WO2021024310A1 - Polarization coupler - Google Patents

Polarization coupler Download PDF

Info

Publication number
WO2021024310A1
WO2021024310A1 PCT/JP2019/030527 JP2019030527W WO2021024310A1 WO 2021024310 A1 WO2021024310 A1 WO 2021024310A1 JP 2019030527 W JP2019030527 W JP 2019030527W WO 2021024310 A1 WO2021024310 A1 WO 2021024310A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
demultiplexer
rectangular
input
rectangular waveguide
Prior art date
Application number
PCT/JP2019/030527
Other languages
French (fr)
Japanese (ja)
Inventor
秀憲 湯川
優 牛嶋
素実 渡辺
高橋 徹
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/030527 priority Critical patent/WO2021024310A1/en
Priority to JP2021538534A priority patent/JP7012910B2/en
Publication of WO2021024310A1 publication Critical patent/WO2021024310A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/16Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion
    • H01P1/161Auxiliary devices for mode selection, e.g. mode suppression or mode promotion; for mode conversion sustaining two independent orthogonal modes, e.g. orthomode transducer

Definitions

  • the present invention mainly relates to a demultiplexer that separates a plurality of polarized waves in frequency bands such as VHF (Very High Frequency) band, UHF (Ultra High Frequency) band, microwave band and millimeter wave band.
  • VHF Very High Frequency
  • UHF Ultra High Frequency
  • Non-Patent Document 1 In wireless communication systems such as satellite communication systems, a plurality of polarizations orthogonal to each other are used for the purpose of effective use of frequencies, and an ortho-mode-transducer for separating the plurality of polarizations. , OMT) is required.
  • OMT ortho-mode-transducer
  • Non-Patent Document 1 a circular waveguide having a short-circuit end at one end and an input / output terminal at the other end and a circular waveguide extending in the vicinity of the short-circuit end so as to branch in opposite directions from each other.
  • a T-junction Ortho-Mode-Transducer equipped with two rectangular waveguides is disclosed.
  • the wide wall surface of the first rectangular waveguide among the two rectangular waveguides is arranged so as to be parallel to the tube axis direction of the circular waveguide, and the two rectangular waveguides are arranged.
  • the wide wall surface of the second rectangular waveguide is arranged so as to be orthogonal to the tube axis direction of the circular waveguide.
  • Such a T-branched demultiplexer separates two linearly polarized waves that are orthogonal to each other input from the input / output terminals of a circular waveguide, and one of the two linearly polarized waves is first rectangularly conducted. It is output from the branch terminal of the wave tube, and the other of the two linearly polarized waves is output from the branch terminal of the second rectangular waveguide.
  • the conventional T-branch type demultiplexer disclosed in Non-Patent Document 1 the mutual influence between the branch terminals of the first and second rectangular waveguides is reduced to obtain good demultiplexing characteristics.
  • the wide wall surface of the first rectangular waveguide is arranged so as to be parallel to the tube axis direction of the circular waveguide, and the wide wall surface of the second rectangular waveguide is of the circular waveguide. Arranged so as to be orthogonal to the direction of the waveguide.
  • the conventional T-branch type deflector has a geometrically asymmetrical configuration with respect to the tube axis of the circular waveguide, and therefore, from the branch terminal of the first and second rectangular waveguides. The frequency characteristics of the output polarization signals will be different. There is a problem that this hinders the improvement of the demultiplexing characteristic.
  • an object of the present invention is to provide a demultiplexer capable of making the frequency characteristics of the separated polarized signals the same and realizing excellent demultiplexing characteristics.
  • the deflector according to one aspect of the present invention has a short-circuit end provided at one end in the axial direction of its own tube and an input / output terminal provided at the other end in the axial direction of its own tube.
  • a common waveguide having a waveguide space for propagating a first polarization component and a second polarization component that are orthogonal to each other between the end and the input / output terminal, a pair of wide walls facing each other, and facing each other.
  • It has a wall surface and a pair of narrow wall surfaces facing each other, and includes a second rectangular waveguide connected to the side wall of the common waveguide and extending in a second direction orthogonal to the tube axis direction.
  • the short-circuit end has a base end portion forming a surface orthogonal to the tube axis direction, and the pair of wide wall surfaces of the first rectangular waveguide is on a surface perpendicular to the first direction.
  • the pair of wide walls of the second rectangular waveguide, inclined at an angle of 45 degrees with respect to the proximal end, are 45 relative to the proximal end in a plane perpendicular to the second direction. It is characterized by being tilted at an angle of degrees.
  • the demultiplexer according to one aspect of the present invention has a configuration capable of making the frequency characteristics of the polarized signals output from the input / output terminals of the first and second rectangular waveguides the same. Therefore, excellent decentralized wave characteristics can be realized.
  • FIG. 4A is a right side view of the demultiplexer shown in FIG. 1
  • FIG. 4B is a left side view of the demultiplexer shown in FIG.
  • explanatory drawing which conceptually shows the electric field of the linearly polarized wave signal input to the rectangular waveguide of Embodiment 1.
  • It is explanatory drawing which shows the polarization signal component propagating in the inside of the demultiplexer of Embodiment 1.
  • FIG. 15 is a right side view of the demultiplexer shown in FIG. It is a rear view of the demultiplexer shown in FIG. It is a bottom view of the demultiplexer shown in FIG. It is explanatory drawing which conceptually shows two linearly polarized wave signals output from the common waveguide of Embodiment 1.
  • FIG. 21A is a right side view of the demultiplexer shown in FIG. 20, and FIG. 21B is a left side view of the demultiplexer shown in FIG. 20.
  • 22A and 22B are diagrams schematically showing the configuration of the short-circuit end of the third embodiment.
  • 23A and 23B are diagrams schematically showing the configuration of the short-circuit end in the first modification of the third embodiment.
  • 24A and 24B are diagrams schematically showing the configuration of the short-circuit end in the second modification of the third embodiment.
  • 25A and 25B are diagrams schematically showing the configuration of the short-circuit end in the third modification of the third embodiment.
  • FIG. 29A and 29B are perspective views showing a schematic configuration of a demultiplexer according to a second modification of the fourth embodiment. It is a graph which shows the calculation example of the reflection characteristic about the demultiplexer of the 2nd modification of Embodiment 4. It is a graph which shows the calculation example of the isolation characteristic between polarizations about the demultiplexer of the 2nd modification of Embodiment 4.
  • FIG. 1 is a perspective view showing a schematic configuration of a demultiplexer 1 according to a first embodiment of the present invention.
  • 2 is a front view of the demultiplexer shown in FIG. 1
  • FIG. 3 is a bottom view of the demultiplexer shown in FIG. 1
  • FIG. 4A is a bias shown in FIG. It is a right side view of the demultiplexer
  • FIG. 4B is a left side view of the demultiplexer shown in FIG.
  • the deflector 1 of the present embodiment is configured to include a common waveguide 10 and rectangular waveguides 20 and 30 branching from the side wall of the common waveguide 10.
  • the common waveguide 10 is composed of a circular waveguide having a tube axis Ax parallel to the Z-axis direction, and has a short-circuit end 10q provided at one end in the tube axis direction and an open end provided at the other end in the tube axis direction.
  • the common waveguide 10 of the present embodiment can mainly propagate the TE 11 mode.
  • the short-circuit end 10q has an annular base end portion 10qb forming a plane orthogonal to the tube axis Ax, and a protrusion 10qc protruding from the base end portion 10qb toward the input / output terminal 10p.
  • the protrusion 10qc has a truncated cone shape geometrically symmetrical with respect to the tube axis Ax, and the position of the tip portion of the protrusion 10qc coincides with the tube axis Ax.
  • the protrusion 10qc of the present embodiment has a cross section that continuously changes from the base end portion 10qb toward the input / output terminal 10p, but is not limited thereto.
  • the shape of the protrusion 10qc may be changed so as to have a cross section that gradually changes from the base end portion 10qb toward the input / output terminal 10p.
  • the rectangular waveguide (first rectangular waveguide) 20 is composed of a pair of wide wall surfaces facing each other and a pair of narrow walls facing each other, as shown in FIGS. 1 to 3 and 4B. It has an inner wall surface.
  • the wide wall surface means an inner wall surface forming the long side of the rectangular cross section of the rectangular waveguide 20 as shown in FIG. 4B, and the narrow wall surface forms the short side of the rectangular cross section. It means the inner wall surface.
  • the rectangular waveguide 20 is arranged so as to extend from the side wall of the common waveguide 10 in the negative direction of the Y axis (first direction) in the vicinity of the short-circuit end 10q of the common waveguide 10.
  • the waveguide space 20h inside the rectangular waveguide 20 communicates with the waveguide space 10h of the common waveguide 10 via a coupling hole.
  • An input / output terminal (branch terminal) 20p is provided at one end of the rectangular waveguide 20.
  • the rectangular waveguide (second rectangular waveguide) 30 has the same waveguide structure as the rectangular waveguide 20. As shown in FIGS. 1 to 3 and 4A, the rectangular waveguide 30 has an inner wall surface composed of a pair of wide wall surfaces facing each other and a pair of narrow wall surfaces facing each other.
  • the wide wall surface means an inner wall surface forming the long side of the rectangular cross section of the rectangular waveguide 30 as shown in FIG. 4A, and the narrow wall surface forms the short side of the rectangular cross section. It means the inner wall surface.
  • the rectangular waveguide 30 is arranged so as to extend in the Y-axis positive direction (second direction) from the side wall of the common waveguide 10 in the vicinity of the short-circuit end 10q of the common waveguide 10.
  • the waveguide space 30h inside the rectangular waveguide 30 communicates with the waveguide space 10h of the common waveguide 10 via a coupling hole.
  • An input / output terminal (branch terminal) 30p is provided at one end of the rectangular waveguide 30.
  • the protrusion 10qc at the short-circuit end 10q faces the coupling hole formed between the rectangular waveguide 20 and the common waveguide 10, and is a rectangular waveguide. It also faces the coupling hole formed between 30 and the common waveguide 10.
  • Such a protrusion 10qc can serve a function of blocking signal propagation between the rectangular waveguides 20 and 30.
  • the rectangular waveguides 20 and 30 described above extend in opposite directions (Y-axis negative direction and Y-axis positive direction) on a plane perpendicular to the tube axis direction of the common waveguide 10, respectively, and the tube axis Ax. They are arranged so that they are geometrically symmetrical with respect to each other.
  • Such a demultiplexer 1 may be manufactured by processing and welding a metal alloy material.
  • the demultiplexer 1 integrally forms the common waveguide 10 and the rectangular waveguides 20 and 30 by laminating and molding a metal powder such as an aluminum alloy (AlSi 10 Mg) using a metal 3D printer. It may be produced by the above.
  • a laser sintering method Selective Laser Sintering, SLS
  • DMLS direct metal laser sintering method
  • SLM Selective Laser Melting
  • a melting method (Electron Beam Melting, EBM) or a laser direct laminating method (Laser Engineering Net Shipping, LENS) can be used. It should be noted that the second to fourth embodiments described later and modified examples thereof can also be produced by the same method as that of the demultiplexer 1.
  • the conventional T-branch waveguide disclosed in Non-Patent Document 1 has two rectangular waveguides extending from the side wall of the circular waveguide so as to branch in opposite directions. Both of these two rectangular waveguides have a wall surface perpendicular to the tube axis direction of the circular waveguide. Therefore, when the wall surfaces of these rectangular waveguides are laminated and modeled using a metal 3D printer, the axial direction of the circular waveguide must be tilted by a predetermined angle (for example, 45 degrees) from the stacking direction.
  • a predetermined angle for example, 45 degrees
  • the wide wall surfaces of the rectangular waveguides 20 and 30 are oriented with respect to the tube axis direction of the common waveguide 10. Since it is tilted at 45 degrees, the metal 3D printer can laminate and model the metal alloy material along the tube axis direction of the common waveguide 10. As a result, it is possible to improve the modeling accuracy of the common waveguide 10 and reduce the cost of the demultiplexer 1.
  • FIG. 5 is a diagram conceptually showing the electric field E1 of the linearly polarized wave signal input to the input / output terminal 30p of the rectangular waveguide 30.
  • This electric field E1 can be considered as the vector sum of two electric field components E1x and E1z that are orthogonal to each other.
  • the electric field component E1x is converted into the electric field component E2x when propagating from the input / output terminal 30p of the rectangular waveguide 30 to the input / output terminal 10p of the common waveguide 10 as shown in FIG. Since the protrusion 10qc blocks the propagation of the electric field component E1x between the rectangular waveguides 20 and 30, the amount of the electric field component leaking from the rectangular waveguide 30 to the rectangular waveguide 20 can be made very small. it can.
  • the electric field component E1z is converted into the electric field component E2y when propagating from the input / output terminal 30p of the rectangular waveguide 30 to the input / output terminal 10p of the common waveguide 10 as shown in FIG. Since the protrusion 10qc blocks the propagation of the electric field component E1z between the rectangular waveguides 20 and 30, the amount of the electric field component leaking from the rectangular waveguide 30 to the rectangular waveguide 20 can be made very small. it can.
  • the signal output from the input / output terminal 10p of the common waveguide 10 is a polarization signal having an electric field E2 which is a vector sum of the electric field components E2x and E2y.
  • FIG. 9 is a diagram conceptually showing the electric field E3 of the linearly polarized wave signal input to the input / output terminal 20p of the rectangular waveguide 20.
  • This electric field E3 can be considered as the vector sum of two electric field components E3x and E3z that are orthogonal to each other.
  • the electric field component E3x is converted into the electric field component E4x when propagating from the input / output terminal 20p of the rectangular waveguide 20 to the input / output terminal 10p of the common waveguide 10 as shown in FIG. Since the protrusion 10qc blocks the propagation of the electric field component E4x between the rectangular waveguides 20 and 30, the amount of the electric field component leaking from the rectangular waveguide 20 to the rectangular waveguide 30 can be made very small. it can.
  • the electric field component E3z is converted into the electric field component E4y when propagating from the input / output terminal 20p of the rectangular waveguide 20 to the input / output terminal 10p of the common waveguide 10 as shown in FIG. Since the protrusion 10qc blocks the propagation of the electric field component E4y between the rectangular waveguides 20 and 30, the amount of the electric field component leaking from the rectangular waveguide 20 to the rectangular waveguide 30 can be made very small. it can.
  • the signal output from the input / output terminal 10p of the common waveguide 10 is a polarization signal having an electric field E4 which is a vector sum of the electric field components E4x and E4y.
  • the input / output terminals 10p of the common waveguide 10 have the electric field E2 shown in FIG. 8 as shown in FIG.
  • the polarization signal and the polarization signal having the electric field E4 shown in FIG. 12 can be output.
  • These linearly polarized signals are orthogonal to each other.
  • the polarization demultiplexer 1 separates these polarization signals and performs the polarization.
  • One of the signals can be output from the input / output terminal 20p of the rectangular waveguide 20, and the other of the polarized signals can be output from the input / output terminal 30p of the rectangular waveguide 30.
  • the demultiplexer 1 of the first embodiment is input / output of the rectangular waveguides 20 and 30. It has a configuration in which the frequency characteristics of the polarization signals output from the terminals 20p and 30p can be made the same. Therefore, excellent demultiplexing characteristics (for example, isolation characteristics between input / output terminals, isolation characteristics between polarizations, and reflection characteristics) can be realized.
  • the conventional T-branched waveguide disclosed in Non-Patent Document 1 has two rectangular waveguides branched from the side wall of the circular waveguide, but has an asymmetric structure. Therefore, if the frequency characteristics of the polarization signal output from one of the two rectangular waveguides are optimized, the frequency characteristics of the polarization signal output from the other rectangular waveguide can be optimized. Will deteriorate. Further, if the matching between one rectangular waveguide and the circular waveguide is improved, there is a problem that the matching between the other rectangular waveguide and the circular waveguide is deviated. On the other hand, in the case of the present embodiment, as shown in FIGS.
  • the rectangular waveguides 20 and 30 are on a plane perpendicular to the tube axis direction of the common waveguide 10. Since they extend in opposite directions and are arranged so as to be geometrically symmetrical with respect to the tube axis Ax, the deflector 1 is geometrically arranged with respect to the XZ plane including the tube axis direction. It has a symmetrical structure. Therefore, as compared with the conventional T-branch type demultiplexer, the matching between the rectangular waveguides 20 and 30 and the common waveguide 10 can be easily adjusted.
  • FIG. 14 is a block diagram showing a schematic configuration of a demultiplexer 1A, which is a modification of the first embodiment.
  • the demultiplexer 1A has a configuration in which the 90-degree hybrid coupler 9 is connected to the input / output terminals 20p and 30p of the demultiplexer 1 of the first embodiment.
  • the 90-degree hybrid coupler 9 has four input / output terminals 9a, 9b, 9c, and 9d, and the input / output terminals 9a and 9b are coupled to the input / output terminals 20p and 30p of the demultiplexer 1, respectively.
  • the 90-degree hybrid coupler 9 transmits a polarization signal having a phase difference of 90 degrees to the input / output terminals 9a, Output from 9b to input / output terminals 30p and 20p.
  • a polarization signal is input to the input / output terminal 9c
  • the demultiplexer 1 can output right-handed circularly polarized light from the input / output terminal 10p, and the polarization signal is input to the input / output terminal 9d. In this case, the demultiplexer 1 can output left-handed circularly polarized light from the input / output terminal 10p.
  • the demultiplexer 1A can operate as a circularly polarized wave separator.
  • the input / output terminal 9c of the 90-degree hybrid coupler 9 can be used as a terminal for signal transmission
  • the input / output terminal 9d of the 90-degree hybrid coupler 9 can be used as a terminal for signal reception.
  • the demultiplexer 1A can be configured to have a geometrically symmetrical structure as a whole. Therefore, the demultiplexer 1A can have excellent demultiplexing characteristics.
  • FIG. 15 is a perspective view showing a schematic configuration of a demultiplexer 2 according to a second embodiment of the present invention.
  • 16 is a right side view of the demultiplexer 2 shown in FIG. 15
  • FIG. 17 is a rear view of the demultiplexer 2 shown in FIG. 15,
  • FIG. 18 is a rear view of FIG. It is a bottom view of the demultiplexer 2 shown.
  • the demultiplexer 2 of the second embodiment branches from the common waveguide 10 and the side wall of the common waveguide 10, similarly to the demultiplexer 1 of the first embodiment. It is configured to include rectangular waveguides 20 and 30.
  • the configuration of the demultiplexer 2 is the same as the configuration of the demultiplexer 1 of the first embodiment except for the connection form between the common waveguide 10 and the rectangular waveguide 20.
  • the rectangular waveguide 20 extends in the negative X-axis direction (first direction) from the side wall of the common waveguide 10 in the vicinity of the short-circuit end 10q of the common waveguide 10.
  • the rectangular waveguide 30 is arranged so as to extend in the Y-axis positive direction (second direction) from the side wall of the common waveguide 10 in the vicinity of the short-circuit end 10q.
  • the waveguide space 20h inside the rectangular waveguide 20 communicates with the waveguide space 10h of the common waveguide 10 via a coupling hole.
  • the protruding portion 10qc of the short-circuit end 10q faces the coupling hole formed between the rectangular waveguide 20 and the common waveguide 10, and is opposed to the rectangular waveguide 30. It also faces the coupling hole formed between the common waveguide 10.
  • Such a protrusion 10qc can serve a function of blocking signal propagation between the rectangular waveguides 20 and 30.
  • the rectangular waveguides 20 and 30 extend in directions orthogonal to each other (X-axis negative direction and Y-axis positive direction) on the plane orthogonal to the tube axis direction of the common waveguide 10. doing.
  • the cross-sectional shape of the rectangular waveguide 20 shown in FIG. 16 matches the cross-sectional shape of the rectangular waveguide 30 shown in FIG.
  • the input / output terminal 10p of the common waveguide 10 can output a polarization signal having an electric field E2 and a polarization signal having an electric field E5. These polarized signals are orthogonal to each other.
  • the polarization demultiplexer 2 separates these polarization signals and performs the polarization.
  • One of the signals can be output from the input / output terminal 20p of the rectangular waveguide 20, and the other of the polarized signals can be output from the input / output terminal 30p of the rectangular waveguide 30.
  • the demultiplexer 2 of the second embodiment is also output from the input / output terminals 20p and 30p of the rectangular waveguides 20 and 30, respectively. It has a configuration in which the frequency characteristics of the polarized signals can be made the same. Therefore, excellent demultiplexing characteristics can be realized. Further, as compared with the first embodiment, since the rectangular waveguides 20 and 30 are arranged at positions closer to each other, the size of the demultiplexer 2 can be reduced.
  • FIG. 20 is a perspective view showing a schematic configuration of a demultiplexer 3 according to a third embodiment of the present invention.
  • 21A is a right side view of the demultiplexer 3 shown in FIG. 20, and
  • FIG. 21B is a left side view of the demultiplexer 3 shown in FIG. 20.
  • the deflector 3 of the third embodiment includes a common waveguide 11 and rectangular waveguides 20 and 30 branching from the side wall of the common waveguide 11. There is.
  • the configuration of the demultiplexer 3 is the same as that of the demultiplexer 1 of the first embodiment, except that the common waveguide 11 of FIG. 20 is provided instead of the common waveguide 10 of the first embodiment. It is the same.
  • the common waveguide 11 is composed of a circular waveguide having a tube axis Ax parallel to the Z-axis direction, and has a short-circuit end 11q provided at one end in the tube axis direction and an open end provided at the other end in the tube axis direction.
  • the common waveguide 11 of the present embodiment can mainly propagate the TE 11 mode.
  • the short-circuit end 11q has an annular base end 11qb forming a plane orthogonal to the tube axis Ax, and a protrusion 11qc protruding from the base end 11qb toward the input / output terminal 11p.
  • the protrusion 11qc has an elliptical frustum shape eccentric from the tube axis Ax. As shown in FIGS. 21A and 21B, the protrusion 11qc faces the coupling hole formed between the rectangular waveguide 20 and the common waveguide 11, and the rectangular waveguide 30 and the common waveguide 11 face each other. It also faces the coupling hole formed between and.
  • the protrusion 11qc has an elliptical columnar tip portion 11qt on its own body portion, and the tip portion 11qt is offset (eccentric) from the tube axis Ax of the common waveguide 11. ) Is placed at the position. Since the effect of blocking signal propagation between the rectangular waveguides 20 and 30 is improved by such a tip portion 11qt, it is possible to improve the partial wave separation characteristic.
  • a columnar tip portion may be provided instead of the elliptical columnar tip portion 11qt.
  • the protrusion 11qc of the present embodiment has an inclined portion that changes linearly from the base end portion 11qb toward the input / output terminal 11p, but is limited to this. is not it.
  • the shape of the protrusion 11qc may be changed so as to have an inclined portion that changes in a curved shape from the base end portion 11qb toward the input / output terminal 11p.
  • 23A and 23B are diagrams schematically showing the configuration of the short-circuit end 11u in the common waveguide 11A of the first modification of the third embodiment. As shown in FIGS.
  • the short-circuit end 11u is an annular base end portion 11ub forming a plane orthogonal to the tube axis Ax, and the base end portion 11ub to the input / output terminal of the common waveguide 11A. It has a protrusion 11 uc that projects toward it.
  • the protrusion 11 uc has an elliptical columnar tip portion 11 ut on its own main body portion, and has an inclined portion that changes in a curved shape from the base end portion 11 ub toward the input / output terminal of the common waveguide 11 A. ing.
  • the protrusion 11qc of the present embodiment has a cross section that continuously changes from the base end portion 11qb toward the input / output terminal 11p, but is limited to this. It's not a thing.
  • the shape of the protrusion 11qc may be changed so as to have a cross section that gradually changes from the base end portion 11qb toward the input / output terminal 11p.
  • 24A and 24B are diagrams schematically showing the configuration of the short-circuit end 11s in the common waveguide 11B of the second modification of the third embodiment. As shown in FIGS.
  • the short-circuit end 11s is an annular base end portion 11sb forming a plane orthogonal to the tube axis Ax, and the base end portion 11sb to the input / output terminal of the common waveguide 11B. It has a protrusion 11 sc that projects toward it.
  • the protruding portion 11sc has an elliptical columnar tip portion 11st on its own main body portion, and has a cross section that gradually changes from the base end portion 11sb toward the input / output terminal of the common waveguide 11B. There is.
  • the short-circuit end 11v is an annular base end portion 11vb forming a plane orthogonal to the tube axis Ax, and the base end portion 11vb to the input / output terminal of the common waveguide 11C. It has a quadrangular pyramid-shaped protrusion 11 vc that protrudes toward it.
  • the protrusion 11vc has a square columnar tip portion 11vt on its own main body portion. Note that the example of FIG.
  • the 25A has a cross section that continuously changes from the base end portion 11vb toward the input / output terminal of the common waveguide 11C, but is not limited to this.
  • the shape of the protrusion 11vc may be changed so as to have a cross section that changes stepwise from the base end portion 11vb toward the input / output terminal of the common waveguide 11C.
  • the protrusion 11qc of the demultiplexer 3 has a tip portion 11qt, and the tip portion 11qt is a position offset (eccentric) from the tube axis Ax of the common waveguide 11. It is located in. Since the effect of blocking signal propagation between the rectangular waveguides 20 and 30 is improved by such a tip portion 11qt, it is possible to improve the partial wave separation characteristic.
  • FIG. 26 is a perspective view showing a schematic configuration of a demultiplexer 4 according to a fourth embodiment of the present invention.
  • FIG. 27 is a rear view of the demultiplexer 4 shown in FIG. 26.
  • the deflector 4 of the present embodiment is configured to include a common waveguide 12 and rectangular waveguides 21 and 31 branching from the side wall of the common waveguide 12.
  • the common waveguide 112 includes a waveguide portion 13 composed of a circular waveguide having a tube axis Ax parallel to the Z-axis direction, and a coupling guide that is longitudinally connected to the waveguide portion 13 and functions as an impedance transformer. It includes a waveguide 14.
  • An input / output terminal 13p is provided at one end of the waveguide portion 13.
  • the coupled waveguide section 14 a circular waveguide having a cross-sectional dimension different from that of the waveguide section 13 can be used.
  • one end of the coupled waveguide section 14 is provided with a short-circuit end 14q having a structure similar to that of any of the short-circuit ends of the first to third embodiments.
  • the rectangular waveguide (first rectangular waveguide) 21 is connected to a rectangular waveguide portion 22 having an input / output terminal 22p and a coupling guide that is vertically connected to the rectangular waveguide portion 22 and functions as an impedance modifier. It includes a waveguide 23.
  • a rectangular waveguide having a cross-sectional dimension different from that of the rectangular waveguide section 22 can be used.
  • the rectangular waveguide (second rectangular waveguide) 31 is connected to a rectangular waveguide portion 32 having an input / output terminal 32p and a coupling guide that is longitudinally connected to the rectangular waveguide portion 32 and functions as an impedance modifier. It includes a waveguide 33.
  • a rectangular waveguide having a cross-sectional shape different from that of the rectangular waveguide section 32 can be used.
  • Coupled waveguides 14, 23, 33 that function as an impedance transformer in this way, impedance matching can be easily achieved, and even better decentralized wave characteristics can be realized.
  • each of the coupled waveguide portions 14, 23, and 33 is provided in only one stage, but the present invention is not limited to this, and two or more stages of coupled waveguide portions are provided. You may.
  • 29A and 29B are diagrams showing a schematic configuration of a demultiplexer 4B of the second modification of the fourth embodiment.
  • the configuration of the demultiplexer 4B is as shown in FIG. 26, except that the short-circuited ends 14q and the coupled waveguides 23 and 33 form a continuous outer wall surface (cut plane). This is the same as the configuration of the deflector 4 of Form 4.
  • the short-circuit end 14q has the same structure as the short-circuit end 11q shown in FIG.
  • FIG. 30 is a graph showing a calculation example of the reflection characteristic of the demultiplexer 4B of the second modification
  • FIG. 31 is a graph showing a calculation example of the interpolar isolation characteristic of the demultiplexer 4B. is there.
  • the horizontal axis of the graphs of FIGS. 30 and 31 indicates the normalized frequency.
  • the vertical axis of the graph of FIG. 30 shows the amount of reflection (unit: dB) of the input / output terminals 22p and 32p of the rectangular waveguides 21 and 31.
  • the solid line represents the reflection amount of the input / output terminal 22p of the rectangular waveguide 21
  • the dotted line represents the reflection amount of the input / output terminal 32p of the rectangular waveguide 31.
  • the vertical axis of the graph of FIG. 31 is the amount (isolation between polarizations) that one linearly polarized wave input from the input / output terminal 13p of the common waveguide 12 is output to the input / output terminal (branch terminal) that is not originally output.
  • the ratio: XPD) (unit: dB) is shown.
  • the solid line represents the amount output to the input / output terminal 22p of the rectangular waveguide 21
  • the dotted line represents the amount output to the input / output terminal 32p of the rectangular waveguide 31.
  • both the solid line and the dotted line almost overlap and show the same decentralized wave characteristics, and the reflection amount is 25 dB and the isolation between polarizations is 25 dB or more in a specific band of 15% or more. It was confirmed that good partial isolation characteristics can be obtained.
  • Embodiments 1 to 4 and modified examples thereof according to the present invention have been described above with reference to the drawings, but embodiments 1 to 4 and modified examples thereof are examples of the present invention, and various other examples. There may also be embodiments. Within the scope of the present invention, it is possible to freely combine the above embodiments 1 to 4, modify any component of each embodiment, or omit any component of each embodiment.
  • the above-mentioned common waveguides 10, 11, 11A to 11C, 12 are all circular waveguides, but the present invention is not limited thereto.
  • a square waveguide may be used instead of the circular waveguide.
  • a square waveguide it has the effect of facilitating manufacturing by cutting.
  • the 90-degree hybrid coupler 9 of FIG. 14 may be connected to the demultiplexers 2 to 4 of the second to fourth embodiments.
  • the demultiplexer according to the present invention is suitable for use in, for example, a radio telescope for astronomical observation, a satellite communication system, and an antenna device in a satellite broadcasting system.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

A polarization coupler (1) is provided with: a common wave guide tube (10) that has a short-circuited end (10q) and a input/output terminal (10p) and that has a wave guide space (10h) for allowing transmission of a first polarized wave and a second polarized wave orthogonal to each other; a first rectangular wave guide tube (20) that is connected to the lateral wall of the common wave guide tube (10) and that extends in a first direction intersecting with the tube axis (Ax) direction; and a second rectangular wave guide tube (30) that is connected to the lateral wall of the common wave guide tube (10) and that extends in a second direction intersecting with the tube axis (Ax) direction. The short-circuited end (10q) has a base end portion (10qb) that forms a surface orthogonal to the tube axis (Ax) direction. The first rectangular wave guide tube (20) has a pair of wide wall surfaces that are inclined at an angle of 45 degrees with respect to the base end portion (10qb) on a surface perpendicular to the first direction, whereas the second rectangular wave guide tube (30) has a pair of wide wall surfaces that are inclined at an angle of 45 degrees with respect to the base end portion (10qb) on a surface perpendicular to the second direction.

Description

偏分波器Demultiplexer
 本発明は、主として、VHF(Very High Frequency)帯、UHF(Ultra High Frequency)帯、マイクロ波帯及びミリ波帯などの周波数帯において複数の偏波を分離する偏分波器に関するものである。 The present invention mainly relates to a demultiplexer that separates a plurality of polarized waves in frequency bands such as VHF (Very High Frequency) band, UHF (Ultra High Frequency) band, microwave band and millimeter wave band.
 衛星通信システムなどの無線通信システムでは、周波数の有効利用を目的として互いに直交する複数の偏波が使用されており、当該複数の偏波を分離するための偏分波器(Ortho-Mode-Transducer,OMT)が必要である。この種の偏分波器は、たとえば、下記の非特許文献1に開示されている。 In wireless communication systems such as satellite communication systems, a plurality of polarizations orthogonal to each other are used for the purpose of effective use of frequencies, and an ortho-mode-transducer for separating the plurality of polarizations. , OMT) is required. This type of demultiplexer is disclosed, for example, in Non-Patent Document 1 below.
 非特許文献1には、一端に短絡端を有するとともに他端に入出力端子を有する円形導波管と、当該短絡端近傍における円形導波管の側壁から互いに逆方向へ分岐するように延在する2本の矩形導波管とを備えたT分岐形偏分波器(T-junction Ortho-Mode-Transducer)が開示されている。当該2本の矩形導波管のうちの第1の矩形導波管の広壁面は、円形導波管の管軸方向と平行となるように配置されており、当該2本の矩形導波管のうちの第2の矩形導波管の広壁面は、円形導波管の管軸方向と直交するように配置されている。このようなT分岐形偏分波器は、円形導波管の入出力端子から入力された互いに直交する2つの直線偏波を分離し、当該2つの直線偏波の一方を第1の矩形導波管の分岐端子から出力し、当該2つの直線偏波の他方を第2の矩形導波管の分岐端子から出力する。 In Non-Patent Document 1, a circular waveguide having a short-circuit end at one end and an input / output terminal at the other end and a circular waveguide extending in the vicinity of the short-circuit end so as to branch in opposite directions from each other. A T-junction Ortho-Mode-Transducer equipped with two rectangular waveguides is disclosed. The wide wall surface of the first rectangular waveguide among the two rectangular waveguides is arranged so as to be parallel to the tube axis direction of the circular waveguide, and the two rectangular waveguides are arranged. The wide wall surface of the second rectangular waveguide is arranged so as to be orthogonal to the tube axis direction of the circular waveguide. Such a T-branched demultiplexer separates two linearly polarized waves that are orthogonal to each other input from the input / output terminals of a circular waveguide, and one of the two linearly polarized waves is first rectangularly conducted. It is output from the branch terminal of the wave tube, and the other of the two linearly polarized waves is output from the branch terminal of the second rectangular waveguide.
 非特許文献1に開示されている従来のT分岐形偏分波器では、第1及び第2の矩形導波管の分岐端子間の相互の影響を低減させて良好な偏分波特性を得るために、第1の矩形導波管の広壁面は、円形導波管の管軸方向と平行となるように配置され、第2の矩形導波管の広壁面は、円形導波管の管軸方向と直交するように配置される。このように従来のT分岐形偏分波器は、円形導波管の管軸に関して幾何学的に非対称な構成を有しているので、第1及び第2の矩形導波管の分岐端子から出力される偏波信号の周波数特性が異なるものとなる。このことが偏分波特性の向上の妨げとなるという課題がある。 In the conventional T-branch type demultiplexer disclosed in Non-Patent Document 1, the mutual influence between the branch terminals of the first and second rectangular waveguides is reduced to obtain good demultiplexing characteristics. In order to obtain, the wide wall surface of the first rectangular waveguide is arranged so as to be parallel to the tube axis direction of the circular waveguide, and the wide wall surface of the second rectangular waveguide is of the circular waveguide. Arranged so as to be orthogonal to the direction of the waveguide. As described above, the conventional T-branch type deflector has a geometrically asymmetrical configuration with respect to the tube axis of the circular waveguide, and therefore, from the branch terminal of the first and second rectangular waveguides. The frequency characteristics of the output polarization signals will be different. There is a problem that this hinders the improvement of the demultiplexing characteristic.
 上記に鑑みて本発明の目的は、分離された偏波信号の周波数特性を同じにすることができ、優れた偏分波特性を実現する偏分波器を提供することである。 In view of the above, an object of the present invention is to provide a demultiplexer capable of making the frequency characteristics of the separated polarized signals the same and realizing excellent demultiplexing characteristics.
 本発明の一態様による偏分波器は、自己の管軸方向における一端に設けられた短絡端、及び、自己の当該管軸方向における他端に設けられた入出力端子を有するとともに、前記短絡端と前記入出力端子との間で互いに直交する第1の偏波成分及び第2の偏波成分を伝搬させる導波空間を有する共通導波管と、互いに対向する一対の広壁面及び互いに対向する一対の狭壁面を有し、前記共通導波管の側壁に接続されて前記管軸方向と直交する第1の方向に延在する第1の矩形導波管と、互いに対向する一対の広壁面及び互いに対向する一対の狭壁面を有し、前記共通導波管の側壁に接続されて前記管軸方向と直交する第2の方向に延在する第2の矩形導波管とを備え、前記短絡端は、前記管軸方向と直交する面を形成する基端部を有し、前記第1の矩形導波管の当該一対の広壁面は、前記第1の方向とは垂直な面において前記基端部に対して45度の角度で傾斜し、前記第2の矩形導波管の当該一対の広壁面は、前記第2の方向とは垂直な面において前記基端部に対して45度の角度で傾斜していることを特徴とする。 The deflector according to one aspect of the present invention has a short-circuit end provided at one end in the axial direction of its own tube and an input / output terminal provided at the other end in the axial direction of its own tube. A common waveguide having a waveguide space for propagating a first polarization component and a second polarization component that are orthogonal to each other between the end and the input / output terminal, a pair of wide walls facing each other, and facing each other. A pair of wide waveguides facing each other and a first rectangular waveguide connected to the side wall of the common waveguide and extending in a first direction orthogonal to the direction of the tube axis. It has a wall surface and a pair of narrow wall surfaces facing each other, and includes a second rectangular waveguide connected to the side wall of the common waveguide and extending in a second direction orthogonal to the tube axis direction. The short-circuit end has a base end portion forming a surface orthogonal to the tube axis direction, and the pair of wide wall surfaces of the first rectangular waveguide is on a surface perpendicular to the first direction. The pair of wide walls of the second rectangular waveguide, inclined at an angle of 45 degrees with respect to the proximal end, are 45 relative to the proximal end in a plane perpendicular to the second direction. It is characterized by being tilted at an angle of degrees.
 本発明の一態様による偏分波器は、第1及び第2の矩形導波管の入出力端子からそれぞれ出力される偏波信号の周波数特性を同じにすることができる構成を有しているので、優れた偏分波特性を実現することができる。 The demultiplexer according to one aspect of the present invention has a configuration capable of making the frequency characteristics of the polarized signals output from the input / output terminals of the first and second rectangular waveguides the same. Therefore, excellent decentralized wave characteristics can be realized.
本発明に係る実施の形態1の偏分波器の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the partial duplexer of Embodiment 1 which concerns on this invention. 図1に示される偏分波器の正面図である。It is a front view of the demultiplexer shown in FIG. 図1に示される偏分波器の底面図である。It is a bottom view of the demultiplexer shown in FIG. 図4Aは、図1に示される偏分波器の右側面図であり、図4Bは、図1に示される偏分波器の左側面図である。4A is a right side view of the demultiplexer shown in FIG. 1, and FIG. 4B is a left side view of the demultiplexer shown in FIG. 実施の形態1の矩形導波管に入力される直線偏波信号の電界を概念的に示す説明図である。It is explanatory drawing which conceptually shows the electric field of the linearly polarized wave signal input to the rectangular waveguide of Embodiment 1. 実施の形態1の偏分波器の内部を伝搬する偏波信号成分を表す説明図である。It is explanatory drawing which shows the polarization signal component propagating in the inside of the demultiplexer of Embodiment 1. 実施の形態1の偏分波器の内部を伝搬する偏波信号成分を表す説明図である。It is explanatory drawing which shows the polarization signal component propagating in the inside of the demultiplexer of Embodiment 1. 実施の形態1の共通導波管から出力される偏波信号を概念的に示す説明図である。It is explanatory drawing which conceptually shows the polarization signal which is output from the common waveguide of Embodiment 1. 実施の形態1の矩形導波管に入力される直線偏波信号の電界を概念的に示す説明図である。It is explanatory drawing which conceptually shows the electric field of the linearly polarized wave signal input to the rectangular waveguide of Embodiment 1. 実施の形態1の偏分波器の内部を伝搬する偏波信号成分を表す説明図である。It is explanatory drawing which shows the polarization signal component propagating in the inside of the demultiplexer of Embodiment 1. 実施の形態1の偏分波器の内部を伝搬する偏波信号成分を表す説明図である。It is explanatory drawing which shows the polarization signal component propagating in the inside of the demultiplexer of Embodiment 1. 実施の形態1の共通導波管から出力される偏波信号を概念的に示す説明図である。It is explanatory drawing which conceptually shows the polarization signal which is output from the common waveguide of Embodiment 1. 実施の形態1の共通導波管から出力される2つの偏波信号を概念的に示す説明図である。It is explanatory drawing which conceptually shows two polarization signals output from the common waveguide of Embodiment 1. 実施の形態1の変形例である偏分波器の概略構成を示すブロック図である。It is a block diagram which shows the schematic structure of the demultiplexer which is a modification of Embodiment 1. 本発明に係る実施の形態2の偏分波器の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the partial duplexer of Embodiment 2 which concerns on this invention. 図15に示される偏分波器の右側面図である。FIG. 15 is a right side view of the demultiplexer shown in FIG. 図15に示される偏分波器の背面図である。It is a rear view of the demultiplexer shown in FIG. 図15に示される偏分波器の底面図である。It is a bottom view of the demultiplexer shown in FIG. 実施の形態1の共通導波管から出力される2つの直線偏波信号を概念的に示す説明図である。It is explanatory drawing which conceptually shows two linearly polarized wave signals output from the common waveguide of Embodiment 1. 本発明に係る実施の形態3の偏分波器の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the partial demultiplexer of Embodiment 3 which concerns on this invention. 図21Aは、図20に示される偏分波器の右側面図であり、図21Bは、図20に示される偏分波器の左側面図である。21A is a right side view of the demultiplexer shown in FIG. 20, and FIG. 21B is a left side view of the demultiplexer shown in FIG. 20. 図22A及び図22Bは、実施の形態3の短絡端の構成を概略的に示す図である。22A and 22B are diagrams schematically showing the configuration of the short-circuit end of the third embodiment. 図23A及び図23Bは、実施の形態3の第1変形例における短絡端の構成を概略的に示す図である。23A and 23B are diagrams schematically showing the configuration of the short-circuit end in the first modification of the third embodiment. 図24A及び図24Bは、実施の形態3の第2変形例における短絡端の構成を概略的に示す図である。24A and 24B are diagrams schematically showing the configuration of the short-circuit end in the second modification of the third embodiment. 図25A及び図25Bは、実施の形態3の第3変形例における短絡端の構成を概略的に示す図である。25A and 25B are diagrams schematically showing the configuration of the short-circuit end in the third modification of the third embodiment. 本発明に係る実施の形態4の偏分波器の概略構成を示す斜視図である。It is a perspective view which shows the schematic structure of the partial duplexer of Embodiment 4 which concerns on this invention. 図26に示される偏分波器の背面図である。It is a rear view of the demultiplexer shown in FIG. 実施の形態4の第1変形例の偏分波器の背面図である。It is a rear view of the demultiplexing device of the 1st modification of Embodiment 4. 図29A及び図29Bは、実施の形態4の第2変形例の偏分波器の概略構成を示す斜視図である。29A and 29B are perspective views showing a schematic configuration of a demultiplexer according to a second modification of the fourth embodiment. 実施の形態4の第2変形例の偏分波器についての反射特性の計算例を示すグラフである。It is a graph which shows the calculation example of the reflection characteristic about the demultiplexer of the 2nd modification of Embodiment 4. 実施の形態4の第2変形例の偏分波器についての偏波間アイソレーション特性の計算例を示すグラフである。It is a graph which shows the calculation example of the isolation characteristic between polarizations about the demultiplexer of the 2nd modification of Embodiment 4.
 以下、図面を参照しつつ、本発明に係る種々の実施の形態について詳細に説明する。なお、図面全体において同一符号を付された構成要素は、同一構成及び同一機能を有するものとする。また図面に示されるX軸、Y軸及びZ軸は、互いに直交するものとする。 Hereinafter, various embodiments according to the present invention will be described in detail with reference to the drawings. It should be noted that the components having the same reference numerals in the entire drawing shall have the same configuration and the same function. Further, the X-axis, Y-axis and Z-axis shown in the drawings shall be orthogonal to each other.
実施の形態1.
 図1は、本発明に係る実施の形態1の偏分波器1の概略構成を示す斜視図である。また、図2は、図1に示される偏分波器の正面図であり、図3は、図1に示される偏分波器の底面図であり、図4Aは、図1に示される偏分波器の右側面図であり、図4Bは、図1に示される偏分波器の左側面図である。
Embodiment 1.
FIG. 1 is a perspective view showing a schematic configuration of a demultiplexer 1 according to a first embodiment of the present invention. 2 is a front view of the demultiplexer shown in FIG. 1, FIG. 3 is a bottom view of the demultiplexer shown in FIG. 1, and FIG. 4A is a bias shown in FIG. It is a right side view of the demultiplexer, and FIG. 4B is a left side view of the demultiplexer shown in FIG.
 図1に示されるように本実施の形態の偏分波器1は、共通導波管10と、共通導波管10の側壁から分岐する矩形導波管20,30とを備えて構成されている。共通導波管10は、Z軸方向に平行な管軸Axをもつ円形導波管からなり、管軸方向一端に設けられた短絡端10qと、管軸方向他端に設けられた開放端である入出力端子10pと、短絡端10qと入出力端子10pとの間で互いに直交する2つの偏波成分(第1及び第2の偏波成分)からなる電磁波を管軸方向に伝搬させる導波空間10hとを有している。本実施の形態の共通導波管10は、主にTE11モードを伝搬させることができる。 As shown in FIG. 1, the deflector 1 of the present embodiment is configured to include a common waveguide 10 and rectangular waveguides 20 and 30 branching from the side wall of the common waveguide 10. There is. The common waveguide 10 is composed of a circular waveguide having a tube axis Ax parallel to the Z-axis direction, and has a short-circuit end 10q provided at one end in the tube axis direction and an open end provided at the other end in the tube axis direction. A waveguide that propagates an electromagnetic wave consisting of two polarization components (first and second polarization components) orthogonal to each other between a certain input / output terminal 10p, a short-circuit end 10q, and the input / output terminal 10p in the tube axis direction. It has a space of 10h. The common waveguide 10 of the present embodiment can mainly propagate the TE 11 mode.
 短絡端10qは、管軸Axと直交する平面を形成する環状の基端部10qbと、この基端部10qbから入出力端子10pに向けて突出する突起部10qcとを有している。図1~図4に示されるように突起部10qcは、管軸Axに関して幾何学的に対称な円錐台形状を有し、突起部10qcの先端部分の位置は管軸Axと一致する。本実施の形態の突起部10qcは、基端部10qbから入出力端子10pに向かうに従って連続的に変化する断面を有しているが、これに限定されるものではない。基端部10qbから入出力端子10pに向かうに従って段階的に変化する断面を有するように突起部10qcの形状が変更されてもよい。 The short-circuit end 10q has an annular base end portion 10qb forming a plane orthogonal to the tube axis Ax, and a protrusion 10qc protruding from the base end portion 10qb toward the input / output terminal 10p. As shown in FIGS. 1 to 4, the protrusion 10qc has a truncated cone shape geometrically symmetrical with respect to the tube axis Ax, and the position of the tip portion of the protrusion 10qc coincides with the tube axis Ax. The protrusion 10qc of the present embodiment has a cross section that continuously changes from the base end portion 10qb toward the input / output terminal 10p, but is not limited thereto. The shape of the protrusion 10qc may be changed so as to have a cross section that gradually changes from the base end portion 10qb toward the input / output terminal 10p.
 一方、矩形導波管(第1の矩形導波管)20は、図1~図3及び図4Bに示されるように、互いに対向する一対の広壁面と、互いに対向する一対の狭壁面とからなる内壁面を有している。ここで、広壁面とは、図4Bに示されるように矩形導波管20の矩形断面の長辺を形成している内壁面を意味し、狭壁面とは、その矩形断面の短辺を形成している内壁面を意味する。また矩形導波管20は、共通導波管10の短絡端10qの近傍にて共通導波管10の側壁からY軸負方向(第1の方向)に延在するように配置されている。矩形導波管20の内部の導波空間20hは、結合孔を介して共通導波管10の導波空間10hと連通している。矩形導波管20の一端には、入出力端子(分岐端子)20pが設けられている。 On the other hand, the rectangular waveguide (first rectangular waveguide) 20 is composed of a pair of wide wall surfaces facing each other and a pair of narrow walls facing each other, as shown in FIGS. 1 to 3 and 4B. It has an inner wall surface. Here, the wide wall surface means an inner wall surface forming the long side of the rectangular cross section of the rectangular waveguide 20 as shown in FIG. 4B, and the narrow wall surface forms the short side of the rectangular cross section. It means the inner wall surface. Further, the rectangular waveguide 20 is arranged so as to extend from the side wall of the common waveguide 10 in the negative direction of the Y axis (first direction) in the vicinity of the short-circuit end 10q of the common waveguide 10. The waveguide space 20h inside the rectangular waveguide 20 communicates with the waveguide space 10h of the common waveguide 10 via a coupling hole. An input / output terminal (branch terminal) 20p is provided at one end of the rectangular waveguide 20.
 矩形導波管(第2の矩形導波管)30は、矩形導波管20と同一の導波路構造を有している。図1~図3及び図4Aに示されるように、矩形導波管30は、互いに対向する一対の広壁面と、互いに対向する一対の狭壁面とからなる内壁面を有している。ここで、広壁面とは、図4Aに示されるように矩形導波管30の矩形断面の長辺を形成している内壁面を意味し、狭壁面とは、その矩形断面の短辺を形成している内壁面を意味する。また矩形導波管30は、共通導波管10の短絡端10qの近傍にて共通導波管10の側壁からY軸正方向(第2の方向)に延在するように配置されている。矩形導波管30の内部の導波空間30hは、結合孔を介して共通導波管10の導波空間10hと連通している。矩形導波管30の一端には、入出力端子(分岐端子)30pが設けられている。 The rectangular waveguide (second rectangular waveguide) 30 has the same waveguide structure as the rectangular waveguide 20. As shown in FIGS. 1 to 3 and 4A, the rectangular waveguide 30 has an inner wall surface composed of a pair of wide wall surfaces facing each other and a pair of narrow wall surfaces facing each other. Here, the wide wall surface means an inner wall surface forming the long side of the rectangular cross section of the rectangular waveguide 30 as shown in FIG. 4A, and the narrow wall surface forms the short side of the rectangular cross section. It means the inner wall surface. Further, the rectangular waveguide 30 is arranged so as to extend in the Y-axis positive direction (second direction) from the side wall of the common waveguide 10 in the vicinity of the short-circuit end 10q of the common waveguide 10. The waveguide space 30h inside the rectangular waveguide 30 communicates with the waveguide space 10h of the common waveguide 10 via a coupling hole. An input / output terminal (branch terminal) 30p is provided at one end of the rectangular waveguide 30.
 図2,図4A及び図4Bに示されるように短絡端10qの突起部10qcは、矩形導波管20と共通導波管10との間に形成された結合孔と対向し、矩形導波管30と共通導波管10との間に形成された結合孔とも対向している。このような突起部10qcは、矩形導波管20,30間の信号伝搬を遮断する機能を果たすことができる。 As shown in FIGS. 2, 4A and 4B, the protrusion 10qc at the short-circuit end 10q faces the coupling hole formed between the rectangular waveguide 20 and the common waveguide 10, and is a rectangular waveguide. It also faces the coupling hole formed between 30 and the common waveguide 10. Such a protrusion 10qc can serve a function of blocking signal propagation between the rectangular waveguides 20 and 30.
 上記した矩形導波管20,30は、共通導波管10の管軸方向とは垂直な面において互いに逆方向(Y軸負方向及びY軸正方向)にそれぞれ延在し、かつ管軸Axに関して幾何学的に対称となるように配置されている。図4Aに示されるように矩形導波管30の広壁面は、X-Z平面において短絡端10qの基端部10qbに対して反時計回りでθ1=45°の角度にて傾斜している。一方、図4Bに示されるように矩形導波管20の広壁面は、X-Z平面において短絡端10qの基端部10qbに対して時計回りでθ2=45°の角度にて傾斜している。 The rectangular waveguides 20 and 30 described above extend in opposite directions (Y-axis negative direction and Y-axis positive direction) on a plane perpendicular to the tube axis direction of the common waveguide 10, respectively, and the tube axis Ax. They are arranged so that they are geometrically symmetrical with respect to each other. As shown in FIG. 4A, the wide wall surface of the rectangular waveguide 30 is inclined counterclockwise at an angle of θ1 = 45 ° with respect to the base end portion 10qb of the short-circuit end 10q in the XX plane. On the other hand, as shown in FIG. 4B, the wide wall surface of the rectangular waveguide 20 is inclined clockwise at an angle of θ2 = 45 ° with respect to the base end portion 10qb of the short-circuit end 10q in the XX plane. ..
 このような偏分波器1は、金属合金材料を加工し溶接することにより作製されればよい。あるいは、偏分波器1は、金属3Dプリンタを用いてアルミ合金(AlSi10Mg)などの金属粉末を積層造形することにより共通導波管10及び矩形導波管20,30を一体的に形成することにより作製されてもよい。たとえば、金属3Dプリンタの方式としては、レーザ焼結法(Selective Laser Sintering,SLS)、直接金属レーザ焼結法(Direct Metal Laser Sintering,DMLS)、レーザ溶融法(Selective Laser Melting,SLM)、電子ビーム溶解法(Electron Beam Melting,EBM)またはレーザ直接積層法(Laser Engineering Net Shaping,LENS)が使用可能である。なお、後述する実施の形態2~4及びこれらの変形例も、偏分波器1と同様の方法で作製可能である。 Such a demultiplexer 1 may be manufactured by processing and welding a metal alloy material. Alternatively, the demultiplexer 1 integrally forms the common waveguide 10 and the rectangular waveguides 20 and 30 by laminating and molding a metal powder such as an aluminum alloy (AlSi 10 Mg) using a metal 3D printer. It may be produced by the above. For example, as a method of a metal 3D printer, a laser sintering method (Selective Laser Sintering, SLS), a direct metal laser sintering method (DMLS), a laser melting method (Selective Laser Melting, SLM), and an electron beam are used. A melting method (Electron Beam Melting, EBM) or a laser direct laminating method (Laser Engineering Net Shipping, LENS) can be used. It should be noted that the second to fourth embodiments described later and modified examples thereof can also be produced by the same method as that of the demultiplexer 1.
 金属3Dプリンタを用いる場合、設計データに従って金属合金材料を1層ずつ積層することで偏分波器1が造形されるので、その積層方向とは垂直な平面状の板を造形することが難しい。上記のとおり、非特許文献1に開示されている従来のT分岐形偏分波器は、円形導波管の側壁から互いに逆方向へ分岐するように延在する2本の矩形導波管を有し、これら2本の矩形導波管は、いずれも円形導波管の管軸方向とは垂直な壁面を有している。このため、金属3Dプリンタを用いてそれら矩形導波管の壁面を積層造形する場合には、円形導波管の管軸方向を積層方向から所定角度(たとえば45度)傾斜させなければならないが、これは円形導波管の造形精度の低下、あるいは積層面積の増大による高コスト化を生じさせるおそれがある。これに対し、本実施の形態の偏分波器1の場合、図4A及び図4Bに示されるように、矩形導波管20,30の広壁面は共通導波管10の管軸方向に対して45度で傾斜しているので、金属3Dプリンタは、共通導波管10の管軸方向に沿って金属合金材料を積層造形することができる。これにより、共通導波管10の造形精度の向上及び偏分波器1の低コスト化を実現することができる。 When using a metal 3D printer, it is difficult to form a flat plate perpendicular to the stacking direction because the demultiplexer 1 is formed by laminating metal alloy materials one layer at a time according to the design data. As described above, the conventional T-branch waveguide disclosed in Non-Patent Document 1 has two rectangular waveguides extending from the side wall of the circular waveguide so as to branch in opposite directions. Both of these two rectangular waveguides have a wall surface perpendicular to the tube axis direction of the circular waveguide. Therefore, when the wall surfaces of these rectangular waveguides are laminated and modeled using a metal 3D printer, the axial direction of the circular waveguide must be tilted by a predetermined angle (for example, 45 degrees) from the stacking direction. This may reduce the molding accuracy of the circular waveguide or increase the cost due to the increase in the laminated area. On the other hand, in the case of the demultiplexer 1 of the present embodiment, as shown in FIGS. 4A and 4B, the wide wall surfaces of the rectangular waveguides 20 and 30 are oriented with respect to the tube axis direction of the common waveguide 10. Since it is tilted at 45 degrees, the metal 3D printer can laminate and model the metal alloy material along the tube axis direction of the common waveguide 10. As a result, it is possible to improve the modeling accuracy of the common waveguide 10 and reduce the cost of the demultiplexer 1.
 次に、図5~図13を参照しつつ実施の形態1の偏分波器1の動作について説明する。 Next, the operation of the demultiplexer 1 of the first embodiment will be described with reference to FIGS. 5 to 13.
 先ず、矩形導波管30の入出力端子30pに直線偏波信号が入力される場合の動作を以下に説明する。図5は、矩形導波管30の入出力端子30pに入力された直線偏波信号の電界E1を概念的に示す図である。この電界E1は、互いに直交する2つの電界成分E1x,E1zのベクトル和として考えることができる。このとき、電界成分E1xは、図6に示されるように矩形導波管30の入出力端子30pから共通導波管10の入出力端子10pに伝搬する際に電界成分E2xに変換される。突起部10qcは、矩形導波管20,30間の電界成分E1xの伝搬を遮断するので、矩形導波管30から矩形導波管20へ漏れる電界成分の量は非常に小さなものとすることができる。 First, the operation when a linearly polarized wave signal is input to the input / output terminal 30p of the rectangular waveguide 30 will be described below. FIG. 5 is a diagram conceptually showing the electric field E1 of the linearly polarized wave signal input to the input / output terminal 30p of the rectangular waveguide 30. This electric field E1 can be considered as the vector sum of two electric field components E1x and E1z that are orthogonal to each other. At this time, the electric field component E1x is converted into the electric field component E2x when propagating from the input / output terminal 30p of the rectangular waveguide 30 to the input / output terminal 10p of the common waveguide 10 as shown in FIG. Since the protrusion 10qc blocks the propagation of the electric field component E1x between the rectangular waveguides 20 and 30, the amount of the electric field component leaking from the rectangular waveguide 30 to the rectangular waveguide 20 can be made very small. it can.
 一方、電界成分E1zは、図7に示されるように矩形導波管30の入出力端子30pから共通導波管10の入出力端子10pに伝搬する際に電界成分E2yに変換される。突起部10qcは、矩形導波管20,30間の電界成分E1zの伝搬を遮断するので、矩形導波管30から矩形導波管20へ漏れる電界成分の量は非常に小さなものとすることができる。図8に示されるように共通導波管10の入出力端子10pから出力される信号は、電界成分E2x,E2yのベクトル和である電界E2を有する偏波信号となる。 On the other hand, the electric field component E1z is converted into the electric field component E2y when propagating from the input / output terminal 30p of the rectangular waveguide 30 to the input / output terminal 10p of the common waveguide 10 as shown in FIG. Since the protrusion 10qc blocks the propagation of the electric field component E1z between the rectangular waveguides 20 and 30, the amount of the electric field component leaking from the rectangular waveguide 30 to the rectangular waveguide 20 can be made very small. it can. As shown in FIG. 8, the signal output from the input / output terminal 10p of the common waveguide 10 is a polarization signal having an electric field E2 which is a vector sum of the electric field components E2x and E2y.
 次に、矩形導波管20の入出力端子20pに直線偏波信号が入力される場合の動作を以下に説明する。図9は、矩形導波管20の入出力端子20pに入力された直線偏波信号の電界E3を概念的に示す図である。この電界E3は、互いに直交する2つの電界成分E3x,E3zのベクトル和として考えることができる。このとき、電界成分E3xは、図10に示されるように矩形導波管20の入出力端子20pから共通導波管10の入出力端子10pに伝搬する際に電界成分E4xに変換される。突起部10qcは、矩形導波管20,30間の電界成分E4xの伝搬を遮断するので、矩形導波管20から矩形導波管30へ漏れる電界成分の量は非常に小さなものとすることができる。 Next, the operation when a linearly polarized wave signal is input to the input / output terminal 20p of the rectangular waveguide 20 will be described below. FIG. 9 is a diagram conceptually showing the electric field E3 of the linearly polarized wave signal input to the input / output terminal 20p of the rectangular waveguide 20. This electric field E3 can be considered as the vector sum of two electric field components E3x and E3z that are orthogonal to each other. At this time, the electric field component E3x is converted into the electric field component E4x when propagating from the input / output terminal 20p of the rectangular waveguide 20 to the input / output terminal 10p of the common waveguide 10 as shown in FIG. Since the protrusion 10qc blocks the propagation of the electric field component E4x between the rectangular waveguides 20 and 30, the amount of the electric field component leaking from the rectangular waveguide 20 to the rectangular waveguide 30 can be made very small. it can.
 一方、電界成分E3zは、図11に示されるように矩形導波管20の入出力端子20pから共通導波管10の入出力端子10pに伝搬する際に電界成分E4yに変換される。突起部10qcは、矩形導波管20,30間の電界成分E4yの伝搬を遮断するので、矩形導波管20から矩形導波管30へ漏れる電界成分の量は非常に小さなものとすることができる。図12に示されるように共通導波管10の入出力端子10pから出力される信号は、電界成分E4x,E4yのベクトル和である電界E4を有する偏波信号となる。 On the other hand, the electric field component E3z is converted into the electric field component E4y when propagating from the input / output terminal 20p of the rectangular waveguide 20 to the input / output terminal 10p of the common waveguide 10 as shown in FIG. Since the protrusion 10qc blocks the propagation of the electric field component E4y between the rectangular waveguides 20 and 30, the amount of the electric field component leaking from the rectangular waveguide 20 to the rectangular waveguide 30 can be made very small. it can. As shown in FIG. 12, the signal output from the input / output terminal 10p of the common waveguide 10 is a polarization signal having an electric field E4 which is a vector sum of the electric field components E4x and E4y.
 したがって、入出力端子20p,30pにそれぞれ直線偏波信号が入力された場合には、図13に示されるように共通導波管10の入出力端子10pは、図8に示した電界E2を有する偏波信号と、図12に示した電界E4を有する偏波信号とを出力することができる。これら直線偏波信号は互いに直交する。言い換えると、共通導波管10の入出力端子10pから互いに直交する偏波信号を含む電磁波が入力された場合には、偏分波器1は、これら偏波信号を分離して、当該偏波信号の一方を矩形導波管20の入出力端子20pから出力することができ、当該偏波信号の他方を矩形導波管30の入出力端子30pから出力することができる。 Therefore, when linearly polarized signals are input to the input / output terminals 20p and 30p, respectively, the input / output terminals 10p of the common waveguide 10 have the electric field E2 shown in FIG. 8 as shown in FIG. The polarization signal and the polarization signal having the electric field E4 shown in FIG. 12 can be output. These linearly polarized signals are orthogonal to each other. In other words, when electromagnetic waves including polarization signals that are orthogonal to each other are input from the input / output terminals 10p of the common waveguide 10, the polarization demultiplexer 1 separates these polarization signals and performs the polarization. One of the signals can be output from the input / output terminal 20p of the rectangular waveguide 20, and the other of the polarized signals can be output from the input / output terminal 30p of the rectangular waveguide 30.
