WO2021027010A1 - 背光模组及显示装置 - Google Patents

背光模组及显示装置 Download PDF

Info

Publication number
WO2021027010A1
WO2021027010A1 PCT/CN2019/106309 CN2019106309W WO2021027010A1 WO 2021027010 A1 WO2021027010 A1 WO 2021027010A1 CN 2019106309 W CN2019106309 W CN 2019106309W WO 2021027010 A1 WO2021027010 A1 WO 2021027010A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
thermoelectric device
light source
backlight module
phase change
Prior art date
Application number
PCT/CN2019/106309
Other languages
English (en)
French (fr)
Inventor
侯伟康
周淼
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Publication of WO2021027010A1 publication Critical patent/WO2021027010A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133628Illuminating devices with cooling means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present disclosure relates to the field of display technology, in particular to a backlight module and a display device.
  • the current thermal management technology cannot efficiently cool the backlight module with a large heat flux density.
  • mechanical refrigeration devices cannot be matched with narrow-frame panels due to their relatively large volume.
  • the heat generated by the light source assembly of the backlight module is easily wasted in the heat dissipation process.
  • the present disclosure provides a backlight module.
  • the backlight module includes a light source assembly, a thermoelectric temperature control structure, and a waste heat recovery structure.
  • the thermoelectric temperature control structure includes a thermoelectric device.
  • the waste heat recovery structure includes a phase change heat storage layer. The cold end of the thermoelectric device is in contact with the light source assembly, and the hot end of the thermoelectric device is in contact with the phase change heat storage layer.
  • the light source assembly includes a light emitting diode light bar.
  • the thermoelectric temperature control structure further includes a first heat conduction layer and a second heat conduction layer disposed oppositely, and the first heat conduction layer is disposed on the cold end and the heat conduction layer of the thermoelectric device. Between the light source components, the cold end of the thermoelectric device is in contact with the light source assembly through the first heat conduction layer, and the second heat conduction layer is disposed on the hot end and the phase of the thermoelectric device. Between the variable heat storage layers and the hot end of the thermoelectric device are in contact with the phase change heat storage layer through the second heat conduction layer.
  • the waste heat recovery structure further includes a wire and an energy storage device connected to the wire, and the wire is connected to the cold end of the thermoelectric device.
  • thermoelectric temperature control structure further includes a power source connected to the wire, and the power source and the energy storage device are connected in parallel on the wire.
  • the thermoelectric device is a ⁇ -type thermoelectric device
  • the ⁇ -type thermoelectric device includes an electrode, an n-type thermoelectric arm and a p-type thermoelectric arm, the n-type thermoelectric arm and the p-type thermoelectric arm
  • the thermoelectric arms are connected in series by the electrodes.
  • thermoelectric device is a bulk thermoelectric device or a thin film thermoelectric device.
  • the phase change heat storage layer includes a phase change heat storage material and a heat transfer material.
  • the backlight module further includes a lower prism sheet, an upper prism sheet and a diffusion sheet which are sequentially arranged on the light source assembly.
  • the present disclosure also provides a display device.
  • the display device includes a backlight module and a panel arranged on the backlight module.
  • the backlight module includes a light source assembly, a thermoelectric temperature control structure, and a waste heat recovery structure.
  • the thermoelectric temperature control structure includes a thermoelectric device.
  • the waste heat recovery structure includes a phase change heat storage layer. The cold end of the thermoelectric device is in contact with the light source assembly, and the hot end of the thermoelectric device is in contact with the phase change heat storage layer.
  • the light source assembly includes a light emitting diode light bar.
  • the thermoelectric temperature control structure further includes a first heat conduction layer and a second heat conduction layer disposed oppositely, and the first heat conduction layer is disposed on the cold end and the heat conduction layer of the thermoelectric device. Between the light source components, the cold end of the thermoelectric device is in contact with the light source assembly through the first heat conduction layer, and the second heat conduction layer is disposed on the hot end and the phase of the thermoelectric device. Between the variable heat storage layers and the hot end of the thermoelectric device are in contact with the phase change heat storage layer through the second heat conduction layer.
  • the waste heat recovery structure further includes a wire and an energy storage device connected to the wire, and the wire is connected to the cold end of the thermoelectric device.
  • thermoelectric temperature control structure further includes a power source connected to the wire, and the power source and the energy storage device are connected in parallel on the wire.
  • the thermoelectric device is a ⁇ -type thermoelectric device
  • the ⁇ -type thermoelectric device includes an electrode, an n-type thermoelectric arm and a p-type thermoelectric arm, the n-type thermoelectric arm and the p-type thermoelectric arm
  • the thermoelectric arms are connected in series by the electrodes.
  • thermoelectric device is a bulk thermoelectric device or a thin film thermoelectric device.
  • the phase change heat storage layer includes a phase change heat storage material and a heat transfer material.
  • the backlight module further includes a lower prism sheet, an upper prism sheet and a diffusion sheet which are sequentially arranged on the light source assembly.
  • the backlight module includes a light source assembly, a thermoelectric temperature control structure, and a waste heat recovery structure.
  • the thermoelectric temperature control structure includes a thermoelectric device.
