WO2021027180A1 - 一种裂缝性储层非均匀伤害表皮系数计算方法 - Google Patents

一种裂缝性储层非均匀伤害表皮系数计算方法 Download PDF

Info

Publication number
WO2021027180A1
WO2021027180A1 PCT/CN2019/120507 CN2019120507W WO2021027180A1 WO 2021027180 A1 WO2021027180 A1 WO 2021027180A1 CN 2019120507 W CN2019120507 W CN 2019120507W WO 2021027180 A1 WO2021027180 A1 WO 2021027180A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameters
original
reservoir
fracture
coefficient
Prior art date
Application number
PCT/CN2019/120507
Other languages
English (en)
French (fr)
Inventor
肖勇
赫恩杰
王贺华
米中荣
臧克一
肖伟
成一
康博
岑玉达
米强波
薛衡
赵星
马成
汤夏岚
瞿建华
王志坤
段策
Original Assignee
成都北方石油勘探开发技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都北方石油勘探开发技术有限公司 filed Critical 成都北方石油勘探开发技术有限公司
Publication of WO2021027180A1 publication Critical patent/WO2021027180A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells

Definitions

  • the invention relates to the field of oil and gas development, in particular to a method for calculating the non-uniform damage skin coefficient of fractured reservoirs.
  • the skin coefficient is a comprehensive coefficient that characterizes the degree of pollution and damage in the near-well zone of an oil and gas well. It is objectively manifested as an increase in oil and gas flow resistance and a decrease in fluid production capacity of a single well.
  • the partial opening of the perforation is composed of pseudo-skin coefficient, well deviation pseudo-skin coefficient, reservoir shape pseudo-skin coefficient, non-Darcy flow pseudo-skin coefficient, and real skin coefficient of reservoir damage degree.
  • the true skin coefficient determined by the degree of reservoir damage is not only the main object of acidification/acid fracturing reformation, but also the most important component of the skin coefficient (Guo Jianchun et al.
  • the Longwangmiao Formation gas reservoir in the Moxi structure in central Sichuan is a reservoir reformation technology to maximize the reduction of the skin coefficient. .Natural Gas Industry, 2014,34(3):97-102). Therefore, studying and obtaining the skin coefficient of reservoir damage is the main work of this technology.
  • Fractured reservoirs During the drilling of oil and gas wells, reservoir damage mainly comes from the fluid loss of drilling fluid to the reservoir matrix and fracture system. The severity of fluid loss damage is affected by the physical properties of the reservoir matrix, fracture system and its development. . At present, the general well test method can only obtain the comprehensive skin coefficient of the entire well section, which can neither accurately reflect the degree of non-uniform damage in the long section of the reservoir nor the degree of damage of the reservoir matrix and fracture system in the section. , Cannot provide an effective basis for acidification/acid fracturing.
  • the purpose of the present invention is to provide a method for calculating the non-uniform damage skin coefficient of fractured reservoirs, so as to solve the problem that in the prior art, for fractured reservoirs, the skin coefficient of the entire well section cannot reflect the degree of non-uniform damage and cannot reflect the storage
  • the problem of the degree of damage of the layer matrix and the fracture system realizes the goal that the skin coefficient can be decomposed into the long well section to reflect the non-uniform damage characteristics, and the respective damage of the matrix and the fracture system can be distinguished within the section.
  • a method for calculating the non-uniform damage skin coefficient of fractured reservoirs includes the following steps:
  • the basic parameters include wellbore profile parameters, logging parameters, and drilling fluid loss parameters;
  • the comprehensive skin coefficient can be decomposed into the long well section to reflect its non-uniform damage characteristics; the section can distinguish the respective damage degrees of the matrix and the fracture system, so it can be used to evaluate the non-uniform damage in the reservoir section.
  • the wellbore profile parameters include: reservoir section length, wellbore radius, oil drainage radius, total mud loss, crude oil viscosity, crude oil volume coefficient;
  • the logging parameters include: sonic time difference, rock density, fracture width, fracture length;
  • the fluid loss parameters of the drilling fluid include: soaking time, diffusion coefficient, mud cake porosity, and drilling pressure difference.
  • the number of equally spaced discrete well sections in the reservoir is n, and the length of all discrete well sections is L/n.
  • the acoustic time difference is A i
  • the rock density is ⁇ i
  • the fracture width is W fi
  • the fracture length is L fi
  • the immersion time is t i
  • the diffusion coefficient is D
  • the mud cake porosity is ⁇ c
