WO2021025131A1 - Microfluidic device - Google Patents

Microfluidic device Download PDF

Info

Publication number
WO2021025131A1
WO2021025131A1 PCT/JP2020/030248 JP2020030248W WO2021025131A1 WO 2021025131 A1 WO2021025131 A1 WO 2021025131A1 JP 2020030248 W JP2020030248 W JP 2020030248W WO 2021025131 A1 WO2021025131 A1 WO 2021025131A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
flow path
main flow
air
supply device
Prior art date
Application number
PCT/JP2020/030248
Other languages
French (fr)
Japanese (ja)
Inventor
真利子 植村
勝 南口
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021537389A priority Critical patent/JP7145468B2/en
Publication of WO2021025131A1 publication Critical patent/WO2021025131A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/04Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups operating with special methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/24Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas with means, e.g. a container, for supplying liquid or other fluent material to a discharge device
    • B05B7/26Apparatus in which liquids or other fluent materials from different sources are brought together before entering the discharge device

Definitions

  • the present invention relates to a microfluidic device, more specifically, a microfluidic device that efficiently diffuses a component to be diffused into the air.
  • microchemical chips that perform chemical analysis and chemical synthesis by applying micromachine technology have been known, and microchemical chips having a plurality of microchannels are also known (for example, Patent Document 1). ..
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a microfluidic device capable of suppressing mixing of different components to be diffused in the air.
  • the microfluidic device includes a microchannel chip.
  • the microchannel chip includes a main channel, a first branch channel, a second branch channel, an air introduction section, and an atomizing section.
  • the main flow path is a micro flow path having one end and the other end.
  • the first branch flow path is connected to the main flow path between the one end and the other end of the main flow path.
  • the first branch flow path is a flow path of the first solution.
  • the second branch flow path is connected to the main flow path between the one end and the other end of the main flow path.
  • the second branch flow path is a flow path of a second solution different from the first solution.
  • the air introduction portion is connected to the main flow path at one end side of each position where the first branch flow path and the second branch flow path are connected in the main flow path. Air is supplied to the air introduction section.
  • the atomizing portion is provided on the side opposite to the one end when viewed from the other end of the main flow path. A liquid composed of any one of the first solution and the second solution is supplied to the atomizing section through the main flow path.
  • the microfluidic device further includes an atomizing device, an air supply device, a first solution supply device, a second solution supply device, and a control device.
  • the atomizing device applies energy to the liquid in the atomizing portion to atomize the liquid.
  • the air supply device supplies air to the air introduction section.
  • the first solution supply device supplies the first solution to the first branch flow path.
  • the second solution supply device supplies the second solution to the second branch flow path.
  • the control device drives and controls the atomizing device, the air supply device, the first solution supply device, and the second solution supply device. In the microfluidic device, the liquid in the atomizing section is atomized by the energy from the atomizing device.
  • the control device drives the first solution supply device to supply the first solution to the main flow path, stops supplying the first solution to the main flow path, and then causes the air supply device. It is driven to supply air to the main flow path to push out at least a part of the first solution in the main flow path, and then the second solution supply device is driven to supply the second solution to the main flow path. Supply.
  • the microfluidic device includes a microchannel chip.
  • the microchannel chip includes a main channel, three or more branch channels, an air introduction section, a compounding section, and an atomizing section.
  • the main flow path is a micro flow path having one end and the other end.
  • the three or more branch flow paths are connected to the main flow path between the one end and the other end of the main flow path, and have a one-to-one correspondence with three or more kinds of solutions different from each other.
  • the air introduction portion is connected to the main flow path at one end side of each position where the three or more branch flow paths are connected in the main flow path. Air is supplied to the air introduction section.
  • the compounding section is provided between each position and the other end in the main flow path.
  • the atomizing portion is provided on the side opposite to the one end when viewed from the other end of the main flow path.
  • the compounding solution prepared in the compounding section is supplied through a part of the main flow path.
  • the microfluidic device further includes an atomizing device, an air supply device, three or more solution supply devices, and a control device.
  • the atomizing device applies energy to a liquid composed of a mixed liquid supplied to the atomizing unit to atomize the liquid.
  • the air supply device supplies air to the air introduction section.
  • the three or more solution supply devices have a one-to-one correspondence with the three or more branch flow paths.
  • the control device drives and controls the atomizing device, the air supply device, and the three or more solution supply devices.
  • the control device drives two or more solution supply devices of the three or more solution supply devices, and prepares at least two kinds of solutions of the three or more kinds of solutions in the main flow path. After supplying as the compounding solution of No. 1 and stopping the supply of the first compounding solution, the air supply device is driven to supply air to the main flow path and the first compounding solution in the main flow path. At least a part of the above three or more solutions is extruded, and then two or more of the three or more solution supply devices are driven into the main flow path, and at least two of the three or more kinds of solutions are driven into the main flow path. Various solutions are mixed and supplied as a second preparation.
  • FIG. 1 is a schematic configuration diagram of the microfluidic apparatus according to the first embodiment.
  • FIG. 2A is a plan view of the microfluidic chip in the same microfluidic device.
  • FIG. 2B is a sectional view taken along line XX of FIG. 2A.
  • FIG. 2C is a sectional view taken along the line YY of FIG. 2A.
  • FIG. 3A is a plan view of the microchannel chip and the atomizer in the same microfluidic device.
  • FIG. 3B is a sectional view taken along line XX of FIG. 3A.
  • FIG. 4A is a plan view of the microchannel chip and the atomizer in the same microfluidic device.
  • FIG. 4B is a sectional view taken along line XX of FIG. 4A.
  • FIG. 5A is a plan view of the microchannel chip and the atomizer in the same microfluidic device.
  • FIG. 5B is a sectional view taken along line XX of FIG. 5A.
  • FIG. 6 is a flowchart showing an operation example 1 of the control device in the microfluidic device according to the first embodiment.
  • 7A to 7C are operation explanatory views of the same microfluidic device.
  • FIG. 8 is a schematic configuration diagram of the microfluidic device according to the third embodiment.
  • FIG. 9 is a flowchart showing an operation example 2 of the control device in the same microfluidic device.
  • the microfluidic device 1 applies energy (for example, surface acoustic wave energy) to a solution 8 containing a component to be diffused in the air to atomize the solution 8.
  • the microfluidic device 1 transports the solution 8 to the atomizing section 23 of the microchannel chip 2 and gives energy from the atomizing device 4 to the liquid (solution 8) existing in the atomizing section 23 to supply the liquid.
  • the microfluidic device 1 is a liquid atomization system that atomizes a liquid.
  • the solution 8 containing a component to be diffused into the air is, for example, an aroma oil containing a scent component, a cosmetological liquid, a medical liquid containing a medicinal component, or the like. A plurality of types of this solution 8 are prepared.
  • the microfluidic device 1 includes a microfluidic chip 2, a plurality of solution supply devices 3, an atomization device 4, an air supply device 5a, a cleaning liquid supply device 5b, a control device 6, and a drive device 7. Be prepared.
  • the microchannel chip 2 has a laminated structure of two substrates 20a and 20b.
  • the microchannel chip 2 is formed by forming a flow path forming recess on at least one of the two substrates 20a and 20b (for example, the substrate 20a), and these two substrates 20a and 20b are bonded together. Will be done.
  • the flow path forming recess is formed at a position corresponding to each of the main flow path 21 and the plurality of branch flow paths 25.
  • the micro flow path chip 2 includes a main flow path 21 which is a micro flow path through which the solution 8 flows, a plurality of branch flow paths 25, an air introduction section (air supply section) 22, an atomization section 23, and a plurality of solutions.
  • An introduction section (solution supply section) 24 and a section are formed.
  • the material of the microchannel chip 2 is silicon, but the material is not limited to this, and may be resin or glass, and is not particularly limited.
  • the “material of the microchannel chip 2” is the material of the above-mentioned two substrates 20a and 20b.
  • the microchannel chip 2 has a rectangular shape when viewed from its thickness direction D1 (see FIG. 2B) (see FIG. 2A).
  • the length of the microchannel chip 2 in the longitudinal direction when viewed from the thickness direction D1 of the microchannel chip 2 is, for example, 50 mm to 60 mm, but is not limited to this.
  • the length of the microchannel chip 2 in the lateral direction when viewed from the thickness direction D1 of the microchannel chip 2 is, for example, 20 mm to 30 mm, but is not limited to this.
  • the thickness of the microchannel chip 2 is 0.5 mm, but is not limited to this.
  • the main flow path 21 is a microflow having a substantially semicircular cross section (see FIG. 2C) and having one end 211 (hereinafter, also referred to as the first end 211) and the other end 212 (hereinafter, also referred to as the second end 212).
  • the main flow path 21 is a flow path through which the solution 8 flows and has a linear shape.
  • One end of the main flow path 21 is the first end 211, and the other end of the main flow path 21 is the second end 212.
  • the introduction portion 22 is formed.
  • An atomizing portion 23 to which a liquid (solution 8) is supplied through the main flow path 21 is formed on the side opposite to the first end 211 when viewed from the second end 212 of the main flow path 21.
  • the diameter of the main flow path 21 is, for example, 10 ⁇ m to 200 ⁇ m.
  • the main flow path 21 may have a rectangular cross section.
  • the "cross section of the main flow path 21" is a cross section orthogonal to the length direction of the main flow path 21 and is a cross section orthogonal to the flow direction of the liquid in the main flow path 21.
  • the air introduction portion 22 and the atomization portion 23 are holes formed by penetrating each of the two substrates 20a and 20b in the thickness direction of one of the substrates 20a, and are substantially circular in a plan view.
  • One substrate 20a is, for example, a silicon substrate.
  • the air introduction portion 22 and the atomization portion 23 are formed in connection with the main flow path 21.
  • the "planar view substantially circular" means that the substrate 20a is substantially circular when viewed from the thickness direction.
  • the thickness direction of one of the substrates 20a is the same as the thickness direction D1 of the microchannel chip 2.
  • the substrate 20a on which the air introduction portion 22 and the atomizing portion 23 are formed is referred to as a first substrate 20a among the two substrates 20a and 20b, and the first of the two substrates 20a and 20b
  • the substrate 20b bonded to the 1 substrate 20a is also referred to as a second substrate 20b.
  • the above-mentioned recess for forming a flow path is formed, for example, on the main surface of the first substrate 20a on the side of the second substrate 20b.
  • Each of the plurality of branch flow paths 25 has a straight line shape.
  • the plurality of branch flow paths 25 are micro flow paths for supplying a solution to the main flow path 21, and are formed by branching from the main flow path 21, respectively.
  • a plurality of branch flow paths 25 may be branched from one place of the main flow path 21, and are not particularly limited.
  • first branch flow path 251, the second branch flow path 252, and the third branch flow path 253, which are three branch flow paths in the plurality of branch flow paths 25, will be described.
  • the number of branch flow paths 25 of the above may be two or more, and may be four or five, and is not particularly limited. As the number of branch channels 25 increases, more different types of scent components can be released from the microfluidic device 1.
  • the air introduction section 22 is provided closer to the first end 211 of the main flow path 21 than the first branch flow path 251, the second branch flow path 252, and the third branch flow path 253.
  • the air introduction portion 22 and the first end 211 of the main flow path 21 are directly connected.
  • the distance between the air introduction portion 22 and the first end 211 of the main flow path 21 is the distance between the first branch flow path 251 and the second branch flow path 252, the third branch flow path 253, and the first end 211 of the main flow path 21. Shorter than the distance.
  • the plurality of solution introduction portions 24 are holes formed so as to penetrate the first substrate 20a of the microchannel chip 2 in the thickness direction of the first substrate 20a.
  • the solution introduction section 24 formed for supplying the solution 8 to the first branch flow path 251 is used to supply the solution 8 to the first solution introduction section 241 and the second branch flow path 252.
  • the solution introduction section 24 formed in the above is defined as the second solution introduction section 242
  • the solution introduction section 24 formed for supplying the solution 8 to the third branch flow path 253 is defined as the third solution introduction section 243.
  • the solution 8 supplied to the first solution introduction unit 241 is supplied to the first solution 81
  • the solution 8 supplied to the second solution introduction unit 242 is supplied to the second solution 82
  • the solution 8 supplied to the third solution introduction unit 243 Is defined as the third solution 83.
  • the second solution 82 is a solution containing a scent component different from that of the first solution 81.
  • the first solution 81 contains, for example, the scent component of cypress, and the second solution 82 is, for example, a solution containing the scent component of roses, but is not limited thereto.
  • a second solution 82 of a type determined with reference to the idea that the scents at the opposite poles of the fragrance wheel are incompatible with each other may be prepared.
  • the third solution 83 is a solution containing a scent component different from that of the first solution 81 and the second solution 82.
  • the first branch flow path 251 is a micro flow path for supplying the first solution 81 supplied from the first solution introduction unit 241 to the main flow path 21.
  • the second branch flow path 252 is a micro flow path for supplying the second solution 82 supplied from the second solution introduction unit 242 to the main flow path 21.
  • the third branch flow path 253 is a micro flow path that supplies the third solution 83 supplied from the third solution introduction unit 243 to the main flow path 21.
  • the first solution 81, the second solution 82, or the third solution 83 supplied to the main flow path 21 is sent to the atomizing section 23 by capillary force (capillary force) in the main flow path 21.
  • the first solution 81, the second solution 82, or the third solution 83 supplied to the main flow path 21 are provided in the first solution supply device 31, the second solution supply device 32, and the third solution supply device 36, respectively.
  • the solution may be sent by the pump, and is not particularly limited.
  • the control device 6 is the first solution supply device 31, so that the first solution 81, the second solution 82, and the third solution 83 are not supplied to the main flow path 21 at the same time.
  • the second solution supply device 32 and the third solution supply device 36 are controlled.
  • the atomizing portion 23 is provided on the side opposite to the first end 211 when viewed from the second end 212 of the main flow path 21 in a plan view from the thickness direction D1 of the micro flow path chip 2.
  • the atomizing unit 23 is supplied with a liquid (solution 8) composed of any one of the first solution 81, the second solution 82, and the third solution 83.
  • the plurality of solution supply devices 3 are connected to a plurality of solution introduction portions 24 of the microchannel chip 2.
  • the solution supply device 3 for supplying the first solution 81 to the first solution introduction unit 241 is the first solution supply device 31, and the solution supply device 3 for supplying the second solution 82 to the second solution introduction unit 242 is described.
  • the solution supply device 3 that supplies the third solution 83 to the second solution supply device 32 and the third solution introduction unit 243 is defined as the third solution supply device 36.
  • the number of the solution supply devices 3 may be the same as the number of the solution introduction units 24, and is not particularly limited.
  • the first solution supply device 31 includes a tank 30 storing the first solution 81, a pump 33 for supplying the first solution 81 to the first solution introduction unit 241, a pump 33, and a first solution introduction unit 241.
  • a tube 34 for connecting and a connector 35 for connecting the tube 34 to the first solution introduction unit 241 are provided.
  • the pump 33 is driven by the control device 6 to send the first solution 81.
  • the tube 34 is made of a corrosion resistant resin.
  • the tube 34 supplies the first solution 81 fed by the pump 33 from the first solution supply device 31 to the first solution introduction unit 241.
  • the connector 35 is provided at one end of the tube 34 and is fixed to the microchannel chip 2. As a result, a part of the tube 34 is inserted into the first solution introduction section 241.
  • the connector 35 has, for example, an O-ring that contacts the entire circumference of the outer peripheral surface of the tube 34.
  • the connector 35 may be provided with a fixture so that the tube 34 does not come off from the first solution introduction portion 241 due to the pressure of the first solution 81 sent by the pump 33.
  • the second solution supply device 32 has substantially the same configuration as the first solution supply device 31 except for the tank 30 that stores the second solution 82, the description thereof will be omitted.
  • the third solution supply device 36 has substantially the same configuration as the first solution supply device 31 except for the tank 30 that stores the third solution 83, and thus the description thereof will be omitted.
  • the atomizing device 4 is a device for atomizing the first solution 81, the second solution 82, or the third solution 83 sent from the main flow path 21 to the atomizing unit 23.
  • the atomizer 4 is, for example, a SAW (Surface Acoustic Wave) device 40 (see FIGS. 3A and 3B).
  • the SAW device includes an IDT (Interdigital Transducer) electrode on a piezoelectric substrate.
  • the SAW device 40 has, for example, a piezoelectric substrate 401 and an IDT electrode 402 formed on the piezoelectric substrate 401, as shown in FIGS. 3A and 3B.
  • the IDT electrode 402 generates a surface acoustic wave on the piezoelectric substrate 401.
  • the energy of the surface acoustic wave generated by the SAW device 40 is applied to the liquid supplied to the atomizing unit 23 to atomize the liquid.
  • droplet particles are generated by atomizing the liquid (solution 8) supplied to the atomizing unit 23.
  • the microfluidic chip 2 may also use the second substrate 20b as the piezoelectric substrate 401 of the SAW device 40, as shown in FIGS. 4A and 4B.
  • the atomizing device 4 is not limited to the SAW device 40, but is, for example, an ultrasonic atomizing device 41 (see, for example, FIGS. 5A and 5B) that applies ultrasonic energy to a liquid to atomize the liquid. It is also good, and there is no particular limitation. As shown in FIGS. 5A and 5B, for example, the ultrasonic atomizer 41 is arranged inside the ring-shaped ultrasonic vibrator 411 and the ultrasonic vibrator 411 to transmit the ultrasonic vibration of the ultrasonic vibrator 411. It has a metal mesh 412 and the like. The ultrasonic atomizing device 41 is arranged on the microchannel chip 2 so as to cover the atomizing portion 23. The ultrasonic atomizing device 41 gives energy (ultrasonic energy) to the liquid supplied to the atomizing unit 23 and discharges the atomized droplet particles from the metal mesh 412.
  • an ultrasonic atomizing device 41 see, for example, FIGS. 5A and 5B
  • one type of solution 8 (liquid) of the first solution 81, the second solution 82, and the third solution 83 is atomized and released by the atomizing unit 23.
  • the particle size of the droplet particles formed by atomizing the first solution 81, the second solution 82, or the third solution 83 is several tens of nm to several tens of ⁇ m.
  • the particle size refers to the median diameter (d50).
  • the flow rates of the first solution 81, the second solution 82, and the third solution 83 supplied to the atomizing unit 23 are, for example, 1 ⁇ L / min to 30 ⁇ L / min.
  • the control device 6 is a first solution supply device so that the flow rates of the first solution 81, the second solution 82, and the third solution 83 supplied to the atomizing unit 23 are, for example, 1 ⁇ L / min to 30 ⁇ L / min. 31. Drive and control each of the second solution supply device 32 and the third solution supply device 36.
  • the size of several tens of nm to several tens of ⁇ m formed by atomizing the first solution 81, the second solution 82, or the third solution 83 sent to the main flow path 21 It is possible to emit droplet particles having a particle size of.
  • the air supply device 5a connects a pump 33 for supplying air 91 (see FIG. 7B) to the air introduction unit 22, a tube 34 connecting the pump 33 and the air introduction unit 22, and the tube 34 and the air introduction unit 22. It is provided with a connector 35 for the purpose.
  • the pump 33 of the air supply device 5a sends air 91 to the air introduction unit 22 by being driven by the control device 6.
  • the tube 34 of the air supply device 5a is made of a corrosion-resistant resin.
  • the air supply device 5a supplies the air 91 sent by the pump 33 from the air supply device 5a to the air introduction unit 22.
  • the connector 35 of the air supply device 5a is provided at one end of the tube 34.
  • one end of the tube 34 is air so that there is no gap between the connector 35 and the air introduction portion 22 when the microchannel chip 2 is connected to the portion corresponding to the air introduction portion 22. It is inserted into the introduction unit 22.
  • the connector 35 of the air supply device 5a may be provided with a fixture so that the tube 34 does not come off from the air introduction portion 22 due to the pressure of the air 91 sent by the pump 33.
  • the microfluidic device 1 At least a part of the liquid (solution 8) in the main flow path 21 is pushed out by sending the air 91 to the main flow path 21 by the air supply device 5a. It is preferable to push out all of the liquid in the main flow path 21.
  • the control device 6 drives and controls the air supply device 5a
  • the air 91 is supplied from the air supply device 5a to the main flow path 21 to push out all the liquid in the main flow path 21 from the main flow path 21. It is preferable to take it out from the atomizing unit 23.
  • the cleaning liquid supply device 5b includes a tank 30 that stores the cleaning liquid 92, a pump 33 for supplying the cleaning liquid 92 to the air introduction unit 22, and a tube 34 that connects the pump 33 and the air introduction unit 22.
  • the connector 35 for connecting the tube 34 to the air introduction unit 22 may be shared with the connector 35 of the air supply device 5a, or may be provided separately.
  • the pump 33 of the cleaning liquid supply device 5b is driven by the control device 6 to send the cleaning liquid 92 to the air introduction unit 22.
  • the tube 34 of the cleaning liquid supply device 5b is made of a corrosion-resistant resin, and the cleaning liquid 92 sent by the pump 33 is supplied from the cleaning liquid supply device 5b to the air introduction unit 22.
  • the connector 35 of the cleaning liquid supply device 5b is provided at one end of the tube 34.
  • the air introduction unit is connected so that there is no gap between the air introduction unit 22 and the connector 35 when the micro flow path chip 2 is connected to the portion corresponding to the air introduction unit 22.
  • One end of the tube 34 is inserted into 22.
  • the connector 35 may be provided with a fixture so that the tube 34 does not come off from the air introduction portion 22 due to the pressure of the cleaning liquid 92 sent by the pump 33.
  • the cleaning liquid 92 is sent to the main flow path 21, so that the main flow path 21 is cleaned by the cleaning liquid 92.
  • the cleaning solution 92 for example, water, ethanol, or a mixed solution of ethanol and water is used.
  • the cleaning liquid 92 does not necessarily have to be a combination of the substances listed here.
  • the drive device 7 is electrically connected to the electrodes of the atomizing device 4 to vibrate the atomizing device 4.
  • the driving device 7 vibrates the surface of the piezoelectric substrate 401 by applying electric power (high frequency power) to the IDT electrode 402 (surface on the surface of the piezoelectric substrate 401). Generates surface acoustic waves).
  • the atomizing device 4 applies surface acoustic wave energy to the liquid (solution 8) supplied to the atomizing unit 23 to atomize the liquid.
  • the drive device 7 is driven by a battery 71 built in the drive device 7. Since the microfluidic device 1 incorporates the battery 71 in the drive device 7, the wiring required for the microfluidic device 1 can be reduced.
  • the battery 71 includes, for example, a primary battery, a secondary battery, a solar cell, and the like.
  • the battery is, for example, a secondary battery, which is provided in the drive device 7 in a state of being removable from the drive device 7. Therefore, the battery 71 in a state of being removed from the drive device 7 is charged, so that the battery 71 can be used repeatedly.
  • the drive device 7 includes a power supply circuit that supplies the electric power output from the battery 71 to the electrode (IDT electrode 402) of the atomizing device 4.
