A "Tunnel Roof Settlement Monitoring Device and Tunnel Settlement Monitoring Method” uses fiber grating height gauges and demodulators arranged along the tunnel roof to build a tunnel roof settlement monitoring device, which can receive and process the monitoring data of the fiber grating height gauge, It solves the engineering problem of low accuracy of tunnel roof settlement monitoring in the prior art.
  • this device is mainly suitable for measuring the deformation of the tunnel roof with relatively regular deformation, and it is more difficult to complete the overall deformation measurement of the tunnel roof.
  • the present invention provides A high-precision monitoring and early warning system and method for roof deformation.
  • the specific technical scheme is as follows.
  • the existing roof deformation measurement system and method it takes a lot of time and it is difficult to ensure the real-time and accuracy of the information if it is necessary to draw the relationship between the deformation amount, the deformation speed and the deformation position and time of the roadway and tunnel roof;
  • the section of the roadway is generally uneven, and the roof settlement is mostly non-uniform deformation. It is necessary to accurately determine the position of the monitoring device to ensure the installation of the roof and the optical fiber sensor; the high-precision monitoring and early warning system for roof deformation is based on the roof of the roadway and tunnel.
  • the deformation condition presets the measurement base point of the sensor, and the central controller issues instructions to control the explosion-proof optical fiber sensor attached to the roof monitoring area, while continuously receiving the light signal from the measurement point in real time, thereby achieving high-precision measurement of the roadway or tunnel roof deformation.
  • a high-precision monitoring and early warning system for roof deformation including an explosion-proof optical fiber sensor, a sensor integration device, a signal conversion device, a data transmission device, a data processing unit, and a central controller.
  • the explosion-proof optical fiber sensor is installed on the roof anchor, and the sensor integration device is connected to monitor
  • the signal conversion device is connected with the sensor integration device to convert spectral information into electronic signals
  • the data transmission device transmits the electronic signals to the data processing unit
  • the explosion-proof optical fiber sensor is placed in the optical fiber container,
  • the optical fiber container is fixed on the exposed end of the screw body, the optical fiber container is connected with the explosion-proof hose, the optical cable in the explosion-proof hose is connected with the explosion-proof optical fiber sensor, and the explosion-proof hose is provided with multiple optical fiber containers and multiple clamps;
  • the sensor integration device overlaps the explosion-proof optical fiber sensor within the monitoring range of the top plate through the anti-corrosion cable, and the sensor integration device and the signal conversion device perform optical fiber welding;
  • the electronic recorder determines the spatial coordinate information and obtains the three-dimensional point cloud array.
  • the electronic analyzer extracts multi-planar features to determine the deformation standard, and the electronic register matches the image. And calibrate the time-space relationship, the 3D model machine processes the RGB image to form a three-dimensional space model, the data processing unit combines the received deformation monitoring information and spatial coordinate information to determine the top plate deformation in real time; the central controller is connected to and controls the explosion-proof optical fiber sensor, sensor integration device, The signal conversion device, data transmission device and data processing unit work.
  • the explosion-proof optical fiber sensor includes a light source, a receiver, and a modulator.
  • the receiver receives the light beam incident from the light source at the top plate and sends it to the modulator.
  • the modulator will change the intensity, wavelength, frequency, and phase of the light after the top plate is deformed. , The polarization state is converted into a modulated optical signal.
  • the data processing unit further includes a control chip and an SD card integrated module, the top plate deformation information monitored by the explosion-proof optical fiber sensor is transmitted through the signal conversion device, and the 3D model machine of the data processing unit is processed and stored in the control chip and SD card Integrated module.
  • the signal conversion device further includes a signal receiver and a signal transmitter, the signal receiver is connected to the sensor integrated device to receive optical signals, and the signal transmitter is connected to the data transmission device to transmit electronic signals.
  • the data transmission device includes a data transmission line, a USB data transmission interface and an RJ45 network interface, and the data transmission line is connected to the explosion-proof optical fiber sensor, the sensor integration device, the signal conversion device, the data transmission device, the data processing unit and the central controller, so The USB data transmission interface and the RJ45 network interface are arranged on the data transmission device.
  • the central controller is provided with an explosion-proof enclosure and explosion-proof lighting
  • a power supply is arranged in the explosion-proof enclosure, and the power supply uses an explosion-proof lithium ion battery and a safety protection lithium battery charging board;
  • a load-bearing steel frame is provided at the lower part of the explosion-proof enclosure, which is explosion-proof
  • the bottom of the shell is provided with a roller.
  • the central controller is provided with explosion-proof optical fiber sensor data display buttons, explosion-proof optical fiber sensor data analysis buttons, explosion-proof housing movement control buttons, start button, end button, record button, save button and export button.
  • a high-precision monitoring and early warning method for roof deformation using the above-mentioned high-precision roof deformation monitoring and early warning system, the steps include:
  • Step 1 Select the area to be monitored on the roof of the tunnel or tunnel, calibrate the measurement base point, install the explosion-proof optical fiber sensor to the measurement base point, and install the optical fiber container, clamp, explosion-proof hose and optical cable;
  • Step 2 Connect the sensor integration device, signal conversion device, data transmission device, data processing unit and central controller in sequence, and ensure that the central processor is placed horizontally;
  • Step 3 Confirm the vertical top plate setting of the explosion-proof optical fiber sensor, control the work of the explosion-proof optical fiber sensor through the start button on the central processing unit, and detect the installation of the circuit;
  • Step 4 Enter the number of each measurement base point and start monitoring.
  • the explosion-proof optical fiber sensor monitors the horizontal and vertical displacement of the top plate;
  • Step 5 The data processing unit determines the spatial coordinates of the surrounding rock, statistically analyzes the monitoring information of each measurement base point, determines the top plate deformation according to the coordinate information of the measurement base point, displays the top plate deformation in real time, and saves the top plate deformation data;
  • Step 6 Obtain roof deformation data during the monitoring period, analyze each measurement base point and roof deformation, construct a three-dimensional model of road roof deformation, and derive a 3D section view of the roof measurement point.
  • the steps of constructing the deformed three-dimensional model of the road roof include:
  • the electronic analyzer of the data processing unit extracts multi-plane features to determine the standard of deformation, and the electronic register matches the image and calibrates the time-space relationship;
  • the data processing unit performs identification processing according to the test piece and spatial relationship of each group of monitoring data, determines the true deformation of the top plate, and obtains the deformation curve of any measurement base point;
