WO2021026968A1 - Z箍缩驱动聚变点火靶与聚变能源靶负载及输送系统 - Google Patents

Z箍缩驱动聚变点火靶与聚变能源靶负载及输送系统 Download PDF

Info

Publication number
WO2021026968A1
WO2021026968A1 PCT/CN2019/103189 CN2019103189W WO2021026968A1 WO 2021026968 A1 WO2021026968 A1 WO 2021026968A1 CN 2019103189 W CN2019103189 W CN 2019103189W WO 2021026968 A1 WO2021026968 A1 WO 2021026968A1
Authority
WO
WIPO (PCT)
Prior art keywords
fusion
target
pinch
solid sleeve
anode
Prior art date
Application number
PCT/CN2019/103189
Other languages
English (en)
French (fr)
Inventor
刘盼
邓建军
彭先觉
曾中明
Original Assignee
中国工程物理研究院流体物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国工程物理研究院流体物理研究所 filed Critical 中国工程物理研究院流体物理研究所
Publication of WO2021026968A1 publication Critical patent/WO2021026968A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/19Targets for producing thermonuclear fusion reactions, e.g. pellets for irradiation by laser or charged particle beams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the invention relates to the technical fields of nuclear physics and nuclear engineering, in particular to a Z-pinch drive fusion ignition target and a fusion energy target load and delivery system.
  • the solid sleeve is an important configuration for studying Z-pinch plasma physics in recent years.
  • the Z-pinch of the solid sleeve configuration is a very strong pulsed plasma X-ray source that can be obtained in the laboratory, and at the same time it has relatively high efficiency. This makes it widely used in the research of high energy density physical problems such as inertial confinement fusion (ICF), radiation effects, radiation transport and material opacity, and laboratory astrophysics.
  • ICF inertial confinement fusion
  • the plasma was confined by an angular magnetic field to achieve higher temperatures and densities, such as the early linear Z-pinch; cylinder Z-pinch and jet Z-pinch were both in the 1970s. Since the configuration proposed at the end of the decade, the research on Z pinch has turned to the implosion configuration, that is, after the angular magnetic field is used to drive the plasma to a higher kinetic energy, the collision at the axis will heat the kinetic energy into internal Yes, in order to achieve higher plasma temperature and density.
  • the angular magnetic field that drives the plasma implosion comes from the large current supplied to the plasma by the pulsed power device.
  • thermonuclear fuel deuterium-tritium ice
  • the invention provides a Z-pinch-driven fusion ignition target and a fusion energy target load and delivery system that solves the above problems.
  • the Z-pinch-driven fusion ignition target and the fusion energy target load include a solid sleeve, the solid sleeve includes its own metal layer, and also includes an insulating layer covering the metal layer.
  • the invention adds an insulating layer on the surface of the metal layer, so that a certain degree of insulation can be maintained before the current rises.
  • the insulating layer structure is better than a pure metal layer in resisting shear stress caused by wrinkles.
  • the insulating layer covers the inner surface and/or the outer surface of the metal layer.
  • the thickness of the metal layer is 2 ⁇ m to 20 ⁇ m, and the thickness of the insulating layer is 100 nm to 500 nm.
  • the height of the solid sleeve is 1 cm to 2 cm; the outer diameter of the solid sleeve is 1 cm to 10 cm.
  • the metal layer is made of metal material M and its alloy materials;
  • the types of M include Be, Mg, Ca, Sr, Ba, Ra, Al, Ga, In, Tl, Pb, Bi, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Py, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Any one of Cf, Es, Fm, Md, No, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg; the alloy is any two or more of the above M types .
  • the preparation materials of the insulating layer include ceramic materials, glass materials, composite materials and mixed materials.
  • the mixed material is formed by mixing composite materials with ceramic materials and/or glass materials.
  • composite material adopts high molecular polymer.
  • Composite materials mainly use high-molecular polymers with insulating properties, for example, hydrocarbon polymer foam (such as polystyrene), hydrocarbon polymer foam (such as polyethylene terephthalate), polycarbonate, polyester, Polymethyl methacrylate, polyacetamide, etc.
  • the ceramic materials include M-Al-O ternary system, Al-O-X ternary system and M-Al-O-X quaternary system ceramic materials;
  • M includes Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Hg, Ga, In, Tl, Pb, Bi, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Py, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, Any one of No, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg;
  • X includes any one of H, B, C, Si, Ge, N, P, As, Sb, S, Se, Te, Po, F, Cl, Br, I, and At.
  • the glass material includes M-Si-O ternary system, Si-O-X ternary system and M-Si-O-X quaternary system ceramic materials;
  • M includes Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al, Hg, Ga, In, Tl, Pb, Bi, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Py, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Any one of Md, No, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg;
  • X includes any one of H, B, C, Ge, N, P, As, Sb, S, Se, Te, Po, F, Cl, Br, I, and At.
  • the type of element (M or X) is selected to obtain insulating materials.
  • the metal layer covered with the insulating layer is mechanically rolled into a cylindrical configuration of a solid sleeve, and the gap is encapsulated by adhesive glue or laser welding.
  • the method for preparing the Z-pinch-driven fusion ignition target and the fusion energy target load, the method for covering the insulating layer on the metal layer includes electrochemical deposition, electroless deposition, sol-gel method, chemical vapor deposition, magnetron sputtering Radiation, atomic deposition method.
  • the electrochemical deposition method is to mix the insulating layer material with chemical solutions of different concentrations according to actual requirements, and apply a potential to make it adhere to the metal layer.
  • the electroless deposition method is to mix the insulating layer material with chemical solutions of different concentrations according to actual requirements, and make it adhere to the metal layer through a chemical reaction.
  • the sol-gel method is to dissolve the insulating layer material into the colloid, and then attach it to the metal layer through the gel.
  • the chemical vapor deposition is to convert the insulating layer material into a vapor phase method, and deposit on the metal layer through a controlled rate method.
  • the magnetron sputtering and atomic deposition are common methods for depositing materials, and the insulating material is deposited on the metal layer by controlling the sputtering (deposition) power, temperature, and rate.
