WO2021022909A1 - 堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构 - Google Patents

堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构 Download PDF

Info

Publication number
WO2021022909A1
WO2021022909A1 PCT/CN2020/096067 CN2020096067W WO2021022909A1 WO 2021022909 A1 WO2021022909 A1 WO 2021022909A1 CN 2020096067 W CN2020096067 W CN 2020096067W WO 2021022909 A1 WO2021022909 A1 WO 2021022909A1
Authority
WO
WIPO (PCT)
Prior art keywords
self
plugging
water
pipe string
oil
Prior art date
Application number
PCT/CN2020/096067
Other languages
English (en)
French (fr)
Inventor
裴柏林
代朝永
Original Assignee
安东柏林石油科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安东柏林石油科技(北京)有限公司 filed Critical 安东柏林石油科技(北京)有限公司
Publication of WO2021022909A1 publication Critical patent/WO2021022909A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B17/00Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like

Definitions

  • the invention belongs to the technical field of oil and natural gas exploitation, and relates to a technology for water plugging in fractured-cavity oil and gas reservoirs, and in particular to a method for realizing self-plugging water by accumulating and blocking particles at the oil-water interface, and A self-plugging pipe string that accumulates packing particles at the oil-water interface to realize self-plugging, and a completion structure that realizes self-plugging by accumulating packing particles at the oil-water interface.
  • the main method of plugging water in high water-cut oil wells is to find water first, and then plug the water through chemical or packer blocking.
  • the chemical water shutoff has a short effective period; the plugging method of the packer has low water shutoff cost and simple operation, but both water shutoff methods need to find water.
  • the cost of finding water is high and it is extremely difficult. It is relatively difficult to solve in oilfields. problem.
  • the horizontal section of the horizontal well is relatively long, and one drilling passes through multiple caves or fractures, and the water rises at a different rate. The same high, the water outlet time is different, and selective water shutoff is required.
  • the purpose of the present invention is to overcome the defects of the prior art and provide a method for realizing self-plugging water by accumulating packing particles, a self-plugging water pipe string and a well completion structure, so as to realize automatic water blocking of fractured-cavity oil wells in the production process.
  • a method for self-plugging water by accumulating packing particles at the oil-water interface comprising the following steps: injecting packing particles into the fractures of the wellbore production section, the packing particles forming an accumulation layer at the oil-water interface;
  • a self-plugging water pipe string equipped with a segmented device and plugging holes is run down.
  • the segmented device divides the production section into multiple independent sub-production sections; after commissioning, the oil-water interface gradually rises; when one or more sub-production sections After partial water breakthrough, the packing particles will block the stopper under the action of water carrying, so as to realize the self-blocking of the water outlet section in the production section.
  • the method for injecting packing particles into the fractures and caves of the wellbore production section is as follows: for open hole wells, directly injecting the packing fluid carrying the packing particles into the wellbore production section, and the packing particles form an accumulation layer 3 at the oil-water interface; A wellbore equipped with a self-plugging water pipe string is injected into the cavity of the well wall corresponding to the self-plugging water pipe string with a filling fluid carrying packing particles, and the packing particles form an accumulation layer 3 at the oil-water interface.
  • the method for injecting packing particles into the fractures and caves of the production section of the wellbore is as follows: according to the logging data prepared in advance, a packing string is inserted into the wellbore, and a position corresponding to the position of the fracture and cave is set on the packing string. There is an injection valve 2, and a card packer 1 is arranged on both sides of the injection valve 2; the filling liquid carrying the packing particles is injected through the filling pipe string.
  • the segmentation device is a slug formed by a liquid expansion packer 8 or a glue injection.
  • the method for forming a slug by injecting glue is as follows: (s1) the segment to be blocked is sealed by a card packer 1 with a glue injection valve 2 installed between the card packer 1; s2) Lower the glue injection pipe string to the deepest target layer, and inject glue into the target layer; (s3) Drag the glue injection pipe string outwards, and inject glue to the shallow target layer in turn, until all slug settings are completed .
  • the density (true density) of the packing particles is less than the density of the formation water and greater than the density of the formation crude oil, and the particle size is 16-100 mesh.
  • volume of the injected packing particles is greater than the volume of the annulus between the two segmented devices, or greater than the total volume of the annulus of the production section.
  • the present invention also adopts the following technical solutions:
  • a self-plugging water pipe string for accumulating packing particles at the oil-water interface to realize self-plugging water comprising a self-plugging water pipe string body 61 provided with a flow hole 62, and arranged in front of the flow hole 62 of the self-plugging water pipe string body 61
  • the pore size of the interception net 63 is smaller than the particle size of the packing particles, and is used to prevent the packing particles from entering the self-plugging water pipe string body 61 through the flow holes 2;
  • the blocking hole 66 is a long and narrow cavity structure for accumulation The particles are blocked by the interception net 63, so as to block the liquid inlet channel.
  • the self-plugging water pipe string is also provided with a segmenting device;
  • the segmenting device is a liquid-expandable packer 8 or a slug formed by injecting glue arranged in the circumferential direction of the body of the self-plugging water pipe string.
  • the self-plugging water pipe string is a short section self-plugging water pipe string, and a segmentation device is also provided between two or more short section self-plugging water pipe strings, and the segmentation device is circumferentially provided with a liquid expansion packer 8 or the slug pipe string formed by glue injection.
  • the self-plugging water pipe string body 61 is provided with one or more sets of flow holes 62, interception nets 63 and plugging holes 66 for cooperation.
  • a ring-shaped outer protective cover 64 is provided outside the interception net.
  • one end of the outer protective sleeve 64 is sealed and fixed with the self-plugging water pipe string body 61, and the other end is sealed and fixed with a ring-shaped overflow ring 65 fixed on the self-plugging water pipe string body 61; the overflow ring 65
  • One or more plugging holes 66 are provided inside; the plugging hole 66, the gap between the outer protective sleeve 64 and the interception net 63, the interception net 63 and the flow hole 62 together form a liquid inlet channel, which connects the wellbore annulus with the self The water shutoff pipe string body 61 is internally communicated.