 以上に説明したとおり、非特許文献1に開示されている従来のT分岐形偏分波器とは異なり、実施の形態1の偏分波器1は、矩形導波管20,30の入出力端子20p,30pからそれぞれ出力される偏波信号の周波数特性を同じにすることができる構成を有している。このため、優れた偏分波特性(たとえば、入出力端子間アイソレーション特性、偏波間アイソレーション特性及び反射特性)を実現することができる。 As described above, unlike the conventional T-branch type demultiplexer disclosed in Non-Patent Document 1, the demultiplexer 1 of the first embodiment is input / output of the rectangular waveguides 20 and 30. It has a configuration in which the frequency characteristics of the polarization signals output from the terminals 20p and 30p can be made the same. Therefore, excellent demultiplexing characteristics (for example, isolation characteristics between input / output terminals, isolation characteristics between polarizations, and reflection characteristics) can be realized.
 非特許文献1に開示されている従来のT分岐形偏分波器は、円形導波管の側壁から分岐する2本の矩形導波管を有するが、非対称な構造を有している。このため、2本の矩形導波管のうちの一方の矩形導波管から出力される偏波信号の周波数特性を最適化すると、他方の矩形導波管から出力される偏波信号の周波数特性が劣化してしまう。また一方の矩形導波管と円形導波管との間の整合が良好にされると、他方の矩形導波管と円形導波管との間の整合がずれるという課題がある。これに対し、本実施の形態の場合、図1~図3及び図4A,4Bに示したとおり、矩形導波管20,30は、共通導波管10の管軸方向とは垂直な面において互いに逆方向にそれぞれ延在し、かつ管軸Axに関して幾何学的に対称となるように配置されているので、偏分波器1は、管軸方向を含むX-Z平面に関して幾何学的に対称な構造を有している。このため、従来のT分岐形偏分波器と比べると、矩形導波管20,30と共通導波管10との間の整合を容易に調整することができる。 The conventional T-branched waveguide disclosed in Non-Patent Document 1 has two rectangular waveguides branched from the side wall of the circular waveguide, but has an asymmetric structure. Therefore, if the frequency characteristics of the polarization signal output from one of the two rectangular waveguides are optimized, the frequency characteristics of the polarization signal output from the other rectangular waveguide can be optimized. Will deteriorate. Further, if the matching between one rectangular waveguide and the circular waveguide is improved, there is a problem that the matching between the other rectangular waveguide and the circular waveguide is deviated. On the other hand, in the case of the present embodiment, as shown in FIGS. 1 to 3 and 4A and 4B, the rectangular waveguides 20 and 30 are on a plane perpendicular to the tube axis direction of the common waveguide 10. Since they extend in opposite directions and are arranged so as to be geometrically symmetrical with respect to the tube axis Ax, the deflector 1 is geometrically arranged with respect to the XZ plane including the tube axis direction. It has a symmetrical structure. Therefore, as compared with the conventional T-branch type demultiplexer, the matching between the rectangular waveguides 20 and 30 and the common waveguide 10 can be easily adjusted.
 図14は、実施の形態1の変形例である偏分波器1Aの概略構成を示すブロック図である。図14に示されるように偏分波器1Aは、実施の形態1の偏分波器1の入出力端子20p,30pに90度ハイブリッドカプラ9が接続された構成を有している。90度ハイブリッドカプラ9は4つの入出力端子9a,9b,9c,9dを有し、入出力端子9a,9bはそれぞれ偏分波器1の入出力端子20p,30pと結合されている。入出力端子9c,9dのいずれか一方に偏波信号(たとえばTE10モード)が入力されると、90度ハイブリッドカプラ9は、互いに90度の位相差を有する偏波信号を入出力端子9a,9bから入出力端子30p,20pに出力する。入出力端子9cに偏波信号が入力される場合には、偏分波器1は入出力端子10pから右旋円偏波を出力することができ、入出力端子9dに偏波信号が入力される場合には、偏分波器1は入出力端子10pから左旋円偏波を出力することができる。よって偏分波器1Aは、円偏波分離器として動作することができる。なお、たとえば、90度ハイブリッドカプラ9の入出力端子9cを信号送信用の端子として利用し、90度ハイブリッドカプラ9の入出力端子9dを信号受信用の端子として利用することが可能である、 FIG. 14 is a block diagram showing a schematic configuration of a demultiplexer 1A, which is a modification of the first embodiment. As shown in FIG. 14, the demultiplexer 1A has a configuration in which the 90-degree hybrid coupler 9 is connected to the input / output terminals 20p and 30p of the demultiplexer 1 of the first embodiment. The 90-degree hybrid coupler 9 has four input / output terminals 9a, 9b, 9c, and 9d, and the input / output terminals 9a and 9b are coupled to the input / output terminals 20p and 30p of the demultiplexer 1, respectively. When a polarization signal (for example, TE 10 mode) is input to either one of the input / output terminals 9c and 9d, the 90-degree hybrid coupler 9 transmits a polarization signal having a phase difference of 90 degrees to the input / output terminals 9a, Output from 9b to input / output terminals 30p and 20p. When a polarization signal is input to the input / output terminal 9c, the demultiplexer 1 can output right-handed circularly polarized light from the input / output terminal 10p, and the polarization signal is input to the input / output terminal 9d. In this case, the demultiplexer 1 can output left-handed circularly polarized light from the input / output terminal 10p. Therefore, the demultiplexer 1A can operate as a circularly polarized wave separator. For example, the input / output terminal 9c of the 90-degree hybrid coupler 9 can be used as a terminal for signal transmission, and the input / output terminal 9d of the 90-degree hybrid coupler 9 can be used as a terminal for signal reception.
 90度ハイブリッドカプラ9は、幾何学的に対称な構造を有するように構成可能であるので、偏分波器1Aは全体として幾何学的に対称な構造を有するように構成可能である。したがって、偏分波器1Aは優れた偏分波特性を有することができる。 Since the 90-degree hybrid coupler 9 can be configured to have a geometrically symmetrical structure, the demultiplexer 1A can be configured to have a geometrically symmetrical structure as a whole. Therefore, the demultiplexer 1A can have excellent demultiplexing characteristics.
実施の形態2.
 次に、本発明に係る実施の形態2について説明する。図15は、本発明に係る実施の形態2の偏分波器2の概略構成を示す斜視図である。また、図16は、図15に示される偏分波器2の右側面図であり、図17は、図15に示される偏分波器2の背面図であり、図18は、図15に示される偏分波器2の底面図である。
Embodiment 2.
Next, the second embodiment according to the present invention will be described. FIG. 15 is a perspective view showing a schematic configuration of a demultiplexer 2 according to a second embodiment of the present invention. 16 is a right side view of the demultiplexer 2 shown in FIG. 15, FIG. 17 is a rear view of the demultiplexer 2 shown in FIG. 15, and FIG. 18 is a rear view of FIG. It is a bottom view of the demultiplexer 2 shown.
 図15に示されるように実施の形態2の偏分波器2は、実施の形態1の偏分波器1と同様に、共通導波管10と、共通導波管10の側壁から分岐する矩形導波管20,30とを備えて構成されている。偏分波器2の構成は、共通導波管10と矩形導波管20との間の接続形態を除いて、実施の形態1の偏分波器1の構成と同じである。 As shown in FIG. 15, the demultiplexer 2 of the second embodiment branches from the common waveguide 10 and the side wall of the common waveguide 10, similarly to the demultiplexer 1 of the first embodiment. It is configured to include rectangular waveguides 20 and 30. The configuration of the demultiplexer 2 is the same as the configuration of the demultiplexer 1 of the first embodiment except for the connection form between the common waveguide 10 and the rectangular waveguide 20.
 本実施の形態では、矩形導波管20は、共通導波管10の短絡端10qの近傍にて共通導波管10の側壁からX軸負方向(第1の方向)に延在するように配置されており、矩形導波管30は、短絡端10qの近傍にて共通導波管10の側壁からY軸正方向(第2の方向)に延在するように配置されている。矩形導波管20の内部の導波空間20hは、結合孔を介して共通導波管10の導波空間10hと連通している。 In the present embodiment, the rectangular waveguide 20 extends in the negative X-axis direction (first direction) from the side wall of the common waveguide 10 in the vicinity of the short-circuit end 10q of the common waveguide 10. The rectangular waveguide 30 is arranged so as to extend in the Y-axis positive direction (second direction) from the side wall of the common waveguide 10 in the vicinity of the short-circuit end 10q. The waveguide space 20h inside the rectangular waveguide 20 communicates with the waveguide space 10h of the common waveguide 10 via a coupling hole.
 また図16及び図17に示されるように短絡端10qの突起部10qcは、矩形導波管20と共通導波管10との間に形成された結合孔と対向し、矩形導波管30と共通導波管10との間に形成された結合孔とも対向している。このような突起部10qcは、矩形導波管20,30間の信号伝搬を遮断する機能を果たすことができる。 Further, as shown in FIGS. 16 and 17, the protruding portion 10qc of the short-circuit end 10q faces the coupling hole formed between the rectangular waveguide 20 and the common waveguide 10, and is opposed to the rectangular waveguide 30. It also faces the coupling hole formed between the common waveguide 10. Such a protrusion 10qc can serve a function of blocking signal propagation between the rectangular waveguides 20 and 30.
 矩形導波管20,30は、図18に示されるように、共通導波管10の管軸方向と直交する面において互いに直交する方向(X軸負方向及びY軸正方向)にそれぞれ延在している。図16に示される矩形導波管20の断面形状は、図17に示される矩形導波管30の断面形状と一致する。図16に示されるように矩形導波管30の広壁面は、X-Z平面において短絡端10qの基端部10qbに対して反時計回りでθ1=45°の角度にて傾斜している。一方、図17に示されるように矩形導波管20の広壁面は、Y-Z平面において短絡端10qの基端部10qbに対して反時計回りでθ3=45°の角度にて傾斜している。 As shown in FIG. 18, the rectangular waveguides 20 and 30 extend in directions orthogonal to each other (X-axis negative direction and Y-axis positive direction) on the plane orthogonal to the tube axis direction of the common waveguide 10. doing. The cross-sectional shape of the rectangular waveguide 20 shown in FIG. 16 matches the cross-sectional shape of the rectangular waveguide 30 shown in FIG. As shown in FIG. 16, the wide wall surface of the rectangular waveguide 30 is inclined counterclockwise at an angle of θ1 = 45 ° with respect to the base end portion 10qb of the short-circuit end 10q in the XX plane. On the other hand, as shown in FIG. 17, the wide wall surface of the rectangular waveguide 20 is inclined counterclockwise at an angle of θ3 = 45 ° with respect to the base end portion 10qb of the short-circuit end 10q in the YY plane. There is.
 実施の形態1の場合と同様に偏分波器2の矩形導波管20,30の入出力端子20p,30pにそれぞれ直線偏波信号が入力された場合には、図19に示されるように共通導波管10の入出力端子10pは、電界E2を有する偏波信号と、電界E5を有する偏波信号とを出力することができる。これら偏波信号は互いに直交する。言い換えると、共通導波管10の入出力端子10pから互いに直交する偏波信号を含む電磁波が入力された場合には、偏分波器2は、これら偏波信号を分離して、当該偏波信号の一方を矩形導波管20の入出力端子20pから出力することができ、当該偏波信号の他方を矩形導波管30の入出力端子30pから出力することができる。 When linearly polarized signals are input to the input / output terminals 20p and 30p of the rectangular waveguides 20 and 30 of the demultiplexer 2 as in the case of the first embodiment, as shown in FIG. The input / output terminal 10p of the common waveguide 10 can output a polarization signal having an electric field E2 and a polarization signal having an electric field E5. These polarized signals are orthogonal to each other. In other words, when electromagnetic waves including polarization signals that are orthogonal to each other are input from the input / output terminals 10p of the common waveguide 10, the polarization demultiplexer 2 separates these polarization signals and performs the polarization. One of the signals can be output from the input / output terminal 20p of the rectangular waveguide 20, and the other of the polarized signals can be output from the input / output terminal 30p of the rectangular waveguide 30.
 以上に説明したとおり、実施の形態1の偏分波器1と同様に、実施の形態2の偏分波器2も、矩形導波管20,30の入出力端子20p,30pからそれぞれ出力される偏波信号の周波数特性を同じにすることができる構成を有している。このため、優れた偏分波特性を実現することができる。また、実施の形態1と比べると、矩形導波管20,30は互いに近い位置に配置されるので、偏分波器2の寸法を小さくすることができる。 As described above, similarly to the demultiplexer 1 of the first embodiment, the demultiplexer 2 of the second embodiment is also output from the input / output terminals 20p and 30p of the rectangular waveguides 20 and 30, respectively. It has a configuration in which the frequency characteristics of the polarized signals can be made the same. Therefore, excellent demultiplexing characteristics can be realized. Further, as compared with the first embodiment, since the rectangular waveguides 20 and 30 are arranged at positions closer to each other, the size of the demultiplexer 2 can be reduced.
実施の形態3.
 次に、本発明に係る実施の形態3について説明する。図20は、本発明に係る実施の形態3の偏分波器3の概略構成を示す斜視図である。また、図21Aは、図20に示される偏分波器3の右側面図であり、図21Bは、図20に示される偏分波器3の左側面図である。
Embodiment 3.
Next, the third embodiment according to the present invention will be described. FIG. 20 is a perspective view showing a schematic configuration of a demultiplexer 3 according to a third embodiment of the present invention. 21A is a right side view of the demultiplexer 3 shown in FIG. 20, and FIG. 21B is a left side view of the demultiplexer 3 shown in FIG. 20.
 図20に示されるように実施の形態3の偏分波器3は、共通導波管11と、共通導波管11の側壁から分岐する矩形導波管20,30とを備えて構成されている。偏分波器3の構成は、実施の形態1の共通導波管10に代えて図20の共通導波管11を有する点を除けば、実施の形態1の偏分波器1の構成と同じである。 As shown in FIG. 20, the deflector 3 of the third embodiment includes a common waveguide 11 and rectangular waveguides 20 and 30 branching from the side wall of the common waveguide 11. There is. The configuration of the demultiplexer 3 is the same as that of the demultiplexer 1 of the first embodiment, except that the common waveguide 11 of FIG. 20 is provided instead of the common waveguide 10 of the first embodiment. It is the same.
 共通導波管11は、Z軸方向に平行な管軸Axをもつ円形導波管からなり、管軸方向一端に設けられた短絡端11qと、管軸方向他端に設けられた開放端である入出力端子11pと、短絡端11qと入出力端子11pとの間で互いに直交する2つの偏波成分(第1及び第2の偏波成分)からなる電磁波を管軸方向に伝搬させる導波空間11hとを有している。本実施の形態の共通導波管11は、主にTE11モードを伝搬させることができる。 The common waveguide 11 is composed of a circular waveguide having a tube axis Ax parallel to the Z-axis direction, and has a short-circuit end 11q provided at one end in the tube axis direction and an open end provided at the other end in the tube axis direction. A waveguide that propagates an electromagnetic wave consisting of two polarization components (first and second polarization components) orthogonal to each other between a certain input / output terminal 11p, a short-circuit end 11q, and the input / output terminal 11p in the tube axis direction. It has a space of 11h. The common waveguide 11 of the present embodiment can mainly propagate the TE 11 mode.
 短絡端11qは、管軸Axと直交する平面を形成する環状の基端部11qbと、この基端部11qbから入出力端子11pに向けて突出する突起部11qcとを有する。突起部11qcは、管軸Axから偏心した楕円錐台形状を有している。図21A及び図21Bに示されるように突起部11qcは、矩形導波管20と共通導波管11との間に形成された結合孔と対向し、矩形導波管30と共通導波管11との間に形成された結合孔とも対向する。 The short-circuit end 11q has an annular base end 11qb forming a plane orthogonal to the tube axis Ax, and a protrusion 11qc protruding from the base end 11qb toward the input / output terminal 11p. The protrusion 11qc has an elliptical frustum shape eccentric from the tube axis Ax. As shown in FIGS. 21A and 21B, the protrusion 11qc faces the coupling hole formed between the rectangular waveguide 20 and the common waveguide 11, and the rectangular waveguide 30 and the common waveguide 11 face each other. It also faces the coupling hole formed between and.
 図22A及び図22Bに示されるように突起部11qcは、自己の本体部分の上に楕円柱状の先端部分11qtを有し、先端部分11qtは、共通導波管11の管軸Axからオフセット(偏心)した位置に配置されている。このような先端部分11qtにより、矩形導波管20,30間の信号伝搬を遮断させる効果が向上するので、偏分波特性の向上が可能となる。なお、楕円柱状の先端部分11qtに代えて円柱状の先端部分が設けられてもよい。 As shown in FIGS. 22A and 22B, the protrusion 11qc has an elliptical columnar tip portion 11qt on its own body portion, and the tip portion 11qt is offset (eccentric) from the tube axis Ax of the common waveguide 11. ) Is placed at the position. Since the effect of blocking signal propagation between the rectangular waveguides 20 and 30 is improved by such a tip portion 11qt, it is possible to improve the partial wave separation characteristic. A columnar tip portion may be provided instead of the elliptical columnar tip portion 11qt.
 本実施の形態の突起部11qcは、図22Aに示されるように、基端部11qbから入出力端子11pに向かうに従って直線状に変化する傾斜部分を有しているが、これに限定されるものではない。基端部11qbから入出力端子11pに向かうに従って曲線状に変化する傾斜部分を有するように突起部11qcの形状が変更されてもよい。図23A及び図23Bは、実施の形態3の第1変形例の共通導波管11Aにおける短絡端11uの構成を概略的に示す図である。図23A及び図23Bに示されるように、短絡端11uは、管軸Axと直交する平面を形成する環状の基端部11ubと、この基端部11ubから共通導波管11Aの入出力端子に向けて突出する突起部11ucとを有する。この突起部11ucは、自己の本体部分の上に楕円柱状の先端部分11utを有し、基端部11ubから共通導波管11Aの入出力端子に向かうに従って曲線状に変化する傾斜部分を有している。 As shown in FIG. 22A, the protrusion 11qc of the present embodiment has an inclined portion that changes linearly from the base end portion 11qb toward the input / output terminal 11p, but is limited to this. is not it. The shape of the protrusion 11qc may be changed so as to have an inclined portion that changes in a curved shape from the base end portion 11qb toward the input / output terminal 11p. 23A and 23B are diagrams schematically showing the configuration of the short-circuit end 11u in the common waveguide 11A of the first modification of the third embodiment. As shown in FIGS. 23A and 23B, the short-circuit end 11u is an annular base end portion 11ub forming a plane orthogonal to the tube axis Ax, and the base end portion 11ub to the input / output terminal of the common waveguide 11A. It has a protrusion 11 uc that projects toward it. The protrusion 11 uc has an elliptical columnar tip portion 11 ut on its own main body portion, and has an inclined portion that changes in a curved shape from the base end portion 11 ub toward the input / output terminal of the common waveguide 11 A. ing.
 また、本実施の形態の突起部11qcは、図22Aに示されるように、基端部11qbから入出力端子11pに向かうに従って連続的に変化する断面を有しているが、これに限定されるものではない。基端部11qbから入出力端子11pに向かうに従って段階的に変化する断面を有するように突起部11qcの形状が変更されてもよい。図24A及び図24Bは、実施の形態3の第2変形例の共通導波管11Bにおける短絡端11sの構成を概略的に示す図である。図24A及び図24Bに示されるように、短絡端11sは、管軸Axと直交する平面を形成する環状の基端部11sbと、この基端部11sbから共通導波管11Bの入出力端子に向けて突出する突起部11scとを有する。この突起部11scは、自己の本体部分の上に楕円柱状の先端部分11stを有し、基端部11sbから共通導波管11Bの入出力端子に向かうに従って段階的に変化する断面を有している。 Further, as shown in FIG. 22A, the protrusion 11qc of the present embodiment has a cross section that continuously changes from the base end portion 11qb toward the input / output terminal 11p, but is limited to this. It's not a thing. The shape of the protrusion 11qc may be changed so as to have a cross section that gradually changes from the base end portion 11qb toward the input / output terminal 11p. 24A and 24B are diagrams schematically showing the configuration of the short-circuit end 11s in the common waveguide 11B of the second modification of the third embodiment. As shown in FIGS. 24A and 24B, the short-circuit end 11s is an annular base end portion 11sb forming a plane orthogonal to the tube axis Ax, and the base end portion 11sb to the input / output terminal of the common waveguide 11B. It has a protrusion 11 sc that projects toward it. The protruding portion 11sc has an elliptical columnar tip portion 11st on its own main body portion, and has a cross section that gradually changes from the base end portion 11sb toward the input / output terminal of the common waveguide 11B. There is.
 また、図25A及び図25Bは、実施の形態3の第3変形例の共通導波管11Cにおける短絡端11vの構成を概略的に示す図である。図25A及び図25Bに示されるように、短絡端11vは、管軸Axと直交する平面を形成する環状の基端部11vbと、この基端部11vbから共通導波管11Cの入出力端子に向けて突出する四角錐台形状の突起部11vcとを有する。この突起部11vcは、自己の本体部分の上に四角柱状の先端部分11vtを有している。なお、図25Aの例では、基端部11vbから共通導波管11Cの入出力端子に向かうに従って連続的に変化する断面を有しているが、これに限定されるものではない。基端部11vbから共通導波管11Cの入出力端子に向かうに従って段階的に変化する断面を有するように突起部11vcの形状が変更されてもよい。 25A and 25B are diagrams schematically showing the configuration of the short-circuit end 11v in the common waveguide 11C of the third modification of the third embodiment. As shown in FIGS. 25A and 25B, the short-circuit end 11v is an annular base end portion 11vb forming a plane orthogonal to the tube axis Ax, and the base end portion 11vb to the input / output terminal of the common waveguide 11C. It has a quadrangular pyramid-shaped protrusion 11 vc that protrudes toward it. The protrusion 11vc has a square columnar tip portion 11vt on its own main body portion. Note that the example of FIG. 25A has a cross section that continuously changes from the base end portion 11vb toward the input / output terminal of the common waveguide 11C, but is not limited to this. The shape of the protrusion 11vc may be changed so as to have a cross section that changes stepwise from the base end portion 11vb toward the input / output terminal of the common waveguide 11C.
 以上に説明したように実施の形態3では、偏分波器3の突起部11qcは先端部分11qtを有し、先端部分11qtは、共通導波管11の管軸Axからオフセット(偏心)した位置に配置されている。このような先端部分11qtにより、矩形導波管20,30間の信号伝搬を遮断させる効果が向上するので、偏分波特性の向上が可能となる。 As described above, in the third embodiment, the protrusion 11qc of the demultiplexer 3 has a tip portion 11qt, and the tip portion 11qt is a position offset (eccentric) from the tube axis Ax of the common waveguide 11. It is located in. Since the effect of blocking signal propagation between the rectangular waveguides 20 and 30 is improved by such a tip portion 11qt, it is possible to improve the partial wave separation characteristic.
実施の形態4.
 次に、本発明に係る実施の形態4について説明する。図26は、本発明に係る実施の形態4の偏分波器4の概略構成を示す斜視図である。図27は、図26に示される偏分波器4の背面図である。
Embodiment 4.
Next, the fourth embodiment according to the present invention will be described. FIG. 26 is a perspective view showing a schematic configuration of a demultiplexer 4 according to a fourth embodiment of the present invention. FIG. 27 is a rear view of the demultiplexer 4 shown in FIG. 26.
 図26に示されるように本実施の形態の偏分波器4は、共通導波管12と、共通導波管12の側壁から分岐する矩形導波管21,31とを備えて構成されている。共通導波管112は、Z軸方向に平行な管軸Axをもつ円形導波管からなる導波管部13と、この導波管部13に縦続接続されてインピーダンス変成器として機能する結合導波管部14とを備えている。導波管部13の一端には、入出力端子13pが設けられている。たとえば、結合導波管部14としては、導波管部13とは異なる断面寸法を有する円形導波管が使用可能である。図26及び図27に示されるように、結合導波管部14の一端には、上記実施の形態1~3のいずれかの短絡端と同様の構造を有する短絡端14qが設けられている。 As shown in FIG. 26, the deflector 4 of the present embodiment is configured to include a common waveguide 12 and rectangular waveguides 21 and 31 branching from the side wall of the common waveguide 12. There is. The common waveguide 112 includes a waveguide portion 13 composed of a circular waveguide having a tube axis Ax parallel to the Z-axis direction, and a coupling guide that is longitudinally connected to the waveguide portion 13 and functions as an impedance transformer. It includes a waveguide 14. An input / output terminal 13p is provided at one end of the waveguide portion 13. For example, as the coupled waveguide section 14, a circular waveguide having a cross-sectional dimension different from that of the waveguide section 13 can be used. As shown in FIGS. 26 and 27, one end of the coupled waveguide section 14 is provided with a short-circuit end 14q having a structure similar to that of any of the short-circuit ends of the first to third embodiments.
 矩形導波管(第1の矩形導波管)21は、入出力端子22pを有する矩形導波管部22と、この矩形導波管部22に縦続接続されてインピーダンス変成器として機能する結合導波管部23とを備えている。結合導波管部23としては、矩形導波管部22とは異なる断面寸法を有する矩形導波管が使用可能である。 The rectangular waveguide (first rectangular waveguide) 21 is connected to a rectangular waveguide portion 22 having an input / output terminal 22p and a coupling guide that is vertically connected to the rectangular waveguide portion 22 and functions as an impedance modifier. It includes a waveguide 23. As the coupled waveguide section 23, a rectangular waveguide having a cross-sectional dimension different from that of the rectangular waveguide section 22 can be used.
 矩形導波管(第2の矩形導波管)31は、入出力端子32pを有する矩形導波管部32と、この矩形導波管部32に縦続接続されてインピーダンス変成器として機能する結合導波管部33とを備えている。結合導波管部33としては、矩形導波管部32とは異なる断面形状を有する矩形導波管が使用可能である。 The rectangular waveguide (second rectangular waveguide) 31 is connected to a rectangular waveguide portion 32 having an input / output terminal 32p and a coupling guide that is longitudinally connected to the rectangular waveguide portion 32 and functions as an impedance modifier. It includes a waveguide 33. As the coupled waveguide section 33, a rectangular waveguide having a cross-sectional shape different from that of the rectangular waveguide section 32 can be used.
 このようにインピーダンス変成器として機能する結合導波管部14,23,33を使用することで、インピーダンス整合をとりやすくなるので、さらに良好な偏分波特性を実現することができる。 By using the coupled waveguides 14, 23, 33 that function as an impedance transformer in this way, impedance matching can be easily achieved, and even better decentralized wave characteristics can be realized.
 なお、図27に示した形態に代えて、図28に示すように結合導波管部23,33が短絡端14qを跨がるような形態を有する偏分波器4Aもありうる。また、本実施の形態では、結合導波管部14,23,33の各々は一段だけ設けられているが、これに限定されるものではなく、2段以上の結合導波管部が設けられてもよい。 Instead of the form shown in FIG. 27, there may be a demultiplexer 4A having a form in which the coupled waveguides 23 and 33 straddle the short-circuit end 14q as shown in FIG. 28. Further, in the present embodiment, each of the coupled waveguide portions 14, 23, and 33 is provided in only one stage, but the present invention is not limited to this, and two or more stages of coupled waveguide portions are provided. You may.
 図29A及び図29Bは、実施の形態4の第2変形例の偏分波器4Bの概略構成を示す図である。この偏分波器4Bの構成は、短絡端14q及び結合導波管部23,33が、連続する外壁面(カットされた平面)を形成している点を除いて、図26に示した実施の形態4の偏分波器4の構成と同じである。短絡端14qは、図22に示した短絡端11qと同様の構造を有している。 29A and 29B are diagrams showing a schematic configuration of a demultiplexer 4B of the second modification of the fourth embodiment. The configuration of the demultiplexer 4B is as shown in FIG. 26, except that the short-circuited ends 14q and the coupled waveguides 23 and 33 form a continuous outer wall surface (cut plane). This is the same as the configuration of the deflector 4 of Form 4. The short-circuit end 14q has the same structure as the short-circuit end 11q shown in FIG.
 図30は、第2変形例の偏分波器4Bについての反射特性の計算例を示すグラフであり、図31は、偏分波器4Bについての偏波間アイソレーション特性の計算例を示すグラフである。図30及び図31のグラフの横軸は、正規化周波数を示している。図30のグラフの縦軸は、矩形導波管21,31の入出力端子22p,32pの反射量(単位:dB)を示している。図30において、実線は、矩形導波管21の入出力端子22pの反射量を、点線は、矩形導波管31の入出力端子32pの反射量をそれぞれ表している。また、図31のグラフの縦軸は、共通導波管12の入出力端子13pから入力された1つの直線偏波が本来出力されない入出力端子(分岐端子)に出力される量(偏波間アイソレーション:XPD)(単位:dB)を示している。図31において、実線は、矩形導波管21の入出力端子22pに出力される量を、点線は、矩形導波管31の入出力端子32pに出力される量をそれぞれ表している。図30及び図31に示されるように、ともに実線と点線とがほぼ重なり同一の偏分波特性を示していること、及び、比帯域15%以上で反射量25dB、偏波間アイソレーション25dB以上の良好な偏分波特性が得られることが確認された。 FIG. 30 is a graph showing a calculation example of the reflection characteristic of the demultiplexer 4B of the second modification, and FIG. 31 is a graph showing a calculation example of the interpolar isolation characteristic of the demultiplexer 4B. is there. The horizontal axis of the graphs of FIGS. 30 and 31 indicates the normalized frequency. The vertical axis of the graph of FIG. 30 shows the amount of reflection (unit: dB) of the input / output terminals 22p and 32p of the rectangular waveguides 21 and 31. In FIG. 30, the solid line represents the reflection amount of the input / output terminal 22p of the rectangular waveguide 21, and the dotted line represents the reflection amount of the input / output terminal 32p of the rectangular waveguide 31. Further, the vertical axis of the graph of FIG. 31 is the amount (isolation between polarizations) that one linearly polarized wave input from the input / output terminal 13p of the common waveguide 12 is output to the input / output terminal (branch terminal) that is not originally output. The ratio: XPD) (unit: dB) is shown. In FIG. 31, the solid line represents the amount output to the input / output terminal 22p of the rectangular waveguide 21, and the dotted line represents the amount output to the input / output terminal 32p of the rectangular waveguide 31. As shown in FIGS. 30 and 31, both the solid line and the dotted line almost overlap and show the same decentralized wave characteristics, and the reflection amount is 25 dB and the isolation between polarizations is 25 dB or more in a specific band of 15% or more. It was confirmed that good partial isolation characteristics can be obtained.
 以上、図面を参照して本発明に係る実施の形態1~4及びこれらの変形例について述べたが、実施の形態1~4及びこれらの変形例は本発明の例示であり、他の様々な実施の形態もありうる。本発明の範囲内において、上記実施の形態1~4の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。 Embodiments 1 to 4 and modified examples thereof according to the present invention have been described above with reference to the drawings, but embodiments 1 to 4 and modified examples thereof are examples of the present invention, and various other examples. There may also be embodiments. Within the scope of the present invention, it is possible to freely combine the above embodiments 1 to 4, modify any component of each embodiment, or omit any component of each embodiment.
 たとえば、上記した共通導波管10,11,11A~11C,12はいずれも円形導波管であるが、これに限定されるものではない。円形導波管に代えて正方形導波管が使用されてもよい。正方形導波管が使用される場合には、切削加工による製造が容易となるという効果がある。 For example, the above-mentioned common waveguides 10, 11, 11A to 11C, 12 are all circular waveguides, but the present invention is not limited thereto. A square waveguide may be used instead of the circular waveguide. When a square waveguide is used, it has the effect of facilitating manufacturing by cutting.
 また、実施の形態1の場合と同様に、実施の形態2~4の偏分波器2~4にも図14の90度ハイブリッドカプラ9が接続されてよい。 Further, as in the case of the first embodiment, the 90-degree hybrid coupler 9 of FIG. 14 may be connected to the demultiplexers 2 to 4 of the second to fourth embodiments.
 本発明に係る偏分波器は、たとえば、天体観測用の電波望遠鏡、衛星通信システム及び衛星放送システムにおけるアンテナ装置に使用されることに適している。 The demultiplexer according to the present invention is suitable for use in, for example, a radio telescope for astronomical observation, a satellite communication system, and an antenna device in a satellite broadcasting system.
 1,1A,2~4,4A,4B 偏分波器、9 90度ハイブリッドカプラ、9a~9d 端子、10 共通導波管、10p 入出力端子、10q 短絡端、10qc 突起部、10qb 基端部、10h 導波空間、11,11A~11C 共通導波管、11p 入出力端子、11q,11u,11s,11v 短絡端、11qb,11ub,11sb,11vb 基端部、11qc,11uc,11sc,11vc 突起部、11qt,11ut,11st,11vt 先端部分、12 共通導波管、13 導波管部、14 結合導波管部、20 矩形導波管、20p 入出力端子、20h 導波空間、21 矩形導波管、22 矩形導波管部、23 結合導波管部、30 矩形導波管、30p 入出力端子、30h 導波空間、31 矩形導波管、32 矩形導波管部、33 結合導波管部。 1,1A, 2-4, 4A, 4B demultiplexer, 9 90 degree hybrid coupler, 9a-9d terminal, 10 common waveguide, 10p input / output terminal, 10q short-circuit end, 10qc protrusion, 10qb base end 10h waveguide space, 11, 11A-11C common waveguide, 11p input / output terminal, 11q, 11u, 11s, 11v short-circuit end, 11qb, 11ub, 11sb, 11vb base end, 11qc, 11uc, 11sc, 11vc protrusion Part, 11qt, 11ut, 11st, 11vt tip part, 12 common waveguide, 13 waveguide, 14 coupled waveguide, 20 rectangular waveguide, 20p input / output terminal, 20h waveguide space, 21 rectangular guide Waveguide, 22 rectangular waveguide, 23 coupled waveguide, 30 rectangular waveguide, 30p input / output terminal, 30h waveguide space, 31 rectangular waveguide, 32 rectangular waveguide, 33 coupled waveguide Pipe section.