  • the Z-pinch drive fusion ignition target and fusion energy target delivery system includes an anode unit, a cathode unit and the above solid sleeve.
  • the output end of the anode unit is electrically connected to one end of the solid sleeve, and the solid sleeve is used to connect with the cathode unit
  • the input terminal is connected.
  • the anode unit of the present invention is mainly the sink end of the current, which is used to connect the solid sleeve and the high-current driver; the cathode unit is the current output end.
  • the anode unit includes an anode upper end member and support rods distributed at both ends of the anode upper end member.
  • the upper end of the support rod is connected with the anode upper end member and the lower end is connected with the anode conductive part.
  • the anode upper end member is connected to the support rods on both sides. Inverted U-shaped structure;
  • the cathode unit includes a cathode member, the cathode member is arranged under the anode upper end member, the solid sleeve is arranged between the anode upper end member and the cathode member, the top end of the solid sleeve is connected to the anode upper end member, and the bottom end is connected to the cathode Component connection.
  • the function of the support rod of the present invention is to connect the upper end member of the anode and the anode conductive part on the one hand; on the other hand, it is used to support the solid sleeve, reduce the load of the solid sleeve, and protect the solid sleeve.
  • the opposite plate surfaces of the anode upper end member and the cathode member are provided with sleeve grooves, and the axial ends of the solid sleeve are respectively inserted into the sleeve grooves and connected.
  • Modern numerical control precision machining technology can be used to obtain the socket groove of the above precise size; after the solid sleeve is inserted into the socket groove, it can be connected by adhesive glue or laser welding.
  • the Z-pinch-driven fusion ignition target and fusion energy target load and delivery system provided by the present invention is aimed at the "local integral ignition” target, and can realize the load of two-dimensional quasi-spherical symmetric compression of deuterium-tritium fuel.
  • the metal thin sleeve Compared with the wire array, the metal thin sleeve The density and uniformity of the implosion plasma sleeve can be improved, and the appearance of precursor plasma and precursor current can be avoided, thereby improving energy utilization efficiency; at the same time, compared with the traditional solid thick sleeve, the metal sleeve of the present invention has a higher internal
  • the explosion speed and the requirements for the ultra-large pulse power device that are easier to implement, the load or transportation system can be connected to 1MA ⁇ 60MA different high current drives for experiments. The specific advantages are as follows:
  • the present invention is beneficial to inhibit the development of the seeds of electrothermal instability in the early stage of the Z-pinch plasma, so as to inhibit the development of the later stage of the magnetic Rayleigh-Taylor instability, so that the quality of the solid sleeve implosion is better, which conforms to the "local integral ignition" "Target" is within the scope of its anti-eccentricity;
  • the present invention is beneficial to improve the density and uniformity of Z-pinch plasma, avoid the appearance of precursor plasma and precursor current, and thereby improve energy utilization efficiency;
  • the present invention facilitates the realization of two-dimensional quasi-spherical symmetric compression of deuterium-tritium fuel, which can efficiently convert the kinetic energy of the implosion plasma sleeve into radiation energy, and at the same time avoid the instability (or unevenness) of the sleeve implosion to compress the target pellet The influence of symmetry and mid-wave instability.
  • Figure 1 is a schematic diagram of the unfolded planar structure of Configuration I of the present invention.
  • FIG. 2 is a schematic diagram of the expanded three-dimensional structure of Configuration I of the present invention.
  • FIG. 3 is a scanning electron microscope image of Configuration I of the present invention.
  • FIG. 4 is a schematic diagram of the unfolded planar structure of Configuration II of the present invention.
  • FIG. 5 is a schematic diagram of the unfolded three-dimensional structure of Configuration II of the present invention.
  • FIG. 6 is a schematic diagram of the three-dimensional structure of Configuration II of the present invention.
  • Figure 7 is a schematic diagram of the structure of the delivery system of the present invention.
  • This embodiment provides a Z-pinch-driven fusion ignition target and a fusion energy target load, which includes a solid sleeve 1.
  • the solid sleeve 1 includes a metal layer 11 of its own, and also includes an insulation covering the metal layer 11 Layer 12; specifically set as follows: to meet different needs, the insulating layer 12 can cover the outer surface of the metal layer 11 to form a sleeve configuration I, as shown in Figures 1 and 2; or cover the outer surface of the metal layer 11; Or both the inner surface and the outer surface are covered with an insulating layer 12 to form sleeve configuration II, as shown in Figures 4 and 5; the thickness of the metal layer 11 is 2 ⁇ m to 20 ⁇ m, and the thickness of the insulating layer 12 is 100 nm to 500 nm; solid sleeve The height of the cylinder 1 is 1 cm to 2 cm; the outer diameter of the solid sleeve 1 is 1 cm to 10 cm.
  • the metal layer 11 is made of a metal material M and its alloy materials;
  • the M includes Be, Mg, Ca, Sr, Ba, Ra, Al, Ga, In, Tl, Pb, Bi, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Py, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Any one of Md, No, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg.
  • the preparation materials of the insulating layer 12 include ceramic materials, glass materials, composite materials and mixed materials, which are specifically as follows:
  • Ceramic materials include M-Al-O ternary system, Al-O-X ternary system and M-Al-O-X quaternary system ceramic materials;
  • M includes Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Hg, Ga, In, Tl, Pb, Bi, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Py, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, Any one of No, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg;
  • X includes any one of H, B, C, Si, Ge, N, P, As, Sb, S, Se, Te, Po, F, Cl, Br, I, and At.
  • Glass materials include M-Si-O ternary system, Si-O-X ternary system and M-Si-O-X quaternary system ceramic materials;
  • M includes Li, Na, K, Rb, Cs, Fr, Be, Mg, Ca, Sr, Ba, Ra, Al, Hg, Ga, In, Tl, Pb, Bi, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, La, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Py, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Ac, Th, Pa, U, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Any one of Md, No, Lr, Rf, Db, Sg, Bh, Hs, Mt, Ds, Rg;
  • X includes any one of H, B, C, Ge, N, P, As, Sb, S, Se, Te, Po, F, Cl, Br, I, and At.
  • the composite material uses high molecular polymer.
  • Composite materials mainly use high-molecular polymers with insulating properties, for example, hydrocarbon polymer foam (such as polystyrene), hydrocarbon polymer foam (such as polyethylene terephthalate), polycarbonate, polyester, Polymethyl methacrylate, polyacetamide, etc.
  • the mixed material is formed by mixing the above-mentioned composite material with ceramic material and/or glass material.
  • the outer diameter of the solid sleeve 1 is 1 to 6 cm
  • the configuration is used for the Z-pinch-driven fusion ignition target; when the 5-10 cm configuration is used for the Z-pinch-driven fusion energy target.
  • the metal layer 11 covered with the insulating layer 12 is mechanically rolled into a cylindrical configuration of the solid sleeve 1, and the gap is encapsulated by adhesive glue or laser welding; specific production
  • the insulating layer 12 is coated on the metal foil and then mechanically rolled, glued or laser welded for packaging.
  • This embodiment 2 provides a Z-pinch-driven fusion ignition target and a fusion energy target delivery system, which includes an anode unit 2, a cathode unit 3, and the solid sleeve 1 provided in embodiment 1 or embodiment 2.
  • the output of the anode unit 2 The end is conductively connected to one end of the solid sleeve 1, and the solid sleeve 1 is used to connect with the input end of the cathode unit 3.
  • the anode unit 2 includes an anode upper end member 21, a support rod 22, an anode lower end member 23, and an anode fixed end 24.
  • a set of support rods 22 are provided at both ends of the anode upper end member 21, and the upper end of each set of support rod 21 is connected to the anode upper end member. 21 is connected and the lower end is connected to the anode conductive part.
  • the anode conductive parts are the anode lower end member 23 and the anode fixed end 24.
  • One end of the anode lower end member 23 is connected to the bottom end of the support rod 22, and the other end of the anode lower end member 23 is connected to the anode fixed end 24 is connected, and the anode fixed terminal 24 is connected to the output terminal of the high current driver.
  • the anode upper end member 21 and the support rods 22 on both sides are in an inverted U-shaped structure.
  • the cathode unit 3 includes a cathode member 31 and a cathode fixing end 32.
  • the cathode member 31 is arranged directly below the anode upper end member 21.
  • the support rods 22 located on both sides of the anode upper end member 21, the anode lower end member 23 and the anode fixing end 24 are solid sleeves.
  • the axis of the cylinder 1 is axisymmetrically distributed based on the axis; the solid sleeve 1 is arranged between the anode upper end member 21 and the cathode member 31, the top end of the solid sleeve 1 is connected to the anode upper end member 21, and the bottom end is connected to the top end of the cathode member 31, A cathode fixing end 32 is provided on the top of the cathode member 31, and the cathode fixing end 32 is used for outputting energy.
  • Both the lower plate surface of the anode upper end member 21 and the upper plate surface of the cathode member 31 are provided with sleeve grooves 4, and the axial ends of the solid sleeve 1 are respectively inserted into the sleeve grooves 4 and connected, and the sleeve grooves 4 are in the radial direction.
  • An annular groove is formed on the plane, and the annular groove for accommodating the solid sleeve 1 has a ring width of 0.1 mm to 0.5 mm and a depth of 0.5 mm to 2.5 mm.
  • Example 2 Based on Example 2, only the outer surface of the metal layer 11 is covered with the insulating layer 12, the thickness of the metal layer 11 is 18 ⁇ m, the thickness of the insulating layer 12 is 500 nm; the height of the solid sleeve 1 is 1 cm.
  • the outer surface and inner surface of the metal layer 11 are covered with an insulating layer 12, the thickness of the metal layer 11 is 5 ⁇ m, the thickness of the insulating layer 12 is 120 nm; the height of the solid sleeve 1 is 2 cm.
  • the insulating layer 12 is coated on the metal layer 11 by chemical deposition.
  • the Al-O is deposited on the metal Al foil by chemical deposition, the gas phase precursor and the reaction gas are pulsed alternately into the reaction chamber, chemical adsorption is performed on the surface of the substrate and the film formation reaction is performed. Between two precursor pulses, inert gas is used to flush the substrate and the reaction chamber. Due to the self-limiting reaction between the reactant gas and the solid surface, the formed film has the characteristics of conformality, no pinholes, and can be deposited layer by layer on the atomic scale.
  • the atomic deposition method can not only precisely control the thickness of the film, but also obtain excellent film properties, and at the same time allows the deposition of highly conformal films in micro-nano structures with high aspect ratios.
  • the Al 2 O 3 thin film is prepared by the atomic deposition method, and the prepared Al thin film is placed on the Si substrate and placed in the reaction chamber.
  • the minimum thickness range of a single deposition of atomic deposition is 0.4nm (only one atomic layer thickness).
  • the outer diameter of the solid sleeve 1 is 1 cm ⁇ 6 cm, and the configuration I is used as the fusion ignition implementation: the system is placed in a 30MA ⁇ 50MA high current driver for experiment.
  • the outer diameter of the solid sleeve 1 is 5 cm-10 cm, and the configuration I is used as the fusion energy source: the system is placed in a 40MA-70MA high-current driver for experiments.
  • the outer diameter of the solid sleeve 1 is 1 cm ⁇ 6 cm, and the configuration II is used as the fusion ignition implementation: the system is placed in a 30MA ⁇ 50MA high current driver for experiment.
  • the outer diameter of the solid sleeve 1 is 5 cm-10 cm, and the configuration II is used as the fusion ignition implementation: the system is placed in a 40MA-70MA high-current driver for experiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种Z箍缩驱动聚变点火靶与聚变能源靶负载,固体套筒(1)包括本身的金属层(11)和覆盖在所述金属层(11)上的绝缘层(12)。绝缘层(12)覆盖在金属层(11)上的方法包括电化学沉积、无电沉积、溶胶-凝胶法、化学气相沉积、磁控溅射、原子沉积法。一种Z箍缩驱动聚变点火靶与聚变能源靶输送系统,包括阳极单元(2)、阴极单元(3)和固体套筒(1),阳极单元(2)、固体套筒(3)与阴极单元(3)依次电性连接。针对"局部整体点火"靶,能够实现氘氚燃料二维准球对称压缩的负载,使用固体套筒(1)以提高内爆等离子体套筒的密度和均匀性,避免先驱等离子体和先驱电流出现,提高了能量利用效率;具备更高的内爆速度,超大型脉冲功率装置更易于实现。

Description

Z箍缩驱动聚变点火靶与聚变能源靶负载及输送系统 技术领域
本发明涉及核物理、核工程技术领域,具体涉及一种Z箍缩驱动聚变点火靶与聚变能源靶负载及输送系统。
背景技术
固体套筒是近年来研究Z箍缩等离子物理的重要构型,固体套筒构型的Z箍缩是实验室内可以获得的很强的脉冲等离子体X射线源,同时又具有相对高的效率比,这使得它在惯性约束聚变(ICF)、辐射效应、辐射输运和材料不透明度、以及实验室天体物理等高能量密度物理问题研究方面有着广泛的应用。
在早期的Z箍缩研究构型主要依靠角向磁场约束等离子体来达到较高的温度和密度,典型的如早期的直线Z箍缩;筒Z箍缩与喷气Z箍缩都是20世纪70年代末提出的构型,自此Z箍缩的研究开始转向于内爆构型,即利用角向磁场驱动等离子体到较高的动能后,使得其在轴心处的碰撞将动能热化成内能,以此来达到更高的等离子体温度和密度。驱动等离子体内爆的角向磁场来自于脉冲功率装置提供给等离子体的大电流,要使等离子体获得极大的动能,那么必须要有足够的质量以及能够输出很大电流的脉冲功率装置。因此,固体套筒这类内爆Z箍缩构形获得快速发展和突破主要是在20世纪90年代后,此时的脉冲功率装置已经可以产生10MA级的大电流输出。
对于Z箍缩研究,现已提出新的聚变点火技术途径:“局部整体点火”技术路线,该技术路线是基于快Z箍缩间接驱动的聚变途径,利用快Z箍缩技术提供足够的等离子体内爆动能、并与聚变靶丸相互作用,近似球对称地压缩热核燃料(氘氚冰),最终实现大规模热核聚变,依次研究固体套筒负载对于获得稳定、良好的内暴品质具有重要意义。
发明内容
本发明提供了解决上述问题的Z箍缩驱动聚变点火靶与聚变能源靶负载及输送系统。
本发明通过下述技术方案实现:
Z箍缩驱动聚变点火靶与聚变能源靶负载,包括固体套筒,所述固体套筒包括本身的金属层,还包括覆盖在所述金属层上的绝缘层。
本发明在金属层表面附加一层绝缘层,因此在电流上升前沿仍能保持一定的绝缘性,另外一方面,绝缘层结构在抗褶皱所产生的剪切应力方面要优于单纯的金属层。
进一步地,所述绝缘层覆盖在金属层的内表面和/或外表面。
进一步地,所述金属层的厚度为2μm~20μm,绝缘层的厚度为100nm~500nm。
进一步地,所述固体套筒的高度为1cm~2cm;固体套筒的外径为1cm~10cm。
进一步地,所述金属层由金属材料M及其合金材料制成;所述M的种类包括Be、Mg、Ca、Sr、Ba、Ra、Al、Ga、In、Tl、Pb、Bi、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Py、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No、Lr、Rf、Db、Sg、Bh、Hs、Mt、Ds、Rg中任意一种;所述合金为上述M的种类中任意两种或两种以上的合金。
进一步地,所述绝缘层的制备材料包括陶瓷材料、玻璃材料、复合材料和混合材料制成。
进一步地,所述混合材料是由复合材料与陶瓷材料和/或玻璃材料混合而成。
进一步地,所述复合材料采用高分子聚合物。复合材料主要采用具有绝缘性能的高分子聚合物,例如,碳氢聚合泡沫(如聚苯乙烯)、碳氢氧聚合泡沫(如聚对苯二甲酸乙二酯)、聚碳酸酯、聚酯、聚甲基丙烯酸甲酯、聚乙酰胺等。
进一步地,所述陶瓷材料包括M-Al-O三元体系、Al-O-X三元体系和M-Al-O-X四元体系陶瓷材料;
其中,M包括Li、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Hg、Ga、In、Tl、Pb、Bi、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Py、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No、Lr、Rf、Db、Sg、Bh、Hs、Mt、Ds、Rg中任意一种;
X包括H、B、C、Si、Ge、N、P、As、Sb、S、Se、Te、Po、F、Cl、Br、I、At中任意一种。
进一步地,所述玻璃材料包括M-Si-O三元体系、Si-O-X三元体系和M-Si-O-X四元体系陶瓷材料;
其中,M包括Li、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Al、Hg、Ga、In、Tl、Pb、Bi、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Py、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No、Lr、Rf、Db、Sg、Bh、Hs、Mt、Ds、Rg中任意一种;
X包括H、B、C、Ge、N、P、As、Sb、S、Se、Te、Po、F、Cl、Br、I、At中任意一种。
上述陶瓷材料、玻璃材料、复合材料或混合材料中,元素(M或X)种类选取,以获得具有绝缘性材料即可。
进一步地,所述覆盖有绝缘层的金属层通过机械卷成固体套筒的筒状构型,且缺口处由粘合胶或者激光焊接进行封装。
上述Z箍缩驱动聚变点火靶与聚变能源靶负载的制备方法,所述绝缘层覆盖在金属层上的方法包括电化学沉积、无电沉积、溶胶-凝胶法、化学气相沉积、磁控溅射、原子沉积法。
所述电化学沉积方法是将绝缘层材料依照实际需求配比不同浓度的化学溶液,施加电势,使其附着在金属层上。所述无电沉积方法是将绝缘层材料依照实际需求配比不同浓度的化学溶液,通过化学反应,使其附着在金属层上。所述溶胶-凝胶法是将绝缘层材料溶至胶体,再通过凝胶的方式附着在金属层上。所述化学气相沉积是将绝缘层材料转换为气相方式,通过控制速率方式沉积在金属层上。所述磁控溅射,原子沉积法是沉积材料的常用方式,通过控制溅射(沉积)功率、温度、速率,使得绝缘材料沉积在金属层上。
Z箍缩驱动聚变点火靶与聚变能源靶输送系统,包括阳极单元、阴极单元和上述固体套筒,所述阳极单元的输出端与固体套筒的一端导电连接,固体套筒用于与阴极单元的输入端连接。
本发明阳极单元主要是电流的汇入端,用于连接固体套筒与大电流驱动器;阴极单元用于电流输出端。
进一步地,所述阳极单元包括阳极上端构件和分布设置在阳极上端构件两端的支撑杆,支撑杆的上端与阳极上端构件连接、下端与阳极导电部件连接,阳极上端构件与两侧的支撑杆呈倒U型结构;
所述阴极单元包括阴极构件,所述阴极构件设于阳极上端构件下方,所述固体套筒设于阳极上端构件和阴极构件之间,固体套筒的顶端与阳极上端构件连接、底端与阴极构件连接。
本发明支撑杆的作用一方面是连接阳极上端构件和阳极导电部件;另一方面是用于支撑固体套筒,减轻固体套筒承重,对固体套筒起到保护作用。
进一步地,所述阳极上端构件和阴极构件两者相向的板面上均设有套筒槽,固体套筒的轴向两端分别嵌入套筒槽内连接。
可利用现代数控精密加工工艺获得如上精密尺寸的套筒槽;固体套筒嵌入套筒槽后,可由粘合胶或者激光焊接进行连接。
本发明具有如下的优点和有益效果:
本发明提供的Z箍缩驱动聚变点火靶与聚变能源靶负载及输送系统针对“局部整体点火”靶,能够实现氘氚燃料二维准球对称压缩的负载,相对于丝阵,金属薄套筒可以提高内爆等离子体套筒的密度和均匀性,避免先驱等离子体和先驱电流出现,进而提高能量利用效率;同时相对于传统的固体厚套筒,本发明的金属套筒具备更高的内爆速度以及对超大型脉冲功 率装置提出更易于实现的要求,可将该负载或运输系统接入到1MA~60MA不同大电流驱动器中进行实验。具体优势如下:
1、本发明利于抑制Z箍缩等离子前期电热不稳定性种子的发展,以至于抑制后期磁瑞利-泰勒不稳定性的发展,使得固体套筒内爆的品质较好,符合“局部整体点火靶”在其抗偏心性的范围之内;
2、本发明利于提高Z箍缩等离子的密度和均匀性,避免先驱等离子体和先驱电流出现,进而提高能量利用效率;
3、本发明利于实现氘氚燃料二维准球对称压缩,可将内爆等离子体套筒动能高效转化为辐射能,同时避免套筒内爆不稳定性(或不均匀性)对靶丸压缩对称性和中波不稳定性的影响。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明的构型I展开平面结构示意图;
图2为本发明的构型I展开立体结构示意图;
图3为本发明的构型I电镜扫描图;
图4为本发明的构型II展开平面结构示意图;
图5为本发明的构型II展开立体结构示意图;
图6为本发明的构型II立体结构示意图;
图7为本发明的输送系统结构示意图。
附图中标记及对应的零部件名称:1-固体套筒,11-金属层,12-绝缘层,2-阳极单元,21-阳极上端构件,22-支撑杆,23-阳极下端构件,24-阳极固定端,3-阴极单元,31-阴极构件,32-阴极固定端,4-套筒槽。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例和附图,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1
本实施例提供一种Z箍缩驱动聚变点火靶与聚变能源靶负载,包括固体套筒1,所述固体套筒1包括本身的金属层11,还包括覆盖在所述金属层11上的绝缘层12;具体如下设置:为满足不同需求,绝缘层12可覆盖在金属层11的外表面,构成套筒构型Ⅰ,如图1和2所 示;或覆盖在金属层11的外表面;或者在内表面和外表面均覆盖绝缘层12,构成套筒构型Ⅱ,如图4和5所示;金属层11的厚度为2μm~20μm,绝缘层12的厚度为100nm~500nm;固体套筒1的高度为1cm~2cm;固体套筒1的外径为1cm~10cm。
金属层11由金属材料M及其合金材料制成;所述M包括Be、Mg、Ca、Sr、Ba、Ra、Al、Ga、In、Tl、Pb、Bi、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Py、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No、Lr、Rf、Db、Sg、Bh、Hs、Mt、Ds、Rg中任意一种。
绝缘层12的制备材料包括陶瓷材料、玻璃材料、复合材料和混合材料制成,具体如下:
陶瓷材料包括M-Al-O三元体系、Al-O-X三元体系和M-Al-O-X四元体系陶瓷材料;
其中,M包括Li、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Hg、Ga、In、Tl、Pb、Bi、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Py、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No、Lr、Rf、Db、Sg、Bh、Hs、Mt、Ds、Rg中任意一种;
X包括H、B、C、Si、Ge、N、P、As、Sb、S、Se、Te、Po、F、Cl、Br、I、At中任意一种。
玻璃材料包括M-Si-O三元体系、Si-O-X三元体系和M-Si-O-X四元体系陶瓷材料;
其中,M包括Li、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Al、Hg、Ga、In、Tl、Pb、Bi、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Py、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No、Lr、Rf、Db、Sg、Bh、Hs、Mt、Ds、Rg中任意一种;
X包括H、B、C、Ge、N、P、As、Sb、S、Se、Te、Po、F、Cl、Br、I、At中任意一种。
复合材料采用高分子聚合物。复合材料主要采用具有绝缘性能的高分子聚合物,例如,碳氢聚合泡沫(如聚苯乙烯)、碳氢氧聚合泡沫(如聚对苯二甲酸乙二酯)、聚碳酸酯、聚酯、聚甲基丙烯酸甲酯、聚乙酰胺等等。
混合材料是由上述复合材料与陶瓷材料和/或玻璃材料混合而成。
最后,当固体套筒1的外径为1~6cm时的构型用于Z箍缩驱动聚变点火靶;当5~10cm的构型用于Z箍缩驱动聚变能源靶。
实施例2
在实施例1的基础上进一步改进,所述覆盖有绝缘层12的金属层11通过机械卷成固体套筒1的筒状构型,且缺口处由粘合胶或者激光焊接进行封装;具体制作时通过在金属箔上涂覆绝缘层12,然后进行机械成卷、粘合胶或者激光焊接进行封装。
实施例3
本实施例2提供了一种Z箍缩驱动聚变点火靶与聚变能源靶输送系统,包括阳极单元2、阴极单元3和实施例1或实施例2提供的固体套筒1,阳极单元2的输出端与固体套筒1的一端导电连接,固体套筒1用于与阴极单元3的输入端连接。
阳极单元2包括阳极上端构件21、支撑杆22、阳极下端构件23和阳极固定端24,在阳极上端构件21的两端各设有一组支撑杆22,每组支撑杆21的上端与阳极上端构件21连接、下端与阳极导电部件连接,阳极导电部件为阳极下端构件23和阳极固定端24,阳极下端构件23的一端与支撑杆22的底端连接,阳极下端构件23的另一端与阳极固定端24连接,阳极固定端24与大电流驱动器的输出端连接。阳极上端构件21与两侧的支撑杆22呈倒U型结构。
阴极单元3包括阴极构件31和阴极固定端32,阴极构件31设于阳极上端构件21的正下方,位于阳极上端构件21两侧的支撑杆22、阳极下端构件23以及阳极固定端24以固体套筒1的轴线为基准呈轴对称分布;固体套筒1设于阳极上端构件21和阴极构件31之间,固体套筒1的顶端与阳极上端构件21连接、底端与阴极构件31顶端连接,阴极构件31顶端设有阴极固定端32,阴极固定端32用于输出能量。
阳极上端构件21的下板面和阴极构件31的上板面上均设有套筒槽4,固体套筒1的轴向两端分别嵌入套筒槽4内连接,套筒槽4在径向平面上呈环形槽,用于容纳固体套筒1的环形槽的环宽为0.1mm~0.5mm,深度为0.5mm~2.5mm。
实施例4
基于实施例2的基础上,只在金属层11的外表面覆盖绝缘层12,金属层11的厚度为18μm,绝缘层12的厚度为500nm;固体套筒1的高度为1cm。
实施例5
基于实施例2的基础上,在金属层11的外表面和内表面都覆盖绝缘层12,金属层11的厚度为5μm,绝缘层12的厚度为120nm;固体套筒1的高度为2cm。
实施例6
基于实施例2的基础上,以金属层11采用Al绝缘层12采用Al-O为例,利用化学沉积的方式在金属层11上涂覆绝缘层12。
在金属Al箔上利用化学沉积的方式沉积Al-O,将气相前躯体和反应气体脉冲交替通入 反应腔,在基底表面进行化学吸附并进行成膜反应。在两次前躯体脉冲之间要使用惰性气体对基底以及反应腔进行冲洗。由于反应物气体和固体表面具有自限制反应,形成的薄膜具有保形性,无针孔的特点,并可以在原子尺度上一层一层的沉积薄膜。采用原子沉积方法不仅可以精准控制薄膜的厚度,也可以得到具有优良的薄膜性质,并且同时允许在高深宽比的微纳米结构中沉积高度保形性的薄膜。本实施例用原子沉积的方法进行Al 2O 3薄膜制备,将制备的Al薄膜放置于Si存底上放置于反应腔内。进行如下步骤:(1)三甲基铝进入反应腔,化学吸附在Al薄膜表面;(2)用Ar气冲洗并带走反应腔内未吸附的三甲基铝;(3)H 2O进入反应腔,并与吸附在衬底上的三甲基铝进行反应,生成Al 2O 3与副产物CH 4;(4)CH 4及过量的水由Ar气冲洗带出反应腔。特别的,原子沉积的单次沉积最小厚度范围0.4nm(仅为一个原子层厚)。
实施例7
基于实施例3提供的运输系统基础上,固体套筒1的外径为1cm~6cm,以构型I为聚变点火实施:将该系统放置于30MA~50MA大电流驱动器中进行实验。
实施例8
基于实施例3提供的运输系统基础上,固体套筒1的外径为5cm~10cm,以构型I为聚变能源实施:将该系统放置于40MA~70MA大电流驱动器中进行实验。
实施例9
基于实施例3提供的运输系统基础上,固体套筒1的外径为1cm~6cm,以构型II为聚变点火实施:将该系统放置于30MA~50MA大电流驱动器中进行实验。
实施例10
基于实施例3提供的运输系统基础上,固体套筒1的外径为5cm~10cm,以构型II为聚变点火实施:将该系统放置于40MA~70MA大电流驱动器中进行实验。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. Z箍缩驱动聚变点火靶与聚变能源靶负载,包括固体套筒(1),所述固体套筒(1)包括本身的金属层(11),其特征在于,还包括覆盖在所述金属层(11)上的绝缘层(12)。
  2. 根据权利要求1所述的Z箍缩驱动聚变点火靶与聚变能源靶负载,其特征在于,所述绝缘层(12)覆盖在金属层(11)的内表面和/或外表面。
  3. 根据权利要求1所述的Z箍缩驱动聚变点火靶与聚变能源靶负载,其特征在于,所述金属层(11)的厚度为2μm~20μm,绝缘层(12)的厚度为100nm~500nm。
  4. 根据权利要求1或3所述的Z箍缩驱动聚变点火靶与聚变能源靶负载,其特征在于,所述固体套筒(1)的高度为1cm~2cm;固体套筒(1)的外径为1cm~10cm。
  5. 根据权利要求1所述的Z箍缩驱动聚变点火靶与聚变能源靶负载,其特征在于,所述金属层(11)由金属材料M及其合金材料制成;所述M的种类包括Be、Mg、Ca、Sr、Ba、Ra、Al、Ga、In、Tl、Pb、Bi、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Py、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No、Lr、Rf、Db、Sg、Bh、Hs、Mt、Ds、Rg中任意一种;所述合金为上述M的种类中任意两种或两种以上的合金。
  6. 根据权利要求1所述的Z箍缩驱动聚变点火靶与聚变能源靶负载,其特征在于,所述绝缘层(12)的制备材料包括陶瓷材料、玻璃材料、复合材料和混合材料制成。
  7. 根据权利要求6所述的Z箍缩驱动聚变点火靶与聚变能源靶负载,其特征在于,所述混合材料是由复合材料与陶瓷材料和/或玻璃材料混合而成。
  8. 根据权利要求6或7所述的Z箍缩驱动聚变点火靶与聚变能源靶负载,其特征在于,所述复合材料采用高分子聚合物。
  9. 根据权利要求6或7所述的Z箍缩驱动聚变点火靶与聚变能源靶负载,其特征在于,所述陶瓷材料包括M-Al-O三元体系、Al-O-X三元体系和M-Al-O-X四元体系陶瓷材料;
    其中,M包括Li、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Hg、Ga、In、Tl、Pb、Bi、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Py、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No、Lr、Rf、Db、Sg、Bh、Hs、Mt、Ds、Rg中任意一种或多种
    X包括H、B、C、Si、Ge、N、P、As、Sb、S、Se、Te、Po、F、Cl、Br、I、At中任意一种或多种。
  10. 根据权利要求6或7所述的Z箍缩驱动聚变点火靶与聚变能源靶负载,其特征在于, 所述玻璃材料包括M-Si-O三元体系、Si-O-X三元体系和M-Si-O-X四元体系陶瓷材料;
    其中,M包括Li、Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Al、Hg、Ga、In、Tl、Pb、Bi、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Py、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Ac、Th、Pa、U、Np、Pu、Am、Cm、Bk、Cf、Es、Fm、Md、No、Lr、Rf、Db、Sg、Bh、Hs、Mt、Ds、Rg中任意一种或多种;
    X包括H、B、C、Ge、N、P、As、Sb、S、Se、Te、Po、F、Cl、Br、I、At中任意一种或多种。
  11. 根据权利要求1所述的Z箍缩驱动聚变点火靶与聚变能源靶负载,其特征在于,所述覆盖有绝缘层(12)的金属层(11)通过机械卷成固体套筒(1)的筒状构型,且缺口处由粘合胶或者激光焊接进行封装。
  12. 基于权利要求1至11任一项所述的Z箍缩驱动聚变点火靶与聚变能源靶负载的制备方法,其特征在于,所述绝缘层(12)覆盖在金属层(11)上的方法包括电化学沉积、无电沉积、溶胶-凝胶法、化学气相沉积、磁控溅射、原子沉积法。
  13. Z箍缩驱动聚变点火靶与聚变能源靶输送系统,其特征在于,包括阳极单元(2)、阴极单元(3)和权利要求1至11任一项所述的固体套筒(1),所述阳极单元(2)的输出端与固体套筒(1)的一端导电连接,固体套筒(1)用于与阴极单元(3)的输入端连接。
  14. 根据权利要求13所述的Z箍缩驱动聚变点火靶与聚变能源靶输送系统,其特征在于,所述阳极单元(2)包括阳极上端构件(21)和分布设置在阳极上端构件(21)两端的支撑杆(22),支撑杆(21)的上端与阳极上端构件(21)连接、下端与阳极导电部件连接,阳极上端构件(21)与两侧的支撑杆(21)呈倒U型结构;
    所述阴极单元(3)包括阴极构件(31),所述阴极构件(31)设于阳极上端构件(21)下方,所述固体套筒(1)设于阳极上端构件(21)和阴极构件(31)之间,固体套筒(1)的顶端与阳极上端构件(21)连接、底端与阴极构件(31)连接。
  15. 根据权利要求14所述的Z箍缩驱动聚变点火靶与聚变能源靶输送系统,其特征在于,所述阳极上端构件(21)和阴极构件(31)两者相向的板面上均设有套筒槽(4),固体套筒(1)的轴向两端分别嵌入套筒槽(4)内连接。
PCT/CN2019/103189 2019-08-15 2019-08-29 Z箍缩驱动聚变点火靶与聚变能源靶负载及输送系统 WO2021026968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910753629.6 2019-08-15
CN201910753629.6A CN110379524B (zh) 2019-08-15 2019-08-15 Z箍缩驱动聚变点火靶与聚变能源靶负载及输送系统

Publications (1)

Publication Number Publication Date
WO2021026968A1 true WO2021026968A1 (zh) 2021-02-18

Family

ID=68259445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103189 WO2021026968A1 (zh) 2019-08-15 2019-08-29 Z箍缩驱动聚变点火靶与聚变能源靶负载及输送系统

Country Status (2)

Country Link
CN (1) CN110379524B (zh)
WO (1) WO2021026968A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073479B2 (ja) * 1986-06-30 1995-01-18 学校法人東海大学 衝撃核融合溶融塩増殖炉
JP2005078973A (ja) * 2003-09-01 2005-03-24 Hamamatsu Photonics Kk Zピンチプラズマ発生装置、及びそれを用いたプラズマ光源。
CN101868112A (zh) * 2010-04-30 2010-10-20 西北核技术研究所 平行丝阵z箍缩负载
CN104202903A (zh) * 2014-09-10 2014-12-10 西北核技术研究所 平面金属薄膜负载装置
CN106098298A (zh) * 2016-06-22 2016-11-09 西北核技术研究所 一种数十兆安级脉冲电流产生方法及z箍缩直接驱动源
CN108934119A (zh) * 2018-07-03 2018-12-04 西安交通大学 一种基于丝阵的金属蒸气z箍缩负载装置及调控方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4608537A (en) * 1984-06-14 1986-08-26 The United States Of America As Represented By The Secretary Of The Navy Low perturbation electron injector for cyclic accelerators
US6408052B1 (en) * 2000-04-06 2002-06-18 Mcgeoch Malcolm W. Z-pinch plasma X-ray source using surface discharge preionization
US7679025B1 (en) * 2005-02-04 2010-03-16 Mahadevan Krishnan Dense plasma focus apparatus
US7482607B2 (en) * 2006-02-28 2009-01-27 Lawrenceville Plasma Physics, Inc. Method and apparatus for producing x-rays, ion beams and nuclear fusion energy
US8837661B2 (en) * 2009-07-24 2014-09-16 The Regents Of The University Of California Radionuclide production using a Z-pinch neutron source
US9839111B2 (en) * 2009-07-30 2017-12-05 The Regents Of The University Of California Staged Z-pinch for the production of high-flux neutrons and net energy
GB201308127D0 (en) * 2013-05-06 2013-06-12 Wayte Richard C A process for making nuclear fusion energy
CN104219862B (zh) * 2014-09-11 2017-01-25 西北核技术研究所 外爆型平面薄膜负载装置
EP3351058B1 (en) * 2015-09-15 2023-03-01 Enig Associates, Inc. Space plasma generator for ionospheric control
CN105185417B (zh) * 2015-09-29 2017-05-10 北京应用物理与计算数学研究所 磁化等离子体聚变点火装置
CN106816255B (zh) * 2017-03-29 2018-06-29 中国工程物理研究院流体物理研究所 一种用于电磁驱动磁通压缩的一体化驱动线圈及组装工艺
CN210489260U (zh) * 2019-08-15 2020-05-08 中国工程物理研究院流体物理研究所 用于z箍缩驱动聚变的套筒负载及输送装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073479B2 (ja) * 1986-06-30 1995-01-18 学校法人東海大学 衝撃核融合溶融塩増殖炉
JP2005078973A (ja) * 2003-09-01 2005-03-24 Hamamatsu Photonics Kk Zピンチプラズマ発生装置、及びそれを用いたプラズマ光源。
CN101868112A (zh) * 2010-04-30 2010-10-20 西北核技术研究所 平行丝阵z箍缩负载
CN104202903A (zh) * 2014-09-10 2014-12-10 西北核技术研究所 平面金属薄膜负载装置
CN106098298A (zh) * 2016-06-22 2016-11-09 西北核技术研究所 一种数十兆安级脉冲电流产生方法及z箍缩直接驱动源
CN108934119A (zh) * 2018-07-03 2018-12-04 西安交通大学 一种基于丝阵的金属蒸气z箍缩负载装置及调控方法

Also Published As

Publication number Publication date
CN110379524A (zh) 2019-10-25
CN110379524B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
Yang et al. Constructing a super‐saturated electrolyte front surface for stable rechargeable aqueous zinc batteries
Zhu et al. A self‐limited free‐standing sulfide electrolyte thin film for all‐solid‐state lithium metal batteries
Ping et al. Printable, high-performance solid-state electrolyte films
Gao et al. Stable Zn anodes with triple gradients
Wang et al. Core–shell C@ Sb nanoparticles as a nucleation layer for high-performance sodium metal anodes
CN109461873B (zh) 耐高温金属-有机框架材料涂层的电池隔膜及其制备方法和应用
Ma et al. Long-lasting zinc–iodine batteries with ultrahigh areal capacity and boosted rate capability enabled by nickel single-atom electrocatalysts
Xu et al. Fast‐charging and ultrahigh‐capacity lithium metal anode enabled by surface alloying
Zhang et al. Bi nanoparticles embedded in 2D carbon nanosheets as an interfacial layer for advanced sodium metal anodes
Choi et al. In situ formed Ag‐Li intermetallic layer for stable cycling of all‐solid‐state lithium batteries
Xu et al. Flexible, stretchable, and rechargeable fiber‐shaped zinc–air battery based on cross‐stacked carbon nanotube sheets
Kim et al. Graphite–silicon diffusion‐dependent electrode with short effective diffusion length for high‐performance all‐solid‐state batteries
Fu et al. A lithium metal anode surviving battery cycling above 200 C
Xie et al. Integrated nanostructural electrodes based on layered double hydroxides
US20190280330A1 (en) All-solid state li ion batteries comprising mechanically felxible ceramic electrolytes and manufacturing methods for the same
US11268196B2 (en) Lithium lanthanum zirconate thin films
WO2020148709A2 (en) Magnetohydrodynamic hydrogen electrical power generator
JP2006147559A (ja) 光電池用電極およびその製造方法
CN106207213B (zh) 一种快速激活热电池复合正极及其制备方法
JP2021506072A (ja) 電磁流体発電機
Chen et al. Zirconia-supported solid-state electrolytes for high-safety lithium secondary batteries in a wide temperature range
Zhang et al. Multishelled Ni2P Microspheres as Multifunctional Sulfur Host 3D-Printed Cathode Materials Ensuring High Areal Capacity of Lithium–Sulfur Batteries
Wang et al. Light‐Driven Polymer‐Based All‐Solid‐State Lithium‐Sulfur Battery Operating at Room Temperature
CN113809388A (zh) 复合固态电解质材料及其制备方法、锂二次电池和终端
Zhao et al. A review on covalent organic frameworks as artificial interface layers for Li and Zn metal anodes in rechargeable batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19941398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19941398

Country of ref document: EP

Kind code of ref document: A1