  • the present invention also adopts the following technical solutions:
  • a well completion structure that realizes self-plugging water by accumulating packing particles at the oil-water interface is characterized in that: the oil-water interface of the fractured cavity of the completion production section is provided with an accumulation layer 4 formed by packing particles, and the wellbore
  • the production section is provided with a self-plugging water pipe string including a segmentation device and a plugger 6, and the self-plugging water pipe string is suspended on the wellbore casing by a suspension packer 7.
  • the invention provides a method for stacking and packing particles to realize self-blocking water, a self-blocking water pipe string and a well completion structure.
  • This method overcomes the shortcomings of manual pre-searching for water in the traditional construction process for plugging and repeated searching for water to block water in the production process, and realizes the function of automatically plugging the water out of the joint without looking for water before production.
  • the operation process is simple and easy, low cost, time saving, good water blocking effect, and can significantly improve the production efficiency of oil wells.
  • FIG. 1 is a schematic diagram of injecting packing particles into the wellbore fractures in the method for realizing self-plugging by accumulating packing particles at the oil-water interface described in Example 1.
  • FIG. 1 is a schematic diagram of injecting packing particles into the wellbore fractures in the method for realizing self-plugging by accumulating packing particles at the oil-water interface described in Example 1.
  • Example 2 is a schematic diagram of running a self-plugging water pipe string in the method for realizing self-plugging water by accumulating packing particles at the oil-water interface described in Example 1.
  • Fig. 3 is a schematic diagram of the principle of the method for realizing self-plugging water by accumulating packing particles on the oil-water interface described in Example 1.
  • FIG. 4 is a schematic structural diagram of a self-plugging water pipe string used for accumulating packing particles at the oil-water interface to realize self-plugging water according to the second embodiment.
  • Example 5 is a schematic diagram of a well completion structure described in Example 3 that realizes self-plugging by accumulating packing particles at the oil-water interface.
  • Example 6 is a schematic diagram of a well completion structure described in Example 4 that realizes self-plugging of water by accumulating packing particles at the oil-water interface.
  • Completion string the string used for production run into the production section of the wellbore, usually a cavity-like structure, with flow holes on the surface, and the hollow interior for the oil production channel; the ring formed between the string and the well wall The space is called annulus; the self-plugging water string described in this patent also belongs to a kind of completion string.
  • Water control screen It is a specific form of the completion string.
  • an interception net for sand control.
  • the interception net is also equipped with an interception net to protect The outer protective sleeve damaged by the shaft wall.
  • This embodiment provides a method for self-plugging water by accumulating packing particles at the oil-water interface, which includes the following steps:
  • Method 1 In an open hole (that is, the production section of the well is not run into the completion string), directly inject the packing particles into the production section.
  • the advantage of this method is that it is easy to operate, but the disadvantage is that the consumption of packing particles is relatively large, and it is impossible to effectively fill all the packing particles into the cavities.
  • Method two referring to Figure 1, first run the packing string according to the pre-prepared logging data. The appropriate position of the packing string is provided with an injection valve 2 consistent with the position of the fracture and cavity, and there are cards on both sides of the injection valve 2. The packer 1 injects the packing liquid carrying the packing particles through the packing string.
  • Method 3 For the wellbore that has been run into the self-plugging water string described in step (b), the filling fluid carrying packing particles can be directly injected into the wellbore annulus between the self-plugging water string and the well wall.
  • the advantages of this method are The disadvantage is the same as Method 1.
  • the density of the packing particles should be less than the density of formation water 5 and greater than the density of formation crude oil 3, and the particle size is between 16-100 mesh. Therefore, after filling fluid injection is completed, the The particles naturally float on the oil-water interface between the formation crude oil 3 and the formation water 5 to form a packer layer 4; the filling fluid is formation water; the injection volume of the packer particles in method one or three should be greater than the wellbore or annulus volume; method two The injection volume of the packed particles should be greater than the volume of the wellbore annulus between the two packers 1 in order to provide sufficient packed particles to achieve the best self-plugging effect.
  • the self-plugging water pipe string is suspended on the wellbore casing by a suspension packer 7, and the segmentation device may be a slug formed by a liquid expansion packer 8 or a glue injection.
  • the liquid expansion packer it can be directly installed on the outer periphery of the self-plugging water pipe string.
  • the liquid expansion packer 8 will swell in contact with the liquid after the self-plugging water pipe string is run into the wellbore to divide the wellbore into one or more sub-production sections. Obviously, this method has the advantages of simple structure and convenient operation.
  • the following methods can be used to set up: (s1) Two packers are used to seal the segment to be blocked, and a glue injection valve is installed between the two packers; (s2) ground connection Mud pump, lower the rubber injection pipe string to the deepest target layer, and then pressurize through the ground to inject glue into the target layer; (s3) drag the rubber injection pipe string outwards, and then inject glue to the shallow target layer. Until the setting of all the slugs is completed; the slugs set by this method can obtain a better segmentation effect.
  • each sub-production section can be set in a targeted manner for fractures and caves based on logging data, or can be set equidistantly based on experience.
  • the reason for the equidistant setting is that even if there is a phenomenon that a slot spans multiple sub-production sections, the multiple sub-production sections can all realize the self-blocking function.
  • step (a) is performed first, or step (b) is performed first, the effect is the same.
  • FIG. 2 it is a schematic diagram of the completion structure of the production section of a fractured-cavity oil well.
  • a self-plugging water pipe string equipped with a segmentation device and a plugger 6 has been installed in the well, and the self-plugging water pipe string passes through a suspended packer.
