WO2021024998A1 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
WO2021024998A1
WO2021024998A1 PCT/JP2020/029731 JP2020029731W WO2021024998A1 WO 2021024998 A1 WO2021024998 A1 WO 2021024998A1 JP 2020029731 W JP2020029731 W JP 2020029731W WO 2021024998 A1 WO2021024998 A1 WO 2021024998A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
reactor
heater
heat insulating
metal case
Prior art date
Application number
PCT/JP2020/029731
Other languages
French (fr)
Japanese (ja)
Inventor
諭史 吉田
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2021024998A1 publication Critical patent/WO2021024998A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties

Definitions

  • the present invention relates to a reactor.
  • Reactors that treat exhaust gas and the like using catalysts are known.
  • carbon, sulfur, and the like may adhere to the catalyst with use, and the catalytic activity may decrease. Therefore, it has been studied to recover the catalytic activity by removing the components adhering to the catalyst by heating.
  • an exhaust gas denitration purification device including a denitration catalyst layer and a heater arranged on the outer peripheral surface of the container of the denitration catalyst layer has been proposed (see, for example, Patent Document 1).
  • the heater heats the denitration catalyst layer in an air atmosphere to recover the lowered denitration performance.
  • a modularized catalyst including a storage frame and a plurality of catalyst elements stored in the storage frame has been proposed (see, for example, Patent Document 2).
  • the heater described in Patent Document 1 When the heater described in Patent Document 1 is applied to the modularized catalyst described in Patent Document 2, the heater is arranged on the outer peripheral surface of the storage frame for accommodating a plurality of catalyst elements.
  • the heater heats a plurality of catalyst elements, a temperature distribution occurs inside the storage frame, and there is a possibility that some of the catalyst elements among the plurality of catalyst elements cannot be sufficiently heated. Therefore, it is not possible to efficiently remove the components adhering to the plurality of catalyst elements, and there is a limit to the recovery of the catalytic activity of the plurality of catalyst elements.
  • the present invention provides a reactor capable of efficiently recovering the catalytic activity of a plurality of catalytic elements.
  • the present invention [1] includes a reactor including a plurality of catalyst elements and a plurality of heaters covering each of the plurality of catalyst elements.
  • each of the plurality of heaters covers the catalyst element one by one, the heater can stably heat the corresponding catalyst element. Therefore, the components adhering to each catalyst element can be sufficiently removed, and the catalytic activity of the plurality of catalyst elements can be efficiently restored.
  • the present invention [2] includes the reactor according to the above [1], further comprising a heat insulating material covering the plurality of heaters.
  • the heat insulating material covers each heater, it is possible to suppress the heat from the heater from being released to the outside. Therefore, the heater can heat the corresponding catalyst element more stably.
  • the present invention [3] includes a plurality of metal cases accommodating each catalyst element and each heater, and the heat insulating material is filled between each heater and each metal case.
  • the reactor according to [2] is included.
  • the metal case covers the heat insulating material and can protect the relatively brittle heat insulating material.
  • the catalytic activity of a plurality of catalytic elements can be efficiently restored.
  • FIG. 1 is a perspective view of a first embodiment of the reactor of the present invention.
  • FIG. 2A is a plan view of the reactor shown in FIG.
  • FIG. 2B is a bottom view of the reactor shown in FIG.
  • FIG. 3 is a sectional view taken along the line AA of the reactor shown in FIG. 2A.
  • FIG. 4 is a plan view of a second embodiment of the reactor of the present invention.
  • FIG. 5 is a cross-sectional view taken along the line AA of the third embodiment of the reactor of the present invention.
  • the reactor 1 as the first embodiment of the reactor of the present invention will be described with reference to FIGS. 1 to 3.
  • the reactor 1 is a reactor for purifying a gas to be treated (for example, exhaust gas) by using a catalyst.
  • a gas to be treated for example, exhaust gas
  • Examples of the components to be removed contained in the gas to be treated include nitrogen oxides (NO x ), volatile organic compounds (VOC), hydrocarbons (HC) and the like.
  • the gas to be treated may contain the component to be removed alone or may have two or more of them in combination.
  • the reactor 1 is configured to allow the gas to be processed to pass through.
  • the mode in which the passage direction of the gas to be processed in the reactor 1 is the vertical direction will be described, but the passage direction of the gas is not particularly limited.
  • the reactor 1 includes a case 2 and a plurality of catalyst modules 3.
  • the reactor 1 includes four catalyst modules 3, but the number of catalyst modules 3 included in the reactor 1 is not particularly limited.
  • the number of catalyst modules 3 included in the reactor 1 is, for example, 1 or more and 16 or less.
  • FIG. 2A shows the upper surface of the reactor 1
  • FIG. 2B shows the lower surface of the reactor 1.
  • the case 2 has a hollow shape and accommodates a plurality of catalyst modules 3.
  • the case 2 includes a side wall 4 and a support portion 5.
  • the side wall 4 has a square tube shape extending in the vertical direction.
  • the shape of the side wall 4 is not particularly limited, and may be, for example, a cylindrical shape.
  • Examples of the material of the side wall 4 include stainless steel.
  • the support portion 5 is located at the lower end in the internal space of the side wall 4.
  • the support portion 5 is supported by the lower end portion of the side wall 4.
  • the support portion 5 allows the passage of the gas to be processed in the vertical direction.
  • the support portion 5 has a grid shape having a plurality of openings. Examples of the material of the support portion 5 include stainless steel.
  • the plurality of catalyst modules 3 are housed in the side wall 4 and supported by the support portion 5.
  • the plurality of catalyst modules 3 may be fixed to the case 2 or may be detachable from the case 2.
  • Each of the plurality of catalyst modules 3 has a prismatic shape extending in the vertical direction.
  • the shape of each catalyst module 3 is not particularly limited, and may be, for example, a cylindrical shape.