  • the waste heat recovery structure includes a phase change heat storage layer. The cold end of the thermoelectric device is in contact with the light source assembly, and the hot end of the thermoelectric device is in contact with the phase change heat storage layer, which can achieve precise temperature control and control of the light source assembly of the backlight module. Waste heat recovery and utilization.
  • FIG. 1 shows a schematic structural diagram of a backlight module according to an embodiment of the present disclosure
  • Fig. 2 shows a schematic structural diagram of a thermoelectric device according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic structural diagram of a thermoelectric device according to an embodiment of the present disclosure.
  • FIG. 4 shows a schematic structural diagram of a display device according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a backlight module 100.
  • the backlight module 100 includes a light source assembly 110, a thermoelectric temperature control structure 120 and a waste heat recovery structure 130.
  • the thermoelectric temperature control structure 120 includes a thermoelectric device 122.
  • the waste heat recovery structure 130 includes a phase change heat storage layer 132.
  • the cold end 1222 of the thermoelectric device 122 is in contact with the light source assembly 110, and the hot end 1224 of the thermoelectric device 122 is in contact with the phase change heat storage layer 132.
  • the embodiments of the present disclosure realize precise temperature control and waste heat recovery and utilization of the light source assembly 110 of the backlight module 100.
  • thermoelectric device 122 is a functional device that can realize mutual conversion of electric energy and heat energy.
  • the thermoelectric device 122 does not have a complicated mechanical transmission structure, and does not require the refrigerant required by a traditional refrigeration device, and the thermoelectric device 122 has fast response speed, quiet working process, precise temperature control, environmental friendliness, long service life, and can be applied to thermal management of light-emitting diodes.
  • the thermoelectric device 122 is, for example, a bulk thermoelectric device or a thin film thermoelectric device.
  • thermoelectric device 122 includes thermoelectric materials (room temperature thermoelectric materials such as n-type Bi2Te3, p-type Sb2Te3, n-type Bi2Te2.7Se0.3, p-type Bi0.5Sb1.5Te3 and other p, n single materials or p, n materials Combination), electrode materials (including Cu, Al, Ni materials and their alloy materials) and substrate materials (including ceramic substrates, polyimide substrates, polyethylene terephthalate substrates or polyethylene naphthalate substrates) Ester substrate).
  • thermoelectric materials room temperature thermoelectric materials such as n-type Bi2Te3, p-type Sb2Te3, n-type Bi2Te2.7Se0.3, p-type Bi0.5Sb1.5Te3 and other p, n single materials or p, n materials Combination
  • electrode materials including Cu, Al, Ni materials and their alloy materials
  • substrate materials including ceramic substrates, polyimide substrates, polyethylene terephthalate substrates or polyethylene naphthal
  • the preparation of the bulk thermoelectric device includes preparing the thermoelectric material powder into a bulk material through hot pressing sintering or spark plasma sintering, and assembling the bulk thermoelectric device through packaging processes such as cutting and electrode welding.
  • the preparation of thin-film thermoelectric devices includes preparing materials on a flexible substrate by methods such as vacuum evaporation, magnetron sputtering or screen printing, and then assembling thin-film thermoelectric devices through electrode connection and packaging.
  • the light source assembly 110 includes a light emitting diode light bar 112.
  • the thermoelectric temperature control structure 120 further includes a first heat conduction layer 124 and a second heat conduction layer 126 disposed oppositely, and the first heat conduction layer 124 is disposed on the cold end 1222 of the thermoelectric device 122 and the light source assembly 110 In between, the cold end 1222 of the thermoelectric device 122 is in contact with the light source assembly 110 through the first heat conducting layer 124, and the second heat conducting layer 126 is disposed on the hot end 1224 of the thermoelectric device 122 And the phase change heat storage layer 132 and the hot end 1224 of the thermoelectric device 122 are in contact with the phase change heat storage layer 132 through the second heat conduction layer 126.
  • the material of the first thermal conductive layer 124 and/or the second thermal conductive layer 126 includes thermal conductive silicone grease, alumina thermal conductive rubber or boron nitride thermal conductive rubber.
  • the waste heat recovery structure 130 further includes a wire 134 and an energy storage device 136 connected to the wire 134, and the wire 134 is connected to the cold end 1222 of the thermoelectric device 122 .
  • the thermoelectric temperature control structure 120 further includes a power supply 128 connected to the wire 134, and the power supply 128 and the energy storage device 136 are connected in parallel on the wire 134.
  • the phase change heat storage layer 132 includes a phase change heat storage material and a heat transfer material.
  • the phase change heat storage material is assembled with the enhanced heat transfer material to form the phase change heat storage layer 132.
  • the phase change heat storage material is a new type of chemical material capable of storing thermal energy.
  • the phase change heat storage material undergoes a phase change at a specific temperature (such as a phase change temperature), and absorbs or releases heat to store thermal energy.
  • the phase change heat storage material stores heat or cold, and then releases the heat or cold when needed, thereby improving the utilization rate of energy.
  • the phase change heat storage material includes crystal hydrated salt, molten salt, metal or alloy, paraffin, and fatty acid or other kinds.
  • the thermoelectric device 122 is used in combination with the phase change heat storage layer 132 to achieve temperature control and waste heat recovery of the light source assembly 110 of the backlight module 100.
  • the backlight module 100 further includes a lower prism sheet 140, an upper prism sheet 150, and a diffusion sheet 160 which are sequentially arranged on the light source assembly 110.
  • thermoelectric device 122 is a ⁇ -type thermoelectric device
