WO2021027207A1 - 一种可提高泵浦入纤功率的远程泵浦系统 - Google Patents

一种可提高泵浦入纤功率的远程泵浦系统 Download PDF

Info

Publication number
WO2021027207A1
WO2021027207A1 PCT/CN2019/125272 CN2019125272W WO2021027207A1 WO 2021027207 A1 WO2021027207 A1 WO 2021027207A1 CN 2019125272 W CN2019125272 W CN 2019125272W WO 2021027207 A1 WO2021027207 A1 WO 2021027207A1
Authority
WO
WIPO (PCT)
Prior art keywords
remote
pumping
pump
fiber
power
Prior art date
Application number
PCT/CN2019/125272
Other languages
English (en)
French (fr)
Inventor
付成鹏
陶金涛
陈俊
乐孟辉
余春平
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2021027207A1 publication Critical patent/WO2021027207A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/102Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1022Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping

Definitions

  • the present invention relates to the technical field of optical communication, in particular to a remote pumping system that can increase the power of pumping into fiber.
  • UHV grids As the backbone of smart grid construction, UHV grids will play an increasingly important role in the power system. UHV grids have the characteristics of wide coverage (mostly cross-regional grids), long transmission distances, and large transmission capacity. , But its line path is remote, the installation of optical relay station is inconvenient and the cost is high. Therefore, the use of ultra-long distance optical communication technology with remote pumping has become an important technical basis for cross-regional grid interconnection; with the rapid economic development , which has led to the rise of urban agglomerations. In the Yangtze River Delta, the Pearl River Delta, and the Bohai Bay Rim, there have been urban agglomerations with an adjacent interval of no more than 350 kilometers.
  • the erbium-doped fiber as a gain unit has a wide absorption spectrum in the 14xx band, it is not very sensitive to the pump wavelength requirements (1460 ⁇ 1490nm), but the pump needs It is transmitted to the gain unit through optical fiber from hundreds of kilometers, and the line loss is very large, so the pumping power of the fiber is required to be high.
  • the biggest problem is that the pumping laser in the 1480nm band cannot be too large. If it is too large, it is easy to produce laser lasing in the 1580nm wavelength region.
  • the pump light in the 1480nm band will be quickly consumed, and it will no longer be possible to provide pump light to the remote gain unit. Even if the 1480 pump light source adds two wavelengths in the 1480nm band region, the maximum input power of the pump will not be improved.
  • an isolator or filter can be added to the transmission line to suppress the accumulation of ASE in the 1580 wavelength region, but the effect of increasing the maximum pump fiber power is not obvious;
  • the maximum pumping fiber power is limited to less than 1400mW (the actual effect is also to subtract 1dB isolators or filters.
  • the actual effect of the pump is only 1200mW). It can also be achieved by using as many pump wavelengths as possible, but the pump wavelength multiplexing is extremely complicated and the cost is high; this is because the multiplexing of different wavelengths may be involved in the multiplexing process.
  • the laser The linewidth is relatively narrow, and when a laser with a narrow linewidth is transmitted in an optical fiber, it will produce a relatively large Raman gain for a certain wavelength. If the Raman gain is too large, the Rayleigh scattering effect in the superimposed fiber will be generated. Random Raman laser lasing reduces the energy of 14xx and affects the Raman gain; if you reduce the power of a single pump laser and combine multiple wavelengths and low-power lasers, the effect will be the same as that of a broadband light source Yes, but the loss caused by multiplexing is very high and the cost is high.
  • 1480 pump laser is usually used as the pump light source of the remote pump amplifier, but the pumping power of the 1480nm wavelength band cannot be too large. If it is too large, it will easily produce laser lasing in the 1580nm wavelength region, and no longer gain remote gain The unit provides pump light, which limits the overall transmission distance.
  • the present invention provides a remote pumping system that can increase the power of pumping into fiber.
  • the remote pumping system is a same fiber pump or a different fiber pump, and includes a remote gain unit 5 and a remote pump unit 6 connected to each other.
  • the remote pump unit 6 is used to provide pump light to the remote gain unit 5;
  • the pump light includes a broadband ASE light source in the 1480 nm band, and the wavelength range corresponding to the 1480 nm band is 1460 nm to 1490 nm.
  • the remote pumping unit 6 is provided with a gain flattening filter for optimizing the output spectrum of the broadband ASE light source into a parabolic shape with a concave in the middle and convex on both sides, so that the average wavelength of the output meets the The optimal average wavelength required by the remote gain unit 5.
  • the optimized spectrum type of the broadband ASE light source is designed according to the optimal average wavelength, and the optimal average wavelength is calculated according to the following formula:
  • ⁇ a represents the optimal average wavelength
  • n represents n wavelengths within the 1480nm band of the broadband ASE light source
  • P i represents the i-th and the pump power corresponding to the wavelength.
  • other 14xx nm pump light is also integrated in the pump light to equalize the gain of the entire signal band; wherein, the other 14xx nm pump light
  • the wavelength range of nm pump light is 1460nm ⁇ 1490nm.
  • short-wavelength pump light is also integrated in the pump light for amplifying the other 14xx nm pump light or the broadband ASE light source; wherein, the short wavelength
  • the wavelength range of the pump light is 1300 nm to 1450 nm.
  • other 14xx nm pump light and/or short-wavelength pump light are also integrated in the pump light for performing the operation on the broadband ASE light source.
  • the wavelength range of the other 14xx nm pump light is 1460 nm to 1490 nm
  • the wavelength range of the short-wavelength pump light is 1300 nm to 1450 nm.
  • the remote pumping system further includes an optical transmitter array 1, an optical multiplexer 2-1, a power amplifier 3, a first transmission fiber 4-1, a second transmission fiber 4-2, and a front Amplifier 7, optical splitter 2-2 and optical receiver array 9;
  • the remote gain unit 5 is connected between the first transmission fiber 4-1 and the second transmission fiber 4-2.
  • the remote gain unit 5 is a co-fiber pump gain unit; the remote pump unit 6 is located between the second transmission fiber 4-2 and the Between the preamplifiers 7, the remote pump unit 6 reversely transmits the pump light to the remote gain unit 5 through the second transmission fiber 4-2.
  • the remote gain unit 5 is a foreign-fiber pumping gain unit; the remote pumping system further includes a third transmission fiber 4-3 separately provided, The pump unit 6 transmits the pump light to the remote gain unit 5 through the third transmission fiber 4-3.
  • a gain flat filter is provided in the remote gain unit 5 or downstream of the remote gain unit 5 to keep the gain of the overall amplifier flat.
  • the invention uses the 1480nm broadband ASE light source as the pump light of the remote pump amplifier. Compared with the pump laser, the energy density of the pump light in the transmission fiber is reduced, the maximum pumping fiber power can be effectively increased, and the 1580nm wavelength region can be suppressed.
  • the generation of laser lasing extends the distance between the remote pump unit and the remote gain unit, thereby increasing the overall transmission distance;
  • the spectral pattern of the broadband ASE light source can be further optimized, so that the output spectral pattern of the broadband ASE light source is in a parabolic shape with a concave in the middle and convex on both sides, which further improves the pumping rate. Fiber power and overall transmission distance.
  • FIG. 1 is a structural diagram of a remote pumping system with same fiber pump provided by an embodiment of the present invention
  • FIG. 2 is a structural diagram of a remote pumping system for foreign fiber pumping provided by an embodiment of the present invention