  • the power supply circuit includes, for example, an inverter that converts a DC voltage output from the battery 71 into an AC voltage.
  • the present invention is not limited to the above-mentioned example, and the drive device 7 may be driven by electric power from a commercial power source via a power supply cord (power cord), and is not particularly limited.
  • the control device 6 controls the operation of the first solution supply device 31, the second solution supply device 32, the third solution supply device 36, the air supply device 5a, the cleaning liquid supply device 5b, and the drive device 7.
  • the control device 6 includes a control unit 61, a drive control circuit 62, a sensor signal processing unit 63, and a switching unit 64.
  • the control unit 61 is equipped with a microcomputer or the like, and controls the operation of the entire control device 6 by executing a predetermined control program or the like.
  • the drive control circuit 62 includes a first solution 81 and a second solution 82 from the first solution supply device 31, the second solution supply device 32, the third solution supply device 36, the air supply device 5a, and the cleaning liquid supply device 5b, respectively. This is a circuit that controls (drive control) the supply amounts of the third solution 83, the air 91, and the cleaning liquid 92.
  • the sensor signal processing unit 63 processes the signal from the sensor unit.
  • the sensor unit is provided on the microchannel chip 2 and detects the state of the fluid (solution 8) in the main channel 21 of the microchannel chip 2 (for example, the presence / absence of liquid, the flow rate, and the type of liquid).
  • the switching unit 64 switches the drive of the first solution supply device 31, the second solution supply device 32, the third solution supply device 36, the air supply device 5a, and the cleaning liquid supply device 5b.
  • the control device 6 includes a power cord (not shown) for obtaining electric power for operating the control unit 61, the drive control circuit 62, the sensor signal processing unit 63, and the switching unit 64 from the outside. There is.
  • control device 6 may be provided with a battery as a power source inside, and is not particularly limited.
  • the first embodiment has a scent different from the first solution 81 containing a scent component to be diffused in the air, the second solution 82 containing a scent component different from the first solution 81, the first solution 81, and the second solution 82.
  • the liquid remaining in the main flow path 21 (for example, the first solution 81) is aired in order to prevent the different scent components from being mixed with each other.
  • the next liquid (for example, the second solution 82) is supplied to the main flow path 21, and the liquid supplied to the atomizing unit 23 is atomized by the atomizing device 4.
  • the control device 6 drives the cleaning liquid supply device 5b connected to the microchannel chip 2 to send the cleaning liquid 92 from the cleaning liquid supply device 5b.
  • the main flow path 21 is washed (S10).
  • the cleaning liquid 92 stored in the tank 30 of the cleaning liquid supply device 5b is flowed toward the main flow path 21 of the micro flow path chip 2.
  • the control device 6 stops the supply of the cleaning liquid 92 from the cleaning liquid supply device 5b to the main flow path 21 of the microchannel chip 2 by stopping the cleaning liquid supply device 5b (S30).
  • the control device 6 detects the completion of cleaning based on the output of the sensor unit.
  • the control device 6 is not limited to this, and a timer is provided in the control unit 61, and the cleaning liquid supply device 5b is micron for a predetermined time.
  • the cleaning liquid 92 may be supplied to the main flow path 21 of the flow path chip 2.
  • the sensor unit includes, for example, a light emitting device that projects light onto the liquid in the main flow path 21, and a light receiving device that receives light that is projected from the light emitting device and transmitted through the liquid in the main flow path 21.
  • the liquid is a colored liquid such as aroma
  • the cleaning liquid 92 is a colorless and transparent liquid such as ethanol
  • the completion of cleaning can be detected based on the amount of light received by the light receiving device.
  • the control device 6 is a solution supply device that stores, for example, a solution 8 containing a scent component (a solution 8 containing a scent component to be diffused in the air) determined by the user of the microfluidic device 1 in the tank 30.
  • the control device 6 drives, for example, a first solution supply device 31 containing the first solution 81 to send the first solution 81 from the first solution supply device 31 to the main flow path 21 of the microchannel chip 2. Let it liquid (S40).
  • the first solution 81 stored in the tank 30 of the first solution supply device 31 flows from the first branch flow path 251 through the first solution introduction section 241.
  • the right side of the alternate long and short dash line is a cross section along the X-ray cross section of FIG. 2A
  • the left side of the alternate long and short dash line is a cross section along the first branch flow path 251.
  • control device 6 stops driving the first solution supply device 31 to stop the supply of the first solution 81 from the first solution supply device 31 to the main flow path 21 of the microchannel chip 2 (S60). ).
  • the control device 6 drives the air supply device 5a to send the air 91 from the air supply device 5a to the main flow path 21 of the micro flow path chip 2 (S80).
  • the air 91 is supplied from the air supply device 5a to the main flow path 21 through the air introduction unit 22, and at least a part of the first solution 81 in the main flow path 21 is supplied. It is extruded by air 91.
  • FIG. 7B corresponds to the X-ray cross section of FIG. 2A.
  • control device 6 determines that the first solution 81 in the main flow path 21 has been sent out based on the signal from the sensor unit, and stops the drive of the air supply device 5a, thereby causing the mainstream.
  • the supply of air 91 to the road 21 is stopped (S100).
  • control device 6 determines, for example, whether or not to end the operation (S110).
  • the control device 6 drives the solution supply device 3 that stores the solution 8 containing the scent component different from the scent component contained in the first solution 81 in the tank 30.
  • the control device 6 drives, for example, a second solution supply device 32 including the second solution 82 to send the second solution 82 from the second solution supply device 32 to the main flow path 21 of the microchannel chip 2.
  • the second solution 82 stored in the tank 30 of the second solution supply device 32 flows from the second branch flow path 252 through the second solution introduction section 242. It is supplied to the road 21 and supplied to the atomizing unit 23.
  • the microfluidic device 1 can suppress the atomization of the first solution 81 and the atomization of the second solution 82 at the same time.
  • the right side of the alternate long and short dash line is a cross section along the X-ray cross section of FIG. 2A
  • the left side of the alternate long and short dash line is a cross section along the second branch flow path 252.
  • the control device 6 if the control device 6 operates from S40 to S100 and then determines that it is not terminated in S110, the control device 6 returns to S40 and drives, for example, a third solution supply device 36 containing the third solution 83.
  • the third solution 83 is sent from the third solution supply device 36 to the main flow path 21 of the microchannel chip 2 (S40).
  • the third solution 83 stored in the tank of the third solution supply device 36 flows from the third branch flow path 253 to the main flow path 21 through the third solution introduction section 243 and is atomized. It is supplied to 23.
  • the user determines in advance the input device of the control device 6. It can be decided by using such as.
  • the input device is, for example, the user's preference for scent, the environment in which the microfluidic device 1 is used (usage scene), the time zone in which the scent component is to be released (for example, morning, noon, night, etc.) or It is configured so that the type of solution to be atomized and the time zone or time can be linked and input in consideration of time and the like.
  • the control device 6 can create a program in which the type of the solution to be atomized is associated with the time zone or time based on the input of the input device, and the operation of the flowchart of FIG. 6 is performed based on this program. .. Therefore, for example, when the user wants to diffuse different fragrance components into the air at different time zones, different solutions (for example, first solution and second solution) are not continuously supplied to the main flow path 21. , At least a part of the first solution 81 can be pushed out from the main flow path 21 by inserting air 91 between different solutions (first solution, second solution). As a result, by suppressing the mixing of the first solution 81 and the second solution 82 in the main flow path 21, it is possible to easily suppress the mixing of different components to be diffused in the air.
  • different solutions for example, first solution and second solution
  • microfluidic device 1 for example, it is possible to prevent the scent components of cypress and rose from being mixed and diffused into the air, which is unpleasant for humans.
  • the air 91 supplied to the main flow path 21 can be discharged into the air from the atomizing unit 23 in the same manner as the solution 8. Therefore, when switching the scent component, it is not necessary to use the cleaning liquid 92, and the microfluidic device 1 can be miniaturized.
  • the first solution 81 previously contained in the main flow path 21 can be pushed out by the air 91, so that the scent can be obtained.
  • the daily running cost can be reduced as compared with the case where the cleaning liquid 92 is supplied into the main flow path 21 each time.
  • the microfluidic device 1 atomizes the solution 8 containing the bactericidal medicinal component and diffuses it into the air.
  • the first solution 81 is a solution containing a bactericidal medicinal component
  • the second solution 82 is a solution containing a bactericidal medicinal component different from the first solution 81.
  • the microfluidic device 1 of the second embodiment is installed in a living room such as an office, and atomizes a solution 8 containing a component for preventing infectious diseases such as influenza and diffuses it into the air.
  • a living room such as an office
  • the user in the living room where the microfluidic device 1 is installed can take preventive measures against infectious diseases while working in the office, for example.
  • FIG. 8 is a schematic configuration diagram of the microfluidic device 1 according to the third embodiment. As shown in FIG. 8, the microfluidic device 1 according to the third embodiment is used to prepare two or more kinds of target liquids, such as a first solution 81 and a second solution 82, from a plurality of kinds (three kinds or more) of solutions 8. A blending unit 100 for blending is further provided.
  • the compounding unit 100 is formed on, for example, the microchannel chip 2.
  • the microfluidic device 1 discharges droplet particles having a size of several tens of nm to several tens of ⁇ m formed by atomizing the prepared liquid produced by mixing two or more kinds of target liquids in the mixing unit 100. Can be done.
  • the second solution 82 is a solution containing a scent component different from that of the first solution 81.
  • the first solution 81 contains, for example, a hinoki scent component
  • the second solution 82 contains, for example, a scent component that does not give a human-unpleasant scent even when mixed with the hinoki scent component.
  • the third solution 83 is a solution containing a scent component different from that of the first solution 81 and the second solution 82, and contains, for example, a rose scent component.
  • a first solution 81 containing a scent component to be diffused in the air and a second solution 82 containing a scent component different from the first solution 81 are prepared by the mixing unit 100. Even if the third solution 83 containing a fragrance component different from that of the first solution 81 and the second solution 82 is supplied after atomization, the mixed solution of the first solution 81 and the second solution 82 and the third solution 83
  • the feature is that at least a part of the preparation solution is extruded with air after the preparation solution of the first solution 81 and the second solution 82 is supplied and before the third solution 83 is supplied in order to prevent the mixture from being mixed with each other.
  • this point will be described with reference to the flowchart shown in FIG. 9 for the operation of the control device 6. The same operation as the control device 6 of the microfluidic device 1 according to the first embodiment will be omitted as appropriate.
  • the control device 6 includes two solution supply devices 3 (for example, the first solution 81) among the plurality of solution supply devices 3.
  • the 1 solution supply device 31 and the second solution supply device 32) including the second solution 82 are driven to transfer two types of solutions (first solution 81 and second solution 82) to the main flow path of the microchannel chip 2. It is supplied to 21 and prepared by the compounding unit 100, and the compounding solution (first compounding solution) of the first solution 81 and the second solution 82 is supplied to the atomizing unit 23 (S31).
  • the microfluidic device 1 atomizes the liquid composed of the compound liquid supplied to the atomizing unit 23 by the atomizing device 4, so that the scent component in which a plurality of types of scent components are mixed can be released into the air.
  • the control device 6 stops driving the two solution supply devices 3 (first solution supply device 31 and the second solution supply device 32), and the two solution supply devices 3 (first solution supply device 31 and the second solution supply device 32) are stopped.
  • the supply of the two types of solutions 8 (first solution 81 and second solution 82) from the second solution supply device 32) to the main flow path 21 of the microchannel chip 2 is stopped (S60).
  • the control device 6 drives the air supply device 5a to send the air 91 from the air supply device 5a to the main flow path 21 of the micro flow path chip 2 (S80).
  • control device 6 determines that the compound liquid in the main flow path 21 has been sent out based on the signal from the sensor unit, and stops the drive of the air supply device 5a, whereby the main flow path 21 The supply of air 91 to the air 91 is stopped (S100).
  • control device 6 determines, for example, whether or not to end the operation (S110). When ending the operation (NO in S110), the power is turned off. On the other hand, when the operation is not terminated (YES in S110), the process returns to S31.
  • the control device 6 drives only one solution supply device 3 (third solution supply device 36) when returning from S110 to S31, but the two solution supply devices 3 (for example, the second solution).
  • the second solution 82 and the third solution 83 are driven to drive the supply device 32 and the third solution supply device 36), and the second solution 82 and the third solution 83 are mixed by the compounding unit 100 to prepare a second solution of the second solution 82 and the third solution 83.
  • the prepared solution of the above may be supplied to the atomizing unit 23 to atomize it.
  • the control device 6 prepares, for example, three kinds of solutions 8 (first solution 81, second solution 82, third solution 83) having different scent components in the mixing unit 100 and atomizes the solution.
  • the three solution supply devices 3 may be driven so as to be supplied to the 23, or four or more kinds of solutions 8 having different scent components may be mixed by the mixing unit 100 and supplied to the atomizing unit 23. , There is no particular limitation.
  • the microchannel chip 2 includes the first solution 81, the second solution 82, and the second solution 83.
  • a fourth solution or a fifth solution containing a scent component different from that of the third solution 83 may be supplied.
  • a fourth solution supply device (not shown) or a fifth solution supply device (not shown) for supplying the fourth solution is provided accordingly.
  • the fourth solution supply device may be driven to send the fourth solution to the main flow path 21 by returning to S40.
  • the microfluidic device 1 can diffuse the scent component contained in the fourth solution into the air.
  • the scent components contained in the solution 8 include, for example, orange bitter, orange sweet, oregano, opoponax, elemi, oak moss, winter green, iris, ylang ylang, immortelle, inula, ambread seed, anjulica root, carnation, etc.
  • Garlic Kananga, Kabosu, Chamomile German, Chamomile Roman, Kaya, Kayupte, Karamas, Caramint, Galangal, Cardamon, Galvanum, Caraway, Carrot Seed, Kinmokusei, Quera, Kusunoki, Kumin, Clarisage, Grapefruit, Crawl, Chromoji, Getto, Koyamaki, Costas, Copaiba, Coriander, Perilla, Cinnamon Burke, Jasmine, Ginger, Sugi, Sudachi, Sage, Turmeric, Parsley, Hakka, Vanilla, Bitter Almond, Hyacinth, Black Pepper, Peppermint, Bergamot, Bergamot Mint, Myrtle, It may be mustard, mimosa, melissa, fir, yuzu, lime, lavender, lemon, lemongrass, rose absolute, bergamot, rosemary cineole and the like. Further, the solution 8 may be mixed with the above-mentioned scent components as long as it is not an unpleasant scent component by humans, and is not
  • the microfluidic device 1 can atomize various different scent components and diffuse them into the air.
  • control unit 61 may drive the cleaning liquid supply device 5b to clean the main flow path 21 of the micro flow path chip 2 with the cleaning liquid 92.
  • the microfluidic device 1 can be stopped without leaving the solution 8 in the main flow path 21.
  • the solution supply device 3 may have a structure capable of appropriately replenishing the solution 8 stored in the tank 30.
  • the solution 8 is supplied to the solution introduction unit 24 by the solution supply device 3, but the solution 8 may be supplied by a syringe pump or the like.
  • the above-mentioned microfluidic device 1 is provided in a living space such as a living room, a dining room, a bedroom, a conference room in an office, a nap room in an office, a centralized booth in an office, etc., but is not particularly limited.
  • the microfluidic device (1) includes a microfluidic chip (2).
  • the micro flow path chip (2) includes a main flow path (21), a first branch flow path (251), a second branch flow path (252), an air introduction section (22), and an atomization section (23). And, including.
  • the main flow path (21) is a micro flow path having one end (211) and the other end (212).
  • the first branch flow path (251) is connected to the main flow path (21) between one end (211) and the other end (212) of the main flow path (21).
  • the first branch flow path (251) is a flow path of the first solution (81).
  • the second branch flow path (252) is connected to the main flow path (21) between one end (211) and the other end (212) of the main flow path (21).
  • the second branch flow path (252) is a flow path of the second solution (82) different from the first solution (81).
  • the air introduction section (22) has a main flow path (21) at one end (211) side of each position where the first branch flow path (251) and the second branch flow path (252) are connected in the main flow path (21). ) Is connected. Air is supplied to the air introduction section (22).
  • the atomizing portion (23) is provided on the side opposite to one end (211) when viewed from the other end (212) of the main flow path (21).
  • the atomizing section (23) is supplied with a liquid composed of any one of the first solution (81) and the second solution (82) through the main flow path (21).
  • the microfluidic device (1) includes an atomizing device (4), an air supply device (5a), a first solution supply device (31), a second solution supply device (32), and a control device (6). , Are further provided.
  • the atomizer (4) applies energy to the liquid in the atomizing section (23) to atomize the liquid.
  • the air supply device (5a) supplies air to the air introduction unit (22).
  • the first solution supply device (31) supplies the first solution (81) to the first branch flow path (251).
  • the second solution supply device (32) supplies the second solution (82) to the second branch flow path (252).
  • the control device (6) drives and controls the atomizing device (4), the air supply device (5a), the first solution supply device (31), and the second solution supply device (32).
  • the liquid in the atomizing section (23) is atomized by the energy from the atomizing device (4).
  • the control device (6) drives the first solution supply device (31) to supply the first solution (81) to the main flow path (21), and supplies the first solution (81) to the main flow path (21).
  • the air supply device (5a) is driven to supply air to the main flow path (21) to push out at least a part of the first solution (81) in the main flow path (21), and then
  • the second solution supply device (32) is driven to supply the second solution (82) to the main flow path (21).
  • the microfluidic device (1) according to the first aspect can suppress mixing of different components to be diffused in the air.
  • the microfluidic device (1) according to the first aspect can suppress continuous mixing of components to be diffused in the air.
  • Continuous mixing means that when it is desired to make the components diffused in the air different in time series, the first solution (81) containing the components diffused in the air first is then introduced into the air. It means that it is mixed with the second solution (82) containing a component to be diffused, then atomized and diffused in the air.
  • the first solution (81) and the second solution (82) contain different scent components.
  • the first solution (81) and the second solution (82) contain different bactericidal medicinal components.
  • the bactericidal component of the first solution (81) and the bactericidal component of the second solution (82) are prevented from being mixed and diffused into the air. Is possible.
  • the atomizing device (4) generates an elastic surface wave to atomize the liquid.
  • microfluidic apparatus (1) it is possible to generate droplet particles having a smaller particle size as compared with the case where ultrasonic waves are generated to atomize the liquid.
  • the microfluidic device (1) according to the fifth aspect further includes a cleaning liquid supply device (5b) that supplies the cleaning liquid (92) to the air introduction unit (22) in the first to fourth aspects.
  • the cleaning liquid supply device (5b) supplies the cleaning liquid (92) to the main flow path (21) through the air introduction unit (22).
  • the inside of the main flow path (21) can be cleaned with the cleaning liquid (92).
  • the microfluidic device (1) includes a microchannel chip (2).
  • the micro flow path chip (2) includes a main flow path (21), three or more branch flow paths (25), an air introduction section (22), a compounding section (100), and an atomization section (23). ,including.
  • the main flow path (21) is a micro flow path having one end (211) and the other end (212).
  • Three or more branch flow paths (25) are connected to the main flow path (21) between one end (211) and the other end (212) of the main flow path (21), and three or more kinds of solutions (21) different from each other ( There is a one-to-one correspondence with 8).
  • the air introduction portion (22) is connected to the main flow path (21) at one end (211) side of each position where the three or more branch flow paths (25) are connected in the main flow path (21).
  • Air (91) is supplied to the air introduction unit (22).
  • the compounding section (100) is provided between each position and the other end (212) in the main flow path (21).
  • the atomizing portion (23) is provided on the side opposite to one end (211) when viewed from the other end (212) of the main flow path (21). In the atomizing section (23), the compounding solution prepared in the compounding section (100) is supplied through a part of the main flow path (21).
  • the microfluidic device (1) further includes an atomizing device (4), an air supply device (5a), three or more solution supply devices (3), and a control device (6).
  • the atomizing device (4) applies energy to the liquid composed of the mixed liquid supplied to the atomizing unit (23) to atomize the liquid.
  • the air supply device (5a) supplies air to the air introduction unit (22).
  • the three or more solution supply devices (3) have a one-to-one correspondence with the three or more branch flow paths (25).
  • the control device (6) drives and controls the atomizing device (4), the air supply device (5a), and three or more solution supply devices (3).
  • the control device (6) drives two or more solution supply devices (3) out of three or more solution supply devices (3), and causes the main flow path (21) to have three or more kinds of solutions (8).
  • At least two kinds of solutions (8) of the above are mixed and supplied as the first mixed solution, and after the supply of the first mixed solution is stopped, the air supply device (5a) is driven to drive the main flow path (21).
  • the supply device (3) is driven to prepare at least two kinds of solutions (8) out of three or more kinds of solutions (8) in the main flow path (21) and supply them as a second preparation liquid.
  • the microfluidic device (1) according to the sixth aspect can suppress mixing of different components to be diffused in the air.
  • the microfluidic device (1) according to the sixth aspect can suppress continuous mixing of components to be diffused in the air.
  • Continuous mixing means that when it is desired to make the components diffused in the air different in chronological order, the first formulation containing the components to be diffused into the air first is then diffused into the air. It means that it is atomized and diffused in the air after being mixed with the second formulation containing the components to be made to.
  • the control device (6) uses the first formulation only when the second formulation contains a component different from that of the first formulation. After stopping the supply of the liquid, the air supply device (5a) is driven to supply air to the main flow path (21) to push out at least a part of the first preparation liquid in the main flow path (21).
  • Microfluidic device 2 Microchannel chip 21 Main channel 22 Air introduction section 23 Atomization section 24 Solution introduction section 241 First solution introduction section 242 Second solution introduction section 243 Third solution introduction section 25 Branch flow path 251 First branch Flow path 252 Second branch flow path 253 Third branch flow path 3 Solution supply device 31 First solution supply device 32 Second solution supply device 33 Pump 34 Tube 35 Connector 36 Third solution supply device 4 Atomizer 5a Air supply device 5b Cleaning liquid supply device 6 Control device 61 Control unit 62 Drive control circuit 63 Sensor signal processing unit 64 Switching unit 7 Drive device 71 Battery 8 Solution 81 First solution 82 Second solution 83 Third solution 91 Air 92 Cleaning liquid 100 Mixing unit