  • each of the plurality of catalyst modules 3 includes a catalyst element 6, a first metal case 7, a heater 8, a heat insulating material 9, and a second metal case 10. That is, the reactor 1 includes a plurality of catalyst elements 6, a plurality of first metal cases 7, a plurality of heaters 8, a plurality of heat insulating materials 9, and a plurality of second metal cases 10.
  • the catalyst element 6 includes a catalyst and a carrier that supports the catalyst.
  • the catalyst include a denitration catalyst, a VOC decomposition catalyst, an HC decomposition catalyst and the like.
  • the catalyst is appropriately selected according to the components to be removed contained in the gas to be treated. For example, when the gas to be treated contains nitrogen oxides, the catalyst includes a denitration catalyst.
  • the catalyst can be used alone or in combination of two or more.
  • the carrier allows the passage of the gas to be processed in the vertical direction.
  • the shape of the carrier is not particularly limited, and examples thereof include a shape in which corrugated plates and flat plates are alternately laminated. Examples of such a carrier include the catalyst-supporting structure described in Japanese Patent No. 6228727.
  • the first metal case 7 houses the catalyst element 6.
  • the first metal case 7 has a square tubular shape extending in the vertical direction. Examples of the material of the first metal case 7 include stainless steel.
  • the heater 8 covers the catalyst element 6 via the first metal case 7 in a direction orthogonal to the vertical direction.
  • the heater 8 is located on the opposite side of the catalyst element 6 with respect to the first metal case 7, and surrounds the first metal case 7.
  • the heater 8 is composed of, for example, a seat heater, and is arranged along the entire outer surface of the first metal case 7.
  • the heater 8 has a square cylinder shape extending in the vertical direction.
  • the heat insulating material 9 covers the heater 8 in a direction orthogonal to the vertical direction.
  • the heat insulating material 9 is located on the opposite side of the catalyst element 6 with respect to the heater 8 and surrounds the heater 8.
  • the heat insulating material 9 is filled between the heater 8 and the second metal case 10.
  • Examples of the material of the heat insulating material 9 include inorganic fibers, and specific examples thereof include glass fibers and ceramic fibers (for example, alumina fibers).
  • the second metal case 10 houses the catalyst element 6, the first metal case 7, the heater 8, and the heat insulating material 9.
  • the second metal case 10 has a square tube shape extending in the vertical direction.
  • a heater 8 and a heat insulating material 9 are arranged between the first metal case 7 and the second metal case 10. Examples of the material of the second metal case 10 include stainless steel.
  • the plurality of catalyst modules 3 are housed in the case 2 so that the second metal cases 10 are in contact with each other.
  • the plurality of catalyst modules 3 may be housed in the case 2 at intervals from each other, or a cushioning material may be filled between the plurality of catalyst modules 3.
  • a method for recovering the catalytic activity is carried out at predetermined intervals.
  • the oxygen-containing gas is passed through the reactor 1, and the catalyst element 6 corresponding to each heater 8 is heated via the first metal case 7.
  • the heating temperature of each catalyst element 6 is, for example, 250 ° C. or higher, preferably 350 ° C. or higher, for example, 800 ° C. or lower, preferably 600 ° C. or lower.
  • the heating time of each catalyst element 6 is, for example, 1 hour or more, preferably 2 hours or more, for example, 5 hours or less, preferably 4 hours or less.
  • each of the plurality of heaters 8 covers the corresponding catalyst element 6 one by one. Therefore, in the method for recovering the catalytic activity in the reactor 1, each heater 8 can stably heat the corresponding catalyst element 6. As a result, the components adhering to each catalyst element 6 can be efficiently removed, and the catalytic activity of the plurality of catalyst elements 6 can be stably restored.
  • the heat insulating material 9 covers each heater 8. Therefore, in the method of recovering the catalytic activity in the reactor 1, it is possible to suppress the heat released from the heater 8 to the outside. As a result, the heater 8 can heat the corresponding catalyst element 6 more stably.
  • the heat from the heater 8 can be suppressed from being released to the outside, the level of heat resistance required for the case 2 (side wall 4 and support portion 5) of the reactor 1 can be reduced. Therefore, the degree of freedom in material selection in Case 2 can be improved. Specifically, as the material of the case 2, mild steel having inferior heat resistance as compared with the material of the first metal case 7 can be adopted.
  • the heat insulating material 9 is filled between the heater 8 and the second metal case 10 in each catalyst module 3. Therefore, the second metal case 10 covers the heat insulating material 9, and can protect the relatively brittle heat insulating material 9.
  • each catalyst module 3 is provided with a heat insulating material 9, and the heat insulating material 9 is filled between the heater 8 and the second metal case 10, but the reactor 1 is configured. Is not limited to this.
  • each catalyst module 3 includes a catalyst element 6, a first metal case 7, and a heater 8.
  • the heat insulating material 9 is filled between the heater 8 of each catalyst module 3 and the side wall 4.
  • each catalyst module 3 includes a catalyst element 6, a first metal case 7, and a heater 8. Even with such a third embodiment, the same effects as those of the first embodiment described above can be obtained.
  • the case 2 (side wall 4 and support portion 5) of the reactor 1 is required to have excellent heat resistance. Therefore, the first embodiment and the second embodiment are preferable from the viewpoint of the degree of freedom in selecting the material of Case 2.
  • the catalyst module 3 includes the first metal case 7 and the heater 8 covers the first metal case 7, but the present invention is not limited thereto.
  • the heater 8 may directly cover the catalyst element 6. Even with such a modification, the same effect as that of the first embodiment described above can be obtained.
  • the reactor of the present invention is suitably used, for example, for treating a target gas such as exhaust gas, particularly for treating nitrogen oxides contained in the target gas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Catalysts (AREA)

Abstract

This reactor 1 is provided with: a plurality of catalytic elements 6; and a plurality of heaters 8 which respectively cover the plurality of catalytic elements 6.

Description

反応器Reactor
 本発明は、反応器に関する。 The present invention relates to a reactor.
 触媒を利用して排ガスなどを処理する反応器が知られている。このような反応器では、使用に伴って炭素や硫黄などが触媒に付着し、触媒活性が低下する場合がある。そこで、触媒に対する付着成分を加熱により除去して、触媒活性を回復することが検討されている。 Reactors that treat exhaust gas and the like using catalysts are known. In such a reactor, carbon, sulfur, and the like may adhere to the catalyst with use, and the catalytic activity may decrease. Therefore, it has been studied to recover the catalytic activity by removing the components adhering to the catalyst by heating.
 例えば、脱硝触媒層と、脱硝触媒層の容器外周面に配置されるヒータとを備える排ガスの脱硝浄化装置が提案されている(例えば、特許文献1参照)。 For example, an exhaust gas denitration purification device including a denitration catalyst layer and a heater arranged on the outer peripheral surface of the container of the denitration catalyst layer has been proposed (see, for example, Patent Document 1).
 そして、そのような脱硝浄化装置では、空気雰囲気下において、ヒータが脱硝触媒層を加熱して、低下した脱硝性能を回復させる。 Then, in such a denitration purification device, the heater heats the denitration catalyst layer in an air atmosphere to recover the lowered denitration performance.
 また、そのような反応器では、触媒の取扱性の観点から、触媒をモジュール化することが望まれている。 Further, in such a reactor, it is desired to modularize the catalyst from the viewpoint of the handleability of the catalyst.
 例えば、収納枠と、収納枠に収納される複数の触媒エレメントとを備えるモジュール化触媒が提案されている(例えば、特許文献2参照)。 For example, a modularized catalyst including a storage frame and a plurality of catalyst elements stored in the storage frame has been proposed (see, for example, Patent Document 2).
特開2006-220107号公報Japanese Unexamined Patent Publication No. 2006-220107 特開平6-269679号公報Japanese Unexamined Patent Publication No. 6-269679
 しかるに、特許文献2に記載のモジュール化触媒においても、各触媒エレメントに付着成分が付着して、触媒エレメントの触媒活性が低下する場合がある。そこで、特許文献2に記載のモジュール化触媒に特許文献1に記載のヒータを適用することが検討される。 However, even in the modularized catalyst described in Patent Document 2, an adhering component may adhere to each catalyst element, and the catalytic activity of the catalyst element may decrease. Therefore, it is considered to apply the heater described in Patent Document 1 to the modularized catalyst described in Patent Document 2.
 特許文献2に記載のモジュール化触媒に特許文献1に記載のヒータを適用すると、ヒータは、複数の触媒エレメントを収納する収納枠の外周面に配置される。この場合、ヒータが複数の触媒エレメントを加熱するときに、収納枠の内部において温度分布が生じ、複数の触媒エレメントのうち一部の触媒エレメントを十分に加熱できないおそれがある。そのため、複数の触媒エレメントに対する付着成分を効率的に除去できず、複数の触媒エレメントの触媒活性の回復には限度がある。 When the heater described in Patent Document 1 is applied to the modularized catalyst described in Patent Document 2, the heater is arranged on the outer peripheral surface of the storage frame for accommodating a plurality of catalyst elements. In this case, when the heater heats a plurality of catalyst elements, a temperature distribution occurs inside the storage frame, and there is a possibility that some of the catalyst elements among the plurality of catalyst elements cannot be sufficiently heated. Therefore, it is not possible to efficiently remove the components adhering to the plurality of catalyst elements, and there is a limit to the recovery of the catalytic activity of the plurality of catalyst elements.
 本発明は、複数の触媒エレメントの触媒活性を効率的に回復させることができる反応器を提供する。 The present invention provides a reactor capable of efficiently recovering the catalytic activity of a plurality of catalytic elements.
 本発明[1]は、複数の触媒エレメントと、前記複数の触媒エレメントのそれぞれを覆う複数のヒータとを備える、反応器を含む。 The present invention [1] includes a reactor including a plurality of catalyst elements and a plurality of heaters covering each of the plurality of catalyst elements.
 このような構成によれば、複数のヒータのそれぞれが触媒エレメントを1つずつ覆っているので、ヒータが対応する触媒エレメントを安定して加熱することができる。そのため、各触媒エレメントに対する付着成分を十分に除去することができ、複数の触媒エレメントの触媒活性を効率的に回復させることができる。 According to such a configuration, since each of the plurality of heaters covers the catalyst element one by one, the heater can stably heat the corresponding catalyst element. Therefore, the components adhering to each catalyst element can be sufficiently removed, and the catalytic activity of the plurality of catalyst elements can be efficiently restored.
 本発明[2]は、前記複数のヒータを覆う断熱材をさらに備える、上記[1]に記載の反応器を含む。 The present invention [2] includes the reactor according to the above [1], further comprising a heat insulating material covering the plurality of heaters.
 このような構成によれば、断熱材が各ヒータを覆うので、ヒータからの熱が外部に放出されることを抑制できる。そのため、ヒータは、対応する触媒エレメントをより安定して加熱することができる。 According to such a configuration, since the heat insulating material covers each heater, it is possible to suppress the heat from the heater from being released to the outside. Therefore, the heater can heat the corresponding catalyst element more stably.
 本発明[3]は、各前記触媒エレメントおよび各前記ヒータを収容する金属ケースを複数備え、前記断熱材は、各前記ヒータと各前記金属ケースとの間に充填されている、上記[1]または[2]に記載の反応器を含む。 The present invention [3] includes a plurality of metal cases accommodating each catalyst element and each heater, and the heat insulating material is filled between each heater and each metal case. Alternatively, the reactor according to [2] is included.
 このような構成によれば、断熱材が各ヒータと各金属ケースとの間に充填されているので、金属ケースは、断熱材を覆っており、比較的脆い断熱材を保護することができる。 According to such a configuration, since the heat insulating material is filled between each heater and each metal case, the metal case covers the heat insulating material and can protect the relatively brittle heat insulating material.
 本発明の反応器では、複数の触媒エレメントの触媒活性を効率的に回復させることができる。 In the reactor of the present invention, the catalytic activity of a plurality of catalytic elements can be efficiently restored.
図1は、本発明の反応器の第1実施形態の斜視図である。FIG. 1 is a perspective view of a first embodiment of the reactor of the present invention. 図2Aは、図1に示す反応器の平面図である。図2Bは、図1に示す反応器の底面図である。FIG. 2A is a plan view of the reactor shown in FIG. FIG. 2B is a bottom view of the reactor shown in FIG. 図3は、図2Aに示す反応器のA-A断面図である。FIG. 3 is a sectional view taken along the line AA of the reactor shown in FIG. 2A. 図4は、本発明の反応器の第2実施形態の平面図である。FIG. 4 is a plan view of a second embodiment of the reactor of the present invention. 図5は、本発明の反応器の第3実施形態のA-A断面図である。FIG. 5 is a cross-sectional view taken along the line AA of the third embodiment of the reactor of the present invention.
 1.反応器
 本発明の反応器の第1実施形態としての反応器1を、図1から図3を参照して説明する。反応器1は、触媒を利用して、処理対象ガス(例えば、排ガスなど)を浄化するための反応器である。処理対象ガスが含有する除去対象成分として、例えば、窒素酸化物(NO)、揮発性有機化合物(VOC)、炭化水素(HC)などが挙げられる。処理対象ガスは、除去対象成分を単独で含有してもよく、2種以上併有してもよい。
1. 1. Reactor The reactor 1 as the first embodiment of the reactor of the present invention will be described with reference to FIGS. 1 to 3. The reactor 1 is a reactor for purifying a gas to be treated (for example, exhaust gas) by using a catalyst. Examples of the components to be removed contained in the gas to be treated include nitrogen oxides (NO x ), volatile organic compounds (VOC), hydrocarbons (HC) and the like. The gas to be treated may contain the component to be removed alone or may have two or more of them in combination.
 反応器1は、処理対象ガスが通過可能に構成されている。以下では、便宜上、反応器1における処理対象ガスの通過方向が、上下方向である態様について説明するが、ガスの通過方向は、特に制限されない。 The reactor 1 is configured to allow the gas to be processed to pass through. Hereinafter, for convenience, the mode in which the passage direction of the gas to be processed in the reactor 1 is the vertical direction will be described, but the passage direction of the gas is not particularly limited.
 図1に示すように、反応器1は、ケース2と、複数の触媒モジュール3とを備える。図1では、反応器1が4つの触媒モジュール3を備えるが、反応器1が備える触媒モジュール3の個数は、特に制限されない。反応器1が備える触媒モジュール3の個数は、例えば、1以上16以下である。 As shown in FIG. 1, the reactor 1 includes a case 2 and a plurality of catalyst modules 3. In FIG. 1, the reactor 1 includes four catalyst modules 3, but the number of catalyst modules 3 included in the reactor 1 is not particularly limited. The number of catalyst modules 3 included in the reactor 1 is, for example, 1 or more and 16 or less.
 図2Aは、反応器1の上面を示し、図2Bは、反応器1の下面を示す。図2Aおよび図2Bに示すように、ケース2は、中空形状を有し、複数の触媒モジュール3を収容する。
ケース2は、側壁4と、支持部5とを備える。
FIG. 2A shows the upper surface of the reactor 1, and FIG. 2B shows the lower surface of the reactor 1. As shown in FIGS. 2A and 2B, the case 2 has a hollow shape and accommodates a plurality of catalyst modules 3.
The case 2 includes a side wall 4 and a support portion 5.
 側壁4は、上下方向に延びる角筒形状を有する。なお、側壁4の形状は、特に制限されず、例えば、円筒形状であってもよい。側壁4の材料として、例えば、ステンレスなどが挙げられる。 The side wall 4 has a square tube shape extending in the vertical direction. The shape of the side wall 4 is not particularly limited, and may be, for example, a cylindrical shape. Examples of the material of the side wall 4 include stainless steel.
 支持部5は、側壁4の内部空間における下端に位置する。支持部5は、側壁4の下端部に支持される。支持部5は、上下方向における処理対象ガスの通過を許容する。支持部5は、複数の開口を備える格子形状を有する。支持部5の材料として、例えば、ステンレスなどが挙げられる。 The support portion 5 is located at the lower end in the internal space of the side wall 4. The support portion 5 is supported by the lower end portion of the side wall 4. The support portion 5 allows the passage of the gas to be processed in the vertical direction. The support portion 5 has a grid shape having a plurality of openings. Examples of the material of the support portion 5 include stainless steel.
 複数の触媒モジュール3は、側壁4内に収容され、支持部5に支持される。複数の触媒モジュール3は、ケース2に固定されていてもよく、ケース2から着脱可能であってもよい。複数の触媒モジュール3のそれぞれは、上下方向に延びる角柱形状を有する。なお、各触媒モジュール3の形状は、特に制限されず、例えば、円柱形状であってもよい。 The plurality of catalyst modules 3 are housed in the side wall 4 and supported by the support portion 5. The plurality of catalyst modules 3 may be fixed to the case 2 or may be detachable from the case 2. Each of the plurality of catalyst modules 3 has a prismatic shape extending in the vertical direction. The shape of each catalyst module 3 is not particularly limited, and may be, for example, a cylindrical shape.
 図2Aおよび図3に示すように、複数の触媒モジュール3のそれぞれは、触媒エレメント6と、第1金属ケース7と、ヒータ8と、断熱材9と、第2金属ケース10とを備える。つまり、反応器1は、複数の触媒エレメント6と、複数の第1金属ケース7と、複数のヒータ8と、複数の断熱材9と、複数の第2金属ケース10とを備える。 As shown in FIGS. 2A and 3, each of the plurality of catalyst modules 3 includes a catalyst element 6, a first metal case 7, a heater 8, a heat insulating material 9, and a second metal case 10. That is, the reactor 1 includes a plurality of catalyst elements 6, a plurality of first metal cases 7, a plurality of heaters 8, a plurality of heat insulating materials 9, and a plurality of second metal cases 10.
 触媒エレメント6は、触媒と、触媒を担持する担体とを備える。触媒として、例えば、脱硝触媒、VOC分解触媒、HC分解触媒などが挙げられる。触媒は、処理対象ガスが含有する除去対象成分に応じて適宜選択される。例えば、処理対象ガスが含有する窒素酸化物を含有する場合、触媒は、脱硝触媒を含む。触媒は、単独使用または2種以上併用することができる。担体は、上下方向における処理対象ガスの通過を許容する。担体の形状は、特に制限されないが、例えば、波板と平板とが交互に積層されて構成される形状が挙げられる。このような担体として、例えば、特許第6228727号公報に記載の触媒担持構造などが挙げられる。 The catalyst element 6 includes a catalyst and a carrier that supports the catalyst. Examples of the catalyst include a denitration catalyst, a VOC decomposition catalyst, an HC decomposition catalyst and the like. The catalyst is appropriately selected according to the components to be removed contained in the gas to be treated. For example, when the gas to be treated contains nitrogen oxides, the catalyst includes a denitration catalyst. The catalyst can be used alone or in combination of two or more. The carrier allows the passage of the gas to be processed in the vertical direction. The shape of the carrier is not particularly limited, and examples thereof include a shape in which corrugated plates and flat plates are alternately laminated. Examples of such a carrier include the catalyst-supporting structure described in Japanese Patent No. 6228727.
 第1金属ケース7は、触媒エレメント6を収容する。第1金属ケース7は、上下方向に延びる角筒形状を有する。第1金属ケース7の材料として、例えば、ステンレスなどが挙げられる。 The first metal case 7 houses the catalyst element 6. The first metal case 7 has a square tubular shape extending in the vertical direction. Examples of the material of the first metal case 7 include stainless steel.
 ヒータ8は、上下方向と直交する方向において、第1金属ケース7を介して、触媒エレメント6を覆っている。ヒータ8は、第1金属ケース7に対して触媒エレメント6の反対側に位置し、第1金属ケース7の周囲を囲んでいる。ヒータ8は、例えば、シートヒータからなり、第1金属ケース7の外面全体に沿うように配置されている。ヒータ8は、上下方向に延びる角筒形状を有する。 The heater 8 covers the catalyst element 6 via the first metal case 7 in a direction orthogonal to the vertical direction. The heater 8 is located on the opposite side of the catalyst element 6 with respect to the first metal case 7, and surrounds the first metal case 7. The heater 8 is composed of, for example, a seat heater, and is arranged along the entire outer surface of the first metal case 7. The heater 8 has a square cylinder shape extending in the vertical direction.
 断熱材9は、上下方向と直交する方向において、ヒータ8を覆っている。断熱材9は、ヒータ8に対して触媒エレメント6の反対側に位置し、ヒータ8の周囲を囲んでいる。断熱材9は、ヒータ8と第2金属ケース10との間に充填されている。断熱材9の材料として、例えば、無機繊維などが挙げられ、具体的には、ガラス繊維、セラミック繊維(例えば、アルミナ繊維など)などが挙げられる。 The heat insulating material 9 covers the heater 8 in a direction orthogonal to the vertical direction. The heat insulating material 9 is located on the opposite side of the catalyst element 6 with respect to the heater 8 and surrounds the heater 8. The heat insulating material 9 is filled between the heater 8 and the second metal case 10. Examples of the material of the heat insulating material 9 include inorganic fibers, and specific examples thereof include glass fibers and ceramic fibers (for example, alumina fibers).
 第2金属ケース10は、触媒エレメント6と、第1金属ケース7と、ヒータ8と、断熱材9とを収容する。第2金属ケース10は、上下方向に延びる角筒形状を有する。第1金属ケース7と第2金属ケース10との間には、ヒータ8および断熱材9が配置される。第2金属ケース10の材料として、例えば、ステンレスなどが挙げられる。 The second metal case 10 houses the catalyst element 6, the first metal case 7, the heater 8, and the heat insulating material 9. The second metal case 10 has a square tube shape extending in the vertical direction. A heater 8 and a heat insulating material 9 are arranged between the first metal case 7 and the second metal case 10. Examples of the material of the second metal case 10 include stainless steel.
 そして、本実施形態では、複数の触媒モジュール3は、第2金属ケース10が互いに接触するように、ケース2に収容されている。なお、複数の触媒モジュール3は、互いに間隔を空けてケース2に収容されてもよく、複数の触媒モジュール3の間に緩衝材が充填されてもよい。 Then, in the present embodiment, the plurality of catalyst modules 3 are housed in the case 2 so that the second metal cases 10 are in contact with each other. The plurality of catalyst modules 3 may be housed in the case 2 at intervals from each other, or a cushioning material may be filled between the plurality of catalyst modules 3.
 2.触媒活性の回復方法
 このような反応器1では、処理対象ガスを各触媒エレメント6に通過させながら、所定温度(例えば、200℃以上400℃以下)に加熱することにより、触媒作用によって除去対象成分が分解除去される。そして、そのような処理対象ガスの浄化処理が長期にわたって実施されると、各触媒エレメント6に炭素や硫黄などの付着成分が付着し、各触媒エレメント6の触媒活性が低下する。
2. 2. Method for recovering catalytic activity In such a reactor 1, the component to be removed by catalytic action is heated to a predetermined temperature (for example, 200 ° C. or higher and 400 ° C. or lower) while passing the gas to be treated through each catalyst element 6. Is decomposed and removed. When such purification treatment of the gas to be treated is carried out for a long period of time, adherent components such as carbon and sulfur adhere to each catalyst element 6, and the catalytic activity of each catalyst element 6 decreases.
 そのため、反応器1では、例えば、所定期間毎に触媒活性の回復方法が実施される。触媒活性の回復方法では、酸素含有ガスを反応器1に通過させるとともに、各ヒータ8が対応する触媒エレメント6を、第1金属ケース7を介して加熱する。 Therefore, in the reactor 1, for example, a method for recovering the catalytic activity is carried out at predetermined intervals. In the method for recovering the catalytic activity, the oxygen-containing gas is passed through the reactor 1, and the catalyst element 6 corresponding to each heater 8 is heated via the first metal case 7.
 各触媒エレメント6の加熱温度は、例えば、250℃以上、好ましくは、350℃以上、例えば、800℃以下、好ましくは、600℃以下である。各触媒エレメント6の加熱時間は、例えば、1時間以上、好ましくは、2時間以上、例えば、5時間以下、好ましくは、4時間以下である。 The heating temperature of each catalyst element 6 is, for example, 250 ° C. or higher, preferably 350 ° C. or higher, for example, 800 ° C. or lower, preferably 600 ° C. or lower. The heating time of each catalyst element 6 is, for example, 1 hour or more, preferably 2 hours or more, for example, 5 hours or less, preferably 4 hours or less.
 これによって、反応器1においてすべての触媒エレメント6が上記した加熱温度に一様に加熱され、触媒エレメント6に付着する付着成分が燃焼除去される。そのため、各触媒エレメント6の触媒活性が回復する。 As a result, in the reactor 1, all the catalyst elements 6 are uniformly heated to the above-mentioned heating temperature, and the adhered components adhering to the catalyst element 6 are burned and removed. Therefore, the catalytic activity of each catalytic element 6 is restored.
 3.作用効果
 反応器1では、複数のヒータ8のそれぞれが、対応する触媒エレメント6を1つずつ覆っている。そのため、反応器1における触媒活性の回復方法において、各ヒータ8が対応する触媒エレメント6を安定して加熱することができる。その結果、各触媒エレメント6に対する付着成分を効率的に除去することができ、複数の触媒エレメント6の触媒活性を安定して回復させることができる。
3. 3. Action Effect In the reactor 1, each of the plurality of heaters 8 covers the corresponding catalyst element 6 one by one. Therefore, in the method for recovering the catalytic activity in the reactor 1, each heater 8 can stably heat the corresponding catalyst element 6. As a result, the components adhering to each catalyst element 6 can be efficiently removed, and the catalytic activity of the plurality of catalyst elements 6 can be stably restored.
 また、断熱材9が、各ヒータ8を覆っている。そのため、反応器1における触媒活性の回復方法において、ヒータ8からの熱が外部に放出されることを抑制できる。その結果、ヒータ8は、対応する触媒エレメント6をより安定して加熱することができる。 In addition, the heat insulating material 9 covers each heater 8. Therefore, in the method of recovering the catalytic activity in the reactor 1, it is possible to suppress the heat released from the heater 8 to the outside. As a result, the heater 8 can heat the corresponding catalyst element 6 more stably.
 また、ヒータ8からの熱が外部に放出されることを抑制できるので、反応器1のケース2(側壁4および支持部5)に要求される耐熱性のレベルを低減することができる。そのため、ケース2の材料選択の自由度の向上を図ることができる。具体的には、ケース2の材料として、第1金属ケース7の材料と比較して耐熱性が劣る軟鋼を採用することができる。 Further, since the heat from the heater 8 can be suppressed from being released to the outside, the level of heat resistance required for the case 2 (side wall 4 and support portion 5) of the reactor 1 can be reduced. Therefore, the degree of freedom in material selection in Case 2 can be improved. Specifically, as the material of the case 2, mild steel having inferior heat resistance as compared with the material of the first metal case 7 can be adopted.
 また、断熱材9は、各触媒モジュール3において、ヒータ8と第2金属ケース10との間に充填されている。そのため、第2金属ケース10は、断熱材9を覆っており、比較的脆い断熱材9を保護することができる。 Further, the heat insulating material 9 is filled between the heater 8 and the second metal case 10 in each catalyst module 3. Therefore, the second metal case 10 covers the heat insulating material 9, and can protect the relatively brittle heat insulating material 9.
 4.第2実施形態
 次に、図4を参照して、本発明の第2実施形態について説明する。
4. Second Embodiment Next, a second embodiment of the present invention will be described with reference to FIG.
 第1実施形態では、図1に示すように、各触媒モジュール3が断熱材9を備え、断熱材9がヒータ8と第2金属ケース10との間に充填されるが、反応器1の構成はこれに限定されない。 In the first embodiment, as shown in FIG. 1, each catalyst module 3 is provided with a heat insulating material 9, and the heat insulating material 9 is filled between the heater 8 and the second metal case 10, but the reactor 1 is configured. Is not limited to this.
 第2実施形態では、図4に示すように、断熱材9が、複数のヒータ8を一括して覆っている。この場合、各触媒モジュール3は、触媒エレメント6と、第1金属ケース7と、ヒータ8とからなる。そして、断熱材9は、各触媒モジュール3のヒータ8と、側壁4との間に充填されている。このような第2実施形態によっても、上記した第1実施形態と同様の作用効果を奏することができる。 In the second embodiment, as shown in FIG. 4, the heat insulating material 9 collectively covers the plurality of heaters 8. In this case, each catalyst module 3 includes a catalyst element 6, a first metal case 7, and a heater 8. The heat insulating material 9 is filled between the heater 8 of each catalyst module 3 and the side wall 4. Even with such a second embodiment, the same effects as those of the first embodiment described above can be obtained.
 5.第3実施形態
 次に、図5を参照して、本発明の第3実施形態について説明する。
5. Third Embodiment Next, a third embodiment of the present invention will be described with reference to FIG.
 第3実施形態では、図5に示すように、反応器1は、断熱材9を備えていない。この場合、各触媒モジュール3は、触媒エレメント6と、第1金属ケース7と、ヒータ8とからなる。このような第3実施形態によっても、上記した第1実施形態と同様の作用効果を奏することができる。一方、第3実施形態では、ヒータ8からの熱が外部に放出されるので、反応器1のケース2(側壁4および支持部5)に優れた耐熱性が要求される。そのため、ケース2の材料選択の自由度の観点から、第1実施形態および第2実施形態が好ましい。 In the third embodiment, as shown in FIG. 5, the reactor 1 does not include the heat insulating material 9. In this case, each catalyst module 3 includes a catalyst element 6, a first metal case 7, and a heater 8. Even with such a third embodiment, the same effects as those of the first embodiment described above can be obtained. On the other hand, in the third embodiment, since the heat from the heater 8 is released to the outside, the case 2 (side wall 4 and support portion 5) of the reactor 1 is required to have excellent heat resistance. Therefore, the first embodiment and the second embodiment are preferable from the viewpoint of the degree of freedom in selecting the material of Case 2.
 6.変形例
 上記した第1実施形態~第3実施形態では、触媒モジュール3が第1金属ケース7を備え、ヒータ8が第1金属ケース7を覆っているが、本発明はこれに限定されない。ヒータ8は、触媒エレメント6を直接覆っていてもよい。このような変形例によっても、上記した第1実施形態と同様の作用効果を奏することができる。
6. Modified Examples In the first to third embodiments described above, the catalyst module 3 includes the first metal case 7 and the heater 8 covers the first metal case 7, but the present invention is not limited thereto. The heater 8 may directly cover the catalyst element 6. Even with such a modification, the same effect as that of the first embodiment described above can be obtained.
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the present invention that will be apparent to those skilled in the art are included in the claims below.
 本発明の反応器は、例えば、排ガスなどの対象ガスの処理、とりわけ、対象ガスが含有する窒素酸化物の処理に好適に用いられる。 The reactor of the present invention is suitably used, for example, for treating a target gas such as exhaust gas, particularly for treating nitrogen oxides contained in the target gas.
 1   反応器
 6   触媒エレメント
 8   ヒータ
 9   断熱材
 10  第2金属ケース
1 Reactor 6 Catalyst element 8 Heater 9 Insulation 10 Second metal case

Claims (3)

  1.  複数の触媒エレメントと、
     前記複数の触媒エレメントのそれぞれを覆う複数のヒータと、を備えることを特徴とする、反応器。
    With multiple catalytic elements
    A reactor comprising a plurality of heaters that cover each of the plurality of catalyst elements.
  2.  前記複数のヒータを覆う断熱材をさらに備えることを特徴とする、請求項1に記載の反応器。 The reactor according to claim 1, further comprising a heat insulating material that covers the plurality of heaters.
  3.  各前記触媒エレメントおよび各前記ヒータを収容する金属ケースを複数備え、
     前記断熱材は、各前記ヒータと各前記金属ケースとの間に充填されていることを特徴とする、請求項1に記載の反応器。
    A plurality of metal cases for accommodating each catalyst element and each heater are provided.
    The reactor according to claim 1, wherein the heat insulating material is filled between each heater and each metal case.
PCT/JP2020/029731 2019-08-07 2020-08-04 Reactor WO2021024998A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-145058 2019-08-07
JP2019145058A JP2021023893A (en) 2019-08-07 2019-08-07 Reactor

Publications (1)

Publication Number Publication Date
WO2021024998A1 true WO2021024998A1 (en) 2021-02-11

Family

ID=74502717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029731 WO2021024998A1 (en) 2019-08-07 2020-08-04 Reactor

Country Status (2)

Country Link
JP (1) JP2021023893A (en)
WO (1) WO2021024998A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327943A (en) * 1993-05-21 1994-11-29 Mitsubishi Heavy Ind Ltd Method for nox removal treatment
JPH11347371A (en) * 1998-06-06 1999-12-21 Isuzu Ceramics Res Inst Co Ltd Exhaust gas cleaning apparatus
JP2002221023A (en) * 2000-11-22 2002-08-09 Ooden:Kk Diesel particulate removing device
JP2011230114A (en) * 2010-04-09 2011-11-17 Ibiden Co Ltd Honeycomb structure
JP2014184426A (en) * 2012-11-08 2014-10-02 Shinshu Univ Gas purification device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327943A (en) * 1993-05-21 1994-11-29 Mitsubishi Heavy Ind Ltd Method for nox removal treatment
JPH11347371A (en) * 1998-06-06 1999-12-21 Isuzu Ceramics Res Inst Co Ltd Exhaust gas cleaning apparatus
JP2002221023A (en) * 2000-11-22 2002-08-09 Ooden:Kk Diesel particulate removing device
JP2011230114A (en) * 2010-04-09 2011-11-17 Ibiden Co Ltd Honeycomb structure
JP2014184426A (en) * 2012-11-08 2014-10-02 Shinshu Univ Gas purification device

Also Published As

Publication number Publication date
JP2021023893A (en) 2021-02-22

Similar Documents

Publication Publication Date Title
RU2759670C2 (en) Single-unit closely connected scr/asc/pna/doc catalyst
US4814146A (en) Device for the containment of monolithic catalysts
KR20120066626A (en) Method for processing exhaust gas of co2 collector
EP2548640A1 (en) Method and device for treating gas discharged from a carbon dioxide recovery device
KR20020046093A (en) Catalyst Reactor Activated for Treating Hazardous Gas with Nonthermal Plasma and Dielectric Heating and Method Treating thereof
WO2021024998A1 (en) Reactor
US6645441B1 (en) Reactor for plasma assisted gas processing
ES2353610T3 (en) GAS TREATMENT DEVICE BY CATALYSIS, IN PARTICULAR FOR FILTER HOOD.
KR102157685B1 (en) Treatment device equipped with catalyst-supporting honeycomb structure and process for producing same
KR20140132940A (en) Air purifying device
KR100851663B1 (en) Reactor and method for reducing the nitrogen oxide content of a gas
KR101948510B1 (en) Apparatus and methods for treating exhaust gases
JP5540337B2 (en) Exhaust gas treatment method and treatment apparatus
US20040093853A1 (en) System and method for using nonthermal plasma reactors
JPWO2010061854A1 (en) Decomposition and removal system of harmful substances by thermal excitation of chromium oxide or nickel oxide
KR101182356B1 (en) Plasma-catalytic reactor for removal of hazadous gases and removing method of hazadous gases using the same
JP5479826B2 (en) Gas purification device, plasma generating electrode, and gas purification method
DK2993323T3 (en) MOUNTING FOR A POLLUTION CONTROL OR CHEMICAL REACTOR
JP2002126445A (en) Element for treating vapor of volatile organic matter
JP2018176079A (en) Combustion exhaust gas treatment method, combustion exhaust gas treatment device and maintenance method of the same
JP2010201373A (en) Apparatus for treating gas
JP5145140B2 (en) Air cleaning apparatus and air cleaning method
JP4636930B2 (en) Catalyst holding device and gas removing device
JP6409222B2 (en) Method for producing catalyst-carrying block
KR20170097947A (en) Simultaneous reduction method of nitrogen monoxide and nitrous oxide from exhausted gas by ammonia reductant and catalystic reactor for reducing simultaneously nitrogen monoxide and nitrous oxide from exhausted gas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20849568

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20849568

Country of ref document: EP

Kind code of ref document: A1