WO2021024483A1 - Terminal and wireless communication method - Google Patents

Terminal and wireless communication method Download PDF

Info

Publication number
WO2021024483A1
WO2021024483A1 PCT/JP2019/031490 JP2019031490W WO2021024483A1 WO 2021024483 A1 WO2021024483 A1 WO 2021024483A1 JP 2019031490 W JP2019031490 W JP 2019031490W WO 2021024483 A1 WO2021024483 A1 WO 2021024483A1
Authority
WO
WIPO (PCT)
Prior art keywords
srs
resource
channel
transmission
pusch
Prior art date
Application number
PCT/JP2019/031490
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
佑一 柿島
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2019/031490 priority Critical patent/WO2021024483A1/en
Priority to CN201980099173.4A priority patent/CN114208328A/en
Publication of WO2021024483A1 publication Critical patent/WO2021024483A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • a user terminal transmits an uplink signal.
  • the uplink signal is, for example, a random access channel (Physical Random Access Channel (PRACH)), an uplink shared channel (Physical Uplink Shared Channel (PUSCH)), an uplink control channel (Physical Uplink Control Channel (PUCCH)), and a sounding reference signal (Sounding).
  • PRACH Physical Random Access Channel
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • Sounding Sounding reference signal
  • Reference Signal (SRS)), PUSCH or PUCCH demodulation reference signal (Demodulation Reference Signal (DM-RS)) may be included at least one.
  • the UE performs uplink transmission (for example, PUSCH, PUCCH, SRS, etc.).
  • uplink transmission for example, PUSCH, PUCCH, SRS, etc.
  • one of the purposes of the present disclosure is to provide a terminal and a wireless communication method that appropriately handle when the resource given to the uplink transmission and the resource given to the SRS overlap.
  • a terminal includes a receiving unit that receives setting information indicating a first resource of a zero-power sounding reference signal (SRS), a second resource given to uplink transmission, and the first resource.
  • SRS zero-power sounding reference signal
  • the second resource includes a control unit that does not map the uplink transmission.
  • the resource given to the uplink transmission and the resource given to the SRS overlap when the resource given to the uplink transmission and the resource given to the SRS overlap, it is appropriately processed.
  • FIG. 1A and 1B are diagrams showing an example of a Comb configuration of SRS.
  • FIG. 2 is a diagram showing an example in which a resource for an uplink channel and a resource for an SRS overlap.
  • 3A and 3B are diagrams showing an example of a resource control method for the uplink channel and the resource for the SRS.
  • FIG. 4 is a diagram showing an example of transmission priority according to the type of uplink transmission.
  • 5A-5C are diagrams showing an example of a resource control method for uplink channels and resources for SRS.
  • FIG. 6 is a diagram showing an example of a Comb configuration of SRS.
  • 7A-7C are diagrams showing an example of a resource control method for the uplink channel and the resource for the SRS.
  • FIG. 8 is a diagram showing an example of a Comb configuration of SRS.
  • 9A-9C are diagrams showing an example of a control method in the initial transmission and retransmission of the uplink channel.
  • 10A-10C are diagrams showing an example of a control method in the initial transmission and retransmission of the uplink channel.
  • 11A and 11B are diagrams showing an example of a control method in the initial transmission and retransmission of the uplink channel.
  • FIG. 12 is a diagram showing an example of a resource control method for an uplink channel over a plurality of slots and a resource for SRS.
  • FIG. 13 is a diagram showing an example of a resource control method for an uplink channel over a plurality of slots and a resource for SRS.
  • FIG. 14 is a diagram showing an example of a resource control method for an uplink channel over a plurality of slots and a resource for SRS.
  • FIG. 15 is a diagram showing an example of a resource control method for an uplink channel over a plurality of slots and a resource for SRS.
  • FIG. 16 is a diagram showing an example of a resource control method for an uplink channel over a plurality of slots and a resource for SRS.
  • 17A and 17B are diagrams showing an example in which the resources of the uplink channel of the UE and the SRS of another UE overlap.
  • 18A-C is a diagram showing an example of a Comb configuration of ZP-SRS.
  • 19A-19C are diagrams showing an example of a control method when the resource for the uplink channel and the resource for the ZP-SRS overlap.
  • 20A-20C are diagrams showing an example of a control method when the resource for ZP-SRS and the resource for NZP-SRS overlap.
  • FIG. 21 is a diagram showing an example of a control method when the resource for ZP-SRS and the resource for NZP-SRS overlap.
  • FIG. 22 is a diagram showing an example of a control method when the upstream channel resource of the UE and the SRS of another UE overlap.
  • FIG. 23 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 24 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 25 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 26 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • SRS Signal for measurement
  • CSI channel state information
  • the UE may be configured with one or more SRS resources.
  • the SRS resource may be specified by an SRS resource instruction (SRS Resource Indicator: SRI).
  • SRS Resource Indicator: SRI SRS Resource Indicator
  • Each SRS resource information element may include the number of SRS ports (antenna ports) (may correspond to one or more SRS ports).
  • the number of antenna ports may be 1, 2, 4, or the like.
  • Each SRS resource IE may include the number of OFDM symbols.
  • the number of OFDM symbols may be 1, 2, 4, or the like.
  • Each SRS resource IE may include a starting position l 0 in the time domain.
  • Each SRS resource IE may include a starting position k 0 in the frequency domain.
  • the UE may be set with one or more SRS resource sets (SRS resource sets).
  • SRS resource sets may be associated with a predetermined number of SRS resources.
  • the UE may commonly use higher layer parameters for SRS resources included in one SRS resource set.
  • the resource set may be read as a resource group, simply a group, or the like.
  • At least one of the SRS resource set and the information about the SRS resource may be set in the UE using higher layer signaling, physical layer signaling, or a combination thereof.
  • the upper layer signaling may be, for example, any one of RRC (Radio Resource Control) signaling, media access control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC media access control
  • MAC Control Element For MAC signaling, for example, a MAC control element (MAC Control Element (CE)), a MAC Protocol Data Unit (PDU), or the like may be used.
  • the broadcast information includes, for example, a master information block (Master Information Block: MIB), a system information block (System Information Block: SIB), a minimum system information (Remaining Minimum System Information: RMSI), and other system information (Other System Information). : OSI) and the like.
  • the physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • the SRS setting information (for example, "SRS-Config" of the RRC parameter (information element)) may include SRS resource set setting information, SRS resource setting information, and the like.
  • the SRS resource set setting information (for example, the RRC parameter "SRS-ResourceSet”) includes an SRS resource set ID (Identifier) (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, and SRS. Information on resource type and SRS usage may be included.
  • the SRS resource types are periodic SRS (Periodic SRS: P-SRS), semi-persistent SRS (Semi-Persistent SRS: SP-SRS), and aperiodic CSI (Aperiodic SRS: A-SRS, AP-SPS). ) May be indicated.
  • the UE may transmit P-SRS and SP-SRS periodically (or periodically after activation), and may transmit A-SRS based on DCI's SRS request.
  • SRS RRC parameter "usage", L1 (Layer-1) parameter "SRS-SetUse"
  • L1 (Layer-1) parameter "SRS-SetUse” L1 (Layer-1) parameter "SRS-SetUse”
  • beam management beam Management
  • codebook codebook: CB
  • noncodebook noncodebook
  • NCB antenna switching, etc.
  • SRS for codebook or non-codebook use may be used to determine a precoder for codebook-based or non-codebook-based PUSCH transmission based on SRI.
  • An SRS for beam management may be assumed that only one SRS resource for each SRS resource set can be transmitted in an instant at a predetermined time. When a plurality of SRS resources belong to different SRS resource sets, these SRS resources may be transmitted at the same time.
  • the UE determines a precoder for PUSCH transmission based on SRI, a transmission rank index (Transmitted Rank Indicator: TRI), and a transmission precoding matrix index (Transmitted Precoding Matrix Indicator: TPMI). You may.
  • the UE may determine a precoder for PUSCH transmission based on SRI.
  • the SRS resource setting information (for example, the RRC parameter "SRS-Resource”) includes the SRS resource ID (SRS-ResourceId), the number of SRS ports, the SRS port number, the transmission comb, and the SRS resource mapping (for example, at least one of time and frequency). It may include one resource position, resource offset, resource period, number of iterations, number of SRS symbols, SRS bandwidth, etc.), hopping-related information, SRS resource type, sequence ID, space-related information, and the like.
  • SRS resource ID SRS-ResourceId
  • the SRS resource setting information includes the SRS resource ID (SRS-ResourceId), the number of SRS ports, the SRS port number, the transmission comb, and the SRS resource mapping (for example, at least one of time and frequency). It may include one resource position, resource offset, resource period, number of iterations, number of SRS symbols, SRS bandwidth, etc.), hopping-related information, SRS resource type, sequence ID, space-related information, and the like.
  • the UE may transmit SRS in the adjacent symbols corresponding to the number of SRS symbols among the last 6 symbols in one slot.
  • the number of SRS symbols may be 1, 2, 4, or the like.
  • the UE may switch the BWP (Bandwidth Part) that transmits SRS for each slot, or may switch the antenna.
  • the UE may apply at least one of in-slot hopping and inter-slot hopping to SRS transmission.
  • the SRS series may be a low peak power to average power ratio (PAPR) series.
  • the transmission Comb number K TC may be included in the upper layer parameter (eg, transmissionComb).
  • the low PAPR series may be a Constant Amplitude Zero Auto Correlation (CAZAC) series or a series conforming to the CAZAC series (for example, a computer-generated (CGS)) series.
  • CAZAC Constant Amplitude Zero Auto Correlation
  • CGS computer-generated
  • the CGS may be specified in the specification (eg, table).
  • the transmission combs of SRS include Comb2 (1RE SRS is placed for each 2 resource elements (RE, subcarrier)) or Comb4 (1RE SRS is placed for every 4RE), and cyclic shift (CS).
  • IFDMA Interleaved Frequency Division Multiple Access
  • the Comb offset can take any value of an integer from 0 to n-1.
  • the Comb offset, the Comb index, and the transmitted Comb offset may be read as each other.
  • CS in the case of COMB2, cyclic shift for the antenna port p i (cyclic shift (CS) ) Number (CS index) n SRS cs, i is the ⁇ 0,1,2,3,4,5,6,7 ⁇ It can take either value.
  • the CS number n SRS cs, i for the antenna port p i can take any value of ⁇ 0,1,2,3,4,5,6,7,8,9,10,11 ⁇ . ..
  • a maximum of 2 ⁇ 8 16 UEs can be multiplexed.
  • a maximum of 4 ⁇ 12 48 UEs can be multiplexed.
  • Multiple CSs may be configured on different UEs or may be associated with different SRS ports.
  • the RE corresponding to the PUSCH in the PRB corresponding to the PUSCH is used for the DMRS associated with the PUSCH, the PTRS, and the DMRS for another co-scheduled UE (other co-scheduled UE).
  • the DMRS for the other co-scheduled UE may be a DMRS located in a comb different from the DMRS comb associated with the PUSCH.
  • P-SRS or SP-SRS transmission is set in the same symbol as PUCCH that carries HARQ-ACK (Hybrid Automatic Repeat reQuest ACK knowledgement) or scheduling request (Scheduling Request (SR)), or aperiodically ( aperiodic (A) -
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACK knowledgement
  • SR scheduling request
  • A aperiodic
  • the UE does not transmit SRS. If the SRS is not transmitted due to the overlap with the PUCCH, only the SRS symbol that overlaps with the PUCCH is dropped. If the A-SRS is triggered for overlapping transmissions with the same symbols as the PUCCH carrying only SP or P-CSI reports or SP or PL1-RSRP reports, the PUCCH will not be transmitted.
  • the UE does not transmit the PUCCH.
  • the UE does not expect the SRS from one carrier and the PUSCH or UL DM-RS or UL PT-RS or PUCCH format from different carriers of the same symbol to be set.
  • SRS uses frequency hopping or Comb
  • PUSCH spans multiple slots.
  • scheduling the PUSCH so that the base station does not overlap the SRS and the PUSCH reduces the flexibility of the schedule and increases the load on the base station.
  • the present inventors have conceived a method of appropriately processing the UL channel and the SRS when the resource for the UL channel and the resource for the SRS overlap.
  • UL transmission, SRS, PUSCH, PUCCH, and UCI may be read as each other.
  • UL channel, PUSCH, PUCCH, and UCI may be read as each other.
  • slots, subslots, minislots, subframes, periods, and time fields may be read interchangeably.
  • the UL transmission is not performed, the UL transmission is dropped, the UL transmission is canceled, the entire UL transmission is not transmitted, and the UL transmission is set or scheduled. Not using all of the resources may be read interchangeably.
  • a part of a UL transmission is transmitted, a UL transmission is punctured, a UL transmission is rate-matched, and the UL transmission is mapped to a part of a resource set or scheduled for the UL transmission. That, not mapping the UL transmission to some of the resources configured or scheduled for the UL transmission, may be read interchangeably.
  • puncturing or rate-matching UL transmissions on a particular resource puncturing or rate-matching UL transmissions around a particular resource, not mapping UL transmissions to a particular resource, for UL transmissions. Not mapping UL transmission to a specific resource among the configured resources may be read as mutually exclusive.
  • UL channel resources resources given to UL channels, resources configured or scheduled or triggered for UL channels, time and frequency resource ranges for UL channels, resource elements for UL channels ( RE)
  • SRS resources resources given to SRS, resources set or scheduled or triggered for SRS, range of time and frequency resources for SRS, RE for SRS
  • UL transmission resources resources given to UL transmission, resources set or scheduled or triggered for UL transmission, a range of time and frequency resources for UL transmission, RE for UL transmission, are: They may be read as each other.
  • resources set for SRS eg, NZP-SRS or ZP-SRS
  • SRS resource range e.g., NZP-SRS or ZP-SRS
  • entire band of SRS resource e.g., all REs within the time and frequency range of SRS resources, all Combs.
  • the offset-based REs may be read interchangeably.
  • placement, position, allocation, mapping, pattern, position in slot and in PRB, symbol position and subcarrier position may be read interchangeably.
  • the type of UL transmission, the type of UL transmission, and the content of UL transmission may be read as each other.
  • Each embodiment may be applied to the duplication of PUSCH and SRS, or may be applied to the duplication of PUCCH and SRS.
  • the UE may not transmit part or all of one of the SRS or UL channels (the resources of one of the SRS or UL channels may be reduced).
  • Embodiment 1-1 when the resources of the SRS and the UL channel (for example, PUSCH) overlap, the UE does not transmit a part or all of the SRS (reduces the resource of the SRS), but transmits the UL channel. May be good.
  • the UE may not transmit the portion of the SRS that overlaps the resources of the UL channel (eg, PUSCH) by puncturing the SRS (FIG. 3A), or the UL channel (eg, PUSCH). SRS that overlaps with the resource of) may be dropped (Fig. 3B).
  • the dynamically scheduled transmission of the UL channel can be preferentially secured, and the decrease in throughput can be suppressed.
  • the UE may (1) generate the transmission signal sequence before dropping and then puncture the overlapping portion between the SRS and the UL channel, or (2) the transmission signal sequence after dropping. A long SRS transmission signal sequence may be generated. Further, the UE may switch between (1) and (2) according to a notification from the network (for example, a base station).
  • the network for example, a base station
  • the UE may transmit the SRS without transmitting a part or all of the UL channel. For example, the UE may not transmit the portion of the UL channel that overlaps with the SRS resource, or may drop the UL channel by rate-matching or puncturing the UL channel.
  • the UE may rate match or puncture the UL channel according to Embodiment 2. In this case, at least one of throughput improvement and quality improvement by SRS measurement becomes possible.
  • the UE may transmit the A-SRS without transmitting a part or all of the UL channel.
  • the UE may, for example, rate match or puncture the UL channel so that it does not have to transmit the portion of the UL channel that overlaps the resources of the A-SRS, or it may drop the UL channel.
  • the UE may rate match or puncture the UL channel according to Embodiment 2.
  • the dynamically scheduled transmission of A-SRS can be preferentially secured, and at least one of throughput improvement and quality improvement by SRS measurement becomes possible.
  • Embodiment 1-2 When the resources of the SRS and the UL channel overlap, the UE determines which UL transmission of the SRS or UL channel is preferentially transmitted based on at least one of the following priority UL transmission determination methods 1 to 5. You may decide.
  • the UE may determine preferred UL transmission based on the order of reception or detection of downlink control information (DCI) scheduling or triggering SRS and DCI scheduling or triggering UL channel.
  • DCI downlink control information
  • the UE determines whether to prioritize the DCI that scheduled or triggered the SRS or the SRS or UL channel that was previously scheduled or triggered by the DCI that was received or detected among the DCIs that scheduled or triggered the UL channel. You may.
  • the UE prefers the SRS. You may decide that.
  • the UE may rate match or puncture the UL channel in the portion of the UL channel that overlaps the SRS resource and transmit the UL channel and SRS.
  • the UE may rate match or puncture the UL channel based on at least one of embodiments 2-1 to 2-6 described below. Also, in this case, the UE may drop the UL channel and send an SRS.
  • the UE prefers the UL channel. You may decide that. In this case, the UE may drop the ASRS and transmit the UL channel. In these cases, since the UL transmission processing corresponding to the DCI is performed when the UE receives the previous DCI, it is possible to avoid interrupting the UL transmission processing by the subsequent reception of the DCI.
  • the UE also determines whether to prioritize the DCI that scheduled or triggered the SRS or the SRS or UL channel that was later scheduled or triggered by the DCI that was received or detected among the DCIs that scheduled or triggered the UL channel. You may. For example, in the case where the DCI that scheduled or triggered the A-SRS was detected after the DCI that scheduled or triggered the UL channel, and the resources of the A-SRS and the UL channel overlapped, the UE should prioritize the SRS. May be determined. In this case, the UE may rate match or puncture the UL channel in the portion of the UL channel that overlaps the SRS resource and transmit the PUSCH and SRS.
  • the UE may rate match or puncture the UL channel based on at least one of embodiments 2-1 to 2-6 described below.
  • the UE may drop the UL channel and send an SRS.
  • the UE prefers the UL channel. You may decide that.
  • the UE may drop the ASRS and transmit the UL channel.
  • the UE interrupts the processing of the previously scheduled or triggered UL transmission by considering that the later scheduled or triggered UL transmission is more important than the earlier scheduled or triggered UL transmission. Therefore, the more important UL transmission processing can be prioritized.
  • the UE will use the type of search space used to detect the DCI of at least one scheduling or trigger of the SRS and UL channels (eg, common search space (CSS)). ), (UE-specific search space (USS))), which may be prioritized for UL transmission of SRS or UL channel.
  • SCS common search space
  • USS UE-specific search space
  • the UE may preferentially transmit UL transmission scheduled or triggered by DCI detected in CSS. Also, for example, the UE may preferentially transmit SRS or UL channels scheduled or triggered by DCI detected in the USS.
  • the UE will use the UL of either the SRS or UL channel based on the index of the cell or CC used to detect the DCI of at least one scheduling or trigger of the SRS and UL channel. You may decide whether to prioritize transmission.
  • the UE may preferentially transmit at least one of the SRS or UL channels scheduled or triggered by the DCI detected in the cell smaller in the component carrier (CC, serving cell) index or in the primary cell (PCell). .. Also, at least one of the SRS or UL channels scheduled or triggered by the DCI detected in the cell with the larger CC index may be preferentially transmitted.
  • CC component carrier
  • PCell primary cell
  • the UE may decide whether to prioritize UL transmission of SRS or UL channel based on the respective types of SRS and UL channels.
  • the type of UL transmission is carried by the UL channel and the transmission timing of either periodic (periodic (P)), semi-persistent (SP), or aperiodic (aperiodic (A)). It may be defined by at least one of the contents.
  • the type of SRS may be any of P-SRS, SP-SRS, and A-SRS.
  • the types of PUCCH are transmitted to semi-persistents such as PUCCH (periodic PUCCH) transmitted periodically such as P-CSI report and HARQ-ACK for SP-CSI report and DL-semi-persistent (SPS) transmission.
  • the types of PUSCH are the PUSCH (periodic PUSCH) transmitted periodically such as the type 1 configured grant PUSCH and the PUSCH (semi-persistent) transmitted to the semi-persistent such as the type 2 configured grant PUSCH. It may be either a stent PUSCH) or a PUSCH (aperiodic PUSCH) transmitted aperiodically, such as a dynamic grant PUSCH.
  • the content carried by the UL channel may be of UCI type (SR, HARQ-ACK, CSI (eg, P-CSI report, SP-CSI report, A-CSI report)).
  • the UCI may be carried by PUCCH or by PUSCH.
  • which UL transmission is prioritized may be specified based on the type of SRS and the type of PUCCH. For example, if the A-SRS resource and the aperiodic PUCCH resource overlap, the UE may prefer the aperiodic PUCCH (drop or puncture or rate match the aperiodic PUCCH and A-SRS. You may send the whole of). For example, if the resources of the A-SRS and the resources of the periodic PUCCH overlap, the UE may prioritize the A-SRS (drop or puncture the periodic PUCCH and send the entire A-SRS). May be good). For example, if the P-SRS resource and the periodic PUCCH resource overlap, the UE may prefer the periodic PUCCH (drop or puncture the P-SRS and send the entire periodic PUCCH. May be good).
  • Priority may be specified for the type of SRS and the type of UL channel (PUCCH, UCI, PUSCH, etc.).
  • the UE may prioritize UL transmission having a lower priority value, or may prioritize UL transmission having a higher priority value.
  • Aperiodic UL transmission, semi-persistent UL transmission, and periodic UL transmission may be prioritized in this order.
  • PUCCH may be prioritized when SRS and PUCCH are of the same type. For example, priorities 1 to 6 are associated with aperiodic PUCCH, A-SRS, semi-persistent PUCCH, SP-SRS, periodic PUCCH, P-SRS, respectively, and the UE is smaller than the priority value.
  • UL transmission may be prioritized. For example, if the aperiodic PUCCH and A-SRS overlap, the UE may prefer A-SRS with a lower priority value (drop or puncture or rate match the aperiodic PUCCH and A- The entire SRS may be transmitted).
  • Periodic UL transmission, semi-persistent UL transmission, and aperiodic UL transmission may be prioritized in this order.
  • PUCCH or UCI may be prioritized. For example, priorities 1 to 6 are associated with aperiodic PUCCH, semi-persistent PUCCH, periodic PUCCH, A-SRS, SP-SRS, P-SRS, respectively, and the UE is the priority (priority). UL transmission with a smaller value may be prioritized. For example, if the aperiodic PUCCH and the A-SRS overlap, the UE may prioritize the aperiodic PUCCH with a lower priority value (dropping or puncturing the A-SRS and the aperiodic PUCCH. May be sent in its entirety).
  • the UE decides to preferentially transmit either the SRS or the UL channel based on the index (index relationship) for each resource of the SRS and the UL channel. You may.
  • the time index may be an index of the time resource at the start or end of UL transmission.
  • the time resource may be any of a symbol, a minislot, a subslot, and a slot.
  • the frequency index may be the index of the lowest (start) or highest (end) frequency resource of UL transmission.
  • the frequency resource may be any of a subcarrier interval, a resource element (RE), a resource block (RB), a CC, a cell, and a band.
  • the other when the SRS resource overlaps with the UL channel resource, the other can be appropriately transmitted by not transmitting a part or all of one of the SRS or UL channel. In addition, it is possible to appropriately determine whether to prioritize the SRS or UL channel.
  • the UE may rate match (or puncture) the UL channel (reduce UL channel resources) and transmit the SRS and UL channels.
  • the UE may rate match (or puncture) the UL channel based on at least one of the following embodiments 2-1 to 2-6.
  • Embodiment 2-1 When the resources of the SRS and the UL channel overlap, the UE does not use the RE used for the transmission of the SRS for the transmission of the UL channel and the demodulation reference signal (DMRS) of the UL channel, but the RE used for the transmission of the SRS.
  • UL channels may be rate matched (or punctured) in.
  • the only RE used to transmit the SRS is the RE to which the SRS sequence is mapped.
  • the set SRS of Comb2 overlaps with the final symbol of the scheduled PUSCH.
  • the PUSCH is rate-matched (or punctured), and the SRS and the PUSCH are transmitted.
  • the increase in the coding rate of the UL channel can be minimized to suppress the deterioration of the communication quality, and the transmission can be performed efficiently, and the throughput of the UL channel can be improved.
  • Embodiment 2-2 When the resources of SRS and UL channel overlap, the UE does not use the resource set for SRS (SRS resource range) to transmit DMRS of UL channel and UL channel, but in the resource set for SRS. UL channels may be rate matched (or punctured).
  • SRS resource range When an SRS resource with a Comb configuration is configured on the UE, the SRS resource range is not only the RE used for transmissions based on the set Comb offset value, but also the RE used for transmissions based on other values of the Comb offset. including.
  • the scheduled PUSCH resource and the set SRS resource are the same as those of FIG. 5A.
  • the PUSCH is rate-matched (or punctured) in the SRS resource range, and the SRS and the PUSCH are transmitted.
  • RE that may be used for SRS transmission is included.
  • the resources that are not mapped to the UL channel due to the rate match or puncture in the above-described 2-2 may be used for the SRS of another UE (for example, the SRS having a different Comb offset). Therefore, by using the second embodiment, it is possible to prevent the UL channel of the UE from colliding or interfering with the SRS of another UE even when the SRS of a plurality of UEs is multiplexed by the comb. it can.
  • Embodiment 2-3 If the SRS and UL channel resources overlap, the UE does not use the SRS symbol to transmit the UL and UL channel DMRS, but rates the UL channel at the SRS symbol (all REs within the SRS symbol). It may be a match (or puncture).
  • the scheduled PUSCH resource and the set SRS resource are the same as those of FIG. 5A.
  • the PUSCH is rate-matched (or punctured) at the symbol (period) in which the SRS is set, and the SRS and the PUSCH are transmitted.