  • the segmented device Suspended on the wellbore casing, the segmented device divides the production section into multiple independent sub-production sections; at the same time, the packing particles in the fractures and caves have formed an accumulation layer at the oil-water interface.
  • the water level of the formation water 5 in the fractures and caves continues to rise, resulting in the isolation of the particle accumulation layer 4 between the formation crude oil 3 and the formation water 5.
  • the formation water 5 carries the packing particles and reaches the wellbore.
  • the isolation effect of the fluid expansion packer 8 or due to the presence of slugs, the formation water will be enclosed in one or more sub-production sections, and the formation water will not flow to other production sections.
  • This example provides a specific implementation of a self-plugging water pipe string equipped with a segmented device and plugging holes used in Example 1, that is, a method used to accumulate and isolate particles at the oil-water interface to achieve self-plugging.
  • the self-plugging water pipe string is
  • the self-plugging water pipe string used to accumulate packing particles at the oil-water interface to realize self-plugging water includes a self-plugging water pipe string body 61 provided with a flow hole 62, and a self-plugging water pipe string body 61 provided on the self-plugging water pipe string body 61.
  • the aperture of the interception net 63 is smaller than the particle size of the packing particles, and is used to prevent the packing particles from entering the self-plugging water pipe string body 61 through the flow holes 62
  • the blocking hole 66 is a long and narrow cavity
  • the body structure is used to accumulate the packing particles blocked by the interception net 63, so as to block the liquid inlet channel.
  • the cooperating flow hole 62, interception net 63, and plugging hole 66 are defined as a set of plugging devices, and one set or more than two sets of plugging devices can be provided in the production section of the segmented device.
  • the segmenting device is a slug formed by a liquid-swelling packer 8 or a glue injection disposed in the circumferential direction of the self-plugging pipe string body 61.
  • a ring-shaped outer protective sleeve 64 is provided outside the interception net.
  • the outer protective sleeve 64 is a sealing structure, one end is sealed and fixed with the self-plugging water pipe string body 61, and the other end is sealed and fixed with a sleeve-shaped overflow ring 65 fixed on the self-plugging water pipe string body 1; 65 is provided with one or more plugging holes 66; the plugging hole 66, the gap between the outer protective sleeve 64 and the interception net 63, the interception net 63 and the flow hole 62 together constitute a liquid inlet channel, which will connect the wellbore of the production formation
  • the annulus communicates with the interior of the self-plugging water pipe string body 61.
  • the blocking hole 66 may be arranged in a direction parallel to the axis of the self-plugging water pipe string, or may be arranged obliquely along the circumferential direction of the self-plugging water pipe string to obtain a longer distance and achieve a better blocking effect.
  • the pore size of the interception net is smaller than the particle size of the packing particles. It can be arranged circumferentially around the self-plugging water pipe string body 61, or it can be installed on the side of the liquid inlet channel. The purpose is to prevent The packing particles enter the self-plugging water pipe string body 61.
  • This example presents a well completion structure constructed by the method described in Example 1 and the self-plugging water pipe string described in Example 2 by accumulating packing particles on the oil-water interface to achieve self-plugging.
  • the completion structure is constructed by the method described in Example 1. After the construction is completed, the oil-water interface of the fractures and caves in the production section is provided with an accumulation layer formed by packing particles, and the wellbore production section A self-plugging water pipe string including a segmentation device and a plug is provided, and the self-plugging water pipe string is hung on the wellbore casing through a suspension packer.
  • the self-plugging water pipe string including the segmentation device and the plugging hole 66 adopts the self-plugging water pipe string described in Example 2 for accumulating and blocking particles at the oil-water interface to realize self-plugging water.
  • the completion structure described in this embodiment has a self-plugging function.
  • this embodiment provides a practical application of the technical solutions described in the foregoing embodiments 1 to 3.
  • An oil well is an adjustment well with 7in liner cementing and 6in open hole production.
  • the length of the production section of the wellbore is 300m.
  • three karst caves with lengths of 20m, 20m and 30m are encountered. If the well is directly completed and put into production, In half a year, the water content of the produced fluid is high (compared to similar oil wells, the water content will reach 60% or more), so water shutoff operations are required.
  • the main implementation process is as follows:
  • the first step is to divide the production section into 3 sections based on the drilling and logging data of the production section. Specifically, two 6-in liquid-swelling packers 8 are placed at both ends of the fracture-cavity section, and the distance between the two liquid-swelling packers 8 is an average of 100m to pack the cave section; the liquid-swelling packer On both sides are sub-production sections.
  • the second step is to inject the packing fluid containing the packing particles into the caves and fractures through the injection pipe string.
  • the actual packing volume of the injected packing particles is 1m 3 (the volume is approximately between two 6in fluid expansion packers 8 ⁇ annulus volume).
  • the packing particles enter the fractures and caves under the action of the filling fluid, and form a packing layer 4 of packing particles between the formation crude oil 3 and the formation water 5.
  • the self-plugging water pipe string including plugs 6 and 6-in fluid expansion packer 8 is installed, and the 7-in suspension packer 7 is installed.
  • the particles of the packer block the section where the water sees.
  • the fourth step is after it is put into production again. Due to the different rising speeds of water in different caves, the time for the packer particles to enter different self-production stages is different. After seeing the water, the formation water 5 in the cracks and caves of the foreseeable water carries the packing particles of the packing particle accumulation layer 4 into the water stopper 6, forming a long and narrow blockage section of the packing particles in the blocking hole 66 of the water stopper 6. , So as to achieve the purpose of self-blocking water, and the crevices with slow water rising speed are still in normal production. According to actual monitoring, the water cut of the produced liquid in the first 6 months after the well was put into production has always been kept below 20%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