Claims (15)

  1.  自己の管軸方向における一端に設けられた短絡端、及び、自己の当該管軸方向における他端に設けられた入出力端子を有するとともに、前記短絡端と前記入出力端子との間で互いに直交する第1の偏波成分及び第2の偏波成分を伝搬させる導波空間を有する共通導波管と、
     互いに対向する一対の広壁面及び互いに対向する一対の狭壁面を有し、前記共通導波管の側壁に接続されて前記管軸方向と直交する第1の方向に延在する第1の矩形導波管と、
     互いに対向する一対の広壁面及び互いに対向する一対の狭壁面を有し、前記共通導波管の側壁に接続されて前記管軸方向と直交する第2の方向に延在する第2の矩形導波管と
    を備え、
     前記短絡端は、前記管軸方向と直交する面を形成する基端部を有し、
     前記第1の矩形導波管の当該一対の広壁面は、前記第1の方向とは垂直な面において前記基端部に対して45度の角度で傾斜し、
     前記第2の矩形導波管の当該一対の広壁面は、前記第2の方向とは垂直な面において前記基端部に対して45度の角度で傾斜している、
    ことを特徴とする偏分波器。
    It has a short-circuit end provided at one end in its own tube axis direction and an input / output terminal provided at the other end in its own tube axis direction, and is orthogonal to each other between the short-circuit end and the input / output terminal. A common waveguide having a waveguide space for propagating the first polarization component and the second polarization component.
    A first rectangular guide having a pair of wide walls facing each other and a pair of narrow walls facing each other, connected to the side wall of the common waveguide and extending in a first direction orthogonal to the axial direction of the tube. Waveguide and
    A second rectangular guide having a pair of wide walls facing each other and a pair of narrow walls facing each other, connected to the side wall of the common waveguide and extending in a second direction orthogonal to the axial direction of the tube. Equipped with a waveguide,
    The short-circuit end has a base end portion that forms a surface orthogonal to the pipe axis direction.
    The pair of wide walls of the first rectangular waveguide are tilted at an angle of 45 degrees with respect to the proximal end in a plane perpendicular to the first direction.
    The pair of wide walls of the second rectangular waveguide are inclined at an angle of 45 degrees with respect to the proximal end in a plane perpendicular to the second direction.
    A demultiplexer characterized by that.
  2.  請求項1に記載の偏分波器であって、前記第1の矩形導波管及び前記第2の矩形導波管は、同一の導波路構造を有することを特徴とする偏分波器。 The demultiplexer according to claim 1, wherein the first rectangular waveguide and the second rectangular waveguide have the same waveguide structure.
  3.  請求項1または請求項2に記載の偏分波器であって、前記第1の矩形導波管及び前記第2の矩形導波管は、前記管軸方向とは垂直な面において互いに逆方向にそれぞれ延在し、かつ前記共通導波管の管軸に関して幾何学的に対称となるように配置されていることを特徴とする偏分波器。 The deflector according to claim 1 or 2, wherein the first rectangular waveguide and the second rectangular waveguide are opposite to each other in a plane perpendicular to the tube axis direction. A demultiplexer characterized in that it extends to each of the common waveguides and is arranged so as to be geometrically symmetrical with respect to the tube axis of the common waveguide.
  4.  請求項1または請求項2に記載の偏分波器であって、
     前記第1の矩形導波管及び前記第2の矩形導波管は、前記管軸方向と直交する面において互いに直交する方向にそれぞれ延在し、
     前記第1の方向とは垂直な面における前記第1の矩形導波管の断面形状は、前記第2の方向とは垂直な面における前記第2の矩形導波管の断面形状と一致する、
    ことを特徴とする偏分波器。
    The demultiplexer according to claim 1 or 2.
    The first rectangular waveguide and the second rectangular waveguide extend in directions orthogonal to each other on a plane orthogonal to the tube axis direction, respectively.
    The cross-sectional shape of the first rectangular waveguide in a plane perpendicular to the first direction coincides with the cross-sectional shape of the second rectangular waveguide in a plane perpendicular to the second direction.
    A demultiplexer characterized by that.
  5.  請求項1から請求項4のうちのいずれか1項に記載の偏分波器であって、
     前記短絡端は、前記基端部から前記入出力端子に向けて突出する突起部を有し、
     前記突起部は、前記第1の矩形導波管と前記共通導波管との間に形成された結合孔と対向し、かつ前記第2の矩形導波管と前記共通導波管との間に形成された結合孔と対向している
    ことを特徴とする偏分波器。
    The demultiplexer according to any one of claims 1 to 4.
    The short-circuit end has a protrusion that protrudes from the base end toward the input / output terminal.
    The protrusion faces the coupling hole formed between the first rectangular waveguide and the common waveguide, and is between the second rectangular waveguide and the common waveguide. A waveguide characterized in that it faces a coupling hole formed in.
  6.  請求項5に記載の偏分波器であって、前記突起部は、前記基端部から前記入出力端子に向かうに従って連続的または段階的に変化する断面をもつ円錐台形状または楕円錐台形状を有することを特徴とする偏分波器。 The truncated cone shape or an elliptical truncated cone shape according to claim 5, wherein the protrusion has a cross section that changes continuously or stepwise from the base end portion toward the input / output terminal. A demultiplexer characterized by having.
  7.  請求項5に記載の偏分波器であって、前記突起部は、前記基端部から前記入出力端子に向かうに従って連続的または段階的に変化する断面をもつ四角錐台形状を有することを特徴とする偏分波器。 The quadrangular pyramid shape according to claim 5, wherein the protrusion has a cross section that changes continuously or stepwise from the base end portion toward the input / output terminal. Characteristic demultiplexer.
  8.  請求項5から請求項7のうちのいずれか1項に記載の偏分波器であって、前記突起部は、円柱状または楕円柱状の先端部分を有することを特徴とする偏分波器。 The demultiplexing device according to any one of claims 5 to 7, wherein the protrusion has a cylindrical or elliptical columnar tip portion.
  9.  請求項8に記載の偏分波器であって、前記突起部の当該先端部分は、前記共通導波管の管軸からオフセットした位置に配置されていることを特徴とする偏分波器。 The demultiplexer according to claim 8, wherein the tip portion of the protrusion is arranged at a position offset from the tube axis of the common waveguide.
  10.  請求項9に記載の偏分波器であって、前記先端部分は、円柱状または楕円柱状であることを特徴とする偏分波器。 The demultiplexing device according to claim 9, wherein the tip portion thereof is a columnar or elliptical columnar shape.
  11.  請求項1から請求項10のうちのいずれか1項に記載の偏分波器であって、
     前記共通導波管は、
     前記入出力端を有する導波管部と、
     前記短絡端を有し、前記導波管部と縦続接続されてインピーダンス変成器として機能する結合導波管部と
    を有することを特徴とする偏分波器。
    The demultiplexer according to any one of claims 1 to 10.
    The common waveguide
    The waveguide having the input / output end and
    A demultiplexer having the short-circuited end and having a coupled waveguide section that is longitudinally connected to the waveguide section and functions as an impedance transformer.
  12.  請求項1から請求項11のうちのいずれか1項に記載の偏分波器であって、
     前記第1の矩形導波管は、
     第1の矩形導波管部と、
     前記共通導波管の側壁と接続され、前記第1の矩形導波管部と縦続接続されてインピーダンス変成器として機能する第1の結合導波管部とを有し、
     前記第2の矩形導波管は、
     第2の矩形導波管部と、
     前記共通導波管の側壁と接続され、前記第2の矩形導波管部と縦続接続されてインピーダンス変成器として機能する第2の結合導波管部とを有する、
    ことを特徴とする偏分波器。
    The demultiplexer according to any one of claims 1 to 11.
    The first rectangular waveguide
    The first rectangular waveguide
    It has a first coupled waveguide section that is connected to the side wall of the common waveguide and is longitudinally connected to the first rectangular waveguide section to function as an impedance transformer.
    The second rectangular waveguide
    The second rectangular waveguide and
    It has a second coupled waveguide section that is connected to the side wall of the common waveguide and is longitudinally connected to the second rectangular waveguide section to function as an impedance transformer.
    A demultiplexer characterized by that.
  13.  請求項12に記載の偏分波器であって、前記基端部、前記第1の結合導波管部及び前記第2の結合導波管部は、連続する外壁面を形成していることを特徴とする偏分波器。 The deflecting wave device according to claim 12, wherein the base end portion, the first coupled waveguide portion, and the second coupling waveguide portion form a continuous outer wall surface. A deflector that features.
  14.  請求項1から請求項13のうちのいずれか1項に記載の偏分波器であって、前記第1の矩形導波管の当該入出力端子及び前記第2の矩形導波管の当該入出力端子と接続された90度ハイブリッドカプラをさらに備えることを特徴とする偏分波器。 The demultiplexer according to any one of claims 1 to 13, wherein the input / output terminal of the first rectangular waveguide and the input of the second rectangular waveguide. A deflector characterized by further comprising a 90 degree hybrid coupler connected to an output terminal.
  15.  請求項1から請求項14のうちのいずれか1項に記載の偏分波器であって、前記共通導波管、前記第1の矩形導波管及び前記第2の矩形導波管は、金属3Dプリンタを用いて金属粉末を積層造形することにより一体的に形成された造形物であることを特徴とする偏分波器。 The demultiplexer according to any one of claims 1 to 14, wherein the common waveguide, the first rectangular waveguide, and the second rectangular waveguide are A demultiplexing director, characterized in that it is a modeled object integrally formed by laminating and modeling metal powder using a metal 3D printer.
PCT/JP2019/030527 2019-08-02 2019-08-02 Polarization coupler WO2021024310A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/030527 WO2021024310A1 (en) 2019-08-02 2019-08-02 Polarization coupler
JP2021538534A JP7012910B2 (en) 2019-08-02 2019-08-02 Demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/030527 WO2021024310A1 (en) 2019-08-02 2019-08-02 Polarization coupler