  • SRSs having different lengths may be transmitted by other UEs in the SRS symbol that overlaps with the UL channel of a certain UE.
  • SRSs having different lengths may be transmitted by other UEs in the SRS symbol that overlaps with the UL channel of a certain UE.
  • the UE may rate match or puncture the UL channel based on at least one of embodiments 2-1 to 2-3 described above.
  • the UE uses RE used for transmission of SRS to transmit the UL channel and the demodulation reference signal (DMRS) of the UL channel.
  • DMRS demodulation reference signal
  • the UL channel may be rate-matched (or punctured) in the RE used for SRS transmission without use. That is, the UL channel may be rate matched or punctured based on the method of embodiment 2-1 described above.
  • the SRS resource of the first hop (before frequency hopping) and the SRS resource of the second hop (after frequency hopping) are arranged in the same slot as the PUSCH resource, and the SRS resource of the second hop and the SRS resource of the second hop are arranged.
  • the PUSCH resource and is duplicated in the final symbol of the PUSCH resource.
  • the PUSCH is rate-matched (or punctured), and the SRS and the PUSCH are transmitted.
  • the UE transmits the resource (SRS resource range) set for SRS to the UL channel and the DMRS of the UL channel.
  • UL channels may be rate-matched (or punctured) in resources configured for SRS instead of being used for. That is, the UL channel may be rate matched or punctured based on the method of Embodiment 2-2 described above.
  • the resource configured for SRS is based on the RE used for transmission based on the value of the configured Comb offset, as well as other values of the Comb offset. Includes RE used for transmission.
  • the scheduled PUSCH resource and the set SRS resource are the same as those of FIG. 7A.
  • the PUSCH is rate-matched (or punctured) in the SRS resource range, and the SRS and the PUSCH are transmitted.
  • the UE does not use the SRS symbol to transmit the DMRS of UL channel and UL channel, but overlaps the resource with UL channel.
  • UL channels may be rate-matched (or punctured) at the SRS symbol (all REs within the SRS symbol). That is, the UL channel may be rate matched or punctured based on the method of embodiment 2-3 described above.
  • the scheduled PUSCH resource and the set SRS resource are the same as those of FIG. 7A.
  • the PUSCH is rate-matched (or punctured) at the symbol (period) in which the SRS that overlaps the PUSCH resource is set, and the SRS and the PUSCH are transmitted.
  • Embodiment 2-4 In addition to the resource for SRS, the UE may be notified of information (target Comb) indicating in which resource of the Comb the UL channel should be rate-matched (or punctured).
  • target Comb information indicating in which resource of the Comb the UL channel should be rate-matched (or punctured).
  • the UE may be notified of a bitmap showing the Comb offset of the target Comb.
  • the UE notified of the bitmap may perform rate matching or puncturing of the UL channel at the RE corresponding to the Comb offset indicated by the bitmap.
  • a UE may be configured for some UEs or other UEs as well as the number of CDM group without data for the DMRS code division multiplexing (CDM) group. You may be notified of the number.
  • the UE notified of the number of Combs may determine the target Comb according to the selection rule. For example, in the selection rule, the UE may always select only the number of Combs notified as priority from the one with the smallest (or larger) Comb offset as the target Comb, or the Comb notified as the SRS resource.
  • the target Comb may be selected from the offset to the Comb offset obtained by incrementing (or decrementing) the notified number of combs.
  • the UE may keep the Comb offset within the effective range if the comb offset is out of the effective range due to increment or decrement. For example, when the maximum Comb offset is exceeded by the increment, the UE may obtain the Comb offset by the remainder (modulo operation) due to the maximum Comb offset of the increment result.
  • the notification of the target Comb may be notified by upper layer signaling as a part of the SRS resource, may be notified by Medium Access Control (MAC) Control Element (CE), or may be notified by DCI.
  • MAC Medium Access Control
  • CE Medium Access Control
  • DCI DCI
  • P-SRS it may be notified by upper layer signaling
  • SP-SRS it may be notified by upper layer signaling and MAC CE
  • A-SRS higher layer signaling and It may be notified by DCI.
  • Embodiment 2-5 Only when the UL channel is Cyclic Prefix (CP) -OFDM (CP-OFDM waveform) (transform precoding is not applied to the UL channel) will the UE be able to perform the above embodiments 2-1, 2-2, 2- Any one of 4 may be applied.
  • the SRS uses a low peak to average power ratio (PAPR) series, whereas the above embodiments 2-1, 2-2, and 2-4 include SRS transmission and UL channel transmission. Since there is a possibility of frequency division multiplexing (FDM), it is possible to suppress an increase in PAPR due to the combination of CP-OFDM and FDM.
  • FDM frequency division multiplexing
  • the UE When the UL channel is Discrete Fourier Transform-Spread (DFT-S) -OFDM (DFT-S-OFDM waveform) (transform precoding is applied to the UL channel), the UE performs the above embodiment 2-3. May be applied. In this case, the increase in PAPR can be suppressed by combining DFT-S-OFDM and FDM.
  • DFT-S Discrete Fourier Transform-Spread
  • FDM FDM
  • Embodiment 2-6 when the DMRS of the UL channel is punctured, the UE may generate a DMRS sequence having a DMRS sequence length before the puncture, or the size of the resource that can be used after the puncture. A DMRS series having a series length corresponding to (RE number) may be generated.
  • a DMRS sequence (eg, a low PAPR sequence) is generated using the pre-punctured DMRS sequence length, and by puncturing the DMRS, it can be orthogonalized when multiplexed with the DMRS of another UE having the same sequence length. , Interference between UEs can be suppressed. PAPR can be suppressed by transmitting a DMRS sequence having a sequence length corresponding to the size of the resource that can be used after puncturing.
  • a DMRS series with a series length corresponding to the size of resources available after puncture may be specified in the specification. The UE does not have to expect the size of resources available after puncture to be a series length that is not specified in the specification.
  • the UL channel and the SRS can be appropriately transmitted by reducing the UL channel resource.
  • the UE may use any one of the following embodiments 3-1 to 3-3.
  • the UE may control the rate matching (or puncture) of the UL channel depending on whether the SRS resource and the UL channel resource overlap each time the UL channel is transmitted (in each of the initial transmission and the retransmission). .. When the SRS resource and the UL channel resource overlap, the UE does not have to use the overlapping resource (RE, SRS resource range, or SRS symbol) to transmit the UL channel (the UL channel resource may be reduced). ..
  • the UE may transmit the UL channel and SRS according to the 2-1 embodiment.
  • the UE may use all of the UL channel resources for UL channel retransmission or part of the UL channel resource for UL channel retransmission. You may. At least one of transport block size (TBS), resource size, and number of encoded bits may be the same between the initial transmission and retransmission of the UL channel. If the UL channel resource overlaps the SRS resource in the initial transmission of the UL channel, and the UL channel resource does not overlap the SRS resource in the retransmission of the UL channel, the UE determines the size of the UL channel resource of the retransmission (for example, PRB size).
  • TBS transport block size
  • the UE may reduce the retransmission UL channel resource by a specific size until the retransmission TBS is equal to the initial TBS.
  • the specific size may be 1 physical resource block (PRB) or 1 physical resource block group (PRG).
  • the PRG may be a continuous PRB to which the same precoding of DL is applied. The UE may assume that the same precoding is applied to the contiguous allocation of DLs for multiple PRBs within the PRG.
  • the PUSCH resource and the SRS resource overlap as in FIG. 5A described above, and the UE performs the initial transmission of the PUSCH according to the embodiment 2-1.
  • SRS (SRS # 1) are transmitted.
  • any of the 2-2, 2-3 embodiments may be used.
  • the UE uses all of the PUSCH retransmission resources for the PUSCH retransmission. In other words, the UE also uses the RE of the same arrangement (symbol position and subcarrier position) as the RE that overlaps with the SRS among the resources of the initial transmission of the PUSCH to retransmit the PUSCH.
  • the UE When the UL channel resource overlaps with the SRS resource in the UL channel retransmission, the UE does not use the SRS RE for the UL channel (without mapping) among the UL channel retransmission resources and does not overlap with the SRS RE.
  • RE may be used (mapped) for UL channels.
  • the UE when the PUSCH resource and the SRS resource overlap in the retransmission of the PUSCH of FIG. 9A, and the arrangement of SRS # 2 overlapping with the retransmission is different from the arrangement of SRS # 1 overlapping with the initial transmission, the UE is Of the resources for retransmission of PUSCH, RE of SRS # 2 is not used for PUSCH, and RE that does not overlap with RE of SRS # 2 is used for PUSCH.
  • the UE can efficiently transmit the UL channel when the initial transmission of the UL channel overlaps with the SRS resource and the retransmission of the UL channel does not overlap with the SRS resource.
  • Embodiment 3-2 The UE uses the resource of the arrangement used for the initial transmission of the UL channel (that is, the arrangement and size of the UL channel rate-matched (or punctured) by the overlap of the SRS and the initial transmission UL channel) as the UL channel resource for retransmission. You may use it.
  • the UE may use the arrangement used for the initial transmission of the UL channel for the UL channel retransmission.
  • the UE does not use the RE that overlaps with the SRS among the resources of the UL channel initial transmission for the UL channel, the UE does not use the RE at the same position as the RE that was not used for the initial transmission for the UL channel retransmission. May be good. In this case, the UE does not have to use the RE having the same arrangement as the RE that was not used for the initial transmission for the retransmission of the UL channel, regardless of whether or not the retransmission resource overlaps with the SRS resource.
  • FIG. 10A The example of FIG. 10A is the same as that of FIG. 9A, and the UE performs the initial transmission of PUSCH and the transmission of SRS (SRS # 1) according to the 2-1 embodiment.
  • the UE in the retransmission of the PUSCH of FIG. 10A, when the PUSCH resource and the SRS resource do not overlap, the UE retransmits the RE of the same arrangement as the RE not used for the initial transmission of the PUSCH of FIG. 10A. (Rate match or puncture the retransmission of the PUSCH at the same position as in FIG. 10A), and retransmit the PUSCH.
  • the UE When the UL channel resource overlaps with the SRS resource in the UL channel retransmission, the UE does not use the UL channel retransmission resource having the same arrangement as the RE not used for the initial transmission for the UL channel retransmission.
  • the RE with the same arrangement as the RE used for the initial transmission may be used for the retransmission of the UL channel (the retransmission of the PUSCH may be rate-matched or punctured at the same position as the initial transmission).
  • the UE may drop the SRS.
  • the UE when the PUSCH resource and the SRS resource overlap in the retransmission of the PUSCH of FIG. 10A, and the arrangement of SRS # 2 overlapping with the retransmission is different from the arrangement of SRS # 1 overlapping with the initial transmission, the UE is , Of the resources for retransmitting PUSCH, the PUSCH is not mapped to the RE having the same arrangement as the RE not used for the initial transmission of PUSCH, the PUSCH is retransmitted, and SRS # 2 is dropped.
  • the UE is set to PUSCH.
  • PUSCH is not mapped to the RE with the same arrangement as the RE that is not used for the initial transmission of PUSCH, retransmission is performed, and SRS # 2 is dropped.
  • the TBS can be equalized between the initial transmission and the retransmission of the UL channel.
  • Embodiment 3-3 When the UL channel resource overlaps with the SRS resource in the UL channel retransmission, the UE selects the RE of the same arrangement as the RE not used for the initial transmission and the UL of the SRS among the resources of the UL channel retransmission. Instead of using it for channel retransmission, other REs may be used for UL channel retransmissions (in the RE with the same arrangement as the SRS at the time of initial transmission and the RE of the SRS at the time of retransmission, the PUSCH retransmission is rate-matched or punctured. May be). In addition, the UE may transmit an SRS that overlaps with the UL channel retransmission resource.
  • FIG. 11A The example of FIG. 11A is the same as that of FIG. 9A, and the UE performs the initial transmission of PUSCH and the transmission of SRS (SRS # 1) according to the 2-1 embodiment.
  • the UE when the PUSCH resource and the SRS resource overlap in the retransmission of the PUSCH of FIG. 11A, and the arrangement of SRS # 2 overlapping with the retransmission is different from the arrangement of SRS # 1 overlapping with the initial transmission, the UE is Of the resources for retransmitting PUSCH, the RE with the same arrangement as the RE not used for the initial transmission of PUSCH and the RE of SRS # 2 are retransmitted without mapping the PUSCH, and the entire SRS # 2 is transmitted. ..
  • the UE is set to PUSCH.
  • the PUSCH is not mapped to the RE having the same arrangement as the RE that is not used for the initial transmission of the PUSCH, the reproduction is performed, and the entire SRS # 2 is transmitted.
  • the SRS that overlaps with the retransmission of the PUSCH can be transmitted with priority.
  • the UE may control the rate match (or puncture) of the UL channel for each transmission slot of the UL channel in the multi-slot UL channel, depending on whether the SRS resource and the UL channel resource overlap.
  • the UE when the SRS resource and the UL channel resource overlap, the UE does not have to use the duplicate resource for UL channel transmission according to at least one of Embodiments 2-1 to 2-3 (to the overlapping resource).
  • the UL channel does not have to be mapped), and if the SRS resource and the UL channel resource do not overlap, the UL channel resource may be used to transmit the UL channel (the UL channel may be mapped to the UL channel resource). ..
  • the UE when the PUSCH resource and the SRS # 1 resource overlap in slot # 2, and the PUSCH resource and SRS # 2 resource overlap in slot # 4, the UE is an embodiment. According to 2-1 it is not necessary to map the PUSCH to the RE where SRS # 1 and # 2 overlap (the PUSCH may be rate matched or punctured in the RE where SRS # 1 and # 2 overlap).
  • Embodiment 4-2 Of the UL channel resources in the first slot in the multi-slot UL channel, the UE sets the RE that is not used for UL channel transmission (UL channel is not mapped) to the slots after the first slot (subsequent slots, second and subsequent slots). It may not be used for the UL channel of the slot) (the UE may rate match or puncture the UL channel of the subsequent slot in the same arrangement as the RE of the UL channel resources in the first slot that is not used for UL channel transmission. Good). The UE may use the UL channel arrangement used in the UL channel of the first slot in the multi-slot UL channel for the UL channel of the subsequent slot. In this case, for the control of the SRS that overlaps with the transmission slot of the subsequent UL channel, any one of the following subsequent slot transmission methods 1 to 3 may be used.
  • Subsequent slot transmission method 1 In the subsequent slot, if the same arrangement as the PUSCH transmission in the first slot and the SRS resource overlap, the UE may always drop the duplicate SRS.
  • the PUSCH resource and the SRS # 1 resource overlap in the first slot (slot # 1) of the multi-slot PUSCH, and the PUSCH resource and the SRS # 2 resource overlap in slot # 4.
  • the UE does not map the PUSCH to the RE used for SRS # 1 transmission among the PUSCH resources in slot # 1, but maps the PUSCH to the other REs for transmission.
  • the UE uses the arrangement used for PUSCH transmission in slot # 1 for PUSCH transmission in slots # 2 to 4 (in slots # 2 to 4, PUSCH is mapped to the same arrangement as PUSCH transmission in slot # 1). ).
  • slot # 4 the UE drops SRS # 2, which overlaps with the PUSCH resource.
  • the TBS can be made equal for each slot, and the load on the UE can be suppressed.
  • Subsequent slot transmission method 2 If the RE of the SRS overlaps with the RE of the same arrangement as the PUSCH transmission of the first slot in the subsequent slot, the UE may drop the SRS. If the RE of the SRS does not overlap with the RE of the same arrangement as the RE of the PUSCH transmission of the first slot in the subsequent slot, the UE may transmit the SRS.
  • REs having the same arrangement as PUSCHs of slot # 1 are used in PUSCHs of slots # 2 to # 4, but REs and SRSs having the same arrangements are used in slot # 4. If the RE of # 2 does not overlap (the arrangement of RE in SRS # 2 is the same as the arrangement of RE in SRS # 1), the UE transmits the entire SRS # 2.
  • the TBS can be made equal for each slot, and the load on the UE can be suppressed.
  • the UE may transmit the SRS in the subsequent slot.
  • the UE does not use the RE of the same arrangement as the RE of the SRS of the first slot (RE not used for the UL channel transmission of the first slot) and the RE of the SRS in the subsequent slot for the UL channel transmission.
  • the UL channel may be rate-matched or punctured in the RE having the same arrangement as the SRS in the first slot and the RE in the SRS).
  • Embodiment 4-3 The UE does not have to use the UL channel resource in the multi-slot UL channel and the resource having the same arrangement as the overlapping SRS resource (SRS resource range) in at least one slot for transmitting the UL channel in all slots (all).
  • the UL channel may not be mapped to a resource in the same arrangement as the SRS resource that overlaps in at least one slot, and the UL channel may be transmitted.) (In all slots, overlap in at least one slot.
  • UL channels may be rate matched or punctured in resources with the same placement as SRS resources).
  • the UE when the PUSCH resource and the resource of SRS # 1 overlap in slot # 1, and the PUSCH resource and the resource of SRS # 2 overlap in slot # 4, the UE is in slot # 1.
  • the PUSCH is transmitted without using the entire resource of the same arrangement as the resource of SRS # 1 and SRS # 2 for the PUSCH, and the entire SRS # 1 and # 2 are transmitted.
  • the UE does not have to use a RE in the same arrangement as the RE of the SRS that overlaps the UL channel resource of at least one slot in the multi-slot UL channel for the UL channel of all the slots of the multi-slot UL channel (multi).
  • the UL channel may be transmitted without mapping the RE of the same arrangement as the RE of the SRS that overlaps the UL channel resource of at least one slot in the slot UL channel to the UL channel of all the slots of the multi-slot UL channel.
  • the UL channels of all slots of the multi-slot UL channel may be rate-matched or punctured in a RE of the same arrangement as the RE of the SRS that overlaps the UL channel resource of at least one slot in the multi-slot UL channel.) ..
  • the TBS between slots can be made equal, and SRS can be transmitted in any slot, so that at least one of throughput improvement and quality improvement by SRS measurement becomes possible.
  • Embodiment 4-4 >> Rel.
  • the SRS can be mapped to up to 4 consecutive symbols (multi-symbol SRS).
  • a short PUCCH eg, PUCCH format 0, 2
  • Different spatial relations may be applied to multiple symbols in the multi-symbol SRS.
  • the UE may process according to any of the following processing methods 1 to 4.
  • the UE may rate match or puncture the multi-symbol SRS or the short PUCCH only in the colliding part. In this case, the UE may puncture the multi-symbol SRS and transmit the entire short PUCCH.
  • the multi-symbol SRS and the short PUCCH collide at least partially, the multi-symbol SRS or the short PUCCH may be rate-matched or punctured only in the colliding symbols.
  • the UE may puncture the multi-symbol SRS and transmit the entire short PUCCH.
  • the multi-symbol SRS may be dropped if the multi-symbol SRS and the short PUCCH collide at least partially.
  • the short PUCCH may be dropped when the multi-symbol SRS and the short PUCCH collide at least partially.
  • UL transmission can be appropriately controlled even when the resources of the SRS and UL channels are duplicated.
  • the PUSCH resource in one slot of UE # 1 overlaps with the SRS resource of UE # 2.
  • the PUSCH (multi-slot PUSCH) resources spanning slots # 1 to # 4 of UE # 1 are the SRS resource of UE # 2 in slot # 2 and the SRS resource of UE # 2 in slot # 4. There may be cases where it overlaps with.
  • the present inventors have conceived a method of appropriately controlling UL transmission resources that overlap with SRS resources of other UEs.
  • the UE may be set with zero power (Zero Power (ZP)) -SRS resource in addition to the SRS resource (Non-Zero Power (ZP) -SRS resource).
  • ZP-SRS may be read as SRS whose power is not zero, SRS which is actually transmitted, SRS which has transmission power, and the like.
  • ZP-SRS may be read as SRS having zero power, SRS not actually transmitted, SRS having no transmission power, and the like.
  • ZP-SRS resources are provided by higher layer signaling (for example, SRS setting information, SRS resource set setting information, SRS resource setting information, ZP-SRS setting information, ZP-SRS resource set setting information, ZP-SRS resource setting information, etc.). It may be set in the UE (it may be received).
  • the ZP-SRS resource is notified as an SRS resource set or SRS resource with a new usage, such as indicating that the usage (eg usage) in the SRS resource set is ZP-SRS (eg zeroPower). It may be set or specified by new parameters (eg, ZP-SRS resource set or ZP-SRS resource).
  • the ZP-SRS resource may be a resource with frequency hopping.
  • the ZP-SRS resource and the ZP-SRS resource set including the ZP-SRS resource may be read as each other.
  • At least one of NZP-SRS and ZP-SRS may be set (mapped) other than the last four symbols in the slot, or may be set (mapped) to any symbol in the slot.
  • the ZP-SRS type (P-ZP-SRS, SP-ZP-SRS, A-ZP-SRS) is defined. May be good.
  • the type of ZP-SRS may be set by higher layer signaling.
  • At least one of activation and deactivation of SP-ZP-SRS may be controlled by at least one of MAC layer signaling or DCI.
  • the spatial relation is not set for at least one of the ZP-SRS resource set and the resource. Further, the transmission power control (TPC) parameter ( ⁇ , P0, etc.) may not be set.
  • TPC transmission power control
  • the UE for which the ZP-SRS resource is set does not have to transmit SRS (NZP-SRS) in the ZP-SRS resource. Further, the UE in which the ZP-SRS resource is set does not have to transmit the PUSCH or the DMRS of the PUSCH with the ZP-SRS resource. Further, the UE in which the ZP-SRS resource is set does not have to transmit the PUCCH or the DMRS of the PUCCH with the ZP-SRS resource.
  • SRS SRS
  • the UE in which the ZP-SRS resource is set may transmit PUCCH or DMRS of PUCCH with the ZP-SRS resource. In this case, there is an effect of improving the throughput of DL.
  • the UE with the ZP-SRS resource set may transmit a PUCCH or PUCCH DMRS containing a particular type of uplink control information (UCI) (eg, HARQ-ACK, etc.).
  • UCI uplink control information
  • the configuration of ZP-SRS may have a Comb configuration in the same manner as the configuration of SRS.
  • Comb configuration is set by Comb2 (1RE ZP-SRS is arranged every 2RE, FIG. 18A), Comb4 (1RE ZP-SRS is arranged every 4RE, FIG. 18B), and no Comb (ZP-SRS resource).
  • the UE When a plurality of terminals set with different Comb offsets of resources having the same time and frequency as SRS resources perform SRS transmission, the UE is set to have no Comb, so that the UL transmission of the UE and other UEs are performed. It is possible to avoid duplication with the SRS corresponding to all the Comb offsets of.
  • the UE has a ZP-SRS configuration as a Rel. 15
  • the same configuration as the SRS configuration of NR may be set, and Rel. 15
  • a configuration including an NR SRS configuration may be set.
  • the UE can identify the ZP-SRS resource in the same manner as the NZP-SRS resource.
  • the UE may rate match (or puncture) the UL channel and transmit the UL channel.
  • SRS may be read as ZP-SRS.
  • the RE indicated by the Comb configuration of the ZP-SRS resource or ZP-SRS resource may not be used for UL transmission (UL transmission may not be mapped) (ZP-SRS resource or ZP-SRS).
  • UL transmissions do not have to be drop, punctured, or rate matched in the RE indicated by the Comb configuration of the resource).
  • the UE may rate match (or puncture) the UL channel based on any of the following embodiments 5-1 to 5-3.
  • Embodiment 5-1 When the resources of ZP-SRS and UL channel are duplicated, the UE does not have to use the RE duplicated with the resource element (RE) of ZP-SRS to transmit the DMRS of UL channel (ZP-SRS is valid). UL channels may be rate matched (or punctured) at a RE).
  • the RE for which ZP-SRS is effective is the RE shown by the Comb configuration as shown in FIGS. 18A-18C.
  • the UE rate-matches (or punctures) the PUSCH in the RE in which ZP-SRS is valid. , PUSCH is transmitted.
  • Embodiment 5-2 When the resources of ZP-SRS and UL channel overlap, the UE does not use the resource (ZP-SRS resource range) set for ZP-SRS to transmit DMRS of UL channel and UL channel, and ZP- UL channels may be rate matched (or punctured) within the SRS resource range.
  • the ZP-SRS resource range includes not only the RE indicated by the value of the set Comb offset, but also the RE indicated by other values of the Comb offset. ..
  • the ZP-SRS resource range may be used for SRS transmission by other UEs. Therefore, according to the 5-2 embodiment, even if a Comb different from the Comb of the set ZP-SRS resource is used for SRS transmission of another UE, the UE of the UL channel of the UE and the Comb of the other UE It is possible to prevent the SRS from colliding or interfering.
  • Embodiment 5-3 When the resources of ZP-SRS and UL channel are duplicated, the UE does not use the symbol of ZP-SRS to transmit DMRS of UL channel and UL channel, and the symbol of ZP-SRS (all in the symbol of ZP-SRS).
  • the UL channel may be rate matched (or punctured) in RE).
  • the PUSCH is rate-matched (or punctured) at the symbol (period) in which the ZP-SRS is set. Then, the PUSCH is transmitted.
  • another SRS having a different length (bandwidth) may be transmitted by another UE.
  • the UE may drop or puncture the NZP-SRS.
  • the UE may drop or puncture the NZP-SRS based on any of the following embodiments 6-1 to 6-4.
  • Embodiment 6-1 When the ZP-SRS resource and the NZP-SRS resource overlap, the UE does not have to transmit the NZP-SRS in the RE in which the ZP-SRS is arranged. In other words, the UE may puncture or drop the RE of the NZP-SRS that overlaps the RE in which the ZP-SRS is located.
  • the ZP-SRS resource overlaps with the NZP-SRS resource, but the RE in which the ZP-SRS is arranged and the RE in the NZP-SRS do not overlap.