一种通过在油水界面堆积封隔颗粒实现自堵水的方法,包括以下步骤:向井筒生产段的缝洞中注入封隔颗粒,封隔颗粒在油水界面形成堆积层(4);向井筒生产段下入设有分段装置和堵塞器(6)的自堵水管柱,分段装置将生产段分隔成为多个独立的子生产段;投产后,油水界面逐渐升高,直至一个或多个子生产段局部见水;封隔颗粒在水的携带作用下,将堵塞器(6)堵塞,实现子生产段的自堵水。

Description

堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构 技术领域
本发明属于石油和天然气开采技术领域,涉及一种针对缝洞型油气藏进行堵水的技术,特别是涉及一种通过在油水界面堆积封隔颗粒实现自堵水的方法、一种用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱,以及一种通过在油水界面堆积封隔颗粒实现自堵水的完井结构。
背景技术
缝洞型油井生产过程中,由于裂缝处地层的非均质性或溶洞内油水粘度比的差异,地层水流动的速度大于甚至远大于油流动的速度,导致油水界面抬升的速度不一样,造成油井的局部出水。为防止局部出水带来危害(水延井筒轴向窜流),需要进行堵水作业。
目前,高含水油井,堵水的主要方式是先找水,然后通过化学或者封隔器卡封的方式进行堵水。化学堵水有效期短;封隔器卡封的方式堵水成本低,且操作简单,但两种堵水方式都需要找水,找水成本高,难度极大,是油田一项比较难以解决的问题。且堵水后,出现新的出水点,还需要反复找水,再次堵水,进行多次重复作业;同时水平井水平段比较长,一次钻井穿过多个溶洞或者裂缝,水上升的速度不一样高,出水时间也不相同,需要进行选择性的堵水。
因此,为了解决上述问题,急需提供一种不需要找水而在出水段实现自堵水功能的技术方案。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种通过堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构,实现缝洞型油井在生产过程中的自动堵水。
为实现上述目的,本发明采用了如下技术方案:
一种通过在油水界面堆积封隔颗粒实现自堵水的方法,包括以下步骤:向井筒生产段的缝洞中注入封隔颗粒,所述封隔颗粒在油水界面形成堆积层;向井筒生产段下入设有分段装置和堵塞孔的自堵水管柱,所述分段装置将生产段分隔成为多个独立的子生产段;投产后,油水界面逐渐升高;当一个或多个子生产段局部见水后,封隔颗粒在水的携带作用下,将堵塞器堵塞,实现生产段中出水段的自堵水。
进一步,所述向井筒生产段的缝洞中注入封隔颗粒的方法为:对于裸眼井,直接向井筒生产段注入携带封隔颗粒的充填液,封隔颗粒在油水界面形成堆积层3;对于设有自堵水管柱的井筒,向自堵水管柱对应的井壁缝洞内注入携带封隔颗粒的充填液,封隔颗粒在油水界面形成堆积层3。
进一步,所述向井筒生产段的缝洞中注入封隔颗粒的方法为:根据预先准备的测井数据向井筒中下入充填管柱,所述充填管柱上与缝洞位置相应的位置设有注入阀2,所述注入阀2的两侧设有卡封封隔器1;通过充填管柱注入携带封隔颗粒的充填液。
进一步,所述分段装置为遇液膨胀封隔器8或注胶形成的段塞。
进一步,所述通过注胶形成段塞的方法为:(s1)通过卡封封隔器1对待封堵段进行卡封,所述卡封封隔器1之间装有注胶阀2;(s2)将注胶管柱下入到最深处的目标层,向目标层注入胶液;(s3)向外拖动注胶管柱,依次向浅处的目标层注胶,直至完成所有段塞的设置。
进一步,所述封隔颗粒的密度(真实密度)小于地层水密度且大于地层原油密度,粒径为16-100目。
进一步,所述注入封隔颗粒的体积大于两个分段装置之间的环空容积,或大于生产段环空的总容积。
为实现上述目的,本发明还采用了如下技术方案:
一种用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱,包括设有过流孔62的自堵水管柱本体61、设置在自堵水管柱本体61的过流孔62前方的拦截网63,以及设置在拦截网前方的堵塞孔66;井筒中的产液可以经由堵塞孔66、拦截网63、过流孔62构成的进液通道,进入自堵水管柱本体61内部;所述拦截网63的孔径小于封隔颗粒的粒径,用于阻止封隔颗粒通过过流孔2进入自堵 水管柱本体61内部;所述堵塞孔66为狭长的腔体结构,用于堆积被拦截网63阻止的封隔颗粒,从而实现进液通道的堵塞。
进一步,所述自堵水管柱上还设有分段装置;所述分段装置为设置在自堵水管柱本体周向的遇液膨胀封隔器8或注胶形成的段塞。
进一步,所述自堵水管柱为短节自堵水管柱,两个或多个短节自堵水管柱之间还设有分段装置,所述分段装置为周向设有遇液膨胀封隔器8或注胶形成的段塞的管柱。
进一步,所述自堵水管柱本体61上设有配合使用的一组或多组过流孔62、拦截网63和堵塞孔66。
进一步,所述拦截网外部设有环套状的外保护套64。
进一步,所述外保护套64的一端与自堵水管柱本体61密封固定,另一端与固定在自堵水管柱本体61上的环套状的过流环65密封固定;所述过流环65内部设有一个或多个堵塞孔66;所述堵塞孔66、外保护套64与拦截网63之间的空隙、拦截网63和过流孔62共同构成进液通道,将井筒环空与自堵水管柱本体61内部连通。