Landscapes

  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

The present invention addresses the problem of providing a microfluidic device capable of preventing components that have been diffused into the air from mixing together A microfluidic device (1) comprises a control device (6) that drives/controls an air supply device (5a), a first solution supply device (31), and a second solution supply device (32). The control device (6): drives the first solution supply device (31) to supply a first solution (81) to a main flow path (21); stops the supply of the first solution (81) to the main flow path (21), and then drives the air supply device (5a) to supply air (91) to the main flow path (21) and pushes out at least a portion of the first solution (81) present in the main flow path (21); and subsequently, drives the second solution supply device (32) to supply a second solution (82) to the main flow path (21).

Description

マイクロ流体装置Microfluidic device
 本発明は、マイクロ流体装置、より詳細には、空気中に拡散させたい成分を効率よく拡散させるマイクロ流体装置に関する。 The present invention relates to a microfluidic device, more specifically, a microfluidic device that efficiently diffuses a component to be diffused into the air.
 従来から、マイクロマシン技術を応用して、化学分析や化学合成などを行うマイクロ化学チップが知られており、複数のマイクロ流路を備えたマイクロ化学チップも知られている(例えば、特許文献1)。 Conventionally, microchemical chips that perform chemical analysis and chemical synthesis by applying micromachine technology have been known, and microchemical chips having a plurality of microchannels are also known (for example, Patent Document 1). ..
 近年、エッセンシャルオイルを霧化部で霧化して放出し、アロマの香りを部屋中に拡散させて、心地よい空間を提供する試みがなされている。 In recent years, attempts have been made to provide a comfortable space by atomizing and releasing essential oils in the atomizing section and diffusing the aroma scent throughout the room.
 ここで、特許文献1に開示されたマイクロ化学チップに対して、前述の霧化部を用いることで、アロマの香りを拡散することが可能となる。 Here, by using the above-mentioned atomizing portion on the microchemical chip disclosed in Patent Document 1, it is possible to diffuse the aroma scent.
 しかしながら、異なる香り成分を含有する複数の溶液を立て続けにマイクロ流路に流すと、前者の溶液と後者の溶液との異なる香り成分が混合され、提供したい香り成分を拡散させて提供できないという恐れがあった。これは、香り成分に限らず、例えば、薬用成分など、空気中に拡散させたい成分のほとんどに及ぶことである。 However, if a plurality of solutions containing different scent components are continuously flowed through a microchannel, there is a risk that different scent components of the former solution and the latter solution will be mixed and the scent component to be provided cannot be diffused and provided. there were. This is not limited to scent components, but extends to most of the components that are desired to be diffused into the air, such as medicinal components.
特開2008-209281号公報Japanese Unexamined Patent Publication No. 2008-209281
 本発明は、このような課題に鑑みてなされたものであり、空気中に拡散させたい異なる成分同士が混じり合うことを抑制可能なマイクロ流体装置を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a microfluidic device capable of suppressing mixing of different components to be diffused in the air.
 本発明の一態様に係るマイクロ流体装置は、マイクロ流路チップを備える。前記マイクロ流路チップは、主流路と、第1分岐流路と、第2分岐流路と、空気導入部と、霧化部と、を含む。前記主流路は、一端及び他端を有するマイクロ流路である。前記第1分岐流路は、前記主流路の前記一端と前記他端との間で前記主流路につながっている。前記第1分岐流路は、第1溶液の流路である。前記第2分岐流路は、前記主流路の前記一端と前記他端との間で前記主流路につながっている。前記第2分岐流路は、前記第1溶液とは異なる第2溶液の流路である。前記空気導入部は、前記主流路において前記第1分岐流路及び前記第2分岐流路それぞれがつながっている各位置よりも前記一端側で前記主流路につながっている。前記空気導入部は、空気が供給される。前記霧化部は、前記主流路の前記他端から見て前記一端とは反対側に設けられている。前記霧化部は、前記主流路を通じて前記第1溶液と前記第2溶液とのいずれか一つからなる液体が供給される。前記マイクロ流体装置は、霧化装置と、空気供給装置と、第1溶液供給装置と、第2溶液供給装置と、制御装置と、を更に備える。前記霧化装置は、前記霧化部の前記液体にエネルギを与えて前記液体を霧化させる。前記空気供給装置は、前記空気導入部に空気を供給する。前記第1溶液供給装置は、前記第1分岐流路に前記第1溶液を供給する。前記第2溶液供給装置は、前記第2分岐流路に前記第2溶液を供給する。前記制御装置は、前記霧化装置と前記空気供給装置と前記第1溶液供給装置と前記第2溶液供給装置とを駆動制御する。前記マイクロ流体装置では、前記霧化部の液体が前記霧化装置からのエネルギにより霧化される。前記制御装置は、前記第1溶液供給装置を駆動させて前記主流路に前記第1溶液を供給させ、前記主流路に前記第1溶液を供給することを停止させた後、前記空気供給装置を駆動させて前記主流路に空気を供給させ前記主流路内の前記第1溶液の少なくとも一部を押し出させ、その後、前記第2溶液供給装置を駆動させて、前記主流路に前記第2溶液を供給させる。 The microfluidic device according to one aspect of the present invention includes a microchannel chip. The microchannel chip includes a main channel, a first branch channel, a second branch channel, an air introduction section, and an atomizing section. The main flow path is a micro flow path having one end and the other end. The first branch flow path is connected to the main flow path between the one end and the other end of the main flow path. The first branch flow path is a flow path of the first solution. The second branch flow path is connected to the main flow path between the one end and the other end of the main flow path. The second branch flow path is a flow path of a second solution different from the first solution. The air introduction portion is connected to the main flow path at one end side of each position where the first branch flow path and the second branch flow path are connected in the main flow path. Air is supplied to the air introduction section. The atomizing portion is provided on the side opposite to the one end when viewed from the other end of the main flow path. A liquid composed of any one of the first solution and the second solution is supplied to the atomizing section through the main flow path. The microfluidic device further includes an atomizing device, an air supply device, a first solution supply device, a second solution supply device, and a control device. The atomizing device applies energy to the liquid in the atomizing portion to atomize the liquid. The air supply device supplies air to the air introduction section. The first solution supply device supplies the first solution to the first branch flow path. The second solution supply device supplies the second solution to the second branch flow path. The control device drives and controls the atomizing device, the air supply device, the first solution supply device, and the second solution supply device. In the microfluidic device, the liquid in the atomizing section is atomized by the energy from the atomizing device. The control device drives the first solution supply device to supply the first solution to the main flow path, stops supplying the first solution to the main flow path, and then causes the air supply device. It is driven to supply air to the main flow path to push out at least a part of the first solution in the main flow path, and then the second solution supply device is driven to supply the second solution to the main flow path. Supply.
 本発明の一態様に係るマイクロ流体装置は、マイクロ流路チップを備える。前記マイクロ流路チップは、主流路と、3つ以上の分岐流路と、空気導入部と、調合部と、霧化部と、を含む。前記主流路は、一端及び他端を有するマイクロ流路である。前記3つ以上の分岐流路は、前記主流路の前記一端と前記他端との間で前記主流路につながっており、互いに異なる3種類以上の溶液に一対一に対応する。前記空気導入部は、前記主流路において前記3つ以上の分岐流路それぞれがつながっている各位置よりも前記一端側で前記主流路につながっている。前記空気導入部は、空気が供給される。前記調合部は、前記主流路において前記各位置と前記他端との間に設けられている。前記霧化部は、前記主流路の前記他端から見て前記一端とは反対側に設けられている。前記霧化部は、前記調合部で調合された調合液が前記主流路の一部を通じて供給される。前記マイクロ流体装置は、霧化装置と、空気供給装置と、3つ以上の溶液供給装置と、制御装置と、を更に備える。前記霧化装置は、前記霧化部に供給された調合液からなる液体にエネルギを与えて前記液体を霧化させる。前記空気供給装置は、前記空気導入部に空気を供給する。前記3つ以上の溶液供給装置は、前記3つ以上の分岐流路に一対一に対応する。前記制御装置は、前記霧化装置と前記空気供給装置と前記3つ以上の溶液供給装置を駆動制御する。前記制御装置は、前記3つ以上の溶液供給装置のうち2つ以上の溶液供給装置を駆動させて、前記主流路に前記3種類以上の溶液のうちの少なくとも2種類の溶液を調合して第1の調合液として供給させ、前記第1の調合液の供給を停止させた後、前記空気供給装置を駆動させて前記主流路に空気を供給させて前記主流路内の前記第1の調合液の少なくとも一部を押し出させ、その後、前記主流路に前記3つ以上の溶液供給装置のうち2以上の溶液供給装置を駆動させて、前記主流路に前記3種類以上の溶液のうちの少なくとも2種類の溶液を調合して第2の調合液として供給させる。 The microfluidic device according to one aspect of the present invention includes a microchannel chip. The microchannel chip includes a main channel, three or more branch channels, an air introduction section, a compounding section, and an atomizing section. The main flow path is a micro flow path having one end and the other end. The three or more branch flow paths are connected to the main flow path between the one end and the other end of the main flow path, and have a one-to-one correspondence with three or more kinds of solutions different from each other. The air introduction portion is connected to the main flow path at one end side of each position where the three or more branch flow paths are connected in the main flow path. Air is supplied to the air introduction section. The compounding section is provided between each position and the other end in the main flow path. The atomizing portion is provided on the side opposite to the one end when viewed from the other end of the main flow path. In the atomizing section, the compounding solution prepared in the compounding section is supplied through a part of the main flow path. The microfluidic device further includes an atomizing device, an air supply device, three or more solution supply devices, and a control device. The atomizing device applies energy to a liquid composed of a mixed liquid supplied to the atomizing unit to atomize the liquid. The air supply device supplies air to the air introduction section. The three or more solution supply devices have a one-to-one correspondence with the three or more branch flow paths. The control device drives and controls the atomizing device, the air supply device, and the three or more solution supply devices. The control device drives two or more solution supply devices of the three or more solution supply devices, and prepares at least two kinds of solutions of the three or more kinds of solutions in the main flow path. After supplying as the compounding solution of No. 1 and stopping the supply of the first compounding solution, the air supply device is driven to supply air to the main flow path and the first compounding solution in the main flow path. At least a part of the above three or more solutions is extruded, and then two or more of the three or more solution supply devices are driven into the main flow path, and at least two of the three or more kinds of solutions are driven into the main flow path. Various solutions are mixed and supplied as a second preparation.
図1は、実施の形態1に係るマイクロ流体装置の概略構成図である。FIG. 1 is a schematic configuration diagram of the microfluidic apparatus according to the first embodiment. 図2Aは、同上のマイクロ流体装置におけるマイクロ流路チップの平面図である。図2Bは、図2AのX-X線断面図である。図2Cは、図2AのY-Y断面図である。FIG. 2A is a plan view of the microfluidic chip in the same microfluidic device. FIG. 2B is a sectional view taken along line XX of FIG. 2A. FIG. 2C is a sectional view taken along the line YY of FIG. 2A. 図3Aは、同上のマイクロ流体装置におけるマイクロ流路チップ及び霧化装置の平面図である。図3Bは、図3AのX-X線断面図である。FIG. 3A is a plan view of the microchannel chip and the atomizer in the same microfluidic device. FIG. 3B is a sectional view taken along line XX of FIG. 3A. 図4Aは、同上のマイクロ流体装置におけるマイクロ流路チップ及び霧化装置の平面図である。図4Bは、図4AのX-X線断面図である。FIG. 4A is a plan view of the microchannel chip and the atomizer in the same microfluidic device. FIG. 4B is a sectional view taken along line XX of FIG. 4A. 図5Aは、同上のマイクロ流体装置におけるマイクロ流路チップ及び霧化装置の平面図である。図5Bは、図5AのX-X線断面図である。FIG. 5A is a plan view of the microchannel chip and the atomizer in the same microfluidic device. FIG. 5B is a sectional view taken along line XX of FIG. 5A. 図6は、実施の形態1に係るマイクロ流体装置における制御装置の動作例1を表すフローチャートである。FIG. 6 is a flowchart showing an operation example 1 of the control device in the microfluidic device according to the first embodiment. 図7A~7Cは、同上のマイクロ流体装置の動作説明図である。7A to 7C are operation explanatory views of the same microfluidic device. 図8は、実施の形態3に係るマイクロ流体装置の概略構成図である。FIG. 8 is a schematic configuration diagram of the microfluidic device according to the third embodiment. 図9は、同上のマイクロ流体装置における制御装置の動作例2を表すフローチャートである。FIG. 9 is a flowchart showing an operation example 2 of the control device in the same microfluidic device.
 以下に、実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments will be described with reference to the drawings.
 (実施の形態1)
 図1に示すように、マイクロ流体装置1は、例えば、空気中に拡散させたい成分を含む溶液8にエネルギ(例えば、表面弾性波のエネルギ)を与えて、溶液8を霧化する。マイクロ流体装置1は、溶液8をマイクロ流路チップ2の霧化部23まで輸送して、霧化部23に存在する液体(溶液8)に対して霧化装置4からエネルギを与えて液体を霧化させる。したがって、マイクロ流体装置1は、液体を霧化させる液体霧化システムである。空気中に拡散させたい成分を含む溶液8は、例えば、香り成分を含むアロマオイル、美容用の液体、薬用成分を含む医療用の液体などである。この溶液8は、複数の種類が用意されている。
(Embodiment 1)
As shown in FIG. 1, the microfluidic device 1 applies energy (for example, surface acoustic wave energy) to a solution 8 containing a component to be diffused in the air to atomize the solution 8. The microfluidic device 1 transports the solution 8 to the atomizing section 23 of the microchannel chip 2 and gives energy from the atomizing device 4 to the liquid (solution 8) existing in the atomizing section 23 to supply the liquid. Atomize. Therefore, the microfluidic device 1 is a liquid atomization system that atomizes a liquid. The solution 8 containing a component to be diffused into the air is, for example, an aroma oil containing a scent component, a cosmetological liquid, a medical liquid containing a medicinal component, or the like. A plurality of types of this solution 8 are prepared.
 マイクロ流体装置1は、マイクロ流路チップ2と、複数の溶液供給装置3と、霧化装置4と、空気供給装置5aと、洗浄液供給装置5bと、制御装置6と、駆動装置7と、を備える。 The microfluidic device 1 includes a microfluidic chip 2, a plurality of solution supply devices 3, an atomization device 4, an air supply device 5a, a cleaning liquid supply device 5b, a control device 6, and a drive device 7. Be prepared.
 マイクロ流路チップ2は、図2A~2Cに示すように、2枚の基板20a、20bの積層構造を有する。マイクロ流路チップ2は、2枚の基板20a、20bの少なくとも一方の基板(例えば、基板20a)に流路形成用凹部が形成されており、これら2枚の基板20a、20bが貼り合わされて形成される。流路形成用凹部は、主流路21と複数の分岐流路25とのそれぞれに対応する位置に形成されている。マイクロ流路チップ2は、溶液8を流すマイクロ流路である主流路21と、複数の分岐流路25と、空気導入部(空気被供給部)22と、霧化部23と、複数の溶液導入部(溶液被供給部)24と、が形成されている。 As shown in FIGS. 2A to 2C, the microchannel chip 2 has a laminated structure of two substrates 20a and 20b. The microchannel chip 2 is formed by forming a flow path forming recess on at least one of the two substrates 20a and 20b (for example, the substrate 20a), and these two substrates 20a and 20b are bonded together. Will be done. The flow path forming recess is formed at a position corresponding to each of the main flow path 21 and the plurality of branch flow paths 25. The micro flow path chip 2 includes a main flow path 21 which is a micro flow path through which the solution 8 flows, a plurality of branch flow paths 25, an air introduction section (air supply section) 22, an atomization section 23, and a plurality of solutions. An introduction section (solution supply section) 24 and a section are formed.
 なお、マイクロ流路チップ2の材料は、シリコンであるが、これに限らず、樹脂またはガラスであってもよく、特に限定されることはない。「マイクロ流路チップ2の材料」とは、上述の2枚の基板20a、20bの材料である。 The material of the microchannel chip 2 is silicon, but the material is not limited to this, and may be resin or glass, and is not particularly limited. The “material of the microchannel chip 2” is the material of the above-mentioned two substrates 20a and 20b.
 マイクロ流路チップ2は、その厚さ方向D1(図2B参照)から見て、長方形状である(図2A参照)。マイクロ流路チップ2の厚さ方向D1から見て、マイクロ流路チップ2の長手方向の長さは、例えば、50mm~60mmであるが、これに限らない。マイクロ流路チップ2の厚さ方向D1から見て、マイクロ流路チップ2の短手方向の長さは、例えば、20mm~30mmであるが、これに限らない。マイクロ流路チップ2の厚さは、0.5mmであるが、これに限らない。 The microchannel chip 2 has a rectangular shape when viewed from its thickness direction D1 (see FIG. 2B) (see FIG. 2A). The length of the microchannel chip 2 in the longitudinal direction when viewed from the thickness direction D1 of the microchannel chip 2 is, for example, 50 mm to 60 mm, but is not limited to this. The length of the microchannel chip 2 in the lateral direction when viewed from the thickness direction D1 of the microchannel chip 2 is, for example, 20 mm to 30 mm, but is not limited to this. The thickness of the microchannel chip 2 is 0.5 mm, but is not limited to this.
 主流路21は、断面が略半円形に形成され(図2C参照)、一端211(以下、第1端211ともいう)と他端212(以下、第2端212ともいう)とを有するマイクロ流路である。主流路21は、溶液8が流れる流路であって、1本の直線形状であり、主流路21の一方の端部が第1端211、主流路21の他方の端部が第2端212である。主流路21の第1端211と第2端212とのうち第1端211から見て第2端212とは反対側には、空気供給装置5aから主流路21に空気を供給するための空気導入部22が形成されている。主流路21の第2端212から見て第1端211とは反対側には、主流路21を通じて液体(溶液8)が供給される霧化部23が形成されている。主流路21の径は、例えば、10μm~200μmである。なお、主流路21は、断面が矩形であってもよい。「主流路21の断面」とは、主流路21の長さ方向に直交する断面であり、主流路21において液体の流れる方向に直交する断面である。 The main flow path 21 is a microflow having a substantially semicircular cross section (see FIG. 2C) and having one end 211 (hereinafter, also referred to as the first end 211) and the other end 212 (hereinafter, also referred to as the second end 212). The road. The main flow path 21 is a flow path through which the solution 8 flows and has a linear shape. One end of the main flow path 21 is the first end 211, and the other end of the main flow path 21 is the second end 212. Is. Air for supplying air from the air supply device 5a to the main flow path 21 on the side of the first end 211 and the second end 212 of the main flow path 21 opposite to the second end 212 when viewed from the first end 211. The introduction portion 22 is formed. An atomizing portion 23 to which a liquid (solution 8) is supplied through the main flow path 21 is formed on the side opposite to the first end 211 when viewed from the second end 212 of the main flow path 21. The diameter of the main flow path 21 is, for example, 10 μm to 200 μm. The main flow path 21 may have a rectangular cross section. The "cross section of the main flow path 21" is a cross section orthogonal to the length direction of the main flow path 21 and is a cross section orthogonal to the flow direction of the liquid in the main flow path 21.
 空気導入部22及び霧化部23は、2枚の基板20a、20bのうち一方の基板20aの厚さ方向にそれぞれ貫通されて形成される孔であり、平面視略円形である。一方の基板20aは、例えば、シリコン基板である。空気導入部22及び霧化部23は、主流路21と繋がって形成されている。「平面視略円形」とは、上記一方の基板20aの厚さ方向から見て略円形、という意味である。上記一方の基板20aの厚さ方向は、マイクロ流路チップ2の厚さ方向D1と同じ方向である。以下では、説明の便宜上、2枚の基板20a、20bのうち空気導入部22及び霧化部23が形成されている基板20aを第1基板20aと称し、2枚の基板20a、20bのうち第1基板20aに貼り合わせられている基板20bを第2基板20bとも称する。上述の流路形成用凹部は、例えば、第1基板20aにおける第2基板20b側の主面に形成されている。 The air introduction portion 22 and the atomization portion 23 are holes formed by penetrating each of the two substrates 20a and 20b in the thickness direction of one of the substrates 20a, and are substantially circular in a plan view. One substrate 20a is, for example, a silicon substrate. The air introduction portion 22 and the atomization portion 23 are formed in connection with the main flow path 21. The "planar view substantially circular" means that the substrate 20a is substantially circular when viewed from the thickness direction. The thickness direction of one of the substrates 20a is the same as the thickness direction D1 of the microchannel chip 2. In the following, for convenience of explanation, the substrate 20a on which the air introduction portion 22 and the atomizing portion 23 are formed is referred to as a first substrate 20a among the two substrates 20a and 20b, and the first of the two substrates 20a and 20b The substrate 20b bonded to the 1 substrate 20a is also referred to as a second substrate 20b. The above-mentioned recess for forming a flow path is formed, for example, on the main surface of the first substrate 20a on the side of the second substrate 20b.
 複数の分岐流路25の各々は、一本の直線形状である。複数の分岐流路25は、主流路21に溶液を供給するためのマイクロ流路であり、主流路21からそれぞれ分岐して形成されている。複数の分岐流路25に関しては、主流路21の一か所から複数の分岐流路25が分岐されていてもよく、特に限定されることはない。 Each of the plurality of branch flow paths 25 has a straight line shape. The plurality of branch flow paths 25 are micro flow paths for supplying a solution to the main flow path 21, and are formed by branching from the main flow path 21, respectively. Regarding the plurality of branch flow paths 25, a plurality of branch flow paths 25 may be branched from one place of the main flow path 21, and are not particularly limited.
 なお、本明細書では、複数の分岐流路25の中の3つの分岐流路である、第1分岐流路251、第2分岐流路252、第3分岐流路253について説明するが、複数の分岐流路25は、2つ以上あればよく、4つでも5つであってもよく、特に限定されることはない。分岐流路25の数が多くなるほど、より多くの異なる種類の香り成分をマイクロ流体装置1から放出することができる。 In this specification, the first branch flow path 251, the second branch flow path 252, and the third branch flow path 253, which are three branch flow paths in the plurality of branch flow paths 25, will be described. The number of branch flow paths 25 of the above may be two or more, and may be four or five, and is not particularly limited. As the number of branch channels 25 increases, more different types of scent components can be released from the microfluidic device 1.
 空気導入部22は、第1分岐流路251、第2分岐流路252、第3分岐流路253よりも主流路21の第1端211寄りに設けられている。空気導入部22と主流路21の第1端211とは直接つながっている。空気導入部22と主流路21の第1端211との距離は、第1分岐流路251、第2分岐流路252、第3分岐流路253それぞれと主流路21の第1端211との距離よりも短い。 The air introduction section 22 is provided closer to the first end 211 of the main flow path 21 than the first branch flow path 251, the second branch flow path 252, and the third branch flow path 253. The air introduction portion 22 and the first end 211 of the main flow path 21 are directly connected. The distance between the air introduction portion 22 and the first end 211 of the main flow path 21 is the distance between the first branch flow path 251 and the second branch flow path 252, the third branch flow path 253, and the first end 211 of the main flow path 21. Shorter than the distance.
 複数の溶液導入部24は、マイクロ流路チップ2の第1基板20aを第1基板20aの厚さ方向に貫通するように形成されている孔である。 The plurality of solution introduction portions 24 are holes formed so as to penetrate the first substrate 20a of the microchannel chip 2 in the thickness direction of the first substrate 20a.
 なお、本明細書では、第1分岐流路251に溶液8を供給するために形成されている溶液導入部24を第1溶液導入部241、第2分岐流路252に溶液8を供給するために形成されている溶液導入部24を第2溶液導入部242、第3分岐流路253に溶液8を供給するために形成されている溶液導入部24を第3溶液導入部243と定義する。 In this specification, the solution introduction section 24 formed for supplying the solution 8 to the first branch flow path 251 is used to supply the solution 8 to the first solution introduction section 241 and the second branch flow path 252. The solution introduction section 24 formed in the above is defined as the second solution introduction section 242, and the solution introduction section 24 formed for supplying the solution 8 to the third branch flow path 253 is defined as the third solution introduction section 243.
 また、第1溶液導入部241に供給される溶液8を第1溶液81、第2溶液導入部242に供給される溶液8を第2溶液82、第3溶液導入部243に供給される溶液8を第3溶液83と定義する。 Further, the solution 8 supplied to the first solution introduction unit 241 is supplied to the first solution 81, the solution 8 supplied to the second solution introduction unit 242 is supplied to the second solution 82, and the solution 8 supplied to the third solution introduction unit 243. Is defined as the third solution 83.
 第2溶液82は、第1溶液81と異なる香り成分を含んでいる溶液である。第1溶液81は、例えば、ヒノキの香り成分が含まれてあって、第2溶液82は、例えば、バラの香り成分が含まれている溶液であるが、これに限定されることはない。マイクロ流体装置1では、例えばフレグランスホイールの対極にある香り同士は相性が悪いとの考え方を参考にして決められた種類の第2溶液82が準備されていてもよい。 The second solution 82 is a solution containing a scent component different from that of the first solution 81. The first solution 81 contains, for example, the scent component of cypress, and the second solution 82 is, for example, a solution containing the scent component of roses, but is not limited thereto. In the microfluidic device 1, for example, a second solution 82 of a type determined with reference to the idea that the scents at the opposite poles of the fragrance wheel are incompatible with each other may be prepared.
 第3溶液83は、第1溶液81及び第2溶液82と異なる香り成分を含んでいる溶液である。 The third solution 83 is a solution containing a scent component different from that of the first solution 81 and the second solution 82.
 第1分岐流路251は、第1溶液導入部241から供給される第1溶液81を主流路21に供給するためのマイクロ流路である。第2分岐流路252は、第2溶液導入部242から供給される第2溶液82を主流路21に供給するためのマイクロ流路である。第3分岐流路253は、第3溶液導入部243から供給される第3溶液83を主流路21に供給するマイクロ流路である。 The first branch flow path 251 is a micro flow path for supplying the first solution 81 supplied from the first solution introduction unit 241 to the main flow path 21. The second branch flow path 252 is a micro flow path for supplying the second solution 82 supplied from the second solution introduction unit 242 to the main flow path 21. The third branch flow path 253 is a micro flow path that supplies the third solution 83 supplied from the third solution introduction unit 243 to the main flow path 21.
 主流路21に供給された第1溶液81、第2溶液82、又は第3溶液83は、主流路21内を毛管力(キャピラリ力)によって、霧化部23に送液される。なお、主流路21に供給された第1溶液81、第2溶液82、又は第3溶液83は、それぞれ第1溶液供給装置31、第2溶液供給装置32、第3溶液供給装置36に設けられているポンプによって送液されてもよく、特に限定されることはない。実施の形態1に係るマイクロ流体装置1では、第1溶液81と第2溶液82と第3溶液83とが同時に主流路21に供給されないように、制御装置6が、第1溶液供給装置31、第2溶液供給装置32、第3溶液供給装置36を制御する。 The first solution 81, the second solution 82, or the third solution 83 supplied to the main flow path 21 is sent to the atomizing section 23 by capillary force (capillary force) in the main flow path 21. The first solution 81, the second solution 82, or the third solution 83 supplied to the main flow path 21 are provided in the first solution supply device 31, the second solution supply device 32, and the third solution supply device 36, respectively. The solution may be sent by the pump, and is not particularly limited. In the microfluidic device 1 according to the first embodiment, the control device 6 is the first solution supply device 31, so that the first solution 81, the second solution 82, and the third solution 83 are not supplied to the main flow path 21 at the same time. The second solution supply device 32 and the third solution supply device 36 are controlled.
 霧化部23は、マイクロ流路チップ2の厚さ方向D1からの平面視で、主流路21の第2端212から見て第1端211とは反対側に設けられている。霧化部23は、第1溶液81と第2溶液82と第3溶液83とのいずれか一つからなる液体(溶液8)が供給される。 The atomizing portion 23 is provided on the side opposite to the first end 211 when viewed from the second end 212 of the main flow path 21 in a plan view from the thickness direction D1 of the micro flow path chip 2. The atomizing unit 23 is supplied with a liquid (solution 8) composed of any one of the first solution 81, the second solution 82, and the third solution 83.
 図1に示すように、複数の溶液供給装置3は、マイクロ流路チップ2の複数の溶液導入部24にそれぞれ繋がれている。本明細書では、第1溶液導入部241に第1溶液81を供給する溶液供給装置3を第1溶液供給装置31、第2溶液導入部242に第2溶液82を供給する溶液供給装置3を第2溶液供給装置32、第3溶液導入部243に第3溶液83を供給する溶液供給装置3を第3溶液供給装置36と定義する。溶液供給装置3の数は、溶液導入部24の数と同じ数だけ設ければよく、特に限定されることはない。 As shown in FIG. 1, the plurality of solution supply devices 3 are connected to a plurality of solution introduction portions 24 of the microchannel chip 2. In the present specification, the solution supply device 3 for supplying the first solution 81 to the first solution introduction unit 241 is the first solution supply device 31, and the solution supply device 3 for supplying the second solution 82 to the second solution introduction unit 242 is described. The solution supply device 3 that supplies the third solution 83 to the second solution supply device 32 and the third solution introduction unit 243 is defined as the third solution supply device 36. The number of the solution supply devices 3 may be the same as the number of the solution introduction units 24, and is not particularly limited.
 第1溶液供給装置31は、第1溶液81を貯めてあるタンク30と、第1溶液導入部241に第1溶液81を供給するためのポンプ33と、ポンプ33と第1溶液導入部241を繋ぐチューブ34と、チューブ34を第1溶液導入部241に接続するためのコネクタ35と、を備えている。 The first solution supply device 31 includes a tank 30 storing the first solution 81, a pump 33 for supplying the first solution 81 to the first solution introduction unit 241, a pump 33, and a first solution introduction unit 241. A tube 34 for connecting and a connector 35 for connecting the tube 34 to the first solution introduction unit 241 are provided.
 ポンプ33は、制御装置6により駆動されることによって、第1溶液81の送液を行う。 The pump 33 is driven by the control device 6 to send the first solution 81.
 チューブ34は、耐腐食性の樹脂で形成されている。チューブ34は、ポンプ33によって送液される第1溶液81を、第1溶液供給装置31から第1溶液導入部241に供給する。 The tube 34 is made of a corrosion resistant resin. The tube 34 supplies the first solution 81 fed by the pump 33 from the first solution supply device 31 to the first solution introduction unit 241.
 コネクタ35は、チューブ34の一端に設けられていて、マイクロ流路チップ2に固定されている。これにより、第1溶液導入部241には、チューブ34の一部が挿入される。コネクタ35は、例えば、チューブ34の外周面の全周にわたって接触するOリングを有する。 The connector 35 is provided at one end of the tube 34 and is fixed to the microchannel chip 2. As a result, a part of the tube 34 is inserted into the first solution introduction section 241. The connector 35 has, for example, an O-ring that contacts the entire circumference of the outer peripheral surface of the tube 34.
 なお、コネクタ35には、ポンプ33によって送液される第1溶液81による圧力によって、第1溶液導入部241からチューブ34が外れないように、固定具が設けられてあってもよい。 Note that the connector 35 may be provided with a fixture so that the tube 34 does not come off from the first solution introduction portion 241 due to the pressure of the first solution 81 sent by the pump 33.
 なお、第2溶液供給装置32は、第2溶液82を溜めているタンク30以外は、第1溶液供給装置31と略同じ構成で形成されているので、説明は省略する。第3溶液供給装置36も同様に、第3溶液83を貯めているタンク30以外は、第1溶液供給装置31と略同じ構成で形成されているので、説明は省略する。 Since the second solution supply device 32 has substantially the same configuration as the first solution supply device 31 except for the tank 30 that stores the second solution 82, the description thereof will be omitted. Similarly, the third solution supply device 36 has substantially the same configuration as the first solution supply device 31 except for the tank 30 that stores the third solution 83, and thus the description thereof will be omitted.
 霧化装置4は、主流路21から霧化部23に送液された第1溶液81、第2溶液82、又は第3溶液83を霧化するための装置である。霧化装置4は、例えば、SAW(Surface Acoustic Wave)デバイス40(図3A及び3B参照)である。SAWデバイスは、圧電基板の上にIDT(Interdigital Transducer)電極を備えている。SAWデバイス40は、例えば、図3A及び3Bに示すように、圧電基板401と、圧電基板401上に形成されているIDT電極402と、を有する。IDT電極402は、圧電基板401に表面弾性波を発生させる。マイクロ流体装置1では、SAWデバイス40で発生させる表面弾性波のエネルギを霧化部23に供給された液体に与えて液体を霧化する。マイクロ流体装置1では、霧化部23に供給された液体(溶液8)を霧化することによって液滴粒子を発生させる。なお、マイクロ流体装置1では、マイクロ流路チップ2は、図4A及び4Bに示すように、第2基板20bをSAWデバイス40の圧電基板401と兼用してもよい。 The atomizing device 4 is a device for atomizing the first solution 81, the second solution 82, or the third solution 83 sent from the main flow path 21 to the atomizing unit 23. The atomizer 4 is, for example, a SAW (Surface Acoustic Wave) device 40 (see FIGS. 3A and 3B). The SAW device includes an IDT (Interdigital Transducer) electrode on a piezoelectric substrate. The SAW device 40 has, for example, a piezoelectric substrate 401 and an IDT electrode 402 formed on the piezoelectric substrate 401, as shown in FIGS. 3A and 3B. The IDT electrode 402 generates a surface acoustic wave on the piezoelectric substrate 401. In the microfluidic device 1, the energy of the surface acoustic wave generated by the SAW device 40 is applied to the liquid supplied to the atomizing unit 23 to atomize the liquid. In the microfluidic device 1, droplet particles are generated by atomizing the liquid (solution 8) supplied to the atomizing unit 23. In the microfluidic device 1, the microfluidic chip 2 may also use the second substrate 20b as the piezoelectric substrate 401 of the SAW device 40, as shown in FIGS. 4A and 4B.
 なお、霧化装置4は、SAWデバイス40でなくても、例えば、超音波のエネルギを液体に与えて液体を霧化する超音波霧化装置41(例えば、図5A及び5B参照)であってもよく、特に限定されることはない。超音波霧化装置41は、例えば、図5A及び5Bに示すように、リング状の超音波振動子411と、超音波振動子411の内側に配置され超音波振動子411の超音波振動が伝達される金属メッシュ412と、を有する。超音波霧化装置41は、霧化部23を覆うようにマイクロ流路チップ2上に配置されている。超音波霧化装置41は、霧化部23に供給された液体にエネルギ(超音波エネルギ)を与え霧化された液滴粒子を金属メッシュ412から放出させる。 The atomizing device 4 is not limited to the SAW device 40, but is, for example, an ultrasonic atomizing device 41 (see, for example, FIGS. 5A and 5B) that applies ultrasonic energy to a liquid to atomize the liquid. It is also good, and there is no particular limitation. As shown in FIGS. 5A and 5B, for example, the ultrasonic atomizer 41 is arranged inside the ring-shaped ultrasonic vibrator 411 and the ultrasonic vibrator 411 to transmit the ultrasonic vibration of the ultrasonic vibrator 411. It has a metal mesh 412 and the like. The ultrasonic atomizing device 41 is arranged on the microchannel chip 2 so as to cover the atomizing portion 23. The ultrasonic atomizing device 41 gives energy (ultrasonic energy) to the liquid supplied to the atomizing unit 23 and discharges the atomized droplet particles from the metal mesh 412.
 マイクロ流体装置1では、第1溶液81、第2溶液82、第3溶液83のうち一種類の溶液8(液体)が霧化部23で霧化され放出される。 In the microfluidic device 1, one type of solution 8 (liquid) of the first solution 81, the second solution 82, and the third solution 83 is atomized and released by the atomizing unit 23.
 第1溶液81、第2溶液82、又は第3溶液83を霧化することによって形成された液滴粒子の粒径は、数十nm~数十μmである。ここで粒径はメディアン径(d50)を指す。 The particle size of the droplet particles formed by atomizing the first solution 81, the second solution 82, or the third solution 83 is several tens of nm to several tens of μm. Here, the particle size refers to the median diameter (d50).
 マイクロ流体装置1では、霧化部23に供給される第1溶液81、第2溶液82及び第3溶液83の各々の流量は、例えば、1μL/min~30μL/minである。制御装置6は、霧化部23に供給される第1溶液81、第2溶液82、第3溶液83の各々の流量が例えば1μL/min~30μL/minとなるように、第1溶液供給装置31、第2溶液供給装置32及び第3溶液供給装置36の各々を駆動制御する。 In the microfluidic device 1, the flow rates of the first solution 81, the second solution 82, and the third solution 83 supplied to the atomizing unit 23 are, for example, 1 μL / min to 30 μL / min. The control device 6 is a first solution supply device so that the flow rates of the first solution 81, the second solution 82, and the third solution 83 supplied to the atomizing unit 23 are, for example, 1 μL / min to 30 μL / min. 31. Drive and control each of the second solution supply device 32 and the third solution supply device 36.
 実施の形態1のマイクロ流体装置1では、主流路21に送液された第1溶液81、第2溶液82、又は第3溶液83が霧化されて形成された数十nm~数十μmサイズの粒径を有する液滴粒子を放出させることが可能となる。 In the microfluidic device 1 of the first embodiment, the size of several tens of nm to several tens of μm formed by atomizing the first solution 81, the second solution 82, or the third solution 83 sent to the main flow path 21. It is possible to emit droplet particles having a particle size of.
 空気供給装置5aは、空気導入部22に空気91(図7B参照)を供給するためのポンプ33と、ポンプ33と空気導入部22を繋ぐチューブ34と、チューブ34と空気導入部22を接続するためのコネクタ35と、を備えている。 The air supply device 5a connects a pump 33 for supplying air 91 (see FIG. 7B) to the air introduction unit 22, a tube 34 connecting the pump 33 and the air introduction unit 22, and the tube 34 and the air introduction unit 22. It is provided with a connector 35 for the purpose.
 空気供給装置5aのポンプ33は、制御装置6に駆動されることによって、空気導入部22に空気91を送る。 The pump 33 of the air supply device 5a sends air 91 to the air introduction unit 22 by being driven by the control device 6.
 空気供給装置5aのチューブ34は、耐腐食性の樹脂で形成されている。空気供給装置5aは、ポンプ33によって送られる空気91を、空気供給装置5aから空気導入部22に供給している。 The tube 34 of the air supply device 5a is made of a corrosion-resistant resin. The air supply device 5a supplies the air 91 sent by the pump 33 from the air supply device 5a to the air introduction unit 22.
 空気供給装置5aのコネクタ35は、チューブ34の一端に設けられている。空気供給装置5aのコネクタ35では、マイクロ流路チップ2の空気導入部22に対応する部位に接続された場合に、空気導入部22との間に隙間がないように、チューブ34の一端が空気導入部22に挿入される。 The connector 35 of the air supply device 5a is provided at one end of the tube 34. In the connector 35 of the air supply device 5a, one end of the tube 34 is air so that there is no gap between the connector 35 and the air introduction portion 22 when the microchannel chip 2 is connected to the portion corresponding to the air introduction portion 22. It is inserted into the introduction unit 22.
 なお、空気供給装置5aのコネクタ35には、ポンプ33によって送られる空気91による圧力によって、空気導入部22からチューブ34が外れないように、固定具が設けられてあってもよい。 Note that the connector 35 of the air supply device 5a may be provided with a fixture so that the tube 34 does not come off from the air introduction portion 22 due to the pressure of the air 91 sent by the pump 33.
 マイクロ流体装置1では、空気供給装置5aによって、空気91を主流路21に送ることにより、主流路21内の液体(溶液8)の少なくとも一部を押し出させる。主流路21内の液体の全部を押し出させることが好ましい。マイクロ流体装置1では、制御装置6が空気供給装置5aを駆動制御するときに、空気供給装置5aから主流路21に空気91を供給させて主流路21内の液体の全部を主流路21から押し出して霧化部23から外部へ出すのが好ましい。 In the microfluidic device 1, at least a part of the liquid (solution 8) in the main flow path 21 is pushed out by sending the air 91 to the main flow path 21 by the air supply device 5a. It is preferable to push out all of the liquid in the main flow path 21. In the microfluidic device 1, when the control device 6 drives and controls the air supply device 5a, the air 91 is supplied from the air supply device 5a to the main flow path 21 to push out all the liquid in the main flow path 21 from the main flow path 21. It is preferable to take it out from the atomizing unit 23.
 洗浄液供給装置5bは、洗浄液92を貯めあるタンク30と、空気導入部22に洗浄液92を供給するためのポンプ33と、ポンプ33と空気導入部22を繋ぐチューブ34と、を備える。チューブ34を空気導入部22に接続するためのコネクタ35は、空気供給装置5aのコネクタ35と共用されていてもよいし、別に設けられていてもよい。 The cleaning liquid supply device 5b includes a tank 30 that stores the cleaning liquid 92, a pump 33 for supplying the cleaning liquid 92 to the air introduction unit 22, and a tube 34 that connects the pump 33 and the air introduction unit 22. The connector 35 for connecting the tube 34 to the air introduction unit 22 may be shared with the connector 35 of the air supply device 5a, or may be provided separately.
 洗浄液供給装置5bのポンプ33は、制御装置6に駆動されることによって、空気導入部22に洗浄液92の送液を行う。 The pump 33 of the cleaning liquid supply device 5b is driven by the control device 6 to send the cleaning liquid 92 to the air introduction unit 22.
 洗浄液供給装置5bのチューブ34は、耐腐食性の樹脂で形成され、ポンプ33によって送液される洗浄液92を、洗浄液供給装置5bから空気導入部22に供給している。 The tube 34 of the cleaning liquid supply device 5b is made of a corrosion-resistant resin, and the cleaning liquid 92 sent by the pump 33 is supplied from the cleaning liquid supply device 5b to the air introduction unit 22.
 洗浄液供給装置5bのコネクタ35は、チューブ34の一端に設けられている。洗浄液供給装置5bのコネクタ35では、マイクロ流路チップ2において空気導入部22に対応する部位に接続された場合に、空気導入部22とコネクタ35との間に隙間がないように、空気導入部22にチューブ34の一端が挿入される。 The connector 35 of the cleaning liquid supply device 5b is provided at one end of the tube 34. In the connector 35 of the cleaning liquid supply device 5b, the air introduction unit is connected so that there is no gap between the air introduction unit 22 and the connector 35 when the micro flow path chip 2 is connected to the portion corresponding to the air introduction unit 22. One end of the tube 34 is inserted into 22.
 なお、コネクタ35には、ポンプ33によって送液される洗浄液92による圧力により空気導入部22からチューブ34が外れないように、固定具が設けられてあってもよい。 Note that the connector 35 may be provided with a fixture so that the tube 34 does not come off from the air introduction portion 22 due to the pressure of the cleaning liquid 92 sent by the pump 33.
 マイクロ流体装置1では、洗浄液92が主流路21に送られることにより、洗浄液92により主流路21が洗浄される。 In the microfluidic device 1, the cleaning liquid 92 is sent to the main flow path 21, so that the main flow path 21 is cleaned by the cleaning liquid 92.
 洗浄液92には、例えば、水、エタノール、又はエタノールと水の混合液が用いられる。なお、洗浄液92は、必ずしもここに挙げた物質の組み合わせでなくてもよい。 For the cleaning solution 92, for example, water, ethanol, or a mixed solution of ethanol and water is used. The cleaning liquid 92 does not necessarily have to be a combination of the substances listed here.
 駆動装置7は、霧化装置4の電極に電気的に接続されて霧化装置4を振動させるものである。霧化装置4が例えば上述のSAWデバイス40の場合、駆動装置7は、電力(高周波電力)をIDT電極402に印加することにより、圧電基板401の表面を振動させる(圧電基板401の表面に表面弾性波を発生させる)。霧化装置4は、霧化部23に供給されている液体(溶液8)に表面弾性波のエネルギを与えて液体を霧化させる。 The drive device 7 is electrically connected to the electrodes of the atomizing device 4 to vibrate the atomizing device 4. When the atomizing device 4 is, for example, the SAW device 40 described above, the driving device 7 vibrates the surface of the piezoelectric substrate 401 by applying electric power (high frequency power) to the IDT electrode 402 (surface on the surface of the piezoelectric substrate 401). Generates surface acoustic waves). The atomizing device 4 applies surface acoustic wave energy to the liquid (solution 8) supplied to the atomizing unit 23 to atomize the liquid.
 駆動装置7は、その内部に内蔵された電池71によって駆動される。マイクロ流体装置1は、駆動装置7において電池71を内蔵していることにより、マイクロ流体装置1に必要な配線を減少させることができる。 The drive device 7 is driven by a battery 71 built in the drive device 7. Since the microfluidic device 1 incorporates the battery 71 in the drive device 7, the wiring required for the microfluidic device 1 can be reduced.
 電池71は、例えば、一次電池、二次電池、及び太陽電池などを含む。電池は、一例として、二次電池であって、駆動装置7から取り外し可能な状態で駆動装置7に設けられてある。そのため、駆動装置7から取り外された状態の電池71が充電されることにより、電池71は繰り返し使用可能となる。また、駆動装置7は、電池71から出力される電力を霧化装置4の電極(IDT電極402)に供給する電源回路を備えている。電源回路は、例えば、電池71から出力される直流電圧を交流電圧に変換するインバータなどを含む。 The battery 71 includes, for example, a primary battery, a secondary battery, a solar cell, and the like. The battery is, for example, a secondary battery, which is provided in the drive device 7 in a state of being removable from the drive device 7. Therefore, the battery 71 in a state of being removed from the drive device 7 is charged, so that the battery 71 can be used repeatedly. Further, the drive device 7 includes a power supply circuit that supplies the electric power output from the battery 71 to the electrode (IDT electrode 402) of the atomizing device 4. The power supply circuit includes, for example, an inverter that converts a DC voltage output from the battery 71 into an AC voltage.
 ただし、上述した例に限らず、駆動装置7は、給電コード(電源コード)を介して商用電源からの電力で駆動されてもよく、特に限定されることはない。 However, the present invention is not limited to the above-mentioned example, and the drive device 7 may be driven by electric power from a commercial power source via a power supply cord (power cord), and is not particularly limited.
 制御装置6は、第1溶液供給装置31、第2溶液供給装置32、第3溶液供給装置36、空気供給装置5a、洗浄液供給装置5b、及び駆動装置7に対する動作制御を行う。制御装置6は、制御部61と、駆動制御回路62と、センサ信号処理部63と、切換部64と、を備えている。 The control device 6 controls the operation of the first solution supply device 31, the second solution supply device 32, the third solution supply device 36, the air supply device 5a, the cleaning liquid supply device 5b, and the drive device 7. The control device 6 includes a control unit 61, a drive control circuit 62, a sensor signal processing unit 63, and a switching unit 64.
 制御部61は、マイクロコンピュータなどを備え、所定の制御プログラムなどを実行することによって、制御装置6全体の動作を司るものである。駆動制御回路62は、第1溶液供給装置31、第2溶液供給装置32、第3溶液供給装置36、空気供給装置5a、及び洗浄液供給装置5bそれぞれからの第1溶液81、第2溶液82、第3溶液83、空気91、及び洗浄液92の供給量の制御(駆動制御)を行う回路である。制御部61は、上述のマイクロコンピュータのメモリに記録された上記所定の制御プログラムをマイクロコンピュータが実行することによって、本開示における制御部61の実行主体としての機能が実現される。 The control unit 61 is equipped with a microcomputer or the like, and controls the operation of the entire control device 6 by executing a predetermined control program or the like. The drive control circuit 62 includes a first solution 81 and a second solution 82 from the first solution supply device 31, the second solution supply device 32, the third solution supply device 36, the air supply device 5a, and the cleaning liquid supply device 5b, respectively. This is a circuit that controls (drive control) the supply amounts of the third solution 83, the air 91, and the cleaning liquid 92. When the microcomputer executes the predetermined control program recorded in the memory of the microcomputer, the control unit 61 realizes the function as the execution subject of the control unit 61 in the present disclosure.
 センサ信号処理部63は、センサ部からの信号を処理する。センサ部は、マイクロ流路チップ2に設けられ、マイクロ流路チップ2における主流路21中の流体(溶液8)の状態(例えば、液体の有無、流量、液体の種類)を検出する。 The sensor signal processing unit 63 processes the signal from the sensor unit. The sensor unit is provided on the microchannel chip 2 and detects the state of the fluid (solution 8) in the main channel 21 of the microchannel chip 2 (for example, the presence / absence of liquid, the flow rate, and the type of liquid).
 切換部64は、第1溶液供給装置31、第2溶液供給装置32、第3溶液供給装置36、空気供給装置5a、洗浄液供給装置5bの駆動を切り換える。 The switching unit 64 switches the drive of the first solution supply device 31, the second solution supply device 32, the third solution supply device 36, the air supply device 5a, and the cleaning liquid supply device 5b.
 なお、制御装置6は、制御部61と、駆動制御回路62と、センサ信号処理部63と、切換部64とを動作させるための電力を外部から得るために電源コード(不図示)を備えている。 The control device 6 includes a power cord (not shown) for obtaining electric power for operating the control unit 61, the drive control circuit 62, the sensor signal processing unit 63, and the switching unit 64 from the outside. There is.
 ただし、制御装置6は、その内部に電源として電池を備えてあってもよく、特に限定されることはない。 However, the control device 6 may be provided with a battery as a power source inside, and is not particularly limited.
 実施の形態1は、空気中に拡散させたい香り成分を含む第1溶液81、第1溶液81とは異なる香り成分を含む第2溶液82、第1溶液81及び第2溶液82とは異なる香り成分を含む第3溶液83が供給されるマイクロ流体装置1において、異なる香り成分同士が混じり合うのを抑制するために、主流路21に残留している液体(例えば、第1溶液81)を空気中に押し出してから次の液体(例えば、第2溶液82)を主流路21に供給して霧化部23に供給された液体を霧化装置4により霧化させることを特徴とするが、この点について、以下にフローチャートを用いて説明する。 The first embodiment has a scent different from the first solution 81 containing a scent component to be diffused in the air, the second solution 82 containing a scent component different from the first solution 81, the first solution 81, and the second solution 82. In the microfluidic device 1 to which the third solution 83 containing the components is supplied, the liquid remaining in the main flow path 21 (for example, the first solution 81) is aired in order to prevent the different scent components from being mixed with each other. After being extruded into the main flow path 21, the next liquid (for example, the second solution 82) is supplied to the main flow path 21, and the liquid supplied to the atomizing unit 23 is atomized by the atomizing device 4. The points will be described below using a flowchart.
 図6に示すように、電源が供給され始めると、制御装置6は、マイクロ流路チップ2に接続されている洗浄液供給装置5bを駆動して、洗浄液供給装置5bから洗浄液92の送液を行わせ主流路21を洗浄させる(S10)。これにより、洗浄液供給装置5bのタンク30に貯められている洗浄液92が、マイクロ流路チップ2の主流路21へ向けて流される。 As shown in FIG. 6, when the power is started to be supplied, the control device 6 drives the cleaning liquid supply device 5b connected to the microchannel chip 2 to send the cleaning liquid 92 from the cleaning liquid supply device 5b. The main flow path 21 is washed (S10). As a result, the cleaning liquid 92 stored in the tank 30 of the cleaning liquid supply device 5b is flowed toward the main flow path 21 of the micro flow path chip 2.
 次に、制御装置6は、洗浄液供給装置5bを停止させることにより、洗浄液供給装置5bからマイクロ流路チップ2の主流路21へ洗浄液92を供給することを停止させる(S30)。なお、制御装置6は、センサ部の出力に基づいて洗浄完了の検出を行っているが、これに限らず、制御部61にタイマを設けておき、予め決めた時間だけ洗浄液供給装置5bからマイクロ流路チップ2の主流路21へ洗浄液92を供給させるようにしてもよい。センサ部は、例えば、主流路21内の液体に光を投光する発光装置と、発光装置から投光され主流路21内の液体を透過した光を受光する受光装置と、を含む。例えば、液体がアロマのような色のついている液体であり、洗浄液92がエタノールのような無色透明な液体の場合、受光装置の受光量に基いて洗浄完了を検出することができる。 Next, the control device 6 stops the supply of the cleaning liquid 92 from the cleaning liquid supply device 5b to the main flow path 21 of the microchannel chip 2 by stopping the cleaning liquid supply device 5b (S30). The control device 6 detects the completion of cleaning based on the output of the sensor unit. However, the control device 6 is not limited to this, and a timer is provided in the control unit 61, and the cleaning liquid supply device 5b is micron for a predetermined time. The cleaning liquid 92 may be supplied to the main flow path 21 of the flow path chip 2. The sensor unit includes, for example, a light emitting device that projects light onto the liquid in the main flow path 21, and a light receiving device that receives light that is projected from the light emitting device and transmitted through the liquid in the main flow path 21. For example, when the liquid is a colored liquid such as aroma and the cleaning liquid 92 is a colorless and transparent liquid such as ethanol, the completion of cleaning can be detected based on the amount of light received by the light receiving device.
 S30の後、制御装置6は、例えばマイクロ流体装置1のユーザによって決められた香り成分を含む溶液8(空気中に拡散させたい香り成分を含む溶液8)をタンク30に貯めている溶液供給装置3を駆動させる。ここでは、制御装置6は、例えば、第1溶液81を含む第1溶液供給装置31を駆動して、第1溶液供給装置31からマイクロ流路チップ2の主流路21へ第1溶液81を送液させる(S40)。これにより、マイクロ流体装置1では、図7Aに示すように、第1溶液供給装置31のタンク30に貯められている第1溶液81が第1溶液導入部241を通して第1分岐流路251から主流路21に流れて霧化部23に供給される。なお、図7Aでは、一点鎖線よりも右側が、図2AのX-X線断面に沿った断面であり、一点鎖線よりも左側が、第1分岐流路251に沿った断面である。 After S30, the control device 6 is a solution supply device that stores, for example, a solution 8 containing a scent component (a solution 8 containing a scent component to be diffused in the air) determined by the user of the microfluidic device 1 in the tank 30. Drive 3 Here, the control device 6 drives, for example, a first solution supply device 31 containing the first solution 81 to send the first solution 81 from the first solution supply device 31 to the main flow path 21 of the microchannel chip 2. Let it liquid (S40). As a result, in the microfluidic device 1, as shown in FIG. 7A, the first solution 81 stored in the tank 30 of the first solution supply device 31 flows from the first branch flow path 251 through the first solution introduction section 241. It flows through the road 21 and is supplied to the atomizing unit 23. In FIG. 7A, the right side of the alternate long and short dash line is a cross section along the X-ray cross section of FIG. 2A, and the left side of the alternate long and short dash line is a cross section along the first branch flow path 251.
 次に、制御装置6は、第1溶液供給装置31の駆動を停止して、第1溶液供給装置31からマイクロ流路チップ2の主流路21への第1溶液81の供給を停止させる(S60)。 Next, the control device 6 stops driving the first solution supply device 31 to stop the supply of the first solution 81 from the first solution supply device 31 to the main flow path 21 of the microchannel chip 2 (S60). ).
 次に、制御装置6は、空気供給装置5aを駆動して、空気供給装置5aからマイクロ流路チップ2の主流路21へ空気91を送らせる(S80)。これにより、マイクロ流体装置1では、図7Bに示すように、空気供給装置5aから空気導入部22を通して主流路21に空気91を供給させ、主流路21内の第1溶液81の少なくとも一部を空気91により押し出させる。なお、図7Bは、図2AのX-X線断面に対応している。 Next, the control device 6 drives the air supply device 5a to send the air 91 from the air supply device 5a to the main flow path 21 of the micro flow path chip 2 (S80). As a result, in the microfluidic device 1, as shown in FIG. 7B, the air 91 is supplied from the air supply device 5a to the main flow path 21 through the air introduction unit 22, and at least a part of the first solution 81 in the main flow path 21 is supplied. It is extruded by air 91. Note that FIG. 7B corresponds to the X-ray cross section of FIG. 2A.
 次に、制御装置6は、例えば、センサ部からの信号に基づいて主流路21内の第1溶液81が送り出されたことを判断して、空気供給装置5aの駆動を停止させることにより、主流路21への空気91の供給を停止させる(S100)。 Next, the control device 6 determines that the first solution 81 in the main flow path 21 has been sent out based on the signal from the sensor unit, and stops the drive of the air supply device 5a, thereby causing the mainstream. The supply of air 91 to the road 21 is stopped (S100).
 次に、制御装置6は、例えば、動作を終了しないか否かを判断する(S110)。 Next, the control device 6 determines, for example, whether or not to end the operation (S110).
 動作を終了させる場合(S110でNO)は、電源をオフさせる。一方で、動作を終了させない場合(S110でYES)は、S40に戻る。 When ending the operation (NO in S110), turn off the power. On the other hand, when the operation is not terminated (YES in S110), the process returns to S40.
 制御装置6は、S40において、第1溶液81が含んでいる香り成分と異なる香り成分を含む溶液8をタンク30に貯めている溶液供給装置3を駆動させる。ここでは、制御装置6は、例えば、第2溶液82を含む第2溶液供給装置32を駆動して、第2溶液供給装置32からマイクロ流路チップ2の主流路21へ第2溶液82を送液させる(S40)。これにより、マイクロ流体装置1では、図3Cに示すように、第2溶液供給装置32のタンク30に貯められている第2溶液82が第2溶液導入部242を通して第2分岐流路252から主流路21に供給させて霧化部23に供給させる。よって、マイクロ流体装置1は、第1溶液81の霧化と、第2溶液82の霧化とを同時に行うことを抑制することができる。なお、図7Cでは、一点鎖線よりも右側が、図2AのX-X線断面に沿った断面であり、一点鎖線よりも左側が、第2分岐流路252に沿った断面である。 In S40, the control device 6 drives the solution supply device 3 that stores the solution 8 containing the scent component different from the scent component contained in the first solution 81 in the tank 30. Here, the control device 6 drives, for example, a second solution supply device 32 including the second solution 82 to send the second solution 82 from the second solution supply device 32 to the main flow path 21 of the microchannel chip 2. Let it liquid (S40). As a result, in the microfluidic device 1, as shown in FIG. 3C, the second solution 82 stored in the tank 30 of the second solution supply device 32 flows from the second branch flow path 252 through the second solution introduction section 242. It is supplied to the road 21 and supplied to the atomizing unit 23. Therefore, the microfluidic device 1 can suppress the atomization of the first solution 81 and the atomization of the second solution 82 at the same time. In FIG. 7C, the right side of the alternate long and short dash line is a cross section along the X-ray cross section of FIG. 2A, and the left side of the alternate long and short dash line is a cross section along the second branch flow path 252.
 ここで、制御装置6は、S40からS100まで動作をした後、S110において終了させないと判断した場合、S40に戻って、例えば、第3溶液83を含む第3溶液供給装置36を駆動させて、第3溶液供給装置36からマイクロ流路チップ2の主流路21へ第3溶液83を送液させる(S40)。これにより、マイクロ流体装置1では、第3溶液供給装置36のタンクに貯められている第3溶液83が第3溶液導入部243を通して第3分岐流路253から主流路21に流れて霧化部23に供給される。 Here, if the control device 6 operates from S40 to S100 and then determines that it is not terminated in S110, the control device 6 returns to S40 and drives, for example, a third solution supply device 36 containing the third solution 83. The third solution 83 is sent from the third solution supply device 36 to the main flow path 21 of the microchannel chip 2 (S40). As a result, in the microfluidic device 1, the third solution 83 stored in the tank of the third solution supply device 36 flows from the third branch flow path 253 to the main flow path 21 through the third solution introduction section 243 and is atomized. It is supplied to 23.
 S110において動作を終了させるかさせないか、或いは、S110においてS40に戻った後に、それ以前と同じ溶液を霧化させるのか異なる溶液を霧化させるのかは、例えば、予めユーザが制御装置6の入力装置等を利用して決めることができる。ここにおいて、入力装置は、例えば、ユーザが、自身の香りの好み、マイクロ流体装置1を利用する環境(利用シーン)、香り成分を放出させたい時間帯(例えば、朝、昼、夜など)又は時間などを考慮して、霧化させる溶液の種類と時間帯又は時間とを紐づけて入力できるように構成されている。制御装置6は、入力装置の入力に基づいて、霧化させる溶液の種類と時間帯又は時間とを紐づけたプログラムを作成することができ、このプログラムに基づいて図6のフローチャートの動作を行う。したがって、例えば、ユーザが、異なる時間帯に異なる香り成分を空気中に拡散させたい場合に、異なる溶液(例えば、第1溶液、第2溶液)を主流路21に連続で供給するのではなくて、異なる溶液(第1溶液、第2溶液)同士の間に空気91を入れて第1溶液81の少なくとも一部を主流路21から押し出すことができる。これにより、主流路21内で第1溶液81と第2溶液82とが混じることを抑制することによって、空気中に拡散させたい異なる成分同士が混じり合うことを容易に抑制することができる。 Whether to terminate the operation in S110, or to atomize the same solution as before or a different solution after returning to S40 in S110, for example, the user determines in advance the input device of the control device 6. It can be decided by using such as. Here, the input device is, for example, the user's preference for scent, the environment in which the microfluidic device 1 is used (usage scene), the time zone in which the scent component is to be released (for example, morning, noon, night, etc.) or It is configured so that the type of solution to be atomized and the time zone or time can be linked and input in consideration of time and the like. The control device 6 can create a program in which the type of the solution to be atomized is associated with the time zone or time based on the input of the input device, and the operation of the flowchart of FIG. 6 is performed based on this program. .. Therefore, for example, when the user wants to diffuse different fragrance components into the air at different time zones, different solutions (for example, first solution and second solution) are not continuously supplied to the main flow path 21. , At least a part of the first solution 81 can be pushed out from the main flow path 21 by inserting air 91 between different solutions (first solution, second solution). As a result, by suppressing the mixing of the first solution 81 and the second solution 82 in the main flow path 21, it is possible to easily suppress the mixing of different components to be diffused in the air.
 また、マイクロ流体装置1では、例えば、ヒノキとバラの香り成分が混じりあって、人にとって不愉快な香りが空気中に拡散されることを抑制することができる。 Further, in the microfluidic device 1, for example, it is possible to prevent the scent components of cypress and rose from being mixed and diffused into the air, which is unpleasant for humans.
 また、主流路21に供給された空気91は、溶液8と同様に霧化部23から空気中に放出することができる。したがって、香り成分を切り換える場合は、洗浄液92を使用する必要がなく、マイクロ流体装置1を小型化することができる。 Further, the air 91 supplied to the main flow path 21 can be discharged into the air from the atomizing unit 23 in the same manner as the solution 8. Therefore, when switching the scent component, it is not necessary to use the cleaning liquid 92, and the microfluidic device 1 can be miniaturized.
 また、マイクロ流体装置1では、例えば、主流路21内に第2溶液82を供給する前に、主流路21内に先に入っている第1溶液81を空気91で押し出すことができるので、香りを変更するたびに洗浄液92を主流路21内に供給する場合と比べて、日々のランニングコストを削減することができる。 Further, in the microfluidic device 1, for example, before supplying the second solution 82 into the main flow path 21, the first solution 81 previously contained in the main flow path 21 can be pushed out by the air 91, so that the scent can be obtained. The daily running cost can be reduced as compared with the case where the cleaning liquid 92 is supplied into the main flow path 21 each time.
 (実施の形態2)
 以下、実施の形態2に係るマイクロ流体装置1について説明する。実施の形態2に係るマイクロ流体装置1に関し、実施の形態1に係るマイクロ流体装置1と同様の構成要素には同一の符号を付して説明を省略する。
(Embodiment 2)
Hereinafter, the microfluidic device 1 according to the second embodiment will be described. Regarding the microfluidic device 1 according to the second embodiment, the same components as those of the microfluidic device 1 according to the first embodiment are designated by the same reference numerals, and the description thereof will be omitted.
 実施の形態2では、マイクロ流体装置1は、殺菌薬用成分を含有する溶液8を霧化して空気中に拡散させる。ここで、第1溶液81は、殺菌薬用成分を含有する溶液であって、第2溶液82は、第1溶液81とは異なる殺菌薬用成分を含有する溶液である。 In the second embodiment, the microfluidic device 1 atomizes the solution 8 containing the bactericidal medicinal component and diffuses it into the air. Here, the first solution 81 is a solution containing a bactericidal medicinal component, and the second solution 82 is a solution containing a bactericidal medicinal component different from the first solution 81.
 実施の形態2のマイクロ流体装置1は、例えば、オフィスなどの居室に設置されて、インフルエンザなどの感染症を予防する成分を含む溶液8を霧化して空気中に拡散させる。これにより、マイクロ流体装置1が設置された居室に居るユーザは、例えば、オフィスに居て作業をしながら感染症の予防対策をすることができる。 The microfluidic device 1 of the second embodiment is installed in a living room such as an office, and atomizes a solution 8 containing a component for preventing infectious diseases such as influenza and diffuses it into the air. As a result, the user in the living room where the microfluidic device 1 is installed can take preventive measures against infectious diseases while working in the office, for example.
 (実施の形態3)
 図8は、実施の形態3に係るマイクロ流体装置1の概略構成図である。図8に示すように、実施の形態3に係るマイクロ流体装置1は、複数種類(3種類以上)の溶液8から2種類以上の対象液体、例えば、第1溶液81及び第2溶液82などを調合する調合部100を更に備える。
(Embodiment 3)
FIG. 8 is a schematic configuration diagram of the microfluidic device 1 according to the third embodiment. As shown in FIG. 8, the microfluidic device 1 according to the third embodiment is used to prepare two or more kinds of target liquids, such as a first solution 81 and a second solution 82, from a plurality of kinds (three kinds or more) of solutions 8. A blending unit 100 for blending is further provided.
 実施の形態3に係るマイクロ流体装置1では、調合部100は、例えば、マイクロ流路チップ2に形成されている。マイクロ流体装置1は、調合部100で2種類以上の対象液体を調合して生成された調合液を霧化させることによって形成された数十nm~数十μmサイズの液滴粒子を放出させることができる。 In the microfluidic device 1 according to the third embodiment, the compounding unit 100 is formed on, for example, the microchannel chip 2. The microfluidic device 1 discharges droplet particles having a size of several tens of nm to several tens of μm formed by atomizing the prepared liquid produced by mixing two or more kinds of target liquids in the mixing unit 100. Can be done.
 実施の形態3では、第2溶液82は、第1溶液81と異なる香り成分を含んでいる溶液である。第1溶液81は、例えば、ヒノキの香り成分が含まれてあって、第2溶液82は、例えば、ヒノキの香り成分と混合しても、人にとって不快な香りにならない香り成分が含まれている。 In the third embodiment, the second solution 82 is a solution containing a scent component different from that of the first solution 81. The first solution 81 contains, for example, a hinoki scent component, and the second solution 82 contains, for example, a scent component that does not give a human-unpleasant scent even when mixed with the hinoki scent component. There is.
 第3溶液83は、第1溶液81及び第2溶液82と異なる香り成分を含んでいる溶液で、例えば、バラの香り成分が含まれている。 The third solution 83 is a solution containing a scent component different from that of the first solution 81 and the second solution 82, and contains, for example, a rose scent component.
 実施の形態3に係るマイクロ流体装置1は、空気中に拡散させたい香り成分を含む第1溶液81、第1溶液81とは異なる香り成分を含む第2溶液82を調合部100で調合して霧化した後に、第1溶液81及び第2溶液82とは異なる香り成分を含む第3溶液83が供給されても、第1溶液81と第2溶液82との調合液と第3溶液83とが混じり合わないようにするために、第1溶液81と第2溶液82との調合液を供給した後に第3溶液83を供給する前に空気で調合液の少なくとも一部を押し出すことを特徴点とするが、この点について、制御装置6の動作を図9に示すフローチャートを用いて説明する。なお、実施の形態1に係るマイクロ流体装置1の制御装置6と同様の動作については説明を適宜省略する。 In the microfluidic apparatus 1 according to the third embodiment, a first solution 81 containing a scent component to be diffused in the air and a second solution 82 containing a scent component different from the first solution 81 are prepared by the mixing unit 100. Even if the third solution 83 containing a fragrance component different from that of the first solution 81 and the second solution 82 is supplied after atomization, the mixed solution of the first solution 81 and the second solution 82 and the third solution 83 The feature is that at least a part of the preparation solution is extruded with air after the preparation solution of the first solution 81 and the second solution 82 is supplied and before the third solution 83 is supplied in order to prevent the mixture from being mixed with each other. However, this point will be described with reference to the flowchart shown in FIG. 9 for the operation of the control device 6. The same operation as the control device 6 of the microfluidic device 1 according to the first embodiment will be omitted as appropriate.
 実施の形態3では、制御装置6は、S10~S30の動作を行った後、制御装置6は、複数の溶液供給装置3のうち2つの溶液供給装置3(例えば、第1溶液81を含む第1溶液供給装置31、及び第2溶液82を含む第2溶液供給装置32)を駆動させて、2種類の溶液(第1溶液81及び、第2溶液82)をマイクロ流路チップ2の主流路21に供給させて調合部100で調合させ、第1溶液81と第2溶液82との調合液(第1の調合液)を霧化部23へ供給させる(S31)。これにより、マイクロ流体装置1は、霧化部23に供給された調合液からなる液体が霧化装置4により霧化させるので、複数種類の香り成分が混合した香り成分を空気中に放出できる。 In the third embodiment, after the control device 6 performs the operations of S10 to S30, the control device 6 includes two solution supply devices 3 (for example, the first solution 81) among the plurality of solution supply devices 3. The 1 solution supply device 31 and the second solution supply device 32) including the second solution 82 are driven to transfer two types of solutions (first solution 81 and second solution 82) to the main flow path of the microchannel chip 2. It is supplied to 21 and prepared by the compounding unit 100, and the compounding solution (first compounding solution) of the first solution 81 and the second solution 82 is supplied to the atomizing unit 23 (S31). As a result, the microfluidic device 1 atomizes the liquid composed of the compound liquid supplied to the atomizing unit 23 by the atomizing device 4, so that the scent component in which a plurality of types of scent components are mixed can be released into the air.