  • Fig. 3 is a structural diagram of a same-fiber pump gain unit provided by an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a foreign fiber pump gain unit provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a spectrum of a traditional flat 1480nm broadband ASE light source provided by an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a spectrum of an optimized 1480nm broadband ASE light source provided by an embodiment of the present invention.
  • FIG. 7 is a gain spectrum of ASE pumping and laser pumping in several different situations provided by the embodiments of the present invention.
  • FIG. 8 is the gain spectrum of the remote gain unit when the broadband ASE light source provided by an embodiment of the present invention has the same pump power and different pump wavelengths;
  • FIG. 9 is a graph of the noise figure of the overall amplifier when the broadband ASE light source provided by an embodiment of the present invention has the same pump power and different pump wavelengths.
  • the symbol “/” means that it has two functions at the same time
  • the symbol “A and/or B” means that the combination of the objects connected by the symbol includes “A”, " There are three situations: B", "A and B”.
  • the embodiment of the present invention provides a remote pumping system that can increase the power of pumping into the fiber.
  • the remote pumping system is a same fiber pump or a different fiber pump.
  • Each of the pumping systems includes a remote gain unit 5 and a remote pump unit 6 which are connected to each other, and the remote gain unit 5 is correspondingly a same fiber pump gain unit or a different fiber pump gain unit.
  • the remote pump unit 6 is used to provide pump light to the remote gain unit 5, so that the remote gain unit 5 uses the pump light to achieve gain.
  • the pump light contains a broadband ASE light source in the 1480nm band, and the laser light in the 1480nm band
  • the broadband ASE light source is the most important component of the remote pump unit 6.
  • the wavelength range corresponding to the 1480 nm band ie, the wavelength range of the broadband ASE light source
  • the quasi-multi-wavelength form formed by filtering the broadband ASE light source can also be regarded as a broadband ASE light source.
  • the broadband ASE light source Compared with a single 1480nm pump laser, the broadband ASE light source has a wider amplification bandwidth when used as a Raman pump, and the threshold of Raman laser lasing at a certain wavelength in the fiber will be higher, and it is no longer focused on 1580nm is very narrow wavelength region; therefore, the use of broadband ASE light source is more conducive to the improvement of pump power in remote pumping systems, inhibits the generation of laser lasing in the 1580nm wavelength region, extends the distance between the pump unit and the gain unit, and improves the entire transmission span The length of the distance.
  • the complete remote pumping system also includes the optical transmitter array 1, optical multiplexer 2-1, power amplifier 3, and first Transmission fiber 4-1, second transmission fiber 4-2, preamplifier 7, optical splitter 2-2, and optical receiver array 9; wherein, the remote gain unit 5 is connected to the first transmission fiber 4 1 and the second transmission fiber 4-2.
  • the optical transmitter array 1 includes a first optical transmitter 1-1, a second optical transmitter 1-2, ..., an n-th optical transmitter 1-n, where n is a natural number; accordingly, the optical receiver array 9 includes a first optical receiver 9-1, a second optical receiver 9-2,..., an n-th optical receiver 9-n, where n is a natural number.
  • the remote pumping unit 5 is a co-fiber pump gain unit; then the remote pump unit 6 is connected to the second transmission fiber sequentially Between 4-2 and the preamplifier 7, the remote pumping unit 6 reversely transmits the pump light to the remote gain unit 5 through the second transmission fiber 4-2.
  • the specific optical path is as follows:
  • Each transmitter in the optical transmitter array 1 emits signal light, which is combined by the optical multiplexer 2-1, and then amplified by the power amplifier 3 through the first transmission fiber 4-
  • the transmitted signal light of 1 reaches the remote gain unit 5; at the same time, the remote pump unit 6 generates pump light, and the pump light is transmitted through the second transmission fiber 4-2 in the reverse direction.
  • the optical demultiplexer 2-2 demultiplexes, and is finally received by each optical receiver in the optical receiver array 9.
  • the remote gain unit 5 can refer to FIG. 3 specifically, including a first optical isolator 5-1, a signal/pump multiplexer 5-2, and a first dopant connected in sequence.
  • the signal light enters the remote gain unit 5 through the first optical isolator 5-1, and reaches the signal/pump multiplexer 5-2; the transmission direction of the pump light and the signal light are opposite, Before the pump light enters the remote gain unit 5 in the reverse direction, the pump light is separated by the pump/signal multiplexer 5-8, and the signal/pump multiplexer 5-2 then separates the pump light.
  • the pump light and the signal light are coupled to realize forward pumping; the amplified signal light passes through the first erbium-doped fiber 5-3, the second optical isolator 5-4, and the second erbium-doped fiber 5 successively After -5, it is output by the third optical isolator 5-7, and finally the residual pump light is reflected by the pump mirror 5-6 back to the original line.
  • the remote gain unit 5 is a foreign fiber pumping gain unit; then the remote pumping system further includes a third transmission fiber 4 separately provided. 3.
  • the pump unit 6 transmits the pump light to the remote gain unit 5 through the third transmission fiber 4-3.
  • the signal light emitted by each transmitter in the optical transmitter array 1 is combined by the optical multiplexer 2-1, and then amplified by the power amplifier 3, and then passed through the first transmission fiber 4 -1 transmitted signal light reaches the remote gain unit 5; at the same time, the remote pump unit 6 generates pump light, which is transmitted through the third transmission fiber 4-3 and then reaches the remote gain unit 5; The signal light is amplified by the pump light in the remote gain unit 5, and then transmitted through the second transmission fiber 4-2 to reach the preamplifier 7, and then amplified by the optical splitter The wave is demultiplexed by the device 2-2 and finally received by each optical receiver in the optical receiver array 9.
  • the remote gain unit 5 can be specifically referred to FIG. 4, including a first optical isolator 5-1, a signal/pump multiplexer 5-2, and a first dopant connected in sequence.
  • the signal light enters the remote gain unit 5 through the first optical isolator 5-1, and reaches the signal/pump multiplexer 5-2; the pump light and the signal light transmit in the same direction, then the pump light It enters the remote gain unit 5 directly through the third transmission fiber 4-3, and reaches the signal/pump multiplexer 5-2, and the signal/pump multiplexer 5-2 then pumps
  • the light and signal light are coupled to realize forward pumping; the amplified signal light passes through the first erbium-doped fiber 5-3, the second optical isolator 5-4, and the second erbium-doped fiber 5- After 5, it is output by the third optical isolator 5-7, and finally the remaining pump light is reflected back to the original line by the pump mirror 5-6.
  • the remote gain unit 5 may be provided with a gain flat filter to keep the gain of the remote pump system flat.
  • the gain flattening filter can be set between the two sections of erbium-doped fiber in Figure 3 or Figure 4.
  • the gain flattening filter may not be arranged in the remote gain unit 5, but arranged downstream of the remote gain unit 5. Specifically, it may be arranged in FIG. 1 or FIG. The output terminal of the preamplifier 7 described in 2.
  • the gain and noise figure of the remote gain unit can also be significantly improved, thereby effectively improving the OSNR of the entire system, and improving the stability and reliability of system operation; and
