WO2021023945A1 - Anneau pour une turbine de turbomachine ou de turbomoteur - Google Patents

Anneau pour une turbine de turbomachine ou de turbomoteur Download PDF

Info

Publication number
WO2021023945A1
WO2021023945A1 PCT/FR2020/051433 FR2020051433W WO2021023945A1 WO 2021023945 A1 WO2021023945 A1 WO 2021023945A1 FR 2020051433 W FR2020051433 W FR 2020051433W WO 2021023945 A1 WO2021023945 A1 WO 2021023945A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
zone
annular
circumferential
segment
Prior art date
Application number
PCT/FR2020/051433
Other languages
English (en)
Inventor
Bertrand Guillaume Robin PELLATON
Mathieu Laurent HERRAN
Yohan Smith
Original Assignee
Safran Helicopter Engines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Helicopter Engines filed Critical Safran Helicopter Engines
Priority to US17/630,454 priority Critical patent/US20220251963A1/en
Priority to EP20760497.6A priority patent/EP4010565B1/fr
Priority to PL20760497.6T priority patent/PL4010565T3/pl
Priority to CN202080056482.6A priority patent/CN114207254A/zh
Publication of WO2021023945A1 publication Critical patent/WO2021023945A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/04Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type using sealing fluid, e.g. steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/04Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles forming ring or sector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/11Shroud seal segments

Definitions

  • TITLE Ring for a turbine engine or turbine engine turbine
  • the invention relates to a ring for a turbomachine or turbine engine turbine, intended to surround a bladed wheel of a turbine rotor.
  • a turbomachine conventionally comprises, from upstream to downstream in the direction of gas flow, a fan, a low pressure compressor, a high pressure compressor, a combustion chamber, a high pressure turbine and a low pressure turbine.
  • the air from the blower is divided into a primary flow flowing in a primary annular vein, and a secondary flow flowing in a secondary annular vein surrounding the primary annular vein.
  • the low-pressure compressor, the high-pressure compressor, the combustion chamber, the high-pressure turbine and the low-pressure turbine are provided in the primary stream.
  • the high pressure turbine rotor and the high pressure compressor rotor are rotatably coupled through a first shaft to form a high pressure body.
  • the rotor of the low pressure turbine and the rotor of the low pressure compressor are coupled in rotation by means of a second shaft so as to form a low pressure body, the fan being able to be connected directly to the rotor of the low pressure compressor or by via an epicyclic gear train, for example.
  • the rotors of high pressure and low pressure turbines have bladed wheels surrounded by a ring belonging to the stator.
  • the radial clearances between the radially outer ends or tops of the blades and the radially inner surface of the ring delimiting the flow path of the hot gas stream should be limited. The definition of these clearances must in particular take into account the expansion phenomena of the parts in operation.
  • the invention aims to remedy the aforementioned drawbacks in a simple, reliable and inexpensive manner.
  • the invention relates to a one-piece ring for a turbomachine turbine, intended to surround a bladed wheel of a turbine rotor, said ring extending circumferentially around an axis and comprising an annular and continuous support part.
  • radially external and a part delimiting a flow path of a gas flow, radially internal and comprising several angular segments distributed over the periphery and located adjacent to each other so as to form an annular part delimiting the vein, characterized in that circumferential clearances are formed between the circumferential ends of the adjacent segments located opposite each other, each segment being connected to the support part by means of a connection zone, an annular channel of circulation of cooling fluid being delimited radially between the external support part and the internal part delimiting the stream.
  • annular cooling air circulation channel effectively cools the segments of the internal part, said segments being subjected to high temperatures.
  • circumferential clearances between the segments makes it possible to limit radial expansions.
  • Such a one-piece structure is moreover inexpensive, reliable and not bulky.
  • the radially outer support portion is annular and continuous, that is, not segmented. In other words, the radially outer support portion extends in a single part over the entire circumference.
  • connection zone can extend circumferentially over a shorter distance than the corresponding segment of the radially internal part delimiting the vein.
  • the circumferential dimension of each sector of the radially internal part is for example greater than 5 times the circumferential distance of the corresponding connection zone.
  • connection zone can be formed by a flat partition.
  • Said partition may extend along a radial plane oriented in the axial direction.
  • the ring may include sealing means between the internal and external parts, said sealing means being able to allow a flow of cooling air leakage from the channel.
  • the sealing means make it possible to limit and control the leakage rate, the air from this leak entering, for example, the hot gas flow stream or the primary stream.
  • the sealing means may include at least one annular seal mounted radially between the internal and external parts.
  • the sealing means may include a first annular seal and a second annular seal located respectively at a first axial end and at a second axial end of the channel.
  • Each annular seal may be engaged in part in a groove formed in the internal part and / or in a groove formed in the external part.
  • Each annular seal may have a polygonal section shape, for example square, or a rounded section, for example circular or oval.
  • the grooves can have complementary shapes to the annular seals.
  • the sealing means may include at least one labyrinth seal.
  • the labyrinth seal may have one or more radial annular flanges extending from the inner part, interposed axially between one or more radial annular flanges extending from the outer part, or vice versa.
  • the sealing means may include a first labyrinth seal and a second labyrinth located respectively at a first axial end and at a second axial end of the channel.
  • the ring may have air inlet holes allowing cooling air to flow into the channel.
  • the air inlets can extend radially.
  • the air inlet openings can be made in the external support part.
  • the air inlet openings can be evenly distributed around the periphery.
  • the air inlet openings may have a polygonal section, or a rounded section, for example circular.
  • Each segment may include a first circumferential end comprising an annular bearing flange extending circumferentially and able to come to bear on the radially outer surface of a second circumferential end of an adjacent segment.
  • the support rim can thus be located on the side of the cooling air circulation channel.
  • Each segment may include a first zone extending circumferentially between the first circumferential end of the segment and the connecting zone and a second zone extending circumferentially between the second circumferential end of the segment and the connecting zone, the circumferential dimension of the first zone being smaller than the circumferential dimension of the second zone.
  • the ratio of the circumferential dimension of the first zone to the circumferential dimension of the second zone is for example between 1 and 10.
  • Such a structure ensures that, in operation, the expansion effects press against the radially outer surface of the second circumferential end of each segment resting on the corresponding supporting rim of the adjacent segment.
  • At least some of the air inlet ports may be provided at at least one bonding area.
  • the outer part may have a thickness greater than the thickness of the inner part, for example 1, 2 to 3 times greater than the thickness of the inner part. This makes it possible to ensure better control of the clearances and better possible retention of the blades in the event of accidental release.
  • the ring can be made by additive manufacturing.
  • Such a method makes it possible to produce a ring of complex structure, in a single piece, not requiring numerous and expensive additional machining or assembly steps, so as to directly obtain a finished or almost finished ring, ready to be used. .
  • the additive manufacturing process is, for example, sintering or selective melting of powder, for example using a laser beam or an electron beam.
  • Such a method comprises a step during which is deposited, on a manufacturing platform, a first layer of powder of a metal or a metal alloy of controlled thickness, then a step consisting in heating with a heating means (a laser beam or an electron beam) a predefined zone of the powder layer, and to proceed by repeating these steps for each additional layer, until obtaining, slice by slice, the final part.
  • a heating means a laser beam or an electron beam
  • the invention also relates to a turbine, for example a high pressure turbine, a turbomachine or a turbine engine, or an aircraft comprising such a ring.
  • a turbine for example a high pressure turbine, a turbomachine or a turbine engine, or an aircraft comprising such a ring.
  • the turbomachine may be an aircraft turbomachine.
  • the turbine engine may be a helicopter turbine engine.
  • FIG. 1 is a perspective view with partial cut away, of part of a ring according to a first embodiment of the invention
  • FIG. 2 is a view corresponding to Figure 1, in which the annular seals are not shown
  • FIG. 3 is a schematic view showing a section along a radial plane, of part of the ring,
  • FIG. 4 is a view corresponding to Figure 3, illustrating a second embodiment of the invention
  • FIG. 5 is a perspective view of part of a ring according to a third embodiment of the invention.
  • FIG. 6 is a perspective view of part of a ring according to a fourth embodiment of the invention.
  • Figures 1 to 3 illustrate a ring 1 for a turbomachine or turbine engine turbine, for example a high pressure or low pressure turbine, according to a first embodiment of the invention.
  • the ring 1 is intended to surround a bladed wheel 2 of a turbine rotor.
  • the bladed wheel comprises vanes 3 regularly distributed around the circumference, each vane comprising a blade 4 and a radially internal platform 5, internally delimiting a flow passage 6 of a gas flow.
  • the radially outer ends 7 of the vanes 3 are located near the ring 1.
  • the ring 1 extending circumferentially around the axis of rotation of the rotor and comprises a continuous annular support part 9, radially outer, and a radially inner part 10 outwardly delimiting the vein 6.
  • the outer part 9 comprises an axially median cylindrical zone 11 and at least one fixing zone 12 intended to be fixed to a stator of the turbomachine.
  • Said internal part 10 comprises several angular segments 13 distributed over the periphery and located adjacent to each other so as to form an annular part delimiting the vein 6.
  • Each segment 13 is connected to the support part 9 by the intermediate of a connecting zone 14 extending radially.
  • the number of segments may vary depending on the applications and is for example between 3 and 30.
  • An annular channel 15 for circulating cooling fluid is delimited radially between the external part 9 and the internal part 10 delimiting the vein 6.
  • the cylindrical zone 11 of the radially outer part 9 comprises air inlet openings 16 regularly distributed over the circumference and opening radially into the channel 15.
  • the air inlet openings 16 each have a rectangular or square section. Of course, other shapes can be used.
  • Each segment 13 comprises a first circumferential end 17 comprising an annular bearing flange 18 extending circumferentially and able to come to bear, during operation of the turbomachine or of the turbine engine, on the radially outer surface of a second circumferential end 19 of an adjacent segment 13.
  • the support rim 18 is thus located on the side of the cooling air circulation channel 15.
  • Each segment 13 comprises a first zone 20 extending circumferentially between the first circumferential end 17 of the segment 13 and the connecting zone 14 and a second zone 21 extending circumferentially between the second circumferential end 19 of the segment 13 and the connecting zone 14.
  • the circumferential dimension of the first zone 20 is smaller than the circumferential dimension of the second zone 21.
  • the ratio of the circumferential dimension of the first zone 20 to the circumferential dimension of the second zone 21 is for example between 1 and 10.
  • the external part 9 may have a thickness greater than the thickness of the internal part 10, for example 1, 2 to 3 times greater than the thickness of the internal part 10. This makes it possible so as to ensure better control of the clearances and better retention of the blades in the event of accidental release.
  • the ring 1 further comprises sealing means comprising a first annular seal
  • Each annular seal 22, 23 is engaged in part in a groove 24 formed in the internal part 10 and in a groove 25 formed in the external part 9.
  • the grooves 24, 25 have complementary shapes to the annular seals 22, 23.
  • the ring 1 can be produced by additive manufacturing, in particular by sintering or selective powder melting, for example using a laser beam or an electron beam.
  • FIG. 4 illustrates a second embodiment in which some of the air inlet openings 16 are provided at the level of the connection zones 14, so as to effectively cool each connection zone 14 concerned.
  • FIG. 5 illustrates a third embodiment in which the circumferential dimension of the first zone 20 is greater than the circumferential dimension of the second zone 21.
  • the ratio of the circumferential dimension of the first zone 20 to the circumferential dimension of the second zone 21 is for example between 1 and 10.
  • FIG. 6 illustrates a fourth embodiment in which the sealing means comprise a first labyrinth seal 26 and a second labyrinth 27 located respectively at the level of the first axial end and the second axial end of the channel 15.
  • Each labyrinth seal 26, 27 comprises one or more radial annular flanges 27 extending from the inner part 10, interposed axially between one or more radial annular flanges 28 extending from the outer part 9, or vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

L'invention concerne un anneau (1 ) pour une turbine de turbomachine, destiné à entourer une roue aubagée (2) d'un rotor de turbine, ledit anneau (1 ) s'étendant circonférentiellement autour d'un axe et comportant une partie de support annulaire (9), radialement externe, et une partie (10) délimitant une veine (6) de circulation d'un flux de gaz, radialement interne et comportant plusieurs segments (13) angulaires répartis sur la périphérie et situés de façon adjacente les uns par rapport aux autres de façon à former une partie annulaire délimitant la veine (6), des jeux circonférentiels (j) étant formés entre les extrémités circonférentielles des segments (13) adjacents situées en regard les unes des autres, chaque segment (13) étant relié à la partie de support (9) par l'intermédiaire d'une zone de liaison (14), un canal annulaire (15) de circulation de fluide de refroidissement étant délimité radialement entre la partie externe de support (9) et la partie interne (10) délimitant la veine.

Description

DESCRIPTION
TITRE : Anneau pour une turbine de turbomachine ou de turbomoteur
Domaine technique de l’invention
L’invention concerne un anneau pour une turbine de turbomachine ou de turbomoteur, destiné à entourer une roue aubagée d’un rotor de turbine.
Etat de la technique antérieure
Une turbomachine comporte classiquement, de l’amont vers l’aval dans le sens d’écoulement des gaz, une soufflante, un compresseur basse pression, un compresseur haute pression, une chambre de combustion, une turbine haute pression et une turbine basse pression.
L’air issu de la soufflante est divisé en un flux primaire s’écoulant dans une veine annulaire primaire, et un flux secondaire s’écoulant dans une veine annulaire secondaire entourant la veine annulaire primaire.
Le compresseur basse pression, le compresseur haute pression, la chambre de combustion, la turbine haute pression et la turbine basse pression sont ménagés dans la veine primaire. Le rotor de la turbine haute pression et le rotor du compresseur haute pression sont couplés en rotation par l’intermédiaire d’un premier arbre de manière à former un corps haute pression.
Le rotor de la turbine basse pression et le rotor du compresseur basse pression sont couplés en rotation par l’intermédiaire d’un second arbre de manière à former un corps basse pression, la soufflante pouvant être reliée directement au rotor du compresseur basse pression ou par l’intermédiaire d’un train d’engrenage épicycloïdal par exemple.
Les rotors des turbines haute pression et basse pression comportent des roues aubagées entourées d’un anneau appartenant au stator. Afin d’optimiser les performances de la turbomachine, il convient de limiter les jeux radiaux entre les extrémités radialement externes ou sommets des aubes et la surface radialement interne de l’anneau délimitant la veine d’écoulement du flux de gaz chauds. La définition de ces jeux doit notamment tenir compte des phénomènes de dilatation des pièces en fonctionnement.
Plus ces jeux sont faibles, plus les performances de la turbomachine sont bonnes puisque la quasi-totalité du flux d’air est utilisé pour entraîner en rotation la turbine. A l’inverse, la présence de jeux importants pénalise le rendement de la turbomachine.
Il est connu d’utiliser des anneaux monoblocs, c’est-à-dire formés d’une seule pièce, ce qui permet de réduire le coût, la masse et l’encombrement radial de la turbine. Cependant, les anneaux monoblocs utilisés actuellement ne sont prévus pour fonctionner de façon optimale que dans une plage de température limitée. En effet, en dehors de cette plage de températures, les jeux radiaux entre les sommets des aubes et l’anneau sont importants et pénalisent le rendement de la turbomachine.
Il est connu d’utiliser un anneau sectorisé, c’est-à-dire composé de plusieurs secteurs angulaires adjacents, mis bout-à-bout de manière à former un anneau. Un tel anneau permet de maîtriser plus finement les jeux entre les secteurs d’anneau et les sommets d’aubes, mais présente une masse, une dimension radiale et un coût élevés.
L’invention vise à remédier aux inconvénients précités, de manière simple, fiable et peu onéreuse.
Présentation de l’invention
A cet effet, l’invention concerne un anneau monobloc pour une turbine de turbomachine, destiné à entourer une roue aubagée d’un rotor de turbine, ledit anneau s’étendant circonférentiellement autour d’un axe et comportant une partie de support annulaire et continue, radialement externe, et une partie délimitant une veine de circulation d’un flux de gaz, radialement interne et comportant plusieurs segments angulaires répartis sur la périphérie et situés de façon adjacente les uns par rapport aux autres de façon à former une partie annulaire délimitant la veine, caractérisé en ce que des jeux circonférentiels sont formés entre les extrémités circonférentielles des segments adjacents situées en regard les unes des autres, chaque segment étant relié à la partie de support par l’intermédiaire d’une zone de liaison, un canal annulaire de circulation de fluide de refroidissement étant délimité radialement entre la partie externe de support et la partie interne délimitant la veine.
La présence d’un canal annulaire de circulation d’air de refroidissement permet de refroidir efficacement les segments de la partie interne, lesdits segments étant soumis à des températures élevées. De plus, la présence des jeux circonférentiels entre les segments permet de limiter les dilatations radiales.
Une telle structure monobloc est par ailleurs peu onéreuse, fiable, et peu encombrante.
La partie de support radialement externe est annulaire et continue, c’est-à-dire non segmentée. En d’autres termes, la partie de support radialement externe s’étend en une seule partie sur toute la circonférence.
Chaque zone de liaison peut s’étendre circonférentiellement sur une distance plus faible que le segment correspondant de la partie radialement interne délimitant la veine. La dimension circonférentielle de chaque secteur de la partie radialement interne est par exemple supérieure à 5 fois la distance circonférentielle de la zone de liaison correspondante.
Chaque zone de liaison peut être formée par une cloison plane. Ladite cloison peut s’étendre selon un plan radial orienté dans la direction axiale. L’anneau peut comporter des moyens d’étanchéité entre les parties interne et externe, lesdits moyens d’étanchéité étant aptes à autoriser un débit de fuite d’air de refroidissement issu du canal.
Les moyens d’étanchéité permettent de limiter et de contrôler le débit de fuite, l’air issu de cette fuite pénétrant par exemple dans la veine d’écoulement des gaz chauds ou veine primaire.
Les moyens d’étanchéité peuvent comporter au moins un joint annulaire monté radialement entre les parties interne et externe.
Les moyens d’étanchéité peuvent comporter un premier joint annulaire et un second joint annulaire situés respectivement à une première extrémité axiale et à une seconde extrémité axiale du canal.
Chaque joint annulaire peut être engagé en partie dans une gorge ménagée dans la partie interne et/ou dans une gorge ménagée dans la partie externe.
Chaque joint annulaire peut présenter une forme section polygonale, par exemple carrée, ou une section arrondie, par exemple circulaire ou ovale.
Les gorges peuvent présenter des formes complémentaires aux joints annulaires.
Les moyens d’étanchéité peuvent comporter au moins un joint labyrinthe.
Le joint labyrinthe peut comporter un ou plusieurs rebords annulaires radiaux s’étendant depuis la partie interne, intercalés axialement entre un ou plusieurs rebords annulaires radiaux s’étendant depuis la partie externe, ou inversement.
Un tel joint permet de maîtriser les pertes de charge et donc le débit de fuite.
Les moyens d’étanchéité peuvent comporter un premier joint labyrinthe et un second labyrinthe situés respectivement à une première extrémité axiale et à une seconde extrémité axiale du canal.
L’anneau peut comporter des orifices d’entrée d’air permettant l’arrivée d’air de refroidissement dans le canal.
Les orifices d’entrée d’air peuvent s’étendre radialement.
Les orifices d’entrée d’air peuvent être ménagés dans la partie externe de support.
Les orifices d’entrée d’air peuvent être régulièrement répartis sur la périphérie.
Les orifices d’entrée d’air peuvent présenter une section polygonale, ou une section arrondie, par exemple circulaire.
Chaque segment peut comporter une première extrémité circonférentielle comportant un rebord d’appui annulaire s’étendant circonférentiellement et apte à venir en appui sur la surface radialement externe d’une seconde extrémité circonférentielle d’un segment adjacent. Le rebord d’appui peut ainsi être situé du côté du canal de circulation d’air de refroidissement. Chaque segment peut comporter une première zone s’étendant circonférentiellement entre la première extrémité circonférentielle du segment et la zone de liaison et une seconde zone s’étendant circonférentiellement entre la seconde extrémité circonférentielle du segment et la zone de liaison, la dimension circonférentielle de la première zone étant plus faible que la dimension circonférentielle de la seconde zone.
Le rapport de la dimension circonférentielle de la première zone sur la dimension circonférentielle de la seconde zone est par exemple compris entre 1 et 10.
Une telle structure permet de garantir que, en fonctionnement, les effets de dilatation viennent plaquer la surface radialement externe de la seconde extrémité circonférentielle de chaque segment en appui sur le rebord d’appui correspondant du segment adjacent.
Au moins certains des orifices d’entrée d’air peuvent être ménagés au niveau d’au moins une zone de liaison.
Une telle structure permet de refroidir efficacement chaque zone de liaison concernée.
La partie externe peut présenter une épaisseur supérieure à l’épaisseur de la partie interne, par exemple 1 ,2 à 3 fois supérieure à l’épaisseur de la partie interne. Ceci permet de manière à assurer un meilleur contrôle des jeux et une meilleure rétention possible des aubes en cas de libération accidentelle.
L’anneau peut être réalisé par fabrication additive.
Un tel procédé permet de réaliser un anneau de structure complexe, en une seule pièce, ne nécessitant pas de nombreuses et coûteuses étapes additionnelles d’usinage ou d’assemblage, de manière à obtenir directement un anneau fini ou quasiment fini, prêt à être utilisé.
Le procédé de fabrication additive est par exemple du frittage ou de la fusion sélective de poudre, par exemple à l’aide d’un faisceau laser ou d’un faisceau d’électrons.
Un tel procédé comprend une étape durant laquelle est déposée, sur un plateau de fabrication, une première couche de poudre d'un métal ou d'un alliage métallique d'épaisseur contrôlée, puis une étape consistant à chauffer avec un moyen de chauffage (un faisceau laser ou un faisceau d'électrons) une zone prédéfinie de la couche de poudre, et de procéder en répétant ces étapes pour chaque couche supplémentaire, jusqu'à l'obtention, tranche par tranche, de la pièce finale.
L’invention concerne également une turbine, par exemple une turbine haute pression, une turbomachine ou un turbomoteur, ou un aéronef comportant un tel anneau.
La turbomachine peut être une turbomachine d’avion. Le turbomoteur peut être un turbomoteur d’hélicoptère.
Brève description des figures
[Fig. 1] est une vue en perspective avec arrachage partiel, d’une partie d’un anneau selon une première forme de réalisation de l’invention, [Fig. 2] est une vue correspondant à la figure 1 , dans laquelle les joints annulaires ne sont pas représentés,
[Fig. 3] est une vue schématique illustrant une section selon un plan radial, d’une partie de l’anneau,
[Fig. 4] est une vue correspondant à la figure 3, illustrant une deuxième forme de réalisation de l’invention,
[Fig. 5] est une vue en perspective d’une partie d’un anneau selon une troisième forme de réalisation de l’invention,
[Fig. 6] est une vue en perspective d’une partie d’un anneau selon une quatrième forme de réalisation de l’invention.
Description détaillée de l’invention
Les figures 1 à 3 illustrent un anneau 1 pour une turbine de turbomachine ou de turbomoteur, par exemple une turbine haute pression ou basse pression, selon une première forme de réalisation de l’invention.
L’anneau 1 est destiné à entourer une roue aubagée 2 d’un rotor de turbine.
La roue aubagée comporte des aubes 3 régulièrement réparties sur la circonférence, chaque aube comportant une pale 4 et une plate-forme radialement interne 5, délimitant intérieurement une veine 6 d’écoulement d’un flux de gaz. Les extrémités radialement externes 7 des aubes 3 sont situées à proximité de l’anneau 1.
L’anneau 1 s’étendant circonférentiellement autour de l’axe de rotation du rotor et comporte une partie de support 9 annulaire continue, radialement externe, et une partie radialement interne 10 délimitant extérieurement la veine 6.
La partie externe 9 comporte une zone cylindrique 11 axialement médiane et au moins une zone de fixation 12 destinée à être fixée à un stator de la turbomachine.
Ladite partie interne 10 comporte plusieurs segments angulaires 13 répartis sur la périphérie et situés de façon adjacente les uns par rapport aux autres de façon à former une partie annulaire délimitant la veine 6. Chaque segment 13 est relié à la partie de support 9 par l’intermédiaire d’une zone de liaison 14 s’étendant radialement. Le nombre de segments peut varier en fonction des applications et est par exemple compris entre 3 et 30.
Un canal annulaire 15 de circulation de fluide de refroidissement est délimité radialement entre la partie externe 9 et la partie interne 10 délimitant la veine 6.
La zone cylindrique 11 de la partie radialement externe 9 comporte des orifices d’entrée d’air 16 régulièrement répartis sur la circonférence et débouchant radialement dans le canal 15. Les orifices d’entrée d’air 16 ont chacun une section rectangulaire ou carrée. Bien entendu, d’autres formes peuvent être utilisées. Chaque segment 13 comporte une première extrémité circonférentielle 17 comportant un rebord d’appui annulaire 18 s’étendant circonférentiellement et apte à venir en appui, lors du fonctionnement de la turbomachine ou du turbomoteur, sur la surface radialement externe d’une seconde extrémité circonférentielle 19 d’un segment 13 adjacent. Le rebord d’appui 18 est ainsi situé du côté du canal 15 de circulation d’air de refroidissement.
Chaque segment 13 comporte une première zone 20 s’étendant circonférentiellement entre la première extrémité circonférentielle 17 du segment 13 et la zone de liaison 14 et une seconde zone 21 s’étendant circonférentiellement entre la seconde extrémité circonférentielle 19 du segment 13 et la zone de liaison 14. La dimension circonférentielle de la première zone 20 est plus faible que la dimension circonférentielle de la seconde zone 21 .
Le rapport de la dimension circonférentielle de la première zone 20 sur la dimension circonférentielle de la seconde zone 21 est par exemple compris entre 1 et 10.
La partie externe 9 peut présenter une épaisseur supérieure à l’épaisseur de la partie interne 10, par exemple 1 ,2 à 3 fois supérieure à l’épaisseur de la partie interne 10. Ceci permet de manière à assurer un meilleur contrôle des jeux et une meilleure rétention possible des aubes en cas de libération accidentelle.
L’anneau 1 comporte en outre des moyens d’étanchéité comprenant un premier joint annulaire
22 et un second joint annulaire 23 situés respectivement à une première extrémité axiale et à une seconde extrémité axiale du canal 15.
Chaque joint annulaire 22, 23 est engagé en partie dans une gorge 24 ménagée dans la partie interne 10 et dans une gorge 25 ménagée dans la partie externe 9. Chaque joint annulaire 22,
23 peut présenter une forme section polygonale, par exemple carrée, ou une section arrondie, par exemple circulaire ou ovale. Les gorges 24, 25 présentent des formes complémentaires aux joints annulaires 22, 23.
L’anneau 1 peut être réalisé par fabrication additive, notamment par frittage ou fusion sélective de poudre, par exemple à l’aide d’un faisceau laser ou d’un faisceau d’électrons.
La figure 4 illustre une deuxième forme de réalisation dans laquelle certains des orifices d’entrée d’air 16 sont ménagés au niveau des zones de liaison 14, de manière à refroidir efficacement chaque zone de liaison 14 concernée.
La figure 5 illustre une troisième forme de réalisation dans laquelle la dimension circonférentielle de la première zone 20 est plus grande que la dimension circonférentielle de la seconde zone 21 . Le rapport de la dimension circonférentielle de la première zone 20 sur la dimension circonférentielle de la seconde zone 21 est par exemple compris entre 1 et 10.
La figure 6 illustre une quatrième forme de réalisation dans laquelle les moyens d’étanchéité comportent un premier joint labyrinthe 26 et un second labyrinthe 27 situés respectivement au niveau de la première extrémité axiale et de la seconde extrémité axiale du canal 15. Chaque joint labyrinthe 26, 27 comporte un ou plusieurs rebords annulaires radiaux 27 s’étendant depuis la partie interne 10, intercalés axialement entre un ou plusieurs rebords annulaires radiaux 28 s’étendant depuis la partie externe 9, ou inversement.

Claims

REVENDICATIONS
1. Anneau (1 ) monobloc pour une turbine de turbomachine ou de turbomoteur, destiné à entourer une roue aubagée (2) d’un rotor de turbine, ledit anneau (1 ) s’étendant circonférentiellement autour d’un axe et comportant une partie de support annulaire et continue (9), radialement externe, et une partie (10) délimitant une veine (6) de circulation d’un flux de gaz, radialement interne et comportant plusieurs segments (13) angulaires répartis sur la périphérie et situés de façon adjacente les uns par rapport aux autres de façon à former une partie annulaire délimitant la veine (6), caractérisé en ce que des jeux circonférentiels (j) sont formés entre les extrémités circonférentielles des segments (13) adjacents situées en regard les unes des autres, chaque segment (13) étant relié à la partie de support (9) par l’intermédiaire d’une zone de liaison (14), un canal annulaire (15) de circulation de fluide de refroidissement étant délimité radialement entre la partie externe de support (9) et la partie interne (10) délimitant la veine.
2. Anneau (1) selon la revendication 1 , caractérisé en ce qu’il comporte des moyens d’étanchéité (22, 23) entre les parties interne (10) et externe (9), lesdits moyens d’étanchéité étant aptes à autoriser un débit de fuite d’air de refroidissement issu du canal (15).
3. Anneau (1) selon la revendication 2, caractérisé en ce que les moyens d’étanchéité comportent au moins un joint annulaire (22, 23) monté radialement entre les parties interne (10) et externe (9).
4. Anneau (1) selon la revendication 3, caractérisé en ce que chaque joint annulaire (22, 23) est engagé en partie dans une gorge (24) ménagée dans la partie interne (10) et/ou dans une gorge (25) ménagée dans la partie externe (11).
5. Anneau (1) selon l’une des revendications 2 à 4, caractérisé en ce que les moyens d’étanchéité comportent au moins un joint labyrinthe (26, 27).
6. Anneau (1) selon l’une des revendications 1 à 5, caractérisé en ce qu’il comporte des orifices d’entrée d’air (16) permettant l’arrivée d’air de refroidissement dans le canal (15).
7. Anneau (1) selon la revendication 6, caractérisé en ce que les orifices d’entrée d’air (16) sont ménagés dans la partie externe de support (9).
8. Anneau (1) selon l’une des revendications 1 à 7, caractérisé en ce que chaque segment (13) comporte une première extrémité circonférentielle (17) comportant un rebord d’appui annulaire (18) s’étendant circonférentiellement et apte à venir en appui sur la surface radialement externe d’une seconde extrémité circonférentielle (19) d’un segment adjacent (13).
9. Anneau (1) selon la revendication 8, caractérisé en ce que chaque segment (13) comporte une première zone (20) s’étendant circonférentiellement entre la première extrémité circonférentielle (17) du segment (13) et la zone de liaison (14) et une seconde zone (21) s’étendant circonférentiellement entre la seconde extrémité circonférentielle (19) du segment (13) et la zone de liaison (14), la dimension circonférentielle de la première zone (20) étant plus faible que la dimension circonférentielle de la seconde zone (21).
10. Anneau (1) selon l’une des revendications 6 à 7, caractérisé en ce qu’au moins certains des orifices d’entrée d’air (16) sont ménagés au niveau d’au moins une zone de liaison (14).
PCT/FR2020/051433 2019-08-05 2020-08-04 Anneau pour une turbine de turbomachine ou de turbomoteur WO2021023945A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/630,454 US20220251963A1 (en) 2019-08-05 2020-08-04 Ring for a turbomachine or a turboshaft engine turbine
EP20760497.6A EP4010565B1 (fr) 2019-08-05 2020-08-04 Anneau pour une turbine de turbomachine ou de turbomoteur
PL20760497.6T PL4010565T3 (pl) 2019-08-05 2020-08-04 Pierścień do turbiny maszyny wirowej lub silnika turbinowego
CN202080056482.6A CN114207254A (zh) 2019-08-05 2020-08-04 用于涡轮机涡轮或涡轮轴发动机涡轮的环

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1908957A FR3099787B1 (fr) 2019-08-05 2019-08-05 Anneau pour une turbine de turbomachine ou de turbomoteur
FR1908957 2019-08-05

Publications (1)

Publication Number Publication Date
WO2021023945A1 true WO2021023945A1 (fr) 2021-02-11

Family

ID=69375409

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/051433 WO2021023945A1 (fr) 2019-08-05 2020-08-04 Anneau pour une turbine de turbomachine ou de turbomoteur

Country Status (6)

Country Link
US (1) US20220251963A1 (fr)
EP (1) EP4010565B1 (fr)
CN (1) CN114207254A (fr)
FR (1) FR3099787B1 (fr)
PL (1) PL4010565T3 (fr)
WO (1) WO2021023945A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12037912B2 (en) 2022-06-17 2024-07-16 Rtx Corporation Advanced passive clearance control (APCC) control ring produced by field assisted sintering technology (FAST)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1965030A2 (fr) * 2007-02-28 2008-09-03 Rolls-Royce plc Segment de joint de rotor
US7938621B1 (en) * 1997-12-03 2011-05-10 Rolls-Royce Plc Blade tip clearance system
EP3153670A1 (fr) * 2015-10-09 2017-04-12 United Technologies Corporation Chambre de passage de refroidissement à flux multiples améliorée pour moteur de turbine à gaz

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2659950B2 (ja) * 1987-03-27 1997-09-30 株式会社東芝 ガスタービンシユラウド
US5456576A (en) * 1994-08-31 1995-10-10 United Technologies Corporation Dynamic control of tip clearance
US6116852A (en) * 1997-12-11 2000-09-12 Pratt & Whitney Canada Corp. Turbine passive thermal valve for improved tip clearance control
FR2891300A1 (fr) * 2005-09-23 2007-03-30 Snecma Sa Dispositif de controle de jeu dans une turbine a gaz
DE102009016260A1 (de) * 2009-04-03 2010-10-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren beim Schweißen und Bauteil
US8753073B2 (en) * 2010-06-23 2014-06-17 General Electric Company Turbine shroud sealing apparatus
ES2705532T3 (es) * 2012-10-30 2019-03-25 MTU Aero Engines AG Anillo de turbina y turbomáquina
US10100654B2 (en) * 2015-11-24 2018-10-16 Rolls-Royce North American Technologies Inc. Impingement tubes for CMC seal segment cooling
FR3055146B1 (fr) * 2016-08-19 2020-05-29 Safran Aircraft Engines Ensemble d'anneau de turbine
US10480337B2 (en) * 2017-04-18 2019-11-19 Rolls-Royce North American Technologies Inc. Turbine shroud assembly with multi-piece seals

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7938621B1 (en) * 1997-12-03 2011-05-10 Rolls-Royce Plc Blade tip clearance system
EP1965030A2 (fr) * 2007-02-28 2008-09-03 Rolls-Royce plc Segment de joint de rotor
EP3153670A1 (fr) * 2015-10-09 2017-04-12 United Technologies Corporation Chambre de passage de refroidissement à flux multiples améliorée pour moteur de turbine à gaz

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12037912B2 (en) 2022-06-17 2024-07-16 Rtx Corporation Advanced passive clearance control (APCC) control ring produced by field assisted sintering technology (FAST)

Also Published As

Publication number Publication date
PL4010565T3 (pl) 2024-02-19
EP4010565B1 (fr) 2023-10-18
FR3099787A1 (fr) 2021-02-12
CN114207254A (zh) 2022-03-18
EP4010565A1 (fr) 2022-06-15
US20220251963A1 (en) 2022-08-11
FR3099787B1 (fr) 2021-09-17

Similar Documents

Publication Publication Date Title
EP2440746A1 (fr) Turbomachine comprenant des moyens ameliores de reglage du debit d'un flux d'air de refroidissement preleve en sortie de compresseur haute pression
FR2948726A1 (fr) Roue a aubes comprenant des moyens de refroidissement ameliores
FR3082233A1 (fr) Ensemble de turbine
EP3911842A1 (fr) Ensemble pour une turbomachine
FR3006366A1 (fr) Roue de turbine dans une turbomachine
WO2021209707A1 (fr) Turbine pour une turbomachine
EP3880939B1 (fr) Étanchéité entre une roue mobile et un distributeur d'une turbomachine
EP3824221B1 (fr) Ensemble pour une turbomachine
EP4010565B1 (fr) Anneau pour une turbine de turbomachine ou de turbomoteur
FR3092612A1 (fr) Système de refroidissement d’anneau de retenue axiale d’aubes de turbine pour turbomachine d’aéronef
EP3942158A1 (fr) Aube de turbomachine equipee d'un circuit de refroidissement optimise
FR3109406A1 (fr) Dispositif de refroidissement d’un carter de turbine
EP3976935B1 (fr) Anneau d'étanchéité pour une roue de turbine de turbomachine
EP3976939B1 (fr) Module de turbomachine d'aeronef
FR3100572A1 (fr) Secteur d’anneau de turbine
FR3113921A1 (fr) Roue aubagée de turbomachine
WO2022208007A1 (fr) Ensemble d'anneau de turbine pour une turbomachine
WO2023047034A1 (fr) Turbine à gaz haute-pression pour une turbomachine et turbomachine
EP4259906A1 (fr) Ensemble statorique de turbine avec degré de liberté radial entre un distributeur et un anneau d'étanchéité
WO2023062327A1 (fr) Distributeur de turbine comportant un élément annulaire d'étanchéité
FR3071865A1 (fr) Ensemble pour une turbomachine
FR3116305A1 (fr) Arbre de liaison d’un corps haute pression d’une turbomachine
FR3083566A1 (fr) Ensemble de turbine pour turbomachine d'aeronef a circuit de refroidissement de disque equipe d'un dispositif d'etancheite
FR3100560A1 (fr) Ensemble pour une turbine de turbomachine
FR3127251A1 (fr) Refroidissement d’aubes de turbine de turbomachines

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20760497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020760497

Country of ref document: EP

Effective date: 20220307