  • the ⁇ -type thermoelectric device includes an electrode 1225, an n-type thermoelectric arm 1226, and a p-type thermoelectric arm 1227, The n-type thermoelectric arm 1226 and the p-type thermoelectric arm 1227 are connected in series by the electrode 1225.
  • the power generation principle diagram of the ⁇ -type thermoelectric device is shown in FIG. 2.
  • the carriers (electrons) in the n-type thermoelectric arm 1226 and the carriers (holes) in the p-type thermoelectric arm 1227 of the ⁇ -type thermoelectric device will move from the higher temperature end to The low-temperature end migrates directionally, forming a directional current in the loop, which is the power generation principle of the ⁇ -type thermoelectric device.
  • the cooling principle diagram of the ⁇ -type thermoelectric device is shown in FIG. 3. When the current in the direction shown in FIG.
  • thermoelectric arm 1226 3 is applied to the ⁇ -type thermoelectric device, due to the Peltier effect (Peltier effect). effect), the carriers (electrons) in the n-type thermoelectric arm 1226 and the carriers (holes) in the p-type thermoelectric arm 1227 will be removed from the n-type thermoelectric arm under the action of an external electric field 1226 and the lower end of the p-type thermoelectric arm 1227 respectively migrate toward the upper end, carry the heat of the lower end of the n-type thermoelectric arm 1226 and the p-type thermoelectric arm 1227, and input the heat to the n-type thermoelectric arm 1226 And the upper end of the p-type thermoelectric arm 1227, which is the cooling principle of the ⁇ -type thermoelectric device.
  • Peltier effect Peltier effect
  • the present disclosure also provides a display device 20.
  • the display device 20 includes the backlight module 10 as described above and the panel 22 arranged on the backlight module 100.
  • the display device 20 is, for example, a liquid crystal display device.
  • the backlight module 100 utilizes the cooling and thermoelectric power generation properties of the thermoelectric device 122, and introduces the phase change heat storage layer 132 to achieve all the advantages of the backlight module 100
  • the heat dissipation and waste heat recovery of the light source assembly 110 are converted into electric energy.
  • the cold end 1222 of the thermoelectric device 122 is in contact with the light source assembly 110 through the first heat conduction layer 124, and the hot end 1224 of the thermoelectric device 122 is in contact with the phase through the second heat conduction layer 126.
  • the variable heat storage layer 132 is in contact.
  • the display device 20 starts to work, the light source assembly 110 generates heat, the power supply 128 is turned on, the thermoelectric device 122 starts to work, and the heat of the light source assembly 110 is actively taken to the thermoelectric device 122
  • the hot end 1224 is conducted by the second heat conduction layer 126 to the phase change heat storage layer 132.
  • the material of the phase change heat storage layer 132 undergoes a solid-solid or solid-liquid transition after being heated.
  • the heat of the light source assembly 110 is stored while taking away the heat of the hot end 1224 of the thermoelectric device 122.
  • the thermoelectric device 122 continuously transports the heat of the light source assembly 110 to the phase change heat storage ⁇ 132. By controlling the input power of the thermoelectric device 122, precise temperature control of the light source assembly 110 of the backlight module 100 can be achieved.
  • thermoelectric device 122 is connected to the energy storage device 136 (for example, a battery), and the energy storage device 136 can be connected to the thin film transistor driving circuit 222 of the panel 22 through a voltage conversion device.
  • the energy storage device 136 for example, a battery
  • the light source assembly 110 is turned off, and the material of the phase change heat storage layer 132 undergoes a solid-solid or liquid-solid phase transition, releasing heat.
  • thermoelectric device 122 Generates a temperature difference
  • the thermoelectric device 122 generates current due to the Seebeck effect
  • the output electric energy of the thermoelectric device 122 is stored in the energy storage device 136
  • the energy storage device 136 is connected to the thin film transistor driving circuit 222
  • the electrical energy stored by the energy storage device 136 is provided to the display device 20 for use, and the display device 20 can be used for circuit driving when the display device 20 is working.
  • the waste heat recovery structure 130 further includes a wire 134 and an energy storage device 136 connected to the wire 134, and the wire 134 is connected to the cold end 1222 of the thermoelectric device 122 .
  • the thermoelectric temperature control structure 120 further includes a power supply 128 connected to the wire 134, and the power supply 128 and the energy storage device 136 are connected in parallel on the wire 134.
  • the embodiment of the present disclosure adopts the thermoelectric device 122 with excellent active heat dissipation performance and the function of converting waste heat into electric energy.
  • the backlight module 100 is The precise temperature control and waste heat recovery and utilization of the light source assembly 110.
  • the backlight module 100 utilizes the Peltier effect of the thermoelectric device 122 to accurately control the temperature of the light source assembly 110, and at the same time uses the phase change heat storage layer 132 to store the heat of the light source assembly 110,
  • the Seebeck effect of the thermoelectric device 122 is used to convert the stored thermal energy into electrical energy for use by the thin film transistor driving circuit 222, which realizes the recycling of energy, reduces energy consumption, and efficiently improves energy utilization.
  • the backlight module includes a light source assembly, a thermoelectric temperature control structure, and a waste heat recovery structure.
  • the thermoelectric temperature control structure includes a thermoelectric device.
  • the waste heat recovery structure includes a phase change heat storage layer. The cold end of the thermoelectric device is in contact with the light source assembly, and the hot end of the thermoelectric device is in contact with the phase change heat storage layer, which can achieve precise temperature control and control of the light source assembly of the backlight module. Waste heat recovery and utilization.

Abstract

一种背光模组(100)及显示装置(20)。背光模组(100)包括光源组件(110)、热电控温结构(120)以及余热回收结构(130)。热电控温结构(120)包括热电器件(122)。余热回收结构(130)包括相变蓄热层(132)。热电器件(122)的冷端(1222)和光源组件(110)接触,以及热电器件(122)的热端(1224)和相变蓄热层(132)接触,能够实现对背光模组(100)的光源组件(110)的精确控温与余热回收利用。

Description

背光模组及显示装置 技术领域
本揭示涉及显示技术领域,特别涉及一种背光模组及显示装置。
背景技术
目前热管理技术,例如自然冷却、风力冷却、液体冷却(包括油冷和水冷)等对流散热的冷却方式,由于这些冷却方式的散热效率一般,不能高效冷却热流密度较大的背光模组。对于采用压缩机来进行制冷的目前机械制冷装置,由于本身的体积比较大,无法与窄边框面板匹配。另外,所述背光模组的光源组件产生的热量容易在散热过程中被浪费。
故,有需要提供一种背光模组及显示装置,以解决现有技术存在的问题。
技术问题
目前热管理技术不能高效冷却热流密度较大的背光模组。目前机械制冷装置,由于本身的体积比较大,无法与窄边框面板匹配。另外,所述背光模组的光源组件产生的热量容易在散热过程中被浪费。
技术解决方案
为解决上述技术问题,本揭示提供背光模组。所述背光模组包括光源组件、热电控温结构以及余热回收结构。所述热电控温结构包括热电器件。所述余热回收结构包括相变蓄热层。所述热电器件的冷端和所述光源组件接触,以及所述热电器件的热端和所述相变蓄热层接触。
于本揭示其中的一实施例中,所述光源组件包括发光二极管灯条。
于本揭示其中的一实施例中,所述热电控温结构还包括相对设置的第一导热层和第二导热层,所述第一导热层设置于所述热电器件的所述冷端和所述光源组件之间,所述热电器件的所述冷端通过所述第一导热层和所述光源组件接触,所述第二导热层设置于所述热电器件的所述热端和所述相变蓄热层之间,以及所述热电器件的所述热端通过所述第二导热层和所述相变蓄热层接触。
于本揭示其中的一实施例中,所述余热回收结构还包括导线和与所述导线连接的储能器件,所述导线和所述热电器件的所述冷端连接。
于本揭示其中的一实施例中,所述热电控温结构还包括与所述导线连接的电源,所述电源和所述储能器件在所述导线上并联连接。
于本揭示其中的一实施例中,所述热电器件是π型热电器件,所述π型热电器件包括电极、n型热电臂和p型热电臂,所述n型热电臂和所述p型热电臂由所述电极串联连接。
于本揭示其中的一实施例中,所述热电器件是块体热电器件或薄膜热电器件。
于本揭示其中的一实施例中,所述相变蓄热层包括相变蓄热材料和传热材料。
于本揭示其中的一实施例中,所述背光模组还包括依次设置在所述光源组件上的下棱镜片、上棱镜片和扩散片。
本揭示还提供显示装置。所述显示装置括背光模组以及设置在所述背光模组上的面板。所述背光模组包括光源组件、热电控温结构以及余热回收结构。所述热电控温结构包括热电器件。所述余热回收结构包括相变蓄热层。所述热电器件的冷端和所述光源组件接触,以及所述热电器件的热端和所述相变蓄热层接触。
于本揭示其中的一实施例中,所述光源组件包括发光二极管灯条。
于本揭示其中的一实施例中,所述热电控温结构还包括相对设置的第一导热层和第二导热层,所述第一导热层设置于所述热电器件的所述冷端和所述光源组件之间,所述热电器件的所述冷端通过所述第一导热层和所述光源组件接触,所述第二导热层设置于所述热电器件的所述热端和所述相变蓄热层之间,以及所述热电器件的所述热端通过所述第二导热层和所述相变蓄热层接触。
于本揭示其中的一实施例中,所述余热回收结构还包括导线和与所述导线连接的储能器件,所述导线和所述热电器件的所述冷端连接。
于本揭示其中的一实施例中,所述热电控温结构还包括与所述导线连接的电源,所述电源和所述储能器件在所述导线上并联连接。
于本揭示其中的一实施例中,所述热电器件是π型热电器件,所述π型热电器件包括电极、n型热电臂和p型热电臂,所述n型热电臂和所述p型热电臂由所述电极串联连接。
于本揭示其中的一实施例中,所述热电器件是块体热电器件或薄膜热电器件。
于本揭示其中的一实施例中,所述相变蓄热层包括相变蓄热材料和传热材料。
于本揭示其中的一实施例中,所述背光模组还包括依次设置在所述光源组件上的下棱镜片、上棱镜片和扩散片。
有益效果
相较于现有技术,为解决上述技术问题,本揭示的实施例的所述背光模组及所述显示装置中,所述背光模组包括光源组件、热电控温结构以及余热回收结构。所述热电控温结构包括热电器件。所述余热回收结构包括相变蓄热层。所述热电器件的冷端和所述光源组件接触,以及所述热电器件的热端和所述相变蓄热层接触,能够实现对所述背光模组的所述光源组件的精确控温与余热回收利用。
附图说明
图1显示根据本揭示的一实施例的背光模组的结构示意图;