为实现上述目的,本发明还采用了如下技术方案:
一种通过在油水界面堆积封隔颗粒实现自堵水的完井结构,其特征在于:所述完井生产段的缝洞的油水界面设有由封隔颗粒形成的堆积层4,所述井筒生产段设有包括分段装置和堵塞器6的自堵水管柱,所述自堵水管柱通过悬挂封隔器7悬挂在井筒套管上。
本发明一种堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构,通过预先在缝洞中设置封隔颗粒,当缝洞中的水进入井筒后,自动将自堵水管柱进行堵塞,同时在两侧分段装置的作用下,限制水或封隔颗粒在井筒中窜流,从而实现了将缝洞出水控制在局部的子生产段。本方法克服了传统施工工艺中需要人工预先找水专门进行封堵、生产过程中反复找水堵水的弊端,实现了投产前无需找水、投产后可对缝洞出水进行自动堵水的功能,操作过程简便易行、成本低廉、节省时间,堵水效果好,可显著提升油井生产效率。
附图说明
图1为实施例1所述通过在油水界面堆积封隔颗粒实现自堵水的方法中在井筒缝洞内注入封隔颗粒的示意图。
图2为实施例1所述通过在油水界面堆积封隔颗粒实现自堵水的方法中下入自堵水管柱示意图。
图3为实施例1所述通过在油水界面堆积封隔颗粒实现自堵水的方法的原理示意图。
图4为实施例2所述用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱的结构示意图。
图5为实施例3所述通过在油水界面堆积封隔颗粒实现自堵水的完井结构示意图。
图6为实施例4所述通过在油水界面堆积封隔颗粒实现自堵水的完井结构示意图。
具体实施方式
以下结合附图1至图5,进一步说明本发明一种堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构的具体实施方式。本发明一种堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构不限于以下实施例的描述。
本文中采用的术语释义如下:
完井管柱:下入井筒生产段中的用于生产的管柱,通常为腔状结构,表面设有过流孔,中空的内部为产油通道;管柱与井壁之间形成的环形空间,称为环空;本专利中所述的自堵水管柱,也属于一种完井管柱。
控水筛管:是完井管柱的一种具体形式,其过流孔前方(即来液方向,下同)设有用于防砂的拦截网,通常拦截网上方还设有用于保护拦截网不被井壁损坏的外保护套。
实施例1:
本实施例给出一种通过在油水界面堆积封隔颗粒实现自堵水的方法,包括以下步骤:
(a)向井筒生产段的缝洞中注入封隔颗粒,所述封隔颗粒在油水界面形成堆积层4。
可采取多种方法向生产段的缝洞中注入封隔颗粒,例如,方法一:在裸眼 井(即井中生产段没有下入完井管柱)状态下,直接向生产段注入携带封隔颗粒的充填液,本方法优点在于操作简便,缺点在于封隔颗粒的消耗量较大,无法将封隔颗粒全部有效地充填到缝洞中。方法二,参考图1所示,首先根据预先准备的测井数据下入充填管柱,充填管柱的适当位置设有与缝洞位置一致的注入阀2,注入阀2的两侧设有卡封封隔器1,通过充填管柱注入携带封隔颗粒的充填液,本方法优点在于可将封隔颗粒全部有效地充填到缝洞中,缺点在于需要测井数据,操作过程需要下入并提出充填管柱,较为复杂繁琐。方法三,对于已经下入步骤(b)中所述自堵水管柱的井筒,可直接向自堵水管柱与井壁之间的井筒环空中注入携带封隔颗粒的充填液,本方法的优缺点同方法一。
优选的,所述封隔颗粒的密度(真实密度而非堆积密度)应小于地层水5密度且大于地层原油3密度,粒径为16-100目之间,因此充填液注入完成后,封隔颗粒自然漂浮在地层原油3和地层水5的油水界面,形成封隔体层4;所述充填液为地层水;方法一或三的封隔颗粒注入量应大于井筒或环空体积;方法二的封隔颗粒注入量应大于两个封隔器1之间的井筒环空体积,以便提供充足的封隔颗粒,实现最佳的自堵水效果。
(b)向井筒生产段下入设有分段装置和堵塞器的自堵水管柱,所述分段装置将生产段分隔成为多个独立的子生产段。
具体的,所述自堵水管柱通过悬挂封隔器7悬挂在井筒套管上,所述分段装置可以为遇液膨胀封隔器8或注胶形成的段塞。对于遇液膨胀封隔器,可直接设置在自堵水管柱外周,所述遇液膨胀封隔器8随同自堵水管柱下入井筒后遇液膨胀,将井筒分成一个或多个子生产段,显然本方法具有结构简单、操作便捷等优点。对于注胶形成的段塞,可采用以下方法进行设置:(s1)通过两个封隔器对待封堵段进行卡封,两个封隔器之间装有注胶阀;(s2)地面连接泥浆泵,将注胶管柱下入到最深处的目标层,然后通过地面加压,向目标层注入胶液;(s3)向外拖动注胶管柱,依次向浅处的目标层注胶,直至完成所有段塞的设置;本方法设置的段塞,可以获得更好的分段效果。
所述每个子生产段的长度,既可以根据测井数据,针对缝洞有针对性的进行设置,也可以依据经验进行等距离设置。进行等距离设置的原因在于:即使存在一个缝洞横跨了多个子生产段的现象,那么所述的这些多个子生产段也都 可以实现自封堵功能。
需要说明的是,在具体实施过程中,上述步骤(a)和(b)并没有先后顺序关系。无论是先进行步骤(a),亦或是先进行步骤(b),其效果是相同的。
(c)投产后,油水界面逐渐升高,直至一个或多个子生产段局部见水;当一个或多个子生产段局部见水后,封隔颗粒在水的携带作用下,将堵塞孔66堵塞,实现子生产段的自堵水。
以下结合附图2至3,进一步说明本方法能够实现自堵水的工作原理。如图2所示,是一个缝洞型油井生产段完井结构的示意图,井中已下入设有分段装置和堵塞器6的自堵水管柱,所述自堵水管柱通过悬挂封隔器7悬挂在井筒套管上,所述分段装置将生产段分隔成为多个独立的子生产段;与此同时,缝洞中的封隔颗粒已在油水界面形成堆积层。投产后,随着缝洞中的地层原油3不断被产出,缝洞中的地层水5的水位不断升高,导致介于地层原油3和地层水5之间的封隔颗粒堆积层4也不断升高,直至地层水5携带封隔颗粒到达井筒中。此时,由于遇液膨胀封隔器8封隔作用(或由于段塞的存在),地层水将被封闭在一个或多个子生产段内,地层水不会窜流到其他分段的生产段,只能携带封隔颗粒进入堵塞孔66,向自堵水管柱内部流动;如图3所示,随着地层水5不断流入自堵水管柱内部(如图中箭头所指为地层水流动方向),堆积在堵塞孔66中的封隔颗粒越来越多,直至将堵塞孔66填满并将进液通道彻底封闭,从而实现了该生产段自堵水功能。
实施例2:
本实施例给出一种实施例1中所采用的一种设有分段装置和堵塞孔的自堵水管柱的具体实施方式,即一种用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱。
如图4所示,所述用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱,包括设有过流孔62的自堵水管柱本体61、设置在自堵水管柱本体61的过流孔62前方的拦截网63,以及设置在拦截网前方的堵塞孔66;井筒中的产液可以经由堵塞孔66、拦截网63、过流孔62构成的进液通道,进入自堵水管柱本体61内部;所述拦截网63的孔径小于封隔颗粒的粒径,用于阻止封隔颗粒通过过流孔62进入自堵水管柱本体61内部;所述堵塞孔66为狭长的腔体结构,用于堆 积被拦截网63阻止的封隔颗粒,从而实现进液通道的堵塞。
具体的,配合使用的过流孔62、拦截网63和堵塞孔66定义为一组堵塞装置,经过分段装置分段的生产段,可以设置一组或两组以上的堵塞装置。所述分段装置为设置在自堵水管柱本体61周向的遇液膨胀封隔器8或注胶形成的段塞。
优选的,所述所述拦截网外部设有环套状的外保护套64。所述外保护套64为密封结构,一端与自堵水管柱本体61密封固定,另一端与固定在自堵水管柱本体1上的环套状的过流环65密封固定;所述过流环65内部设有一个或多个堵塞孔66;所述堵塞孔66、外保护套64与拦截网63之间的空隙、拦截网63和过流孔62共同构成进液通道,将生产地层的井筒环空与自堵水管柱本体61内部连通。所述堵塞孔66可以采用平行于自堵水管柱轴心的方向进行设置,也可以沿自堵水管柱周向倾斜设置,以获得更长的距离,从而起到更好的堵塞效果。
所述拦截网的孔径小于封隔颗粒粒径相匹配,可以采用环绕自堵水管柱本体61周向的方式设置,也可以采用压装在进液通道一侧的方式设置,其目的均在于防止封隔颗粒进入自堵水管柱本体61内部。
实施例3:
本实施例给出一种通过实施例1所述方法及实施例2所述自堵水管柱,所构造的一种通过在油水界面堆积封隔颗粒实现自堵水的完井结构。
如图5所示,所述完井结构通过实施例1所述的方法进行构建,构建完成后,其生产段缝洞的油水界面设有由封隔颗粒形成的堆积层,所述井筒生产段设有包括分段装置和堵塞器的自堵水管柱,所述自堵水管柱通过悬挂封隔器悬挂在井筒套管上。所述包括分段装置和堵塞孔66的自堵水管柱采用实施例2所述的用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱。本实施例所述的完井结构具有自堵水功能。
实施例4:
如图6所示,本实施例给出上述实施例1至3所述技术方案的一次实际应用。
某油井为7in尾管固井、6in裸眼生产的调整井,井筒生产段长度为300m, 钻井过程中钻遇3个长度分别为20m、20m、30m长的溶洞,若直接完井投产,投产后半年,出现产液含水率高的情况(对比类似油井,含水率将达到60%以上),因此需要进行堵水作业。主要实施过程如下:
第一步,依据生产段的钻井测井数据,设计将生产段分成3段。具体的,在缝洞段两端下入两个6in遇液膨胀封隔器8,两个遇液膨胀封隔器8之间距离平均100m,将溶洞段进行封隔;遇液膨胀封隔器两侧为子生产段。
第二步,通过注入管柱向溶洞和裂缝内注入含有封隔颗粒的充填液,实际注入封隔颗粒的堆积体积为1m 3(该体积约为两个6in遇液膨胀封隔器8之间的环空容积)。此时,封隔颗粒在充填液的携带作用下进入缝洞,并在地层原油3和地层水5之间形成封隔颗粒堆积层4。
第三步,下入包括堵塞器6、6in遇液膨胀封隔器8的自堵水管柱,安装7in悬挂封隔器7,见水的地方封隔体颗粒堵塞了该段。
第四步,再次投产后。由于不同溶洞的水上升速度不一样,封隔体颗粒进入不同自生产段的时间不一样。见水后,先见水的缝洞内的地层水5携带封隔颗粒堆积层4的封隔颗粒进入堵水器6,在堵水器6的堵塞孔66内形成狭长的封隔颗粒堵塞段,从而达到自堵水的目的,而水上升速度较慢的缝洞仍然正常生产。根据实际监测,该井再次投产后前6个月的产液含水率始终保持在20%以下。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (13)

  1. 一种通过在油水界面堆积封隔颗粒实现自堵水的方法,其特征在于:包括以下步骤:
    向井筒生产段的缝洞中注入封隔颗粒,所述封隔颗粒在油水界面形成堆积层;
    向井筒生产段下入设有分段装置和堵塞器的自堵水管柱,所述分段装置将生产段分隔成为多个独立的子生产段;
    投产后,油水界面逐渐升高;如果一个或多个子生产段局部见水后,封隔颗粒在水的携带作用下,将堵塞器堵塞,实现生产段中出水段的自堵水。
  2. 根据权利要求1所述的通过在油水界面堆积封隔颗粒实现自堵水的方法,其特征在于:所述向井筒生产段的缝洞中注入封隔颗粒的方法为:对于裸眼井,直接向井筒生产段注入携带封隔颗粒的充填液,封隔颗粒在油水界面形成堆积层;对于设有自堵水管柱的井筒,向自堵水管柱对应的井壁缝洞内注入携带封隔颗粒的充填液,封隔颗粒在油水界面形成堆积层。
  3. 根据权利要求1所述的通过在油水界面堆积封隔颗粒实现自堵水的方法,其特征在于:所述向井筒生产段的缝洞中注入封隔颗粒的方法为:
    根据预先准备的测井数据向井筒中下入充填管柱,所述充填管柱上与缝洞位置相应的位置设有注入阀,所述注入阀的两侧设有卡封封隔器;
    通过充填管柱注入携带封隔颗粒的充填液。
  4. 根据权利要求1所述的通过在油水界面堆积封隔颗粒实现自堵水的方法,其特征在于:所述分段装置为遇液膨胀封隔器或注胶形成的段塞。
  5. 根据权利要求4所述的通过在油水界面堆积封隔颗粒实现自堵水的方法,其特征在于:所述通过注胶形成段塞的方法为:
    (s1)通过卡封封隔器对封堵段进行卡封,所述卡封封隔器之间装有注胶阀2;
    (s2)将注胶管柱下入到最深处的目标层,向目标层注入胶液;
    (s3)向外拖动注胶管柱,依次向浅处的目标层注胶,直至完成所有段塞的设置。
  6. 根据权利要求1所述的通过在油水界面堆积封隔颗粒实现自堵水的方 法,其特征在于:所述封隔颗粒的真实密度小于地层水密度且大于地层原油密度,粒径为16-100目。
  7. 一种用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱,其特征在于:包括设有过流孔的自堵水管柱本体、设置在自堵水管柱本体的过流孔前方的拦截网,以及设置在拦截网前方的堵塞孔;井筒中的产液可以经由堵塞孔、拦截网、过流孔构成的进液通道,进入自堵水管柱本体内部;所述拦截网的孔径小于封隔颗粒的粒径,用于阻止封隔颗粒通过过流孔进入自堵水管柱本体内部;所述堵塞孔为狭长的腔体结构,用于堆积被拦截网阻止的封隔颗粒,从而实现进液通道的堵塞。
  8. 根据权利要求7所述的用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱,其特征在于:所述自堵水管柱上还设有分段装置;所述分段装置为设置在自堵水管柱本体周向的遇液膨胀封隔器或注胶形成的段塞。
  9. 根据权利要求7所述的用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱,其特征在于:所述自堵水管柱为短节自堵水管柱,两个或多个短节自堵水管柱之间还设有分段装置,所述分段装置为周向设有遇液膨胀封隔器或注胶形成的段塞的管柱。
  10. 根据权利要求7至9中任一权利要求所述的用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱,其特征在于:所述自堵水管柱本体上设有配合使用的一组或多组过流孔、拦截网和堵塞孔。
  11. 根据权利要求10所述的用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱,其特征在于:所述拦截网外部设有环套状的外保护套。
  12. 根据权利要求11所述的用于在油水界面堆积封隔颗粒实现自堵水的自堵水管柱,其特征在于:所述外保护套的一端与自堵水管柱本体密封固定,另一端与固定在自堵水管柱本体上的环套状的过流环密封固定;所述过流环内部设有一个或多个堵塞孔;所述堵塞孔、外保护套与拦截网之间的空隙、拦截网和过流孔共同构成进液通道,将井筒环空与自堵水管柱本体内部连通。
  13. 一种通过在油水界面堆积封隔颗粒实现自堵水的完井结构,其特征在于:所述完井生产段的缝洞的油水界面设有由封隔颗粒形成的堆积层,所述井筒生产段设有包括分段装置和堵塞器的自堵水管柱。
PCT/CN2020/096067 2019-08-06 2020-06-15 堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构 WO2021022909A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910721548.8A CN110424923B (zh) 2019-08-06 2019-08-06 堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构
CN201910721548.8 2019-08-06