 次に、制御装置6は、2つの溶液供給装置3(第1溶液供給装置31及び第2溶液供給装置32)の駆動を停止して、2つの溶液供給装置3(第1溶液供給装置31及び第2溶液供給装置32)からマイクロ流路チップ2の主流路21への2種類の溶液8(第1溶液81及び第2溶液82)の供給を停止させる(S60)。次に、制御装置6は、空気供給装置5aを駆動して、空気供給装置5aからマイクロ流路チップ2の主流路21へ空気91を送らせる(S80)。次に、制御装置6は、例えば、センサ部からの信号に基づいて主流路21内の調合液が送り出されたことを判断して、空気供給装置5aの駆動を停止させることにより、主流路21への空気91の供給を停止させる(S100)。次に、制御装置6は、例えば、動作を終了しないか否かを判断する(S110)。動作を終了させる場合(S110でNO)は、電源をオフさせる。一方で、動作を終了させない場合(S110でYES)は、S31に戻る。 Next, the control device 6 stops driving the two solution supply devices 3 (first solution supply device 31 and the second solution supply device 32), and the two solution supply devices 3 (first solution supply device 31 and the second solution supply device 32) are stopped. The supply of the two types of solutions 8 (first solution 81 and second solution 82) from the second solution supply device 32) to the main flow path 21 of the microchannel chip 2 is stopped (S60). Next, the control device 6 drives the air supply device 5a to send the air 91 from the air supply device 5a to the main flow path 21 of the micro flow path chip 2 (S80). Next, the control device 6 determines that the compound liquid in the main flow path 21 has been sent out based on the signal from the sensor unit, and stops the drive of the air supply device 5a, whereby the main flow path 21 The supply of air 91 to the air 91 is stopped (S100). Next, the control device 6 determines, for example, whether or not to end the operation (S110). When ending the operation (NO in S110), the power is turned off. On the other hand, when the operation is not terminated (YES in S110), the process returns to S31.
 なお、制御装置6は、S110からS31に戻ったときに、1つの溶液供給装置3(第3溶液供給装置36)のみを駆動させているが、2つの溶液供給装置3(例えば、第2溶液供給装置32と第3溶液供給装置36)を駆動させて、第2溶液82と第3溶液83を調合部100で調合させて第2溶液82と第3溶液83との調合液である第2の調合液を霧化部23へ供給させて、霧化させてもよい。 The control device 6 drives only one solution supply device 3 (third solution supply device 36) when returning from S110 to S31, but the two solution supply devices 3 (for example, the second solution). The second solution 82 and the third solution 83 are driven to drive the supply device 32 and the third solution supply device 36), and the second solution 82 and the third solution 83 are mixed by the compounding unit 100 to prepare a second solution of the second solution 82 and the third solution 83. The prepared solution of the above may be supplied to the atomizing unit 23 to atomize it.
 また、制御装置6は、S31において、例えば、互いに異なる香り成分を有する3種類の溶液8(第1溶液81、第2溶液82、第3溶液83)を調合部100で調合して霧化部23へ供給させるように3つの溶液供給装置3を駆動させてもよいし、互いに異なる香り成分を有する4種類以上の溶液8を調合部100で調合して霧化部23へ供給させてもよく、特に限定されることはない。 Further, in S31, the control device 6 prepares, for example, three kinds of solutions 8 (first solution 81, second solution 82, third solution 83) having different scent components in the mixing unit 100 and atomizes the solution. The three solution supply devices 3 may be driven so as to be supplied to the 23, or four or more kinds of solutions 8 having different scent components may be mixed by the mixing unit 100 and supplied to the atomizing unit 23. , There is no particular limitation.
 (変形例)
 実施の形態1、2では、第1溶液81と第2溶液82と第3溶液83のみを例に挙げたが、マイクロ流路チップ2には、第1溶液81、第2溶液82、及び第3溶液83とは異なる香り成分を含有する第4溶液または第5溶液が供給されてもよい。また、それに伴って、第4溶液を供給する第4溶液供給装置(不図示)または第5溶液供給装置(不図示)が備えられる。
(Modification example)
In the first and second embodiments, only the first solution 81, the second solution 82, and the third solution 83 are given as examples, but the microchannel chip 2 includes the first solution 81, the second solution 82, and the second solution 83. A fourth solution or a fifth solution containing a scent component different from that of the third solution 83 may be supplied. A fourth solution supply device (not shown) or a fifth solution supply device (not shown) for supplying the fourth solution is provided accordingly.
 この場合、例えば、実施の形態1のマイクロ流体装置1では、S40に戻って、第4溶液供給装置を駆動して第4溶液を主流路21に送液してもよい。これにより、マイクロ流体装置1は、第4溶液に含まれている香り成分を空気中に拡散することができる。 In this case, for example, in the microfluidic device 1 of the first embodiment, the fourth solution supply device may be driven to send the fourth solution to the main flow path 21 by returning to S40. As a result, the microfluidic device 1 can diffuse the scent component contained in the fourth solution into the air.
 また、溶液8に含まれる香り成分は、例えば、オレンジビター、オレンジ・スイート、オレガノ、オポポナックス、エレミ、オークモス、ウインターグリーン、イリス、イランイラン、イモーテル、イニュラ、アンブレッドシード、アンジュリカルート、カーネーション、ガーリック、カナンガ、カボス、カモミール・ジャーマン、カモミール・ローマン、カヤ、カユプテ、カラマス、カラミント、ガランガル、カルダモン、ガルバナム、キャラウェイ、キャロットシード、キンモクセイ、クエラ、クスノキ、クミン、クラリセージ、グレープフルーツ、クロール、クロモジ、ゲットウ、コウヤマキ、コスタス、コパイバ、コリアンダー、シソ、シナモンバーク、ジャスミン、ジンジャー、スギ、スダチ、セージ、ターメリック、パセリ、ハッカ、バニラ、ビターアーモンド、ヒヤシンス、ブラックペッパー、ペパーミント、ベルガモット、ベルガモットミント、マートル、マスタード、ミモザ、メリッサ、モミ、ユズ、ライム、ラベンダー、レモン、レモングラス、ローズ・アブソリュート、ローズオットー、ローズマリー・シネオールなどであってもよい。また、溶液8は、人によって不快な香り成分でなければ、上記の香り成分が混合されてあってもよく、特に限定されることはない。 The scent components contained in the solution 8 include, for example, orange bitter, orange sweet, oregano, opoponax, elemi, oak moss, winter green, iris, ylang ylang, immortelle, inula, ambread seed, anjulica root, carnation, etc. Garlic, Kananga, Kabosu, Chamomile German, Chamomile Roman, Kaya, Kayupte, Karamas, Caramint, Galangal, Cardamon, Galvanum, Caraway, Carrot Seed, Kinmokusei, Quera, Kusunoki, Kumin, Clarisage, Grapefruit, Crawl, Chromoji, Getto, Koyamaki, Costas, Copaiba, Coriander, Perilla, Cinnamon Burke, Jasmine, Ginger, Sugi, Sudachi, Sage, Turmeric, Parsley, Hakka, Vanilla, Bitter Almond, Hyacinth, Black Pepper, Peppermint, Bergamot, Bergamot Mint, Myrtle, It may be mustard, mimosa, melissa, fir, yuzu, lime, lavender, lemon, lemongrass, rose absolute, bergamot, rosemary cineole and the like. Further, the solution 8 may be mixed with the above-mentioned scent components as long as it is not an unpleasant scent component by humans, and is not particularly limited.
 以上により、マイクロ流体装置1は、様々な異なる香り成分を霧化して空気中に拡散することができる。 From the above, the microfluidic device 1 can atomize various different scent components and diffuse them into the air.
 また、制御装置6では、S110の次に、制御部61が洗浄液供給装置5bを駆動させて、マイクロ流路チップ2の主流路21を洗浄液92で洗浄させてもよい。これにより、主流路21内に溶液8を残存せずに、マイクロ流体装置1を停止させることができる。 Further, in the control device 6, next to S110, the control unit 61 may drive the cleaning liquid supply device 5b to clean the main flow path 21 of the micro flow path chip 2 with the cleaning liquid 92. As a result, the microfluidic device 1 can be stopped without leaving the solution 8 in the main flow path 21.
 また、溶液供給装置3は、タンク30に溜められている溶液8を適宜補充できる構造であってもよい。 Further, the solution supply device 3 may have a structure capable of appropriately replenishing the solution 8 stored in the tank 30.
 なお、実施の形態1、2では、溶液導入部24に対して、溶液供給装置3で溶液8を供給しているが、シリンジポンプなどで、溶液8を供給する構成であってもよい。 In the first and second embodiments, the solution 8 is supplied to the solution introduction unit 24 by the solution supply device 3, but the solution 8 may be supplied by a syringe pump or the like.
 上述したマイクロ流体装置1は、リビング、ダイニング、寝室などの住空間、オフィスの会議室、オフィスの仮眠室、オフィスの集中ブースなどに設けられるが、特に限定されることはない。 The above-mentioned microfluidic device 1 is provided in a living space such as a living room, a dining room, a bedroom, a conference room in an office, a nap room in an office, a centralized booth in an office, etc., but is not particularly limited.
 (態様)
 第1の態様に係るマイクロ流体装置(1)は、マイクロ流路チップ(2)を備える。マイクロ流路チップ(2)は、主流路(21)と、第1分岐流路(251)と、第2分岐流路(252)と、空気導入部(22)と、霧化部(23)と、を含む。主流路(21)は、一端(211)及び他端(212)を有するマイクロ流路である。第1分岐流路(251)は、主流路(21)の一端(211)と他端(212)との間で主流路(21)につながっている。第1分岐流路(251)は、第1溶液(81)の流路である。第2分岐流路(252)は、主流路(21)の一端(211)と他端(212)との間で主流路(21)につながっている。第2分岐流路(252)は、第1溶液(81)とは異なる第2溶液(82)の流路である。空気導入部(22)は、主流路(21)において第1分岐流路(251)及び第2分岐流路(252)それぞれがつながっている各位置よりも一端(211)側で主流路(21)につながっている。空気導入部(22)は、空気が供給される。霧化部(23)は、主流路(21)の他端(212)から見て一端(211)とは反対側に設けられている。霧化部(23)は、主流路(21)を通じて第1溶液(81)と第2溶液(82)とのいずれか一つからなる液体が供給される。マイクロ流体装置(1)は、霧化装置(4)と、空気供給装置(5a)と、第1溶液供給装置(31)と、第2溶液供給装置(32)と、制御装置(6)と、を更に備える。霧化装置(4)は、霧化部(23)の液体にエネルギを与えて液体を霧化させる。空気供給装置(5a)は、空気導入部(22)に空気を供給する。第1溶液供給装置(31)は、第1分岐流路(251)に第1溶液(81)を供給する。第2溶液供給装置(32)は、第2分岐流路(252)に第2溶液(82)を供給する。制御装置(6)は、霧化装置(4)と空気供給装置(5a)と第1溶液供給装置(31)と第2溶液供給装置(32)とを駆動制御する。マイクロ流体装置(1)では、霧化部(23)の液体が霧化装置(4)からのエネルギにより霧化される。制御装置(6)は、第1溶液供給装置(31)を駆動させて主流路(21)に第1溶液(81)を供給させ、主流路(21)に第1溶液(81)を供給することを停止させた後、空気供給装置(5a)を駆動させて主流路(21)に空気を供給させ主流路(21)内の第1溶液(81)の少なくとも一部を押し出させ、その後、第2溶液供給装置(32)を駆動させて、主流路(21)に第2溶液(82)を供給させる。
(Aspect)
The microfluidic device (1) according to the first aspect includes a microfluidic chip (2). The micro flow path chip (2) includes a main flow path (21), a first branch flow path (251), a second branch flow path (252), an air introduction section (22), and an atomization section (23). And, including. The main flow path (21) is a micro flow path having one end (211) and the other end (212). The first branch flow path (251) is connected to the main flow path (21) between one end (211) and the other end (212) of the main flow path (21). The first branch flow path (251) is a flow path of the first solution (81). The second branch flow path (252) is connected to the main flow path (21) between one end (211) and the other end (212) of the main flow path (21). The second branch flow path (252) is a flow path of the second solution (82) different from the first solution (81). The air introduction section (22) has a main flow path (21) at one end (211) side of each position where the first branch flow path (251) and the second branch flow path (252) are connected in the main flow path (21). ) Is connected. Air is supplied to the air introduction section (22). The atomizing portion (23) is provided on the side opposite to one end (211) when viewed from the other end (212) of the main flow path (21). The atomizing section (23) is supplied with a liquid composed of any one of the first solution (81) and the second solution (82) through the main flow path (21). The microfluidic device (1) includes an atomizing device (4), an air supply device (5a), a first solution supply device (31), a second solution supply device (32), and a control device (6). , Are further provided. The atomizer (4) applies energy to the liquid in the atomizing section (23) to atomize the liquid. The air supply device (5a) supplies air to the air introduction unit (22). The first solution supply device (31) supplies the first solution (81) to the first branch flow path (251). The second solution supply device (32) supplies the second solution (82) to the second branch flow path (252). The control device (6) drives and controls the atomizing device (4), the air supply device (5a), the first solution supply device (31), and the second solution supply device (32). In the microfluidic device (1), the liquid in the atomizing section (23) is atomized by the energy from the atomizing device (4). The control device (6) drives the first solution supply device (31) to supply the first solution (81) to the main flow path (21), and supplies the first solution (81) to the main flow path (21). After stopping this, the air supply device (5a) is driven to supply air to the main flow path (21) to push out at least a part of the first solution (81) in the main flow path (21), and then The second solution supply device (32) is driven to supply the second solution (82) to the main flow path (21).
 第1の態様に係るマイクロ流体装置(1)は、空気中に拡散させたい異なる成分同士が混じり合うことを抑制可能となる。言い換えれば、第1の態様に係るマイクロ流体装置(1)は、空気中に拡散させたい成分同士の連続的な混合を抑制することができる。「連続的な混合」とは、空気中に拡散される成分を時系列的に異ならせたい場合に、先に空気中に拡散させる成分を含む第1溶液(81)が、その後に空気中に拡散させる成分を含む第2溶液(82)と混じってから霧化され空気中に拡散されることを意味する。 The microfluidic device (1) according to the first aspect can suppress mixing of different components to be diffused in the air. In other words, the microfluidic device (1) according to the first aspect can suppress continuous mixing of components to be diffused in the air. "Continuous mixing" means that when it is desired to make the components diffused in the air different in time series, the first solution (81) containing the components diffused in the air first is then introduced into the air. It means that it is mixed with the second solution (82) containing a component to be diffused, then atomized and diffused in the air.
 第2の態様に係るマイクロ流体装置(1)では、第1の態様において、第1溶液(81)、第2溶液(82)は、互いに異なる香り成分を含有する。 In the microfluidic device (1) according to the second aspect, in the first aspect, the first solution (81) and the second solution (82) contain different scent components.
 第2の態様に係るマイクロ流体装置(1)では、第1溶液(81)の香り成分と第2溶液(82)の香り成分とが混じって空気中に拡散されるのを抑制することが可能となる。 In the microfluidic apparatus (1) according to the second aspect, it is possible to prevent the scent component of the first solution (81) and the scent component of the second solution (82) from being mixed and diffused into the air. It becomes.
 第3の態様に係るマイクロ流体装置(1)では、第1又は2の態様において、第1溶液(81)及び第2溶液(82)は、互いに異なる殺菌薬用成分を含有する。 In the microfluidic device (1) according to the third aspect, in the first or second aspect, the first solution (81) and the second solution (82) contain different bactericidal medicinal components.
 第3の態様に係るマイクロ流体装置(1)では、第1溶液(81)の殺菌薬用成分と第2溶液(82)の殺菌薬用成分とが混じって空気中に拡散されるのを抑制することが可能となる。 In the microfluidic apparatus (1) according to the third aspect, the bactericidal component of the first solution (81) and the bactericidal component of the second solution (82) are prevented from being mixed and diffused into the air. Is possible.
 第4の態様に係るマイクロ流体装置(1)では、第1~3の態様において、霧化装置(4)は、弾性表面波を発生させて液体を霧化させる。 In the microfluidic device (1) according to the fourth aspect, in the first to third aspects, the atomizing device (4) generates an elastic surface wave to atomize the liquid.
 第4の態様に係るマイクロ流体装置(1)では、超音波を発生させて液体を霧化させる場合と比べて、より小さな粒径の液滴粒子を発生させることが可能となる。 In the microfluidic apparatus (1) according to the fourth aspect, it is possible to generate droplet particles having a smaller particle size as compared with the case where ultrasonic waves are generated to atomize the liquid.
 第5の態様に係るマイクロ流体装置(1)は、第1~4の態様において、空気導入部(22)に洗浄液(92)を供給する洗浄液供給装置(5b)を更に備える。洗浄液供給装置(5b)は、空気導入部(22)を通して主流路(21)に洗浄液(92)を供給する。 The microfluidic device (1) according to the fifth aspect further includes a cleaning liquid supply device (5b) that supplies the cleaning liquid (92) to the air introduction unit (22) in the first to fourth aspects. The cleaning liquid supply device (5b) supplies the cleaning liquid (92) to the main flow path (21) through the air introduction unit (22).
 第5の態様に係るマイクロ流体装置(1)では、主流路(21)内を洗浄液(92)により洗浄することができる。 In the microfluidic apparatus (1) according to the fifth aspect, the inside of the main flow path (21) can be cleaned with the cleaning liquid (92).
 第6の態様に係るマイクロ流体装置(1)は、マイクロ流路チップ(2)を備える。マイクロ流路チップ(2)は、主流路(21)と、3つ以上の分岐流路(25)と、空気導入部(22)と、調合部(100)と、霧化部(23)と、を含む。主流路(21)は、一端(211)及び他端(212)を有するマイクロ流路である。3つ以上の分岐流路(25)は、主流路(21)の一端(211)と他端(212)との間で主流路(21)につながっており、互いに異なる3種類以上の溶液(8)に一対一に対応する。空気導入部(22)は、主流路(21)において3つ以上の分岐流路(25)それぞれがつながっている各位置よりも一端(211)側で主流路(21)につながっている。空気導入部(22)は、空気(91)が供給される。調合部(100)は、主流路(21)において各位置と他端(212)との間に設けられている。霧化部(23)は、主流路(21)の他端(212)から見て一端(211)とは反対側に設けられている。霧化部(23)は、調合部(100)で調合された調合液が主流路(21)の一部を通じて供給される。マイクロ流体装置(1)は、霧化装置(4)と、空気供給装置(5a)と、3つ以上の溶液供給装置(3)と、制御装置(6)と、を更に備える。霧化装置(4)は、霧化部(23)に供給された調合液からなる液体にエネルギを与えて液体を霧化させる。空気供給装置(5a)は、空気導入部(22)に空気を供給する。3つ以上の溶液供給装置(3)は、3つ以上の分岐流路(25)に一対一に対応する。制御装置(6)は、霧化装置(4)と空気供給装置(5a)と3つ以上の溶液供給装置(3)を駆動制御する。制御装置(6)は、3つ以上の溶液供給装置(3)のうち2つ以上の溶液供給装置(3)を駆動させて、主流路(21)に3種類以上の溶液(8)のうちの少なくとも2種類の溶液(8)を調合して第1の調合液として供給させ、第1の調合液の供給を停止させた後、空気供給装置(5a)を駆動させて主流路(21)に空気を供給させて主流路(21)内の第1の調合液の少なくとも一部を押し出させ、その後、主流路(21)に3つ以上の溶液供給装置(3)のうち2以上の溶液供給装置(3)を駆動させて、主流路(21)に3種類以上の溶液(8)のうちの少なくとも2種類の溶液(8)を調合して第2の調合液として供給させる。 The microfluidic device (1) according to the sixth aspect includes a microchannel chip (2). The micro flow path chip (2) includes a main flow path (21), three or more branch flow paths (25), an air introduction section (22), a compounding section (100), and an atomization section (23). ,including. The main flow path (21) is a micro flow path having one end (211) and the other end (212). Three or more branch flow paths (25) are connected to the main flow path (21) between one end (211) and the other end (212) of the main flow path (21), and three or more kinds of solutions (21) different from each other ( There is a one-to-one correspondence with 8). The air introduction portion (22) is connected to the main flow path (21) at one end (211) side of each position where the three or more branch flow paths (25) are connected in the main flow path (21). Air (91) is supplied to the air introduction unit (22). The compounding section (100) is provided between each position and the other end (212) in the main flow path (21). The atomizing portion (23) is provided on the side opposite to one end (211) when viewed from the other end (212) of the main flow path (21). In the atomizing section (23), the compounding solution prepared in the compounding section (100) is supplied through a part of the main flow path (21). The microfluidic device (1) further includes an atomizing device (4), an air supply device (5a), three or more solution supply devices (3), and a control device (6). The atomizing device (4) applies energy to the liquid composed of the mixed liquid supplied to the atomizing unit (23) to atomize the liquid. The air supply device (5a) supplies air to the air introduction unit (22). The three or more solution supply devices (3) have a one-to-one correspondence with the three or more branch flow paths (25). The control device (6) drives and controls the atomizing device (4), the air supply device (5a), and three or more solution supply devices (3). The control device (6) drives two or more solution supply devices (3) out of three or more solution supply devices (3), and causes the main flow path (21) to have three or more kinds of solutions (8). At least two kinds of solutions (8) of the above are mixed and supplied as the first mixed solution, and after the supply of the first mixed solution is stopped, the air supply device (5a) is driven to drive the main flow path (21). To push out at least a part of the first formulation in the main flow path (21), and then to the main flow path (21) two or more solutions of the three or more solution supply devices (3). The supply device (3) is driven to prepare at least two kinds of solutions (8) out of three or more kinds of solutions (8) in the main flow path (21) and supply them as a second preparation liquid.
 第6の態様に係るマイクロ流体装置(1)は、空気中に拡散させたい異なる成分同士が混じり合うことを抑制可能となる。言い換えれば、第6の態様に係るマイクロ流体装置(1)は、空気中に拡散させたい成分同士の連続的な混合を抑制することができる。「連続的な混合」とは、空気中に拡散される成分を時系列的に異ならせたい場合に、先に空気中に拡散させる成分を含む第1の調合液が、その後に空気中に拡散させる成分を含む第2の調合液と混じってから霧化され空気中に拡散されることを意味する。 The microfluidic device (1) according to the sixth aspect can suppress mixing of different components to be diffused in the air. In other words, the microfluidic device (1) according to the sixth aspect can suppress continuous mixing of components to be diffused in the air. "Continuous mixing" means that when it is desired to make the components diffused in the air different in chronological order, the first formulation containing the components to be diffused into the air first is then diffused into the air. It means that it is atomized and diffused in the air after being mixed with the second formulation containing the components to be made to.
 第7の態様に係るマイクロ流体装置(1)では、第6の態様において、制御装置(6)は、第2の調合液が第1の調合液と異なる成分を含む場合のみ、第1の調合液の供給を停止させた後、空気供給装置(5a)を駆動させて主流路(21)に空気を供給させて主流路(21)内の第1の調合液の少なくとも一部を押し出させる。 In the microfluidic device (1) according to the seventh aspect, in the sixth aspect, the control device (6) uses the first formulation only when the second formulation contains a component different from that of the first formulation. After stopping the supply of the liquid, the air supply device (5a) is driven to supply air to the main flow path (21) to push out at least a part of the first preparation liquid in the main flow path (21).
 1   マイクロ流体装置
 2   マイクロ流路チップ
 21  主流路
 22  空気導入部
 23  霧化部
 24  溶液導入部
 241 第1溶液導入部
 242 第2溶液導入部
 243 第3溶液導入部
 25  分岐流路
 251 第1分岐流路
 252 第2分岐流路
 253 第3分岐流路
 3   溶液供給装置
 31  第1溶液供給装置
 32  第2溶液供給装置
 33  ポンプ
 34  チューブ
 35  コネクタ
 36  第3溶液供給装置
 4   霧化装置
 5a  空気供給装置
 5b  洗浄液供給装置
 6   制御装置
 61  制御部
 62  駆動制御回路
 63  センサ信号処理部
 64  切換部
 7   駆動装置
 71  電池
 8   溶液
 81  第1溶液
 82  第2溶液
 83  第3溶液
 91  空気
 92  洗浄液
 100 調合部
1 Microfluidic device 2 Microchannel chip 21 Main channel 22 Air introduction section 23 Atomization section 24 Solution introduction section 241 First solution introduction section 242 Second solution introduction section 243 Third solution introduction section 25 Branch flow path 251 First branch Flow path 252 Second branch flow path 253 Third branch flow path 3 Solution supply device 31 First solution supply device 32 Second solution supply device 33 Pump 34 Tube 35 Connector 36 Third solution supply device 4 Atomizer 5a Air supply device 5b Cleaning liquid supply device 6 Control device 61 Control unit 62 Drive control circuit 63 Sensor signal processing unit 64 Switching unit 7 Drive device 71 Battery 8 Solution 81 First solution 82 Second solution 83 Third solution 91 Air 92 Cleaning liquid 100 Mixing unit