  • the data processing unit uses a 3D model machine to build a three-dimensional model of roof deformation, and based on continuous-time roof deformation monitoring data, the top plate deformation is determined in real time and the three-dimensional model is updated.
  • a high-precision monitoring and early warning system for roof deformation which combines optical fiber measurement, image processing, 3D modeling and roof deformation monitoring to jointly realize accurate, convenient, sensitive and intuitive monitoring of the roof of the tunnel or tunnel.
  • the explosion-proof optical fiber sensor obtains roof deformation data, imports it into the data processing unit for processing, obtains the roadway or tunnel roof deformation, and visually displays it through the 3D model, which makes the operation of roof deformation monitoring more concise and improves the accuracy of monitoring.
  • the beam fed back from the measuring point is sent to the modulator via the optical fiber, and interacts with the photosensitive element in the modulator to change the incident light intensity, wavelength, frequency, phase, polarization, etc. and become modulated
  • the optical signal is sent to the optoelectronic device through the optical fiber to the sensor integrated system.
  • the overall display is sensitive, accurate, adaptable, compact and intelligent.
  • the sensor integrated device will detect the light collected by all the explosion-proof optical fiber sensors in the top plate deformation monitoring area. The signal is processed in a unified and integrated manner.
  • the optical signal after marking the position information is transmitted to the signal conversion device, and the optical signal is converted into an electronic signal through an amplitude converter, a phase converter and a frequency converter, which can be applied to high voltage, electrical noise, and high temperature , Corrosion, or other harsh environments.
  • the monitoring process is simple and easy to implement. It is conducive to the safety of engineering operations during the construction process.
  • the measurement data is processed by the data processing unit, which can display the roof deformation monitoring data of the roadway or tunnel in a three-dimensional manner, and draw the three-dimensional structure model.
  • the degree of automation is high and the environmental adaptability is good. The entire monitoring process does not affect The project is proceeding normally.
  • the central processing unit can be used to analyze the roof deformation of roadways or tunnels under different working conditions in a mobile manner. Relying on the structure of explosion-proof housing and rollers, it is not only convenient to move, but also adaptable to the uneven ground environment in the roadway or tunnel, with strong stability and Explosion-proof function, high safety.
  • Figure 1 is a schematic diagram of part of the structure of a high-precision monitoring and early warning system for roof deformation
  • Figure 2 is a schematic diagram of the structure of a high-precision monitoring and early warning system for roof deformation
  • Figure 3 is a schematic diagram of the operation of the central controller
  • Figure 4 is a schematic flow chart of a high-precision monitoring and early warning method for roof deformation.
  • the present invention provides a high-precision monitoring and early warning system and method for roof deformation.
  • the roof deformation high-precision monitoring and early warning system overcomes the shortcomings of traditional roof deformation measurement. It includes explosion-proof optical fiber sensors, sensor integration devices, signal conversion devices, data transmission devices, data processing units and central controllers. Set the monitoring parameters of the optical fiber sensor, and then preset the sensor measurement base point according to the deformation of the top plate, and the central controller sends instructions to control the optical fiber sensor attached to the monitoring area of the top plate, while continuously receiving a series of light sensing signals from the measuring points in real time to achieve the top plate deformation High-precision real-time measurement.
  • a high-precision monitoring and early warning system for roof deformation specifically includes an explosion-proof optical fiber sensor 6, a sensor integration device, a signal conversion device, a data transmission device, a data processing unit, and a central controller.
  • the explosion-proof optical fiber sensor is installed on the anchor 2 of the roof 1.
  • the sensor integration device is connected to the explosion-proof optical fiber sensor 6 within the monitoring area
  • the signal conversion device is connected with the sensor integration device to convert the spectral information into electronic signals
  • the data transmission device transmits the electronic signals to the data processing unit.
  • the specific components of the top plate deformation high-precision monitoring and early warning system include anchor body 2, screw body 3, optical fiber container 4, clamp 5, explosion-proof optical fiber sensor 6, explosion-proof hose 7, optical cable 8, central processing unit 10, explosion-proof display 9, sensor Integrated device, signal conversion device, data transmission device, data processing unit and central controller, etc. It combines optical fiber measurement technology, image processing technology, 3D modeling technology and roof deformation monitoring to jointly realize accurate, convenient, sensitive and intuitive monitoring of the roof of the roadway or tunnel.
  • the roof deformation data is obtained through the explosion-proof optical fiber sensor and the data is imported for data processing.
  • the unit performs processing to obtain the roof deformation of the roadway or tunnel, and visually display it through the 3D model, which makes the operation of the roof deformation monitoring process more concise and improves the accuracy of the monitoring.
  • the explosion-proof fiber optic sensor 6 is placed in the fiber container 4, the screw body 3 and the fiber container 4 are directly fixedly connected, the fiber container 4 is fixed on the exposed end of the screw body, and the screw body 3 is inserted into the top plate by means of an anchor, and The screw body 3 is guaranteed to be perpendicular to the top plate.
  • the optical fiber container 4 is also connected to the explosion-proof hose 7, the optical cable 8 in the explosion-proof hose 7 is connected to the explosion-proof optical fiber sensor 6, and the optical cable 8 is connected to the explosion-proof optical fiber sensor 6 in a grid connection.
  • the explosion-proof hose 7 is provided with a plurality of optical fiber containers 4 And multiple clamps 5, among which the clamps 5 can be directly connected to the anchor body 2, and the clamps 5 and the fiber holders 4 can be arranged at intervals, so as to better fix the explosion-proof optical fiber sensor 6 and ensure the effective fit between the sensor and the top plate contact.
  • the optical cable is placed in an explosion-proof hose to prevent chemical and physical damage to the optical cable by the corrosive gas environment of the tunnel or tunnel.
  • a set of clamps 5 can be set between each two sets of explosion-proof optical fiber sensors to connect the explosion-proof hose 7 with the screw body 3. , To prevent the explosion-proof hose 7 from bending and sinking caused by its own weight.
  • the explosion-proof optical fiber sensor 6 includes a light source, a receiver, and a modulator.
  • the receiver receives the light beam incident from the light source at the top plate and sends it to the modulator.
  • the light intensity, wavelength, frequency, phase, and polarization state of the modulator will change with the top plate deformation. Converted to a modulated optical signal.
  • the internal multimode fiber of the explosion-proof fiber sensor is placed in the middle of the mechanical deformer. When the deformer is disturbed by the displacement of the top plate, the fiber will be periodically slightly bent along the axis. By detecting the change in the power of the transmitted light in the fiber core, the relative displacement of the top plate can be obtained. Light signal.
  • the sensor integration device laps the explosion-proof optical fiber sensor in the monitoring range of the top plate through the anti-corrosion cable, and the sensor integration device and the signal conversion device perform optical fiber welding.