Publications (1)

Publication Number Publication Date
WO2021022909A1 true WO2021022909A1 (zh) 2021-02-11

Family

ID=68412794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096067 WO2021022909A1 (zh) 2019-08-06 2020-06-15 堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构

Country Status (2)

Country Link
CN (1) CN110424923B (zh)
WO (1) WO2021022909A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110424923B (zh) * 2019-08-06 2021-10-01 安东柏林石油科技(北京)有限公司 堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8307916B1 (en) * 2007-02-27 2012-11-13 Wald H Lester Controlling fluid loss in oil and gas wells
CN103437737A (zh) * 2013-09-02 2013-12-11 中国石油化工股份有限公司 一种用油相微颗粒堵剂对石油井进行堵水的方法
CN103726813A (zh) * 2014-01-13 2014-04-16 安东柏林石油科技(北京)有限公司 油气井过滤器管柱外充填环中建立封隔的完井结构及方法
CN109653707A (zh) * 2019-01-29 2019-04-19 安东柏林石油科技(北京)有限公司 一种裂缝性油气藏油气井充填封隔体颗粒降水增油方法
CN110424923A (zh) * 2019-08-06 2019-11-08 安东柏林石油科技(北京)有限公司 堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102587858B (zh) * 2012-03-09 2015-05-20 中国石油化工股份有限公司 对缝洞型油藏进行堵水的方法
US8584754B1 (en) * 2013-02-28 2013-11-19 Halliburton Energy Services, Inc. Delayed-tackifier coated particulates and methods relating thereto
CN106246143B (zh) * 2016-08-26 2018-08-21 中国石油化工股份有限公司 一种出水油层的控水方法及其控水防砂管柱
CN109098694A (zh) * 2017-06-21 2018-12-28 中国石油化工股份有限公司 用于压裂水平气井的控水防砂装置及方法
CN107956457B (zh) * 2018-01-08 2023-09-26 北京合力奇点科技有限公司 采油控水装置、定向井用完井采油管柱及其完井方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8307916B1 (en) * 2007-02-27 2012-11-13 Wald H Lester Controlling fluid loss in oil and gas wells
CN103437737A (zh) * 2013-09-02 2013-12-11 中国石油化工股份有限公司 一种用油相微颗粒堵剂对石油井进行堵水的方法
CN103726813A (zh) * 2014-01-13 2014-04-16 安东柏林石油科技(北京)有限公司 油气井过滤器管柱外充填环中建立封隔的完井结构及方法
CN109653707A (zh) * 2019-01-29 2019-04-19 安东柏林石油科技(北京)有限公司 一种裂缝性油气藏油气井充填封隔体颗粒降水增油方法
CN110424923A (zh) * 2019-08-06 2019-11-08 安东柏林石油科技(北京)有限公司 堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构

Also Published As

Publication number Publication date
CN110424923B (zh) 2021-10-01
CN110424923A (zh) 2019-11-08

Similar Documents

Publication Publication Date Title
CN103061684B (zh) 裸眼水平井分段多簇均匀酸化管柱及其酸化方法
US3028914A (en) Producing multiple fractures in a cased well
CN109653707B (zh) 一种裂缝性油气藏油气井充填封隔体颗粒降水增油方法
CN110424912B (zh) 不改变管柱更换充填层的方法、返排服务装置和完井结构
CN102587873B (zh) 一种水平井二氧化碳吞吐控水增油方法
CN108266173B (zh) 一种分段改造完井的方法
WO2021004163A1 (zh) 一种用于同井注采的封隔方法及完井结构
US2784787A (en) Method of suppressing water and gas coning in oil wells
RU2667561C1 (ru) Способ многократного гидравлического разрыва пласта в открытом стволе наклонной скважины
RU2526062C1 (ru) Способ многократного гидравлического разрыва пласта в горизонтальном стволе скважины
CN104563958A (zh) 一种封孔装置
CN210685949U (zh) 一种用于同井注采的完井结构
CN101769271B (zh) 深井采油外流道正反循环自由起投式射流泵采油方法及装置
CN106837268A (zh) 控水注气采油一体化增产方法
WO2022183898A1 (zh) 操作注水井的方法以及注水井
CN104948141A (zh) 一种同井采注装置
CN110886594B (zh) 开采煤层气的方法
WO2021022909A1 (zh) 堆积封隔颗粒实现自堵水的方法、自堵水管柱和完井结构
CN101338660B (zh) 一种具有控流功能的水平注采井完井结构
CN208830969U (zh) 采油及注水管柱
RU2431033C1 (ru) Способ восстановления герметичности заколонного пространства скважины газовой залежи или залежи, содержащей в своей продукции природный газ
CN206830131U (zh) 一种注水井用沉砂定压单流阀
CN106223898B (zh) 一种二开水平井固完井一体化管柱装置
CN105003223A (zh) 一种可有效提高接触油后的封隔颗粒易携带性能的方法
CN215672154U (zh) 注水井

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20850364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20850364

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20850364

Country of ref document: EP

Kind code of ref document: A1