Publications (1)

Publication Number Publication Date
WO2021024310A1 true WO2021024310A1 (en) 2021-02-11

Family

ID=74503379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030527 WO2021024310A1 (en) 2019-08-02 2019-08-02 Polarization coupler

Country Status (2)

Country Link
JP (1) JP7012910B2 (en)
WO (1) WO2021024310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937438A (en) * 2021-11-11 2022-01-14 中国电子科技集团公司第二十九研究所 Double-port output microwave mode conversion device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207863A (en) * 2014-04-18 2015-11-19 三菱電機株式会社 Polarization coupler
JP2016134639A (en) * 2015-01-15 2016-07-25 三菱電機株式会社 Polarization separation circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5402089A (en) * 1993-11-12 1995-03-28 Hughes Aircraft Company Asymmetrically coupled TE21 coupler
US7791431B2 (en) 2006-12-04 2010-09-07 Electronics And Telecommunications Research Institute 3-port orthogonal mode transducer and receiver and receiving method using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015207863A (en) * 2014-04-18 2015-11-19 三菱電機株式会社 Polarization coupler
JP2016134639A (en) * 2015-01-15 2016-07-25 三菱電機株式会社 Polarization separation circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113937438A (en) * 2021-11-11 2022-01-14 中国电子科技集团公司第二十九研究所 Double-port output microwave mode conversion device and method

Also Published As

Publication number Publication date
JPWO2021024310A1 (en) 2021-10-21
JP7012910B2 (en) 2022-01-28

Similar Documents

Publication Publication Date Title
US9742069B1 (en) Integrated single-piece antenna feed
US8493161B2 (en) Compact excitation assembly for generating a circular polarization in an antenna and method of fashioning such a compact excitation assembly
US9887458B2 (en) Compact butler matrix, planar two-dimensional beam-former and planar antenna comprising such a butler matrix
ES2909240T3 (en) orthomode transducer
US9755291B2 (en) Compact bipolarization power splitter, array of a plurality of splitters, compact radiating element and planar antenna comprising such a splitter
WO2008069358A1 (en) Horn array type antenna for dual linear polarization
JP6463092B2 (en) Matching and pattern control for dual-band coaxial antenna feeds
EP1291955B1 (en) Waveguide group branching filter
US10135150B2 (en) Quasi-optical beamformer with lens and plane antenna comprising such a beamformer
EP1612888A1 (en) Antenna device
US10992050B2 (en) Antenna device and array antenna device
JP7012910B2 (en) Demultiplexer
US10236589B2 (en) Active antenna architecture with reconfigurable hybrid beamforming
US20210249748A1 (en) Waveguide power divider
JP6865903B2 (en) Power supply circuit
US11476553B2 (en) Wideband orthomode transducer
JP2015207863A (en) Polarization coupler
JP7305079B2 (en) polarization demultiplexer
JPWO2019111353A1 (en) Waveguide directional coupler and polarization separation circuit
JP6253342B2 (en) Polarization separation circuit
Froppier et al. Distribution of the radiation function on the filter structure
JP2020188377A (en) Turnstile polarization coupler
JP2006246314A (en) Wave polarizer
CN103594818A (en) Thin-substrate phase correction slot-line difference-beam planar horn antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19940708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021538534

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19940708

Country of ref document: EP

Kind code of ref document: A1