Claims (7)

  1.  マイクロ流路チップを備えるマイクロ流体装置であって、
     前記マイクロ流路チップは、
      一端及び他端を有するマイクロ流路である主流路と、
      前記主流路の前記一端と前記他端との間で前記主流路につながっており、第1溶液の流路である第1分岐流路、
      前記主流路の前記一端と前記他端との間で前記主流路につながっており、前記第1溶液とは異なる第2溶液の流路である第2分岐流路と、
      前記主流路において前記第1分岐流路及び前記第2分岐流路それぞれがつながっている各位置よりも前記一端側で前記主流路につながっており、空気が供給される空気導入部と、
      前記主流路の前記他端から見て前記一端とは反対側に設けられ、前記主流路を通じて前記第1溶液と前記第2溶液とのいずれか一つからなる液体が供給される霧化部と、を含み、
     前記マイクロ流体装置は、
      前記霧化部に供給された前記液体にエネルギを与えて前記液体を霧化させる霧化装置と、
      前記空気導入部に空気を供給する空気供給装置と、
      前記第1分岐流路に前記第1溶液を供給する第1溶液供給装置と、
      前記第2分岐流路に前記第2溶液を供給する第2溶液供給装置と、
      前記霧化装置と前記空気供給装置と前記第1溶液供給装置と前記第2溶液供給装置とを駆動制御する制御装置と、を更に備え、
     前記霧化部の液体が前記霧化装置からのエネルギにより霧化され、
     前記制御装置は、
      前記第1溶液供給装置を駆動させて前記主流路に前記第1溶液を供給させ、前記主流路に前記第1溶液を供給することを停止させた後、前記空気供給装置を駆動させて前記主流路に空気を供給させ前記主流路内の前記第1溶液の少なくとも一部を押し出させ、その後、前記第2溶液供給装置を駆動させて、前記主流路に前記第2溶液を供給させる、
     マイクロ流体装置。
    A microfluidic device with a microfluidic chip
    The microchannel chip
    The main flow path, which is a micro flow path having one end and the other end,
    A first branch flow path, which is connected to the main flow path between the one end and the other end of the main flow path and is a flow path of the first solution.
    A second branch flow path that is connected to the main flow path between the one end and the other end of the main flow path and is a flow path of a second solution different from the first solution.
    An air introduction portion connected to the main flow path at one end side of each position where the first branch flow path and the second branch flow path are connected in the main flow path and to which air is supplied.
    An atomizing portion provided on the side opposite to the one end when viewed from the other end of the main flow path and to which a liquid consisting of any one of the first solution and the second solution is supplied through the main flow path. , Including
    The microfluidic device
    An atomizer that applies energy to the liquid supplied to the atomizing unit to atomize the liquid, and
    An air supply device that supplies air to the air introduction section,
    A first solution supply device that supplies the first solution to the first branch flow path,
    A second solution supply device that supplies the second solution to the second branch flow path,
    A control device for driving and controlling the atomizing device, the air supply device, the first solution supply device, and the second solution supply device is further provided.
    The liquid in the atomizing part is atomized by the energy from the atomizing device, and the liquid is atomized.
    The control device is
    After driving the first solution supply device to supply the first solution to the main flow path and stopping the supply of the first solution to the main flow path, the air supply device is driven to drive the main flow. Air is supplied to the passage to push out at least a part of the first solution in the main flow path, and then the second solution supply device is driven to supply the second solution to the main flow path.
    Microfluidic device.
  2.  前記第1溶液及び前記第2溶液は、互いに異なる香り成分を含有する、
     請求項1に記載のマイクロ流体装置。
    The first solution and the second solution contain different scent components.
    The microfluidic device according to claim 1.
  3.  前記第1溶液及び前記第2溶液は、互いに異なる殺菌薬用成分を含有する、
     請求項1又は2に記載のマイクロ流体装置。
    The first solution and the second solution contain different bactericidal medicinal components.
    The microfluidic device according to claim 1 or 2.
  4.  前記霧化装置は、弾性表面波を発生させて前記液体を霧化させる、
     請求項1~3のいずれか一項に記載のマイクロ流体装置。
    The atomizer generates a surface acoustic wave to atomize the liquid.
    The microfluidic apparatus according to any one of claims 1 to 3.
  5.  前記空気導入部に洗浄液を供給する洗浄液供給装置を更に備え、
     前記洗浄液供給装置は、前記空気導入部を通して前記主流路に前記洗浄液を供給する、
     請求項1~4のいずれか一項に記載のマイクロ流体装置。
    A cleaning liquid supply device for supplying the cleaning liquid to the air introduction unit is further provided.
    The cleaning liquid supply device supplies the cleaning liquid to the main flow path through the air introduction unit.
    The microfluidic apparatus according to any one of claims 1 to 4.
  6.  マイクロ流路チップを備えるマイクロ流体装置であって、
     前記マイクロ流路チップは、
      一端及び他端を有するマイクロ流路である主流路と、
      前記主流路の前記一端と前記他端との間で前記主流路につながっており、互いに異なる3種類以上の溶液に一対一に対応する3つ以上の分岐流路と、
      前記主流路において前記3つ以上の分岐流路それぞれがつながっている各位置よりも前記一端側で前記主流路につながっており、空気が供給される空気導入部と、
      前記主流路において前記各位置と前記他端との間に設けられている調合部と、
      前記主流路の前記他端から見て前記一端とは反対側に設けられ、前記調合部で調合された調合液が前記主流路の一部を通じて供給される霧化部と、を含み、
     前記マイクロ流体装置は、
      前記霧化部に供給された調合液からなる液体にエネルギを与えて前記液体を霧化させる霧化装置と、
      前記空気導入部に空気を供給する空気供給装置と、
      前記3つ以上の分岐流路に一対一に対応する3つ以上の溶液供給装置と、
      前記霧化装置と前記空気供給装置と前記3つ以上の溶液供給装置を駆動制御する制御装置と、を更に備え、
     前記制御装置は、
      前記3つ以上の溶液供給装置のうち2つ以上の溶液供給装置を駆動させて、前記主流路に前記3種類以上の溶液のうちの少なくとも2種類の溶液を調合して第1の調合液として供給させ、前記第1の調合液の供給を停止させた後、前記空気供給装置を駆動させて前記主流路に空気を供給させて前記主流路内の前記第1の調合液の少なくとも一部を押し出させ、その後、前記主流路に前記3つ以上の溶液供給装置のうち2以上の溶液供給装置を駆動させて、前記主流路に前記3種類以上の溶液のうちの少なくとも2種類の溶液を調合して第2の調合液として供給させる、
     マイクロ流体装置。
    A microfluidic device with a microfluidic chip
    The microchannel chip
    The main flow path, which is a micro flow path having one end and the other end,
    Three or more branch flow paths that are connected to the main flow path between the one end and the other end of the main flow path and have a one-to-one correspondence with three or more kinds of solutions different from each other.
    An air introduction portion connected to the main flow path at one end side of the main flow path and to which each of the three or more branch flow paths is connected and to which air is supplied.
    A compounding portion provided between each position and the other end in the main flow path,
    It includes an atomizing portion provided on the side opposite to the one end when viewed from the other end of the main flow path and to which the compounding solution prepared in the compounding section is supplied through a part of the main flow path.
    The microfluidic device
    An atomizer that applies energy to a liquid consisting of a mixed liquid supplied to the atomizing unit to atomize the liquid, and an atomizing device.
    An air supply device that supplies air to the air introduction section,
    Three or more solution supply devices having a one-to-one correspondence with the three or more branch flow paths, and
    The atomizing device, the air supply device, and a control device for driving and controlling the three or more solution supply devices are further provided.
    The control device is
    Two or more solution supply devices of the three or more solution supply devices are driven to prepare at least two kinds of solutions of the three or more kinds of solutions in the main flow path as the first preparation solution. After supplying the solution and stopping the supply of the first compound solution, the air supply device is driven to supply air to the main flow path to supply at least a part of the first compound solution in the main flow path. It is extruded, and then two or more of the three or more solution supply devices are driven into the main flow path to prepare at least two of the three or more solutions in the main flow path. And supply it as a second formulation,
    Microfluidic device.
  7.  前記制御装置は、前記第2の調合液が前記第1の調合液と異なる成分を含む場合のみ、前記第1の調合液の供給を停止させた後、前記空気供給装置を駆動させて前記主流路に空気を供給させて前記主流路内の前記第1の調合液の少なくとも一部を押し出させる、
     請求項6に記載のマイクロ流体装置。
    The control device stops the supply of the first formulation only when the second formulation contains a component different from that of the first formulation, and then drives the air supply device to drive the mainstream. Air is supplied to the path to push out at least a part of the first formulation in the main flow path.
    The microfluidic apparatus according to claim 6.
PCT/JP2020/030248 2019-08-08 2020-08-06 Microfluidic device WO2021025131A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021537389A JP7145468B2 (en) 2019-08-08 2020-08-06 microfluidic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019145882 2019-08-08
JP2019-145882 2019-08-08

Publications (1)

Publication Number Publication Date
WO2021025131A1 true WO2021025131A1 (en) 2021-02-11

Family

ID=74503868

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030248 WO2021025131A1 (en) 2019-08-08 2020-08-06 Microfluidic device

Country Status (2)

Country Link
JP (1) JP7145468B2 (en)
WO (1) WO2021025131A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232114A (en) * 1994-02-21 1995-09-05 Kanagawa Kagaku Gijutsu Akad Ultrasonic atomizer using elastic surface wave
JP2003502114A (en) * 1999-06-22 2003-01-21 シュテファン リュッツ テクノロジーズ Aroma release device and aroma storage (fragrance chip)
WO2010047110A1 (en) * 2008-10-24 2010-04-29 パナソニック電工株式会社 Surface acoustic wave atomizer
JP2010175360A (en) * 2009-01-29 2010-08-12 Panasonic Corp Microchemical chip
JP2012520174A (en) * 2009-03-13 2012-09-06 プレジデント アンド フェローズ オブ ハーバード カレッジ Scale up microfluidic devices
JP2019115598A (en) * 2017-12-27 2019-07-18 国立大学法人東京工業大学 Aroma generator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07232114A (en) * 1994-02-21 1995-09-05 Kanagawa Kagaku Gijutsu Akad Ultrasonic atomizer using elastic surface wave
JP2003502114A (en) * 1999-06-22 2003-01-21 シュテファン リュッツ テクノロジーズ Aroma release device and aroma storage (fragrance chip)
WO2010047110A1 (en) * 2008-10-24 2010-04-29 パナソニック電工株式会社 Surface acoustic wave atomizer
JP2010175360A (en) * 2009-01-29 2010-08-12 Panasonic Corp Microchemical chip
JP2012520174A (en) * 2009-03-13 2012-09-06 プレジデント アンド フェローズ オブ ハーバード カレッジ Scale up microfluidic devices
JP2019115598A (en) * 2017-12-27 2019-07-18 国立大学法人東京工業大学 Aroma generator

Also Published As

Publication number Publication date
JP7145468B2 (en) 2022-10-03
JPWO2021025131A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
US7891580B2 (en) High volume atomizer for common consumer spray products
US8016209B2 (en) Liquid droplet plug and spray system
US7490815B2 (en) Delivery system for dispensing volatile materials using an electromechanical transducer in combination with an air disturbance generator
CN210386352U (en) Micro-flow aromatherapy atomization device
CN107847721B (en) Treatment apparatus for surfaces to be treated with dielectric barrier plasma
US7793861B2 (en) Piston actuated vapor-dispersing device
US7793860B2 (en) Piston actuated vapor-dispersing device
US20210268209A1 (en) Nebulizer
NZ523858A (en) Method and apparatus for dispensing liquids in aerosolized form with minimum spillage
MXPA06014752A (en) Liquid atomizing device with reduced settling of atomized liquid droplets.
JP2009537291A (en) Dispensing device having a spray assembly
WO2004110640A1 (en) Electrostatic atomizing device and humidifier using this
JP2002537985A (en) Control system for atomizing liquid using piezoelectric vibrator
TWM536948U (en) Nebulizing device and nebulizer
EP2189175B1 (en) Nebulizer
WO2021025131A1 (en) Microfluidic device
WO2007122583A2 (en) Delivery system for dispensing volatile materials with high level of solids using an electromechanical transducer device
JP2007190412A (en) Air cleaner
US8960568B2 (en) Brush wheel typed nebulizer
JP2008246468A (en) Distribution method for fluid atomized by piezoelectric spraying system and spraying system for carrying out this method
DE10306683A1 (en) microdosing
JP2765474B2 (en) Ultrasonic vibrator and atomizer
WO2007144649A2 (en) Power supply for atomisation device
JP2021010878A (en) Liquid atomizing system and mist generating system
JPH07328503A (en) Ultrasonic oscillator and ultrasonic spraying apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021537389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850291

Country of ref document: EP

Kind code of ref document: A1