  • the preamplifier is easier to construct, and the gain flat filter is placed behind the output end of the preamplifier, which is easier to construct, to facilitate system maintenance.
  • the pump light can also be integrated with other 14xx nm pump light, as shown in Figure 1. As shown, it is used to increase the gain of the short-wavelength signal to equalize the gain of the entire signal waveband; wherein the wavelength range of the other 14xx nm pump light is the same as the waveband range of the broadband ASE light source, which is 1460nm-1490nm.
  • the pump light may also be integrated with short-wavelength pump light for pumping the other 14xx nm Light or the broadband ASE light source is amplified; wherein the wavelength range of the short-wavelength pump light is 1300 nm to 1450 nm, for example, it may be 13xx nm.
  • the pump light When the remote pumping system is foreign fiber pumping, the pump light is separately transmitted in the third transmission fiber 4-3, and the pump light has no Raman amplification effect on the signal light, but transmits the broadband ASE light source to The remote gain unit 5, therefore, the pump light can be a broadband ASE light source alone.
  • the pump light may also be integrated with other 14xx nm pump light and/or short-wavelength pump light (such as 13xx) that have amplifying effect on the broadband ASE light source. This is not limited.
  • the wavelength range of the other 14xx nm pump light is 1460 nm to 1490 nm
  • the wavelength range of the short-wavelength pump light is 1300 nm to 1450 nm.
  • the remote gain unit 5 Since the remote gain unit 5 is not sensitive to pump wavelength requirements, it has strong absorption in the range of 1455 to 1495 nm, that is, the wavelength range of the broadband ASE light source in the 1480 nm band belongs to the high absorption region of the remote gain unit 5. Therefore, when the remote gain unit 5 adopts a broadband ASE light source in the 1480 nm band, the pump efficiency difference is very small. However, due to the difference in the spectrum type of the broadband ASE light source, the noise index of the remote gain unit 5 will be somewhat different, which will further affect the pumping fiber power to a certain extent.
  • the embodiment of the present invention is provided with a gain flattening filter in the remote pumping unit 6 for optimizing the output spectrum of the broadband ASE light source, and the traditional Gaussian or flat broadband ASE light source Optimized into a parabolic shape with a concave in the middle and convex on both sides, as shown in FIG. 6, so that the average wavelength of the output meets the optimal average wavelength required by the remote gain unit 5, that is, the noise index of the remote gain unit 5 is the best wavelength.
  • the optimal average wavelength first calculates the optimal average wavelength, and then design the corresponding broadband ASE light source spectrum type, that is, the optimized spectrum type of the broadband ASE light source is designed according to the optimal average wavelength, and
  • the optimal average wavelength needs to be calculated according to the following formula:
  • ⁇ a represents the optimal average wavelength
  • n n wavelengths within the 1480nm band of the broadband ASE light source (for example, 1460nm, 1480nm and 1490nm respectively)
  • P i represents the i-th and the pump power corresponding to the wavelength.
  • the optimized broadband ASE light source spectrum is obtained as shown in FIG. 6, that is, a parabolic shape with a concave in the middle and convex on both sides.
  • a pump laser and the broadband ASE light source as shown in FIG. 5 and FIG. 6 are respectively used as the pump light.
  • curve 401 is the ASE power spectral density generated by a pump laser with a single wavelength of 1480nm and a power of 1200mW
  • curve 402 is the ASE power spectral density generated by a flat broadband ASE light source with a power of 1200mW as the pump.
  • Curve 403 It is a flat broadband ASE light source with a power of 1300 mW as the ASE power spectral density generated when pumped, and the curve 404 is an optimized broadband ASE light source with a power of 1500 mW as the ASE power spectral density generated when pumped.
  • the ASE power spectral density of the ASE pump and the laser pump both reach the maximum in the 1580nm wavelength region, while the curve 402 ASE power spectral density is smaller. That is to say, when using the same power 1480nm broadband ASE light source, it is easier to suppress the laser lasing phenomenon in the 1580nm wavelength region in the fiber. Therefore, when using ASE pumping, a higher output power than the 1480nm laser can be used for the pump source of the remote pump amplifier to effectively increase the transmission distance.
  • the pumping power of the broadband ASE light source can reach 1300mW, as shown by curve 403.
  • the pumping power of the broadband ASE light source can reach 1500 mW, as shown by the curve 404.
  • the 1480 band broadband ASE light source is easier to provide a larger pumping power; and compared with the traditional flat broadband ASE light source, the spectrum is optimized (ie As shown in Figure 6), the ASE light source is easier to provide larger pumping fiber power.
  • the pumping fiber power can be increased by more than 1dB, and the pumping fiber power can reach 1.25 times that of laser pumping at 1480nm, which is greatly improved The entire transmission distance.
  • the remote gain unit 5 is not sensitive to the pump wavelength requirements, it has strong absorption in the range of 1455 to 1495 nm, and the energy conversion efficiency and the amplified noise figure are not much different in this wavelength range, so When the broadband ASE light source is pumped to the erbium fiber, it is usually equivalent to the average wavelength of the broadband ASE light source.
  • the specific analysis is as follows:
  • the gain and noise index are slightly different under the same pump power, but the difference is very small.
  • the preamplifier 7, and the second transmission fiber 4-2 between the remote gain unit 5 and the preamplifier 7 are regarded as a whole cascade amplifier, This difference in gain is even more negligible.
  • the gain of the remote gain unit 5 under the same pump power and different pump wavelengths is given.
  • the curve 601 is the gain spectrum when pumped at 1460 nm
  • the curve 602 is the gain spectrum when pumped at 1480 nm
  • the curve 603 is the gain spectrum when pumped at 1490 nm
  • the curve 604 is the gain spectrum when pumped at 1474 nm.
  • the average wavelength of the optimized broadband ASE light source is about 1474 nm, so the curve 604 corresponds to the gain spectrum when the broadband ASE light source is pumped.
  • the second transmission fiber 4-2 between the remote gain unit 5, the preamplifier 7, the remote gain unit 5 and the preamplifier 7 is regarded as a stage
  • the overall noise figure of the cascaded amplifier under the same pump power and different pump wavelengths ie average wavelength.
  • curve 701 is the noise index when pumped at 1460 nm
  • curve 702 is the noise index when pumped at 1480 nm
  • curve 703 is the noise index when pumped at 1490 nm
  • curve 704 is the noise index when pumped at 1474 nm.
  • the average wavelength of the optimized broadband ASE light source is about 1474 nm, so the curve 704 corresponds to the noise figure when the broadband ASE light source is pumped.
  • the remote pumping system provided by the embodiments of the present invention has the following beneficial effects:
  • the 1480nm broadband ASE light source as the pump light of the remote pump amplifier reduces the energy density of the pump light in the transmission fiber, reduces the Raman effect of the remote pump light in the fiber, and effectively suppresses the Raman laser
  • the generation of the lasing phenomenon increases the maximum pump light input power, effectively extends the distance between the pump unit and the gain unit, thereby greatly increasing the overall transmission distance;
  • the spectral pattern of the broadband ASE light source can be further optimized, so that the output spectral pattern of the broadband ASE light source is in a parabolic shape with a concave in the middle and convex on both sides, which can increase the pumping rate.
  • the fiber power is above 1dB, which further improves the overall transmission distance.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