  • the UE transmits the entire NZP-SRS (does not puncture the NZP-SRS).
  • efficient UE multiplexing is enabled by not transmitting with at least a part of the resources of the NZP-SRS.
  • Embodiment 6-2 When ZP-SRS and NZP-SRS are duplicated, the UE is in the RE that overlaps with the resource set for ZP-SRS (including the RE not set for ZP-SRS and the RE where NZP-SRS is not placed). , NZP-SRS need not be transmitted.
  • the UE sets the resource that overlaps with the resource (ZP-SRS resource range) set for ZP-SRS to NZP-SRS. Not used for transmission (NZP-SRS is punctured in RE that overlaps with the resource set for ZP-SRS).
  • ZP-SRS resources may be used by other UEs as resources for SRS and UL channels.
  • ZP-SRS resources including Combs and REs that are not used to be configured for ZP-SRS
  • ZP-SRS resources may be used by other UEs as resources for SRS and UL channels.
  • the ZP-SRS resource is used by another UE, it is possible to prevent the NZP-SRS of the UE from colliding or interfering with the SRS and UL channels of the other UE. Can be done.
  • Embodiment 6-3 When ZP-SRS and NZP-SRS overlap, the UE does not have to transmit NZP-SRS in the symbol of ZP-SRS.
  • the UE when the ZP-SRS resource overlaps with the NZP-SRS resource, the UE does not transmit the NZP-SRS at the symbol in which the ZP-SRS resource is set (NZP-SRS). Drop).
  • another SRS having a different length may be transmitted by another UE.
  • another SRS having a different length may be transmitted by another UE.
  • Embodiment 6-4 When the NZP-SRS frequency hopping, if at least a part of the ZP-SRS resource and the NZP-SRS resource overlap, the UE does not have to transmit the NZP-SRS in the slot.
  • the UE when the ZP-SRS resource and the NZP-SRS resource overlap, the UE does not transmit all the NZP-SRS in the slot (drops the NZP-SRS). ).
  • NZP-SRS frequency hopping NZP-SRS needs to be transmitted with multiple symbols. Therefore, not transmitting some symbols of NZP-SRS over a plurality of symbols cannot serve the purpose of transmitting NZP-SRS.
  • different spatial relationships are applied to multiple symbols in the multi-symbol SRS, it may be meaningless to partially transmit the NZP-SRS.
  • the embodiment 6-4 the power consumption of the UE can be suppressed by not transmitting all the NZP-SRS in the plurality of symbols.
  • the UE is set with a ZP-SRS resource including a portion in which the UL channel resource set for the UE and the SRS resource set for the other UE overlap.
  • the UE may assume that the SRS from the other UE is transmitted in the portion where the UL channel resource set for the UE and the SRS resource set for the other UE overlap. ..
  • a UE sets a ZP-SRS resource, even if it is assumed that at least a part of the UL channel resource set for the UE and the SRS resource set for another UE overlap. Good.
  • the network (for example, a base station) may set the ZP-SRS resource for UE # 1. Good.
  • the ZP-SRS resource including the overlapping portion is set in UE # 1. Will be done.
  • the network may notify the UE regarding the ZP-SRS setting. Notification by the network may be performed by higher layer signaling. By assuming this way, the UL channel resources of the UE can be effectively rate-matched in the SRS resources of other UEs.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 23 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, an optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is the Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is the IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for detecting PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, may be called Hybrid Automatic Repeat reQuest ACK knowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 24 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • FIG. 25 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • the transmission / reception unit 220 may transmit at least one of the uplink (UL) channel transmission and the SRS transmission.
  • the control unit 210 of the uplink channel and the SRS may be reduced (at least one of the uplink and the SRS may be dropped, rate matched, or punctured).
  • the control unit 210 may map the uplink channel to all of the first resources without mapping the SRS to at least a part of the second resource (drop or puncture the SRS and the uplink). The entire channel may be transmitted) (Embodiment 1).
  • the control unit 210 may map the SRS to all of the second resource without mapping the uplink to at least a part of the first resource (drop, puncture, or rate the uplink). It may match and transmit all of the SRS) (Embodiment 2).
  • the control unit 210 controls another SRS of the third resource.
  • the portion of the fourth resource that does not overlap with the resource given to another SRS (Embodiment 3-3), the retransmission may be mapped to any of (Embodiment 3).
  • the control unit 210 allocates resources that do not overlap with the resources given to the SRS in each of the plurality of slots (for example, the plurality of slots used for the multi-slot UL channel), and is given to the SRS in the first slot of the plurality of slots. Even if the uplink channel in each of the plurality of slots is mapped to either the same arrangement as the resource that does not overlap with the resource or the arrangement of the resource that does not overlap with the resource given to the SRS in any of the plurality of slots. Good (Embodiment 4).
  • the transmission / reception unit 220 has setting information (for example, SRS setting information, SRS resource set setting information, SRS resource setting information, ZP-SRS) indicating the first resource of the zero power sounding reference signal (SRS) (for example, ZP-SRS). Setting information, ZP-SRS resource set setting information, ZP-SRS resource setting information, etc.) may be received (Embodiment 5).
  • SRS zero power sounding reference signal
  • ZP-SRS ZP-SRS
  • the setting information may indicate that the usage of the first resource (for example, an SRS resource set including the first resource) is zero power (Embodiment 5).
  • the first resource may have a Comb configuration (Embodiment 5).
  • the uplink transmission may be a physical uplink shared channel or a physical uplink control channel (Embodiment 5).
  • the uplink transmission may be an SRS (for example, NZP-SRS) whose power is not zero (Embodiment 6).
  • SRS for example, NZP-SRS
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 26 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • the numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • Physical RB Physical RB (PRB)
  • SCG sub-carrier Group
  • REG resource element group
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executables, execution threads, procedures, features, etc. should be broadly interpreted.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The terminal according to one aspect of the present disclosure is provided with: a reception unit that receives setting information indicating first resources of a zero-power sounding reference signal (SRS); and a control unit that, when second resources applied to an uplink transmission and the first resources overlap, does not map the uplink transmission in at least a part of the second resources. According to said one aspect of the present disclosure, processes are appropriately performed when the resources applied to the uplink transmission and the resources applied to the SRS overlap.

Description

端末及び無線通信方法Terminal and wireless communication method
 本開示は、次世代移動通信システムにおける端末及び無線通信方法に関する。 The present disclosure relates to terminals and wireless communication methods in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
 既存のLTEシステム(例えば、LTE Rel.8-14)において、ユーザ端末(User Equipment(UE))は、上り信号を送信する。上り信号は、例えば、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、サウンディング参照信号(Sounding Reference Signal(SRS))、PUSCH又はPUCCHの復調用参照信号(Demodulation Reference Signal(DM-RS))の少なくとも一つを含んでもよい。 In an existing LTE system (for example, LTE Rel.8-14), a user terminal (User Equipment (UE)) transmits an uplink signal. The uplink signal is, for example, a random access channel (Physical Random Access Channel (PRACH)), an uplink shared channel (Physical Uplink Shared Channel (PUSCH)), an uplink control channel (Physical Uplink Control Channel (PUCCH)), and a sounding reference signal (Sounding). Reference Signal (SRS)), PUSCH or PUCCH demodulation reference signal (Demodulation Reference Signal (DM-RS)) may be included at least one.
 将来の無線通信システム(例えば、NR)において、UEは、上り送信(例えば、PUSCH、PUCCH、SRSなど)を行う。 In a future wireless communication system (for example, NR), the UE performs uplink transmission (for example, PUSCH, PUCCH, SRS, etc.).
 しかしながら、上り送信に与えられた時間及び周波数のリソースと、SRSに与えられた時間及び周波数のリソースとが重複する(overlap)場合の端末の動作が明らかでない。このような場合に端末が適切に処理できなければ、システム性能が劣化するおそれがある。 However, the operation of the terminal when the time and frequency resources given to the uplink transmission and the time and frequency resources given to the SRS overlap (overlap) is not clear. In such a case, if the terminal cannot handle it properly, the system performance may deteriorate.
 そこで、本開示は、上り送信に与えられたリソースとSRSに与えられたリソースとが重複する場合に適切に処理する端末及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a terminal and a wireless communication method that appropriately handle when the resource given to the uplink transmission and the resource given to the SRS overlap.
 本開示の一態様に係る端末は、ゼロパワーのサウンディング参照信号(SRS)の第1リソースを示す設定情報を受信する受信部と、上り送信に与えられる第2リソースと、前記第1リソースとが重複する場合、前記第2リソースの少なくとも一部に、前記上り送信をマップしない制御部と、を有する。 A terminal according to one aspect of the present disclosure includes a receiving unit that receives setting information indicating a first resource of a zero-power sounding reference signal (SRS), a second resource given to uplink transmission, and the first resource. In the case of duplication, at least a part of the second resource includes a control unit that does not map the uplink transmission.
 本開示の一態様によれば、上り送信に与えられたリソースとSRSに与えられたリソースとが重複する場合に適切に処理する。 According to one aspect of the present disclosure, when the resource given to the uplink transmission and the resource given to the SRS overlap, it is appropriately processed.
図1A及び図1Bは、SRSのComb構成の一例を示す図である。1A and 1B are diagrams showing an example of a Comb configuration of SRS. 図2は、上りチャネルのためのリソースとSRSのためのリソースとが重複する一例を示す図である。FIG. 2 is a diagram showing an example in which a resource for an uplink channel and a resource for an SRS overlap. 図3A及び図3Bは、上りチャネルのためのリソース及びSRSのためのリソースの制御方法の一例を示す図である。3A and 3B are diagrams showing an example of a resource control method for the uplink channel and the resource for the SRS. 図4は、上り送信の種別による送信優先度の一例を示す図である。FIG. 4 is a diagram showing an example of transmission priority according to the type of uplink transmission. 図5A-図5Cは、上りチャネルのためのリソース及びSRSのためのリソースの制御方法の一例を示す図である。5A-5C are diagrams showing an example of a resource control method for uplink channels and resources for SRS. 図6は、SRSのComb構成の一例を示す図である。FIG. 6 is a diagram showing an example of a Comb configuration of SRS. 図7A-図7Cは、上りチャネルのためのリソース及びSRSのためのリソースの制御方法の一例を示す図である。7A-7C are diagrams showing an example of a resource control method for the uplink channel and the resource for the SRS. 図8は、SRSのComb構成の一例を示す図である。FIG. 8 is a diagram showing an example of a Comb configuration of SRS. 図9A-図9Cは、上りチャネルの初送及び再送における制御方法の一例を示す図である。9A-9C are diagrams showing an example of a control method in the initial transmission and retransmission of the uplink channel. 図10A-図10Cは、上りチャネルの初送及び再送における制御方法の一例を示す図である。10A-10C are diagrams showing an example of a control method in the initial transmission and retransmission of the uplink channel. 図11A及び図11Bは、上りチャネルの初送及び再送における制御方法の一例を示す図である。11A and 11B are diagrams showing an example of a control method in the initial transmission and retransmission of the uplink channel. 図12は、複数スロットにわたる上りチャネルのためのリソース及びSRSのためのリソースの制御方法の一例を示す図である。FIG. 12 is a diagram showing an example of a resource control method for an uplink channel over a plurality of slots and a resource for SRS. 図13は、複数スロットにわたる上りチャネルのためのリソース及びSRSのためのリソースの制御方法の一例を示す図である。FIG. 13 is a diagram showing an example of a resource control method for an uplink channel over a plurality of slots and a resource for SRS. 図14は、複数スロットにわたる上りチャネルのためのリソース及びSRSのためのリソースの制御方法の一例を示す図である。FIG. 14 is a diagram showing an example of a resource control method for an uplink channel over a plurality of slots and a resource for SRS. 図15は、複数スロットにわたる上りチャネルのためのリソース及びSRSのためのリソースの制御方法の一例を示す図である。FIG. 15 is a diagram showing an example of a resource control method for an uplink channel over a plurality of slots and a resource for SRS. 図16は、複数スロットにわたる上りチャネルのためのリソース及びSRSのためのリソースの制御方法の一例を示す図である。FIG. 16 is a diagram showing an example of a resource control method for an uplink channel over a plurality of slots and a resource for SRS. 図17A及び図17Bは、UEの上りチャネルのリソースと他のUEのSRSとが重複する一例を示す図である。17A and 17B are diagrams showing an example in which the resources of the uplink channel of the UE and the SRS of another UE overlap. 図18A-図18Cは、ZP-SRSのComb構成の一例を示す図である。18A-C is a diagram showing an example of a Comb configuration of ZP-SRS. 図19A-図19Cは、上りチャネルのためのリソースとZP-SRSのためのリソースとが重複する場合の制御方法の一例を示す図である。19A-19C are diagrams showing an example of a control method when the resource for the uplink channel and the resource for the ZP-SRS overlap. 図20A-図20Cは、ZP-SRSのためのリソースとNZP-SRSのためのリソースとが重複する場合の制御方法の一例を示す図である。20A-20C are diagrams showing an example of a control method when the resource for ZP-SRS and the resource for NZP-SRS overlap. 図21は、ZP-SRSのためのリソースとNZP-SRSのためのリソースとが重複する場合の制御方法の一例を示す図である。FIG. 21 is a diagram showing an example of a control method when the resource for ZP-SRS and the resource for NZP-SRS overlap. 図22は、UEの上りチャネルのリソースと他のUEのSRSとが重複する場合の制御方法の一例を示す図である。FIG. 22 is a diagram showing an example of a control method when the upstream channel resource of the UE and the SRS of another UE overlap. 図23は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 23 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図24は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 24 is a diagram showing an example of the configuration of the base station according to the embodiment. 図25は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 25 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図26は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 26 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
(SRS)
 NRにおいては、測定用参照信号(サウンディング参照信号(Sounding Reference Signal:SRS))の用途が多岐にわたっている。NRのSRSは、既存のLTE(LTE Rel.8-14)でも利用されたULのchannel state information(CSI)測定のためだけでなく、DLのCSI測定、ビーム管理(beam management)などにも利用される。
(SRS)
In NR, the reference signal for measurement (Sounding Reference Signal (SRS)) has a wide range of uses. NR's SRS is used not only for UL channel state information (CSI) measurement, which was also used in existing LTE (LTE Rel.8-14), but also for DL CSI measurement, beam management, etc. Will be done.
 UEは、1つ又は複数のSRSリソースを設定(configure)されてもよい。SRSリソースは、SRSリソース指示(SRS Resource Indicator:SRI)によって特定されてもよい。 The UE may be configured with one or more SRS resources. The SRS resource may be specified by an SRS resource instruction (SRS Resource Indicator: SRI).
 各SRSリソース情報要素(SRS-Resource information element (IE))は、SRSポート(アンテナポート)数を含んでもよい(1つ又は複数のSRSポートに対応してもよい)。例えば、アンテナポート数は、1、2、4などであってもよい。 Each SRS resource information element (SRS-Resource information element (IE)) may include the number of SRS ports (antenna ports) (may correspond to one or more SRS ports). For example, the number of antenna ports may be 1, 2, 4, or the like.
 各SRSリソースIEは、OFDMシンボル数を含んでもよい。例えば、OFDMシンボル数は、1、2、4などであってもよい。 Each SRS resource IE may include the number of OFDM symbols. For example, the number of OFDM symbols may be 1, 2, 4, or the like.
 各SRSリソースIEは、時間ドメインにおける開始位置l0を含んでもよい。 Each SRS resource IE may include a starting position l 0 in the time domain.
 各SRSリソースIEは、周波数ドメインにおける開始位置k0を含んでもよい。 Each SRS resource IE may include a starting position k 0 in the frequency domain.
 UEは、1つ又は複数のSRSリソースセット(SRS resource set)を設定されてもよい。1つのSRSリソースセットは、所定数のSRSリソースに関連してもよい。UEは、1つのSRSリソースセットに含まれるSRSリソースに関して、上位レイヤパラメータを共通で用いてもよい。なお、本開示において、リソースセットは、リソースグループ、単にグループなどで読み替えられてもよい。 The UE may be set with one or more SRS resource sets (SRS resource sets). One SRS resource set may be associated with a predetermined number of SRS resources. The UE may commonly use higher layer parameters for SRS resources included in one SRS resource set. In the present disclosure, the resource set may be read as a resource group, simply a group, or the like.
 SRSリソースセット及びSRSリソースに関する情報の少なくとも一方は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせを用いてUEに設定されてもよい。 At least one of the SRS resource set and the information about the SRS resource may be set in the UE using higher layer signaling, physical layer signaling, or a combination thereof.
 上位レイヤシグナリングは、例えば、RRC(Radio Resource Control)シグナリング、メディアアクセス制御(Medium Access Control:MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 The upper layer signaling may be, for example, any one of RRC (Radio Resource Control) signaling, media access control (MAC) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block:MIB)、システム情報ブロック(System Information Block:SIB)、最低限のシステム情報(Remaining Minimum System Information:RMSI)、その他のシステム情報(Other System Information:OSI)などであってもよい。 For MAC signaling, for example, a MAC control element (MAC Control Element (CE)), a MAC Protocol Data Unit (PDU), or the like may be used. The broadcast information includes, for example, a master information block (Master Information Block: MIB), a system information block (System Information Block: SIB), a minimum system information (Remaining Minimum System Information: RMSI), and other system information (Other System Information). : OSI) and the like.
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information:DCI)であってもよい。 The physical layer signaling may be, for example, downlink control information (DCI).
 SRS設定情報(例えば、RRCパラメータ(情報要素)の「SRS-Config」)は、SRSリソースセット設定情報、SRSリソース設定情報などを含んでもよい。 The SRS setting information (for example, "SRS-Config" of the RRC parameter (information element)) may include SRS resource set setting information, SRS resource setting information, and the like.
 SRSリソースセット設定情報(例えば、RRCパラメータの「SRS-ResourceSet」)は、SRSリソースセットID(Identifier)(SRS-ResourceSetId)、当該リソースセットにおいて用いられるSRSリソースID(SRS-ResourceId)のリスト、SRSリソースタイプ、SRSの用途(usage)の情報を含んでもよい。 The SRS resource set setting information (for example, the RRC parameter "SRS-ResourceSet") includes an SRS resource set ID (Identifier) (SRS-ResourceSetId), a list of SRS resource IDs (SRS-ResourceId) used in the resource set, and SRS. Information on resource type and SRS usage may be included.
 ここで、SRSリソースタイプは、周期的SRS(Periodic SRS:P-SRS)、セミパーシステントSRS(Semi-Persistent SRS:SP-SRS)、非周期的CSI(Aperiodic SRS:A-SRS、AP-SPS)のいずれかを示してもよい。なお、UEは、P-SRS及びSP-SRSを周期的(又はアクティベート後、周期的)に送信し、A-SRSをDCIのSRSリクエストに基づいて送信してもよい。 Here, the SRS resource types are periodic SRS (Periodic SRS: P-SRS), semi-persistent SRS (Semi-Persistent SRS: SP-SRS), and aperiodic CSI (Aperiodic SRS: A-SRS, AP-SPS). ) May be indicated. The UE may transmit P-SRS and SP-SRS periodically (or periodically after activation), and may transmit A-SRS based on DCI's SRS request.
 また、SRSの用途(RRCパラメータの「usage」、L1(Layer-1)パラメータの「SRS-SetUse」)は、例えば、ビーム管理(beamManagement)、コードブック(codebook:CB)、ノンコードブック(noncodebook:NCB)、アンテナスイッチングなどであってもよい。コードブック又はノンコードブック用途のSRSは、SRIに基づくコードブックベース又はノンコードブックベースのPUSCH送信のプリコーダの決定に用いられてもよい。 The uses of SRS (RRC parameter "usage", L1 (Layer-1) parameter "SRS-SetUse") are, for example, beam management (beamManagement), codebook (codebook: CB), noncodebook (noncodebook). : NCB), antenna switching, etc. may be used. SRS for codebook or non-codebook use may be used to determine a precoder for codebook-based or non-codebook-based PUSCH transmission based on SRI.
 ビーム管理用途のSRSは、各SRSリソースセットについて1つのSRSリソースだけが、所定の時間インスタントにおいて送信可能であると想定されてもよい。なお、複数のSRSリソースがそれぞれ異なるSRSリソースセットに属する場合、これらのSRSリソースは同時に送信されてもよい。 An SRS for beam management may be assumed that only one SRS resource for each SRS resource set can be transmitted in an instant at a predetermined time. When a plurality of SRS resources belong to different SRS resource sets, these SRS resources may be transmitted at the same time.
 例えば、UEは、コードブックベース送信の場合、SRI、送信ランク指標(Transmitted Rank Indicator:TRI)及び送信プリコーディング行列指標(Transmitted Precoding Matrix Indicator:TPMI)に基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、ノンコードブックベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。 For example, in the case of codebook-based transmission, the UE determines a precoder for PUSCH transmission based on SRI, a transmission rank index (Transmitted Rank Indicator: TRI), and a transmission precoding matrix index (Transmitted Precoding Matrix Indicator: TPMI). You may. In the case of non-codebook-based transmission, the UE may determine a precoder for PUSCH transmission based on SRI.
 SRSリソース設定情報(例えば、RRCパラメータの「SRS-Resource」)は、SRSリソースID(SRS-ResourceId)、SRSポート数、SRSポート番号、送信Comb、SRSリソースマッピング(例えば、時間及び周波数の少なくとも1つのリソース位置、リソースオフセット、リソースの周期、繰り返し数、SRSシンボル数、SRS帯域幅など)、ホッピング関連情報、SRSリソースタイプ、系列ID、空間関連情報などを含んでもよい。 The SRS resource setting information (for example, the RRC parameter "SRS-Resource") includes the SRS resource ID (SRS-ResourceId), the number of SRS ports, the SRS port number, the transmission comb, and the SRS resource mapping (for example, at least one of time and frequency). It may include one resource position, resource offset, resource period, number of iterations, number of SRS symbols, SRS bandwidth, etc.), hopping-related information, SRS resource type, sequence ID, space-related information, and the like.
 UEは、1スロット内の最後の6シンボルのうち、SRSシンボル数分の隣接するシンボルにおいてSRSを送信してもよい。なお、SRSシンボル数は、1、2、4などであってもよい。 The UE may transmit SRS in the adjacent symbols corresponding to the number of SRS symbols among the last 6 symbols in one slot. The number of SRS symbols may be 1, 2, 4, or the like.
 UEは、スロットごとにSRSを送信するBWP(Bandwidth Part)をスイッチングしてもよいし、アンテナをスイッチングしてもよい。また、UEは、スロット内ホッピング及びスロット間ホッピングの少なくとも一方をSRS送信に適用してもよい。 The UE may switch the BWP (Bandwidth Part) that transmits SRS for each slot, or may switch the antenna. In addition, the UE may apply at least one of in-slot hopping and inter-slot hopping to SRS transmission.
 SRS系列は、低(low)ピーク電力対平均電力比(Peak-to-Average Power Patio(PAPR))系列であってもよい。送信Comb数KTCは上位レイヤパラメータ(例えば、transmissionComb)に含まれてもよい。 The SRS series may be a low peak power to average power ratio (PAPR) series. The transmission Comb number K TC may be included in the upper layer parameter (eg, transmissionComb).
 低PAPR系列は、Constant Amplitude Zero Auto Correlation(CAZAC)系列であってもよいし、CAZAC系列に準ずる系列(例えば、計算機生成系列(computer-generated(CGS)))であってもよい。CGSは、仕様(例えば、テーブル)に規定されてもよい。 The low PAPR series may be a Constant Amplitude Zero Auto Correlation (CAZAC) series or a series conforming to the CAZAC series (for example, a computer-generated (CGS)) series. The CGS may be specified in the specification (eg, table).
 SRSの送信Combとしては、Comb2(2リソースエレメント(RE、サブキャリア)毎に1REのSRSを配置)又はComb4(4RE毎に1REのSRSを配置)と、サイクリックシフト(Cyclic Shift:CS)と、を用いるIFDMA(Interleaved Frequency Division Multiple Access)が適用されてもよい。 The transmission combs of SRS include Comb2 (1RE SRS is placed for each 2 resource elements (RE, subcarrier)) or Comb4 (1RE SRS is placed for every 4RE), and cyclic shift (CS). IFDMA (Interleaved Frequency Division Multiple Access) using, may be applied.
 Comb値(value)=nのComb構成において、Combオフセットが0からn-1までの整数のいずれかの値を取りうる。Comb2(Comb値=2)の構成は、Combオフセット={0,1}のいずれかの値を取りうる。図1Aは、Combオフセット={0,1}の場合をそれぞれ示す。また、Comb4(Comb値=4)の構成は、Combオフセット={0,1,2,3}のいずれかの値を取りうる。図1Bは、Combオフセット={0,1,2,3}の場合をそれぞれ示す。 In the Comb configuration where the Comb value (value) = n, the Comb offset can take any value of an integer from 0 to n-1. The configuration of Comb2 (Comb value = 2) can take any value of Comb offset = {0,1}. FIG. 1A shows the case where the Comb offset = {0,1}, respectively. Further, the configuration of Comb4 (Comb value = 4) can take any value of Comb offset = {0,1,2,3}. FIG. 1B shows the case where the Comb offset = {0,1,2,3}.
 本開示において、Combオフセット、Combインデックス、送信Combオフセット、は互いに読み替えられてもよい。 In the present disclosure, the Comb offset, the Comb index, and the transmitted Comb offset may be read as each other.