  • the principle of the arrangement of the measurement base point of the explosion-proof optical fiber sensor is: the longitudinal axis of the measurement base point connected to the same explosion-proof optical cable is parallel to the long axis of the tunnel, and the measurement base point is always fixed in place to avoid the vertical direction of the two measurements. The measurement result is inaccurate due to the position change.
  • the signal conversion device includes an amplitude converter, a phase converter and a frequency converter.
  • the signal conversion device converts the spectrum information of the amplitude, phase and frequency transmitted by the sensor integrated device into an electronic signal.
  • the signal conversion device also includes a signal receiver and a signal transmitter. The signal receiver is connected to the sensor integrated device to receive optical signals, and the signal transmitter is connected to the data transmission device to transmit electronic signals.
  • the data transmission device transmits the electronic signal to the data processing unit through wired data transmission or wireless data transmission.
  • the data transmission device includes a data transmission line 11, a USB data transmission interface 16 and a RJ45 network interface 15.
  • the data transmission line is connected to the explosion-proof optical fiber sensor 6, the sensor integration device, the signal conversion device, the data transmission device, the data processing unit and the central controller, and the USB data transmission
  • the interface 16 and the RJ45 network interface 15 are arranged on the data transmission device, where the hardware equipment of the data transmission device can be integrated into the central controller.
  • the data processing unit includes an electronic recorder, an electronic analyzer, an electronic registration instrument and a 3D model machine.
  • the electronic recorder determines the spatial coordinate information and obtains a three-dimensional point cloud array.
  • the electronic analyzer extracts multi-plane features to determine the deformation standard, and electronic registration
  • the instrument matches the image and calibrates the spatial relationship
  • the 3D model machine processes the RGB image to form a three-dimensional space model
  • the data processing unit combines the received deformation monitoring information and space coordinate information to determine the top plate deformation in real time.
  • the data processing unit also includes a control chip and an SD card integrated module.
  • the top plate deformation information monitored by the explosion-proof optical fiber sensor is transmitted through the signal conversion device, and the 3D model machine of the data processing unit is processed and stored in the control chip and SD card integrated module.
  • the central controller respectively connects and controls the explosion-proof optical fiber sensor 6, the sensor integration device, the signal conversion device, the data transmission device and the data processing unit.
  • the central controller 10 is provided with an explosion-proof housing 12 and an explosion-proof lighting lamp.
  • the explosion-proof housing 12 is provided with a power supply.
  • the power supply uses an explosion-proof lithium ion battery and a safety protection lithium battery charging board.
  • the power supply is an explosion fiber sensor, a sensor integrated device, and a signal conversion
  • the device, the data transmission device and the data processing unit supply power, and also supply power to the explosion-proof lighting.
  • the lower part of the explosion-proof housing 12 is provided with a load-bearing steel frame, and the bottom of the explosion-proof housing is provided with a roller.
  • the central controller is equipped with explosion-proof optical fiber sensor data display button, explosion-proof optical fiber sensor data analysis button, explosion-proof housing movement control button, horizontal displacement monitoring button 13-1, spatial position monitoring button 13-2, vertical displacement monitoring button 13-3, start Button 14-1, end button 14-5, record button 14-2, save button 14-3, and export button 14-4.
  • the explosion-proof display screen 9 is connected to the central controller 10 to display the monitoring and processing results.
  • a high-precision monitoring and early warning method for roof deformation using the above-mentioned high-precision roof deformation monitoring and early warning system, the steps include:
  • Step 1 Select the area to be monitored on the roof of the tunnel or tunnel, calibrate the measurement base point, install the explosion-proof optical fiber sensor to the measurement base point, and install the optical fiber container, clamp, explosion-proof hose and optical cable. Determine the roof area to be monitored in the tunnel or tunnel, mark the measurement base point, and move the explosion-proof optical fiber sensor, explosion-proof hose, optical cable, and explosion-proof data line to the measurement base point.
  • Step 2 Connect the sensor integration device, signal conversion device, data transmission device, data processing unit and central controller in sequence, and ensure that the central processing unit is placed horizontally, the top plate deformation high-precision monitoring and early warning system is assembled, and the start button is turned on.
  • Step 3 Confirm the vertical top plate setting of the explosion-proof optical fiber sensor, control the operation of the explosion-proof optical fiber sensor through the start button on the central processing unit, and detect the wiring installation. Before the formal measurement, turn on the explosion-proof optical fiber sensor spatial position monitoring button 13-2, adjust the anchor body, the screw body and the top plate to maintain verticality, to ensure that the explosion-proof optical fiber sensor in the top plate deformation monitoring and early warning system is perpendicular to the top plate.
  • Step 4 Enter the number of each measurement base point and start monitoring.
  • the explosion-proof optical fiber sensor monitors the horizontal and vertical displacement of the top plate.
  • Step 5 The data processing unit determines the spatial coordinates of the surrounding rock, statistically analyzes the monitoring information of each measurement base point, determines the top plate deformation according to the coordinate information of the measurement base point, displays the top plate deformation in real time, and saves the top plate deformation data;
  • Step 6 Obtain roof deformation data during the monitoring period, analyze each measurement base point and roof deformation, construct a three-dimensional model of road roof deformation, and derive a 3D section view of the roof measurement point.
  • the method can accurately determine the preset position of the optical fiber sensor, and realize the high-fit installation of the optical fiber sensor and the top plate. Using the high-precision transmission and conversion calculation of the optical signal of the optical fiber sensor, a more accurate and sensitive top plate monitoring is realized.
  • the steps of constructing a three-dimensional model of the road roof deformation include:
  • Step A Obtain the roof space position and its deformation data during the monitoring period, and automatically input the roof deformation data into the control chip of the data processing unit to generate the roof position and deformation space matrix.
  • Step B The electronic analyzer of the data processing unit extracts the top plate position and the multi-plane features in the deformation space matrix, and the electronic registration device matches the image according to the initially set deformation standard and calibrates the time-space relationship.
  • Step C The data processing unit performs target detection and recognition processing according to the corner detection and straight line detection, according to the time and space relationship of each group of monitoring data, to improve the determination accuracy of roof deformation, and obtain the deformation curve and spatial surface of any measurement base point.
  • Step D During data processing, the first step is to monitor the image characteristics, including the recognition of the deformation curve image and the top plate image characteristics. After the recognition, it is calibrated according to the coordinate point position, and then the 3D image and the 2D image are matched, and the top plate is finally established Deformed three-dimensional model.
  • the data processing unit uses a 3D model machine to construct a three-dimensional model of roof deformation, and based on continuous-time roof deformation monitoring data, determines the top plate deformation in real time and updates the three-dimensional model.