一种可提高泵浦入纤功率的远程泵浦系统,远程泵浦系统为同纤泵浦或异纤泵浦,包括相互连接的远程增益单元(5)和远程泵浦单元(6),远程泵浦单元(6)用于向远程增益单元(5)提供泵浦光,泵浦光中包含1480nm波段的宽带ASE光源,1480nm波段的波长范围为1460nm~1490nm。远程泵浦单元(6)内还设有增益平坦滤波器,用于将宽带ASE光源的输出谱型优化为中间凹陷、两边凸起的抛物线形状。将1480nm宽带ASE光源作为远程泵浦的泵浦光,相对于泵浦激光器可有效提高最大泵浦入纤功率,抑制光纤中激光激射的产生,扩展远程泵浦单元与远程增益单元的距离,提高整体传输距离。

Description

一种可提高泵浦入纤功率的远程泵浦系统 【技术领域】
本发明涉及光通信技术领域,具体涉及一种可提高泵浦入纤功率的远程泵浦系统。
【背景技术】
特高压电网作为智能电网建设的骨干网架,在电力系统中将发挥越来越重要的作用,而特高压电网具有覆盖范围广(多为跨区域电网)、传输距离长、输电容量大等特点,但其线路路径位置偏远,设置光中继站维护不便且成本较高,因此采用带有远程泵浦的超长站距光通信技术已成为跨大区电网联网的重要技术基础;伴随经济的飞跃发展,带动了城市群的兴起,在长江三角洲、珠江三角洲、环渤海湾等地都出现相邻间隔不大于350公里的城市群,城市群内部相邻城市之间的通信目前对带宽的需求越来越高,因此这些地区正在成为远程泵浦无中继传输的一个新的应用热点区域;由于在一些沼泽、沙漠、森林等无人区,中继站建设、维护费用高,所以这些地区也是远程泵浦无中继传输潜在的应用领域。
早期的电力系统主要是单波长长跨距系统,这样的长跨距系统在远程增益单元设计时并不用考虑增益平坦问题,目前随着大数据、视频会议对传输带宽的巨大需求,单波长通信系统已不能满足发展需要,多波长长跨距传输系统的设计与建设已迫在眉睫。
在多波长长跨距的远程泵浦系统中,由于作为增益单元的掺铒光纤在14xx波段有很宽的吸收谱,所以对泵浦波长要求不是很敏感(1460~1490nm),但是泵浦要从上百公里的地方经过光纤传送给增益单元,线路损耗非常大,因此要求泵浦入纤功率较高。而目前在多波长长跨距的 远程泵浦系统中,最大的问题就是1480nm波段的泵浦激光入纤功率不能太大。如果过大,容易在1580nm波长区域产生激光激射,产生激光激射后1480nm波段的泵浦光将被迅速消耗,无法再给远程增益单元提供泵浦光。1480泵浦光源即使在1480nm波段区域增加两个波长,泵浦最大入纤功率也不会有改善。
为了提高1480nm波长区域的最大泵浦入纤功率,可通过在传输线路中增加隔离器或滤波器来抑制1580波长区域的ASE累积的方式,但是对提升最大泵浦入纤功率效果不明显;例如,在G.652光纤中,目前通过在线路中间增加隔离器或滤波器的方式,最大的泵浦入纤功率被限制在1400mW以下(实际效果还要减去1dB隔离器或滤波器的附加插损,泵浦实际效果只有1200mW)。还可以通过采用尽可能多的泵浦波长来实现,但是泵浦波长合波异常复杂,成本也高;这是因为合波过程中可能涉及到不同波长的合波,为了合波方便,激光器的线宽相对比较窄,而窄线宽的激光器在光纤中传输时,就会对某个波长产生比较大的拉曼增益,如果拉曼增益过大,叠加光纤中的瑞利散射效应就会产生随机的拉曼激光激射,降低了14xx的能量,影响了拉曼增益;如果降低单个泵浦激光器的功率,用多个波长小功率的激光器合波,效果就会与宽带光源的效果是相同的,但合波带来的损耗很大,成本很高。
鉴于此,克服上述现有技术所存在的缺陷是本技术领域亟待解决的问题。
【发明内容】
本发明需要解决的技术问题是:
目前通常采用1480泵浦激光器作为远程泵浦放大器的泵浦光源,但1480nm波段的泵浦激光入纤功率不能太大,如果过大则容易在1580nm波长区域产生激光激射,无法再给远程增益单元提供泵浦光,限缩了整体传 输距离。
本发明通过如下技术方案达到上述目的:
本发明提供了一种可提高泵浦入纤功率的远程泵浦系统,远程泵浦系统为同纤泵浦或异纤泵浦,包括相互连接的远程增益单元5和远程泵浦单元6,所述远程泵浦单元6用于向所述远程增益单元5提供泵浦光;
其中,所述泵浦光中包含1480nm波段的宽带ASE光源,所述1480nm波段对应的波长范围为1460nm~1490nm。
优选的,所述远程泵浦单元6内设有增益平坦滤波器,用于将所述宽带ASE光源的输出谱型优化为中间凹陷、两边凸起的抛物线形状,使输出的平均波长满足所述远程增益单元5所需的最优平均波长。
优选的,所述宽带ASE光源的优化谱型根据所述最优平均波长设计,所述最优平均波长根据以下公式计算:
Figure PCTCN2019125272-appb-000001
其中,λ a表示最优平均波长,n表示在宽带ASE光源的1480nm波段范围内取n个波长,λ i表示在1480nm波段范围内选取的第i个波长,i=1,2,3,...,n;P i表示与第i个波长对应的泵浦功率。
优选的,当所述远程泵浦系统为同纤泵浦时,所述泵浦光中还集成有其他14xx nm泵浦光,用于使整个信号波段的增益得到均衡;其中,所述其他14xx nm泵浦光的波长范围为1460nm~1490nm。
优选的,对于单信号波长系统,所述泵浦光中还集成有短波长泵浦光,用于对所述其他14xx nm泵浦光或所述宽带ASE光源进行放大;其中,所述短波长泵浦光的波长范围为1300nm~1450nm。
优选的,当所述远程泵浦系统为异纤泵浦时,所述泵浦光中还集成有其他14xx nm泵浦光和/或短波长泵浦光,用于对所述宽带ASE光源进行放 大;其中,所述其他14xx nm泵浦光的波长范围为1460nm~1490nm,所述短波长泵浦光的波长范围为1300nm~1450nm。
优选的,所述远程泵浦系统还包括顺次连接的光发射机阵列1、光合波器2-1、功率放大器3、第一传输光纤4-1、第二传输光纤4-2、前置放大器7、光分波器2-2和光接收机阵列9;
其中,所述远程增益单元5连接在所述第一传输光纤4-1和所述第二传输光纤4-2之间。
优选的,当所述远程泵浦系统为同纤泵浦时,所述远程增益单元5为同纤泵浦增益单元;所述远程泵浦单元6位于所述第二传输光纤4-2和所述前置放大器7之间,所述远程泵浦单元6通过所述第二传输光纤4-2将泵浦光反向传送到所述远程增益单元5中。
优选的,当所述远程泵浦系统为异纤泵浦时,所述远程增益单元5为异纤泵浦增益单元;所述远程泵浦系统还包括单独设置的第三传输光纤4-3,所述泵浦单元6通过所述第三传输光纤4-3将泵浦光传送到所述远程增益单元5中。
优选的,所述远程增益单元5内或所述远程增益单元5的下游设有增益平坦滤波器,用于保持整体放大器的增益平坦。
本发明的有益效果是:
本发明将1480nm宽带ASE光源作为远程泵浦放大器的泵浦光,相对于泵浦激光器减小了泵浦光在传输光纤中的能量密度,可有效提高最大泵浦入纤功率,抑制1580nm波长区域激光激射的产生,扩展远程泵浦单元与远程增益单元的距离,从而提高整体传输距离;
同时,通过在远程泵浦单元内设置增益平坦滤波器,可进一步优化设计宽带ASE光源的谱型,使宽带ASE光源的输出谱型呈中间凹陷、两边凸起的抛物线形状,进一步提高泵浦入纤功率以及整体传输距离。
【附图说明】
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍。显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种同纤泵浦的远程泵浦系统结构图;
图2为本发明实施例提供的一种异纤泵浦的远程泵浦系统结构图;
图3为本发明实施例提供的一种同纤泵浦增益单元的结构图;
图4为本发明实施例提供的一种异纤泵浦增益单元的结构图;
图5为本发明实施例提供的一种传统平坦型1480nm宽带ASE光源的光谱示意图;
图6为本发明实施例提供的一种优化的1480nm宽带ASE光源的光谱示意图;
图7为本发明实施例提供的几种不同情况下ASE泵浦与激光泵浦时的增益谱;
图8为本发明实施例提供的宽带ASE光源在相同泵浦功率、不同泵浦波长时远程增益单元的增益谱;
图9为本发明实施例提供的宽带ASE光源在相同泵浦功率、不同泵浦波长时整体放大器的噪声指数图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,术语“内”、“外”、“纵向”、“横向”、“上”、“下”、“顶”、“底”、“左”、“右”、“前”、“后”等指示的方位或位置关系为基于附图所示的 方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不应当理解为对本发明的限制。
在本发明各实施例中,符号“/”表示同时具有两种功能的含义,而对于符号“A和/或B”则表明由该符号连接的前后对象之间的组合包括“A”、“B”、“A和B”三种情况。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。下面就参考附图和实施例结合来详细说明本发明。
本发明实施例提供了一种可提高泵浦入纤功率的远程泵浦系统,如图1和图2所示,所述远程泵浦系统为同纤泵浦或异纤泵浦,两类泵浦系统均包括相互连接的远程增益单元5和远程泵浦单元6,所述远程增益单元5相应地为同纤泵浦增益单元或异纤泵浦增益单元。所述远程泵浦单元6用于向所述远程增益单元5提供泵浦光,以便所述远程增益单元5利用泵浦光实现增益。
为了抑制较大的泵浦功率导致的传输光纤中的激光激射现象,无论是同纤泵浦还是异纤泵浦,所述泵浦光中均包含1480nm波段的宽带ASE光源,且1480nm波段的宽带ASE光源为所述远程泵浦单元6的最主要组成部分。其中,所述1480nm波段对应的波长范围(即宽带ASE光源的波长范围)为1460nm~1490nm,基于宽带ASE光源滤波形成的准多波长形式也可以认作宽带ASE光源。
与单独的1480nm泵浦激光器相比,宽带ASE光源在作为拉曼泵浦时,放大的带宽更宽,在光纤中某一波长处产生拉曼激光激射的阈值会更高,不再集中于1580nm很窄的波长区域;因此采用宽带ASE光源更有利于远程泵浦系统中泵浦功率的提高,抑制1580nm波长区域激光激射的产生,延长泵浦单元与增益单元的距离,提升整个传输跨距的长度。
结合图1和图2,无论是同纤泵浦还是异纤泵浦,完整的远程泵浦系统 还包括顺次连接的光发射机阵列1、光合波器2-1、功率放大器3、第一传输光纤4-1、第二传输光纤4-2、前置放大器7、光分波器2-2和光接收机阵列9;其中,所述远程增益单元5连接在所述第一传输光纤4-1和所述第二传输光纤4-2之间。所述光发射机阵列1包括第一光发射机1-1、第二光发射机1-2、…、第n光发射机1-n,n为自然数;相应地,所述光接收机阵列9包括第一光接收机9-1,第二光接收机9-2、…、第n光接收机9-n,n为自然数。
参考图1,当所述远程泵浦系统为同纤泵浦时,所述远程增益单元5为同纤泵浦增益单元;则所述远程泵浦单元6顺次连接在所述第二传输光纤4-2和所述前置放大器7之间,所述远程泵浦单元6通过所述第二传输光纤4-2将泵浦光反向传送到所述远程增益单元5中。结合图1,在上述同纤泵浦中,具体光路如下:
所述光发射机阵列1中的各发射机发射出信号光,经所述光合波器2-1合波后,再经所述功率放大器3进行功率放大,通过所述第一传输光纤4-1的传输后信号光抵达所述远程增益单元5;与此同时,所述远程泵浦单元6产生泵浦光,并经所述第二传输光纤4-2将泵浦光反向传输后抵达所述远程增益单元5;信号光在所述远程增益单元5中借由泵浦光实现放大,随后经所述第二传输光纤4-2传输后达到所述前置放大器7,进一步放大后经所述光分波器2-2分波,最终由所述光接收机阵列9中的各光接收机接收。
其中,作为同纤泵浦增益单元,所述远程增益单元5具体可参考图3,包括顺次连接的第一光隔离器5-1、信号/泵浦合波器5-2、第一掺铒光纤5-3、第二光隔离器5-4、第二掺铒光纤5-5、泵浦反射镜5-6、第三光隔离器5-7及泵浦/信号合波器5-8。其中,信号光经所述第一光隔离器5-1进入所述远程增益单元5,并抵达所述信号/泵浦合波器5-2;泵浦光与信号光传输方向相反,则在泵浦光反向进入所述远程增益单元5前,先经所述泵浦/信号合波器5-8将泵浦光分离出来,所述信号/泵浦合波器5-2再将泵浦光和信号 光耦合,实现前向泵浦;放大后的信号光先后经过所述第一掺铒光纤5-3、所述第二光隔离器5-4与所述第二掺铒光纤5-5后,经所述第三光隔离器5-7输出,最终残余的泵浦光被所述泵浦反射镜5-6反射回原线路。
参考图2,当所述远程泵浦系统为异纤泵浦时,所述远程增益单元5为异纤泵浦增益单元;则所述远程泵浦系统还包括单独设置的第三传输光纤4-3,所述泵浦单元6通过所述第三传输光纤4-3将泵浦光传送到所述远程增益单元5中。结合图2,在上述异纤泵浦中,具体光路如下:
所述光发射机阵列1中的各发射机发射出的信号光,经所述光合波器2-1合波后,再经所述功率放大器3进行功率放大,通过所述第一传输光纤4-1的传输后信号光抵达所述远程增益单元5;与此同时,所述远程泵浦单元6产生泵浦光,并经所述第三传输光纤4-3传输后抵达所述远程增益单元5;信号光在所述远程增益单元5中借由泵浦光实现放大,随后经所述第二传输光纤4-2传输后达到所述前置放大器7,进一步放大后经所述光分波器2-2分波,最终由所述光接收机阵列9中的各光接收机接收。