 CSは、Comb2の場合、アンテナポートpiに対する巡回シフト(cyclic shift(CS))番号(CSインデックス)nSRS cs,iは{0,1,2,3,4,5,6,7}のいずれかの値を取りうる。Comb4の場合、アンテナポートpiに対するCS番号nSRS cs,iは{0,1,2,3,4,5,6,7,8,9,10,11}のいずれかの値を取りうる。アンテナポートpiに対するCSの値αiは、CS番号nSRS cs,iとCS番号の最大数nSRS cs,max=12とを用いて2πnSRS cs,i/nSRS cs,maxとして与えられる。Comb2とCSと、を用いる場合、最大2×8=16のUEを多重することができる。Comb4とCSと、を用いる場合、最大4×12=48のUEを多重することができる。複数のCSが、異なるUEに設定されてもよいし、異なるSRSポートに関連付けられてもよい。 CS in the case of COMB2, cyclic shift for the antenna port p i (cyclic shift (CS) ) Number (CS index) n SRS cs, i is the {0,1,2,3,4,5,6,7} It can take either value. In the case of Comb4, the CS number n SRS cs, i for the antenna port p i can take any value of {0,1,2,3,4,5,6,7,8,9,10,11}. .. The value alpha i of the CS for the antenna port p i is, CS number n SRS cs, the maximum number n SRS cs i and CS numbers, max = 12 and 2 [pi] n SRS cs with, i / n SRS cs, given as max .. When Comb2 and CS are used, a maximum of 2 × 8 = 16 UEs can be multiplexed. When Comb4 and CS are used, a maximum of 4 × 12 = 48 UEs can be multiplexed. Multiple CSs may be configured on different UEs or may be associated with different SRS ports.
(UL送信リソース同士の重複)
 Rel.15では、PUSCHに対応するPRB内のPUSCHに対応するREは、PUSCHに関連付けられたDMRSと、PTRSと、他の共にスケジュールされるUE(other co-scheduled UE)のためのDMRSと、に用いられない。他の共にスケジュールされるUEのためのDMRSは、PUSCHに関連付けられたDMRSのcombと異なるcombに配置されるDMRSであってもよい。
(Duplicate between UL transmission resources)
Rel. In 15, the RE corresponding to the PUSCH in the PRB corresponding to the PUSCH is used for the DMRS associated with the PUSCH, the PTRS, and the DMRS for another co-scheduled UE (other co-scheduled UE). I can't. The DMRS for the other co-scheduled UE may be a DMRS located in a comb different from the DMRS comb associated with the PUSCH.
 Rel.15では、同じキャリア上のSRS及びPUCCHに対し、周期的(periodic(P))-SRS又はセミパーシステント(semi-persistent(SP))-SRSのいずれかと、チャネル状態情報(CSI:Channel State Information)のみ又はレイヤ1における参照信号受信電力(L1-RSRP:Layer 1-Reference Signal Received Power)のみを運ぶPUCCHと、が同じシンボルに設定された場合、UEは、SRSを送信しない。また、HARQ-ACK(Hybrid Automatic Repeat reQuest ACKnowledgement)又はスケジューリングリクエスト(Scheduling Request(SR))を運ぶPUCCHと同じシンボルにおいて、P-SRS又はSP-SRSの送信が設定された場合、又は非周期的(aperiodic(A))-SRSの送信がトリガされた場合、UEは、SRSを送信しない。PUCCHとのオーバラップ(重複)によってSRSが送信されない場合には、PUCCHと重複したSRSシンボルのみがドロップ(drop)される。A-SRSがSP又はP-CSI報告又はSP又はP-L1-RSRP報告のみを運ぶPUCCHと同じシンボルにおいてオーバラップする送信をトリガされた場合、PUCCHは送信されない。 Rel. In 15, for SRS and PUCCH on the same carrier, either periodic (periodic (P))-SRS or semi-persistent (SP) -SRS and channel state information (CSI: Channel State Information) ) Only or PUCCH carrying only the reference signal reception power (L1-RSRP: Layer 1-Reference Signal Received Power) in layer 1 is set to the same symbol, the UE does not transmit the SRS. Also, when P-SRS or SP-SRS transmission is set in the same symbol as PUCCH that carries HARQ-ACK (Hybrid Automatic Repeat reQuest ACK knowledgement) or scheduling request (Scheduling Request (SR)), or aperiodically ( aperiodic (A) -When the transmission of SRS is triggered, the UE does not transmit SRS. If the SRS is not transmitted due to the overlap with the PUCCH, only the SRS symbol that overlaps with the PUCCH is dropped. If the A-SRS is triggered for overlapping transmissions with the same symbols as the PUCCH carrying only SP or P-CSI reports or SP or PL1-RSRP reports, the PUCCH will not be transmitted.
 一方、A-SRSと、セミパーシステントなCSI報告又は周期的なCSI報告のためのPUCCHと、が重複する場合、UEは、PUCCHを送信しない。 On the other hand, if the A-SRS and the PUCCH for semi-persistent CSI reporting or periodic CSI reporting overlap, the UE does not transmit the PUCCH.
 3GPP Rel.15では、バンド内キャリアアグリゲーション(Intra-band carrier aggregation)及びバンド間キャリアアグリゲーション(Inter-band carrier aggregation)における、SRSとULチャネル(PUSCH又はPUCCH)の同時送信は許されていない。UEは、1つのキャリアからのSRSと、同じシンボルの異なるキャリアからのPUSCH又はUL DM-RS又はUL PT-RS又はPUCCHフォーマットと、が設定されることを期待しない。 3GPP Rel. In No. 15, simultaneous transmission of SRS and UL channel (PUSCH or PUCCH) in intra-band carrier aggregation and inter-band carrier aggregation is not permitted. The UE does not expect the SRS from one carrier and the PUSCH or UL DM-RS or UL PT-RS or PUCCH format from different carriers of the same symbol to be set.
 しかしながら、設定されたSRSリソースと、スケジュール又は設定されたPUSCHと、が重複する場合のUEの動作は明らかでない。また、設定されたSRSリソースと、スケジュール又は設定されたPUCCHと、が重複する場合のUEの動作についても十分検討がされていない。 However, the behavior of the UE when the set SRS resource and the scheduled or set PUSCH overlap is not clear. Further, the operation of the UE when the set SRS resource and the scheduled or set PUCCH overlap has not been sufficiently examined.
 設定されたSRSリソースと、スケジュール又は設定されたULチャネルリソースと、が重複する場合について説明する。図2の例では、スケジュールされたPUSCHの最終シンボルに、設定されたComb2のSRSリソースが重複している。係る場合の処理は、Rel.15に規定されていないため、UE動作が明らかでない。 The case where the set SRS resource and the scheduled or set UL channel resource overlap will be described. In the example of FIG. 2, the set SRS resource of Comb2 is duplicated in the final symbol of the scheduled PUSCH. The processing in such a case is described in Rel. UE operation is not clear because it is not specified in 15.
 一方、SRSが周波数ホッピング又はCombを用いること、PUSCHがマルチスロットにわたること、などが検討されている。このようにUL送信が複雑なリソースを用いる場合に、基地局がSRSとPUSCHが重複しないようにPUSCHをスケジュールすることは、スケジュールの柔軟性を低下させ、基地局の負荷を増大させる。 On the other hand, it is being studied that SRS uses frequency hopping or Comb, and PUSCH spans multiple slots. When the UL transmission uses a complicated resource in this way, scheduling the PUSCH so that the base station does not overlap the SRS and the PUSCH reduces the flexibility of the schedule and increases the load on the base station.
 このような場合に、UEがULチャネル及びSRSを適切に処理できなければ、システム性能が劣化するおそれがある。 In such a case, if the UE cannot properly process the UL channel and SRS, the system performance may deteriorate.
 そこで、本発明者らは、ULチャネルのためのリソースとSRSのためのリソースとが重複する場合にULチャネル及びSRSを適切に処理する方法を着想した。 Therefore, the present inventors have conceived a method of appropriately processing the UL channel and the SRS when the resource for the UL channel and the resource for the SRS overlap.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied individually or in combination.
(無線通信方法)
 本開示において、UL送信、SRS、PUSCH、PUCCH、UCI、は互いに読み替えられてもよい。
(Wireless communication method)
In the present disclosure, UL transmission, SRS, PUSCH, PUCCH, and UCI may be read as each other.
 本開示において、ULチャネル、PUSCH、PUCCH、UCI、は互いに読み替えられてもよい。 In the present disclosure, UL channel, PUSCH, PUCCH, and UCI may be read as each other.
 本開示において、スロット、サブスロット、ミニスロット、サブフレーム、期間、時間フィールド、は互いに読み替えられてもよい。 In the present disclosure, slots, subslots, minislots, subframes, periods, and time fields may be read interchangeably.
 本開示において、UL送信を行わないこと、UL送信をドロップする(drop)こと、UL送信を中断する(cancel)こと、UL送信の全部を送信しないこと、UL送信に対して設定又はスケジュールされたリソースの全部を用いないこと、は互いに読み替えられてもよい。 In the present disclosure, the UL transmission is not performed, the UL transmission is dropped, the UL transmission is canceled, the entire UL transmission is not transmitted, and the UL transmission is set or scheduled. Not using all of the resources may be read interchangeably.
 本開示において、UL送信の一部を送信すること、UL送信をパンクチャすること、UL送信をレートマッチすること、UL送信のために設定又はスケジュールされたリソースの一部に当該UL送信をマップすること、UL送信のために設定又はスケジュールされたリソースの一部に当該UL送信をマップしないこと、は互いに読み替えられてもよい。本開示において、特定のリソースにおいてUL送信をパンクチャ又はレートマッチすること、特定のリソースの周りにおいてUL送信をパンクチャ又はレートマッチすること、特定のリソースにUL送信をマップしないこと、UL送信に対して設定されたリソースのうち特定のリソースにUL送信をマップしないこと、は互いに読み替えられてもよい。 In the present disclosure, a part of a UL transmission is transmitted, a UL transmission is punctured, a UL transmission is rate-matched, and the UL transmission is mapped to a part of a resource set or scheduled for the UL transmission. That, not mapping the UL transmission to some of the resources configured or scheduled for the UL transmission, may be read interchangeably. In the present disclosure, puncturing or rate-matching UL transmissions on a particular resource, puncturing or rate-matching UL transmissions around a particular resource, not mapping UL transmissions to a particular resource, for UL transmissions. Not mapping UL transmission to a specific resource among the configured resources may be read as mutually exclusive.
 本開示において、ULチャネルリソース、ULチャネルに与えられるリソース、ULチャネルのために設定又はスケジュール又はトリガされたリソース、ULチャネルのための時間及び周波数のリソースの範囲、ULチャネルのためのリソースエレメント(RE)、は互いに読み替えられてもよい。本開示において、SRSリソース、SRSに与えられるリソース、SRSのために設定又はスケジュール又はトリガされたリソース、SRSのための時間及び周波数のリソースの範囲、SRSのためのRE、は互いに読み替えられてもよい。本開示において、UL送信リソース、UL送信に与えられるリソース、UL送信のために設定又はスケジュール又はトリガされたリソース、UL送信のための時間及び周波数のリソースの範囲、UL送信のためのRE、は互いに読み替えられてもよい。 In the present disclosure, UL channel resources, resources given to UL channels, resources configured or scheduled or triggered for UL channels, time and frequency resource ranges for UL channels, resource elements for UL channels ( RE), may be read interchangeably. In the present disclosure, SRS resources, resources given to SRS, resources set or scheduled or triggered for SRS, range of time and frequency resources for SRS, RE for SRS, may be read interchangeably. Good. In the present disclosure, UL transmission resources, resources given to UL transmission, resources set or scheduled or triggered for UL transmission, a range of time and frequency resources for UL transmission, RE for UL transmission, are: They may be read as each other.
 本開示において、SRS(例えば、NZP-SRS又はZP-SRS)用に設定されたリソース、SRSリソース範囲、SRSリソースの帯域全体、SRSリソースの時間及び周波数の範囲内の全てのRE、全てのCombオフセットに基づくRE、は互いに読み替えられてもよい。 In the present disclosure, resources set for SRS (eg, NZP-SRS or ZP-SRS), SRS resource range, entire band of SRS resource, all REs within the time and frequency range of SRS resources, all Combs. The offset-based REs may be read interchangeably.
 本開示において、配置、位置、割り当て(allocation)、マッピング、パターン、スロット内及びPRB内の位置、シンボル位置及びサブキャリア位置、は互いに読み替えられてもよい。 In the present disclosure, placement, position, allocation, mapping, pattern, position in slot and in PRB, symbol position and subcarrier position may be read interchangeably.
 本開示において、UL送信の種別、UL送信のタイプ、UL送信の内容、は互いに読み替えられてもよい。 In the present disclosure, the type of UL transmission, the type of UL transmission, and the content of UL transmission may be read as each other.
 各実施形態は、PUSCH及びSRSの重複に適用されてもよいし、PUCCH及びSRSの重複に適用されてもよい。 Each embodiment may be applied to the duplication of PUSCH and SRS, or may be applied to the duplication of PUCCH and SRS.
<実施形態1>
 SRSとULチャネルのリソースが重複した場合、UEは、SRS又はULチャネルの一方の一部又は全部を送信しなくてもよい(SRS又はULチャネルの一方のリソースを削減してもよい)。
<Embodiment 1>
If the resources of the SRS and UL channels overlap, the UE may not transmit part or all of one of the SRS or UL channels (the resources of one of the SRS or UL channels may be reduced).
《実施形態1-1》
 図3のように、SRSとULチャネル(例えば、PUSCH)のリソースが重複した場合、UEは、SRSの一部又は全部を送信せず(SRSのリソースを削減し)、ULチャネルを送信してもよい。例えば、UEは、SRSをパンクチャすることによって、SRSのうち、ULチャネル(例えば、PUSCH)のリソースと重複している部分を送信しなくてもよいし(図3A)、ULチャネル(例えば、PUSCH)のリソースと重複したSRSをドロップしてもよい(図3B)。この場合、動的にスケジュールされるULチャネルの伝送を優先して確保でき、スループットの低下を抑制することができる。
<< Embodiment 1-1 >>
As shown in FIG. 3, when the resources of the SRS and the UL channel (for example, PUSCH) overlap, the UE does not transmit a part or all of the SRS (reduces the resource of the SRS), but transmits the UL channel. May be good. For example, the UE may not transmit the portion of the SRS that overlaps the resources of the UL channel (eg, PUSCH) by puncturing the SRS (FIG. 3A), or the UL channel (eg, PUSCH). SRS that overlaps with the resource of) may be dropped (Fig. 3B). In this case, the dynamically scheduled transmission of the UL channel can be preferentially secured, and the decrease in throughput can be suppressed.
 UEは、SRSをパンクチャする場合、(1)ドロップする前の送信信号系列を生成してからSRSとULチャネルとの重複部分をパンクチャしてもよいし、(2)ドロップした後の送信信号系列長でSRSの送信信号系列を生成してもよい。また、UEは、ネットワーク(例えば、基地局)からの通知により(1)又は(2)を切り替えて用いてもよい。 When puncturing the SRS, the UE may (1) generate the transmission signal sequence before dropping and then puncture the overlapping portion between the SRS and the UL channel, or (2) the transmission signal sequence after dropping. A long SRS transmission signal sequence may be generated. Further, the UE may switch between (1) and (2) according to a notification from the network (for example, a base station).
 SRSとULチャネルのリソースが重複した場合、UEは、ULチャネルの一部又は全部を送信せず、SRSを送信してもよい。例えば、UEは、ULチャネルをレートマッチ又はパンクチャすることによって、ULチャネルのうち、SRSのリソースと重複している部分を送信しなくてもよいし、ULチャネルをドロップしてもよい。ここで、UEは、実施形態2に従ってULチャネルをレートマッチ又はパンクチャしてもよい。この場合、SRS測定によるスループット向上及び品質改善の少なくとも1つが可能になる。 When the resources of the SRS and the UL channel are duplicated, the UE may transmit the SRS without transmitting a part or all of the UL channel. For example, the UE may not transmit the portion of the UL channel that overlaps with the SRS resource, or may drop the UL channel by rate-matching or puncturing the UL channel. Here, the UE may rate match or puncture the UL channel according to Embodiment 2. In this case, at least one of throughput improvement and quality improvement by SRS measurement becomes possible.
 非周期的(aperiodic(A))-SRSとULチャネルのリソースが重複した場合、UEは、UEは、ULチャネルの一部又は全部を送信せず、A-SRSを送信してもよい。例えば、例えば、UEは、ULチャネルをレートマッチ又はパンクチャすることによって、ULチャネルのうち、A-SRSのリソースと重複している部分を送信しなくてもよいし、ULチャネルをドロップしてもよい。ここで、UEは、実施形態2に従ってULチャネルをレートマッチ又はパンクチャしてもよい。この場合、動的(ダイナミック)にスケジュールされるA-SRSの伝送を優先して確保することができ、SRS測定によるスループット向上及び品質改善の少なくとも1つが可能になる。 Aperiodic (A) -When the resources of the SRS and the UL channel overlap, the UE may transmit the A-SRS without transmitting a part or all of the UL channel. For example, the UE may, for example, rate match or puncture the UL channel so that it does not have to transmit the portion of the UL channel that overlaps the resources of the A-SRS, or it may drop the UL channel. Good. Here, the UE may rate match or puncture the UL channel according to Embodiment 2. In this case, the dynamically scheduled transmission of A-SRS can be preferentially secured, and at least one of throughput improvement and quality improvement by SRS measurement becomes possible.
《実施形態1-2》
 UEは、SRSとULチャネルのリソースが重複した場合、以下の優先UL送信決定方法1~5の少なくとも1つに基づいて、SRS又はULチャネルのうち、どのUL送信を優先して送信するかを決定してもよい。
<< Embodiment 1-2 >>
When the resources of the SRS and the UL channel overlap, the UE determines which UL transmission of the SRS or UL channel is preferentially transmitted based on at least one of the following priority UL transmission determination methods 1 to 5. You may decide.
[優先UL送信決定方法1]
 UEは、SRSをスケジューリング又はトリガした下り制御情報(DCI)と、ULチャネルをスケジューリング又はトリガしたDCIと、の受信又は検出の順番に基づいて、優先するUL送信を決定してもよい。
[Priority UL transmission determination method 1]
The UE may determine preferred UL transmission based on the order of reception or detection of downlink control information (DCI) scheduling or triggering SRS and DCI scheduling or triggering UL channel.
 UEは、SRSをスケジューリング又はトリガしたDCIと、ULチャネルをスケジューリング又はトリガしたDCIのうち、先に受信又は検出されたDCIによってスケジューリング又はトリガされたSRS又はULチャネルのいずれを優先するかを決定してもよい。 The UE determines whether to prioritize the DCI that scheduled or triggered the SRS or the SRS or UL channel that was previously scheduled or triggered by the DCI that was received or detected among the DCIs that scheduled or triggered the UL channel. You may.
 例えば、A-SRSをスケジューリング又はトリガしたDCIが、ULチャネルをスケジューリング又はトリガしたDCIよりも先に検出され、且つA-SRSとULチャネルのリソースが重複するケースにおいて、UEは、SRSを優先することを決定してもよい。このケースにおいて、UEは、ULチャネルのうちSRSリソースと重複している部分においてULチャネルをレートマッチ又はパンクチャし、ULチャネル及びSRSを送信してもよい。ここで、UEは、後述する実施形態2-1~2-6の少なくとも1つに基づいて、ULチャネルをレートマッチ又はパンクチャしてもよい。また、このケースにおいて、UEは、ULチャネルをドロップし、SRSを送信してもよい。例えば、A-SRSをスケジューリング又はトリガしたDCIが、ULチャネルをスケジューリング又はトリガしたDCIよりも後に検出され、且つA-SRSとULチャネルのリソースが重複するケースにおいて、UEは、ULチャネルを優先することを決定してもよい。このケースにおいて、UEは、A-SRSをドロップし、ULチャネルを送信してもよい。これらの場合、UEが先のDCIを受信した時点で、そのDCIに対応するUL送信の処理を行っているため、その後のDCIの受信によって、当該UL送信の処理を中断することを避けられる。 For example, in the case where the DCI scheduling or triggering the A-SRS is detected before the DCI scheduling or triggering the UL channel and the resources of the A-SRS and the UL channel overlap, the UE prefers the SRS. You may decide that. In this case, the UE may rate match or puncture the UL channel in the portion of the UL channel that overlaps the SRS resource and transmit the UL channel and SRS. Here, the UE may rate match or puncture the UL channel based on at least one of embodiments 2-1 to 2-6 described below. Also, in this case, the UE may drop the UL channel and send an SRS. For example, in the case where the DCI scheduling or triggering the A-SRS is detected after the DCI scheduling or triggering the UL channel and the resources of the A-SRS and the UL channel overlap, the UE prefers the UL channel. You may decide that. In this case, the UE may drop the ASRS and transmit the UL channel. In these cases, since the UL transmission processing corresponding to the DCI is performed when the UE receives the previous DCI, it is possible to avoid interrupting the UL transmission processing by the subsequent reception of the DCI.
 また、UEは、SRSをスケジューリング又はトリガしたDCIと、ULチャネルをスケジューリング又はトリガしたDCIのうち、後に受信又は検出したDCIによってスケジューリング又はトリガされたSRS又はULチャネルのいずれを優先するかを決定してもよい。例えば、A-SRSをスケジューリング又はトリガしたDCIが、ULチャネルをスケジューリング又はトリガしたDCIよりも後に検出され、且つA-SRSとULチャネルのリソースが重複したケースにおいて、UEは、SRSを優先することを決定してもよい。このケースにおいて、UEは、ULチャネルのうちSRSリソースと重複している部分において、ULチャネルをレートマッチ又はパンクチャし、PUSCH及びSRSを送信してもよい。ここで、UEは、後述する実施形態2-1~2-6の少なくとも1つに基づいて、ULチャネルをレートマッチ又はパンクチャしてもよい。また、このケースにおいて、UEは、ULチャネルをドロップし、SRSを送信してもよい。例えば、A-SRSをスケジューリング又はトリガしたDCIが、ULチャネルをスケジューリング又はトリガしたDCIよりも先に検出され、且つA-SRSとPUSCHのリソースが重複したケースにおいて、UEは、ULチャネルを優先することを決定してもよい。このケースにおいて、UEは、A-SRSをドロップし、ULチャネルを送信してもよい。これらの場合、UEは、後にスケジューリング又はトリガされるUL送信が、先にスケジューリング又はトリガされるUL送信よりも重要であると見なすことによって、先にスケジューリング又はトリガされたUL送信の処理を中断して、より重要なUL送信の処理を優先して行うことができる。 The UE also determines whether to prioritize the DCI that scheduled or triggered the SRS or the SRS or UL channel that was later scheduled or triggered by the DCI that was received or detected among the DCIs that scheduled or triggered the UL channel. You may. For example, in the case where the DCI that scheduled or triggered the A-SRS was detected after the DCI that scheduled or triggered the UL channel, and the resources of the A-SRS and the UL channel overlapped, the UE should prioritize the SRS. May be determined. In this case, the UE may rate match or puncture the UL channel in the portion of the UL channel that overlaps the SRS resource and transmit the PUSCH and SRS. Here, the UE may rate match or puncture the UL channel based on at least one of embodiments 2-1 to 2-6 described below. Also, in this case, the UE may drop the UL channel and send an SRS. For example, in the case where the DCI scheduling or triggering the A-SRS is detected before the DCI scheduling or triggering the UL channel and the resources of the A-SRS and PUSCH overlap, the UE prefers the UL channel. You may decide that. In this case, the UE may drop the ASRS and transmit the UL channel. In these cases, the UE interrupts the processing of the previously scheduled or triggered UL transmission by considering that the later scheduled or triggered UL transmission is more important than the earlier scheduled or triggered UL transmission. Therefore, the more important UL transmission processing can be prioritized.
[優先UL送信決定方法2]
 SRS又はULチャネルのリソースが重複する場合、UEは、SRS及びULチャネルの少なくとも1つのスケジューリング又はトリガのDCIの検出に用いられたサーチスペースの種別(例えば、共通サーチスペース(common search space(CSS))、UE固有サーチスペースの(UE-specific search space(USS)))に基づいて、SRS又はULチャネルのいずれのUL送信を優先するかを決定してもよい。
[Priority UL transmission determination method 2]
If the resources of the SRS or UL channel overlap, the UE will use the type of search space used to detect the DCI of at least one scheduling or trigger of the SRS and UL channels (eg, common search space (CSS)). ), (UE-specific search space (USS))), which may be prioritized for UL transmission of SRS or UL channel.
 例えば、UEは、CSSにおいて検出したDCIによってスケジューリング又はトリガされたUL送信を優先して送信してもよい。また、例えば、UEは、USSにおいて検出したDCIによってスケジューリング又はトリガされたSRS又はULチャネルを優先して送信してもよい。 For example, the UE may preferentially transmit UL transmission scheduled or triggered by DCI detected in CSS. Also, for example, the UE may preferentially transmit SRS or UL channels scheduled or triggered by DCI detected in the USS.
[優先UL送信決定方法3]
 SRS又はULチャネルのリソースが重複する場合、UEは、SRS及びULチャネルの少なくとも1つのスケジューリング又はトリガのDCIの検出に用いられたセル又はCCのインデックスに基づいて、SRS又はULチャネルのいずれのUL送信を優先するかを決定してもよい。
[Priority UL transmission determination method 3]
If the resources of the SRS or UL channel overlap, the UE will use the UL of either the SRS or UL channel based on the index of the cell or CC used to detect the DCI of at least one scheduling or trigger of the SRS and UL channel. You may decide whether to prioritize transmission.
 UEは、コンポーネントキャリア(CC、サービングセル)インデックスのより小さいセル、又はプライマリセル(PCell)で検出したDCIによってスケジューリング又はトリガされたSRS又はULチャネルの少なくともどちらか一方を優先して送信してもよい。また、CCインデックスのより大きいセルで検出したDCIによってスケジューリング又はトリガされたSRS又はULチャネルの少なくともどちらか一方を優先して送信してもよい。 The UE may preferentially transmit at least one of the SRS or UL channels scheduled or triggered by the DCI detected in the cell smaller in the component carrier (CC, serving cell) index or in the primary cell (PCell). .. Also, at least one of the SRS or UL channels scheduled or triggered by the DCI detected in the cell with the larger CC index may be preferentially transmitted.