图2显示根据本揭示的一实施例的热电器件的结构示意图;
图3显示根据本揭示的一实施例的热电器件的结构示意图;以及
图4显示根据本揭示的一实施例的显示装置的结构示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本揭示可用以实施的特定实施例。
为了让本揭示的上述及其他目的、特征、优点能更明显易懂,下文将特举本揭示优选实施例,并配合所附图式,作详细说明如下。再者,本揭示所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧层、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。
在图中,结构相似的单元是以相同标号表示。
参照图1,本揭示的一实施例提供一背光模组100。所述背光模组100包括光源组件110、热电控温结构120以及余热回收结构130。所述热电控温结构120包括热电器件122。所述余热回收结构130包括相变蓄热层132。所述热电器件122的冷端1222和所述光源组件110接触,以及所述热电器件122的热端1224和所述相变蓄热层132接触。本揭示的实施例实现对所述背光模组100的所述光源组件110的精确控温与余热回收利用。
具体地,所述热电器件122是一种可以实现电能与热能相互转化的功能性器件,所述热电器件122没有复杂的机械传动结构,无需传统制冷装置所需的制冷剂,并且所述热电器件122的响应速度快,工作过程安静无噪音,温度控制精确,对环境友好,使用寿命长,可应用于发光二极管的热管理。具体地,所述热电器件122例如是块体热电器件或薄膜热电器件。所述热电器件122的材料包括热电材料(室温热电材料如n型Bi2Te3、p型Sb2Te3、n型Bi2Te2.7Se0.3、p型Bi0.5Sb1.5Te3等p, n单种材料或者p, n材料组合)、电极材料(包括Cu、Al、Ni材料及其合金材料)和基板材料(包括陶瓷基板、聚酰亚胺基板、聚对苯二甲酸乙二醇酯基板或聚萘二甲酸乙二醇酯基板)。具体地,块体热电器件的制备包括将热电材料粉末通过热压烧结或者放电等离子体烧结制备成块体材料,通过切割、电极焊接等封装工艺组装成块体热电器件。薄膜热电器件的制备包括通过真空蒸镀、磁控溅射或丝网印刷等方法将材料制备在柔性基板上,通过电极连接与封装后组装成薄膜热电器件。
于本揭示其中的一实施例中,所述光源组件110包括发光二极管灯条112。所述热电控温结构120还包括相对设置的第一导热层124和第二导热层126,所述第一导热层124设置于所述热电器件122的所述冷端1222和所述光源组件110之间,所述热电器件122的所述冷端1222通过所述第一导热层124和所述光源组件110接触,所述第二导热层126设置于所述热电器件122的所述热端1224和所述相变蓄热层132之间,以及所述热电器件122的所述热端1224通过所述第二导热层126和所述相变蓄热层132接触。具体地,所述第一导热层124和/或第二导热层126的材料包括导热硅脂、氧化铝导热橡胶或氮化硼导热橡胶。
于本揭示其中的一实施例中,所述余热回收结构130还包括导线134和与所述导线134连接的储能器件136,所述导线134和所述热电器件122的所述冷端1222连接。所述热电控温结构120还包括与所述导线134连接的电源128,所述电源128和所述储能器件136在所述导线134上并联连接。
具体地,所述相变蓄热层132包括相变蓄热材料和传热材料。相变蓄热材料通过与强化传热材料组装成所述相变蓄热层132。所述相变蓄热材料是一种能够储存热能的新型化学材料。所述相变蓄热材料在特定的温度(如相变温度)下发生物相变化,并伴随着吸收或放出热量,用以储存热能。所述相变蓄热材料把热量或冷量储存起来,在需要时再把热量或冷量释放出来,从而提高了能源的利用率。具体地,相变蓄热材料包括结晶水合盐、熔融盐、金属或合金、石蜡、和脂肪酸或其他种类。本揭示的实施例中将所述热电器件122与所述相变蓄热层132组合使用,实现对所述背光模组100的所述光源组件110的控温与余热回收。
于本揭示其中的一实施例中,所述背光模组100还包括依次设置在所述光源组件110上的下棱镜片140、上棱镜片150和扩散片160。
参照图2和图3,于本揭示其中的一实施例中,所述热电器件122是π型热电器件,所述π型热电器件包括电极1225、n型热电臂1226和p型热电臂1227,所述n型热电臂1226和所述p型热电臂1227由所述电极1225串联连接。
于本揭示其中的一实施例中,所述π型热电器件的发电原理图如图2所示,当所述π型热电器件的两端存在温差时,由于塞贝克效应(Seebeck effect),所述π型热电器件的所述n型热电臂1226中的载流子(电子)和所述p型热电臂1227中的载流子(空穴),将从温度高的一端向温度低的一端定向迁移,回路中形成定向电流,这是所述π型热电器件的发电原理。所述π型热电器件的制冷原理图如图3所示,当对所述π型热电器件通入如图3所示方向的电流时,由于帕尔帖效应(Peltier effect),所述n型热电臂1226中的载流子(电子)和所述p型热电臂1227中的载流子(空穴)在外加电场的作用下,将从所述n型热电臂1226和所述p型热电臂1227的下一端分别向上一端定向迁移,携带所述n型热电臂1226和所述p型热电臂1227的下端热量,并将热量输入到所述n型热电臂1226和所述p型热电臂1227的的上端,这是所述π型热电器件的制冷原理。
参照图4,本揭示还提供一显示装置20。所述显示装置20包括如上所述的背光模组10以及设置在所述背光模组100上的面板22。所述显示装置20例如是液晶显示装置。
于本揭示其中的一实施例中,所述背光模组100利用所述热电器件122制冷与温差发电性质,并引入所述相变蓄热层132,以达到对所述背光模组100的所述光源组件110的散热与余热回收转化为电能。
所述热电器件122的所述冷端1222通过所述第一导热层124和所述光源组件110接触,所述热电器件122的所述热端1224通过所述第二导热层126与所述相变蓄热层132接触。当所述显示装置20开始工作时,所述光源组件110产生热量,接通所述电源128,所述热电器件122开始工作,所述光源组件110的热量被主动带到所述热电器件122的所述热端1224,并由所述第二导热层126传导至所述相变蓄热层132,所述相变蓄热层132的材料受热后发生固-固或固-液相变将所述光源组件110的热量储存起来,同时带走所述热电器件122的所述热端1224的热量,所述热电器件122源源不断将所述光源组件110的热量输运至所述相变蓄热层132。通过控制所述热电器件122的输入功率可实现对所述背光模组100的所述光源组件110的精确温度控制。
所述热电器件122连接所述储能器件136(例如电池),所述储能器件136可以通过电压转换装置和所述面板22的薄膜晶体管驱动电路222连接。当所述面板22关闭时,所述光源组件110关闭,所述相变蓄热层132的材料发生固-固或液-固相变,释放热量,此时,所述热电器件122的两端产生温差,所述热电器件122由于塞贝克效应产生电流,所述热电器件122的输出电能储存在所述储能器件136中,所述储能器件136连接所述薄膜晶体管驱动电路222,所述储能器件136储存的所述电能能提供给所述显示装置20使用,所述显示装置20工作时可用于电路驱动。
于本揭示其中的一实施例中,所述余热回收结构130还包括导线134和与所述导线134连接的储能器件136,所述导线134和所述热电器件122的所述冷端1222连接。所述热电控温结构120还包括与所述导线134连接的电源128,所述电源128和所述储能器件136在所述导线134上并联连接。
综上所述,本揭示的实施例采用具有优异主动散热性能与余热转化电能功能的所述热电器件122,通过与所述相变蓄热层132配合使用,实现对所述背光模组100的所述光源组件110的精确控温与余热回收利用。所述背光模组100利用所述热电器件122的帕尔帖效应实现对所述光源组件110的精确控温,同时利用所述相变蓄热层132将所述光源组件110的热量储存起来,利用所述热电器件122的塞贝克效应将储存的热能转化为电能,供所述薄膜晶体管驱动电路222使用,实现了能源的循环利用,降低了能耗,高效提高了能源利用率。
由于本揭示的实施例中的所述背光模组及所述显示装置中,所述背光模组包括光源组件、热电控温结构以及余热回收结构。所述热电控温结构包括热电器件。所述余热回收结构包括相变蓄热层。所述热电器件的冷端和所述光源组件接触,以及所述热电器件的热端和所述相变蓄热层接触,能够实现对所述背光模组的所述光源组件的精确控温与余热回收利用。
尽管已经相对于一个或多个实现方式示出并描述了本揭示,但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本揭示包括所有这样的修改和变型,并且仅由所附权利要求的范围限制。特别地关于由上述组件执行的各种功能,用于描述这样的组件的术语旨在对应于执行所述组件的指定功能(例如其在功能上是等价的)的任意组件(除非另外指示),即使在结构上与执行本文所示的本说明书的示范性实现方式中的功能的公开结构不等同。此外,尽管本说明书的特定特征已经相对于若干实现方式中的仅一个被公开,但是这种特征可以与如可以对给定或特定应用而言是期望和有利的其他实现方式的一个或多个其他特征组合。而且,就术语“包括”、“具有”、“含有”或其变形被用在具体实施方式或权利要求中而言,这样的术语旨在以与术语“包含”相似的方式包括。
以上仅是本揭示的优选实施方式,应当指出,对于本领域普通技术人员,在不脱离本揭示原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本揭示的保护范围。

Claims (18)

  1. 一种背光模组,包括:
    光源组件;
    热电控温结构,包括热电器件;以及
    余热回收结构,包括相变蓄热层,其中所述热电器件的冷端和所述光源组件接触,以及所述热电器件的热端和所述相变蓄热层接触。
  2. 如权利要求1所述的背光模组,其中所述光源组件包括发光二极管灯条。
  3. 如权利要求1所述的背光模组,其中所述热电控温结构还包括相对设置的第一导热层和第二导热层,所述第一导热层设置于所述热电器件的所述冷端和所述光源组件之间,所述热电器件的所述冷端通过所述第一导热层和所述光源组件接触,所述第二导热层设置于所述热电器件的所述热端和所述相变蓄热层之间,以及所述热电器件的所述热端通过所述第二导热层和所述相变蓄热层接触。
  4. 如权利要求1所述的背光模组,其中所述余热回收结构还包括导线和与所述导线连接的储能器件,所述导线和所述热电器件的所述冷端连接。
  5. 如权利要求4所述的背光模组,其中所述热电控温结构还包括与所述导线连接的电源,所述电源和所述储能器件在所述导线上并联连接。
  6. 如权利要求1所述的背光模组,其中所述热电器件是π型热电器件,所述π型热电器件包括电极、n型热电臂和p型热电臂,所述n型热电臂和所述p型热电臂由所述电极串联连接。
  7. 如权利要1所述的背光模组,其中所述热电器件是块体热电器件或薄膜热电器件。
  8. 如权利要求1所述的背光模组,其中所述相变蓄热层包括相变蓄热材料和传热材料。
  9. 如权利要求1所述的背光模组,还包括依次设置在所述光源组件上的下棱镜片、上棱镜片和扩散片。
  10.     一种显示装置,包括:
    背光模组;以及
    面板,设置在所述背光模组上;
    其中所述背光模组包括:
    光源组件;
    热电控温结构,包括热电器件;以及
    余热回收结构,包括相变蓄热层,其中所述热电器件的冷端和所述光源组件接触,以及所述热电器件的热端和所述相变蓄热层接触。
  11.      如权利要求10 所述的显示装置,其中所述光源组件包括发光二极管灯条。
  12.     如权利要求10所述的显示装置,其中所述热电控温结构还包括相对设置的第一导热层和第二导热层,所述第一导热层设置于所述热电器件的所述冷端和所述光源组件之间,所述热电器件的所述冷端通过所述第一导热层和所述光源组件接触,所述第二导热层设置于所述热电器件的所述热端和所述相变蓄热层之间,以及所述热电器件的所述热端通过所述第二导热层和所述相变蓄热层接触。
  13.     如权利要求10所述的显示装置,其中所述余热回收结构还包括导线和与所述导线连接的储能器件,所述导线和所述热电器件的所述冷端连接。
  14.     如权利要求13所述的显示装置,其中所述热电控温结构还包括与所述导线连接的电源,所述电源和所述储能器件在所述导线上并联连接。
  15.     如权利要求10所述的显示装置,其中所述热电器件是π型热电器件,所述π型热电器件包括电极、n型热电臂和p型热电臂,所述n型热电臂和所述p型热电臂由所述电极串联连接。
  16.     如权利要10所述的显示装置,其中所述热电器件是块体热电器件或薄膜热电器件。
  17.     如权利要求10所述的显示装置,其中所述相变蓄热层包括相变蓄热材料和传热材料。
  18.     如权利要求10所述的显示装置,其中所述背光模组还包括依次设置在所述光源组件上的下棱镜片、上棱镜片和扩散片。
PCT/CN2019/106309 2019-08-14 2019-09-18 背光模组及显示装置 WO2021027010A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910746854.7A CN110501831B (zh) 2019-08-14 2019-08-14 背光模组及显示装置
CN201910746854.7 2019-08-14

Publications (1)

Publication Number Publication Date
WO2021027010A1 true WO2021027010A1 (zh) 2021-02-18

Family

ID=68587362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106309 WO2021027010A1 (zh) 2019-08-14 2019-09-18 背光模组及显示装置

Country Status (2)

Country Link
CN (1) CN110501831B (zh)
WO (1) WO2021027010A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113514978B (zh) * 2021-06-30 2022-12-23 惠科股份有限公司 显示面板及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192174A (ja) * 2009-02-17 2010-09-02 Sharp Corp 照明装置および液晶表示装置
CN103311196A (zh) * 2013-06-04 2013-09-18 江苏大学 基于热电制冷器的高密度集成微纳光电子芯片散热装置
CN106128300A (zh) * 2015-05-07 2016-11-16 三星电子株式会社 显示设备
CN106150629A (zh) * 2016-06-30 2016-11-23 上海第二工业大学 一种利用相变材料储热功能提高热电发电效率的系统
CN108873479A (zh) * 2018-07-27 2018-11-23 京东方科技集团股份有限公司 背光模组及液晶显示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101290664B1 (ko) * 2010-03-18 2013-07-30 광운대학교 산학협력단 열전소자를 이용한 엘이디 백라이트 유닛
CN102544301B (zh) * 2010-12-16 2014-05-07 中芯国际集成电路制造(北京)有限公司 Led封装结构
CN202546687U (zh) * 2012-05-09 2012-11-21 京东方科技集团股份有限公司 Led灯条散热装置、背光模组及显示器件
TWI481086B (zh) * 2012-09-19 2015-04-11 Nat Inst Chung Shan Science & Technology 一種用於電子元件的散熱裝置
US9587872B2 (en) * 2012-12-03 2017-03-07 Whirlpool Corporation Refrigerator with thermoelectric device control process for an icemaker
CN104565946B (zh) * 2015-01-19 2017-01-25 华南理工大学 一种基于复合相变储能材料散热的大功率led灯具
CN204534496U (zh) * 2015-03-05 2015-08-05 广州市香港科大霍英东研究院 一种可利用余热的led散热装置
CN105070820A (zh) * 2015-08-02 2015-11-18 杜效中 一种将冷端和热端分离的新型薄膜热电半导体器件制作方法
CN108281541A (zh) * 2018-02-08 2018-07-13 南方科技大学 可预成型的热电器件及制备方法
CN109524496A (zh) * 2018-11-22 2019-03-26 北京临近空间飞行器系统工程研究所 一种基于储能温差发电的全时太阳能电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192174A (ja) * 2009-02-17 2010-09-02 Sharp Corp 照明装置および液晶表示装置
CN103311196A (zh) * 2013-06-04 2013-09-18 江苏大学 基于热电制冷器的高密度集成微纳光电子芯片散热装置
CN106128300A (zh) * 2015-05-07 2016-11-16 三星电子株式会社 显示设备
CN106150629A (zh) * 2016-06-30 2016-11-23 上海第二工业大学 一种利用相变材料储热功能提高热电发电效率的系统
CN108873479A (zh) * 2018-07-27 2018-11-23 京东方科技集团股份有限公司 背光模组及液晶显示装置

Also Published As

Publication number Publication date
CN110501831A (zh) 2019-11-26
CN110501831B (zh) 2021-01-15

Similar Documents

Publication Publication Date Title
US6620994B2 (en) Thermoelectric generators
WO2014119467A1 (ja) 熱電発電モジュール
US20130174580A1 (en) Household System with Multiple Peltier Systems
US20120305044A1 (en) Thermal transfer and power generation systems, devices and methods of making the same
CN110931439A (zh) 一种电子设备散热器
CN109524496A (zh) 一种基于储能温差发电的全时太阳能电池
TWI620354B (zh) 具有絕緣性之類鑽石膜層的熱電轉換元件及其製造方法暨熱電轉換模組
CN110247087B (zh) 一种碱性燃料电池-温差热电制冷混合装置
WO2021027010A1 (zh) 背光模组及显示装置
KR20120018245A (ko) 열전필름 제조방법
CN103489948B (zh) 具有光冷/光热转换功能的半导体元器件
CN111025747B (zh) 一种背光模组及其制备方法
CN110165245B (zh) 基于半导体材料和相变材料的燃料电池热管理方法及系统
CN103311196A (zh) 基于热电制冷器的高密度集成微纳光电子芯片散热装置
CN207117506U (zh) 一种层叠式的热能电能转换模组及其发电装置
CN113555492B (zh) 一种电子余热收集装置及其控制方法
CN115913059A (zh) 一种光伏热电耦合柔性发电装置
US11262616B2 (en) Backlight module and manufacturing method thereof
Szobolovszky et al. Waste heat recovery in solid-state lighting based on thin film thermoelectric generators
CN202888236U (zh) 一种高效散热的大功率led
CN202868631U (zh) Led灯组的散热装置
CN202868632U (zh) Led灯组用的散热装置
CN216389396U (zh) 一种具有光伏发电和温差发电功能的装置
KR200322613Y1 (ko) 열전소자를 이용한 냉각 및 발전장치
CN112902491B (zh) 一种光致热电子与光子协同发射制冷的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941658

Country of ref document: EP

Kind code of ref document: A1