Abstract

一种顶板变形高精度监测预警系统,包括防爆光纤传感器(6)、传感器集成装置、信号转换装置、数据传输装置和数据处理单元,防爆光纤传感器(6)将顶板位移信号转化为光谱信息,传感器集成装置连接同一监测范围内的防爆光纤传感器(6),信号转换装置与传感器集成装置连接,将光谱信息转换为电子信号,数据传输装置将电子信号传输至数据处理单元。还公开了利用该系统的监测方法,进行监测时,在选定的监测区域安装防爆光纤传感器(6),并连接系统的各个组成部分,对顶板的位移进行监测,中央控制器(10)和数据处理单元建立围岩的空间三维模型,根据变形监测及空间坐标实时确定顶板变形,该监测更加准确、方便,还具有灵敏、直观的优点。

Description

一种顶板变形高精度监测预警系统及方法 技术领域
本发明涉及巷道变形监测预警技术领域,尤其是一种用于巷道或隧道的顶板变形高精度监测预警系统,以及监测预警方法。
背景技术
  随着煤矿开采的进行,矿井巷道的长度和深度都在快速增加,另外隧道工程也在大量修建,巷道和隧道顶板变形导致的大规模冒顶和坍塌事故时常发生,加强巷道、隧道顶板沉降的监测刻不容缓。巷道、隧道顶板变形量是主要的工程监测参数内容,根据监测结果可以计算巷道、隧道顶板变形速度,巷道、隧道顶板变形收敛率,并建立绘制巷道、隧道顶板变形量、变形速度和变形位置与时间的关系曲线,进而分析巷道、隧道顶板变形规律,围岩稳定性,以及巷道、隧道支护效果。目前巷道、隧道顶板变形的监测方法普遍采用全站仪和水准仪测量以及传统手动测量法,即在巷道、隧道顶、底板中部垂直方向钻孔,安装木桩、短锚杆、测钉等测量基点,由工作人员进行手工的测量和记录。
考虑到工程中的巷道受地应力、岩性、流变或爆破冲击的影响,通常情况下顶板初始断面形状、不平整度差异较大,且顶板沉降为非均匀变形。全站仪监测运用广泛,但是需要人工逐点监测,耗时耗力,且不能实时监测,同时测量精度受人为因素大,误差较大。水准仪监测能实现一定程度的自动化和数字化,但体积较大不便安装,且不适用于高差变化较大区段,并受环境影响较大。传统手动测量方法受限于测点位置的影响,主要适用于规则巷道围岩表面的均匀变形;人工记录时局限于巷道某一断面,不能实现整体测量;容易出现工人记录数据不及时和精度不高而导致数据分析不准确等,上述问题给巷道、隧道顶板沉降的测量带来了诸多困难。
当前,光纤传感器是一种将被测对象的状态转变为可测的光信号的传感器。光纤传感器的工作原理是将光源入射的光束经由光纤送入调制器,在调制器内与外界被测参数的相互作用,使光的光学性质如光的强度、波长、频率、相位、偏振态等发生变化,成为被调制的光信号,再经过光纤送入光电器件、经解调器后获得被测参数。与传统传感器相比,光纤传感器用光作为敏感信息的载体,用光纤作为传递敏感信息的媒质,具有光纤及光学测量的特点,电绝缘性能好,抗电磁干扰能力强,非侵入性、高灵敏度,容易实现对被测信号的远距离监控,耐腐蚀、防爆,光路有可挠曲性,便于与计算机联接。
利用分布式光纤传感器可以实现巷道、隧道顶板变形的实时测量、一次性精确地测出任意位置巷道、隧道顶板变形量并对变形量进行预警处理。其中,中国专利CN108680139A ,“隧道顶板沉降监测装置和隧道沉降监测方法”利用沿隧道顶板顺次排列的光纤光栅高差计和解调仪搭建隧道顶板沉降监测装置,能够接收并处理光纤光栅高差计的监测数据,解决了现有技术中隧道顶板沉降监测精度较低的工程问题。但该装置主要适用于测量变形较为规则的隧道顶板变形,而且完成隧道顶板整体变形测量工作的难度较高。中国专利CN106123767A ,“一种长壁工作面充填开采顶板沉降监测方法”根据电阻应变式传感器监测的应变值在监控主机中转化位移量并判断充填开采顶板沉降量,可以通过调节测杆长度适用于不同顶底板高度工况,在监测充填开采顶板沉降量的同时确定顶板的采动影响区范围。该装置安装和线路布置较为繁琐,测量采样间隔的随机性较大,而且作为安装载体的套筒容易受外界环境的扰动。中国专利CN106908033A ,“一种采空区顶板多点位移同步测量装置及其测量方法”计算采空区顶板各基点的位移变化同时,利用光栅尺位移传感器检测顶板沉降以及覆岩深部位移,无需在采空区的复杂环境中埋设传输线路;但所选用的光栅尺位移传感器仅工作于范围较小的顶板区域而不能实现长距离巷道顶板沉降测量,完成一次测量需要使用大量的光栅尺位移传感器。
技术问题
因此,需要解决现有巷道、隧道顶板变形测量装置存在的上述问题,即在精确获取顶板沉降变形量的基础上,实现不规则巷道、隧道顶板大区域非均匀变形的实时监测及预警等功能,同时减小外界环境对测量装置的影响、降低测量成本等,这对于岩体工程支护及施工安全等都具有极其重要的科研和工程意义。
技术解决方案
为了更加准确、方便、灵敏、直观的监测巷道和隧道顶板变形,精确获取顶板沉降变形量,对不规则巷道、隧道的顶板非均匀变形进行监测预警,提高监测效率,节省监测成本,本发明提供了一种顶板变形高精度监测预警系统及方法,具体技术方案如下。
现有的顶板变形测量系统及方法,如果要绘制巷道、隧道顶板变形量、变形速度和变形位置与时间的关系曲线,需要耗费大量的时间,并且难以保证信息的实时性和准确性;另外由于巷道的断面一般是不平整的,而且顶板沉降多为非均匀变形,需要准确确定监测装置的位置,保证顶板和光纤传感器之间的契合安装;顶板变形高精度监测预警系统根据巷道、隧道的顶板变形情况预设传感器的测量基点,由中央控制器发出指令控制附着于顶板监测区域的防爆光纤传感器,同时持续实时接收测点发出的光信号,进而实现巷道或隧道顶板变形的高精度测量。
一种顶板变形高精度监测预警系统,包括防爆光纤传感器、传感器集成装置、信号转换装置、数据传输装置、数据处理单元和中央控制器,防爆光纤传感器安装于顶板锚固体上,传感器集成装置连接监测区域范围内的防爆光纤传感器,信号转换装置与传感器集成装置连接,将光谱信息转换为电子信号,数据传输装置将电子信号传输至数据处理单元;所述防爆光纤传感器置于光纤容置器内,光纤容置器固定在螺杆体的外露端,光纤容置器和防爆胶管相连,防爆胶管内的光缆和防爆光纤传感器连接,防爆胶管上设置有多个光纤容置器和多个卡箍;所述传感器集成装置通过防腐蚀线缆将顶板监测范围内的防爆光纤传感器搭接,传感器集成装置和信号转换装置进行光纤熔接;所述信号转换装置包括振幅转换器、相位转换器和频率转换器,信号转换装置将传感器集成装置传输来的振幅、相位和频率的光谱信息转换为电子信号;所述数据传输装置通过有线数据传输或无线数据传输将电子信号传递至数据处理单元;所述数据处理单元包括电子记录仪、电子分析仪、电子配准仪和3D模型机,电子记录仪确定空间坐标信息并获取三维点云阵列,电子分析仪提取多平面特征确定变形的标准,电子配准仪匹配图像并标定时空关系,3D模型机处理RGB图像形成三维空间模型,数据处理单元结合接收的变形监测信息和空间坐标信息实时确定顶板变形;中央控制器分别连接防并控制防爆光纤传感器、传感器集成装置、信号转换装置、数据传输装置和数据处理单元工作。
优选的是,防爆光纤传感器包括光源、接收器和调制器,接收器接收顶板处的光源入射的光束并送入调制器,调制器内将随顶板变形变化后的光强、波长、频率、相位、偏振态转换为被调制的光信号。
优选的是,数据处理单元还包括控制芯片和SD卡集成模块,防爆光纤传感器监测到的顶板变形信息经过信号转换装置传输,以及数据处理单元的3D模型机处理后,存储至控制芯片和SD卡集成模块。
优选的是,信号转换装置还包括信号接收器和信号发射器,信号接收器和传感器集成装置相连接收光信号,信号发射器和数据传输装置相连传输电子信号。
优选的是,数据传输装置包括数据传输线、USB数据传输接口和RJ45网络接口,所述数据传输线连接防爆光纤传感器、传感器集成装置、信号转换装置、数据传输装置、数据处理单元和中央控制器,所述USB数据传输接口和RJ45网络接口设置在数据传输装置上。
优选的是,中央控制器设置有防爆外壳和防爆照明灯,防爆外壳内设置有电源,电源使用防爆型锂离子电池和安全防护型锂电池充电板;防爆外壳的下部设置有承重钢架,防爆外壳的底部设置有滚轮。
优选的是,中央控制器设置有防爆光纤传感器数据显示按钮、防爆光纤传感器数据分析按钮、防爆外壳移动控制按钮、启动按钮、结束按钮、记录按钮、保存按钮和导出按钮。
一种顶板变形高精度监测预警方法,利用上述的一种顶板变形高精度监测预警系统,步骤包括:
步骤一.在巷道或隧道内的顶板选定待监测区域,标定测量基点,将防爆光纤传感器安装至测量基点的位置,并安装光纤容置器、卡箍、防爆胶管和光缆;
步骤二.依次连接传感器集成装置、信号转换装置、数据传输装置、数据处理单元和中央控制器,并保证中央处理器水平放置;
步骤三.确认防爆光纤传感器垂直顶板设置,通过中央处理器上的启动按钮控制防爆光纤传感器工作,并检测线路安装;
步骤四.输入各个测量基点编号并开始监测,防爆光纤传感器监测顶板的水平位移和垂直位移;
步骤五.数据处理单元确定围岩空间坐标,统计分析各个测量基点的监测信息,根据测量基点的坐标信息确定顶板变形,实时显示顶板变形,保存顶板的变形数据;
步骤六.获取监测时间段内的顶板变形数据,对各个测量基点和顶板变形进行分析,构建道顶板变形三维模型,导出顶板测点的3D断面图。
优选的是,道顶板变形三维模型的构建步骤包括:
A.获取监测时间段内的顶板变形数据,并将顶板变形数据送入数据处理单元的控制芯片,
B.数据处理单元的电子分析仪提取多平面特征确定变形的标准,电子配准仪匹配图像并标定时空关系;
C.数据处理单元根据每组监测数据的试件和空间关系进行识别处理,确定顶板的真实变形,得到任意测量基点的变形曲线;
D.数据处理单元利用3D模型机构建顶板变形三维模型,根据连续时间的顶板变形监测数据,实时确定顶板变形,更新三维模型。
有益效果
(1)提供了一种顶板变形高精度监测预警系统,结合了光纤测量、图像处理、3D建模和顶板变形监测,共同实现了对巷道或隧道顶板准确、方便、灵敏、直观的监测,通过防爆光纤传感器得到顶板变形数据,导入数据处理单元进行处理,得到巷道或隧道顶板变形,并通过3D模型直观显示,使得顶板变形监测过程中操作更加简洁、并提高了监测的准确度。
(2)防爆光纤传感器工作时将测点反馈的的光束经由光纤送入调制器,在调制器内与感光元件相互作用,改变入射光强度、波长、频率、相位、偏振态等并成为被调制的光信号,再经过光纤送入光电器件直至传感器集成系统,整体呈现灵敏、精确、适应性强、小巧和智能化等特点;传感器集成装置将顶板变形监测区域内所有的防爆光纤传感器采集的光信号进行统一集成处理,经过标记位置信息后的光信号背传输至信号转换装置,通过振幅转换器、相位转换器及频率转换器将光信号转换为电子信号,可以适用于高压、电气噪声、高温、腐蚀、或其它的恶劣环境。
(3)利用传感器监测,通过预先设置监测参数后实现高效无人化监测,避免了在顶板上多次监测,解决了顶板监测耗时长、施工困难和成本高等问题,监测过程简单、实施方便,利于施工过程中的工程操作安全,测量数据由数据处理单元进行处理,可以立体显示巷道或隧道的顶板变形监测数据,并绘制三维结构模型,自动化程度高,环境适应性良好,整个监测过程不影响工程的正常进行。
(4)通过中央处理器可以移动式分析工况不同的巷道或隧道顶板变形,依托防爆外壳和滚轮的结构,不仅移动方便而且能适应巷道或隧道内凹凸不平的地面环境,稳定性强,具有防爆功能,安全性高。
附图说明
图1为顶板变形高精度监测预警系统部分结构示意图;
图2为顶板变形高精度监测预警系统结构示意图;
图3为中央控制器操作示意图;
图4是顶板变形高精度监测预警方法流程示意图。
图中:1顶板;2 锚固体;3 螺杆体;4 光纤容置器;5 卡箍;6 防爆光纤传感器;7 防爆胶管;8 光缆;9 防爆显示屏;10 中央控制器;11数据线;12 防爆外壳;13-1 水平位移监测按钮;13-2 空间位置监测按钮;13-3 垂直位移监测按钮;14-1 启动按钮;14-2 记录按钮;14-3 保存按钮;14-4 导出按钮;14-5 结束按钮;15-RJ45 网络接口;16-USB 数据传输接口。
本发明的实施方式
[0008] 结合图1至图4所示,本发明提供的一种顶板变形高精度监测预警系统及方法具体实施方式如下。
顶板变形高精度监测预警系统,克服了传统顶板变形测量的不足之处,其包括防爆光纤传感器、传感器集成装置、信号转换装置、数据传输装置、数据处理单元和中央控制器,该系统工作时预先设置光纤传感器监测参数,后根据顶板变形情况预设传感器测量基点,由中央控制器发出指令控制附着于顶板监测区域的光纤传感器,同时持续实时接收测点发出的一序列光感信号进而实现顶板变形的高精度实时测量。
一种顶板变形高精度监测预警系统具体包括防爆光纤传感器6、传感器集成装置、信号转换装置、数据传输装置、数据处理单元和中央控制器,防爆光纤传感器安6装于顶板1锚固体2上,传感器集成装置连接监测区域范围内的防爆光纤传感器6,信号转换装置与传感器集成装置连接,将光谱信息转换为电子信号,数据传输装置将电子信号传输至数据处理单元。顶板变形高精度监测预警系统具体部件包括锚固体2、螺杆体3、光纤容置器4、卡箍5防爆光纤传感器6、防爆胶管7、光缆8、中央处理器10、防爆显示屏9、传感器集成装置、信号转换装置、数据传输装置、数据处理单元和中央控制器等。其结合了光纤测量技术、图像处理技术、3D建模技术和顶板变形监测,共同实现了对巷道或隧道顶板准确、方便、灵敏、直观的监测,通过防爆光纤传感器得到顶板变形数据,导入数据处理单元进行处理,得到巷道或隧道顶板变形,并通过3D模型直观显示,使得顶板变形监测过程中操作更加简洁、并提高了监测的准确度。
防爆光纤传感器6置于光纤容置器4内,螺杆体3和光纤容置器4直接固定连接,光纤容置器4固定在螺杆体的外露端,螺杆体3借助锚固体插入顶板内,并且螺杆体3保证与顶板垂直。光纤容置器4还和防爆胶管7相连,防爆胶管7内的光缆8和防爆光纤传感器6连接,光缆8并网连接各个防爆光纤传感器6,防爆胶管7上设置有多个光纤容置器4和多个卡箍5,其中卡箍5可以直接连接在锚固体2上,卡箍5和光纤容置器4可以间隔布置,从而更好的固定防爆光纤传感器6,保证传感器和顶板的有效契合接触。同时光缆置于防爆胶管中,防止巷道或隧道腐蚀性气体环境对光缆的化学及物理破坏,可以在每两组防爆光纤传感器中间设置一组卡箍5,将防爆胶管7与螺杆体3相连接,防止防爆胶管7自重引起的弯曲下沉。防爆光纤传感器6包括光源、接收器和调制器,接收器接收顶板处的光源入射的光束并送入调制器,调制器内将随顶板变形变化后的光强、波长、频率、相位、偏振态转换为被调制的光信号。防爆光纤传感器内部多模光纤置于机械变形器中间,当变形器受顶板位移扰动时,光纤沿轴线产生周期性微弯曲,通过检测光纤纤芯中传导光功率变化量,得到与顶板位移相关的光信号。
传感器集成装置通过防腐蚀线缆将顶板监测范围内的防爆光纤传感器搭接,传感器集成装置和信号转换装置进行光纤熔接。其中顶板的监测范围内,防爆光纤传感器测量基点的布置原则是:同一防爆光缆连接的测量基点纵向轴线与巷道长轴线平行,测量基点一直保持固定在原位,避免前后两次测量因的竖向位置变化而导致测量结果不准确,根据实际需要设置监测的点的个数,在防爆胶管上添加,保证同一光缆上的传感器在同一平面上,改变监测方向,测量巷道顶板的不同区域。
信号转换装置包括振幅转换器、相位转换器和频率转换器,信号转换装置将传感器集成装置传输来的振幅、相位和频率的光谱信息转换为电子信号。信号转换装置还包括信号接收器和信号发射器,信号接收器和传感器集成装置相连接收光信号,信号发射器和数据传输装置相连传输电子信号。
数据传输装置通过有线数据传输或无线数据传输将电子信号传递至数据处理单元。数据传输装置包括数据传输线11、USB数据传输接口16和RJ45网络接口15,数据传输线连接防爆光纤传感器6、传感器集成装置、信号转换装置、数据传输装置、数据处理单元和中央控制器, USB数据传输接口16和RJ45网络接口15设置在数据传输装置上,其中数据传输装置的硬件设备可以集成至中央控制器上。
数据处理单元包括电子记录仪、电子分析仪、电子配准仪和3D模型机,电子记录仪确定空间坐标信息并获取三维点云阵列,电子分析仪提取多平面特征确定变形的标准,电子配准仪匹配图像并标定时空关系,3D模型机处理RGB图像形成三维空间模型,数据处理单元结合接收的变形监测信息和空间坐标信息实时确定顶板变形。数据处理单元还包括控制芯片和SD卡集成模块,防爆光纤传感器监测到的顶板变形信息经过信号转换装置传输,以及数据处理单元的3D模型机处理后,存储至控制芯片和SD卡集成模块。
中央控制器分别连接防并控制防爆光纤传感器6、传感器集成装置、信号转换装置、数据传输装置和数据处理单元工作。中央控制器10设置有防爆外壳12和防爆照明灯,防爆外壳12内设置有电源,电源使用防爆型锂离子电池和安全防护型锂电池充电板,电源为爆光纤传感器、传感器集成装置、信号转换装置、数据传输装置和数据处理单元供电,并且为防爆照明灯供电。防爆外壳12的下部设置有承重钢架,防爆外壳的底部设置有滚轮。中央控制器设置有防爆光纤传感器数据显示按钮、防爆光纤传感器数据分析按钮、防爆外壳移动控制按钮、水平位移监测按钮13-1、空间位置监测按钮13-2、垂直位移监测按钮13-3、启动按钮14-1、结束按钮14-5、记录按钮14-2、保存按钮14-3和导出按钮14-4。防爆显示屏9和中央控制器10相连,将监测处理结果显示。
一种顶板变形高精度监测预警方法,利用上述的一种顶板变形高精度监测预警系统,步骤包括:
步骤一.在巷道或隧道内的顶板选定待监测区域,标定测量基点,将防爆光纤传感器安装至测量基点的位置,并安装光纤容置器、卡箍、防爆胶管和光缆。在巷道或隧道中确定需要监测的顶板区域,标记测量基点,将防爆光纤传感器及防爆胶管、光缆、防爆数据线移动至测量基点处。
步骤二.依次连接传感器集成装置、信号转换装置、数据传输装置、数据处理单元和中央控制器,并保证中央处理器水平放置,组装完成顶板变形高精度监测预警系统,并打开启动按钮。
步骤三.确认防爆光纤传感器垂直顶板设置,通过中央处理器上的启动按钮控制防爆光纤传感器工作,并检测线路安装。正式测量前开启防爆光纤传感器空间位置监测按钮13-2,调整锚固体、螺杆体与顶板保持垂直,保证顶板变形高精度监测及预警系统中防爆光纤传感器与能够和顶板垂直。
步骤四.输入各个测量基点编号并开始监测,防爆光纤传感器监测顶板的水平位移和垂直位移。
步骤五.数据处理单元确定围岩空间坐标,统计分析各个测量基点的监测信息,根据测量基点的坐标信息确定顶板变形,实时显示顶板变形,保存顶板的变形数据;
步骤六.获取监测时间段内的顶板变形数据,对各个测量基点和顶板变形进行分析,构建道顶板变形三维模型,导出顶板测点的3D断面图。
对各个测量基点和顶板变形进行分析,具体是根据监测结果可以计算巷道或隧道顶板变形速度,顶板变形收敛率,并建立绘制巷道、隧道顶板变形量、变形速度和变形位置与时间的关系曲线,进而分析巷道、隧道顶板变形规律,围岩稳定性,以及巷道或隧道的支护效果。
利用该方法可以对光纤传感器预设位置进行准确判定,并且实现了光纤传感器与顶板的高契合度安装,利用光纤传感器光信号的高精度传递与转换计算,实现了更加准确、灵敏的顶板监测。
结合图4所示,其中道顶板变形三维模型的构建步骤包括:
步骤A.获取监测时间段内的顶板空间位置及其变形数据,并将顶板变形数据自动输入数据处理单元的控制芯片,生成顶板位置及变形空间矩阵。
步骤B.数据处理单元的电子分析仪提取顶板位置及变形空间矩阵中多平面特征,电子配准仪依据初始设定的变形标准匹配图像并标定时空关系。
步骤C.数据处理单元依据角点检测和直线检测,根据每组监测数据的时间和空间关系进行目标检测识别处理,提高顶板变形确定精度,得到任意测量基点的变形曲线及空间曲面。
步骤D.数据处理时,首先是监测图像特征,包括对变形曲线图像和顶板图像特征的识别,识别后根据坐标点位置对其进行标定,再进行三维图像和二维图像的匹配,最终建立顶板变形的三维模型。数据处理单元利用3D模型机构建顶板变形三维模型,根据连续时间的顶板变形监测数据,实时确定顶板变形,更新三维模型。
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。 