[優先UL送信決定方法4]
 SRS及びULチャネルのリソースが重複した場合、UEは、SRS及びULチャネルのそれぞれの種別に基づいて、SRS又はULチャネルのいずれのUL送信を優先するかを決定してもよい。
[Priority UL transmission determination method 4]
When the resources of the SRS and UL channels are duplicated, the UE may decide whether to prioritize UL transmission of SRS or UL channel based on the respective types of SRS and UL channels.
 UL送信の種別は、周期的(periodic(P))、セミパーシステント(semi-persistent(SP))、非周期的(aperiodic(A))、のいずれかの送信タイミングと、ULチャネルによって運ばれる内容と、の少なくとも1つによって定義されてもよい。SRSの種別は、P-SRS、SP-SRS、A-SRS、のいずれかであってもよい。PUCCHの種別は、P-CSI報告などの周期的に送信されるPUCCH(周期的PUCCH)と、SP-CSI報告、DL-semi-persistent(SPS)送信に対するHARQ-ACKなどのセミパーシステントに送信されるPUCCH(セミパーシステントPUCCH)と、SR、HARQ-ACK、A-CSI報告などの非周期的に送信されるPUCCH(非周期的PUCCH)と、のいずれかであってもよい。PUSCHの種別は、タイプ1設定グラント(configured grant)PUSCHのような周期的に送信されるPUSCH(周期的PUSCH)と、タイプ2設定グラントPUSCHのようなセミパーシステントに送信されるPUSCH(セミパーシステントPUSCH)と、動的グラント(dynamic grant)PUSCHのような非周期的に送信されるPUSCH(非周期的PUSCH)と、のいずれかであってもよい。ULチャネルによって運ばれる内容は、UCIタイプ(SR、HARQ-ACK、CSI(例えば、P-CSI報告、SP-CSI報告、A-CSI報告))であってもよい。UCIはPUCCHによって運ばれてもよいし、PUSCHによって運ばれてもよい。 The type of UL transmission is carried by the UL channel and the transmission timing of either periodic (periodic (P)), semi-persistent (SP), or aperiodic (aperiodic (A)). It may be defined by at least one of the contents. The type of SRS may be any of P-SRS, SP-SRS, and A-SRS. The types of PUCCH are transmitted to semi-persistents such as PUCCH (periodic PUCCH) transmitted periodically such as P-CSI report and HARQ-ACK for SP-CSI report and DL-semi-persistent (SPS) transmission. It may be either a PUCCH (semi-persistent PUCCH) to be generated and a PUCCH (aperiodic PUCCH) transmitted aperiodically such as SR, HARQ-ACK, and A-CSI reports. The types of PUSCH are the PUSCH (periodic PUSCH) transmitted periodically such as the type 1 configured grant PUSCH and the PUSCH (semi-persistent) transmitted to the semi-persistent such as the type 2 configured grant PUSCH. It may be either a stent PUSCH) or a PUSCH (aperiodic PUSCH) transmitted aperiodically, such as a dynamic grant PUSCH. The content carried by the UL channel may be of UCI type (SR, HARQ-ACK, CSI (eg, P-CSI report, SP-CSI report, A-CSI report)). The UCI may be carried by PUCCH or by PUSCH.
 図4に示すように、SRSの種別と、PUCCHの種別と、に基づいて、いずれのUL送信が優先されるかが規定されてもよい。例えば、A-SRSのリソースと非周期的PUCCHのリソースとが重複する場合、UEは、非周期的PUCCHを優先してもよい(非周期的PUCCHをドロップ又はパンクチャ又はレートマッチし、A-SRSの全体を送信してもよい)。例えば、A-SRSのリソースと周期的PUCCHのリソースとが重複する場合、UEは、A-SRSを優先してもよい(周期的PUCCHをドロップ又はパンクチャし、A-SRSの全体を送信してもよい)。例えば、P-SRSのリソースと周期的PUCCHのリソースとが重複する場合、UEは、周期的PUCCHを優先してもよい(P-SRSをドロップ又はパンクチャし、周期的PUCCHの全体を送信してもよい)。 As shown in FIG. 4, which UL transmission is prioritized may be specified based on the type of SRS and the type of PUCCH. For example, if the A-SRS resource and the aperiodic PUCCH resource overlap, the UE may prefer the aperiodic PUCCH (drop or puncture or rate match the aperiodic PUCCH and A-SRS. You may send the whole of). For example, if the resources of the A-SRS and the resources of the periodic PUCCH overlap, the UE may prioritize the A-SRS (drop or puncture the periodic PUCCH and send the entire A-SRS). May be good). For example, if the P-SRS resource and the periodic PUCCH resource overlap, the UE may prefer the periodic PUCCH (drop or puncture the P-SRS and send the entire periodic PUCCH. May be good).
 SRSの種別とULチャネル(PUCCH、UCI、PUSCHなど)の種別とに対する優先度が規定されてもよい。UEは、優先度(優先順位)の値のより小さいUL送信を優先してもよいし、優先度の値のより大きいUL送信を優先してもよい。 Priority may be specified for the type of SRS and the type of UL channel (PUCCH, UCI, PUSCH, etc.). The UE may prioritize UL transmission having a lower priority value, or may prioritize UL transmission having a higher priority value.
 非周期的UL送信、セミパーシステントUL送信、周期的UL送信の順に優先されてもよい。次に、SRS及びPUCCHが同じ種別である場合にPUCCHが優先されてもよい。例えば、優先度1~6は、非周期的PUCCH、A-SRS、セミパーシステントPUCCH、SP-SRS、周期的PUCCH、P-SRS、にそれぞれ関連付けられ、UEは、優先度の値のより小さいUL送信を優先してもよい。例えば、非周期的PUCCHとA-SRSとが重複する場合、UEは、優先度の値が小さいA-SRSを優先してもよい(非周期的PUCCHをドロップ又はパンクチャ又はレートマッチし、A-SRSの全体を送信してもよい)。 Aperiodic UL transmission, semi-persistent UL transmission, and periodic UL transmission may be prioritized in this order. Next, PUCCH may be prioritized when SRS and PUCCH are of the same type. For example, priorities 1 to 6 are associated with aperiodic PUCCH, A-SRS, semi-persistent PUCCH, SP-SRS, periodic PUCCH, P-SRS, respectively, and the UE is smaller than the priority value. UL transmission may be prioritized. For example, if the aperiodic PUCCH and A-SRS overlap, the UE may prefer A-SRS with a lower priority value (drop or puncture or rate match the aperiodic PUCCH and A- The entire SRS may be transmitted).
 周期的UL送信、セミパーシステントUL送信、非周期的UL送信の順に優先されてもよい。 Periodic UL transmission, semi-persistent UL transmission, and aperiodic UL transmission may be prioritized in this order.
 PUCCH又はUCIが優先されてもよい。例えば、優先度1~6は、非周期的PUCCH、セミパーシステントPUCCH、周期的PUCCH、A-SRS、SP-SRS、P-SRS、にそれぞれ関連付けられ、UEは、優先度(優先順位)の値のより小さいUL送信を優先してもよい。例えば、非周期的PUCCHと、A-SRSとが重複する場合、UEは、優先度の値が小さい非周期的PUCCHを優先してもよい(A-SRSをドロップ又はパンクチャし、非周期的PUCCHの全体を送信してもよい)。 PUCCH or UCI may be prioritized. For example, priorities 1 to 6 are associated with aperiodic PUCCH, semi-persistent PUCCH, periodic PUCCH, A-SRS, SP-SRS, P-SRS, respectively, and the UE is the priority (priority). UL transmission with a smaller value may be prioritized. For example, if the aperiodic PUCCH and the A-SRS overlap, the UE may prioritize the aperiodic PUCCH with a lower priority value (dropping or puncturing the A-SRS and the aperiodic PUCCH. May be sent in its entirety).
[優先UL送信決定方法5]
 UEは、SRSとULチャネルのリソースが重複した場合、SRSとULチャネルのそれぞれのリソースに関するインデックス(インデックスの関係)に基づいて、SRS又はULチャネルのどちらか一方を優先して送信する決定をしてもよい。
[Priority UL transmission determination method 5]
When the resources of the SRS and the UL channel overlap, the UE decides to preferentially transmit either the SRS or the UL channel based on the index (index relationship) for each resource of the SRS and the UL channel. You may.
 例えば、SRSのリソースとULチャネルのリソースのうち、時間インデックスのより小さい方のSRS又はULチャネルの少なくともどちらか一方を優先して送信する決定をしてもよい。また、例えば、SRSの送信リソースとPUSCHの送信リソースのうち、時間インデックスのより大きい方のSRS又はULチャネルの少なくともどちらか一方を優先して送信する決定をしてもよい。時間インデックスは、UL送信の開始又は終了の時間リソースのインデックスであってもよい。時間リソースは、シンボル、ミニスロット、サブスロット、スロット、のいずれかであってもよい。 For example, it may be decided to preferentially transmit at least one of the SRS resource and the UL channel resource, whichever has the smaller time index, of the SRS resource and the UL channel resource. Further, for example, it may be determined to preferentially transmit at least one of the SRS and UL channels having the larger time index among the SRS transmission resource and the PUSCH transmission resource. The time index may be an index of the time resource at the start or end of UL transmission. The time resource may be any of a symbol, a minislot, a subslot, and a slot.
 例えば、SRSのリソースとPUSCHのリソースのうち、周波数インデックスのより小さい方のSRS又はULチャネルの少なくともどちらか一方を優先して送信する決定をしてもよい。また、例えば、SRSの送信リソースとPUSCHの送信リソースのうち、周波数インデックスのより大きい方のSRS又はULチャネルの少なくともどちらか一方を優先して送信する決定をしてもよい。周波数インデックスは、UL送信の最低(開始)又は最高(終了)の周波数リソースのインデックスであってもよい。周波数リソースは、サブキャリア間隔、リソースエレメント(RE)、リソースブロック(RB)、CC、セル、バンド、のいずれかであってもよい。 For example, it may be decided to preferentially transmit at least one of the SRS or UL channel having the smaller frequency index among the SRS resource and the PUSCH resource. Further, for example, it may be determined to preferentially transmit at least one of the SRS or UL channel having the larger frequency index among the SRS transmission resource and the PUSCH transmission resource. The frequency index may be the index of the lowest (start) or highest (end) frequency resource of UL transmission. The frequency resource may be any of a subcarrier interval, a resource element (RE), a resource block (RB), a CC, a cell, and a band.
 この実施形態1によれば、SRSリソースがULチャネルリソースと重複した場合、SRS又はULチャネルの一方の一部又は全部を送信しないことによって、他方を適切に送信できる。また、SRS又はULチャネルのいずれを優先するかを適切に決定できる。 According to the first embodiment, when the SRS resource overlaps with the UL channel resource, the other can be appropriately transmitted by not transmitting a part or all of one of the SRS or UL channel. In addition, it is possible to appropriately determine whether to prioritize the SRS or UL channel.
<実施形態2>
 SRSとULチャネルのリソースが重複した場合、UEは、ULチャネルをレートマッチ(又は、パンクチャ)して(ULチャネルリソースを削減して)、SRS及びULチャネルを送信してもよい。
<Embodiment 2>
If the SRS and UL channel resources overlap, the UE may rate match (or puncture) the UL channel (reduce UL channel resources) and transmit the SRS and UL channels.
 SRSとULチャネルのリソースが重複した場合、UEは、以下の実施形態2-1~2-6の少なくとも1つに基づいてULチャネルをレートマッチ(又は、パンクチャ)してもよい。 When the resources of the SRS and the UL channel overlap, the UE may rate match (or puncture) the UL channel based on at least one of the following embodiments 2-1 to 2-6.
《実施形態2-1》
 SRSとULチャネルのリソースが重複した場合、UEは、SRSの送信に用いられるREを、ULチャネル及び当該ULチャネルの復調用参照信号(DMRS)の送信に使わず、SRSの送信に用いられるREにおいてULチャネルをレートマッチ(又は、パンクチャ)してもよい。Comb構成を有するSRSリソースがUEに設定される場合、SRSの送信に用いられるREは、SRS系列がマップされるREのみである。
<< Embodiment 2-1 >>
When the resources of the SRS and the UL channel overlap, the UE does not use the RE used for the transmission of the SRS for the transmission of the UL channel and the demodulation reference signal (DMRS) of the UL channel, but the RE used for the transmission of the SRS. UL channels may be rate matched (or punctured) in. When an SRS resource having a Comb configuration is set in the UE, the only RE used to transmit the SRS is the RE to which the SRS sequence is mapped.
 例えば、図5Aにおいて、スケジュールされたPUSCHの最終シンボルに、設定されたComb2のSRSが重複している。この場合、SRSの送信に用いられるREにおいて、PUSCHをレートマッチ(又は、パンクチャ)し、SRS及びPUSCHの送信を行う。 For example, in FIG. 5A, the set SRS of Comb2 overlaps with the final symbol of the scheduled PUSCH. In this case, in the RE used for transmitting the SRS, the PUSCH is rate-matched (or punctured), and the SRS and the PUSCH are transmitted.
 この場合、ULチャネルの符号化率の増加を最小限に抑えて通信品質の低下を抑えつつ、効率的に送信を行うことができ、ULチャネルのスループットを改善することができる。 In this case, the increase in the coding rate of the UL channel can be minimized to suppress the deterioration of the communication quality, and the transmission can be performed efficiently, and the throughput of the UL channel can be improved.
《実施形態2-2》
 SRSとULチャネルのリソースが重複した場合、UEは、SRS用に設定されたリソース(SRSリソース範囲)を、ULチャネル及び当該ULチャネルのDMRSの送信に使わず、SRS用に設定されたリソースにおいてULチャネルをレートマッチ(又は、パンクチャ)してもよい。Comb構成を有するSRSリソースがUEに設定される場合、SRSリソース範囲は、設定されたCombオフセットの値に基づく送信に用いられるREだけでなく、Combオフセットの他の値に基づく送信に用いられるREを含む。
<< Embodiment 2-2 >>
When the resources of SRS and UL channel overlap, the UE does not use the resource set for SRS (SRS resource range) to transmit DMRS of UL channel and UL channel, but in the resource set for SRS. UL channels may be rate matched (or punctured). When an SRS resource with a Comb configuration is configured on the UE, the SRS resource range is not only the RE used for transmissions based on the set Comb offset value, but also the RE used for transmissions based on other values of the Comb offset. including.
 例えば、図5Bの例において、スケジュールされたPUSCHリソースと、設定されたSRSリソースとは、図5Aと同じである。この場合、SRSリソース範囲において、PUSCHをレートマッチ(又は、パンクチャ)し、SRS及びPUSCHの送信を行う。 For example, in the example of FIG. 5B, the scheduled PUSCH resource and the set SRS resource are the same as those of FIG. 5A. In this case, the PUSCH is rate-matched (or punctured) in the SRS resource range, and the SRS and the PUSCH are transmitted.
 Comb4のSRSリソースが設定された場合、SRSリソース範囲は、図6のように、Combオフセット=0~3の送信に用いられる全てのRE(Combオフセットを設定されたUEのSRS送信と他UEのSRS送信に用いられる可能性のあるRE)を含む。 When the SRS resource of Comb4 is set, the SRS resource range is as shown in FIG. 6, and the SRS transmission of all REs (SRS transmission of the UE for which the Comb offset is set and other UEs) used for transmission of Comb offset = 0 to 3 are set. RE) that may be used for SRS transmission is included.
 SRSリソースのうち、前述の実施形態2-2におけるレートマッチ又はパンクチャによって、ULチャネルにマップされないリソースは、他のUEのSRS(例えば、異なるCombオフセットを有するSRS)に用いられることがある。そのため、実施形態2-2を用いることで、複数のUEのSRSがCombによって多重される場合であっても、UEのULチャネルと他のUEのSRSが衝突又は干渉することを回避することができる。 Among the SRS resources, the resources that are not mapped to the UL channel due to the rate match or puncture in the above-described 2-2 may be used for the SRS of another UE (for example, the SRS having a different Comb offset). Therefore, by using the second embodiment, it is possible to prevent the UL channel of the UE from colliding or interfering with the SRS of another UE even when the SRS of a plurality of UEs is multiplexed by the comb. it can.
《実施形態2-3》
 SRSとULチャネルのリソースが重複した場合、UEは、SRSのシンボルを、ULチャネル及びULチャネルのDMRSの送信に使わず、SRSのシンボル(SRSのシンボル内の全てのRE)においてULチャネルをレートマッチ(又は、パンクチャ)してもよい。
<< Embodiment 2-3 >>
If the SRS and UL channel resources overlap, the UE does not use the SRS symbol to transmit the UL and UL channel DMRS, but rates the UL channel at the SRS symbol (all REs within the SRS symbol). It may be a match (or puncture).
 例えば、図5Cの例において、スケジュールされたPUSCHリソースと、設定されたSRSリソースとは、図5Aと同じである。この場合、SRSが設定されるシンボル(期間)において、PUSCHをレートマッチ(又は、パンクチャ)し、SRS及びPUSCHの送信を行う。 For example, in the example of FIG. 5C, the scheduled PUSCH resource and the set SRS resource are the same as those of FIG. 5A. In this case, the PUSCH is rate-matched (or punctured) at the symbol (period) in which the SRS is set, and the SRS and the PUSCH are transmitted.
 この場合、あるUEのULチャネルと重複するSRSのシンボルにおいて、他のUEによって長さ(帯域幅)の異なるSRSが送信されてもよい。ULチャネルがSRSのシンボルにマップされないことによって、UEのULチャネルと他のUEのSRSとの衝突又は干渉することを回避することができる。 In this case, SRSs having different lengths (bandwidths) may be transmitted by other UEs in the SRS symbol that overlaps with the UL channel of a certain UE. By not mapping the UL channel to the SRS symbol, it is possible to avoid collisions or interference between the UL channel of the UE and the SRS of other UEs.
《SRSの周波数ホッピング》
 周波数ホッピングを伴うSRSが設定される場合においても、UEは、前述の実施形態2-1~2-3の少なくとも1つに基づいてULチャネルをレートマッチ又はパンクチャしてもよい。
<< SRS frequency hopping >>
Even when SRS with frequency hopping is configured, the UE may rate match or puncture the UL channel based on at least one of embodiments 2-1 to 2-3 described above.
 周波数ホッピングを伴うSRSが設定され、且つSRSとULチャネルのリソースが重複した場合、UEは、SRSの送信に用いられるREを、ULチャネル及び当該ULチャネルの復調用参照信号(DMRS)の送信に使わず、SRSの送信に用いられるREにおいてULチャネルをレートマッチ(又は、パンクチャ)してもよい。すなわち、前述の実施形態2-1の方法に基づいてULチャネルをレートマッチ又はパンクチャしてもよい。 When SRS with frequency hopping is set and the resources of SRS and UL channel overlap, the UE uses RE used for transmission of SRS to transmit the UL channel and the demodulation reference signal (DMRS) of the UL channel. The UL channel may be rate-matched (or punctured) in the RE used for SRS transmission without use. That is, the UL channel may be rate matched or punctured based on the method of embodiment 2-1 described above.
 図7Aでは、第1ホップ(周波数ホッピング前)のSRSリソースと、第2ホップ(周波数ホッピング後)のSRSリソースとが、PUSCHリソースと同一のスロット内に配置され、第2ホップのSRSリソースと、PUSCHリソースと、がPUSCHリソースの最終シンボルで重複している。この場合、SRSの送信に用いられるREにおいて、PUSCHをレートマッチ(又は、パンクチャ)し、SRS及びPUSCHの送信を行う。 In FIG. 7A, the SRS resource of the first hop (before frequency hopping) and the SRS resource of the second hop (after frequency hopping) are arranged in the same slot as the PUSCH resource, and the SRS resource of the second hop and the SRS resource of the second hop are arranged. The PUSCH resource and is duplicated in the final symbol of the PUSCH resource. In this case, in the RE used for transmitting the SRS, the PUSCH is rate-matched (or punctured), and the SRS and the PUSCH are transmitted.
 また、周波数ホッピングを伴うSRSが設定され、且つSRSとULチャネルのリソースが重複した場合、UEは、SRS用に設定されたリソース(SRSリソース範囲)を、ULチャネル及び当該ULチャネルのDMRSの送信に使わず、SRS用に設定されたリソースにおいてULチャネルをレートマッチ(又は、パンクチャ)してもよい。すなわち、前述の実施形態2-2の方法に基づいてULチャネルをレートマッチ又はパンクチャしてもよい。Comb構成を有するSRSリソースがUEに設定される場合、SRS用に設定されたリソースは、設定されたCombオフセットの値に基づいて送信に用いられるREだけでなく、Combオフセットの他の値に基づいて送信に用いられるREを含む。 Further, when SRS with frequency hopping is set and the resources of SRS and UL channel overlap, the UE transmits the resource (SRS resource range) set for SRS to the UL channel and the DMRS of the UL channel. UL channels may be rate-matched (or punctured) in resources configured for SRS instead of being used for. That is, the UL channel may be rate matched or punctured based on the method of Embodiment 2-2 described above. When an SRS resource with a Comb configuration is configured on the UE, the resource configured for SRS is based on the RE used for transmission based on the value of the configured Comb offset, as well as other values of the Comb offset. Includes RE used for transmission.
 図7Bの例において、スケジュールされたPUSCHリソースと、設定されたSRSリソースとは、図7Aと同じである。この場合、SRSリソース範囲において、PUSCHをレートマッチ(又は、パンクチャ)し、SRS及びPUSCHの送信を行う。 In the example of FIG. 7B, the scheduled PUSCH resource and the set SRS resource are the same as those of FIG. 7A. In this case, the PUSCH is rate-matched (or punctured) in the SRS resource range, and the SRS and the PUSCH are transmitted.
 周波数ホッピングを伴うSRSが設定され、且つSRSとULチャネルのリソースが重複した場合、UEは、SRSのシンボルを、ULチャネル及びULチャネルのDMRSの送信に使わず、ULチャネルとのリソースと重複するSRSのシンボル(SRSのシンボル内の全てのRE)においてULチャネルをレートマッチ(又は、パンクチャ)してもよい。すなわち、前述の実施形態2-3の方法に基づいてULチャネルをレートマッチ又はパンクチャしてもよい。 If SRS with frequency hopping is configured and the resources of SRS and UL channel overlap, the UE does not use the SRS symbol to transmit the DMRS of UL channel and UL channel, but overlaps the resource with UL channel. UL channels may be rate-matched (or punctured) at the SRS symbol (all REs within the SRS symbol). That is, the UL channel may be rate matched or punctured based on the method of embodiment 2-3 described above.
 図7Cの例において、スケジュールされたPUSCHリソースと、設定されたSRSリソースとは、図7Aと同じである。この場合、PUSCHリソースと重複するSRSが設定されるシンボル(期間)において、PUSCHをレートマッチ(又は、パンクチャ)し、SRS及びPUSCHの送信を行う。 In the example of FIG. 7C, the scheduled PUSCH resource and the set SRS resource are the same as those of FIG. 7A. In this case, the PUSCH is rate-matched (or punctured) at the symbol (period) in which the SRS that overlaps the PUSCH resource is set, and the SRS and the PUSCH are transmitted.
《実施形態2-4》
 UEは、SRSのためのリソースとは別に、CombのどのリソースにおいてULチャネルをレートマッチ(又は、パンクチャ)すべきかを示す情報(対象Comb)を通知されてもよい。
<< Embodiment 2-4 >>
In addition to the resource for SRS, the UE may be notified of information (target Comb) indicating in which resource of the Comb the UL channel should be rate-matched (or punctured).
 例えば、UEは、対象CombのCombオフセットを示すビットマップを通知されてもよい。ビットマップを通知されたUEは、ビットマップによって示されたCombオフセットに対応するREにおいてULチャネルのレートマッチ又はパンクチャを行ってもよい。 For example, the UE may be notified of a bitmap showing the Comb offset of the target Comb. The UE notified of the bitmap may perform rate matching or puncturing of the UL channel at the RE corresponding to the Comb offset indicated by the bitmap.
 例えば、UEは、DMRSに対するデータ無しのcode division multiplexing(CDM)グループ数(the number of CDM group without data)と同様に、幾つかのUE又は他のUEに対して設定される可能性のあるComb数を通知されてもよい。Comb数が通知されたUEは、選択ルールに従って、対象Combを決定してもよい。例えば、選択ルールは、UEは、常にCombオフセットの小さい(又は、大きい)ものから優先して通知されたComb数の分だけを対象Combとして選択してもよいし、SRSリソースとして通知されたCombオフセットから、通知されたcomb数だけインクリメント(又は、デクリメント)して得られるCombオフセットまでを対象Combとして選択してもよい。UEは、インクリメント又はデクリメントによってCombオフセットが有効範囲外になる場合、Combオフセットを有効範囲内に維持してもよい。例えば、インクリメントによって最大Combオフセットを超える場合、UEは、インクリメント結果の最大Combオフセットによる剰余(modulo演算)によって、Combオフセットを得てもよい。 For example, a UE may be configured for some UEs or other UEs as well as the number of CDM group without data for the DMRS code division multiplexing (CDM) group. You may be notified of the number. The UE notified of the number of Combs may determine the target Comb according to the selection rule. For example, in the selection rule, the UE may always select only the number of Combs notified as priority from the one with the smallest (or larger) Comb offset as the target Comb, or the Comb notified as the SRS resource. The target Comb may be selected from the offset to the Comb offset obtained by incrementing (or decrementing) the notified number of combs. The UE may keep the Comb offset within the effective range if the comb offset is out of the effective range due to increment or decrement. For example, when the maximum Comb offset is exceeded by the increment, the UE may obtain the Comb offset by the remainder (modulo operation) due to the maximum Comb offset of the increment result.