其中,作为异纤泵浦增益单元,所述远程增益单元5具体可参考图4,包括顺次连接的第一光隔离器5-1、信号/泵浦合波器5-2、第一掺铒光纤5-3、第二光隔离器5-4、第二掺铒光纤5-5、泵浦反射镜5-6及第三光隔离器5-7。信号光经所述第一光隔离器5-1进入所述远程增益单元5,并抵达所述信号/泵浦合波器5-2;泵浦光与信号光传输方向相同,则泵浦光直接经所述第三传输光纤4-3进入所述远程增益单元5,并抵达所述信号/泵浦合波器5-2,所述信号/泵浦合波器5-2再将泵浦光和信号光耦合,实现前向泵浦;放大后的信号光先后经过所述第一掺铒光纤5-3、所述第二光隔离器5-4与所述第二掺铒光纤5-5后,经所述第三光隔离器5-7输出,最终残余的泵浦光被所述泵浦反射镜5-6反射回原线路。
无论是同纤泵浦还是异纤泵浦,为使整体放大器的增益尽量平坦,所述远程增益单元5内均可设有增益平坦滤波器,用于保持所述远程泵浦系 统的增益平坦,具体可将增益平坦滤波器设置在图3或图4中的两段掺铒光纤之间。除此以外,在优选的实施例中,还可以不将增益平坦滤波器设置在所述远程增益单元5内,而是设置在所述远程增益单元5的下游,具体可设置在图1或图2中所述前置放大器7的输出端。如此一来,在保证整个传输系统增益平坦的同时,还可使远程增益单元的增益与噪声指数明显改善,进而带来整个系统OSNR的有效提升,提高了系统运行的稳定性与可靠性;而且,相比远程增益单元来说,前置放大器更容易施工,将增益平坦滤波器放到更容易施工的前置放大器输出端之后,也可方便系统维护。
进一步地,当所述远程泵浦系统为同纤泵浦时,为了降低远程泵浦带来的增益不平坦问题,所述泵浦光中还可集成有其他14xx nm泵浦光,如图1所示,用来提高短波长信号的增益,使整个信号波段的增益得到均衡;其中,所述其他14xx nm泵浦光的波长范围与所述宽带ASE光源的波段范围相同,为1460nm~1490nm。而对于单信号波长系统,也就是泵浦光为单波长时,可以不考虑增益均衡,则所述泵浦光中还可集成有短波长泵浦光,用于对所述其他14xx nm泵浦光或所述宽带ASE光源进行放大;其中,所述短波长泵浦光的波长范围为1300nm~1450nm,例如可以是13xx nm。
而当所述远程泵浦系统为异纤泵浦时,泵浦光是单独在第三传输光纤4-3中传输,泵浦光对信号光没有拉曼放大效果,只是将宽带ASE光源传送到所述远程增益单元5,因此泵浦光可以单独为宽带ASE光源。当然,在可选的实施例中,所述泵浦光中也可以集成有对所述宽带ASE光源有放大效果的其他14xx nm泵浦光和/或短波长泵浦光(如13xx),在此不做限定。其中,所述其他14xx nm泵浦光的波长范围为1460nm~1490nm,所述短波长泵浦光的波长范围为1300nm~1450nm。
传统平坦型1480nm波段的宽带ASE光源的谱型可参考图5。由于所述远程增益单元5对泵浦波长要求不敏感,在1455~1495nm范围内都有较 强的吸收,即1480nm波段的宽带ASE光源波长范围都属于所述远程增益单元5的高吸收区域,因此当所述远程增益单元5采用1480nm波段的宽带ASE光源时,泵浦效率差别很小。但由于宽带ASE光源谱型上的差别,会造成所述远程增益单元5的噪声指数有些差异,进而对泵浦入纤功率造成一定的影响。
鉴于上述考虑,本发明实施例在所述远程泵浦单元6内设有增益平坦滤波器,用于对所述宽带ASE光源的输出谱型进行优化,将传统的高斯型或平坦型宽带ASE光源优化为中间凹陷、两边凸起的抛物线形状,如图6所示,使得输出的平均波长满足所述远程增益单元5所需的最优平均波长,即所述远程增益单元5噪声指数最优的波长。在具体的优化设计过程中,先计算出最优平均波长,再以此设计出对应的宽带ASE光源谱型,即所述宽带ASE光源的优化谱型是根据所述最优平均波长设计,而所述最优平均波长需根据以下公式计算:
Figure PCTCN2019125272-appb-000002
其中,λ a表示最优平均波长,n表示在宽带ASE光源的1480nm波段范围内取n个波长(例如分别选取1460nm、1480nm和1490nm),λ i表示在1480nm波段范围内选取的第i个波长,i=1,2,3,...,n;P i表示与第i个波长对应的泵浦功率。在本发明实施例中,通过计算设计,得到优化后的宽带ASE光源谱型如图6所示,即中间凹陷、两边凸起的抛物线形状。
为了证明宽带ASE光源的优势,本发明实施例中分别利用泵浦激光器和如图5、图6所示的宽带ASE光源作为泵浦光,展开对比研究,得到如图7所示的几种不同情况下ASE泵浦与激光泵浦时的增益谱。其中,曲线401为单波长1480nm、功率1200mW的泵浦激光器为泵浦时产生的ASE功率谱密度,曲线402为平坦型宽带ASE光源、功率1200mW作为泵浦时 产生的ASE功率谱密度,曲线403为平坦型宽带ASE光源、功率1300mW作为泵浦时产生的ASE功率谱密度,曲线404为优化的宽带ASE光源、功率1500mW作为泵浦时产生的ASE功率谱密度。
首先对图7中的曲线401和曲线402对比,可以看出:在相同泵浦功率情况下,ASE泵浦与激光泵浦均在1580nm波长区域内ASE功率谱密度达到最大值,而曲线402的ASE功率谱密度更小。也就是说,采用相同功率的1480nm宽带ASE光源时,更容易在光纤中1580nm波长区域抑制激光激射现象的产生。因此,利用ASE泵浦时,可采用比1480nm激光器更高的输出功率用于远程泵浦放大器的泵浦源,以有效提高传输距离。
继续参考图7,对于平坦型的宽带ASE光源,如果达到如曲线401(即激光泵浦时)同样的ASE功率谱密度(即达到同样的激射点),宽带ASE光源的泵浦入纤功率可以达到1300mW,即曲线403所示。而对于优化谱型后的宽带ASE光源,如果达到如曲线401同样的ASE功率谱密度,宽带ASE光源的泵浦入纤功率可以达到1500mW,即曲线404所示。由此可知,与1480nm的激光泵浦相比,1480波段的宽带ASE光源更容易提供较大的泵浦入纤功率;而与传统平坦型的宽带ASE光源相比,谱型优化后(即如图6所示)后的ASE光源更容易提供较大的泵浦入纤功率,具体可以提高泵浦入纤功率1dB以上,泵浦入纤功率达到1480nm的激光泵浦时的1.25倍,大大提高了整个传输距离。
进一步地,由于所述远程增益单元5对泵浦波长要求不敏感,在1455~1495nm范围内都有较强的吸收,在此波长范围内能量转换效率及放大后的噪声指数相差不大,因此宽带ASE光源在对铒纤泵浦时,通常等效为宽带ASE光源的平均波长。具体分析如下:
所述远程增益单元5在1460nm、1480nm、1490nm作为泵浦源时,相同的泵浦功率情况下增益与噪声指数略有差别,但差别很小。特别是将所述远程增益单元5、所述前置放大器7、所述远程增益单元5与所述前置放 大器7之间的第二传输光纤4-2看作一个整体的级联放大器时,这种增益上的差别更会忽略不计。根据级联放大器噪声指数计算公式,所述远程增益单元5与所述前置放大器7的等效噪声指数NF=NF 1+(NF 2-1)/G 1;其中,NF 1与G 1分别为所述远程增益单元5的噪声指数和增益,NF 2为所述前置放大器7的噪声指数。由于NF 2小于0,所以NF 1与整体的NF基本相同。因此,在考虑宽带ASE光源作为泵浦光时,不能简单地将泵浦波长作为1460nm、1480nm或1490nm,而是将其作为平均波长来考虑。
如图8所示,给出了所述远程增益单元5在相同泵浦功率、不同泵浦波长(即平均波长)情况下的增益情况。其中,曲线601为1460nm泵浦时的增益谱,曲线602为1480nm泵浦时的增益谱,曲线603为1490nm泵浦时的增益谱,曲线604为1474nm泵浦时的增益谱。在本发明实施例中,优化的宽带ASE光源的平均波长大约为1474nm,因此曲线604也就对应为优化宽带ASE光源泵浦时的增益谱。
如图9所示,给出了将所述远程增益单元5、所述前置放大器7、所述远程增益单元5与所述前置放大器7之间的第二传输光纤4-2看作级联放大器时,级联放大器在相同泵浦功率、不同泵浦波长(即平均波长)情况下的整体噪声指数。其中,曲线701为1460nm泵浦时的噪声指数,曲线702为1480nm泵浦时的噪声指数,曲线703为1490nm泵浦时的噪声指数,曲线704为1474nm泵浦时的噪声指数。在本发明实施例中,优化的宽带ASE光源的平均波长大约为1474nm,因此曲线704也就对应为优化宽带ASE光源泵浦时的噪声指数。
综上所述,本发明实施例提供的远程泵浦系统具有以下有益效果:
利用1480nm宽带ASE光源作为远程泵浦放大器的泵浦光,减小了泵浦光在传输光纤中的能量密度,减小了远程泵浦光在光纤中的拉曼效应,有效抑制了拉曼激光激射现象的产生,提高了最大泵浦光的入纤功率,有效延长了泵浦单元与增益单元之间的距离,从而大幅提高了整体传输距离;
同时,通过在远程泵浦单元内设置增益平坦滤波器,可进一步优化设计宽带ASE光源的谱型,使宽带ASE光源的输出谱型呈中间凹陷、两边凸起的抛物线形状,可以提高泵浦入纤功率1dB以上,进一步提高了整体传输距离。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种可提高泵浦入纤功率的远程泵浦系统,其特征在于,远程泵浦系统为同纤泵浦或异纤泵浦,包括相互连接的远程增益单元(5)和远程泵浦单元(6),所述远程泵浦单元(6)用于向所述远程增益单元(5)提供泵浦光;
    其中,所述泵浦光中包含1480nm波段的宽带ASE光源,所述1480nm波段对应的波长范围为1460nm~1490nm。
  2. 根据权利要求1所述的可提高泵浦入纤功率的远程泵浦系统,其特征在于,所述远程泵浦单元(6)内设有增益平坦滤波器,用于将所述宽带ASE光源的输出谱型优化为中间凹陷、两边凸起的抛物线形状,使输出的平均波长满足所述远程增益单元(5)所需的最优平均波长。
  3. 根据权利要求2所述的可提高泵浦入纤功率的远程泵浦系统,其特征在于,所述宽带ASE光源的优化谱型根据所述最优平均波长设计,所述最优平均波长根据以下公式计算:
    Figure PCTCN2019125272-appb-100001
    其中,λ a表示最优平均波长,n表示在宽带ASE光源的1480nm波段范围内取n个波长,λ i表示在1480nm波段范围内选取的第i个波长,i=1,2,3,...,n;P i表示与第i个波长对应的泵浦功率。
  4. 根据权利要求1所述的可提高泵浦入纤功率的远程泵浦系统,其特征在于,当所述远程泵浦系统为同纤泵浦时,所述泵浦光中还集成有其他14xx nm泵浦光,用于使整个信号波段的增益得到均衡;其中,所述其他14xx nm泵浦光的波长范围为1460nm~1490nm。
  5. 根据权利要求4所述的可提高泵浦入纤功率的远程泵浦系统,其特征在 于,对于单信号波长系统,所述泵浦光中还集成有短波长泵浦光,用于对所述其他14xx nm泵浦光或所述宽带ASE光源进行放大;其中,所述短波长泵浦光的波长范围为1300nm~1450nm。
  6. 根据权利要求1所述的可提高泵浦入纤功率的远程泵浦系统,其特征在于,当所述远程泵浦系统为异纤泵浦时,所述泵浦光中还集成有其他14xx nm泵浦光和/或短波长泵浦光,用于对所述宽带ASE光源进行放大;
    其中,所述其他14xx nm泵浦光的波长范围为1460nm~1490nm,所述短波长泵浦光的波长范围为1300nm~1450nm。
  7. 根据权利要求1所述的可提高泵浦入纤功率的远程泵浦系统,其特征在于,所述远程泵浦系统还包括顺次连接的光发射机阵列(1)、光合波器(2-1)、功率放大器(3)、第一传输光纤(4-1)、第二传输光纤(4-2)、前置放大器(7)、光分波器(2-2)和光接收机阵列(9);
    其中,所述远程增益单元(5)连接在所述第一传输光纤(4-1)和所述第二传输光纤(4-2)之间。
  8. 根据权利要求7所述的可提高泵浦入纤功率的远程泵浦系统,其特征在于,当所述远程泵浦系统为同纤泵浦时,所述远程增益单元(5)为同纤泵浦增益单元;
    所述远程泵浦单元(6)位于所述第二传输光纤(4-2)和所述前置放大器(7)之间,所述远程泵浦单元(6)通过所述第二传输光纤(4-2)将泵浦光反向传送到所述远程增益单元(5)中。
  9. 根据权利要求7所述的可提高泵浦入纤功率的远程泵浦系统,其特征在于,当所述远程泵浦系统为异纤泵浦时,所述远程增益单元(5)为异纤泵浦增益单元;
    所述远程泵浦系统还包括单独设置的第三传输光纤(4-3),所述泵浦单元(6)通过所述第三传输光纤(4-3)将泵浦光传送到所述远程增益单元(5)中。
  10. 根据权利要求1-9任一所述的可提高泵浦入纤功率的远程泵浦系统,其特征在于,所述远程增益单元(5)内或所述远程增益单元(5)的下游设有增益平坦滤波器,用于保持整体放大器的增益平坦。
PCT/CN2019/125272 2019-08-14 2019-12-13 一种可提高泵浦入纤功率的远程泵浦系统 WO2021027207A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910748317.6A CN110600982A (zh) 2019-08-14 2019-08-14 一种可提高泵浦入纤功率的远程泵浦系统
CN201910748317.6 2019-08-14