  • the length of the well section of the reservoir is a fixed value L
  • the radius of the wellbore is a fixed value r w
  • the oil drainage radius is a fixed value r e
  • the total mud loss is fixed Value V
  • crude oil viscosity are fixed values ⁇
  • crude oil volume coefficient is fixed value B
  • diffusion coefficient is fixed value D.
  • the original reservoir physical property parameter set includes: original matrix porosity, original fracture porosity, original matrix permeability, original fracture permeability, original total porosity, original total permeability;
  • the physical parameter set of the damaged reservoir includes: matrix contamination radius, matrix damage permeability, fracture fluid loss index;
  • the non-uniform injury skin parameter set includes: matrix injury skin coefficient, fracture injury skin coefficient, and comprehensive skin coefficient of the entire well section.
  • Step original discrete interval reservoir parameter (3) comprises: i-th surface seam discrete interval rate m i, of the original matrix porosity ⁇ mi, original fracture porosity ⁇ fi, original matrix permeability k mi, original crack Permeability k fi , original total porosity ⁇ Ti , original total permeability k Ti .
  • the post-damaged reservoir physical property parameters in step (4) include: the matrix contamination radius of the i-th discrete well section is r i , the matrix damage permeability k di , and the fracture fluid loss index J i .
  • step (5) The calculation method of step (5) is:
  • step (6) The calculation method of step (6) is:
  • the present invention has the following advantages and beneficial effects:
  • the invention provides a method for calculating the non-uniform damage skin coefficient of fractured reservoirs, which quantitatively clarifies the non-uniform damage characteristics in the well section of the reservoir; the section can distinguish the respective damage degrees of the matrix and the fracture system, which can better reflect the reservoir well
  • the non-uniform damage characteristics of the section provide oilfield engineers with a basis for increasing production such as acidification and acid fracturing.
  • Figure 1 is the acoustic time difference and rock density data of each discrete well section after the reservoir section is dispersed in a specific embodiment of the present invention
  • Figure 2 is the fracture width and fracture length data of each discrete well section after the reservoir section is dispersed in a specific embodiment of the present invention
  • Figure 3 is the soaking time of each discrete well section after the reservoir well section is dispersed in a specific embodiment of the present invention
  • Figure 4 shows the mud cake porosity and drilling pressure difference of each discrete well section after the reservoir well sections are dispersed in a specific embodiment of the present invention
  • Figure 5 shows the matrix porosity, fracture porosity and total porosity of each discrete well section after the reservoir sections are dispersed in a specific embodiment of the present invention
  • Figure 6 shows the matrix permeability, fracture permeability and total permeability of each discrete well section after the reservoir sections are dispersed in a specific embodiment of the present invention
  • Figure 7 shows the matrix damage permeability, matrix contamination radius and fluid loss index of each discrete well section after the reservoir well sections are dispersed in a specific embodiment of the present invention
  • Figure 8 shows the matrix damage skin coefficient and the fracture damage skin coefficient of each discrete well section after the reservoir sections are dispersed in a specific embodiment of the present invention
  • Fig. 9 shows the non-uniform damage skin coefficient of the discrete well sections of each discrete well section after the well sections of the reservoir are dispersed in a specific embodiment of the present invention.
  • Step 1 Obtain the basic parameters used in the calculation of the non-uniform damage skin coefficient:
  • the basic parameters include: wellbore profile parameters, logging parameters and drilling fluid loss parameters.
  • Wellbore profile parameters include: reservoir section length L, wellbore radius r w , drainage radius r e total mud loss V, crude oil viscosity ⁇ and crude oil volume coefficient B;
  • logging parameters include: acoustic time difference A, rock density ⁇ , Fracture width W f and fracture length L f ;
  • the fluid loss parameters of drilling fluid include: soaking time T, diffusion coefficient D, mud cake porosity And the drilling pressure difference P.
  • Step 2 equidistant discrete reservoir well sections, assign basic parameters to discrete well sections, establish original reservoir physical property parameter set U, damaged reservoir physical property parameter set D, and non-uniform damage skin parameter set S.