 対象Combの通知は、SRSリソースの一部として上位レイヤシグナリングによって通知されてもよいし、Medium Access Control(MAC) Control Element(CE)によって通知されてもよく、DCIによって通知されてもよい。例えば、P-SRSの場合は、上位レイヤシグナリングによって通知されてもよく、SP-SRSの場合は、上位レイヤシグナリング及びMAC CEによって通知されてもよく、A-SRSの場合は、上位レイヤシグナリング及びDCIによって通知されてもよい。 The notification of the target Comb may be notified by upper layer signaling as a part of the SRS resource, may be notified by Medium Access Control (MAC) Control Element (CE), or may be notified by DCI. For example, in the case of P-SRS, it may be notified by upper layer signaling, in the case of SP-SRS, it may be notified by upper layer signaling and MAC CE, and in the case of A-SRS, higher layer signaling and It may be notified by DCI.
 図8は、UEがSRSリソースとしてCombオフセット=0を通知され、対象CombとしてCombオフセット=1を通知された場合を示す。この場合、Combオフセット=0はSRSリソース(SRS送信に用いられるRE)を示す。Combオフセット=1はSRS送信に用いられるREではないが、PUSCHのレートマッチ(又は、パンクチャ)が行われるREを示す。Combオフセット=2及びCombオフセット=3はSRS送信に用いられるREでなく、PUSCHのレートマッチが行われないREを示す。すなわち、Combオフセット=2及びCombオフセット=3は、PUSCHをスケジュールされた場合、PUSCHがマップされるREを示す。 FIG. 8 shows a case where the UE is notified of the Comb offset = 0 as the SRS resource and the Comb offset = 1 as the target Comb. In this case, Comb offset = 0 indicates an SRS resource (RE used for SRS transmission). Comb offset = 1 is not the RE used for SRS transmission, but indicates the RE at which the PUSCH rate match (or puncture) is performed. Comb offset = 2 and Comb offset = 3 are not REs used for SRS transmission, but REs in which PUSCH rate matching is not performed. That is, Comb offset = 2 and Comb offset = 3 indicate RE to which the PUSCH is mapped when the PUSCH is scheduled.
《実施形態2-5》
 ULチャネルがCyclic Prefix(CP)-OFDM(CP-OFDM波形)である(ULチャネルにトランスフォームプリコーディングが適用されない)場合にのみ、UEは、上記実施形態2-1、2-2、2-4のいずれか一つを適用してもよい。この場合、SRSは低ピーク対平均電力比(Peak to Average Power Ratio(PAPR))系列を用いるのに対し、上記実施形態2-1、2-2、2-4はSRS送信とULチャネル送信とを周波数分割多重(FDM)する可能性があるため、CP-OFDMとFDMを組み合わせることによるPAPRの増加を抑制することができる。
<< Embodiment 2-5 >>
Only when the UL channel is Cyclic Prefix (CP) -OFDM (CP-OFDM waveform) (transform precoding is not applied to the UL channel) will the UE be able to perform the above embodiments 2-1, 2-2, 2- Any one of 4 may be applied. In this case, the SRS uses a low peak to average power ratio (PAPR) series, whereas the above embodiments 2-1, 2-2, and 2-4 include SRS transmission and UL channel transmission. Since there is a possibility of frequency division multiplexing (FDM), it is possible to suppress an increase in PAPR due to the combination of CP-OFDM and FDM.
 ULチャネルがDiscrete Fourier Transform-Spread(DFT-S)-OFDM(DFT-S-OFDM波形)である(ULチャネルにトランスフォームプリコーディングが適用される)場合、UEは、上記実施形態2-3を適用してもよい。この場合、DFT-S-OFDMとFDMを組み合わせることによって、PAPRの増加を抑制することができる。 When the UL channel is Discrete Fourier Transform-Spread (DFT-S) -OFDM (DFT-S-OFDM waveform) (transform precoding is applied to the UL channel), the UE performs the above embodiment 2-3. May be applied. In this case, the increase in PAPR can be suppressed by combining DFT-S-OFDM and FDM.
《実施形態2-6》
 上記実施形態2-1、2-2において、ULチャネルのDMRSがパンクチャされる場合、UEは、パンクチャ前のDMRS系列長を有するDMRS系列を生成してもよいし、パンクチャ後に使用できるリソースのサイズ(RE数)に対応する系列長を有するDMRS系列を生成してもよい。
<< Embodiment 2-6 >>
In the above embodiments 2-1 and 2-2, when the DMRS of the UL channel is punctured, the UE may generate a DMRS sequence having a DMRS sequence length before the puncture, or the size of the resource that can be used after the puncture. A DMRS series having a series length corresponding to (RE number) may be generated.
 パンクチャ前のDMRS系列長を用いてDMRS系列(例えば、低PAPR系列)を生成し、DMRSをパンクチャすることによって、同じ系列長を有する他のUEのDMRSと多重された場合に直交させることができ、UE間の干渉を抑えることができる。パンクチャ後に使用できるリソースのサイズに対応する系列長を有するDMRS系列を送信することによって、PAPRを抑えることができる。パンクチャ後に使用できるリソースのサイズに対応する系列長を有するDMRS系列が仕様に規定されてもよい。UEは、パンクチャ後に使用できるリソースのサイズが、仕様に規定されていない系列長であると期待しなくてもよい。 A DMRS sequence (eg, a low PAPR sequence) is generated using the pre-punctured DMRS sequence length, and by puncturing the DMRS, it can be orthogonalized when multiplexed with the DMRS of another UE having the same sequence length. , Interference between UEs can be suppressed. PAPR can be suppressed by transmitting a DMRS sequence having a sequence length corresponding to the size of the resource that can be used after puncturing. A DMRS series with a series length corresponding to the size of resources available after puncture may be specified in the specification. The UE does not have to expect the size of resources available after puncture to be a series length that is not specified in the specification.
 この実施形態2によれば、SRSリソースがULチャネルリソースと重複する場合に、ULチャネルリソースを削減することによって、ULチャネル及びSRSを適切に送信できる。 According to the second embodiment, when the SRS resource overlaps with the UL channel resource, the UL channel and the SRS can be appropriately transmitted by reducing the UL channel resource.
<実施形態3>
 以下実施形態3において、SRSリソースとULチャネルリソースが重複した場合のULチャネルの再送の制御方法について説明する。
<Embodiment 3>
Hereinafter, in the third embodiment, a method of controlling the retransmission of the UL channel when the SRS resource and the UL channel resource overlap will be described.
 ULチャネルの初送のリソースがSRSリソースと重複する場合、UEは、以下の実施形態3-1~3-3のいずれか一つの方法を用いてもよい。 When the resource of the first transmission of the UL channel overlaps with the SRS resource, the UE may use any one of the following embodiments 3-1 to 3-3.
《実施形態3-1》
 UEは、ULチャネルの送信毎に(初送及び再送のそれぞれにおいて)、SRSリソースとULチャネルリソースが重複するか否かに応じてULチャネルのレートマッチ(又は、パンクチャ)を制御してもよい。SRSリソースとULチャネルリソースが重複する場合、UEは、重複するリソース(RE、SRSリソース範囲、又はSRSシンボル)をULチャネルの送信に使わなくてもよい(ULチャネルリソースを削減してもよい)。
<< Embodiment 3-1 >>
The UE may control the rate matching (or puncture) of the UL channel depending on whether the SRS resource and the UL channel resource overlap each time the UL channel is transmitted (in each of the initial transmission and the retransmission). .. When the SRS resource and the UL channel resource overlap, the UE does not have to use the overlapping resource (RE, SRS resource range, or SRS symbol) to transmit the UL channel (the UL channel resource may be reduced). ..
 ULチャネルの初送及び再送のそれぞれにおいて、ULチャネルリソースがSRSリソースと重複した場合、UEは、実施形態2-1に従ってULチャネル及びSRSを送信してもよい。 If the UL channel resource overlaps with the SRS resource in each of the initial transmission and retransmission of the UL channel, the UE may transmit the UL channel and SRS according to the 2-1 embodiment.
 ULチャネルの再送において、ULチャネルリソースがSRSリソースと重複しない場合、UEは、ULチャネルリソースの全部をULチャネルの再送に使ってもよいし、ULチャネルリソースの一部をULチャネルの再送に使ってもよい。ULチャネルの初送及び再送の間において、transport block size(TBS)、リソースサイズ、符号化ビット数、の少なくとも1つが同じであってもよい。ULチャネルの初送において、ULチャネルリソースがSRSリソースと重複し、且つULチャネルの再送において、ULチャネルリソースがSRSリソースと重複しない場合、UEは、再送のULチャネルリソースのサイズ(例えば、PRBサイズ及び割り当てシンボル数の少なくとも1つ)を縮小させてもよい。UEは、再送のTBSが初送のTBSと等しくなるまで、再送のULチャネルリソースを特定サイズずつ縮小してもよい。特定サイズは、1physical resource block(PRB)であってもよいし、1physical resource block group(PRG)であってもよい。PRGは、DLの同じプリコーディングが適用される連続PRBであってもよい。UEは、PRG内の複数PRBのDLの連続する割り当てに、同じプリコーディングが適用されると想定してもよい。 In UL channel retransmission, if the UL channel resource does not overlap with the SRS resource, the UE may use all of the UL channel resources for UL channel retransmission or part of the UL channel resource for UL channel retransmission. You may. At least one of transport block size (TBS), resource size, and number of encoded bits may be the same between the initial transmission and retransmission of the UL channel. If the UL channel resource overlaps the SRS resource in the initial transmission of the UL channel, and the UL channel resource does not overlap the SRS resource in the retransmission of the UL channel, the UE determines the size of the UL channel resource of the retransmission (for example, PRB size). And at least one of the number of assigned symbols) may be reduced. The UE may reduce the retransmission UL channel resource by a specific size until the retransmission TBS is equal to the initial TBS. The specific size may be 1 physical resource block (PRB) or 1 physical resource block group (PRG). The PRG may be a continuous PRB to which the same precoding of DL is applied. The UE may assume that the same precoding is applied to the contiguous allocation of DLs for multiple PRBs within the PRG.
 図9Aの例では、PUSCHの初送において、前述の図5Aと同様、PUSCHリソースとSRSリソース(SRS#1)とが重複をしており、UEは、実施形態2-1に従ってPUSCHの初送及びSRS(SRS#1)の送信を行う。実施形態2-1の代わりに、実施形態2-2、2-3のいずれかが用いられてもよい。 In the example of FIG. 9A, in the initial transmission of the PUSCH, the PUSCH resource and the SRS resource (SRS # 1) overlap as in FIG. 5A described above, and the UE performs the initial transmission of the PUSCH according to the embodiment 2-1. And SRS (SRS # 1) are transmitted. Instead of the 2-1 embodiment, any of the 2-2, 2-3 embodiments may be used.
 図9Bの例では、図9AのPUSCHの再送において、PUSCHリソースとSRSリソースとが重複しない場合に、UEは、PUSCHの再送のリソースの全部をPUSCHの再送に使う。言い換えれば、UEは、PUSCHの初送のリソースのうちSRSと重複したREと同じ配置(シンボル位置及びサブキャリア位置)のREもPUSCHの再送に用いる。 In the example of FIG. 9B, when the PUSCH resource and the SRS resource do not overlap in the PUSCH retransmission of FIG. 9A, the UE uses all of the PUSCH retransmission resources for the PUSCH retransmission. In other words, the UE also uses the RE of the same arrangement (symbol position and subcarrier position) as the RE that overlaps with the SRS among the resources of the initial transmission of the PUSCH to retransmit the PUSCH.
 ULチャネルの再送において、ULチャネルリソースがSRSリソースと重複する場合、UEは、ULチャネルの再送のリソースのうち、SRSのREをULチャネルに用いず(マッピングせず)、SRSのREに重複しないREをULチャネルに用いてもよい(マッピングしてもよい)。 When the UL channel resource overlaps with the SRS resource in the UL channel retransmission, the UE does not use the SRS RE for the UL channel (without mapping) among the UL channel retransmission resources and does not overlap with the SRS RE. RE may be used (mapped) for UL channels.
 図9Cの例では、図9AのPUSCHの再送においてPUSCHリソースとSRSリソースとが重複し、且つ再送と重複するSRS#2の配置が初送と重複するSRS#1の配置と異なる場合、UEは、PUSCHの再送のリソースのうち、SRS#2のREをPUSCHに用いず、SRS#2のREに重複しないREをPUSCHに用いる。 In the example of FIG. 9C, when the PUSCH resource and the SRS resource overlap in the retransmission of the PUSCH of FIG. 9A, and the arrangement of SRS # 2 overlapping with the retransmission is different from the arrangement of SRS # 1 overlapping with the initial transmission, the UE is Of the resources for retransmission of PUSCH, RE of SRS # 2 is not used for PUSCH, and RE that does not overlap with RE of SRS # 2 is used for PUSCH.
 実施形態3-1によれば、UEは、ULチャネルの初送がSRSリソースと重複し、当該ULチャネルの再送がSRSリソースと重複しない場合に、効率的にULチャネルを送信できる。 According to the 3-1 embodiment, the UE can efficiently transmit the UL channel when the initial transmission of the UL channel overlaps with the SRS resource and the retransmission of the UL channel does not overlap with the SRS resource.
《実施形態3-2》
 UEは、ULチャネルの初送に使用した配置(すなわち、SRSと初送ULチャネルの重複によってレートマッチ(又は、パンクチャ)されたULチャネルの配置、サイズ)のリソースを、再送のULチャネルリソースとして使用してもよい。
<< Embodiment 3-2 >>
The UE uses the resource of the arrangement used for the initial transmission of the UL channel (that is, the arrangement and size of the UL channel rate-matched (or punctured) by the overlap of the SRS and the initial transmission UL channel) as the UL channel resource for retransmission. You may use it.
 ULチャネルの再送において、ULチャネルリソースがSRSリソースと重複しない場合、UEは、ULチャネルの初送に用いられた配置をULチャネルの再送に使ってもよい。UEは、ULチャネルの初送のリソースのうち、SRSと重複するREをULチャネルに用いない場合、初送に用いられなかったREと同じ位置のREを、当該ULチャネルの再送に用いなくてもよい。この場合、UEは、再送のリソースがSRSリソースと重複するか否かに関わらず、初送に用いられなかったREと同じ配置のREを、当該ULチャネルの再送に用いなくてもよい。 In the UL channel retransmission, if the UL channel resource does not overlap with the SRS resource, the UE may use the arrangement used for the initial transmission of the UL channel for the UL channel retransmission. When the UE does not use the RE that overlaps with the SRS among the resources of the UL channel initial transmission for the UL channel, the UE does not use the RE at the same position as the RE that was not used for the initial transmission for the UL channel retransmission. May be good. In this case, the UE does not have to use the RE having the same arrangement as the RE that was not used for the initial transmission for the retransmission of the UL channel, regardless of whether or not the retransmission resource overlaps with the SRS resource.
 図10Aの例は、図9Aと同様であり、UEは、実施形態2-1に従ってPUSCHの初送及びSRS(SRS#1)の送信を行う。 The example of FIG. 10A is the same as that of FIG. 9A, and the UE performs the initial transmission of PUSCH and the transmission of SRS (SRS # 1) according to the 2-1 embodiment.
 図10Bの例では、図10AのPUSCHの再送において、PUSCHリソースとSRSリソースとが重複しない場合に、UEは、図10AのPUSCHの初送に用いられないREと同じ配置のREをPUSCHの再送に使わず(図10Aと同じ位置においてPUSCHの再送をレートマッチ又はパンクチャし)、PUSCHの再送を行う。 In the example of FIG. 10B, in the retransmission of the PUSCH of FIG. 10A, when the PUSCH resource and the SRS resource do not overlap, the UE retransmits the RE of the same arrangement as the RE not used for the initial transmission of the PUSCH of FIG. 10A. (Rate match or puncture the retransmission of the PUSCH at the same position as in FIG. 10A), and retransmit the PUSCH.
 ULチャネルの再送において、ULチャネルリソースがSRSリソースと重複する場合、UEは、ULチャネルの再送のリソースのうち、初送に用いられないREと同じ配置のREをULチャネルの再送に用いず、初送に用いられたREと同じ配置のREをULチャネルの再送に用いてもよい(初送と同じ位置においてPUSCHの再送をレートマッチ又はパンクチャしてもよい)。さらに、UEは、SRSをドロップしてもよい。 When the UL channel resource overlaps with the SRS resource in the UL channel retransmission, the UE does not use the UL channel retransmission resource having the same arrangement as the RE not used for the initial transmission for the UL channel retransmission. The RE with the same arrangement as the RE used for the initial transmission may be used for the retransmission of the UL channel (the retransmission of the PUSCH may be rate-matched or punctured at the same position as the initial transmission). In addition, the UE may drop the SRS.
 図10Cの例では、図10AのPUSCHの再送においてPUSCHリソースとSRSリソースとが重複し、且つ再送と重複するSRS#2の配置が初送と重複するSRS#1の配置と異なる場合、UEは、PUSCHの再送のリソースのうち、PUSCHの初送に用いられないREと同じ配置のREにPUSCHをマップせず、再送を行い、SRS#2をドロップする。 In the example of FIG. 10C, when the PUSCH resource and the SRS resource overlap in the retransmission of the PUSCH of FIG. 10A, and the arrangement of SRS # 2 overlapping with the retransmission is different from the arrangement of SRS # 1 overlapping with the initial transmission, the UE is , Of the resources for retransmitting PUSCH, the PUSCH is not mapped to the RE having the same arrangement as the RE not used for the initial transmission of PUSCH, the PUSCH is retransmitted, and SRS # 2 is dropped.
 また、図10AのPUSCHの再送においてPUSCHリソースとSRSリソースとが重複し、且つ再送と重複するSRS#2の配置が初送と重複するSRS#1の配置と同じである場合、UEは、PUSCHの再送のリソースのうち、PUSCHの初送に用いられないREと同じ配置のREにPUSCHをマップせず、再送を行い、SRS#2をドロップする。 Further, when the PUSCH resource and the SRS resource are duplicated in the PUSCH retransmission of FIG. 10A and the arrangement of SRS # 2 overlapping with the retransmission is the same as the arrangement of SRS # 1 overlapping with the initial transmission, the UE is set to PUSCH. Of the resources for resending, PUSCH is not mapped to the RE with the same arrangement as the RE that is not used for the initial transmission of PUSCH, retransmission is performed, and SRS # 2 is dropped.
 実施形態3-2によれば、ULチャネルの初送と再送の間において、TBSを等しくできる。 According to the third embodiment, the TBS can be equalized between the initial transmission and the retransmission of the UL channel.
《実施形態3-3》
 ULチャネルの再送において、ULチャネルリソースがSRSリソースと重複する場合、UEは、ULチャネルの再送のリソースのうち、初送に用いられないREと同じ配置のREと、SRSのREとを、ULチャネルの再送に用いず、それ以外のREをULチャネルの再送に用いてもよい(初送時のSRSと同じ配置のREと再送時のSRSのREにおいて、PUSCHの再送をレートマッチ又はパンクチャしてもよい)。さらに、UEは、ULチャネルの再送リソースと重複するSRSを送信してもよい。
<< Embodiment 3-3 >>
When the UL channel resource overlaps with the SRS resource in the UL channel retransmission, the UE selects the RE of the same arrangement as the RE not used for the initial transmission and the UL of the SRS among the resources of the UL channel retransmission. Instead of using it for channel retransmission, other REs may be used for UL channel retransmissions (in the RE with the same arrangement as the SRS at the time of initial transmission and the RE of the SRS at the time of retransmission, the PUSCH retransmission is rate-matched or punctured. May be). In addition, the UE may transmit an SRS that overlaps with the UL channel retransmission resource.
 図11Aの例は、図9Aと同様であり、UEは、実施形態2-1に従ってPUSCHの初送及びSRS(SRS#1)の送信を行う。 The example of FIG. 11A is the same as that of FIG. 9A, and the UE performs the initial transmission of PUSCH and the transmission of SRS (SRS # 1) according to the 2-1 embodiment.
 図11Bの例では、図11AのPUSCHの再送においてPUSCHリソースとSRSリソースとが重複し、且つ再送と重複するSRS#2の配置が初送と重複するSRS#1の配置と異なる場合、UEは、PUSCHの再送のリソースのうち、PUSCHの初送に用いられないREと同じ配置のREと、SRS#2のREと、にPUSCHをマップせず、再送を行い、SRS#2全体を送信する。 In the example of FIG. 11B, when the PUSCH resource and the SRS resource overlap in the retransmission of the PUSCH of FIG. 11A, and the arrangement of SRS # 2 overlapping with the retransmission is different from the arrangement of SRS # 1 overlapping with the initial transmission, the UE is Of the resources for retransmitting PUSCH, the RE with the same arrangement as the RE not used for the initial transmission of PUSCH and the RE of SRS # 2 are retransmitted without mapping the PUSCH, and the entire SRS # 2 is transmitted. ..
 また、図11AのPUSCHの再送においてPUSCHリソースとSRSリソースとが重複し、且つ再送と重複するSRS#2の配置が初送と重複するSRS#1の配置と同じである場合、UEは、PUSCHの再送のリソースのうち、PUSCHの初送に用いられないREと同じ配置のREにPUSCHをマップせず、再送を行い、SRS#2全体を送信する。 Further, when the PUSCH resource and the SRS resource are duplicated in the PUSCH retransmission of FIG. 11A and the arrangement of SRS # 2 overlapping with the retransmission is the same as the arrangement of SRS # 1 overlapping with the initial transmission, the UE is set to PUSCH. Of the resources of the retransmission of, the PUSCH is not mapped to the RE having the same arrangement as the RE that is not used for the initial transmission of the PUSCH, the reproduction is performed, and the entire SRS # 2 is transmitted.
 実施形態3-3によれば、PUSCHの再送と重複するSRSを優先して送信できる。 According to the third embodiment, the SRS that overlaps with the retransmission of the PUSCH can be transmitted with priority.
<実施形態4>
 以下実施形態4において、複数スロットにわたるULチャネル(マルチスロットULチャネル)がサポートされている場合、マルチスロットULチャネルとSRSが重複する場合の制御について説明する。
<Embodiment 4>
Hereinafter, in the fourth embodiment, control when the UL channel over a plurality of slots (multi-slot UL channel) is supported and the multi-slot UL channel and the SRS overlap will be described.
《実施形態4-1》
 UEは、マルチスロットULチャネルにおけるULチャネルの送信スロット毎に、SRSリソースとULチャネルリソースが重複するか否かに応じて、ULチャネルのレートマッチ(又は、パンクチャ)を制御してもよい。
<< Embodiment 4-1 >>
The UE may control the rate match (or puncture) of the UL channel for each transmission slot of the UL channel in the multi-slot UL channel, depending on whether the SRS resource and the UL channel resource overlap.
 例えば、SRSリソースとULチャネルリソースが重複する場合、UEは、実施形態2-1~2-3の少なくとも1つに従って、重複するリソースをULチャネルの送信に使わなくてもよい(重複するリソースにULチャネルをマップしなくてもよい)し、SRSリソースとULチャネルリソースが重複しない場合、ULチャネルリソースをULチャネルの送信に使ってもよい(ULチャネルリソースにULチャネルをマップしてもよい)。 For example, when the SRS resource and the UL channel resource overlap, the UE does not have to use the duplicate resource for UL channel transmission according to at least one of Embodiments 2-1 to 2-3 (to the overlapping resource). The UL channel does not have to be mapped), and if the SRS resource and the UL channel resource do not overlap, the UL channel resource may be used to transmit the UL channel (the UL channel may be mapped to the UL channel resource). ..
 例えば、図12に示すように、スロット#2においてPUSCHのリソースとSRS#1のリソースが重複し、スロット#4においてPUSCHのリソースとSRS#2のリソースとが重複する場合、UEは、実施形態2-1に従って、SRS#1、#2が重複するREにPUSCHをマップしなくてもよい(SRS#1、#2が重複するREにおいてPUSCHをレートマッチ又はパンクチャしてもよい)。 For example, as shown in FIG. 12, when the PUSCH resource and the SRS # 1 resource overlap in slot # 2, and the PUSCH resource and SRS # 2 resource overlap in slot # 4, the UE is an embodiment. According to 2-1 it is not necessary to map the PUSCH to the RE where SRS # 1 and # 2 overlap (the PUSCH may be rate matched or punctured in the RE where SRS # 1 and # 2 overlap).
《実施形態4-2》
 UEは、マルチスロットULチャネルにおける最初のスロットにおけるULチャネルリソースのうち、ULチャネル送信に用いられない(ULチャネルがマップされない)REを、最初のスロットより後のスロット(後続スロット、2番目以降のスロット)のULチャネルに用いなくてもよい(UEは、最初のスロットにおけるULチャネルリソースのうちULチャネル送信に用いられないREと同じ配置において、後続スロットのULチャネルをレートマッチ又はパンクチャしてもよい)。UEは、マルチスロットULチャネルにおける最初のスロットのULチャネルで使用したULチャネルの配置を、後続のスロットのULチャネルに使用してもよい。この場合の後続のULチャネルの送信スロットと重複するSRSの制御については、以下の後続スロット送信方法1~3のいずれか一つの方法を用いてもよい。
<< Embodiment 4-2 >>
Of the UL channel resources in the first slot in the multi-slot UL channel, the UE sets the RE that is not used for UL channel transmission (UL channel is not mapped) to the slots after the first slot (subsequent slots, second and subsequent slots). It may not be used for the UL channel of the slot) (the UE may rate match or puncture the UL channel of the subsequent slot in the same arrangement as the RE of the UL channel resources in the first slot that is not used for UL channel transmission. Good). The UE may use the UL channel arrangement used in the UL channel of the first slot in the multi-slot UL channel for the UL channel of the subsequent slot. In this case, for the control of the SRS that overlaps with the transmission slot of the subsequent UL channel, any one of the following subsequent slot transmission methods 1 to 3 may be used.
