WO2021024829A1 - 情報処理装置、情報処理方法、調理ロボット、調理方法、および調理器具 - Google Patents
情報処理装置、情報処理方法、調理ロボット、調理方法、および調理器具 Download PDFInfo
- Publication number
- WO2021024829A1 WO2021024829A1 PCT/JP2020/028638 JP2020028638W WO2021024829A1 WO 2021024829 A1 WO2021024829 A1 WO 2021024829A1 JP 2020028638 W JP2020028638 W JP 2020028638W WO 2021024829 A1 WO2021024829 A1 WO 2021024829A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- cooking
- flavor
- recipe
- chemical structure
- Prior art date
Links
- 238000010411 cooking Methods 0.000 title claims abstract description 253
- 230000010365 information processing Effects 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims abstract description 61
- 238000003672 processing method Methods 0.000 title claims abstract description 4
- 239000000796 flavoring agent Substances 0.000 claims abstract description 108
- 235000019634 flavors Nutrition 0.000 claims abstract description 108
- 239000000126 substance Substances 0.000 claims abstract description 98
- 238000011156 evaluation Methods 0.000 claims abstract description 35
- 235000013305 food Nutrition 0.000 claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 20
- 239000004615 ingredient Substances 0.000 claims description 49
- 239000013598 vector Substances 0.000 claims description 19
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 238000005516 engineering process Methods 0.000 abstract description 16
- 230000008569 process Effects 0.000 description 47
- 238000012545 processing Methods 0.000 description 45
- 230000006870 function Effects 0.000 description 39
- 238000002156 mixing Methods 0.000 description 35
- 238000010586 diagram Methods 0.000 description 29
- 235000019640 taste Nutrition 0.000 description 10
- 230000033001 locomotion Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 4
- 235000019633 pungent taste Nutrition 0.000 description 4
- 235000015067 sauces Nutrition 0.000 description 4
- 235000019658 bitter taste Nutrition 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 235000019600 saltiness Nutrition 0.000 description 3
- 235000019583 umami taste Nutrition 0.000 description 3
- 244000235659 Rubus idaeus Species 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 235000019606 astringent taste Nutrition 0.000 description 2
- 238000013135 deep learning Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 241001474374 Blennius Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 235000011034 Rubus glaucus Nutrition 0.000 description 1
- 235000009122 Rubus idaeus Nutrition 0.000 description 1
- 244000061456 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 235000013372 meat Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 235000021013 raspberries Nutrition 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000008786 sensory perception of smell Effects 0.000 description 1
- 230000014860 sensory perception of taste Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47J—KITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
- A47J36/00—Parts, details or accessories of cooking-vessels
- A47J36/32—Time-controlled igniting mechanisms or alarm devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
- B25J11/0045—Manipulators used in the food industry
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
- B25J13/087—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices for sensing other physical parameters, e.g. electrical or chemical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1628—Programme controls characterised by the control loop
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09B—EDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
- G09B19/00—Teaching not covered by other main groups of this subclass
- G09B19/0092—Nutrition
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B6/00—Heating by electric, magnetic or electromagnetic fields
- H05B6/64—Heating using microwaves
- H05B6/66—Circuits
- H05B6/68—Circuits for monitoring or control
- H05B6/687—Circuits for monitoring or control for cooking
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24C—DOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
- F24C7/00—Stoves or ranges heated by electric energy
- F24C7/08—Arrangement or mounting of control or safety devices
- F24C7/082—Arrangement or mounting of control or safety devices on ranges, e.g. control panels, illumination
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/10—Services
- G06Q50/12—Hotels or restaurants
Definitions
- This technology is particularly related to information processing devices, information processing methods, cooking robots, cooking methods, and cooking utensils that enable the generation of new recipes.
- restaurant chefs are required not only to serve the same dishes according to existing recipes, but also to create new recipes by devising ingredients, cooking methods, serving methods, etc.
- This technology was made in consideration of such a situation, and makes it possible to generate a new recipe.
- the information processing device of the first aspect of the present technology is the chemical structure information representing the chemical structure of the foodstuff used for cooking, the sensor information obtained by measuring the flavor of the foodstuff with a sensor, and the person's person regarding the flavor of the foodstuff. It is provided with a recipe generation unit that generates a new recipe based on the flavor subjective information representing the subjective evaluation.
- the cooking robot on the second side and the cooking utensil on the third side of the present technology have chemical structure information representing the chemical structure of the foodstuff used for cooking, sensor information obtained by measuring the flavor of the foodstuff with a sensor, and , It is provided with a control unit for cooking based on recipe data representing a new recipe generated based on flavor subjective information representing a person's subjective evaluation of the flavor of foodstuffs.
- This technique is a technique for generating a new recipe for cooking and presenting it to a user such as a chef.
- the new recipe means a recipe different from the recipe prepared on the recipe generation side.
- the new recipe includes recipes in which at least one of the elements that make up the recipe is different, such as recipes with different ingredients and recipes with different cooking methods compared to the recipe prepared on the generation side. Is done.
- the dish reproduced based on the new recipe will be different from the dish reproduced based on the prepared recipe.
- chemical structure information representing the chemical structure of the foodstuff used for cooking
- sensor information obtained by measuring the flavor of the foodstuff with a sensor
- flavor subjective information representing a person's subjective evaluation of the flavor of the foodstuff.
- information representing the relationship between chemical structure information, sensor information, and flavor subjective information is used.
- the sensor information corresponding to the input subjective evaluation is specified, and further, the chemical structure information corresponding to the specified sensor information is specified. Ingredients are selected based on the identified chemical structure information, and a recipe using the ingredients is generated.
- the chef who received the recipe can cook according to the recipe presented.
- the chef can create a new recipe by using the presented recipe as a hint.
- This technology can also be said to be a technology that presents information that triggers the creation of new recipes.
- the recipe generated by this technology is used not only for presentation to chefs, but also for controlling cooking robots.
- a cooking robot is a robot that operates autonomously based on recipe data and completes cooking by cooking.
- FIG. 1 is a diagram showing an example of presenting a recipe by an information processing apparatus according to an embodiment of the present technology.
- the situation shown in the upper part of Fig. 1 is a situation where the chef who is cooking is thinking about what kind of sauce should be applied to the cooked dish.
- the information processing device 1 which is a tablet terminal is placed next to the chef.
- the information processing device 1 has a function of presenting a new recipe in response to a request from the chef.
- Cooking means the product that is completed after cooking. Cooking means the process of cooking and the act (work) of cooking.
- FIG. 2 is a diagram showing an example of flavor components.
- the deliciousness that a person feels in the brain is mainly a combination of the taste obtained by the human sense of taste, the aroma obtained by the human sense of smell, and the texture obtained by the human sense of touch. It is composed.
- FIG. 3 is a diagram showing an example of a screen used for designating a flavor.
- the flavor designation screen shown in FIG. 3 is displayed when the chef performs a predetermined operation on the information processing device 1.
- three radar charts 11 to 13 are displayed.
- the radar charts 11 to 13 are a radar chart used for designating a taste, a radar chart used for designating a fragrance, and a radar chart used for designating a texture, respectively.
- the radar chart 11 is a radar chart centered on nine types of taste elements.
- the chef specifies the value of each element by touching the position of each element on the radar chart with a finger.
- each element of taste, aroma, and texture is the same 9 types, but the number of each element may be different.
- the flavor may not be specified using the radar chart as shown in FIG. 3, but may be specified using voice.
- the information processing apparatus 1 performs voice recognition, language analysis, and the like to specify the meaning of the chef's remarks.
- the flavor is not specified by specifying the value on the radar chart, but the value of each element may be directly input by operating the keyboard or the like.
- the information processing apparatus 1 when the flavor of the sauce requested by the chef is specified as described above, in the information processing apparatus 1, the combination of ingredients and the cooking process for realizing the flavor requested by the chef are determined. Presented to the chef as shown in balloon # 2. In the example of FIG. 1, the information processing device 1 presents "Please blend raspberries and seaweed by the method of XX".
- the recipe of the dish including the sauce is composed of the ingredients used for cooking and the information of the cooking process.
- “Raspberry” and “Nori” are the information on the ingredients
- "Blend by the method of XX” is the information on the cooking process.
- the chef can receive the presentation by the information processing device 1 and try to make it according to the presentation, or get a hint from it and think of a new source.
- the information processing device 1 can be said to be a recipe generator that presents the new recipe itself or information that is a hint of the new recipe to the chef.
- FIG. 4 is a diagram showing an example of a database used for recipe generation.
- the information processing apparatus 1 is provided with flavor subjective information DB21, sensing information DB22, and chemical structure information DB23.
- the database as shown in FIG. 4 may not be prepared in the information processing apparatus 1 but may be prepared in a server on the Internet.
- One or two databases out of the three types of databases may be prepared in the information processing apparatus 1, and the other databases may be prepared in a server on the Internet.
- FIG. 5 is a diagram showing an example of information stored in the flavor subjective information DB 21.
- Flavor subjective information DB21 is a database of subjective evaluations regarding the flavor of each ingredient. For example, information in which each ingredient is eaten by a large number of people and the subjective evaluation value of the flavor is expressed on a predetermined scale is stored in the flavor subjective information DB 21 as the flavor subjective information.
- the flavor subjective information of the foodstuff A and the foodstuff B is represented by a vector expression (e dimension) in the flavor subjective evaluation space E as in the following equation (1).
- EAi is a coefficient corresponding to the evaluation value of the item of index i included in the subjective evaluation of foodstuff A.
- FIG. 6 is a diagram showing an example of information stored in the sensing information DB 22.
- Sensing information DB22 is a database of sensing results of flavors of each ingredient.
- the flavor of each food material is measured by a flavor measuring device, and the sensing information obtained as the measurement result is stored in the sensing information DB 22. Since the flavor is represented by the taste, aroma, and texture as described above, the flavor of each food material is measured by using a taste measuring device, an aroma measuring device, a texture measuring device, or the like.
- the texture includes the elasticity, viscosity, temperature, and the like of the food.
- the sensing information of the food material A and the food material B is represented by a vector representation (s dimension) in the sensing information space S as shown in the following equation (2).
- other foodstuffs are represented by vectors having each item of sensing information as an element.
- SAi is a coefficient corresponding to the sensor value of the item of index i included in the sensing information of foodstuff A.
- FIG. 7 is a diagram showing an example of information stored in the chemical structure information DB 23.
- the chemical structure information DB23 is a database of the chemical structure of each food material.
- the chemical structure of each food material is measured by a separation analyzer using the principle of chromatography, and the chemical structure information obtained as the measurement result is stored in the chemical structure information DB 23.
- the chemical structure information of the food material A and the food material B is represented by the vector representation (c dimension) in the chemical structure space Ch by using the molecular descriptor as shown in the following equation (3).
- other foodstuffs are represented by a vector whose elements are each chemical substance used to express the chemical structure.
- NAi is a coefficient according to the amount of the chemical substance of index i contained in the food material A.
- Ingredient A and Ingredient B each have a chemical substance that exists only in each of them, but the coefficient of the chemical substance is 0.
- Vectorization of chemical structures is thus performed using molecular descriptors.
- a molecular descriptor for example, a chemical substance contained in a food material and its amount are detected by a separation analyzer, each chemical substance Ck is set as one element of a c-dimensional vector, and the chemical substance contained in the food material is used. This is done by letting the amount of Ck (number of moles, mass, etc.) be Nk.
- Ingredient X is expressed by the following equation (4).
- FIG. 8 is a diagram showing the relationship between each database.
- the functions used to convert the values (vectors) in each space to the values in other spaces are learned by machine learning such as deep learning.
- the function F1 shown by the arrow A1 is a function used when converting the value of the chemical structure space Ch into the value of the sensing information space S.
- the function F2 shown by the arrow A2 is a function used when converting the value of the sensing information space S into the value of the flavor subjective evaluation space E.
- the function F3 shown by the arrow A3 is a function used when converting the value of the chemical structure space Ch into the value of the flavor subjective evaluation space E.
- the function F1 is composed of an NN (Neural Network) that inputs the chemical structure information of each foodstuff represented by the above-mentioned vector expression and outputs the sensing information of each foodstuff.
- the learning of the function F1 is performed, for example, by using the chemical structure information of a certain foodstuff as learning data and using the sensing information of the same foodstuff as training data.
- the inverse function of each function is also learned by machine learning such as deep learning.
- the function InvF1 shown by the arrow A11 in FIG. 9 is a function used when converting the value of the sensing information space S into the value of the chemical structure space Ch.
- the function InvF2 shown by the arrow A12 is a function used when converting the value of the flavor subjective evaluation space E into the value of the sensing information space S.
- the function InvF3 shown by the arrow A13 is a function used when converting the value of the flavor subjective evaluation space E into the value of the chemical structure space Ch.
- a new recipe is generated based on the above database information and the function that represents the relationship between the databases.
- FIG. 10 is a diagram showing an example of generation of a new recipe.
- Sake blending refers to the creation of new flavors of sake by blending multiple brands of sake.
- sake Sake_A which is a brand of sake
- sake Sake_B which is another brand of sake
- the brand of sake to be blended corresponds to the ingredients in cooking, and the amount to be blended, the temperature, etc. correspond to the cooking process in cooking.
- the information processing apparatus 1 which brand is to be blended and how to be blended is specified, and a recipe expressing the content is generated.
- FIG. 11 is a diagram showing an example of presenting a recipe for blending sake.
- the chef requests the presentation of the recipe by specifying the flavor of the sake he wants to make as a condition.
- the combination of brands for making sake with a "strong spiciness and a strong refreshing aroma" and how to blend it are specified and presented to the chef.
- FIG. 12 is a flowchart showing a flow of a series of processes for generating a recipe related to blending sake.
- step S1 the information processing apparatus 1 refers to the flavor subjective information DB21 and flavor subjective evaluation E (New-Blending). ) Is specified.
- Flavor subjective evaluation E is an evaluation value representing the flavor specified by the chef.
- FIG. 13 is a diagram showing an example of flavor subjective evaluation E (New-Blending).
- the flavor subjective evaluation E includes elements such as saltiness, sourness, bitterness, sweetness, umami, pungent taste, astringency, refreshing scent, mild scent, plump scent, and mouthpiece. It is represented by a vector composed of. The value of each element is the value specified by the chef.
- saltiness, sourness, bitterness, sweetness, umami, pungent taste, and astringency are elements related to taste.
- a refreshing scent, a mild scent, and a plump scent are elements related to scent.
- the mouthpiece is an element related to texture.
- step S2 of FIG. 12 the information processing apparatus 1 specifies the value of the sensing information space S corresponding to the flavor subjective evaluation E (New-Blending).
- E the flavor subjective evaluation
- S (New-Blending) which is the value of the sensing information space S, is obtained by the following equation (5).
- the function InvF2 (FIG. 9) is a function used when converting the value of the flavor subjective evaluation space E into the value of the sensing information space S.
- step S3 the information processing apparatus 1 specifies the value of the chemical structure space Ch corresponding to the sensing information S (New-Blending).
- Ch (New-Blending) which is the value of the chemical structural space Ch, is obtained by the following equation (6).
- the function InvF1 is a function used when converting the value of the sensing information space S into the value of the chemical structure space Ch.
- step S4 the information processing apparatus 1 selects a combination of all brands whose chemical structure information is stored in the chemical structure information DB 23, and specifies the chemical structure for each combination based on the chemical structure information.
- sake Sake_X and sake Sake_Y two types of brands are selected as sake Sake_X and sake Sake_Y, and the chemical structure of each combination is specified.
- a combination of three or more types of stocks may be selected instead of two types of stocks.
- step S5 the information processing apparatus 1 uses all combinations of sake Sake_A and sake Sake_B having a chemical structure closest to Ch (New-Blending), which is a value of the chemical structure of sake that realizes the flavor specified by the chef. Identify from the combination of.
- sake Sake_A and sake Sake_B are specified based on the distance in the chemical structural space Ch.
- the combination of sake Sake_A and sake Sake_B specified here is the combination with the closest distance to Ch (New-Blending) in the chemical structural space Ch.
- step S6 the information processing apparatus 1 specifies the amount ⁇ of sake Sake_A and the amount ⁇ of sake Sake_B.
- the blend that realizes the flavor specified by the chef is represented by the following formula (7).
- ⁇ and ⁇ are obtained as follows.
- a t Ch (Sake_A) t
- B t Ch (Sake_B) t
- C t Ch (New-Blending) t .
- the superscript t represents transpose.
- FIG. 14 is a diagram showing an example of inverse conversion.
- the information processing apparatus 1 specifies the value of the sensing information space S corresponding to Ch (New-Blending), which is the value of the chemical structure space Ch.
- S (New-Blending) which is the value of the sensing information space S, is obtained by the following equation (11).
- the information processing apparatus 1 specifies the value of the flavor subjective evaluation space E corresponding to S (New-Blending), which is the value of the sensing information space S.
- E (New-Blending 1) which is the value of the flavor subjective evaluation space E, is obtained by the following equation (12).
- step S7 of FIG. 12 the information processing apparatus 1 presents to the chef as a new recipe information including using sake Sake_A and sake Sake_B and blending sake Sake_A as the amount ⁇ and sake Sake_B as the amount ⁇ . To do.
- the recipes for other dishes are generated by the same process and presented to the chef.
- the recipe presented by the information processing device 1 is not performed by selecting a recipe that meets the conditions from a plurality of recipes prepared in advance, but each time the flavor is specified by the chef. It is done by generating accordingly.
- step S5 of FIG. 12 the combination of sake Sake_A and sake Sake_B is selected so as to select the combination having the chemical structure closest to Ch (New-Blending). However, it may be performed by the following method.
- sake Sake_B to be combined with sake Sake_A is selected based on sake Sake_A corresponding to one ingredient.
- the brand whose chemical structure is represented by a vector parallel to Ch (New-Blending) in the chemical structure space Ch. May be selected as sake Sake_A.
- the inner product of the vector representing Ch (New-Blending) and the vector representing the chemical structure of sake Sake_A is divided by the norms
- Sake_A is selected.
- FIG. 15 is a block diagram showing a configuration example of hardware of the information processing device 1.
- the information processing device 1 is composed of a computer such as a tablet terminal.
- the CPU (Central Processing Unit) 101, ROM (Read Only Memory) 102, and RAM (Random Access Memory) 103 are connected to each other by the bus 104.
- An input / output interface 105 is further connected to the bus 104.
- An input unit 106 including a keyboard and a mouse, and an output unit 107 including a display and a speaker are connected to the input / output interface 105.
- the input / output interface 105 is connected to a storage unit 108 composed of a hard disk, a non-volatile memory, or the like, a communication unit 109 composed of a network interface, or a drive 110 for driving the removable media 111.
- the CPU 101 loads the program stored in the storage unit 108 into the RAM 103 via the input / output interface 105 and the bus 104 and executes it, so that various processes such as recipe generation are performed.
- FIG. 16 is a block diagram showing a functional configuration example of the information processing device 1.
- At least a part of the functional units shown in FIG. 16 is realized by executing a predetermined program by the CPU 101 of FIG. 16.
- the same configurations as those described above are designated by the same reference numerals.
- the information processing unit 151 is realized in the information processing device 1.
- the information processing unit 151 is composed of a recipe generation unit 161 and a presentation unit 162.
- the information processing unit 151 is provided with flavor subjective information DB 21, sensing information DB 22, and chemical structure information DB 23.
- the recipe generation unit 161 is as described above based on the information stored in the flavor subjective information DB21, the sensing information DB22, and the chemical structure information DB23 and the information indicating the relationship between the information. To generate a recipe. Information representing the recipe generated by the recipe generation unit 161 is supplied to the presentation unit 162.
- the conditions such as the name of the dish, the genre of the dish, the style of cooking such as Japanese style and American style, and the ingredients used may be specified by the chef.
- a recipe that meets the conditions specified by the chef is generated.
- ingredients to be used are specified as conditions
- other ingredients to be used in combination with the ingredients are selected based on the ingredients specified by the chef as described above, and a recipe is generated.
- the recipe generated by the recipe generation unit 161 may be associated with the flavor subjective information, sensing information, and chemical structure information of the ingredients used in the recipe.
- the flavor subjective information, sensing information, chemical structure information, etc. of the ingredients are also presented, so that the chef can create the recipe by referring to such information.
- the presentation unit 162 presents the recipe generated by the recipe generation unit 161 to the chef.
- the presentation of the recipe may be performed by the voice from the speaker or by the screen display of the display.
- the presentation unit 162 presents, for example, a description of each cooking process of the recipe to the chef in order.
- the information processing unit 151 having such a configuration performs a series of processes described with reference to FIG.
- the processing of steps S1 to S6 in FIG. 12 is the processing of the recipe generation unit 161 and the processing of step S7 is the processing of the presentation unit 162.
- FIG. 17 is a diagram showing a configuration example of a network system.
- FIG. 17 shows a configuration when a new recipe is generated on the recipe generation server 171 on the Internet.
- the recipe generation server 171 is provided with the same configuration as that of the information processing unit 151 shown in FIG.
- Communication is performed between the recipe generation server 171 and the information processing device 1 provided on the chef side via the Internet.
- Information representing the flavor or the like specified by the chef is transmitted from the information processing device 1 to the recipe generation server 171.
- the recipe generation unit 161 of the recipe generation server 171 receives the flavor information specified by the chef sent from the information processing device 1 and generates a recipe.
- the presentation unit 162 transmits information about the recipe generated by the recipe generation unit 161 to the information processing device 1 and causes the chef to present the information.
- FIG. 18 is a diagram showing a configuration example of a control system.
- the control system includes a data processing device 301 and a cooking robot 302.
- the cooking robot 302 is a robot having a drive system device such as a cooking arm and various sensors and equipped with a function of cooking.
- the cooking robot 302 is installed in a home, for example.
- the data processing device 301 is a device that controls the cooking robot 302.
- the data processing device 301 is composed of a computer or the like.
- the control of the cooking robot 302 by the data processing device 301 is performed based on the recipe data prepared for each dish. Information about each cooking process is described in the recipe data.
- the data processing device 301 controls the cooking robot 302 based on the recipe data to prepare a dish.
- the recipe data generated by the information processing unit 151 of FIG. 16 is supplied to the data processing device 301 and used for controlling the cooking robot 302.
- the data processing device 301 when recipe data is input as shown by arrow A1, the data processing device 301 outputs a command command based on the description of the recipe data as shown by arrow A2, so that the cooking operation of the cooking robot 302 To control.
- the cooking robot 302 drives each part such as a cooking arm according to a command command supplied from the data processing device 301, and performs a cooking operation in each cooking process.
- Command The command includes information for controlling the torque, drive direction, drive amount, etc. of the motor provided in the cooking arm.
- Command commands are sequentially output from the data processing device 301 to the cooking robot 302 until the cooking is completed.
- the cooking robot 302 takes an action in response to a command, the cooking is finally completed.
- FIG. 19 is a diagram showing an example of the description content of the recipe data.
- one recipe data is composed of a plurality of cooking process data sets.
- a cooking process data set for cooking process # 1 a cooking process data set for cooking process # 2, ..., A cooking process data set for cooking process # N are included.
- Each cooking process data set includes cooking operation information, which is information on cooking operations for realizing the cooking process.
- cooking operation information is information on cooking operations for realizing the cooking process.
- one cooking process data set is composed of time-series data of cooking operation information for realizing one cooking process.
- Cooking operation information includes foodstuff information and operation information.
- Ingredient information is information about ingredients used in the cooking process.
- Information about foodstuffs includes information indicating the type of foodstuff, the amount of foodstuff, the size of foodstuff, and the like.
- ingredients include not only ingredients that have not been cooked at all, but also ingredients that have been cooked (prepared) obtained by performing a certain cooking.
- the food material information included in the cooking operation information of a certain cooking process includes information on the food material that has undergone the previous cooking process.
- the operation information is information related to the movement of the cooking arm and the like in the cooking process.
- the movement information includes information indicating the type of cooking tool used for cooking.
- the operation information of the cooking process of cutting a certain ingredient includes information indicating that a kitchen knife is used as a cooking tool, information indicating the cutting position, the number of times of cutting, the force of cutting, the angle, the speed, and the like.
- the operation information of the cooking process that stirs the pot containing the liquid as an ingredient includes information indicating that the ladle is used as a cooking tool, information indicating the force of stirring, angle, speed, time, and the like.
- the operation information of the cooking process of baking a certain ingredient using an oven includes information indicating that the oven is used as a cooking tool, information indicating the heating power of the oven, baking time, and the like.
- the operation information of the cooking process for serving includes information on how to serve the tableware used for serving, how to arrange the ingredients, and the color of the ingredients.
- FIG. 20 is a diagram showing an example of a flow of reproducing a dish based on recipe data.
- cooking is repeated for each cooking process based on the cooking operation information at each time included in the cooking process data set described in the recipe data. Is done by.
- One dish is completed through a plurality of cooking processes # 1 to # N.
- FIG. 21 is a diagram showing an arrangement example of the data processing device 301.
- the data processing device 301 is provided as, for example, an external device of the cooking robot 302.
- the data processing device 301 and the cooking robot 302 are connected to each other via a network such as the Internet.
- the command command transmitted from the data processing device 301 is received by the cooking robot 302 via the network.
- Various data such as an image taken by the camera of the cooking robot 302 and sensor data measured by a sensor provided in the cooking robot 302 are transmitted from the cooking robot 302 to the data processing device 301 via a network.
- the data processing device 301 may be provided inside the housing of the cooking robot 302. In this case, the operation of each part of the cooking robot 302 is controlled according to the command command generated by the data processing device 301.
- the data processing device 301 will be mainly described as being provided as an external device of the cooking robot 302.
- FIG. 22 is a perspective view showing the appearance of the cooking robot 302.
- the cooking robot 302 is a kitchen-type robot having a horizontally long rectangular parallelepiped housing 311. Various configurations are provided inside the housing 311 which is the main body of the cooking robot 302.
- a cooking assistance system 312 is provided on the back side of the housing 311.
- Each space formed in the cooking assist system 312 by being separated by a thin plate-like member has a function for assisting cooking by the cooking arms 321-1 to 321-4 such as a refrigerator, a microwave oven, and a storage.
- the top plate 311A is provided with a rail in the longitudinal direction, and cooking arms 321-1 to 321-4 are provided on the rail.
- the cooking arms 321-1 to 321-4 can be repositioned along the rail as a moving mechanism.
- the cooking arms 321-1 to 321-4 are robot arms configured by connecting cylindrical members with joints. Various operations related to cooking are performed by the cooking arms 321-1 to 321-4.
- the space above the top plate 311A is the cooking space where the cooking arms 321-1 to 321-4 cook.
- the number of cooking arms is not limited to four.
- the cooking arm 321 when it is not necessary to distinguish each of the cooking arms 321-1 to 321-4 as appropriate, they are collectively referred to as the cooking arm 321.
- FIG. 23 is an enlarged view showing the state of the cooking arm 321.
- attachments having various cooking functions are attached to the tip of the cooking arm 321.
- various attachments such as an attachment having a manipulator function (hand function) for grasping foodstuffs and tableware, and an attachment having a knife function for cutting foodstuffs are prepared.
- the knife attachment 331-1 which is an attachment having a knife function is attached to the cooking arm 321-1.
- a lump of meat placed on the top plate 311A is cut using a knife attachment 331-1.
- a spindle attachment 331-2 which is an attachment used for fixing ingredients and rotating ingredients, is attached to the cooking arm 321-2.
- a peeler attachment 331-3 which is an attachment having the function of a peeler for peeling ingredients, is attached to the cooking arm 321-3.
- the potato skin lifted by the cooking arm 321-2 using the spindle attachment 331-2 is peeled off by the cooking arm 321-3 using the peeler attachment 331-3. In this way, it is possible for a plurality of cooking arms 321 to cooperate with each other to perform one operation.
- a manipulator attachment 331-4 which is an attachment having a manipulator function, is attached to the cooking arm 321-4.
- a frying pan with chicken is carried to the space of the cooking assistance system 312, which has an oven function.
- Cooking with such a cooking arm 321 can be carried out by appropriately replacing the attachment according to the content of the work. It is also possible to attach the same attachment to a plurality of cooking arms 321 so that the manipulator attachments 331-4 are attached to each of the four cooking arms 321.
- Cooking by the cooking robot 302 is performed not only by using the above attachments prepared as a tool for the cooking arm, but also by appropriately using the same tool as the tool used by humans for cooking.
- a knife used by a person is grasped by a manipulator attachment 331-4, and cooking such as cutting of ingredients is performed using the knife.
- FIG. 24 is a diagram showing the appearance of the cooking arm 321.
- the cooking arm 321 is generally configured by connecting thin cylindrical members with hinge portions serving as joint portions.
- Each hinge portion is provided with a motor or the like that generates a force for driving each member.
- a detachable member 351, a relay member 353, and a base member 355 are provided in order from the tip.
- the detachable member 351 and the relay member 353 are connected by a hinge portion 352, and the relay member 353 and the base member 355 are connected by a hinge portion 354.
- an attachment / detachment portion 351A to which the attachment is attached / detached is provided.
- the detachable member 351 has a detachable portion 351A to which various attachments are attached and detached, and functions as a cooking function arm portion for cooking by operating the attachments.
- a detachable portion 356 attached to the rail is provided.
- the base member 355 functions as a movement function arm portion that realizes the movement of the cooking arm 321.
- FIG. 25 is a diagram showing an example of the range of motion of each part of the cooking arm 321.
- the detachable member 351 is rotatable about the central axis of the circular cross section.
- the flat small circle shown at the center of ellipse # 1 indicates the direction of the rotation axis of the alternate long and short dash line.
- the detachable member 351 is rotatable about an axis passing through the fitting portion 351B with the hinge portion 352. Further, the relay member 353 can rotate about an axis passing through the fitting portion 353A with the hinge portion 352.
- the two small circles shown inside the circle # 2 indicate the direction of each rotation axis (vertical direction on the paper surface).
- the movable range of the detachable member 351 centered on the shaft passing through the fitting portion 351B and the movable range of the relay member 353 centered on the shaft passing through the fitting portion 353A are, for example, 90 degrees.
- the relay member 353 is separated by a member 353-1 on the front end side and a member 353-2 on the rear end side. As shown by being surrounded by the ellipse # 3, the relay member 353 is rotatable about the central axis of the circular cross section at the connecting portion 353B between the member 353-1 and the member 353-2. Other movable parts also have basically the same range of motion.
- the detachable member 351 having the detachable portion 351A at the tip, the relay member 353 connecting the detachable member 351 and the base member 355, and the base member 355 to which the detachable portion 356 is connected to the rear end are rotated by the hinge portions, respectively. Can be connected.
- the movement of each movable part is controlled by a controller in the cooking robot 302 according to a command.
- FIG. 26 is a diagram showing an example of connection between the cooking arm and the controller.
- the cooking arm 321 and the controller 361 are connected via wiring in the space 311B formed inside the housing 311.
- the cooking arms 321-1 to 321-4 and the controller 361 are connected via wirings 362-1 to 362-4, respectively.
- the flexible wirings 362-1 to 362-4 will be appropriately bent according to the positions of the cooking arms 321-1 to 321-4.
- FIG. 27 is a block diagram showing a configuration example of cooking robot 302.
- the cooking robot 302 is configured by connecting each part to a controller 361 (FIG. 26) as a control device for controlling the operation of the cooking robot 302.
- a controller 361 FIG. 26
- FIG. 27 the same configurations as those described above are designated by the same reference numerals. Duplicate explanations will be omitted as appropriate.
- the camera 401, the sensor 402, and the communication unit 403 are connected to the controller 361.
- the controller 361 is composed of a computer having a CPU, ROM, RAM, flash memory, and the like.
- the controller 361 executes a predetermined program by the CPU and controls the overall operation of the cooking robot 302.
- the data processing device 301 may be configured by the controller 361.
- the controller 361 controls the communication unit 403 and transmits the image taken by the camera 401 and the sensor data measured by the sensor 402 to the data processing device 301.
- the instruction command acquisition unit 411 and the arm control unit 412 are realized by executing a predetermined program.
- the instruction command acquisition unit 411 acquires an instruction command transmitted from the data processing device 301 and received by the communication unit 403.
- the command command acquired by the command command acquisition unit 411 is supplied to the arm control unit 412.
- the arm control unit 412 controls the operation of the cooking arm 321 according to the command command acquired by the command command acquisition unit 411.
- the camera 401 photographs the surroundings of the cooking robot 302, and outputs the image obtained by the photographing to the controller 361.
- the camera 401 is provided at various positions such as the front of the cooking assist system 312 and the tip of the cooking arm 321.
- the sensor 402 is composed of various sensors such as a temperature / humidity sensor, a pressure sensor, an optical sensor, a distance sensor, a human sensor, a positioning sensor, and a vibration sensor.
- the measurement by the sensor 402 is performed at a predetermined cycle.
- the sensor data indicating the measurement result by the sensor 402 is supplied to the controller 361.
- the camera 401 and the sensor 402 may be provided at a position away from the housing 311 of the cooking robot 302.
- the communication unit 403 is a wireless communication module such as a wireless LAN module and a mobile communication module compatible with LTE (Long Term Evolution).
- the communication unit 403 communicates with the data processing device 301 and an external device such as a server on the Internet.
- the cooking arm 321 is provided with a motor 421 and a sensor 422.
- the motor 421 is provided at each joint of the cooking arm 321.
- the motor 421 rotates about the axis according to the control by the arm control unit 412.
- An encoder for measuring the amount of rotation of the motor 421, a driver for adaptively controlling the rotation of the motor 421 based on the measurement result by the encoder, and the like are also provided at each joint.
- the sensor 422 is composed of, for example, a gyro sensor, an acceleration sensor, a touch sensor, and the like. While the cooking arm 321 is operating, the sensor 422 measures the angular velocity, acceleration, and the like of each joint, and outputs information indicating the measurement result to the controller 361. Sensor data indicating the measurement result of the sensor 422 is also transmitted from the cooking robot 302 to the data processing device 301 as appropriate.
- FIG. 28 is a block diagram showing a functional configuration example of the data processing device 301.
- At least a part of the functional units shown in FIG. 28 is realized by executing a predetermined program by the CPU of the computer constituting the data processing device 301.
- the command generation unit 431 is realized in the data processing device 301.
- the command generation unit 431 is composed of a recipe data acquisition unit 451, a robot state estimation unit 452, a control unit 453, and a command output unit 454.
- the recipe data acquisition unit 451 acquires the recipe data newly generated by the information processing device 1 or the like and outputs it to the control unit 453.
- An information processing unit 151 (FIG. 16) having a recipe generation function may be provided in the recipe data acquisition unit 451.
- the robot state estimation unit 452 receives the image and sensor data transmitted from the cooking robot 302. From the cooking robot 302, an image taken by the camera of the cooking robot 302 and sensor data measured by a sensor provided at a predetermined position of the cooking robot 302 are transmitted at a predetermined cycle. The image taken by the camera of the cooking robot 302 shows the surroundings of the cooking robot 302.
- the robot state estimation unit 452 analyzes the image and sensor data transmitted from the cooking robot 302 to obtain the state around the cooking robot 302 and the state of the cooking process, such as the state of the cooking arm 321 and the state of the ingredients. presume. Information indicating the surrounding state of the cooking robot 302 estimated by the robot state estimation unit 452 is supplied to the control unit 453.
- the control unit 453 generates a command command for controlling the cooking robot 302 based on the cooking process data set described in the recipe data supplied from the recipe data acquisition unit 451. For example, a command command for causing the cooking arm 321 to perform an operation as represented by the cooking operation information included in the cooking process data set is generated.
- the surrounding state of the cooking robot 302 estimated by the robot state estimation unit 452 is also referred to.
- the instruction command generated by the control unit 453 is supplied to the command output unit 454.
- the command output unit 454 transmits the command command generated by the control unit 453 to the cooking robot 302.
- step S101 the recipe data acquisition unit 451 acquires recipe data representing the recipe generated by the information processing device 1 or the like.
- step S102 the control unit 453 selects a predetermined cooking operation based on the cooking process data set described in the recipe data, and generates a command command for performing the selected cooking operation.
- the cooking process dataset is selected in the order of the cooking process, and the cooking operations included in the selected cooking process are selected in the order of execution.
- step S103 the command output unit 454 sends a command command to the cooking robot 302 to execute the cooking operation.
- step S104 the robot state estimation unit 452 estimates the state of the cooking robot 302.
- step S105 the control unit 453 determines whether or not all cooking operations have been completed. If it is determined in step S105 that all the cooking operations have not been completed, the process returns to step S102, the next cooking operation is selected, and the above processing is repeated.
- step S105 If it is determined in step S105 that all cooking operations have been completed, the process ends. At this time, the dish is completed based on the new recipe data generated by the information processing device 1 or the like.
- the information processing device 1 to generate recipe data for controlling a robot that cooks using the cooking arm.
- FIG. 30 is a diagram showing another configuration example of the control system.
- an electronic cooking utensil 303 such as a microwave oven is provided instead of the cooking robot 302.
- the electronic cooking utensil 303 performs a cooking operation in accordance with a command command supplied from the data processing device 301 to perform cooking.
- the installed program is recorded and provided on the removable media 111 shown in FIG. 15, which consists of an optical disk (CD-ROM (Compact Disc-Read Only Memory), DVD (Digital Versatile Disc), etc.), a semiconductor memory, or the like. It may also be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital broadcasting.
- the program can be pre-installed in the ROM 102 or the storage unit 108.
- the program executed by the computer may be a program in which processing is performed in chronological order in the order described in this specification, or processing is performed in parallel or at a necessary timing such as when a call is made. It may be a program to be performed.
- the system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same housing. Therefore, a plurality of devices housed in separate housings and connected via a network, and a device in which a plurality of modules are housed in one housing are both systems. ..
- this technology can have a cloud computing configuration in which one function is shared by a plurality of devices via a network and processed jointly.
- each step described in the above flowchart can be executed by one device or shared by a plurality of devices.
- one step includes a plurality of processes
- the plurality of processes included in the one step can be executed by one device or shared by a plurality of devices.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- Human Resources & Organizations (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Food Science & Technology (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Strategic Management (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Entrepreneurship & Innovation (AREA)
- Primary Health Care (AREA)
- Educational Administration (AREA)
- Human Computer Interaction (AREA)
- Electromagnetism (AREA)
- Nutrition Science (AREA)
- Data Mining & Analysis (AREA)
- Quality & Reliability (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Educational Technology (AREA)
- Evolutionary Computation (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Development Economics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本技術は、新しいレシピを生成することができるようにする情報処理装置、情報処理方法、調理ロボット、調理方法、および調理器具に関する。 本技術の一側面の情報処理装置は、調理に用いられる食材の化学構造を表す化学構造情報、食材の風味をセンサにより計測して得られたセンサ情報、および、食材の風味に関する人の主観評価を表す風味主観情報に基づいて、新たなレシピを生成するものである。本技術は、キッチンに用意されるコンピュータに適用することができる。
Description
本技術は、特に、新しいレシピを生成することができるようにした情報処理装置、情報処理方法、調理ロボット、調理方法、および調理器具に関する。
料理のレシピを公開しているサービスが存在する。ユーザは、カテゴリから探したり、食材の名前をキーワードとして入力したりして好みのレシピを検索することができる。
例えばレストランのシェフには、既にあるレシピに従って同じ料理を提供するだけなく、食材、調理方法、盛り付け方法などを工夫することによって、新しいレシピを創造することが求められる。
料理の世界における常識や文化などによる固定概念または経験に基づく固定概念が働くことにより、新しいレシピを創造し続けることは容易ではない。
本技術はこのような状況に鑑みてなされたものであり、新しいレシピを生成することができるようにするものである。
本技術の第1の側面の情報処理装置は、調理に用いられる食材の化学構造を表す化学構造情報、食材の風味をセンサにより計測して得られたセンサ情報、および、食材の風味に関する人の主観評価を表す風味主観情報に基づいて、新たなレシピを生成するレシピ生成部を備える。
本技術の第2の側面の調理ロボットと第3の側面の調理器具は、調理に用いられる食材の化学構造を表す化学構造情報、食材の風味をセンサにより計測して得られたセンサ情報、および、食材の風味に関する人の主観評価を表す風味主観情報に基づいて生成された、新たなレシピを表すレシピデータに基づいて調理を行う制御部を備える。
<本技術の概要>
本技術は、料理の新たなレシピを生成し、シェフなどのユーザに提示する技術である。ここで、新たなレシピとは、レシピの生成側に用意されているレシピとは異なるレシピのことを意味する。生成側に用意されているレシピに対して、食材が異なるレシピ、調理方法が異なるレシピといったように、レシピを構成する要素のうちの少なくともいずれかの要素が異なるレシピが、新たなレシピには含まれる。新たなレシピに基づいて再現された料理は、あらかじめ用意されているレシピに基づいて再現される料理とは異なる料理となる。
本技術は、料理の新たなレシピを生成し、シェフなどのユーザに提示する技術である。ここで、新たなレシピとは、レシピの生成側に用意されているレシピとは異なるレシピのことを意味する。生成側に用意されているレシピに対して、食材が異なるレシピ、調理方法が異なるレシピといったように、レシピを構成する要素のうちの少なくともいずれかの要素が異なるレシピが、新たなレシピには含まれる。新たなレシピに基づいて再現された料理は、あらかじめ用意されているレシピに基づいて再現される料理とは異なる料理となる。
レシピの生成には、調理に用いられる食材の化学構造を表す化学構造情報、食材の風味をセンサにより計測して得られたセンサ情報、および、食材の風味に関する人の主観評価を表す風味主観情報が用いられる。また、化学構造情報、センサ情報、風味主観情報のそれぞれの関係を表す情報が用いられる。
例えば、風味の主観評価に関する情報が条件として入力された場合、入力された主観評価に対応するセンサ情報が特定され、さらに、特定されたセンサ情報に対応する化学構造情報が特定される。特定された化学構造情報に基づいて食材が選択され、その食材を用いたレシピが生成される。
レシピの提示を受けたシェフは、提示されたレシピの通りに調理を行うことができる。また、シェフは、提示されたレシピをヒントにして、新たなレシピを自ら創造することができる。本技術は、新たなレシピを創造するためのきっかけとなる情報を提示する技術ともいうことができる。
本技術により生成されたレシピは、シェフなどへの提示に用いられるだけでなく、調理ロボットの制御にも用いられる。調理ロボットは、レシピデータに基づいて自律的に動作し、調理を行うことによって料理を完成させるロボットである。
新たなレシピに基づいて動作が制御されることにより、新たな料理が調理ロボットによって作られることになる。
以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
1.レシピの提示
2.レシピの生成
3.各装置の構成と動作
4.調理ロボットの制御の例
5.その他の例
1.レシピの提示
2.レシピの生成
3.各装置の構成と動作
4.調理ロボットの制御の例
5.その他の例
<レシピの提示>
図1は、本技術の一実施形態に係る情報処理装置によるレシピの提示の例を示す図である。
図1は、本技術の一実施形態に係る情報処理装置によるレシピの提示の例を示す図である。
図1の上段に示す状況は、調理を行っているシェフが、調理済みの料理に対してどのようなソースをかければいいのかを考えている状況である。図1の例においては、タブレット端末である情報処理装置1がシェフの隣に置かれている。情報処理装置1は、シェフによる要求に応じて新たなレシピを提示する機能を有する。
なお、料理は、調理を経て出来上がる成果物のことを意味する。調理は、料理を作る過程や、料理を作る行為(作業)のことを意味する。
例えば、吹き出し#1に示すように、「酸味と甘みが強くて、さらっとした食感のソース」をシェフが望んでいるものとする。この例においては、「酸味と甘みが強くて、さらっとした食感」といったような風味を指定することに応じて、レシピの提示が行われる。
図2は、風味の構成要素の例を示す図である。
人が脳で感じるおいしさ、すなわち「風味」は、図2に示すように、主に、人の味覚によって得られる味、人の嗅覚によって得られる香り、人の触覚によって得られる質感を組み合わせて構成される。
図3は、風味の指定に用いられる画面の例を示す図である。
図3に示す風味指定画面は、情報処理装置1に対して所定の操作をシェフが行ったときに表示される。図3の例においては、レーダーチャート11乃至13の3つのレーダーチャートが表示されている。レーダーチャート11乃至13は、それぞれ、味の指定に用いられるレーダーチャート、香りの指定に用いられるレーダーチャート、食感の指定に用いられるレーダーチャートである。
例えばレーダーチャート11は、味の9種類の要素を軸とするレーダーチャートである。塩味、酸味、苦味、甘味、旨味からなるいわゆる基本五味のそれぞれの味などが、味の要素となる。例えば、シェフは、レーダーチャート上の各要素の位置を指でタッチするなどして、それぞれの要素の値を指定する。
図3の例においては、味、香り、食感のそれぞれの要素が同じ9種類とされているが、それぞれの要素の数が異なる数であってもよい。
図3に示すようなレーダーチャートを用いて風味の指定が行われるのではなく、音声を用いて行われるようにしてもよい。風味の指定が音声によって行われた場合、情報処理装置1においては、音声認識、言語解析などが行われ、シェフの発言内容の意味が特定される。
風味の指定がレーダーチャート上の値を指定することによって行われるのではなく、それぞれの要素の値を、キーボードなどを操作して直接入力するようにしてもよい。
図1の説明に戻り、シェフが要望するソースの風味が以上のようにして指定された場合、情報処理装置1においては、シェフが要望する風味を実現する食材の組み合わせと調理工程が決定され、吹き出し#2に示すようにシェフに対して提示される。図1の例においては、「ラズベリーと海苔を〇〇の方法でブレンドしてください」の提示が情報処理装置1により行われている。
すなわち、この例においては、ソースを含む料理のレシピは、調理に用いる食材と調理工程の情報により構成される。「ラズベリー」と「海苔」が食材の情報となり、「〇〇の方法でブレンド」が調理工程の情報となる。
シェフは、このような情報処理装置1による提示を受けて、提示の通りに作ってみたり、そこからヒントを得て新たなソースを考えたりすることができる。情報処理装置1は、新たなレシピそのもの、あるいは、新たなレシピのヒントとなる情報をシェフに提示するレシピ生成器ということができる。
<レシピの生成>
・レシピの生成に用いられる情報について
図4は、レシピの生成に用いられるデータベースの例を示す図である。
・レシピの生成に用いられる情報について
図4は、レシピの生成に用いられるデータベースの例を示す図である。
図4に示すように、情報処理装置1には、風味主観情報DB21、センシング情報DB22、化学構造情報DB23が用意される。
図4に示すようなデータベースが情報処理装置1に用意されるのではなく、インターネット上のサーバに用意されるようにしてもよい。3種類のデータベースのうちの1つまたは2つのデータベースが情報処理装置1に用意され、他のデータベースがインターネット上のサーバに用意されるようにしてもよい。
図5は、風味主観情報DB21に格納される情報の例を示す図である。
風味主観情報DB21は、各食材の風味に関する主観評価のデータベースである。例えば、それぞれの食材を多数の人に食べてもらい、風味の主観的な評価値を所定の尺度で表現した情報が風味主観情報として風味主観情報DB21に格納される。
他の食材についても同様に、主観評価の各項目を要素とするベクトルによって表される。例えばEAiは、食材Aの主観評価に含まれる、インデックスiの項目の評価値に応じた係数である。
図6は、センシング情報DB22に格納される情報の例を示す図である。
センシング情報DB22は、各食材の風味のセンシング結果のデータベースである。例えば、それぞれの食材の風味を風味測定器によって測定し、測定結果として得られたセンシング情報がセンシング情報DB22に格納される。風味は上述したように味、香り、質感によって表されるから、各食材の風味は、味測定器、香り測定器、質感測定器などを用いて測定される。なお、質感には、食材の弾力、粘性、温度などが含まれる。
他の食材についても同様に、センシング情報の各項目を要素とするベクトルによって表される。例えばSAiは、食材Aのセンシング情報に含まれる、インデックスiの項目のセンサ値に応じた係数である。
図7は、化学構造情報DB23に格納される情報の例を示す図である。
化学構造情報DB23は、各食材の化学構造のデータベースである。例えば、それぞれの食材の化学構造を、クロマトグラフィーの原理を利用した分離分析器によって測定し、測定結果として得られた化学構造情報が化学構造情報DB23に格納される。
他の食材についても同様に、化学構造の表現に用いられる各化学物質を要素とするベクトルによって表される。例えばNAiは、食材Aに含まれる、インデックスiの化学物質の量に応じた係数である。食材Aと食材Bにはそれぞれにのみ存在する化学物質があるが、その化学物質の係数は0となる。
化学構造のベクトル化は、このように分子記述子を用いて行われる。分子記述子を用いたベクトル化は、例えば、食材に含まれる化学物質とその量を分離分析器によって検出し、それぞれの化学物質Ckをc次元のベクトルの1要素とし、食材に含まれる化学物質Ckの量(モル数、質量など)をNkとすることによって行われる。食材Xは、下式(4)のように表される。
上の記述は、分子記述子の1つであるフラグメント数による記述子である。化学物質Ckには、-CH3,-OH,-NH2,-COOH,-CH2-,-CH2-CH2-などが含まれる。構造記述子、カウント記述子などの、他の記述手法を用いて各食材の化学構造が表現されるようにしてもよい。
化学構造だけでなく、性質、反応などの、他の化学的な特徴を表す情報が化学構造情報DB23に用意されるようにしてもよい。
図8は、各データベースの関係を表す図である。
矢印A1乃至A3に示すように、それぞれの空間の値(ベクトル)から、他の空間の値への変換に用いられる関数が、深層学習などの機械学習によって学習される。
矢印A1に示す関数F1は、化学構造空間Chの値をセンシング情報空間Sの値に変換するときに用いられる関数である。矢印A2に示す関数F2は、センシング情報空間Sの値を風味主観評価空間Eの値に変換するときに用いられる関数である。矢印A3に示す関数F3は、化学構造空間Chの値を風味主観評価空間Eの値に変換するときに用いられる関数である。
例えば、関数F1は、上述したベクトル表現によって表されるそれぞれの食材の化学構造情報を入力とし、それぞれの食材のセンシング情報を出力とするNN(Neural Network)によって構成される。関数F1の学習は、例えば、ある食材の化学構造情報を学習用データとし、同じ食材のセンシング情報を教師データとして用いることによって行われる。
それぞれの関数の逆関数も、深層学習などの機械学習によって学習される。
図9の矢印A11に示す関数InvF1は、センシング情報空間Sの値を化学構造空間Chの値に変換するときに用いられる関数である。矢印A12に示す関数InvF2は、風味主観評価空間Eの値をセンシング情報空間Sの値に変換するときに用いられる関数である。矢印A13に示す関数InvF3は、風味主観評価空間Eの値を化学構造空間Chの値に変換するときに用いられる関数である。
以上のようなデータベースの情報と、データベース間の関係を表す関数とに基づいて、新たなレシピの生成が行われる。
・レシピの生成の具体例
図10は、新たなレシピの生成の例を示す図である。
図10は、新たなレシピの生成の例を示す図である。
ここでは、日本酒のブレンディングについて説明する。日本酒のブレンディングは、複数の銘柄の日本酒をブレンドすることによって、新たな風味の日本酒を作り出すことをいう。
図10の例においては、ある銘柄の日本酒である日本酒Sake_Aと、他の銘柄の日本酒である日本酒Sake_Bとがブレンドされ、日本酒Sake_NEWが生成されている。
ブレンドの対象となる日本酒の銘柄が、料理でいう食材に相当し、ブレンドする量、温度などが、料理でいう調理工程に相当する。情報処理装置1においては、どの銘柄をブレンドするかと、どのようにブレンドするかが特定され、その内容を表すレシピが生成されることになる。
図11は、日本酒のブレンディングに関するレシピの提示の例を示す図である。
日本酒のブレンディングにおいても、シェフは、作りたい日本酒の風味を条件として指定することによって、レシピの提示を要求する。
図11の例においては、「辛みが強くて爽やかな香りが強い」風味の日本酒を作るためのレシピの提示が要求されている。「辛みが強くて爽やかな香りが強い」といった風味の指定は、図3を参照して説明したような画面を用いて行われる。
情報処理装置1においては、「辛みが強くて爽やかな香りが強い」風味の日本酒を作るための銘柄の組み合わせと、どのようにブレンドするのかが特定され、シェフに対して提示される。
図12は、日本酒のブレンディングに関するレシピの生成の一連の処理の流れを示すフローチャートである。
「辛みが強くて爽やかな香りが強い」といった風味の指定がシェフにより行われた場合、ステップS1において、情報処理装置1は、風味主観情報DB21を参照して、風味主観評価E(New-Blending)を特定する。風味主観評価E(New-Blending)は、シェフにより指定された風味を表す評価値である。
図13は、風味主観評価E(New-Blending)の例を示す図である。
図13に示すように、風味主観評価E(New-Blending)は、塩味、酸味、苦味、甘味、旨味、辛味、渋味、爽やかな香り、穏やかな香り、ふくよかな香り、飲み口などの要素から構成されるベクトルにより表される。各要素の値がシェフによる指定に応じた値となる。
図13に示す要素のうち、塩味、酸味、苦味、甘味、旨味、辛味、渋味は、味に関する要素である。爽やかな香り、穏やかな香り、ふくよかな香りは、香りに関する要素である。飲み口は、質感に関する要素である。
このような風味主観評価E(New-Blending)を起点として、どの銘柄をブレンドするかと、どのようにブレンドするかが特定される。
図12のステップS2において、情報処理装置1は、風味主観評価E(New-Blending)に対応するセンシング情報空間Sの値を特定する。センシング情報空間Sの値であるS(New-Blending)は、下式(5)によって求められる。
上述したように、関数InvF2(図9)は、風味主観評価空間Eの値をセンシング情報空間Sの値に変換するときに用いられる関数である。
ステップS3において、情報処理装置1は、センシング情報S(New-Blending)に対応する化学構造空間Chの値を特定する。化学構造空間Chの値であるCh(New-Blending)は、下式(6)によって求められる。
上述したように、関数InvF1は、センシング情報空間Sの値を化学構造空間Chの値に変換するときに用いられる関数である。
これにより、シェフにより指定された風味を実現する日本酒の化学構造が特定されることになる。
ステップS4において、情報処理装置1は、化学構造情報DB23に化学構造情報が格納されている全ての銘柄の組み合わせを選択し、それぞれの組み合わせ毎の化学構造を化学構造情報に基づいて特定する。
ここでは、2種類の銘柄を日本酒Sake_Xと日本酒Sake_Yとして全ての銘柄の組み合わせを選択し、全ての組み合わせ毎の化学構造が特定される。2種類の銘柄ではなく、3種類以上の銘柄の組み合わせが選択されるようにしてもよい。
ステップS5において、情報処理装置1は、シェフにより指定された風味を実現する日本酒の化学構造の値であるCh(New-Blending)に最も近い化学構造を有する日本酒Sake_Aと日本酒Sake_Bの組み合わせを、全ての組み合わせの中から特定する。
例えば、化学構造空間Chにおける距離に基づいて、日本酒Sake_Aと日本酒Sake_Bの組み合わせが特定される。ここで特定される日本酒Sake_Aと日本酒Sake_Bの組み合わせは、化学構造空間Chにおいて、Ch(New-Blending)との距離が最も近い組み合わせとなる。
αとβは以下のようにして求められる。ここでは、説明を簡単にするため、化学構造を表す行列を用いてA = Ch(Sake_A)、B =Ch(Sake_B)、C = Ch(New-Blending)とする。At = Ch(Sake_A)t、Bt =Ch(Sake_B)t、Ct = Ch(New-Blending)tとする。上付きのtは転置を表す。
同様にして量βも求められる。
図14は、逆変換の例を示す図である。
日本酒Sake_Aと日本酒Sake_Bの組み合わせと、α,βの値が以上のようにして特定された後、適宜、逆変換によって調整が行われる。
図14の矢印A31で示すように、情報処理装置1は、化学構造空間Chの値であるCh(New-Blending)に対応するセンシング情報空間Sの値を特定する。センシング情報空間Sの値であるS(New-Blending)は、下式(11)によって求められる。
また、情報処理装置1は、センシング情報空間Sの値であるS(New-Blending)に対応する風味主観評価空間Eの値を特定する。風味主観評価空間Eの値であるE(New-Blending1)は、下式(12)によって求められる。
例えば、誤差ΔEが閾値より小さい場合、銘柄の組み合わせの選択と、ブレンドする量α,βの選択が終了となる。
一方、誤差ΔEが閾値より大きい場合、銘柄の組み合わせと、量α,βの調整などが行われる。
図12のステップS7において、情報処理装置1は、日本酒Sake_Aと日本酒Sake_Bを用いることと、日本酒Sake_Aを量α、日本酒Sake_Bを量βとしてブレンドすることを含む情報を、新たなレシピとしてシェフに提示する。
日本酒のブレンディングに関するレシピではなく、他の料理のレシピについても同様の処理によって生成され、シェフに対して提示される。
このように、情報処理装置1によるレシピの提示は、あらかじめ用意されている複数のレシピの中から条件に合うレシピを選択することによって行われるのではなく、その都度、シェフにより指定された風味に応じて生成することによって行われる。
以上の処理により、風味主観情報、センシング情報、化学構造情報の関係に基づいて、シェフにより指定された風味に応じた料理のレシピを生成し、提示することが可能となる。
食材(銘柄)単位の情報ではなく、各銘柄を実際にブレンドしてできた日本酒の風味主観情報、センシング情報、化学構造情報の測定が行われ、それらの関係の学習が行われるようにしてもよい。
このとき、量α,βを変えて学習が行われるようにすることにより、シェフにより指定された風味に応じた量α,βを容易に特定することが可能となる。例えば量αを基準として、量αに対する量βの比であるβ/αを変えて学習が行われる。
食材の組み合わせの選択において、Dominant Aromaを構成する化学構造をもつ食材の組み合わせを選択するといった制約がかけられるようにしてもよい。上述した例の場合、日本酒Sake_Aの味、香り、食感を特徴付ける化学構造と似たような化学構造を有する銘柄が日本酒Sake_Bとして選択され、日本酒Sake_Aと日本酒Sake_Bの組み合わせが選択されることになる。このようなDominant Aromaに基づく推薦がAIシステムにより行われるようにしてもよい。
・レシピの生成の他の例
図12のステップS5においては、日本酒Sake_Aと日本酒Sake_Bの組み合わせの選択が、Ch(New-Blending)に最も近い化学構造を有する組み合わせを選択するようにして行われるものとしたが、以下の方法によって行われるようにしてもよい。
図12のステップS5においては、日本酒Sake_Aと日本酒Sake_Bの組み合わせの選択が、Ch(New-Blending)に最も近い化学構造を有する組み合わせを選択するようにして行われるものとしたが、以下の方法によって行われるようにしてもよい。
はじめに、Ch(New-Blending)に最も近い化学構造を有する銘柄が1つ選択される。選択された銘柄を日本酒Sake_Aとする。
次に、他のそれぞれの銘柄を日本酒Sake_Bとして選択した場合の、量α,βが上述したようにして求められる。日本酒Sake_Aと日本酒Sake_Bをブレンドした場合のそれぞれの化学構造空間Chの値は上式(7)として表される。
化学構造空間Chにおいて、Ch(New-Blending)に最も近い値となる日本酒Sake_Aと日本酒Sake_Bの組み合わせが、全ての組み合わせの中から選択される。
すなわち、この例においては、1つの食材に相当する日本酒Sake_Aを基準として、日本酒Sake_Aに組み合わせる日本酒Sake_Bが選択されることになる。
Ch(New-Blending)に最も近い化学構造を有する銘柄を日本酒Sake_Aとして選択するのではなく、Ch(New-Blending)に対して、化学構造空間Chにおいて平行なベクトルによって化学構造が表される銘柄が日本酒Sake_Aとして選択されるようにしてもよい。
例えば、Ch(New-Blending)を表すベクトルと日本酒Sake_Aの化学構造を表すベクトルとの内積をノルム||Ch||と||A||で割り、最も大きな||A||に応じた日本酒Sake_Aが選択される。
これにより、シェフにより指定された風味を実現しつつも、意外性のある食材を用いたレシピが生成されることがある。
<各装置の構成と動作>
・情報処理装置1の構成
図15は、情報処理装置1のハードウェアの構成例を示すブロック図である。
・情報処理装置1の構成
図15は、情報処理装置1のハードウェアの構成例を示すブロック図である。
図15に示すように、情報処理装置1はタブレット端末などのコンピュータにより構成される。CPU(Central Processing Unit)101、ROM(Read Only Memory)102、RAM(Random Access Memory)103は、バス104により相互に接続される。
バス104には、さらに、入出力インタフェース105が接続される。入出力インタフェース105には、キーボード、マウスなどよりなる入力部106、ディスプレイ、スピーカなどよりなる出力部107が接続される。
また、入出力インタフェース105には、ハードディスクや不揮発性のメモリなどよりなる記憶部108、ネットワークインタフェースなどよりなる通信部109、リムーバブルメディア111を駆動するドライブ110が接続される。
CPU101が、例えば、記憶部108に記憶されているプログラムを入出力インタフェース105およびバス104を介してRAM103にロードして実行することにより、レシピの生成などの各種の処理が行われる。
図16は、情報処理装置1の機能構成例を示すブロック図である。
図16に示す機能部のうちの少なくとも一部は、図15のCPU101により所定のプログラムが実行されることによって実現される。図16に示す構成のうち、上述した構成と同じ構成には同じ符号を付してある。
図16に示すように、情報処理装置1においては情報処理部151が実現される。情報処理部151は、レシピ生成部161、および提示部162から構成される。情報処理部151には、風味主観情報DB21、センシング情報DB22、化学構造情報DB23が設けられる。
レシピ生成部161は、風味がシェフにより指定された場合、風味主観情報DB21、センシング情報DB22、化学構造情報DB23に記憶されている情報と各情報の関係を表す情報とに基づいて、上述したようにしてレシピを生成する。レシピ生成部161により生成されたレシピを表す情報は提示部162に供給される。
風味だけでなく、料理名、料理のジャンル、日本風やアメリカ風などの料理の流儀、使う食材などの条件がシェフにより指定されるようにしてもよい。この場合、シェフにより指定された条件に合うレシピが生成される。
例えば、使う食材が条件として指定された場合、シェフにより指定された食材を基準として、その食材と組み合わせて用いる他の食材が上述したようにして選択され、レシピが生成される。
レシピ生成部161が生成するレシピに対して、そのレシピにおいて用いられる食材の風味主観情報、センシング情報、化学構造情報が紐付けられるようにしてもよい。レシピの提示の際に、食材の風味主観情報、センシング情報、化学構造情報などがあわせて提示されることにより、シェフは、それらの情報を参考にしてレシピを創造することができる。
提示部162は、レシピ生成部161により生成されたレシピをシェフに対して提示する。レシピの提示は、スピーカからの音声によって行われるようにしてもよいし、ディスプレイの画面表示によって行われるようにしてもよい。提示部162により、例えば、レシピの各調理工程の説明が順にシェフに対して提示される。
このような構成を有する情報処理部151により、図12を参照して説明した一連の処理が行われる。図12のステップS1乃至S6の処理がレシピ生成部161の処理となり、ステップS7の処理が提示部162の処理となる。
図17は、ネットワークシステムの構成例を示す図である。
図17は、新たなレシピの生成がインターネット上のレシピ生成サーバ171において行われる場合の構成を示している。レシピ生成サーバ171には、図16に示す情報処理部151の構成と同じ構成が設けられる。
レシピ生成サーバ171と、シェフ側に設けられた情報処理装置1との間では、インターネットを介して通信が行われる。情報処理装置1からレシピ生成サーバ171に対しては、シェフにより指定された風味などを表す情報が送信される。
レシピ生成サーバ171のレシピ生成部161は、情報処理装置1から送信されてきた、シェフにより指定された風味の情報を受信し、レシピを生成する。
提示部162は、レシピ生成部161により生成されたレシピに関する情報を情報処理装置1に対して送信し、シェフに対して提示させる。
このように、インターネット上のレシピ生成サーバ171において新たなレシピが生成されるようすることが可能である。
<調理ロボットの制御の例>
・制御システムの構成
以上においては、人であるシェフを対象としたレシピの生成について説明したが、調理ロボットを対象としたレシピが生成されるようにしてもよい。この場合、新たに生成されたレシピに従った調理が、調理ロボットにより行われる。
・制御システムの構成
以上においては、人であるシェフを対象としたレシピの生成について説明したが、調理ロボットを対象としたレシピが生成されるようにしてもよい。この場合、新たに生成されたレシピに従った調理が、調理ロボットにより行われる。
図18は、制御システムの構成例を示す図である。
図18に示すように、制御システムは、データ処理装置301と調理ロボット302から構成される。調理ロボット302は、調理アームなどの駆動系の装置、および、各種のセンサを有し、調理を行う機能を搭載したロボットである。調理ロボット302は、例えば家庭内に設置される。
データ処理装置301は、調理ロボット302を制御する装置である。データ処理装置301はコンピュータなどにより構成される。
図18の左端に示すように、データ処理装置301による調理ロボット302の制御は、料理毎に用意されるレシピデータに基づいて行われる。レシピデータには、それぞれの調理工程に関する情報が記述されている。
データ処理装置301は、レシピデータに基づいて調理ロボット302を制御し、料理を作らせることになる。図16の情報処理部151により生成されたレシピのデータが、データ処理装置301に対して供給され、調理ロボット302の制御に用いられる。
例えば、矢印A1に示すようにレシピデータが入力された場合、データ処理装置301は、矢印A2に示すように、レシピデータの記述に基づいて命令コマンドを出力することによって、調理ロボット302の調理動作を制御する。
調理ロボット302は、データ処理装置301から供給された命令コマンドに従って調理アームなどの各部を駆動し、各調理工程の調理動作を行う。命令コマンドには、調理アームに設けられたモータのトルク、駆動方向、駆動量を制御する情報などが含まれる。
料理が完成するまでの間、データ処理装置301から調理ロボット302に対して命令コマンドが順次出力される。命令コマンドに応じた動作を調理ロボット302がとることにより、最終的に、料理が完成することになる。
図19は、レシピデータの記述内容の例を示す図である。
図19に示すように、1つのレシピデータは、複数の調理工程データセットから構成される。図19の例においては、調理工程#1に関する調理工程データセット、調理工程#2に関する調理工程データセット、・・・、調理工程#Nに関する調理工程データセットが含まれる。
各調理工程データセットには、調理工程を実現するための調理動作に関する情報である調理動作情報が含まれる。例えば、1つの調理工程を実現するための調理動作情報の時系列データにより1つの調理工程データセットが構成される。
調理動作情報には、食材情報と動作情報が含まれる。
食材情報は、調理工程において用いる食材に関する情報である。食材に関する情報には、食材の種類、食材の量、食材の大きさなどを表す情報が含まれる。
なお、食材には、調理が全く施されていない食材だけでなく、ある調理が施されることによって得られた調理済み(下処理済み)の食材も含まれる。ある調理工程の調理動作情報に含まれる食材情報には、それより前の調理工程を経た食材の情報が含まれる。
動作情報は、調理工程における調理アームなどの動きに関する情報である。動きに関する情報には、調理に用いる調理ツールの種類を表す情報などが含まれる。
例えば、ある食材を切る調理工程の動作情報には、調理ツールとして包丁を使うことを表す情報、切る位置、切る回数、切り方の力加減、角度、スピードなどを表す情報が含まれる。
また、食材としての液体が入った鍋をかき混ぜる調理工程の動作情報には、調理ツールとしておたまを使うことを表す情報、かき混ぜ方の力加減、角度、スピード、時間などを表す情報が含まれる。
ある食材を、オーブンを使って焼く調理工程の動作情報には、調理ツールとしてオーブンを使うことを表す情報、オーブンの火力、焼き時間などを表す情報が含まれる。
盛り付けを行う調理工程の動作情報には、盛り付けに使う食器、食材の配置の仕方、食材の色味などを表す盛り付け方の情報が含まれる。
図20は、レシピデータに基づく料理の再現の流れの例を示す図である。
図20に示すように、調理ロボット302による料理の再現は、レシピデータに記述された調理工程データセットに含まれる各時刻の調理動作情報に基づいて調理を行うことを、調理工程毎に繰り返すことによって行われる。調理工程#1~#Nの複数の調理工程を経て1つの料理が完成する。
図21は、データ処理装置301の配置例を示す図である。
図21のAに示すように、データ処理装置301は、例えば調理ロボット302の外部の装置として設けられる。図21のAの例においては、データ処理装置301と調理ロボット302は、インターネットなどのネットワークを介して接続されている。
データ処理装置301から送信された命令コマンドは、ネットワークを介して調理ロボット302により受信される。調理ロボット302からデータ処理装置301に対しては、調理ロボット302のカメラにより撮影された画像、調理ロボット302に設けられたセンサにより計測されたセンサデータなどの各種のデータがネットワークを介して送信される。
図21のBに示すように、データ処理装置301が調理ロボット302の筐体の内部に設けられるようにしてもよい。この場合、データ処理装置301が生成する命令コマンドに従って、調理ロボット302の各部の動作が制御される。
以下、主に、データ処理装置301が、調理ロボット302の外部の装置として設けられるものとして説明する。
・調理ロボットの外観
図22は、調理ロボット302の外観を示す斜視図である。
図22は、調理ロボット302の外観を示す斜視図である。
図22に示すように、調理ロボット302は、横長直方体状の筐体311を有するキッチン型のロボットである。調理ロボット302の本体となる筐体311の内部に各種の構成が設けられる。
筐体311の背面側には調理補助システム312が設けられる。薄板状の部材で区切ることによって調理補助システム312に形成された各スペースは、冷蔵庫、オーブンレンジ、収納などの、調理アーム321-1乃至321-4による調理を補助するための機能を有する。
天板311Aには長手方向にレールが設けられており、そのレールに調理アーム321-1乃至321-4が設けられる。調理アーム321-1乃至321-4は、移動機構としてのレールに沿って位置を変えることが可能とされる。
調理アーム321-1乃至321-4は、円筒状の部材を関節部で接続することによって構成されるロボットアームである。調理に関する各種の作業が調理アーム321-1乃至321-4により行われる。
天板311Aの上方の空間が、調理アーム321-1乃至321-4が調理を行う調理空間となる。
図22においては4本の調理アームが示されているが、調理アームの数は4本に限定されるものではない。以下、適宜、調理アーム321-1乃至321-4のそれぞれを区別する必要がない場合、まとめて調理アーム321という。
図23は、調理アーム321の様子を拡大して示す図である。
図23に示すように、調理アーム321の先端には、各種の調理機能を有するアタッチメントが取り付けられる。調理アーム321用のアタッチメントとして、食材や食器などを掴むマニピュレーター機能(ハンド機能)を有するアタッチメント、食材をカットするナイフ機能を有するアタッチメントなどの各種のアタッチメントが用意される。
図23の例においては、ナイフ機能を有するアタッチメントであるナイフアタッチメント331-1が調理アーム321-1に取り付けられている。ナイフアタッチメント331-1を用いて、天板311Aの上に置かれた肉の塊がカットされている。
調理アーム321-2には、食材を固定させたり、食材を回転させたりすることに用いられるアタッチメントであるスピンドルアタッチメント331-2が取り付けられている。
調理アーム321-3には、食材の皮をむくピーラーの機能を有するアタッチメントであるピーラーアタッチメント331-3が取り付けられている。
スピンドルアタッチメント331-2を用いて調理アーム321-2により持ち上げられているジャガイモの皮が、ピーラーアタッチメント331-3を用いて調理アーム321-3によりむかれている。このように、複数の調理アーム321が連携して1つの作業を行うことも可能とされる。
調理アーム321-4には、マニピュレーター機能を有するアタッチメントであるマニピュレーターアタッチメント331-4が取り付けられている。マニピュレーターアタッチメント331-4を用いて、チキンを載せたフライパンが、オーブン機能を有する調理補助システム312のスペースに運ばれている。
このような調理アーム321による調理は、作業の内容に応じてアタッチメントを適宜取り替えて進められる。4本の調理アーム321のそれぞれにマニピュレーターアタッチメント331-4を取り付けるといったように、同じアタッチメントを複数の調理アーム321に取り付けることも可能とされる。
調理ロボット302による調理は、調理アーム用のツールとして用意された以上のようなアタッチメントを用いて行われるだけでなく、適宜、人が調理に使うツールと同じツールを用いて行われる。例えば、人が使うナイフをマニピュレーターアタッチメント331-4によって掴み、ナイフを用いて食材のカットなどの調理が行われる。
・調理アームの構成
図24は、調理アーム321の外観を示す図である。
図24は、調理アーム321の外観を示す図である。
図24に示すように、調理アーム321は、全体的に、細い円筒状の部材を、関節部となるヒンジ部で接続することによって構成される。各ヒンジ部には、各部材を駆動させるための力を生じさせるモータなどが設けられる。
円筒状の部材として、先端から順に、着脱部材351、中継部材353、およびベース部材355が設けられる。
着脱部材351と中継部材353はヒンジ部352によって接続され、中継部材353とベース部材355はヒンジ部354によって接続される。
着脱部材351の先端には、アタッチメントが着脱される着脱部351Aが設けられる。着脱部材351は、各種のアタッチメントが着脱される着脱部351Aを有し、アタッチメントを動作させることによって調理を行う調理機能アーム部として機能する。
ベース部材355の後端には、レールに取り付けられる着脱部356が設けられる。ベース部材355は、調理アーム321の移動を実現する移動機能アーム部として機能する。
図25は、調理アーム321の各部の可動域の例を示す図である。
楕円#1で囲んで示すように、着脱部材351は、円形断面の中心軸を中心として回転可能とされる。楕円#1の中心に示す扁平の小円は、一点鎖線の回転軸の方向を示す。
円#2で囲んで示すように、着脱部材351は、ヒンジ部352との嵌合部351Bを通る軸を中心として回転可能とされる。また、中継部材353は、ヒンジ部352との嵌合部353Aを通る軸を中心として回転可能とされる。
円#2の内側に示す2つの小円はそれぞれの回転軸の方向(紙面垂直方向)を示す。嵌合部351Bを通る軸を中心とした着脱部材351の可動範囲と、嵌合部353Aを通る軸を中心とした中継部材353の可動範囲は、それぞれ例えば90度の範囲である。
中継部材353は、先端側の部材353-1と、後端側の部材353-2により分離して構成される。楕円#3で囲んで示すように、中継部材353は、部材353-1と部材353-2との連結部353Bにおいて、円形断面の中心軸を中心として回転可能とされる。他の可動部も、基本的に同様の可動域を有する。
このように、先端に着脱部351Aを有する着脱部材351、着脱部材351とベース部材355を連結する中継部材353、後端に着脱部356が接続されるベース部材355は、それぞれ、ヒンジ部により回転可能に接続される。各可動部の動きが、調理ロボット302内のコントローラにより命令コマンドに従って制御される。
図26は、調理アームとコントローラの接続の例を示す図である。
図26に示すように、調理アーム321とコントローラ361は、筐体311の内部に形成された空間311B内において配線を介して接続される。図26の例においては、調理アーム321-1乃至321-4とコントローラ361は、それぞれ、配線362-1乃至362-4を介して接続されている。可撓性を有する配線362-1乃至362-4は、調理アーム321-1乃至321-4の位置に応じて適宜撓むことになる。
・調理ロボット302の構成
図27は、調理ロボット302の構成例を示すブロック図である。
図27は、調理ロボット302の構成例を示すブロック図である。
調理ロボット302は、調理ロボット302の動作を制御する制御装置としてのコントローラ361(図26)に対して各部が接続されることによって構成される。図27に示す構成のうち、上述した構成と同じ構成には同じ符号を付してある。重複する説明については適宜省略する。
コントローラ361に対しては、調理アーム321の他に、カメラ401、センサ402、および通信部403が接続される。
コントローラ361は、CPU,ROM,RAM、フラッシュメモリなどを有するコンピュータにより構成される。コントローラ361は、CPUにより所定のプログラムを実行し、調理ロボット302の全体の動作を制御する。コントローラ361によってデータ処理装置301が構成されるようにしてもよい。
例えば、コントローラ361は、通信部403を制御し、カメラ401により撮影された画像とセンサ402により測定されたセンサデータをデータ処理装置301に送信する。
コントローラ361においては、所定のプログラムが実行されることにより、命令コマンド取得部411、アーム制御部412が実現される。
命令コマンド取得部411は、データ処理装置301から送信され、通信部403において受信された命令コマンドを取得する。命令コマンド取得部411により取得された命令コマンドはアーム制御部412に供給される。
アーム制御部412は、命令コマンド取得部411により取得された命令コマンドに従って調理アーム321の動作を制御する。
カメラ401は、調理ロボット302の周囲の様子を撮影し、撮影によって得られた画像をコントローラ361に出力する。カメラ401は、調理補助システム312の正面、調理アーム321の先端などの様々な位置に設けられる。
センサ402は、温湿度センサ、圧力センサ、光センサ、距離センサ、人感センサ、測位センサ、振動センサなどの各種のセンサにより構成される。センサ402による測定は所定の周期で行われる。センサ402による測定結果を示すセンサデータはコントローラ361に供給される。
カメラ401とセンサ402が、調理ロボット302の筐体311から離れた位置に設けられるようにしてもよい。
通信部403は、無線LANモジュール、LTE(Long Term Evolution)に対応した携帯通信モジュールなどの無線通信モジュールである。通信部403は、データ処理装置301や、インターネット上のサーバなどの外部の装置との間で通信を行う。
図27に示すように、調理アーム321にはモータ421とセンサ422が設けられる。
モータ421は、調理アーム321の各関節部に設けられる。モータ421は、アーム制御部412による制御に従って軸周りの回転動作を行う。モータ421の回転量を測定するエンコーダ、モータ421の回転をエンコーダによる測定結果に基づいて適応的に制御するドライバなども各関節部に設けられる。
センサ422は、例えばジャイロセンサ、加速度センサ、タッチセンサなどにより構成される。センサ422は、調理アーム321の動作中、各関節部の角速度、加速度などを測定し、測定結果を示す情報をコントローラ361に出力する。調理ロボット302からデータ処理装置301に対しては、適宜、センサ422の測定結果を示すセンサデータも送信される。
・データ処理装置301の構成
図28は、データ処理装置301の機能構成例を示すブロック図である。
図28は、データ処理装置301の機能構成例を示すブロック図である。
図28に示す機能部のうちの少なくとも一部は、データ処理装置301を構成するコンピュータのCPUにより所定のプログラムが実行されることによって実現される。
図28に示すように、データ処理装置301においてはコマンド生成部431が実現される。コマンド生成部431は、レシピデータ取得部451、ロボット状態推定部452、制御部453、およびコマンド出力部454から構成される。
レシピデータ取得部451は、情報処理装置1などにおいて新たに生成されたレシピデータを取得し、制御部453に出力する。レシピの生成機能を有する情報処理部151(図16)がレシピデータ取得部451内に設けられるようにしてもよい。
ロボット状態推定部452は、調理ロボット302から送信されてきた画像とセンサデータを受信する。調理ロボット302からは、調理ロボット302のカメラにより撮影された画像と、調理ロボット302の所定の位置に設けられたセンサにより測定されたセンサデータが所定の周期で送信されてくる。調理ロボット302のカメラにより撮影された画像には、調理ロボット302の周囲の様子が写っている。
ロボット状態推定部452は、調理ロボット302から送信されてきた画像とセンサデータを解析することによって、調理アーム321の状態、食材の状態などの、調理ロボット302の周囲の状態や調理工程の状態を推定する。ロボット状態推定部452により推定された調理ロボット302の周囲の状態などを示す情報は、制御部453に供給される。
制御部453は、レシピデータ取得部451から供給されたレシピデータに記述される調理工程データセットに基づいて、調理ロボット302を制御するための命令コマンドを生成する。例えば、調理工程データセットに含まれる調理動作情報により表される通りの動作を調理アーム321に行わせるための命令コマンドが生成される。
命令コマンドの生成には、ロボット状態推定部452により推定された調理ロボット302の周囲の状態なども参照される。制御部453により生成された命令コマンドはコマンド出力部454に供給される。
コマンド出力部454は、制御部453により生成された命令コマンドを調理ロボット302に送信する。
・データ処理装置301の動作
図29のフローチャートを参照して、調理ロボット302の動作を制御するデータ処理装置301の処理について説明する。
図29のフローチャートを参照して、調理ロボット302の動作を制御するデータ処理装置301の処理について説明する。
ステップS101において、レシピデータ取得部451は、情報処理装置1などにより生成されたレシピを表すレシピデータを取得する。
ステップS102において、制御部453は、レシピデータに記述される調理工程データセットに基づいて、所定の調理動作を選択し、選択した調理動作を行わせるための命令コマンドを生成する。例えば、調理工程データセットが調理工程の順に選択されるとともに、選択された調理工程に含まれる調理動作が実行順に選択される。
ステップS103において、コマンド出力部454は、命令コマンドを調理ロボット302に送信し、調理動作を実行させる。
ステップS104において、ロボット状態推定部452は、調理ロボット302の状態を推定する。
ステップS105において、制御部453は、全ての調理動作が終了したか否かを判定する。全ての調理動作が終了していないとステップS105において判定した場合、ステップS102に戻り、次の調理動作を選択して、以上の処理が繰り返される。
全ての調理動作が終了したとステップS105において判定された場合、処理は終了となる。このとき、情報処理装置1などにより生成された新たなレシピデータに基づいて、料理が完成することになる。
このように、調理アームを使って調理を行うロボットを制御するためのレシピデータが情報処理装置1により生成されるようにすることが可能である。
上述したようにして量αの日本酒Sake_Aと量βの日本酒Sake_Bをブレンドするレシピが生成された場合、例えば、以下のような調理動作を行わせるための命令コマンドが調理ロボット302に対して出力される。各動作は調理アーム321により行われる。
1.日本酒Sake_Aを用意する。
2.日本酒Sake_Bを用意する。
3.コップを用意する。
4.コップに日本酒Sake_Aを量αだけ注ぐ。
5.コップに日本酒Sake_Bを量βだけ注ぐ。
6.コップを持ち上げた状態で揺らし、日本酒Sake_Aと日本酒Sake_Bを混合させる。
7.調理ロボット302のユーザにコップを差し出す。
2.日本酒Sake_Bを用意する。
3.コップを用意する。
4.コップに日本酒Sake_Aを量αだけ注ぐ。
5.コップに日本酒Sake_Bを量βだけ注ぐ。
6.コップを持ち上げた状態で揺らし、日本酒Sake_Aと日本酒Sake_Bを混合させる。
7.調理ロボット302のユーザにコップを差し出す。
このような一連の動作が行われることにより、シェフが指定した風味の新たな日本酒が、調理ロボット302のユーザに提供される。
図30は、制御システムの他の構成例を示す図である。
図30に示す制御システムにおいては、調理ロボット302に代えて、電子レンジなどの電子調理器具303が設けられている。電子調理器具303は、データ処理装置301から供給された命令コマンドに従って調理動作を行い、調理を行うことになる。
このように、調理動作を自動的に行う各種の機器の制御にレシピデータが用いられるようにすることが可能である。
<その他の例>
・コンピュータの構成例
上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、汎用のパーソナルコンピュータなどにインストールされる。
・コンピュータの構成例
上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ、または、汎用のパーソナルコンピュータなどにインストールされる。
インストールされるプログラムは、光ディスク(CD-ROM(Compact Disc-Read Only Memory),DVD(Digital Versatile Disc)等)や半導体メモリなどよりなる図15に示されるリムーバブルメディア111に記録して提供される。また、ローカルエリアネットワーク、インターネット、デジタル放送といった、有線または無線の伝送媒体を介して提供されるようにしてもよい。プログラムは、ROM102や記憶部108に、あらかじめインストールしておくことができる。
コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
1 情報処理装置, 21 風味主観情報DB, 22 センシング情報DB, 23 化学構造情報DB, 151 情報処理部, 161 レシピ生成部, 162 提示部, 171 レシピ生成サーバ, 301 データ処理装置, 302 調理ロボット
Claims (20)
- 調理に用いられる食材の化学構造を表す化学構造情報、食材の風味をセンサにより計測して得られたセンサ情報、および、食材の風味に関する人の主観評価を表す風味主観情報に基づいて、新たなレシピを生成するレシピ生成部を備える
情報処理装置。 - 前記レシピ生成部は、同じ食材に関する前記化学構造情報、前記センサ情報、および前記風味主観情報の相互の関係を表す変換情報に基づいて前記新たなレシピを生成する
請求項1に記載の情報処理装置。 - 前記レシピ生成部は、前記化学構造情報により表される化学構造に基づいて選択された食材の組み合わせに含まれる食材を用いた前記新たなレシピを生成する
請求項1に記載の情報処理装置。 - 前記化学構造情報、前記センサ情報、および前記風味主観情報は、それぞれ、複数の項目を要素とするベクトルにより表される
請求項3に記載の情報処理装置。 - 前記レシピ生成部は、組み合わせ対象となるそれぞれの食材の前記化学構造情報を構成するベクトルに対して、それぞれの組み合わせ量に応じた係数を乗算するベクトル演算を行うことによって、食材の組み合わせを選択する
請求項4に記載の情報処理装置。 - 前記レシピ生成部は、前記新たなレシピに従って行われる調理において用いられる食材に関する前記化学構造情報、前記センサ情報、および前記風味主観情報が紐付けられた前記新たなレシピを生成する
請求項1に記載の情報処理装置。 - 前記レシピ生成部により生成された前記新たなレシピを表すレシピデータに基づいて、前記新たなレシピに記述されるそれぞれの工程に応じた調理動作を調理ロボットに実行させる命令コマンドを生成するコマンド生成部をさらに備える
請求項1に記載の情報処理装置。 - 前記化学構造情報は、食材の化学構造を分析器によって測定して得られた情報である
請求項1に記載の情報処理装置。 - 前記センサ情報は、食材の風味を風味測定器によって測定して得られた情報である
請求項1に記載の情報処理装置。 - 前記風味主観情報は、食材を食べた人の風味の主観的な評価値を表す情報である
請求項1に記載の情報処理装置。 - 情報処理装置が、
調理に用いられる食材の化学構造を表す化学構造情報、食材の風味をセンサにより計測して得られたセンサ情報、および、食材の風味に関する人の主観評価を表す風味主観情報に基づいて、新たなレシピを生成する
情報処理方法。 - 調理に用いられる食材の化学構造を表す化学構造情報、食材の風味をセンサにより計測して得られたセンサ情報、および、食材の風味に関する人の主観評価を表す風味主観情報に基づいて生成された、新たなレシピを表すレシピデータに基づいて調理を行う制御部を備える
調理ロボット。 - 前記新たなレシピは、同じ食材に関する前記化学構造情報、前記センサ情報、および前記風味主観情報の相互の関係を表す変換情報に基づいて生成されたものである
請求項12に記載の調理ロボット。 - 前記新たなレシピは、前記化学構造情報により表される化学構造に基づいて選択された食材の組み合わせを用いたものである
請求項12に記載の調理ロボット。 - 前記化学構造情報、前記センサ情報、および前記風味主観情報は、それぞれ、複数の項目を要素とするベクトルにより表される
請求項12に記載の調理ロボット。 - 食材の組み合わせは、組み合わせ対象となるそれぞれの食材の前記化学構造情報を構成するベクトルに対して、それぞれの組み合わせ量に応じた係数を乗算するベクトル演算を行うことによって選択される
請求項14に記載の調理ロボット。 - 前記新たなレシピには、前記新たなレシピに従って行われる調理において用いられる食材に関する前記化学構造情報、前記センサ情報、および前記風味主観情報が紐付けられている
請求項12に記載の調理ロボット。 - 生成された前記新たなレシピを表すレシピデータに基づいて、前記新たなレシピに記述されるそれぞれの工程に応じた調理動作を調理ロボットに実行させる命令コマンドを生成するコマンド生成部をさらに備える
請求項12に記載の調理ロボット。 - 調理ロボットが、
調理に用いられる食材の化学構造を表す化学構造情報、食材の風味をセンサにより計測して得られたセンサ情報、および、食材の風味に関する人の主観評価を表す風味主観情報に基づいて生成された、新たなレシピを表すレシピデータに基づいて調理を行う
調理方法。 - 調理に用いられる食材の化学構造を表す化学構造情報、食材の風味をセンサにより計測して得られたセンサ情報、および、食材の風味に関する人の主観評価を表す風味主観情報に基づいて生成された、新たなレシピを表すレシピデータに基づいて調理を行う制御部を備える
調理器具。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20849413.8A EP3998141A4 (en) | 2019-08-08 | 2020-07-27 | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, COOKING ROBOT, COOKING METHOD AND COOKING UTENSILS |
JP2021537229A JPWO2021024829A1 (ja) | 2019-08-08 | 2020-07-27 | |
US17/632,028 US20220338671A1 (en) | 2019-08-08 | 2020-07-27 | Information processing device, information processing method, cooking robot, cooking method, and cooking equipment |
KR1020217042784A KR20220042064A (ko) | 2019-08-08 | 2020-07-27 | 정보 처리 장치, 정보 처리 방법, 조리 로봇, 조리 방법 및 조리 기구 |
CN202080055850.5A CN114206175B (zh) | 2019-08-08 | 2020-07-27 | 信息处理装置、信息处理方法、烹饪机器人、烹饪方法和烹饪设备 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-145958 | 2019-08-08 | ||
JP2019145958 | 2019-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021024829A1 true WO2021024829A1 (ja) | 2021-02-11 |
Family
ID=74503596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/028638 WO2021024829A1 (ja) | 2019-08-08 | 2020-07-27 | 情報処理装置、情報処理方法、調理ロボット、調理方法、および調理器具 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220338671A1 (ja) |
EP (1) | EP3998141A4 (ja) |
JP (1) | JPWO2021024829A1 (ja) |
KR (1) | KR20220042064A (ja) |
CN (1) | CN114206175B (ja) |
WO (1) | WO2021024829A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150161912A1 (en) * | 2013-12-09 | 2015-06-11 | Lnternational Business Machines Corporation | Analytics-based design and planning of creative menus |
US20160179935A1 (en) * | 2014-12-17 | 2016-06-23 | International Business Machines Corporation | Techniques for modifying recipes to reduce preparation times and/or incorporate preferred ingredients |
JP2017506169A (ja) * | 2014-02-20 | 2017-03-02 | マーク オレイニク | ロボット調理キッチン内の食品調製のための方法及びシステム |
JP2019120485A (ja) * | 2018-01-10 | 2019-07-22 | 財團法人食品工業發展研究所 | 食品調理装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130149679A1 (en) * | 2011-12-12 | 2013-06-13 | Yukie J. Tokuda | System and methods for virtual cooking with recipe optimization |
US20150294225A1 (en) * | 2014-04-11 | 2015-10-15 | Panasonic Intellectual Property Management Co., Ltd. | Recipe information processing apparatus, cooking apparatus, and recipe information processing method |
US10518409B2 (en) | 2014-09-02 | 2019-12-31 | Mark Oleynik | Robotic manipulation methods and systems for executing a domain-specific application in an instrumented environment with electronic minimanipulation libraries |
WO2016160732A1 (en) * | 2015-03-27 | 2016-10-06 | Prashant Choudhary | Autonomous cooking device to prepare food from a recipe file and method for creating recipe files |
US20170097934A1 (en) * | 2015-10-02 | 2017-04-06 | Panasonic Intellectual Property Corporation Of America | Method of providing cooking recipes |
CN105897932A (zh) * | 2016-06-15 | 2016-08-24 | 广州胜维电器制造有限公司 | 食物料理机的菜谱更新方法 |
US10412985B2 (en) * | 2016-09-29 | 2019-09-17 | International Business Machines Corporation | Identifying components based on observed olfactory characteristics |
CN107103200A (zh) * | 2017-05-04 | 2017-08-29 | 纪传建 | 一种食物菜谱的生成方法及系统 |
-
2020
- 2020-07-27 CN CN202080055850.5A patent/CN114206175B/zh active Active
- 2020-07-27 WO PCT/JP2020/028638 patent/WO2021024829A1/ja unknown
- 2020-07-27 JP JP2021537229A patent/JPWO2021024829A1/ja active Pending
- 2020-07-27 US US17/632,028 patent/US20220338671A1/en active Pending
- 2020-07-27 KR KR1020217042784A patent/KR20220042064A/ko active Search and Examination
- 2020-07-27 EP EP20849413.8A patent/EP3998141A4/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150161912A1 (en) * | 2013-12-09 | 2015-06-11 | Lnternational Business Machines Corporation | Analytics-based design and planning of creative menus |
JP2017506169A (ja) * | 2014-02-20 | 2017-03-02 | マーク オレイニク | ロボット調理キッチン内の食品調製のための方法及びシステム |
US20160179935A1 (en) * | 2014-12-17 | 2016-06-23 | International Business Machines Corporation | Techniques for modifying recipes to reduce preparation times and/or incorporate preferred ingredients |
JP2019120485A (ja) * | 2018-01-10 | 2019-07-22 | 財團法人食品工業發展研究所 | 食品調理装置 |
Non-Patent Citations (2)
Title |
---|
"The easiest AI <artificial intelligence> super introduction", 28 March 2018, MYNAVI PUBLISHING, JP, ISBN: 978-4-8399-6559-4, article ONISHI, KANAKO: "Chapter 3; The easiest AI <artificial intelligence> super introduction", pages: 149 - 153, XP009533509 * |
See also references of EP3998141A4 |
Also Published As
Publication number | Publication date |
---|---|
KR20220042064A (ko) | 2022-04-04 |
EP3998141A4 (en) | 2022-11-23 |
CN114206175B (zh) | 2024-08-23 |
US20220338671A1 (en) | 2022-10-27 |
CN114206175A (zh) | 2022-03-18 |
JPWO2021024829A1 (ja) | 2021-02-11 |
EP3998141A1 (en) | 2022-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11738455B2 (en) | Robotic kitchen systems and methods with one or more electronic libraries for executing robotic cooking operations | |
RU2699690C2 (ru) | Способы и системы для приготовления пищи на роботизированной кухне | |
WO2021024829A1 (ja) | 情報処理装置、情報処理方法、調理ロボット、調理方法、および調理器具 | |
WO2020179408A1 (ja) | データ処理装置、データ処理方法 | |
WO2023182197A1 (ja) | 情報処理装置、情報処理方法、およびプログラム | |
WO2021140961A1 (ja) | 情報処理装置、情報処理方法 | |
WO2021024830A1 (ja) | 情報処理装置、情報処理方法、調理ロボット、調理方法、および調理器具 | |
JP7552580B2 (ja) | 調理ロボット、調理ロボット制御装置、制御方法 | |
WO2021200308A1 (ja) | 制御装置、制御方法 | |
WO2021024828A1 (ja) | 調理アーム、計測方法、および調理アーム用アタッチメント | |
WO2024161686A1 (ja) | 情報処理装置、情報処理方法、プログラム、配信システム | |
WO2021200306A1 (ja) | 情報処理装置、情報処理端末、情報処理方法 | |
WO2024084947A1 (ja) | 制御システム、制御方法、制御プログラム、情報提供システム、情報提供方法、及び情報提供プログラム | |
陳人豪 et al. | Designing User Interface for Health-aware Cooking in a Smart Kitchen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20849413 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021537229 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020849413 Country of ref document: EP Effective date: 20220209 |