Publications (1)

Publication Number Publication Date
WO2021027207A1 true WO2021027207A1 (zh) 2021-02-18

Family

ID=68854168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125272 WO2021027207A1 (zh) 2019-08-14 2019-12-13 一种可提高泵浦入纤功率的远程泵浦系统

Country Status (2)

Country Link
CN (1) CN110600982A (zh)
WO (1) WO2021027207A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490830A (zh) * 2020-11-16 2021-03-12 武汉光迅电子技术有限公司 一种提高泵浦单元与增益单元之间距离的远程泵浦系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477739A (zh) * 2003-06-04 2004-02-25 清华大学 超平坦宽带拉曼放大用的全光纤可调宽连续谱激光泵源
US20120033293A1 (en) * 2010-08-03 2012-02-09 Red-C Optical Networks Ltd. Method and apparatus of detecting an opening in an optical transmission fiber of a ropa system
CN102637990A (zh) * 2012-04-25 2012-08-15 清华大学 一种光纤放大系统及其光纤放大方法
CN102684045A (zh) * 2012-02-02 2012-09-19 华南理工大学 一种1064nm波段的高功率宽带ASE光源
CN107196180A (zh) * 2017-07-03 2017-09-22 无锡市德科立光电子技术有限公司 级联远程光放大系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1477739A (zh) * 2003-06-04 2004-02-25 清华大学 超平坦宽带拉曼放大用的全光纤可调宽连续谱激光泵源
US20120033293A1 (en) * 2010-08-03 2012-02-09 Red-C Optical Networks Ltd. Method and apparatus of detecting an opening in an optical transmission fiber of a ropa system
CN102684045A (zh) * 2012-02-02 2012-09-19 华南理工大学 一种1064nm波段的高功率宽带ASE光源
CN102637990A (zh) * 2012-04-25 2012-08-15 清华大学 一种光纤放大系统及其光纤放大方法
CN107196180A (zh) * 2017-07-03 2017-09-22 无锡市德科立光电子技术有限公司 级联远程光放大系统

Also Published As

Publication number Publication date
CN110600982A (zh) 2019-12-20

Similar Documents

Publication Publication Date Title
EP0789432B1 (en) Low noise optical fiber raman amplifier and communication system comprising such an amplifier
CA2060000C (en) Optical fiber amplifier
US6674570B2 (en) Wide band erbium-doped fiber amplifier (EDFA)
US20020015220A1 (en) Cascaded pumping system and method for producing distributed raman amplification in optical fiber telecommunication systems
CN105262540B (zh) 多波长单跨段传输方法和系统
CN107294604B (zh) 一种单跨长距离wdm线路光纤传输系统
US7508575B2 (en) Cascaded pump delivery for remotely pumped erbium-doped fiber amplifiers
CN109120370B (zh) 一种可提高osnr的dwdm远程泵浦系统
Iqbal et al. Improved design of ultra-wideband discrete Raman amplifier with low noise and high gain
US6903868B2 (en) Wideband erbium doped fiber amplifier capable of minimizing band crosstalk
CN205081351U (zh) 全光纤结构的大功率l波段掺铒光纤放大器
WO2021027207A1 (zh) 一种可提高泵浦入纤功率的远程泵浦系统
US6927898B2 (en) Ultra-wide bandwidth optical amplifier
CN100535730C (zh) L波段双通后向泵浦掺铒光纤放大器
JP3699457B2 (ja) 広帯域光ファイバ増幅器
CN112953640A (zh) 级联遥泵放大系统、远程增益单元及信号光放大方法
Abass et al. Wideband flat-gain hybrid fiber amplifier utilizing combined serial-parallel configuration
CN204333587U (zh) 一种用于掺铒光纤自发辐射光源的光路结构
CN207009890U (zh) 组合拉曼泵浦源及拉曼放大器
CN116053901A (zh) 一种放大器和系统
Maeda et al. Propagation direction interleaved cladding pumped 19-core EDFA in L-band
US6504647B1 (en) Optical fiber amplifier, a method of amplifying optical signals, optical communications system
CN207010684U (zh) 带有复合共用泵浦源的无中继传输系统
CN107171169A (zh) 组合拉曼泵浦源及拉曼放大器
CN209487926U (zh) 远程增益模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941739

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941739

Country of ref document: EP

Kind code of ref document: A1