[後続スロット送信方法1]
 後続スロットにおいて、最初のスロットのPUSCH送信と同じ配置と、SRSリソースが重複する場合、UEは、重複したSRSを常にドロップしてもよい。
[Subsequent slot transmission method 1]
In the subsequent slot, if the same arrangement as the PUSCH transmission in the first slot and the SRS resource overlap, the UE may always drop the duplicate SRS.
 例えば、図13に示すように、マルチスロットPUSCHの最初のスロット(スロット#1)においてPUSCHのリソースとSRS#1のリソースが重複し、スロット#4においてPUSCHのリソースとSRS#2のリソースとが重複する場合、UEは、スロット#1において、PUSCHリソースのうち、SRS#1送信に用いられるREにPUSCHをマップせず、それ以外のREにPUSCHをマップして送信する。この場合、UEは、スロット#1におけるPUSCH送信に用いた配置を、スロット#2~4におけるPUSCH送信に用いる(スロット#2~4において、スロット#1におけるPUSCH送信と同じ配置にPUSCHをマップする)。スロット#4において、UEは、PUSCHリソースと重複するSRS#2をドロップする。 For example, as shown in FIG. 13, the PUSCH resource and the SRS # 1 resource overlap in the first slot (slot # 1) of the multi-slot PUSCH, and the PUSCH resource and the SRS # 2 resource overlap in slot # 4. In the case of duplication, the UE does not map the PUSCH to the RE used for SRS # 1 transmission among the PUSCH resources in slot # 1, but maps the PUSCH to the other REs for transmission. In this case, the UE uses the arrangement used for PUSCH transmission in slot # 1 for PUSCH transmission in slots # 2 to 4 (in slots # 2 to 4, PUSCH is mapped to the same arrangement as PUSCH transmission in slot # 1). ). In slot # 4, the UE drops SRS # 2, which overlaps with the PUSCH resource.
 後続スロット送信方法1により、スロット毎にTBSを等しくすることができ、UEの負荷を抑制することができる。 According to the subsequent slot transmission method 1, the TBS can be made equal for each slot, and the load on the UE can be suppressed.
[後続スロット送信方法2]
 後続スロットにおいて、SRSのREが、最初のスロットのPUSCH送信と同じ配置のREと重複する場合、UEは、当該SRSをドロップしてもよい。後続スロットにおいて、SRSのREが、最初のスロットのPUSCH送信のREと同じ配置のREと重複しない場合、UEは、当該SRSを送信してもよい。
[Subsequent slot transmission method 2]
If the RE of the SRS overlaps with the RE of the same arrangement as the PUSCH transmission of the first slot in the subsequent slot, the UE may drop the SRS. If the RE of the SRS does not overlap with the RE of the same arrangement as the RE of the PUSCH transmission of the first slot in the subsequent slot, the UE may transmit the SRS.
 例えば、前述の図13と同様、スロット#4において、スロット#1のPUSCH送信と同じ配置のREとSRS#2のREとが重複する場合(SRS#2のREの配置がSRS#1のREの配置と異なる場合)、UEは、図13と同様、SRS#2をドロップする。 For example, as in FIG. 13 described above, in slot # 4, when the RE in the same arrangement as the PUSCH transmission in slot # 1 and the RE in SRS # 2 overlap (the arrangement of RE in SRS # 2 is RE in SRS # 1). (If different from the arrangement of), the UE drops SRS # 2 as in FIG.
 例えば、図14に示すように、図13と同様、スロット#2~#4のPUSCHにおいて、スロット#1のPUSCHと同じ配置のREを使用するが、スロット#4において、当該配置のREとSRS#2のREとが重複しない場合(SRS#2のREの配置がSRS#1のREの配置と同じである場合)、UEは、SRS#2全体を送信する。 For example, as shown in FIG. 14, as in FIG. 13, REs having the same arrangement as PUSCHs of slot # 1 are used in PUSCHs of slots # 2 to # 4, but REs and SRSs having the same arrangements are used in slot # 4. If the RE of # 2 does not overlap (the arrangement of RE in SRS # 2 is the same as the arrangement of RE in SRS # 1), the UE transmits the entire SRS # 2.
 後続スロット送信方法2により、スロット毎にTBSを等しくすることができ、UEの負荷を抑制することができる。 By the subsequent slot transmission method 2, the TBS can be made equal for each slot, and the load on the UE can be suppressed.
[後続スロット送信方法3]
 後続スロットにおいて、SRSリソースがULチャネルリソースと重複する場合、UEは、当該後続スロットにおけるSRSを送信してもよい。この場合、UEは、後続スロットにおいて、最初のスロットのSRSのRE(最初のスロットのULチャネル送信に用いられないRE)と同じ配置のREと、SRSのREとを、ULチャネル送信に用いなくてもよい(後続スロットにおいて、最初のスロットのSRSと同じ配置のREと、SRSのREとにおいて、ULチャネルをレートマッチ又はパンクチャしてもよい)。
[Subsequent slot transmission method 3]
If the SRS resource overlaps the UL channel resource in the subsequent slot, the UE may transmit the SRS in the subsequent slot. In this case, the UE does not use the RE of the same arrangement as the RE of the SRS of the first slot (RE not used for the UL channel transmission of the first slot) and the RE of the SRS in the subsequent slot for the UL channel transmission. (In the succeeding slot, the UL channel may be rate-matched or punctured in the RE having the same arrangement as the SRS in the first slot and the RE in the SRS).
 例えば、図15に示すように、前述の図13と同様、スロット#4において、スロット#1のPUSCH送信と同じ配置のREとSRS#2のREとが重複する場合(SRS#2のREの配置がSRS#1のREの配置と異なる場合)、UEは、スロット#4において、スロット#1のSRS#1のREと同じ配置のREと、SRS#2のREと、をスロット#4のPUSCHに使用せずにPUSCHを送信し、SRS#2を送信する。 For example, as shown in FIG. 15, in the same manner as in FIG. 13 described above, when the RE in the same arrangement as the PUSCH transmission in slot # 1 and the RE in SRS # 2 overlap in slot # 4 (RE in SRS # 2). If the arrangement is different from the arrangement of RE in SRS # 1), the UE will place RE in slot # 4 with the same arrangement as RE in SRS # 1 in slot # 1 and RE in SRS # 2 in slot # 4. PUSCH is transmitted without being used for PUSCH, and SRS # 2 is transmitted.
《実施形態4-3》
 UEは、マルチスロットULチャネルにおけるULチャネルリソースと、少なくとも1つのスロットにおいて重複するSRSリソース(SRSリソース範囲)と同じ配置のリソースを、全てのスロットにおけるULチャネルの送信に用いなくてもよい(全てのスロットにおいて、少なくとも1つのスロットにおいて重複するSRSリソースと同じ配置のリソースに、ULチャネルをマップせず、ULチャネルの送信をしてもよい)(全てのスロットにおいて、少なくとも1つのスロットにおいて重複するSRSリソースと同じ配置のリソースにおいて、ULチャネルをレートマッチ又はパンクチャしてもよい)。
<< Embodiment 4-3 >>
The UE does not have to use the UL channel resource in the multi-slot UL channel and the resource having the same arrangement as the overlapping SRS resource (SRS resource range) in at least one slot for transmitting the UL channel in all slots (all). The UL channel may not be mapped to a resource in the same arrangement as the SRS resource that overlaps in at least one slot, and the UL channel may be transmitted.) (In all slots, overlap in at least one slot. UL channels may be rate matched or punctured in resources with the same placement as SRS resources).
 例えば、図16に示すように、スロット#1においてPUSCHリソースとSRS#1のリソースとが重複し、スロット#4においてPUSCHリソースとSRS#2のリソースとが重複する場合、UEは、スロット#1~#4の全てにおいて、SRS#1、SRS#2のリソースと同じ配置のリソース全体をPUSCHに使用せずにPUSCHを送信し、SRS#1、#2の全体を送信する。 For example, as shown in FIG. 16, when the PUSCH resource and the resource of SRS # 1 overlap in slot # 1, and the PUSCH resource and the resource of SRS # 2 overlap in slot # 4, the UE is in slot # 1. In all of ~ # 4, the PUSCH is transmitted without using the entire resource of the same arrangement as the resource of SRS # 1 and SRS # 2 for the PUSCH, and the entire SRS # 1 and # 2 are transmitted.
 UEは、マルチスロットULチャネルにおける少なくとも1つのスロットのULチャネルリソースと重複するSRSのREと同じ配置のREを、当該マルチスロットULチャネルの全てのスロットのULチャネルに使用しなくてもよい(マルチスロットULチャネルにおける少なくとも1つのスロットのULチャネルリソースと重複するSRSのREと同じ配置のREを、当該マルチスロットULチャネルの全てのスロットのULチャネルにマップせず、ULチャネルを送信してもよい)(マルチスロットULチャネルにおける少なくとも1つのスロットのULチャネルリソースと重複するSRSのREと同じ配置のREにおいて、当該マルチスロットULチャネルの全てのスロットのULチャネルをレートマッチ又はパンクチャしてもよい)。 The UE does not have to use a RE in the same arrangement as the RE of the SRS that overlaps the UL channel resource of at least one slot in the multi-slot UL channel for the UL channel of all the slots of the multi-slot UL channel (multi). The UL channel may be transmitted without mapping the RE of the same arrangement as the RE of the SRS that overlaps the UL channel resource of at least one slot in the slot UL channel to the UL channel of all the slots of the multi-slot UL channel. (The UL channels of all slots of the multi-slot UL channel may be rate-matched or punctured in a RE of the same arrangement as the RE of the SRS that overlaps the UL channel resource of at least one slot in the multi-slot UL channel.) ..
 実施形態4-3によれば、スロット間のTBSを等しくできるうえ、どのスロットにおいてもSRSを送信でき、SRS測定によるスループット向上及び品質改善の少なくとも1つが可能になる。 According to the fourth embodiment, the TBS between slots can be made equal, and SRS can be transmitted in any slot, so that at least one of throughput improvement and quality improvement by SRS measurement becomes possible.
《実施形態4-4》
 Rel.15 NRにおいて、SRSは最大4の連続するシンボルにマップされることが可能である(マルチシンボルSRS)。Rel.15 NRにおいて、1又は2シンボルにマップされるショートPUCCH(例えば、PUCCHフォーマット0、2)が規定されている。マルチシンボルSRSにおける複数シンボルに対して、異なる空間関係(spatial relation、ビーム、空間ドメイン送信フィルタ)が適用されてもよい。
<< Embodiment 4-4 >>
Rel. At 15 NR, the SRS can be mapped to up to 4 consecutive symbols (multi-symbol SRS). Rel. In 15 NR, a short PUCCH (eg, PUCCH format 0, 2) that maps to 1 or 2 symbols is specified. Different spatial relations (spatial relations, beams, spatial domain transmission filters) may be applied to multiple symbols in the multi-symbol SRS.
 マルチシンボルSRSと、ショートPUCCHとが重複(衝突)する場合、UEは、次の処理方法1~4のいずれかに従って処理してもよい。 When the multi-symbol SRS and the short PUCCH overlap (collision), the UE may process according to any of the following processing methods 1 to 4.
[処理方法1]
 マルチシンボルSRSとショートPUCCHとが、少なくとも部分的に衝突した場合に、UEは、衝突している部分のみにおいてマルチシンボルSRS又はショートPUCCHをレートマッチ又はパンクチャしてもよい。この場合、UEは、マルチシンボルSRSをパンクチャし、ショートPUCCHの全体を送信してもよい。
[Processing method 1]
When the multi-symbol SRS and the short PUCCH collide at least partially, the UE may rate match or puncture the multi-symbol SRS or the short PUCCH only in the colliding part. In this case, the UE may puncture the multi-symbol SRS and transmit the entire short PUCCH.
[処理方法2]
 マルチシンボルSRSとショートPUCCHとが、少なくとも部分的に衝突した場合に、衝突しているシンボルのみにおいてマルチシンボルSRS又はショートPUCCHをレートマッチ又はパンクチャしてもよい。この場合、UEは、マルチシンボルSRSをパンクチャし、ショートPUCCHの全体を送信してもよい。
[Processing method 2]
When the multi-symbol SRS and the short PUCCH collide at least partially, the multi-symbol SRS or the short PUCCH may be rate-matched or punctured only in the colliding symbols. In this case, the UE may puncture the multi-symbol SRS and transmit the entire short PUCCH.
[処理方法3]
 マルチシンボルSRSとショートPUCCHとが、少なくとも部分的に衝突した場合に、マルチシンボルSRSをドロップしてもよい。
[Processing method 3]
The multi-symbol SRS may be dropped if the multi-symbol SRS and the short PUCCH collide at least partially.
[処理方法4]
 マルチシンボルSRSとショートPUCCHとが、少なくとも部分的に衝突した場合に、ショートPUCCHをドロップしてもよい。
[Processing method 4]
The short PUCCH may be dropped when the multi-symbol SRS and the short PUCCH collide at least partially.
 以上の実施形態によれば、SRS及びULチャネルのリソースが重複した場合でも、適切にUL送信を制御することができる。 According to the above embodiment, UL transmission can be appropriately controlled even when the resources of the SRS and UL channels are duplicated.
<実施形態5>
 SRSは広帯域で送信されるため、あるUEのULチャネルのリソースと、他のUEのSRSのリソースとが重複する場合がある。
<Embodiment 5>
Since SRS is transmitted over a wide band, the UL channel resources of one UE and the resources of SRS of another UE may overlap.
 例えば、図17Aに示すように、UE#1の1スロット内のPUSCHリソースが、UE#2のSRSリソースと重複するケースが考えられる。また、図17Bに示すように、UE#1のスロット#1~#4にわたるPUSCH(マルチスロットPUSCH)リソースが、スロット#2におけるUE#2のSRSリソース及びスロット#4におけるUE#2のSRSリソースと重複するケースが考えられる。 For example, as shown in FIG. 17A, there may be a case where the PUSCH resource in one slot of UE # 1 overlaps with the SRS resource of UE # 2. Further, as shown in FIG. 17B, the PUSCH (multi-slot PUSCH) resources spanning slots # 1 to # 4 of UE # 1 are the SRS resource of UE # 2 in slot # 2 and the SRS resource of UE # 2 in slot # 4. There may be cases where it overlaps with.
 係る場合、UE#1が、UE#2のSRSリソースに重複するUE#1のULチャネルリソースを適切に制御できなければ、通信品質が劣化する。 In such a case, if UE # 1 cannot properly control the UL channel resource of UE # 1 that overlaps with the SRS resource of UE # 2, the communication quality deteriorates.
 そこで、本発明者らは、他のUEのSRSリソースに重複するUL送信リソースを適切に制御する方法を着想した。 Therefore, the present inventors have conceived a method of appropriately controlling UL transmission resources that overlap with SRS resources of other UEs.
 UEは、SRSリソース(ノンゼロパワー(Non-Zero Power(ZP))-SRSリソース)のほかにゼロパワー(Zero Power(ZP))-SRSリソースを設定されてもよい。NZP-SRSは、電力がゼロでないSRS、実際に送信されるSRS、送信電力を有するSRS、などと読み替えられてもよい。ZP-SRSは、電力がゼロであるSRS、実際に送信されないSRS、送信電力を有しないSRS、などと読み替えられてもよい。 The UE may be set with zero power (Zero Power (ZP)) -SRS resource in addition to the SRS resource (Non-Zero Power (ZP) -SRS resource). NZP-SRS may be read as SRS whose power is not zero, SRS which is actually transmitted, SRS which has transmission power, and the like. ZP-SRS may be read as SRS having zero power, SRS not actually transmitted, SRS having no transmission power, and the like.
 ZP-SRSリソースは、上位レイヤシグナリング(例えば、SRS設定情報、SRSリソースセット設定情報、SRSリソース設定情報、ZP-SRS設定情報、ZP-SRSリソースセット設定情報、ZP-SRSリソース設定情報など)によってUEに設定されてもよい(受信されてもよい)。ZP-SRSリソースは、SRSリソースセットの中の用途(例えば、usage)がZP-SRSであること(例えば、zeroPower)を示すなど、新しいusageを設定されたSRSリソースセット又はSRSリソースとして通知されてもよいし、新しいパラメータ(例えば、ZP-SRSリソースセット又はZP-SRSリソース)によって設定又は規定されてもよい。ZP-SRSリソースは、周波数ホッピングを伴うリソースであってもよい。 ZP-SRS resources are provided by higher layer signaling (for example, SRS setting information, SRS resource set setting information, SRS resource setting information, ZP-SRS setting information, ZP-SRS resource set setting information, ZP-SRS resource setting information, etc.). It may be set in the UE (it may be received). The ZP-SRS resource is notified as an SRS resource set or SRS resource with a new usage, such as indicating that the usage (eg usage) in the SRS resource set is ZP-SRS (eg zeroPower). It may be set or specified by new parameters (eg, ZP-SRS resource set or ZP-SRS resource). The ZP-SRS resource may be a resource with frequency hopping.
 ZP-SRSリソース、ZP-SRSリソースを含むZP-SRSリソースセット、は互いに読み替えられてもよい。 The ZP-SRS resource and the ZP-SRS resource set including the ZP-SRS resource may be read as each other.
 NZP-SRS及びZP-SRSの少なくとも1つは、スロット内の最後の4シンボル以外に設定(マップ)されてもよいし、スロット内の任意のシンボルに設定(マップ)されてもよい。 At least one of NZP-SRS and ZP-SRS may be set (mapped) other than the last four symbols in the slot, or may be set (mapped) to any symbol in the slot.
 SRSの種別(P-SRS、SP-SRS、A-SRS)と同様にして、ZP-SRSの種別(P-ZP-SRS、SP-ZP-SRS、A-ZP-SRS)、が規定されてもよい。ZP-SRSの種別は、上位レイヤシグナリングによって設定されてもよい。 Similar to the SRS type (P-SRS, SP-SRS, A-SRS), the ZP-SRS type (P-ZP-SRS, SP-ZP-SRS, A-ZP-SRS) is defined. May be good. The type of ZP-SRS may be set by higher layer signaling.
 SP-ZP-SRSのアクティベーションとディアクティベーションの少なくともどちらか一方は、MACレイヤシグナリング又はDCIの少なくともどちらか一方で制御されてもよい。 At least one of activation and deactivation of SP-ZP-SRS may be controlled by at least one of MAC layer signaling or DCI.
 ZP-SRSリソースセット又はリソースの少なくともどちらか一方に対して空間関係(spatial relation)は、設定されないと想定してもよい。また送信電力制御(transmission power control(TPC))パラメータ(α,P0など)は設定されないとしてもよい。 It may be assumed that the spatial relation is not set for at least one of the ZP-SRS resource set and the resource. Further, the transmission power control (TPC) parameter (α, P0, etc.) may not be set.
 ZP-SRSリソースが設定されたUEは、当該ZP-SRSリソースにおいてSRS(NZP-SRS)を送信しなくてもよい。また、ZP-SRSリソースが設定されたUEは、当該ZP-SRSリソースでPUSCH又はPUSCHのDMRSを送信しなくてもよい。また、ZP-SRSリソースが設定されたUEは、当該ZP-SRSリソースでPUCCH又はPUCCHのDMRSを送信しなくてもよい。 The UE for which the ZP-SRS resource is set does not have to transmit SRS (NZP-SRS) in the ZP-SRS resource. Further, the UE in which the ZP-SRS resource is set does not have to transmit the PUSCH or the DMRS of the PUSCH with the ZP-SRS resource. Further, the UE in which the ZP-SRS resource is set does not have to transmit the PUCCH or the DMRS of the PUCCH with the ZP-SRS resource.
 ZP-SRSリソースが設定されたUEは、当該ZP-SRSリソースでPUCCH又はPUCCHのDMRSを送信してもよい。この場合、DLのスループット向上の効果がある。 The UE in which the ZP-SRS resource is set may transmit PUCCH or DMRS of PUCCH with the ZP-SRS resource. In this case, there is an effect of improving the throughput of DL.
 ZP-SRSリソースが設定されたUEは、特定のタイプの上り制御情報(UCI)(例えば、HARQ-ACK等)を含むPUCCH又はPUCCHのDMRSを送信してもよい。この場合、DLのスループット向上の効果がある。 The UE with the ZP-SRS resource set may transmit a PUCCH or PUCCH DMRS containing a particular type of uplink control information (UCI) (eg, HARQ-ACK, etc.). In this case, there is an effect of improving the throughput of DL.
(ZP-SRSの構成)
 ZP-SRSの構成は、SRSの構成と同様に、Comb構成を有していてもよい。Comb構成として、Comb2(2RE毎に1REのZP-SRSを配置、図18A)と、Comb4(4RE毎に1REのZP-SRSを配置、図18B)と、Combなし(ZP-SRSリソースによって設定される帯域(PRB、範囲)内のすべてのREにZP-SRSを配置、例えば、Comb0、Comb値=0、図18C)と、のいずれかがUEに設定されてもよい。SRSリソースとして同じ時間及び周波数のリソースの異なるCombオフセットを設定された複数の端末が、SRS送信を行う場合、UEは、Combなしを設定されることによって、当該UEのUL送信と、他のUEの全てのCombオフセットに対応するSRSと、の重複を避けることができる。
(Structure of ZP-SRS)
The configuration of ZP-SRS may have a Comb configuration in the same manner as the configuration of SRS. Comb configuration is set by Comb2 (1RE ZP-SRS is arranged every 2RE, FIG. 18A), Comb4 (1RE ZP-SRS is arranged every 4RE, FIG. 18B), and no Comb (ZP-SRS resource). ZP-SRS may be arranged in all REs in the band (PRB, range), for example, Comb0, Comb value = 0, FIG. 18C), or any of them may be set in the UE. When a plurality of terminals set with different Comb offsets of resources having the same time and frequency as SRS resources perform SRS transmission, the UE is set to have no Comb, so that the UL transmission of the UE and other UEs are performed. It is possible to avoid duplication with the SRS corresponding to all the Comb offsets of.
 UEは、ZP-SRS構成として、Rel.15 NRのSRS構成と同一の構成を設定されてもよいし、Rel.15 NRのSRS構成を包含する構成を設定されてもよい。UEは、NZP-SRSのリソースと同様にしてZP-SRSのリソースを特定できる。 The UE has a ZP-SRS configuration as a Rel. 15 The same configuration as the SRS configuration of NR may be set, and Rel. 15 A configuration including an NR SRS configuration may be set. The UE can identify the ZP-SRS resource in the same manner as the NZP-SRS resource.
 ZP-SRSとULチャネル(例えば、PUSCH及びPUCCHの少なくとも1つ)のリソースが重複した場合、UEは、ULチャネルをレートマッチ(又は、パンクチャ)して、ULチャネルを送信してもよい。 When the resources of the ZP-SRS and the UL channel (for example, at least one of PUSCH and PUCCH) overlap, the UE may rate match (or puncture) the UL channel and transmit the UL channel.
 前述の実施形態1~実施形態4の少なくとも1つにおいて、SRSはZP-SRSと読み替えられてもよい。この場合、ZP-SRSリソース又はZP-SRSリソースのComb構成によって示されるREは、UL送信に用いられなくてもよい(UL送信がマップされなくてもよい)(ZP-SRSリソース又はZP-SRSリソースのComb構成によって示されるREにおいて、UL送信がドロップ、パンクチャ、又はレートマッチされなくてもよい)。 In at least one of the above-mentioned first to fourth embodiments, SRS may be read as ZP-SRS. In this case, the RE indicated by the Comb configuration of the ZP-SRS resource or ZP-SRS resource may not be used for UL transmission (UL transmission may not be mapped) (ZP-SRS resource or ZP-SRS). UL transmissions do not have to be drop, punctured, or rate matched in the RE indicated by the Comb configuration of the resource).
 UEは、ZP-SRSとULチャネルのリソースが重複した場合、以下の実施形態5-1~5-3のいずれかに基づいてULチャネルをレートマッチ(又は、パンクチャ)してもよい。 When the resources of the ZP-SRS and the UL channel overlap, the UE may rate match (or puncture) the UL channel based on any of the following embodiments 5-1 to 5-3.
《実施形態5-1》
 ZP-SRSとULチャネルのリソースが重複した場合、UEは、ZP-SRSのリソースエレメント(RE)と重複したREを、ULチャネルのDMRSの送信に使わなくてもよい(ZP-SRSが有効であるREにおいてULチャネルをレートマッチ(又は、パンクチャ)してもよい)。ここで、ZP-SRSが有効であるREは、図18A-図18CのようなComb構成によって示されるREである。
<< Embodiment 5-1 >>
When the resources of ZP-SRS and UL channel are duplicated, the UE does not have to use the RE duplicated with the resource element (RE) of ZP-SRS to transmit the DMRS of UL channel (ZP-SRS is valid). UL channels may be rate matched (or punctured) at a RE). Here, the RE for which ZP-SRS is effective is the RE shown by the Comb configuration as shown in FIGS. 18A-18C.
 例えば、図19Aに示すように、PUSCHリソースに、設定されたComb2のZP-SRSリソースが重複する場合、UEは、ZP-SRSが有効であるREにおいて、PUSCHをレートマッチ(又は、パンクチャ)し、PUSCHの送信を行う。 For example, as shown in FIG. 19A, when the set Comb2 ZP-SRS resource overlaps with the PUSCH resource, the UE rate-matches (or punctures) the PUSCH in the RE in which ZP-SRS is valid. , PUSCH is transmitted.
 この場合、ULチャネルの符号化率の増加を最小限に抑えて通信品質の低下を抑えつつ、効率的にULチャネルの送信を行うことができ、ULチャネルのスループットを改善することができる。 In this case, it is possible to efficiently transmit the UL channel while minimizing the increase in the coding rate of the UL channel and suppressing the deterioration of the communication quality, and it is possible to improve the throughput of the UL channel.