  • the number of equally spaced discrete well sections in the reservoir is n, and the length of all discrete well sections is L/n.
  • the acoustic time difference is Ai
  • the rock density is ⁇ i
  • the fracture width is W fi
  • the fracture The length is L fi .
  • the immersion time of the i-th discrete well section is t i
  • the diffusion coefficient is D
  • the mud cake porosity is ⁇ c
  • Original reservoir physical parameter set U includes: an original matrix porosity ⁇ m, the porosity of the original fracture ⁇ f, the original matrix permeability k m, the original fracture permeability k f, the original total porosity ⁇ T, the original overall permeability k T
  • the physical property parameter set D of the damaged reservoir includes: matrix pollution radius r, matrix damage permeability k d , fracture filtration index J; non-uniform damage skin parameter set S includes: matrix damage skin coefficient S m , fracture damage skin coefficient S f .
  • Comprehensive skin coefficient S T for the entire well section.
  • Step 3 Taking discrete well sections as the object, use wellbore profile parameters and logging parameters to calculate the original reservoir physical parameters of the discrete well sections.
  • Step 4 Taking discrete well sections as the object, using wellbore profile parameters, drilling fluid filter loss parameters and original reservoir physical property parameters, calculate the reservoir physical property parameters after the discrete well sections are damaged:
  • Step 5 Taking discrete well sections as the object, using wellbore profile parameters, original reservoir physical properties and damaged reservoir physical properties, calculate the matrix and fracture damage skin coefficients of the discrete well sections.
  • is the crude oil viscosity and B is the crude oil volume coefficient.
  • Step 6 Use the matrix and fracture damage skin coefficients of discrete well sections to calculate the non-uniform damage skin coefficients of the discrete well sections and the comprehensive skin coefficients of the entire well section.
  • Wellbore profile parameters include: reservoir section length, wellbore radius, drainage radius, total mud loss, crude oil viscosity and crude oil volume coefficient;
  • logging parameters include: sonic time difference, rock density, fracture width and fracture length;
  • drilling fluid filtration Loss parameters include: soaking time, diffusion coefficient, mud cake porosity and drilling pressure difference.
  • Step (2) For this example well, the number of well-spaced intervals in the reservoir is n, the length of the reservoir section is a fixed value L, the radius of the wellbore is a fixed value r w , and the oil drainage radius is a fixed value r e ,
  • the total mud loss is a fixed value V
  • the crude oil viscosity is a fixed value ⁇
  • the crude oil volume coefficient is a fixed value B
  • D diffusion coefficient
  • parameter name Value Reservoir well sections are equally spaced and discrete, the number n, dimensionless 100 Reservoir section length L, m 100 Wellbore radius r w , m 0.1778 Oil drain radius r e , m 300 Total mud loss V, m 3 50 Crude oil viscosity ⁇ , mPa ⁇ s 10 Crude oil volume factor B, dimensionless 1.1 Diffusion coefficient D, m 2 /h 5E-7
  • Step (3) Use the following formula and combine the basic parameters of the example wells to calculate the original reservoir physical parameters of each discrete well section after the reservoir sections are separated:
  • the calculated original reservoir physical parameters of each discrete interval after the reservoir interval are separated include: original matrix porosity ⁇ mi , original fracture porosity ⁇ fi , original matrix permeability k mi , original fracture permeability k fi , original The calculation results of the total porosity ⁇ Ti and the original total permeability k Ti are shown in Figure 5 and Figure 6.
  • Step (4) Using the following formula, combining the basic parameters and the original reservoir physical parameters, calculate the post-damaged reservoir physical parameters of the discrete well sections after the reservoir sections are separated:
  • the calculated physical property parameters of the damaged reservoir are: matrix contamination radius r i , matrix damage permeability k di , fracture fluid loss index J i .
  • the calculation results are shown in Fig. 7.
  • Step (5) Use the following formula to calculate the matrix damage skin coefficient S mi and fracture damage skin coefficient S of each discrete well section after the reservoir section is separated by combining basic parameters, original reservoir physical property parameters, and damaged reservoir physical property parameters fi :
  • the comprehensive skin coefficient of the well is 10.70.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

一种裂缝性储层非均匀伤害表皮系数计算方法,获取基础参数,等间距离散储层井段,将基础参数赋值于离散井段,建立原始储层物性参数集、伤害后储层物性参数集、非均匀伤害表皮参数集;以离散井段为对象,利用井筒概况参数和测井参数计算离散井段原始储层物性参数;计算离散井段伤害后储层物性参数、计算离散井段的基质、裂缝伤害表皮系数、计算离散井段非均匀伤害表皮系数和全井段综合表皮系数。该方法实现了表皮系数能够分解到长井段内体现非均匀伤害特征、且段内能够区分基质和裂缝系统的各自伤害的目的。

Description

一种裂缝性储层非均匀伤害表皮系数计算方法 技术领域
本发明涉及油气开发领域,具体涉及一种裂缝性储层非均匀伤害表皮系数计算方法。
背景技术
表皮系数是表征油气井储层近井地带污染和伤害程度的综合系数,客观表现为油气流动阻力的增加和单井产液能力的降低,现场主要通过不稳定试井方法求得,其数值由射孔的局部打开拟表皮系数、井斜拟表皮系数、油藏形状拟表皮系数、非达西流拟表皮系数和储层伤害程度的真实表皮系数等构成。储层伤害程度决定的真实表皮系数既是酸化/酸压改造的主体对象,也是表皮系数的最主要构成(郭建春等.川中磨溪构造龙王庙组气藏最大化降低表皮系数的储层改造技术.天然气工业,2014,34(3):97-102)。因此,研究和获取储层伤害的表皮系数是该技术研究的主要工作。
裂缝性储层在油气井钻井过程中,储层伤害主要来自于钻井液向储层基质和裂缝系统的滤失,滤失伤害的严重程度受到储层基质物性、裂缝系统及其发育程度的影响。目前,通用的试井方法只能得到全井段的综合表皮系数,既不能准确反应储层长井段段内的非均匀伤害程度,也不能反应井段内储层基质和裂缝系统各自的伤害程度,无法为酸化/酸压提供有效依据。
发明内容
本发明的目的在于提供一种裂缝性储层非均匀伤害表皮系数计算方法,以解决现有技术中对于裂缝性储层而言,全井段表皮系数无法反应非均匀伤害程度,也无法反应储层基质和裂缝系统各自的伤害程度的问题,实现表皮系数能够分解到长井段内体现非均匀伤害特征、且段内能够区分基质和裂缝系统的各自伤害的目的。
本发明通过下述技术方案实现:
一种裂缝性储层非均匀伤害表皮系数计算方法,包括以下步骤:
(1)获取钻完井、测井、试油中的基础参数;所述基础参数包括井筒概况参数、测井参数、钻井液滤失参数;
(2)等间距离散储层井段,将基础参数赋值于离散井段,建立原始储层物性参数集、伤害后储层物性参数集、非均匀伤害表皮参数集;
(3)以离散井段为对象,利用井筒概况参数和测井参数计算离散井段原始储层物性参数;
(4)以离散井段为对象,利用井筒概况参数、钻井液滤失参数、离散井段原始储层物性参数,计算离散井段伤害后储层物性参数;
(5)以离散井段为对象,利用井筒概况参数、原始储层物性参数、离散井段伤害后储层物性参数,计算离散井段的基质、裂缝伤害表皮系数;
(6)利用离散井段的基质、裂缝伤害表皮系数,计算离散井段非均匀伤害表皮系数和全井段综合表皮系数。
通过本方法,综合表皮系数能够分解到长井段段内以体现其非均匀伤害特征;段内能够区分基质和裂缝系统的各自伤害程度,因此能够用于评价储层井段内的非均匀伤害,为油田工程师提供酸化/酸压依据。
所述井筒概况参数包括:储层井段长度、井筒半径、泄油半径、泥浆总漏失量、原油粘度、原油体积系数;
所述测井参数包括:声波时差、岩石密度、裂缝宽度、裂缝长度;
所述钻井液滤失参数包括:浸泡时间,扩散系数、泥饼孔隙度、钻井压差。
步骤(2)中将基础参数赋值于离散井段后得到:储层井段等间距离散的段数为n,所有离散井段的长度均为L/n,对任意第i离散井段而言,声波时差为A i、岩石密度为ρ i、裂缝宽度为W fi、裂缝长度为L fi、浸泡时间为t i,扩散系数为D、泥饼孔隙度为φ c、钻井压差P i,其中i=1,2,3,······,n;储层井段长度为固定值L、井筒半径为固定值r w、泄油半径为固定值r e、泥浆总漏失量为固定值V、原油粘度为固定值μ,原油体积系数为固定值B,扩散系数为固定值D。
所述原始储层物性参数集包括:原始基质孔隙度、原始裂缝孔隙度、原始基质渗透率、原始裂缝渗透率、原始总孔隙度、原始总渗透率;
所述伤害后储层物性参数集包括:基质污染半径、基质伤害渗透率、裂缝滤失指数;
所述非均匀伤害表皮参数集包括:基质伤害表皮系数、裂缝伤害表皮系数、全井段综合表皮系数。
步骤(3)中的离散井段原始储层物性参数包括:第i离散井段面缝率m i、原始基质孔隙度φ mi、原始裂缝孔隙度φ fi、原始基质渗透率k mi、原始裂缝渗透率k fi、原始总孔隙度φ Ti、原始总渗透率k Ti
步骤(4)中的伤害后储层物性参数包括:第i离散井段基质污染半径为r i、基质伤害渗透率为k di、裂缝滤失指数J i
步骤(5)的计算方法为:
第i离散井段基质伤害表皮系数
Figure PCTCN2019120507-appb-000001
第i离散井段裂缝伤害表皮系数
Figure PCTCN2019120507-appb-000002
步骤(6)的计算方法为:
第i离散井段非均匀伤害表皮系数
Figure PCTCN2019120507-appb-000003
全井段综合表皮系数为
Figure PCTCN2019120507-appb-000004
本发明与现有技术相比,具有如下的优点和有益效果:
本发明一种裂缝性储层非均匀伤害表皮系数计算方法,定量化明确了储层井段段内的非均匀伤害特征;段内能够区分基质和裂缝系统的各自伤害程度,更能反映储层井段的非均匀伤害特征,为油田工程师提供酸化、酸压等增产依据。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明具体实施例中储层井段离散后各离散井段的声波时差和岩石密度数据;
图2为本发明具体实施例中储层井段离散后各离散井段的裂缝宽度和裂缝长度数据;
图3为本发明具体实施例中储层井段离散后各离散井段的浸泡时间;
图4为本发明具体实施例中储层井段离散后各离散井段的泥饼孔隙度和钻井压差;
图5为本发明具体实施例中储层井段离散后各离散井段的基质孔隙度、裂缝孔隙度和总孔隙度;
图6为本发明具体实施例中储层井段离散后各离散井段的基质渗透率、裂缝渗透率和总渗透率;
图7为本发明具体实施例中储层井段离散后各离散井段的基质伤害渗透率、基质污染半径和滤失指数;
图8为本发明具体实施例中储层井段离散后各离散井段的基质伤害表皮系数和裂缝伤害表皮系数;
图9为本发明具体实施例中储层井段离散后各离散井段的离散井段非均匀伤害表皮系数。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明 作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1:
一种裂缝性储层非均匀伤害表皮系数计算方法,
步骤1,获取用于非均匀伤害表皮系数计算的基础参数:
基础参数包括:井筒概况参数、测井参数和钻井液滤失参数。井筒概况参数包括:储层井段长度L、井筒半径r w、泄油半径r e泥浆总漏失量V,原油粘度μ和原油体积系数B;测井参数包括:声波时差A、岩石密度ρ、裂缝宽度W f和裂缝长度L f;钻井液滤失参数包括:浸泡时间T,扩散系数D、泥饼孔隙度
Figure PCTCN2019120507-appb-000005
和钻井压差P。
步骤2,等间距离散储层井段,将基础参数赋值于离散井段,建立原始储层物性参数集U、伤害后储层物性参数集D、非均匀伤害表皮参数集S。
储层井段等间距离散的段数为n,所有离散井段的长度均为L/n,对任意第i离散井段声波时差为A i、岩石密度为ρ i、裂缝宽度为W fi、裂缝长度为L fi。第i离散井段的浸泡时间为t i,扩散系数为D、泥饼孔隙度为φ c、钻井压差P i,其中i=1,2,3,······,n。储层井段长度为固定值L、井筒半径为固定值r w、泄油半径为固定值r e和泥浆总漏失量为固定值V,原油粘度为固定值μ,原油体积系数为固定值B,扩散系数为固定值D。
原始储层物性参数集U包括:原始基质孔隙度φ m、原始裂缝孔隙度φ f、原始基质渗透率k m、原始裂缝渗透率k f、原始总孔隙度φ T、原始总渗透率k T;伤害后储层物性参数集D包括:基质污染半径r、基质伤害渗透率k d、裂缝滤失指数J;非均匀伤害表皮参数集S包括:基质伤害表皮系数S m、裂缝伤害表皮系数S f、全井段综合表皮系数S T
步骤3,以离散井段为对象,利用井筒概况参数和测井参数计算离散井段原始储层物性参数。
对任意第i离散井段,若该离散井段的裂缝长度L fi=0,按照下式计算第i离散井段的原始基质孔隙度φ mi、原始裂缝孔隙度φ fi、原始基质渗透率k mi、原始裂缝渗透率k fi、原始总孔隙度φ Ti、原始总渗透率k Ti,其中i=1,2,3,······,n。
Figure PCTCN2019120507-appb-000006
若第i离散井段的裂缝长度L fi≠0,按照下式计算第i离散井段的面缝率m i、原始基质孔 隙度φ mi、原始裂缝孔隙度φ fi、原始基质渗透率k mi、原始裂缝渗透率k fi、原始总孔隙度φ Ti、原始总渗透率k Ti,其中i=1,2,3,······,n。
Figure PCTCN2019120507-appb-000007
Figure PCTCN2019120507-appb-000008
步骤4,以离散井段为对象,利用井筒概况参数、钻井液滤失参数和原始储层物性参数,计算离散井段伤害后储层物性参数:
第一步,根据原始基质渗透率与原始裂缝渗透率的差异,按下式计算第i离散井段的基质中泥浆滤失量V mi和裂缝中泥浆滤失量V fi,其中i=1,2,3,······,n。
Figure PCTCN2019120507-appb-000009
第二步,根据基质中泥浆漏失量,按照下式计算第i离散井段的基质污染半径r i,其中i=1,2,3,······,n。
Figure PCTCN2019120507-appb-000010
第三步,根据基质中泥浆漏失量,按照下式计算第i离散井段的基质伤害渗透率k di,其中i=1,2,3,······,n。
Figure PCTCN2019120507-appb-000011
上式计算的初始条件、边界条件和辅助条件为:
Figure PCTCN2019120507-appb-000012
第四步,根据裂缝中泥浆漏失量,按照下式计算第i离散井段的裂缝滤失指数J i,其中i=1,2,3,······,n。
Figure PCTCN2019120507-appb-000013
步骤5,以离散井段为对象,利用井筒概况参数、原始储层物性参数和伤害后储层物性参数,计算离散井段的基质和裂缝伤害表皮系数。
根据步骤3和步骤4得到的原始基质渗透率、基质伤害渗透率、基质污染半径,按照下式计算第i离散井段的基质伤害表皮系数S mi,其中i=1,2,3,······,n。
Figure PCTCN2019120507-appb-000014
根据步骤3和步骤4得到的原始裂缝渗透率和裂缝滤失指数,按照下式计算第i离散井段的裂缝伤害表皮系数S fi,其中i=1,2,3,······,n。
Figure PCTCN2019120507-appb-000015
式中,μ为原油粘度,B为原油体积系数。
步骤6,利用离散井段的基质和裂缝伤害表皮系数,计算离散井段非均匀伤害表皮系数和全井段综合表皮系数。
根据步骤5得到的基质伤害表皮系数和裂缝伤害表皮系数,计算第i离散井段非均匀伤害表皮系数S i和全井段综合表皮系数S T,其中i=1,2,3,······,n。
Figure PCTCN2019120507-appb-000016
实施例2:
以我国西部地区某油田XX井作为实例井:
步骤(1):获取实例井的基础参数:井筒概况参数、测井参数和钻井液滤失参数。井筒概况参数包括:储层井段长度、井筒半径、泄油半径、泥浆总漏失量、原油粘度和原油体积系数;测井参数包括:声波时差、岩石密度、裂缝宽度和裂缝长度;钻井液滤失参数包括:浸泡时间,扩散系数、泥饼孔隙度和钻井压差。
步骤(2):对于该实例井而言储层井段等间距离散的段数为n,储层井段长度为固定值L、井筒半径为固定值r w、泄油半径为固定值r e,泥浆总漏失量为固定值V,原油粘度为固定值μ,原油体积系数为固定值B,扩散系数为固定值D,各固定值的数值如下表所示:
参数名称 数值
储层井段等间距离散的段数n,无因次 100
储层井段长度L,m 100
井筒半径r w,m 0.1778
泄油半径r e,m 300
泥浆总漏失量V,m 3 50
原油粘度μ,mPa·s 10
原油体积系数B,无因次 1.1
扩散系数D,m 2/h 5E-7
对储层井段进行离散,离散后各离散井段的测井参数和钻井液滤失参数如图1至图4所示。
步骤(3):利用如下公式,结合实例井基础参数,计算得到储层井段离散后各离散井段的原始储层物性参数:
Figure PCTCN2019120507-appb-000017
计算得到的储层井段离散后各离散井段的原始储层物性参数包括:原始基质孔隙度φ mi、原始裂缝孔隙度φ fi、原始基质渗透率k mi、原始裂缝渗透率k fi、原始总孔隙度φ Ti、原始总渗 透率k Ti,计算结果如图5与图6所示。
步骤(4):利用如下公式,结合基础参数和原始储层物性参数,计算储层井段离散后各离散井段的伤害后储层物性参数:
Figure PCTCN2019120507-appb-000018
计算得到的伤害后储层物性参数为:基质污染半径r i、基质伤害渗透率k di、裂缝滤失指数J i,计算结果如图7所示。
步骤(5):利用如下公式,结合基础参数、原始储层物性参数、伤害后储层物性参数,计算储层井段离散后各离散井段的基质伤害表皮系数S mi和裂缝伤害表皮系数S fi
Figure PCTCN2019120507-appb-000019
计算得到的储层井段离散后各离散井段的基质伤害表皮系数S mi、裂缝伤害表皮系数S fi如图8所示。计算结果显示:离散井段基质伤害表皮系数最大为8.39,最小为0.00;离散井段裂缝伤害表皮系数最大为80.94,最小为0.00,表现出非均匀伤害特征。
步骤(6):
利用公式
Figure PCTCN2019120507-appb-000020
结合基质伤害表皮系数和裂缝伤害表皮系数,计算离散井段非均匀伤害表皮系数S i。计算结果如图9所示:离散段非均匀伤害表皮系数最大值为50.98,最小为0.29,表现出非均匀特征。
同时计算该井全井段综合表皮系数S T
Figure PCTCN2019120507-appb-000021
得出该井的全井段综合表皮系数为10.70。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种裂缝性储层非均匀伤害表皮系数计算方法,其特征在于,包括以下步骤:
    (1)获取钻完井、测井、试油中的基础参数;所述基础参数包括井筒概况参数、测井参数、钻井液滤失参数;
    (2)等间距离散储层井段,将基础参数赋值于离散井段,建立原始储层物性参数集、伤害后储层物性参数集、非均匀伤害表皮参数集;
    (3)以离散井段为对象,利用井筒概况参数和测井参数计算离散井段原始储层物性参数;
    (4)以离散井段为对象,利用井筒概况参数、钻井液滤失参数、离散井段原始储层物性参数,计算离散井段伤害后储层物性参数;
    (5)以离散井段为对象,利用井筒概况参数、原始储层物性参数、离散井段伤害后储层物性参数,计算离散井段的基质、裂缝伤害表皮系数;
    (6)利用离散井段的基质、裂缝伤害表皮系数,计算离散井段非均匀伤害表皮系数和全井段综合表皮系数。
  2. 根据权利要求1所述的一种裂缝性储层非均匀伤害表皮系数计算方法,其特征在于,
    所述井筒概况参数包括:储层井段长度、井筒半径、泄油半径、泥浆总漏失量、原油粘度、原油体积系数;
    所述测井参数包括:声波时差、岩石密度、裂缝宽度、裂缝长度;
    所述钻井液滤失参数包括:浸泡时间,扩散系数、泥饼孔隙度、钻井压差。
  3. 根据权利要求1所述的一种裂缝性储层非均匀伤害表皮系数计算方法,其特征在于,步骤(2)中将基础参数赋值于离散井段后得到:储层井段等间距离散的段数为n,所有离散井段的长度均为L/n,对任意第i离散井段而言,声波时差为A i、岩石密度为ρ i、裂缝宽度为W fi、裂缝长度为L fi、浸泡时间为t i,扩散系数为D、泥饼孔隙度为φ c、钻井压差P i,其中i=1,2,3,……,n;储层井段长度为固定值L、井筒半径为固定值r w、泄油半径为固定值r e、泥浆总漏失量为固定值V、原油粘度为固定值μ,原油体积系数为固定值B,扩散系数为固定值D。
  4. 根据权利要求1所述的一种裂缝性储层非均匀伤害表皮系数计算方法,其特征在于,
    所述原始储层物性参数集包括:原始基质孔隙度、原始裂缝孔隙度、原始基质渗透率、原始裂缝渗透率、原始总孔隙度、原始总渗透率;
    所述伤害后储层物性参数集包括:基质污染半径、基质伤害渗透率、裂缝滤失指数;
    所述非均匀伤害表皮参数集包括:基质伤害表皮系数、裂缝伤害表皮系数、全井段综合表皮系数。
  5. 根据权利要求3所述的一种裂缝性储层非均匀伤害表皮系数计算方法,其特征在于, 步骤(3)中的离散井段原始储层物性参数包括:第i离散井段面缝率m i、原始基质孔隙度φ mi、原始裂缝孔隙度φ fi、原始基质渗透率k mi、原始裂缝渗透率k fi、原始总孔隙度φ Ti、原始总渗透率k Ti
  6. 根据权利要求5所述的一种裂缝性储层非均匀伤害表皮系数计算方法,其特征在于,步骤(4)中的伤害后储层物性参数包括:第i离散井段基质污染半径为r i、基质伤害渗透率为k di、裂缝滤失指数J i
  7. 根据权利要求6所述的一种裂缝性储层非均匀伤害表皮系数计算方法,其特征在于,步骤(5)的计算方法为:
    第i离散井段基质伤害表皮系数
    Figure PCTCN2019120507-appb-100001
    第i离散井段裂缝伤害表皮系数
    Figure PCTCN2019120507-appb-100002
  8. 根据权利要求7所述的一种裂缝性储层非均匀伤害表皮系数计算方法,其特征在于,步骤(6)的计算方法为:
    第i离散井段非均匀伤害表皮系数
    Figure PCTCN2019120507-appb-100003
    全井段综合表皮系数为
    Figure PCTCN2019120507-appb-100004
PCT/CN2019/120507 2019-08-12 2019-11-25 一种裂缝性储层非均匀伤害表皮系数计算方法 WO2021027180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910740455.X 2019-08-12
CN201910740455.XA CN110454152B (zh) 2019-08-12 2019-08-12 裂缝性储层非均匀伤害表皮系数计算方法

Publications (1)

Publication Number Publication Date
WO2021027180A1 true WO2021027180A1 (zh) 2021-02-18

Family

ID=68485912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120507 WO2021027180A1 (zh) 2019-08-12 2019-11-25 一种裂缝性储层非均匀伤害表皮系数计算方法

Country Status (2)

Country Link
CN (1) CN110454152B (zh)
WO (1) WO2021027180A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110454152B (zh) * 2019-08-12 2020-12-01 成都北方石油勘探开发技术有限公司 裂缝性储层非均匀伤害表皮系数计算方法
CN110826250A (zh) * 2019-11-19 2020-02-21 成都北方石油勘探开发技术有限公司 用于水平井的钻井液伤害计算方法
CN112832848B (zh) * 2021-03-05 2022-05-20 湖南科技大学 一种防止极松软煤层钻孔施工过程中钻孔喷孔的施工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080066909A1 (en) * 2006-09-18 2008-03-20 Hutchins Richard D Methods of Limiting Leak Off and Damage in Hydraulic Fractures
CN201661287U (zh) * 2010-04-21 2010-12-01 中国海洋石油总公司 一种地层酸化处理监控系统
CN103806904A (zh) * 2012-11-12 2014-05-21 中国石油天然气集团公司 砂岩储层非均匀损害深度的计算方法
CN108959767A (zh) * 2018-07-02 2018-12-07 中国地质大学(北京) 一种窄河道型气藏不同井型凝析油伤害数值模拟方法
CN110454152A (zh) * 2019-08-12 2019-11-15 成都北方石油勘探开发技术有限公司 裂缝性储层非均匀伤害表皮系数计算方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104314547A (zh) * 2014-08-18 2015-01-28 北京运嘉普泰石油天然气技术发展有限公司 Hafd水平井压裂酸化分段优化方法及系统
CN106321037B (zh) * 2016-09-12 2019-03-08 中国海洋石油集团有限公司 一种监测聚合物驱替效果及污染半径的方法
CN107066769B (zh) * 2017-06-09 2020-06-12 西南石油大学 适用于超深层裂缝型碳酸盐岩储层的高效酸化设计方法
CN109033677B (zh) * 2018-08-09 2022-05-03 西南石油大学 一种压裂酸化井裂缝导流能力优化方法
CN108979612B (zh) * 2018-08-09 2020-07-07 西南石油大学 一种致密油气藏压裂酸化复杂裂缝流动能力优化方法
CN109138949A (zh) * 2018-09-28 2019-01-04 成都北方石油勘探开发技术有限公司 一种基于水平井表皮系数分布特征的布酸方法
CN110043244B (zh) * 2019-04-19 2021-10-15 中国石油天然气股份有限公司 一种砂岩油藏注水井酸化半径的确定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080066909A1 (en) * 2006-09-18 2008-03-20 Hutchins Richard D Methods of Limiting Leak Off and Damage in Hydraulic Fractures
CN201661287U (zh) * 2010-04-21 2010-12-01 中国海洋石油总公司 一种地层酸化处理监控系统
CN103806904A (zh) * 2012-11-12 2014-05-21 中国石油天然气集团公司 砂岩储层非均匀损害深度的计算方法
CN108959767A (zh) * 2018-07-02 2018-12-07 中国地质大学(北京) 一种窄河道型气藏不同井型凝析油伤害数值模拟方法
CN110454152A (zh) * 2019-08-12 2019-11-15 成都北方石油勘探开发技术有限公司 裂缝性储层非均匀伤害表皮系数计算方法

Also Published As

Publication number Publication date
CN110454152B (zh) 2020-12-01
CN110454152A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
WO2021027180A1 (zh) 一种裂缝性储层非均匀伤害表皮系数计算方法
US7089167B2 (en) Evaluation of reservoir and hydraulic fracture properties in multilayer commingled reservoirs using commingled reservoir production data and production logging information
US9898559B2 (en) Method for predicting changes in properties of a formation in a near-wellbore area exposed to a drilling mud
US7062420B2 (en) Production optimization methodology for multilayer commingled reservoirs using commingled reservoir production performance data and production logging information
CN108894777B (zh) 一种分层压裂多层合采油气藏储层物性及裂缝特性参数的确定方法
US10036219B1 (en) Systems and methods for well control using pressure prediction
CN110043254B (zh) 一种基于电缆地层测试资料地层有效渗透率的获取方法
Suarez et al. Complementing Production Logging with Spectral Noise Analysis to Improve Reservoir Characterisation and Surveillance
Galkin et al. Developing features of the near-bottomhole zones in productive formations at fields with high gas saturation of formation oil
CN116127675A (zh) 一种页岩油水平井体积压裂最大可采储量的预测方法
CN106777649B (zh) 一种裂缝型储集层孔隙结构定量评价方法
CN108920824B (zh) 一种窄河道储层的产量递减分析方法
CN109630104B (zh) 一种用化学示踪剂测试压裂裂缝体积的方法
Craig et al. Permeability, pore pressure, and leakoff-type distributions in Rocky Mountain basins
CN116128084A (zh) 一种致密油藏水平井体积压裂缝网控制储量的预测方法
CN110322363A (zh) 页岩气储层改造体积计算方法及系统
CN116335654B (zh) 一种模拟页岩气特殊机理的压裂水平井产量预测方法
RU2407887C1 (ru) Способ исследования скважины
US20190093477A1 (en) Poromechanical impact on yield behavior in unconventional reservoirs
CN113094864B (zh) 强非均质碳酸盐岩水平井分段设计方法
CN112561223B (zh) 油气井增产潜力的定量评价方法
CN112036048A (zh) 一种基于多因素影响的有水气藏水侵优势通道识别方法
CN114427444A (zh) 一种自喷期采油井的井底压力预测方法
CN110469319A (zh) 一种超深水油田在评价期产能测试的决策方法
RU2807536C1 (ru) Способ оценки изменения проницаемости призабойной зоны пласта

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941314

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19941314

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 19941314

Country of ref document: EP

Kind code of ref document: A1