Claims (9)

  1. 一种顶板变形高精度监测预警系统,其特征在于,包括防爆光纤传感器、传感器集成装置、信号转换装置、数据传输装置、数据处理单元和中央控制器,防爆光纤传感器安装于顶板锚固体上,传感器集成装置连接监测区域范围内的防爆光纤传感器,信号转换装置与传感器集成装置连接,将光谱信息转换为电子信号,数据传输装置将电子信号传输至数据处理单元;
    所述防爆光纤传感器置于光纤容置器内,光纤容置器固定在螺杆体的外露端,光纤容置器和防爆胶管相连,防爆胶管内的光缆和防爆光纤传感器连接,防爆胶管上设置有多个光纤容置器和多个卡箍;
    所述传感器集成装置通过防腐蚀线缆将顶板监测范围内的防爆光纤传感器搭接,传感器集成装置和信号转换装置进行光纤熔接;
    所述信号转换装置包括振幅转换器、相位转换器和频率转换器,信号转换装置将传感器集成装置传输来的振幅、相位和频率的光谱信息转换为电子信号;所述数据传输装置通过有线数据传输或无线数据传输将电子信号传递至数据处理单元;
    所述数据处理单元包括电子记录仪、电子分析仪、电子配准仪和3D模型机,电子记录仪确定空间坐标信息并获取三维点云阵列,电子分析仪提取多平面特征确定变形的标准,电子配准仪匹配图像并标定时空关系,3D模型机处理RGB图像形成三维空间模型,数据处理单元结合接收的变形监测信息和空间坐标信息实时确定顶板变形;
    所述中央控制器分别连接防并控制防爆光纤传感器、传感器集成装置、信号转换装置、数据传输装置和数据处理单元工作。
  2. 根据权利要求1所述的一种顶板变形高精度监测预警系统,其特征在于,所述防爆光纤传感器包括光源、接收器和调制器,接收器接收顶板处的光源入射的光束并送入调制器,调制器内将随顶板变形变化后的光强、波长、频率、相位、偏振态转换为被调制的光信号。
  3. 根据权利要求1所述的一种顶板变形高精度监测预警系统,其特征在于,所述数据处理单元还包括控制芯片和SD卡集成模块,防爆光纤传感器监测到的顶板变形信息经过信号转换装置传输,以及数据处理单元的3D模型机处理后,存储至控制芯片和SD卡集成模块。
  4. 根据权利要求1所述的一种顶板变形高精度监测预警系统,其特征在于,所述信号转换装置还包括信号接收器和信号发射器,信号接收器和传感器集成装置相连接收光信号,信号发射器和数据传输装置相连传输电子信号。
  5. 根据权利要求1所述的一种顶板变形高精度监测预警系统,其特征在于,所述数据传输装置包括数据传输线、USB数据传输接口和RJ45网络接口,所述数据传输线连接防爆光纤传感器、传感器集成装置、信号转换装置、数据传输装置、数据处理单元和中央控制器,所述USB数据传输接口和RJ45网络接口设置在数据传输装置上。
  6. 根据权利要求1所述的一种顶板变形高精度监测预警系统,其特征在于,所述中央控制器设置有防爆外壳和防爆照明灯,防爆外壳内设置有电源,电源使用防爆型锂离子电池和安全防护型锂电池充电板;防爆外壳的下部设置有承重钢架,防爆外壳的底部设置有滚轮。
  7. 根据权利要求6所述的一种顶板变形高精度监测预警系统,其特征在于,所述中央控制器设置有防爆光纤传感器数据显示按钮、防爆光纤传感器数据分析按钮、防爆外壳移动控制按钮、启动按钮、结束按钮、记录按钮、保存按钮和导出按钮。
  8. 一种顶板变形高精度监测预警方法,其特征在于,利用权利要求1-7任一项所述的一种顶板变形高精度监测预警系统,步骤包括:
    步骤一.在巷道或隧道内的顶板选定待监测区域,标定测量基点,将防爆光纤传感器安装至测量基点的位置,并安装光纤容置器、卡箍、防爆胶管和光缆;
    步骤二.依次连接传感器集成装置、信号转换装置、数据传输装置、数据处理单元和中央控制器,并保证中央处理器水平放置;
    步骤三.确认防爆光纤传感器垂直顶板设置,通过中央处理器上的启动按钮控制防爆光纤传感器工作,并检测线路安装;
    步骤四.输入各个测量基点编号并开始监测,防爆光纤传感器监测顶板的水平位移和垂直位移;
    步骤五.数据处理单元确定围岩空间坐标,统计分析各个测量基点的监测信息,根据测量基点的坐标信息确定顶板变形,实时显示顶板变形,保存顶板的变形数据;
    步骤六.获取监测时间段内的顶板变形数据,对各个测量基点和顶板变形进行分析,构建道顶板变形三维模型,导出顶板测点的3D断面图。
  9. 根据权利要求8所述的一种顶板变形高精度监测预警方法,其特征在于,所述道顶板变形三维模型的构建步骤包括:
    A.获取监测时间段内的顶板变形数据,并将顶板变形数据送入数据处理单元的控制芯片,
    B.数据处理单元的电子分析仪提取多平面特征确定变形的标准,电子配准仪匹配图像并标定时空关系;
    C.数据处理单元根据每组监测数据的试件和空间关系进行识别处理,确定顶板的真实变形,得到任意测量基点的变形曲线;
    D.数据处理单元利用3D模型机构建顶板变形三维模型,根据连续时间的顶板变形监测数据,实时确定顶板变形,更新三维模型。
PCT/CN2020/082848 2019-11-27 2020-04-01 一种顶板变形高精度监测预警系统及方法 WO2021027292A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2021/00041A ZA202100041B (en) 2019-11-27 2021-01-04 High-precision monitoring and early warning system and method for roof deformation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911177688.X 2019-11-27
CN201911177688.XA CN110863859A (zh) 2019-11-27 2019-11-27 一种顶板变形高精度监测预警系统及方法

Publications (1)

Publication Number Publication Date
WO2021027292A1 true WO2021027292A1 (zh) 2021-02-18

Family

ID=69655623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082848 WO2021027292A1 (zh) 2019-11-27 2020-04-01 一种顶板变形高精度监测预警系统及方法

Country Status (3)

Country Link
CN (1) CN110863859A (zh)
WO (1) WO2021027292A1 (zh)
ZA (1) ZA202100041B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110863859A (zh) * 2019-11-27 2020-03-06 山东科技大学 一种顶板变形高精度监测预警系统及方法
CN111720171B (zh) * 2020-06-24 2021-12-21 安徽理工大学 煤层工作面顶板来压智能测试分析系统及方法
CN112880580B (zh) * 2021-01-13 2022-06-03 中煤科工集团重庆研究院有限公司 一种光纤嵌入式柔性杆体感测巷道围岩变形的方法及系统
CN113532371B (zh) * 2021-07-14 2022-09-16 东北大学 一种巷道围岩绝对变形量动态监测方法
CN114485406A (zh) * 2022-02-17 2022-05-13 宁波科达精工科技股份有限公司 一种零件尺寸测量装置及测量方法
CN115218808B (zh) * 2022-07-18 2023-07-14 太原理工大学 一种随掘围岩稳定性判定与预警方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457894B2 (ja) * 1998-10-02 2003-10-20 三菱重工業株式会社 光ファイバの敷設方法及び光ファイバを用いた歪検知装置
JP3668199B2 (ja) * 2002-02-22 2005-07-06 国土交通省東北地方整備局長 トンネルの変形測定方法
CN105089701A (zh) * 2015-08-10 2015-11-25 山西省交通科学研究院 基于分布式光纤传感的运营隧道健康监测预警系统及方法
CN206695757U (zh) * 2017-03-21 2017-12-01 山西省交通科学研究院 一种基于分布式光纤的盾构隧道管片整体变形监测装置
CN108955552A (zh) * 2018-07-10 2018-12-07 山东科技大学 巷/隧道表面非均匀位移的非接触式测量系统及方法
CN109785585A (zh) * 2019-01-31 2019-05-21 山东盛隆安全技术有限公司 基于光纤传感网络监测预警系统及方法
CN110863859A (zh) * 2019-11-27 2020-03-06 山东科技大学 一种顶板变形高精度监测预警系统及方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3457894B2 (ja) * 1998-10-02 2003-10-20 三菱重工業株式会社 光ファイバの敷設方法及び光ファイバを用いた歪検知装置
JP3668199B2 (ja) * 2002-02-22 2005-07-06 国土交通省東北地方整備局長 トンネルの変形測定方法
CN105089701A (zh) * 2015-08-10 2015-11-25 山西省交通科学研究院 基于分布式光纤传感的运营隧道健康监测预警系统及方法
CN206695757U (zh) * 2017-03-21 2017-12-01 山西省交通科学研究院 一种基于分布式光纤的盾构隧道管片整体变形监测装置
CN108955552A (zh) * 2018-07-10 2018-12-07 山东科技大学 巷/隧道表面非均匀位移的非接触式测量系统及方法
CN109785585A (zh) * 2019-01-31 2019-05-21 山东盛隆安全技术有限公司 基于光纤传感网络监测预警系统及方法
CN110863859A (zh) * 2019-11-27 2020-03-06 山东科技大学 一种顶板变形高精度监测预警系统及方法

Also Published As

Publication number Publication date
ZA202100041B (en) 2021-02-24
CN110863859A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2021027292A1 (zh) 一种顶板变形高精度监测预警系统及方法
CN108955552B (zh) 巷/隧道表面非均匀位移的非接触式测量系统及方法
CN105116440A (zh) 一种边坡岩体监测系统及监测方法
CN110989012B (zh) 地下管道设深度的精确电磁测量方法及管线仪装置
US20230288180A1 (en) Underground three-dimensional displacement measurement system and method based on double mutual inductance equivalent voltage
CN109470198A (zh) 一种深部软岩巷道变形量的监测方法
CN107882011B (zh) 一种具有温度补偿功能的微型探头
CN208780164U (zh) 全深度阵列式测斜仪
CN201916001U (zh) 隧道水平收敛远程激光监测系统
CN106338272A (zh) 用于构件倾斜角测量的测试装置及其测试方法
CN206479268U (zh) 用于黄土及软土的压入式三向土压力传感器
CN214747897U (zh) 一种建筑施工监测系统
CN104501773B (zh) 一种水工建筑物竖向变形监测装置及方法
CN110056394A (zh) 一种隧道施工安全监控装置及其控制系统
CN208313221U (zh) 复杂形状巷/隧道表面位移场的观测系统
CN109238111A (zh) 一种智能转动机械对中仪及其操作方法
CN209875182U (zh) 一种隧道波形钢板支护结构及其实时监测系统
CN110966994B (zh) 一种竖井联系方法及一种用于竖井联系方法的测量装置
CN208721070U (zh) 一种高层钢筋混凝土墙壁的水平垂直测量装置
CN115597548A (zh) 一种岩土体变形监测装置及其使用方法
CN109974778B (zh) 一种测斜测扭一体化智能测斜仪装置的测量方法
CN109631809B (zh) 桥梁挠度测量设备和方法
CN102797457A (zh) 一种基于偏振光精确计算井深的装置及方法
CN204510298U (zh) 基于高精度无线定位技术监测基坑变形的监测系统
CN210195732U (zh) 一种隧道光面爆破炮眼参数手持检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852848

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852848

Country of ref document: EP

Kind code of ref document: A1