《実施形態5-2》
 ZP-SRSとULチャネルのリソースが重複した場合、UEは、ZP-SRS用に設定されたリソース(ZP-SRSリソース範囲)を、ULチャネル及び当該ULチャネルのDMRSの送信に使わず、ZP-SRSリソース範囲においてULチャネルをレートマッチ(又は、パンクチャ)してもよい。Comb構成を有するZP-SRSリソースがUEに設定される場合、ZP-SRSリソース範囲は、設定されたCombオフセットの値によって示されるREだけでなく、Combオフセットの他の値によって示されるREを含む。
<< Embodiment 5-2 >>
When the resources of ZP-SRS and UL channel overlap, the UE does not use the resource (ZP-SRS resource range) set for ZP-SRS to transmit DMRS of UL channel and UL channel, and ZP- UL channels may be rate matched (or punctured) within the SRS resource range. When a ZP-SRS resource with a Comb configuration is configured on the UE, the ZP-SRS resource range includes not only the RE indicated by the value of the set Comb offset, but also the RE indicated by other values of the Comb offset. ..
 例えば、図19Bに示すように、前述の図19Aと同様、PUSCHリソースにZP-SRSリソースが重複する場合、UEは、ZP-SRSリソース範囲において、PUSCHをレートマッチ(又は、パンクチャ)し、PUSCHの送信を行う。 For example, as shown in FIG. 19B, as in FIG. 19A described above, when the ZP-SRS resource overlaps with the PUSCH resource, the UE rate-matches (or punctures) the PUSCH in the ZP-SRS resource range, and the PUSCH To send.
 ZP-SRSリソース範囲は、他のUEによってSRS送信に使われることがある。そのため、実施形態5-2によれば、UEは、設定されたZP-SRSリソースのCombと異なるCombが、他のUEのSRS送信に使われていても、UEのULチャネルと他のUEのSRSが衝突又は干渉することを回避することができる。 The ZP-SRS resource range may be used for SRS transmission by other UEs. Therefore, according to the 5-2 embodiment, even if a Comb different from the Comb of the set ZP-SRS resource is used for SRS transmission of another UE, the UE of the UL channel of the UE and the Comb of the other UE It is possible to prevent the SRS from colliding or interfering.
《実施形態5-3》
 ZP-SRSとULチャネルのリソースが重複した場合、UEは、ZP-SRSのシンボルを、ULチャネル及びULチャネルのDMRSの送信に使わず、ZP-SRSのシンボル(ZP-SRSのシンボル内の全てのRE)においてULチャネルをレートマッチ(又は、パンクチャ)してもよい。
<< Embodiment 5-3 >>
When the resources of ZP-SRS and UL channel are duplicated, the UE does not use the symbol of ZP-SRS to transmit DMRS of UL channel and UL channel, and the symbol of ZP-SRS (all in the symbol of ZP-SRS). The UL channel may be rate matched (or punctured) in RE).
 例えば、図19Cに示すように、前述の図19Aと同様、PUSCHリソースにZP-SRSリソースが重複する場合、ZP-SRSが設定されるシンボル(期間)において、PUSCHをレートマッチ(又は、パンクチャ)し、PUSCHの送信を行う。 For example, as shown in FIG. 19C, as in FIG. 19A described above, when the ZP-SRS resource overlaps with the PUSCH resource, the PUSCH is rate-matched (or punctured) at the symbol (period) in which the ZP-SRS is set. Then, the PUSCH is transmitted.
 この場合、UEのULチャネルと重複するZP-SRSのシンボルにおいて、他のUEによって長さ(帯域幅)の異なる他のSRSが送信されてもよい。ULチャネルがZP-SRSのシンボルにマップされないことによって、当該シンボルにおいてUEのULチャネルと他のUEのSRSとの衝突又は干渉することを回避することができる。 In this case, in the ZP-SRS symbol that overlaps with the UL channel of the UE, another SRS having a different length (bandwidth) may be transmitted by another UE. By not mapping the UL channel to the ZP-SRS symbol, it is possible to avoid collisions or interference between the UL channel of the UE and the SRS of other UEs at that symbol.
<実施形態6>
 ZP-SRSリソースとNZP-SRSリソースとが重複した場合、UEは、NZP-SRSをドロップ又はパンクチャしてもよい。
<Embodiment 6>
If the ZP-SRS resource and the NZP-SRS resource overlap, the UE may drop or puncture the NZP-SRS.
 UEは、ZP-SRSリソースとNZP-SRSリソースとが重複した場合、以下の実施形態6-1~6-4のいずれかに基づいてNZP-SRSをドロップ又はパンクチャしてもよい。 When the ZP-SRS resource and the NZP-SRS resource overlap, the UE may drop or puncture the NZP-SRS based on any of the following embodiments 6-1 to 6-4.
《実施形態6-1》
 ZP-SRSリソースとNZP-SRSリソースとが重複した場合、UEは、ZP-SRSが配置されたREでは、NZP-SRSの送信を行わなくてもよい。言い換えると、UEは、ZP-SRSが配置されたREと重複したNZP-SRSのREをパンクチャ又はドロップしてもよい。
<< Embodiment 6-1 >>
When the ZP-SRS resource and the NZP-SRS resource overlap, the UE does not have to transmit the NZP-SRS in the RE in which the ZP-SRS is arranged. In other words, the UE may puncture or drop the RE of the NZP-SRS that overlaps the RE in which the ZP-SRS is located.
 図20Aの例では、ZP-SRSリソースがNZP-SRSリソースと重複するが、ZP-SRSが配置されたREとNZP-SRSのREとが重複をしていない。この場合、UEは、NZP-SRSの全体を送信する(NZP-SRSをパンクチャしない)。 In the example of FIG. 20A, the ZP-SRS resource overlaps with the NZP-SRS resource, but the RE in which the ZP-SRS is arranged and the RE in the NZP-SRS do not overlap. In this case, the UE transmits the entire NZP-SRS (does not puncture the NZP-SRS).
 実施形態6-1によれば、NZP-SRSの少なくとも一部のリソースで送信を行わないことで、効率的なUE多重を可能にする。 According to the 6-1 embodiment, efficient UE multiplexing is enabled by not transmitting with at least a part of the resources of the NZP-SRS.
《実施形態6-2》
 ZP-SRSとNZP-SRSとが重複した場合、UEは、ZP-SRS用に設定されたリソース(ZP-SRS用に設定されないComb及びNZP-SRSが配置されないREを含む)と重複したREでは、NZP-SRSの送信を行わなくてもよい。
<< Embodiment 6-2 >>
When ZP-SRS and NZP-SRS are duplicated, the UE is in the RE that overlaps with the resource set for ZP-SRS (including the RE not set for ZP-SRS and the RE where NZP-SRS is not placed). , NZP-SRS need not be transmitted.
 例えば、図20Bに示すように、ZP-SRSリソースがNZP-SRSリソースと重複する場合、UEは、ZP-SRS用に設定されたリソース(ZP-SRSリソース範囲)と重複したリソースをNZP-SRS送信に用いない(ZP-SRS用に設定されたリソースと重複するREにおいてNZP-SRSをパンクチャする)。 For example, as shown in FIG. 20B, when the ZP-SRS resource overlaps with the NZP-SRS resource, the UE sets the resource that overlaps with the resource (ZP-SRS resource range) set for ZP-SRS to NZP-SRS. Not used for transmission (NZP-SRS is punctured in RE that overlaps with the resource set for ZP-SRS).
 ZP-SRSリソース(ZP-SRS用に設定されるのに用いられないComb及びREを含む)は他のUEがSRS及びULチャネルのリソースとして使うことがある。実施形態6-2を用いることで、ZP-SRSリソースが他のUEに使われていても、UEのNZP-SRSと当該他のUEのSRS及びULチャネルが衝突又は干渉することを回避することができる。 ZP-SRS resources (including Combs and REs that are not used to be configured for ZP-SRS) may be used by other UEs as resources for SRS and UL channels. By using the 6-2 embodiment, even if the ZP-SRS resource is used by another UE, it is possible to prevent the NZP-SRS of the UE from colliding or interfering with the SRS and UL channels of the other UE. Can be done.
《実施形態6-3》
 ZP-SRSとNZP-SRSとが重複した場合、UEは、ZP-SRSのシンボルにおいて、NZP-SRSを送信しなくてもよい。
<< Embodiment 6-3 >>
When ZP-SRS and NZP-SRS overlap, the UE does not have to transmit NZP-SRS in the symbol of ZP-SRS.
 例えば、図20Cに示すように、ZP-SRSリソースがNZP-SRSリソースと重複する場合、UEは、ZP-SRSリソースが設定されるシンボルにおいて、NZP-SRSの送信を行わない(NZP-SRSをドロップする)。 For example, as shown in FIG. 20C, when the ZP-SRS resource overlaps with the NZP-SRS resource, the UE does not transmit the NZP-SRS at the symbol in which the ZP-SRS resource is set (NZP-SRS). Drop).
 この場合、あるUEのZP-SRSのシンボルにおいて、他のUEによって長さ(系列長、帯域幅)の異なる他のSRSが送信されてもよい。ZP-SRSのシンボルに、UEのUL送信がマップされないことによって、他のUEの長さ(系列長、帯域幅)の異なるSRSとの衝突又は干渉することを回避することができる。 In this case, in the ZP-SRS symbol of a certain UE, another SRS having a different length (series length, bandwidth) may be transmitted by another UE. By not mapping the UL transmission of the UE to the ZP-SRS symbol, it is possible to avoid collision or interference with SRS having different lengths (series length, bandwidth) of other UEs.
《実施形態6-4》
 NZP-SRSが周波数ホッピングする場合において、ZP-SRSリソースとNZP-SRSリソースとの少なくとも一部が重複した場合、UEは、スロット内のNZP-SRSを送信しなくてもよい。
<< Embodiment 6-4 >>
When the NZP-SRS frequency hopping, if at least a part of the ZP-SRS resource and the NZP-SRS resource overlap, the UE does not have to transmit the NZP-SRS in the slot.
 例えば、図21に示されるように、ZP-SRSリソースとNZP-SRSリソースとが重複している場合、UEは、スロット内の全てのNZP-SRSの送信を行わない(NZP-SRSをドロップする)。 For example, as shown in FIG. 21, when the ZP-SRS resource and the NZP-SRS resource overlap, the UE does not transmit all the NZP-SRS in the slot (drops the NZP-SRS). ).
 NZP-SRSが周波数ホッピングする場合、NZP-SRSは複数シンボルで送信される必要がある。したがって、複数シンボルにわたるNZP-SRSの一部のシンボルの送信を行わないことは、NZP-SRSの送信を行う目的を果たせない。マルチシンボルSRSにおける複数シンボルに対して、異なる空間関係が適用される場合、NZP-SRSは一部送信することに意味がない可能性がある。実施形態6-4を用いる場合、複数シンボルにおけるNZP-SRSの送信を全て行わないことで、UEの消費電力を抑えることができる。 When NZP-SRS frequency hopping, NZP-SRS needs to be transmitted with multiple symbols. Therefore, not transmitting some symbols of NZP-SRS over a plurality of symbols cannot serve the purpose of transmitting NZP-SRS. When different spatial relationships are applied to multiple symbols in the multi-symbol SRS, it may be meaningless to partially transmit the NZP-SRS. When the embodiment 6-4 is used, the power consumption of the UE can be suppressed by not transmitting all the NZP-SRS in the plurality of symbols.
<実施形態7>
 UEは、UEに対して設定されるULチャネルリソースと、他のUEに対して設定されるSRSリソースと、が重複する部分を含むZP-SRSリソースを設定されると想定してもよい。UEは、UEに対して設定されるULチャネルリソースと、他のUEに対して設定されるSRSリソースと、が重複する部分において、他のUEからのSRSが送信されると想定してもよい。UEは、ZP-SRSリソースを設定される場合、当該UEに対して設定されるULチャネルリソースと、他のUEに対して設定されるSRSリソースと、の少なくとも一部が重複すると想定してもよい。
<Embodiment 7>
It may be assumed that the UE is set with a ZP-SRS resource including a portion in which the UL channel resource set for the UE and the SRS resource set for the other UE overlap. The UE may assume that the SRS from the other UE is transmitted in the portion where the UL channel resource set for the UE and the SRS resource set for the other UE overlap. .. When a UE sets a ZP-SRS resource, even if it is assumed that at least a part of the UL channel resource set for the UE and the SRS resource set for another UE overlap. Good.
 UE#1のULチャネルリソースと、UE#2のSRSリソースと、の少なくとも一部が重複する場合、ネットワーク(例えば、基地局)は、UE#1に対してZP-SRSリソースを設定してもよい。 If at least a part of the UL channel resource of UE # 1 and the SRS resource of UE # 2 overlap, the network (for example, a base station) may set the ZP-SRS resource for UE # 1. Good.
 例えば、図22に示すように、スロット内にマッピングされたUE#1のPUSCHリソース内に、UE#2のSRSリソースが設定される場合、重複部分を含むZP-SRSリソースがUE#1に設定される。 For example, as shown in FIG. 22, when the SRS resource of UE # 2 is set in the PUSCH resource of UE # 1 mapped in the slot, the ZP-SRS resource including the overlapping portion is set in UE # 1. Will be done.
 この場合、ネットワークが、UEに対してZP-SRSの設定に関する通知を行ってもよい。ネットワークによる通知は、上位レイヤシグナリングで行われてもよい。このように想定することで、他のUEのSRSリソースにおいて、効果的にUEのULチャネルリソースをレートマッチすることができる。 In this case, the network may notify the UE regarding the ZP-SRS setting. Notification by the network may be performed by higher layer signaling. By assuming this way, the UL channel resources of the UE can be effectively rate-matched in the SRS resources of other UEs.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to the above-described embodiments of the present disclosure or a combination thereof.
 図23は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 23 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is MN, and the LTE (E-UTRA) base station (eNB) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, an optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is the Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is the IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. In addition, Master Information Block (MIB) may be transmitted by PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used for detecting PDCCH. CORESET corresponds to a resource that searches for DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, may be called Hybrid Automatic Repeat reQuest ACK knowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request () Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble for establishing a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図24は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 24 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmitter / receiver 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110. RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital conversion, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulation, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
(ユーザ端末)
 図25は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 25 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmitter / receiver 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitter / receiver circuit, and the like, which are described based on the common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. The transmission / reception unit 220 (transmission processing unit 2211) described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 The transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
 送受信部220は、上り(UL)チャネルの送信及びSRSの送信の少なくとも1つを送信してもよい。制御部210は、上りチャネルに与えられた第1リソース(例えば、ULチャネルリソース)と、SRSに与えられた第2リソース(例えば、SRSリソース)とが重複する場合、前記上りチャネル及び前記SRSの少なくとも1つがマップされるリソースを削減してもよい(前記上りチャネル及び前記SRSの少なくとも1つを、ドロップ、レートマッチ、又はパンクチャしてもよい)。 The transmission / reception unit 220 may transmit at least one of the uplink (UL) channel transmission and the SRS transmission. When the first resource (for example, UL channel resource) given to the uplink and the second resource (for example, SRS resource) given to the SRS overlap, the control unit 210 of the uplink channel and the SRS The resource to which at least one is mapped may be reduced (at least one of the uplink and the SRS may be dropped, rate matched, or punctured).
 制御部210は、前記第2リソースの少なくとも一部に、前記SRSをマップせず、前記第1リソースの全部に、前記上りチャネルをマップしてもよい(前記SRSをドロップ又はパンクチャし、前記上りチャネルの全部を送信してもよい)(実施形態1)。 The control unit 210 may map the uplink channel to all of the first resources without mapping the SRS to at least a part of the second resource (drop or puncture the SRS and the uplink). The entire channel may be transmitted) (Embodiment 1).
 制御部210は、前記第1リソースの少なくとも一部に、前記上りチャネルをマップせず、前記第2リソースの全部に、前記SRSをマップしてもよい(前記上りチャネルをドロップ、パンクチャ、又はレートマッチし、前記SRSの全部を送信してもよい)(実施形態2)。 The control unit 210 may map the SRS to all of the second resource without mapping the uplink to at least a part of the first resource (drop, puncture, or rate the uplink). It may match and transmit all of the SRS) (Embodiment 2).
 前記第1リソースと第2リソースとが重複し、前記上りチャネルの再送のための第3リソース(例えば、ULチャネルリソース)が与えられる場合、制御部210は、前記第3リソースのうち別のSRSに与えられるリソース(例えば、SRSリソース)と重複しない部分(実施形態3-1)と、前記第3リソースのうち前記上りチャネルの初送と同じ配置を有する第4リソース(実施形態3-2)と、前記第4リソースのうち別のSRSに与えられるリソースと重複しない部分(実施形態3-3)と、のいずれかに前記再送をマップしてもよい(実施形態3)。 When the first resource and the second resource overlap and a third resource for retransmission of the uplink channel (for example, a UL channel resource) is given, the control unit 210 controls another SRS of the third resource. A portion (embodiment 3-1) that does not overlap with the resource (for example, SRS resource) given to the third resource and a fourth resource (embodiment 3-2) having the same arrangement as the initial transmission of the uplink channel among the third resources. And the portion of the fourth resource that does not overlap with the resource given to another SRS (Embodiment 3-3), the retransmission may be mapped to any of (Embodiment 3).
 制御部210は、複数スロット(例えば、マルチスロットULチャネルに用いられる複数スロット)のそれぞれにおいて、SRSに与えられたリソースと重複しないリソースの配置と、前記複数スロットの最初のスロットにおいてSRSに与えられるリソースと重複しないリソースと同じ配置と、前記複数スロットのいずれにおいてもSRSに与えられたリソースと重複しないリソースの配置と、のいずれかに、前記複数スロットのそれぞれにおける前記上りチャネルをマップしてもよい(実施形態4)。 The control unit 210 allocates resources that do not overlap with the resources given to the SRS in each of the plurality of slots (for example, the plurality of slots used for the multi-slot UL channel), and is given to the SRS in the first slot of the plurality of slots. Even if the uplink channel in each of the plurality of slots is mapped to either the same arrangement as the resource that does not overlap with the resource or the arrangement of the resource that does not overlap with the resource given to the SRS in any of the plurality of slots. Good (Embodiment 4).
 送受信部220は、ゼロパワーのサウンディング参照信号(SRS)(例えば、ZP-SRS)の第1リソースを示す設定情報(例えば、SRS設定情報、SRSリソースセット設定情報、SRSリソース設定情報、ZP-SRS設定情報、ZP-SRSリソースセット設定情報、ZP-SRSリソース設定情報など)を受信してもよい(実施形態5)。制御部210は、上り送信に与えられる第2リソースと、前記第1リソースとが重複する場合、前記第2リソースの少なくとも一部に、前記上り送信をマップしなくてもよい(実施形態5)。 The transmission / reception unit 220 has setting information (for example, SRS setting information, SRS resource set setting information, SRS resource setting information, ZP-SRS) indicating the first resource of the zero power sounding reference signal (SRS) (for example, ZP-SRS). Setting information, ZP-SRS resource set setting information, ZP-SRS resource setting information, etc.) may be received (Embodiment 5). When the second resource given to the uplink transmission and the first resource overlap, the control unit 210 does not have to map the uplink transmission to at least a part of the second resource (Embodiment 5). ..
 前記設定情報は、前記第1リソース(例えば、第1リソースを含むSRSリソースセット)の用途(usage)がゼロパワーであることを示してもよい(実施形態5)。 The setting information may indicate that the usage of the first resource (for example, an SRS resource set including the first resource) is zero power (Embodiment 5).
 前記第1リソースは、Comb構成を有してもよい(実施形態5)。 The first resource may have a Comb configuration (Embodiment 5).
 前記上り送信は、物理上り共有チャネル又は物理上り制御チャネルであってもよい(実施形態5)。 The uplink transmission may be a physical uplink shared channel or a physical uplink control channel (Embodiment 5).
 前記上り送信は、電力がゼロでないSRS(例えば、NZP-SRS)であってもよい(実施形態6)。 The uplink transmission may be an SRS (for example, NZP-SRS) whose power is not zero (Embodiment 6).
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図26は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 26 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In this disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, and is, for example, a flexible disk, a floppy (registered trademark) disk, an optical magnetic disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, optical disc drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal can also be abbreviated as RS, and may be called a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. The numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols in the time domain (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.). Further, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, mini slot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executables, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving body (for example, a drone, an autonomous vehicle, etc.), or a robot (manned or unmanned type). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. In addition, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802.16 (WiMAX (registered trademark)), IEEE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems that utilize suitable wireless communication methods, next-generation systems extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as "judgment (decision)" of "accessing" (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used herein, are any direct or indirect connection or connection between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as a modified or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (6)

  1.  ゼロパワーのサウンディング参照信号(SRS)の第1リソースを示す設定情報を受信する受信部と、
     上り送信に与えられる第2リソースと、前記第1リソースとが重複する場合、前記第2リソースの少なくとも一部に、前記上り送信をマップしない制御部と、を有する端末。
    A receiver that receives setting information indicating the first resource of the zero-power sounding reference signal (SRS), and a receiver.
    A terminal having a control unit that does not map the uplink transmission to at least a part of the second resource when the second resource given to the uplink transmission and the first resource overlap.
  2.  前記設定情報は、前記第1リソースの用途がゼロパワーであることを示す、請求項1に記載の端末。 The terminal according to claim 1, wherein the setting information indicates that the use of the first resource is zero power.
  3.  前記第1リソースは、Comb構成を有する、請求項1又は請求項2に記載の端末。 The terminal according to claim 1 or 2, wherein the first resource has a Comb configuration.
  4.  前記上り送信は、物理上り共有チャネル又は物理上り制御チャネルである、請求項1から請求項3のいずれかに記載の端末。 The terminal according to any one of claims 1 to 3, wherein the uplink transmission is a physical uplink shared channel or a physical uplink control channel.
  5.  前記上り送信は、電力がゼロでないSRSである、請求項1から請求項4のいずれかに記載の端末。 The terminal according to any one of claims 1 to 4, wherein the uplink transmission is an SRS whose power is not zero.
  6.  ゼロパワーのサウンディング参照信号(SRS)の第1リソースを示す設定情報を受信するステップと、
     上り送信に与えられる第2リソースと、前記第1リソースとが重複する場合、前記第2リソースの少なくとも一部に、前記上り送信をマップしないステップと、を有する端末の無線通信方法。
    The step of receiving the setting information indicating the first resource of the zero power sounding reference signal (SRS), and
    A method of wireless communication of a terminal having a step of not mapping the uplink transmission to at least a part of the second resource when the second resource given to the uplink transmission and the first resource overlap.
PCT/JP2019/031490 2019-08-08 2019-08-08 Terminal and wireless communication method WO2021024483A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/031490 WO2021024483A1 (en) 2019-08-08 2019-08-08 Terminal and wireless communication method
CN201980099173.4A CN114208328A (en) 2019-08-08 2019-08-08 Terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/031490 WO2021024483A1 (en) 2019-08-08 2019-08-08 Terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2021024483A1 true WO2021024483A1 (en) 2021-02-11

Family

ID=74502885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031490 WO2021024483A1 (en) 2019-08-08 2019-08-08 Terminal and wireless communication method

Country Status (2)

Country Link
CN (1) CN114208328A (en)
WO (1) WO2021024483A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117675140A (en) * 2022-08-24 2024-03-08 华为技术有限公司 Communication method and communication device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102398A (en) * 2011-11-09 2013-05-23 Ntt Docomo Inc Radio communication system, user terminal and radio communication method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013102398A (en) * 2011-11-09 2013-05-23 Ntt Docomo Inc Radio communication system, user terminal and radio communication method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUANGDONG OPPO MOBILE TELECOM: "Discussion on RS multiplexing", 3GPP TSG RAN WG1 ADHOC_NR_AH_1709 R1-1715705, vol. RAN WG1, 17 September 2017 (2017-09-17), XP051339167 *
HUAWEI , HISILICON: "UL SRS design for beam management and CSI acquisition", 3GPP TSG RAN WG1 #90B R1-1717307, vol. RAN WG1, 8 October 2017 (2017-10-08), pages 2, XP051340497 *
HUAWEI: "Feature summary on LTE DL MIMO efficiency enhancement", 3GPP TSG RAN WG1 #97 R1-1907612, vol. RAN WG1, 16 May 2019 (2019-05-16), XP051739914 *

Also Published As

Publication number Publication date
CN114208328A (en) 2022-03-18

Similar Documents

Publication Publication Date Title
WO2020240868A1 (en) User terminal and wireless communication method
JP7305763B2 (en) Terminal, wireless communication method, base station and system
WO2021090507A1 (en) Terminal and wireless communication method
JPWO2020144818A1 (en) User terminal and wireless communication method
WO2022039164A1 (en) Terminal, wirless communication method, and base station
WO2020250323A1 (en) Terminal and wireless communication method
WO2020202478A1 (en) User terminal and wireless communication method
WO2020217514A1 (en) User terminal and wireless communication method
WO2020202517A1 (en) User terminal and wireless communication method
WO2020188821A1 (en) User terminal and wireless communication method
WO2020188644A1 (en) User terminal and wireless communication method
WO2020095457A1 (en) User terminal
WO2022024379A1 (en) Terminal, wireless communication method, and base station
WO2020230860A1 (en) Terminal and wireless communication method
WO2021166036A1 (en) Terminal, wireless communication method, and base station
JP7367028B2 (en) Terminals, wireless communication methods and systems
JP7308942B2 (en) Terminal, wireless communication method, base station and system
WO2021090409A1 (en) Terminal and wireless communication method
WO2021090506A1 (en) Terminal and wireless communication method
WO2021019650A1 (en) Terminal and wireless communication method
WO2021024483A1 (en) Terminal and wireless communication method
WO2021024482A1 (en) Terminal and wireless communication method
US20230059757A1 (en) Terminal, radio communication method, and base station
JP7375017B2 (en) Terminals, wireless communication methods, base stations and systems
US20230086798A1 (en) Terminal, radio communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP